WO2019021437A1 - 走行支援方法及び走行支援装置 - Google Patents

走行支援方法及び走行支援装置 Download PDF

Info

Publication number
WO2019021437A1
WO2019021437A1 PCT/JP2017/027316 JP2017027316W WO2019021437A1 WO 2019021437 A1 WO2019021437 A1 WO 2019021437A1 JP 2017027316 W JP2017027316 W JP 2017027316W WO 2019021437 A1 WO2019021437 A1 WO 2019021437A1
Authority
WO
WIPO (PCT)
Prior art keywords
route
travel
vehicle
travel route
traveling
Prior art date
Application number
PCT/JP2017/027316
Other languages
English (en)
French (fr)
Inventor
宏寿 植田
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to KR1020207005259A priority Critical patent/KR20200032168A/ko
Priority to BR112020001645-4A priority patent/BR112020001645A2/pt
Priority to RU2020108206A priority patent/RU2741130C1/ru
Priority to JP2019532305A priority patent/JP6809611B2/ja
Priority to BR122023021234A priority patent/BR122023021234A2/pt
Priority to CA3071087A priority patent/CA3071087A1/en
Priority to EP17918739.8A priority patent/EP3660455B1/en
Priority to PCT/JP2017/027316 priority patent/WO2019021437A1/ja
Priority to CN201780093489.3A priority patent/CN110959100A/zh
Priority to US16/633,932 priority patent/US11396290B2/en
Priority to BR122023021198-7A priority patent/BR122023021198A2/pt
Publication of WO2019021437A1 publication Critical patent/WO2019021437A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • G01C21/30Map- or contour-matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3407Route searching; Route guidance specially adapted for specific applications
    • G01C21/3415Dynamic re-routing, e.g. recalculating the route when the user deviates from calculated route or after detecting real-time traffic data or accidents
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/40High definition maps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/10Path keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/14Cruise control

Definitions

  • the present invention relates to a driving support method and a driving support apparatus.
  • the present invention provides a driving assistance method and driving assistance that can suppress unnatural behavior of a vehicle when switching from a traveling route on which the vehicle is currently traveling to a traveling route based on a high precision map. It aims at providing an apparatus.
  • a travel support apparatus that detects the surrounding environment of the host vehicle, generates a first travel route based on the surrounding environment, and executes travel support control of the host vehicle based on the first travel route. And, in the driving support method, the second driving route is generated based on the high precision map information of the surroundings of the own vehicle, and it is determined whether the first driving route and the second driving route are similar or not. When it is determined that the second travel route is similar to the second travel route, the travel route on which the host vehicle executes travel support control is switched from the first travel route to the second travel route.
  • a driving support method and a driving support apparatus capable of suppressing unnatural behavior of a vehicle when switching from a traveling route where a vehicle is currently traveling to a traveling route based on a high accuracy map. be able to.
  • FIG. 11A It is the schematic which shows an example of the scene which switches the driving
  • the driving support apparatus according to the embodiment of the present invention is mounted on, for example, a vehicle (hereinafter, a vehicle on which the driving support apparatus according to the embodiment of the present invention is mounted is referred to as "own vehicle”).
  • the driving support apparatus according to the embodiment of the present invention includes: automatic driving in which the host vehicle automatically drives to travel along a traveling route; and guidance for prompting a driver to cause the host vehicle traveling along the traveling route. It can be implemented as driving support.
  • the automatic driving includes the case of executing all control of driving, braking and steering of the own vehicle without the involvement of the occupant (driver) and also performing at least one of the driving, braking and steering of the own vehicle. Including.
  • the automatic driving may be preceding vehicle follow-up control, inter-vehicle distance control, lane deviation prevention control or the like.
  • the manual driving means driving by the driver's operation without the driving support device according to the embodiment of the present invention performing any control of driving, braking and steering of the own vehicle.
  • the driving assistance apparatus is a traveling route switching determination device (processing circuit) 1, a vehicle sensor 2, a surrounding sensor 3, a storage device 4, and a user interface (I / F) 5.
  • the processing circuit 1, the vehicle sensor 2, the surrounding sensor 3, the storage device 4, the user I / F 5, the actuator 6 and the vehicle control device 7 can transmit and receive data and signals by wire or wireless such as a controller area network (CAN) bus is there.
  • CAN controller area network
  • the vehicle sensor 2 is a sensor that detects the current position of the host vehicle and the traveling state of the host vehicle.
  • the vehicle sensor 2 includes a global positioning system (GNSS) receiver 21, a vehicle speed sensor 22, an acceleration sensor 23, and a gyro sensor 24.
  • GNSS global positioning system
  • the GNSS receiver 21 is a global positioning system (GPS) receiver or the like, receives radio waves from a plurality of navigation satellites, acquires the current position of the vehicle, and outputs the acquired current position of the vehicle to the processing circuit 1 Do.
  • GPS global positioning system
  • the vehicle speed sensor 22 detects the wheel speed of the host vehicle, detects the vehicle speed from the detected wheel speed, and outputs the detected vehicle speed to the processing circuit 1.
  • the acceleration sensor 23 detects accelerations in the front-rear direction, vehicle width direction, and the like of the host vehicle, and outputs the detected accelerations to the processing circuit 1.
  • the gyro sensor 24 detects the angular velocity of the host vehicle, and outputs the detected angular velocity to the processing circuit 1.
  • the surrounding sensor 3 is a sensor that detects the surrounding environment (surrounding situation) of the vehicle including the environment in front of the vehicle.
  • the ambient sensor 3 comprises a camera 31, a radar 32 and a communicator 33.
  • the kind and number of objects of the surrounding sensor 3 are not limited to this.
  • As the camera 31, a CCD camera or the like can be used.
  • the camera 31 may be a monocular camera or a stereo camera.
  • the camera 31 picks up an image of the environment around the host vehicle, and from the captured image, the relative position between the host vehicle and another vehicle such as a leading vehicle or a pedestrian or a bicycle, the distance between the object and the host vehicle, the road Road structures such as upper lane boundaries (white lines) and the like are detected as data of the surrounding environment of the vehicle, and data of the detected surrounding environment is output to the processing circuit 1.
  • the radar 32 for example, a millimeter wave radar, an ultrasonic radar, a laser range finder (LRF) or the like can be used.
  • the radar 32 detects the relative position between the object and the host vehicle, the distance between the object and the host vehicle, the relative velocity between the object and the host vehicle, etc. as data of the surrounding environment of the host vehicle, and detects the data of the detected surrounding environment.
  • the communicator 33 performs inter-vehicle communication with another vehicle, road-to-vehicle communication with a roadside device, communication with a traffic information center, etc., to thereby communicate the position of the other vehicle, the speed of the other vehicle, etc.
  • the received data of the surrounding environment is output to the processing circuit 1.
  • the storage device 4 includes a navigation map information storage unit 41 that stores map information for navigation (hereinafter referred to as "navi map information"), and a high accuracy map information storage unit 42 that stores high accuracy map information.
  • the server manages a database of navigation map information and high accuracy map information, acquires difference data of the updated navigation map information and high accuracy map information, for example, through a telematics service, and stores it in the navigation map information storage unit 41
  • the updated navigation map information and the high accuracy map information stored in the high accuracy map information storage unit 42 may be updated.
  • navigation map information and high precision map information may be acquired by inter-vehicle communication or road-vehicle communication in accordance with the position where the host vehicle is traveling.
  • the telematics service inter-vehicle communication, road-to-vehicle communication
  • the own vehicle does not need to have navigation map information and high-accuracy map information having a large data capacity, and the memory capacity is suppressed. can do.
  • the telematics service inter-vehicle communication, road-to-vehicle communication
  • the updated navigation map information and the high-accuracy map information can be obtained, so changes in the road structure, the presence of the construction site, etc. You will be able to accurately grasp the driving situation.
  • navigation map information and high-accuracy map information created based on data collected from a plurality of other vehicles other than the own vehicle are used. You will be able to understand accurate information.
  • the navigation map information stored in the navigation map information storage unit 41 includes road unit information.
  • the navigation map information is information of a road unit, information of a road node indicating a reference point on a road reference line (for example, a central line of the road) and information of a road link indicating a section mode of a road between road nodes Including.
  • the road node information includes the identification number of the road node, the position coordinates, the number of connected road links, and the identification number of the connected road links.
  • the road link information includes the road link identification number, the road standard, the link length, the number of lanes, the width of the road, and the speed limit.
  • Navigation map information does not include lane information.
  • the navigation map information stored in the navigation map information storage unit 41 does not include lane unit information that is more detailed than road unit information.
  • the high accuracy map information stored in the high accuracy map information storage unit 42 is map information with higher accuracy than the navigation map information, and includes lane unit information that is more detailed than road unit information.
  • high-accuracy map information is information on a lane basis, such as lane node information indicating a reference point on a lane reference line (for example, a center line in the lane), and lane link information indicating a section of lanes between lane nodes Contains information.
  • the lane node information includes the identification number of the lane node, the position coordinates, the number of connected lane links, and the identification number of the connected lane links.
  • the lane link information includes the lane link identification number, lane type, lane width, lane boundary type, lane shape, and lane reference line shape.
  • the high-precision map information further includes types and position coordinates of features such as traffic lights, stop lines, signs, buildings, telephone poles, curbs, pedestrian crossings, etc. existing on or near the lanes, and lanes corresponding to position coordinates of features. It includes feature information such as the identification number of the node and the identification number of the lane link.
  • the high-precision map includes lane-based node and link information, so that it is possible to identify the lane in which the vehicle travels on the travel route.
  • the high precision map has coordinates that can represent positions in the lane extension direction and the lane width direction.
  • the high-precision map has coordinates (e.g., longitude, latitude and altitude) that can represent the position in the three-dimensional space, and the lanes and the features can be described as shapes in the three-dimensional space.
  • the processing circuit 1 and the vehicle control device 7 are controllers such as an electronic control unit (ECU) that performs arithmetic logic operation of processing required for the operation performed by the travel support device according to the embodiment of the present invention.
  • a device and an input / output I / F may be provided.
  • the processor can correspond to a microprocessor or the like equivalent to a central processing unit (CPU) including an arithmetic logic unit (ALU), a control circuit (control unit), and various registers.
  • a storage device built in or externally attached to the processing circuit 1 and the vehicle control device 7 includes a semiconductor memory, a disk medium, and the like, and includes storage media such as a register, a cache memory, and ROM and RAM used as a main storage device. It may be For example, the processor may execute a program (travel support program) stored in advance in the storage device and indicating a series of processes necessary for the operation of the travel support device according to the embodiment of the present invention.
  • a program travel support program
  • the processing circuit 1 functionally includes logical blocks such as the first route generation unit 11, the second route generation unit 12, the route comparison unit 13, the vehicle speed acquisition unit 14, the velocity comparison unit 15, the route switching unit 16, and the presentation control unit 17 Or as a physical hardware resource.
  • These logic blocks may be physically configured by programmable logic devices (PLDs) such as field programmable gate arrays (FPGAs), and are equivalently processed by software in a general-purpose semiconductor integrated circuit. It may be a functional logic circuit or the like set to.
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • the first route generation unit 11, the second route generation unit 12, the route comparison unit 13, the vehicle speed acquisition unit 14, the velocity comparison unit 15, the route switching unit 16, the presentation control unit 17 and the like constituting the processing circuit 1 It may be composed of one piece of hardware, or may be composed of separate pieces of hardware.
  • the vehicle control device 7 may be incorporated in the processing circuit 1.
  • the processing circuit 1 can be configured by a car navigation system such as an in-vehicle infotainment (IVI) system
  • the vehicle control device 7 can be configured by a driving support system such as an advanced driving support system (ADAS).
  • ADAS advanced driving support system
  • the first route generation unit 11 generates a first traveling route P1 based on at least the surrounding environment of the host vehicle detected by the surrounding sensor 3.
  • the first travel route P1 is a candidate for a travel route when performing travel support control on the host vehicle. For example, when the preceding vehicle follow-up control is executed on the own vehicle, the first route generation unit 11 calculates the traveling locus of the preceding vehicle based on the preceding vehicle detected by the surrounding sensor 3 and calculates the preceding vehicle
  • the traveling path of the vehicle is generated as a first traveling path (CFP: Car Following Path). For example, the locus of the position of the center of the vehicle width of the preceding vehicle is calculated as the traveling locus of the preceding vehicle.
  • CCP Car Following Path
  • the first travel route based on the travel path of the preceding vehicle is, for example, about 100 m long, and is sequentially updated if the preceding vehicle travels.
  • the first route generation unit 11 may generate the traveling trajectory of the preceding vehicle as it is as the first traveling route, and generates a first traveling route P1 by offsetting the traveling trajectory of the preceding vehicle in the width direction of the lane. You may
  • the first route generation unit 11 may generate the first travel route with reference to the navigation map information stored in the navigation map information storage unit 41. For example, the first route generation unit 11 sets a destination in the navigation map information stored in the navigation map information storage unit 41 based on instruction information from the occupant. The first route generation unit 11 searches a planned travel route from the current position (departure place) of the vehicle in the navigation map information stored in the navigation map information storage unit 41 to the destination using the Dijkstra method or the like.
  • the first route generation unit 11 performs, for example, in the lane based on the surrounding environment of the vehicle such as the position of the lane boundary detected by the surrounding sensor 3 so as to go straight or turn right or left according to the searched planned travel route.
  • a first travel route is generated to pass through the center.
  • the first route generation unit 11 does not refer to the navigation map information stored in the navigation map information storage unit 41, and a target trajectory based on the surrounding environment of the vehicle such as the position of the lane boundary detected by the surrounding sensor 3 May be calculated, and the calculated target trajectory may be generated as a first travel route.
  • the first route generation unit 11 may generate the first travel route in a predetermined section from the current position of the host vehicle to a predetermined distance.
  • the predetermined section can be appropriately set within a range in which the surrounding environment necessary for the driving support control of the vehicle can be detected by the surrounding sensor 3.
  • the second route generation unit 12 generates a second travel route (NDP: Navigation Drive Path) based on at least the high accuracy map information stored in the high accuracy map information storage unit 42.
  • the second travel route is a candidate for a travel route when performing travel support control on the host vehicle. For example, based on the high-accuracy map information stored in the high-accuracy map information storage unit 42 and the surrounding environment of the vehicle such as the road structure detected by the surrounding sensor 3, the second route generation unit 12 The position of the host vehicle is specified, and the second travel route is generated so as to be drawn into the lane based on the position of the host vehicle.
  • the second travel path may be generated to pass through the center of the lane.
  • the second route generation unit 12 is configured to perform straight travel or turn right or left according to the planned travel route in the section of the planned travel route from the departure place to the destination in the navigation map information stored in the navigation map information storage unit 41.
  • a travel route may be generated.
  • the second travel route P2 may generate a second travel route up to a predetermined section from the current position of the host vehicle to a predetermined distance.
  • the predetermined section can be appropriately set within the range in which the high accuracy map information exists.
  • FIG. 2A On a two-lane road in which lanes L1 and L2 in the same traveling direction run in parallel, host vehicle C1 executes follow-up control to preceding vehicle C2, and host vehicle C1 runs from the left lane L1 to the right Trying to change lanes to lane L2.
  • it is considered to switch the traveling route to be followed from the first traveling route P1 based on the traveling trajectory of the leading vehicle C2 to the second traveling route P2 based on the high precision map.
  • the first travel path P1 is generated in the right lane L2
  • the second travel path P2 is generated in the left lane L1
  • the first travel path P1 and the second travel path P2 have deviations. Yes, they are not similar to each other (the determination of similarity between the first travel route P1 and the second travel route P2 will be described later). For this reason, when the travel route is switched from the first travel route P1 to the second travel route P2, an unnatural behavior such as fluctuation occurs in the host vehicle C1, so that the first travel route P1 2 Stand by without switching to the travel route P2.
  • the host vehicle C1 changes lanes from the left lane L1 to the right lane L2.
  • the first travel path P1 is generated in the right lane L2
  • the second travel path P2 is generated in the left lane L1
  • the first travel path P1 and the second travel path P2 are not similar. Therefore, the process waits without switching from the first travel path P1 to the second travel path P2.
  • a second travel path P2 is generated in the right lane L2.
  • the first travel route P1 and the second travel route P2 are in the same lane L2 and the deviation between the first travel route P1 and the second travel route P2 is small and they are similar to each other, the first travel route A process of switching the traveling route from P1 to the second traveling route P2 is performed.
  • the route comparison unit 13 shown in FIG. 1 compares the first travel route P1 generated by the first route generation unit 11 with the second travel route P2 generated by the second route generation unit 12, and It is determined whether the travel route P1 and the second travel route P2 are similar.
  • “similar” includes “identical”, and the first traveling route P1 and the second traveling route P1 and the second traveling route P2 are identical even when the first traveling route P1 and the second traveling route P2 completely coincide with each other. It is included in the case where it is determined that the traveling route P2 is similar.
  • the route comparison unit 13 determines whether the distance between the first travel route P1 and the second travel route P2 is less than a predetermined threshold to determine the shapes of the first travel route P1 and the second travel route P2. It may be determined whether they are similar to each other. That is, the route comparison unit 13 determines that the first travel route P1 and the second travel route P2 are not similar when the distance between the first travel route P1 and the second travel route P2 is equal to or greater than a predetermined threshold. When the interval between the first travel route P1 and the second travel route P2 is less than a predetermined threshold, it may be determined that the first travel route P1 and the second travel route P2 are similar.
  • the predetermined threshold can be set as appropriate, and may be stored in advance in the storage device 4 or the like.
  • the threshold value Dt or more it is determined that the first travel route P1 and the second travel route P2 are not similar.
  • finite distances may be calculated at predetermined intervals. For example, even when the first travel path P1 is fluctuating and meandering, it is determined that the first travel path P1 and the second travel path P2 are similar if all the shortest distances Di are less than the predetermined threshold Dt.
  • Predetermined threshold Dt is compared with the shortest distance Di, for example, as shown in FIG. 4, the width W L of the lane L2, based on the width W C of the preceding vehicle C2, as a value for the same inside lane L2, wherein It can be determined by (1).
  • Dt W L / 2-W C / 2 (1)
  • the shortest distance to the first travel route P1 in all sections of the second travel route P2 You may calculate Di. Further, instead of calculating the shortest distance Di in all sections where the first travel route P1 and the second travel route P2 overlap, the nearer point than the farthest point where the first travel route P1 and the second travel route P2 overlap The shortest distance Di may be calculated within a predetermined section up to a predetermined position.
  • the route comparison unit 13 calculates the shortest distance Di between the first travel route P1 and the second travel route P2 in a predetermined section ahead of the current position of the host vehicle C1 without including the current position of the host vehicle C1. It is also good. For example, as shown in FIG. 5, the route comparison unit 13 does not include a region less than the distance L0 from the current position of the host vehicle C1 to the front fixation point, and is distant from the host vehicle C1 by a distance L0 or more from the front fixation point.
  • the shortest distance Di between the first travel route P1 and the second travel route P2 may be calculated.
  • the distance L0 of the forward fixation point can be calculated, for example, by multiplying the vehicle speed of the host vehicle C1 by a predetermined own constant set in advance.
  • the shortest distance Di may be calculated at a predetermined position or a predetermined section of the region from the position separated from the host vehicle C1 by the distance L0 of the front fixation point to the rear position of the preceding vehicle C2.
  • FIG. 5 shows the case where the shortest distance Di is calculated at the position of the distance L0 from the host vehicle C1 to the front fixation point.
  • the route comparison unit 13 sets L0 to the distance of the forward fixation point, which is the control target point when following the traveling route, V as the current vehicle speed of the own vehicle C1, and the behavior of the own vehicle C1 to allow switching of the traveling route.
  • a predetermined threshold Dt to be compared with the shortest distance Di may be obtained by Expression (2).
  • Dt L0 ⁇ Vs / V (2)
  • the route comparison unit 13 When the length of at least one of the first travel route P1 and the second travel route P2 is less than a predetermined threshold (for example, 10 m), the route comparison unit 13 performs first and second travel routes P1 and P2 ahead of the host vehicle C1. Since the similarity of the route P2 can not be determined appropriately, it may be determined that the first traveling route P1 and the second traveling route P2 are not similar. For example, when the host vehicle C1 and the preceding vehicle C2 approach each other, the length of the first travel path P1 may be shortened. In addition, the length of the second travel path P2 may be short near the end of the range where high precision map information can be obtained.
  • a predetermined threshold for example, 10 m
  • FIG. 6A shows a scene where the host vehicle C1 is going to follow the preceding vehicle C2 and turn left at an intersection (T-junction) to enter the lane L1. At this time, it is considered to switch the traveling route to be followed from the first traveling route P1 based on the traveling trajectory of the leading vehicle C2 to the second traveling route P2 based on the high accuracy map. As shown in FIG.
  • the driving assistance apparatus when the direction of the first traveling path P1 and the direction of the second traveling path P2 are similar, the first traveling path P1 to the second A process of switching the traveling route to the traveling route P2 is performed.
  • the route comparison unit 13 determines the shapes of the first travel route P1 and the second travel route P2 by determining whether the directions (directions) of the first travel route P1 and the second travel route P2 are similar. May be determined whether they are similar to one another. For example, as shown in FIG. 7, the route comparison unit 13 is a tangent line LA of a point p1 on the first travel route P1 closest to each other at a predetermined position where the first travel route P1 and the second travel route P2 overlap.
  • the predetermined threshold value ⁇ t can be set as appropriate, and may be stored in advance in the storage device 4 or the like.
  • the first travel route is obtained when all of the plurality of angles ⁇ are less than a predetermined threshold ⁇ t. It may be determined that the first traveling route P1 and the second traveling route P2 are not similar if it is determined that P1 and the second traveling route P2 are similar and one of the plurality of angles ⁇ is equal to or more than a predetermined threshold ⁇ t. .
  • the predetermined section in front of the host vehicle C1 is set to, for example, all sections where the lengths of the first travel path P1 and the second travel path P2 are shorter.
  • the route comparison unit 13 may determine whether or not the directions of the first travel route P1 and the second travel route P2 are similar at the current position of the host vehicle. Alternatively, the route comparison unit 13 may determine whether or not the directions of the first travel route P1 and the second travel route P2 are similar at the distance of the front fixation point of the host vehicle.
  • FIG. 8 shows a scene in which the first traveling route P1 based on the traveling trajectory of the leading vehicle C2 and the second traveling route P2 based on the high precision map are generated, and the second traveling route P2 turns right . At this time, it is considered to switch the traveling route to be followed from the first traveling route P1 to the second traveling route P2.
  • the speed (planned speed) when traveling on the second traveling route P2 is low, and the current vehicle speed of the own vehicle C1 following the first traveling route P1 based on the traveling locus of the leading vehicle C2 is the second traveling
  • the traveling route is deviated from the speed when traveling on the route P2
  • the traveling route is switched from the first traveling route P1 to the second traveling route P2
  • the driving assistance apparatus takes into consideration the similarity between the current vehicle speed of the host vehicle C1 and the speed when traveling on the second traveling route P2, and 2) A process of switching the traveling route to the traveling route P2 is performed.
  • the vehicle speed acquisition unit 14 acquires the current vehicle speed of the host vehicle C1 detected by the vehicle speed sensor 22.
  • the vehicle speed acquisition unit 14 further acquires a vehicle speed (planned speed) planned when traveling on the second travel path P2 generated by the second path generation unit 12.
  • the planned speed when traveling on the second traveling route P2 is, for example, of the speed limit included in the navigation map information stored in the navigation map information storage unit 41 or the high accuracy map information stored in the high accuracy map information storage unit 42. It may be calculated based on the information. Alternatively, the planned speed when traveling on the second travel path P2 may be calculated based on the information of the speed of the other vehicle around the host vehicle detected by the surrounding sensor 3.
  • the planned speed when traveling on the second traveling route P2 is the road structure (road shape) obtained from the high accuracy map information stored in the high accuracy map information storage unit 42 or the surroundings detected by the surrounding sensor 3 It may be calculated based on the road structure (road shape) included in the environment.
  • the planned speed when traveling on the second travel path P2 may be planned to be constant over the entire section of the second travel path P2, or may be planned to change.
  • the speed comparison unit 15 compare and resemble the current vehicle speed of the host vehicle acquired by the vehicle speed acquisition unit 14 with the planned speed when traveling on the second travel path P2 acquired by the vehicle speed acquisition unit 14?
  • the target to be followed is switched from the first travel route P1 to the second travel route P2 by determining whether or not the vehicle follows the planned speed when traveling on the second travel route P2 from the current vehicle speed of the own vehicle C1. Determine whether it is possible. That is, when the current vehicle speed of the own vehicle and the planned speed when traveling on the second traveling route P2 are similar, the speed comparison unit 15 travels the second traveling route P2 from the current vehicle speed of the own vehicle C1.
  • the second travel is calculated from the current vehicle speed of the host vehicle C1. It is determined that the planned speed when traveling on the route P2 can not be followed.
  • the speed comparison unit 15 calculates the difference between the current vehicle speed of the host vehicle acquired by the vehicle speed acquisition unit 14 and the planned speed when traveling on the second traveling route P2.
  • the speed comparison unit 15 makes the current vehicle speed of the host vehicle similar to the planned speed when traveling on the second travel route P2, and the current of the host vehicle C1 It is determined that the vehicle speed of the vehicle can follow the planned speed when traveling on the second travel path P2.
  • the speed comparison unit 15 does not have the same speed as the current vehicle speed of the host vehicle and the planned speed when traveling on the second travel route P2. It is determined that the current vehicle speed of C1 can not follow the planned speed when traveling on the second travel path P2.
  • the predetermined threshold can be set as appropriate, and may be stored in advance in the storage device 4 or the like.
  • the speed comparison unit 15 may use the current vehicle speed V1 of the host vehicle C1 acquired by the vehicle speed acquisition unit 14 and the first traveling route P1 and the first traveling route P1 from the current position of the host vehicle C1. 2
  • the farthest distance from the current position of the vehicle based on the distance Lc to the farthest point of the overlapping section with the traveling path P2 and the planned speed V2 when traveling the second traveling path P2 at the farthest point
  • Required to decelerate from the current vehicle speed V1 of the host vehicle to the planned speed V2 is calculated until the vehicle reaches the point of.
  • the speed comparison unit 15 determines that follow-up is possible if the calculated deceleration ⁇ is less than a predetermined threshold value ⁇ t, and determines that follow-up is impossible if the calculated deceleration ⁇ is equal to or more than a predetermined threshold value ⁇ t.
  • the predetermined threshold value ⁇ t can be set as appropriate, and may be stored in advance in the storage device 4 or the like.
  • the speed comparison unit 15 determines that the current vehicle speed of the host vehicle C1 acquired by the vehicle speed acquisition unit 14 is lower than the planned speed when traveling on the second travel path P2, and the current vehicle speed of the host vehicle C1 and the second vehicle speed If the difference from the planned speed when traveling on the traveling path P2 is equal to or greater than a predetermined threshold value, the acceleration required to accelerate from the current vehicle speed of the host vehicle C1 to the planned vehicle speed of the second traveling path P2 is calculated.
  • the speed comparison unit 15 determines that follow-up is possible when the calculated acceleration is less than a predetermined threshold, and determines that follow-up is impossible when the calculated acceleration is equal to or more than a predetermined threshold.
  • the predetermined threshold can be set as appropriate, and may be stored in advance in the storage device 4 or the like.
  • the route switching unit 16 is required to switch the traveling route on which the host vehicle C1 travels by executing the travel support control from the first traveling route P1 currently traveling to the second traveling route P2 which is a candidate for the traveling route. Determine if there is. For example, when there is no high-accuracy map information of the road section ahead of the host vehicle C1 and the second travel route P2 is not generated by the second route generation unit 12, it is determined that switching of the travel route to be followed is unnecessary. Do. When the first traveling route P1 is a traveling route based on the traveling trajectory of the preceding vehicle C2 and the second traveling route P2 is generated, the route switching unit 16 determines that the preceding vehicle C2 is the destination of the own vehicle C1.
  • the route switching unit 16 may always determine that the switching of the travel route to be followed is necessary.
  • the route switching unit 16 controls the vehicle C1. Switches the traveling route on which the traveling support control is performed by switching from the first traveling route P1 currently followed by the host vehicle C1 currently traveling to the second traveling route P2 which is a following candidate, at a predetermined timing.
  • the route switching unit 16 determines that the first travel route P1 and the second travel route P2 are similar by the route comparison unit 13, and the speed comparison unit 15 determines the second travel route P2 from the current vehicle speed of the host vehicle C1.
  • the traveling path to be followed may be switched from the first traveling path P1 to the second traveling path P2.
  • the route comparison unit 13 determines that the first travel route P1 and the second travel route P2 are similar by the route comparison unit 13 or if the speed comparison unit 15 determines from the current vehicle speed of the host vehicle C1 When it is determined that it is possible to follow the planned speed when traveling on the route P2, the traveling route to be followed may be switched from the first traveling route P1 to the second traveling route P2.
  • the route switching unit 16 asks the passenger for permission to switch the traveling route, and the passenger's permission is obtained. It may be switched in case of failure.
  • the route switching unit 16 switches the follow target from the first travel route P1 to the second travel route P2. Wait without doing That is, when the first travel path P1 is generated based on the travel path of the preceding vehicle, it is generally assumed that the preceding vehicle travels straight ahead in the vicinity of the center in the lane. On the other hand, the second travel path P2 is generally generated to pass through the middle in the lane. For this reason, even if the first travel route P1 and the second travel route P2 are not similar at this point in time, there is a possibility that the first travel route P1 and the second travel route P2 are similar because the amount of deviation becomes smaller. It is assumed that the first travel route P1 and the second travel route P2 are determined to be similar by the route comparison unit 13 assuming that there is
  • the route switching unit 16 is determined while traveling on the first travel route P1 and the second travel route P2 which have been subjected to the similarity determination. It switches from the 1st travel path P1 to the 2nd travel path P2 at the timing of. For example, when the similarity determination is performed in a predetermined section from the current position of the own vehicle to a predetermined distance, the first travel path P1 may be switched to the second travel path P2 while traveling in the predetermined section. Good. Alternatively, when the similarity determination is performed at a predetermined position in the overlapping section of the first travel route P1 and the second travel route P2, switching may be performed at the timing when the predetermined position is reached.
  • the similarity determination is performed at a distance L0 or more ahead of the host vehicle C1 from the current position of the host vehicle C1 without including the area less than the distance L0 of the front gaze point
  • switching may be performed at a timing when a position distant to the front fixation point by a distance L0 or more is reached.
  • the route switching unit 16 switches the traveling route to be followed from the first traveling route P1 to the second traveling route P2, and then selects the traveling route to be followed from the second traveling route P2 to the first traveling route P1. You can also switch. For example, when the host vehicle C1 enters a road section without high accuracy map information, or when the accuracy of high accuracy map information is lower than a predetermined threshold, the second travel route P2 can be followed by the first travel route P1 May be switched.
  • the presentation control unit 17 outputs a control signal for controlling the display 52 and the speaker 53 of the user I / F 5 so as to present guidance information to the occupant according to the switching result of the travel route by the route switching unit 16.
  • the presentation control unit 17 may urge the occupant to travel on the first travel path P1 before the path switching unit 16 switches from the first travel path P1 to the second travel path P2.
  • the presentation control unit 17 may present that effect to the occupant.
  • the user I / F 5 includes an input device 51, a display 52, and a speaker 53.
  • a switch, a button, a keyboard, a microphone, a touch panel or the like can be adopted.
  • the input device 51 receives information for setting a destination of the host vehicle, information for instructing switching between automatic driving and manual driving, information for permitting switching from the first travel path P1 to the second travel path P2, etc. Accept.
  • the display 52 is, for example, a liquid crystal display (LCD) or the like, and displays an image such as character information or an icon based on a control signal from the presentation control unit 17.
  • the speaker 53 outputs voice and notification sound based on the control signal from the presentation control unit 17.
  • the vehicle control device 7 calculates the control amount of the actuator 6 based on the travel route generated by the first route generation unit or the second route generation unit. The calculated control amount is transmitted to the actuator 6.
  • the vehicle control device 7 controls the actuator 6 so as to follow the first traveling route P1 before the path switching unit 16 switches the follow target from the first traveling route P1 to the second traveling route P2. Output the control signal of Under the present circumstances, the vehicle control apparatus 7 may perform the automatic driving
  • the vehicle control device 7 is a control signal for controlling the actuator 6 to follow the second travel route P2 when the route switching unit 16 switches the follow target from the first travel route P1 to the second travel route P2.
  • the vehicle control apparatus 7 may perform the automatic driving
  • the vehicle control device 7 uses the route switching unit 16 to switch the follow target from the first travel route P1 to the second travel route P2, the planned speed when traveling the second travel route P2 from the current vehicle speed of the host vehicle C1.
  • the acceleration / deceleration control of the host vehicle C1 may be performed so as to be close to.
  • the actuator 6 controls the traveling of the own vehicle according to the control signal from the vehicle control device 7.
  • the actuator 6 includes, for example, a drive actuator 61, a brake actuator 62, and a steering actuator 63.
  • the drive actuator 61 is, for example, an electronic control throttle valve, and controls the accelerator opening degree of the vehicle based on a control signal from the vehicle control device 7.
  • the brake actuator 62 is formed of, for example, a hydraulic circuit, and controls the braking operation of the brake of the own vehicle based on a control signal from the vehicle control device 7.
  • the steering actuator 63 controls the steering of the own vehicle based on the control signal from the vehicle control device 7.
  • step S1 the surrounding sensor 3 detects the surrounding environment of the host vehicle C1. Based on the surrounding environment of the host vehicle C1 detected by the surrounding sensor 3, the first route generation unit 11 generates a first travel route P1 currently being followed by the host vehicle C1. For example, the first route generation unit 11 calculates the traveling locus of the preceding vehicle based on the leading vehicle detected by the surrounding sensor 3, and generates the calculated traveling locus of the leading vehicle C2 as the first traveling route P1. In this case, the traveling track of the preceding vehicle C2 is sequentially updated in accordance with the traveling of the preceding vehicle C2, and the first traveling path P1 is also sequentially generated.
  • step S2 based on the high accuracy map information stored in the high accuracy map information storage unit 42, the second route generation unit 12 selects a second traveling route P2 which is a candidate for a traveling route to be followed by the host vehicle C1. Generate For example, the second route generation unit 12 extracts the road structure in front of the host vehicle C1 from the high accuracy map information stored in the high accuracy map information storage unit 42, and based on the extracted road structure Generate
  • step S3 the vehicle speed sensor 22 successively detects the vehicle speed of the host vehicle C1.
  • the vehicle speed acquisition unit 14 acquires the vehicle speed of the host vehicle C1 detected by the vehicle speed sensor 22.
  • the surrounding sensor 3 detects a planned speed when traveling on the second travel route P2 generated by the second route generation unit 12.
  • the vehicle speed acquisition unit 14 acquires a planned speed when traveling on the second travel path P2 detected by the surrounding sensor 3.
  • step S4 the route switching unit 16 switches the travel route to be followed from the first travel route P1 generated by the first route generation unit 11 to the second travel route P2 generated by the second route generation unit 12. To determine if it is necessary. For example, when the second travel route P2 does not exist, it is determined that switching of the travel route to be followed is unnecessary, and when the second travel route P2 is present, it is determined that switching of the travel route to be followed is necessary. If it is determined that switching of the traveling route to be followed is necessary, the process proceeds to step S5.
  • the route comparison unit 13 determines whether the first travel route P1 generated by the first route generation unit 11 and the second travel route P2 generated by the second route generation unit 12 are similar. Similarity determination processing is performed to determine whether or not.
  • the route comparison unit 13 determines whether or not the distance between the first travel route P1 and the second travel route P2 is less than a predetermined threshold value, to thereby determine the shapes of the first travel route P1 and the second travel route P2. It is determined whether or not are similar. If the route comparison unit 13 determines that at least one of the first travel route P1 and the second travel route P2 is less than a predetermined threshold, the shapes of the first travel route P1 and the second travel route P2 are not similar. You may judge.
  • step S10 When it is determined that the distance between the first travel route P1 and the second travel route P2 is equal to or greater than a predetermined threshold and the shapes of the first travel route P1 and the second travel route P2 are not similar, the first travel route P1 To the second traveling route P2 without waiting, and the process proceeds to step S10. On the other hand, if the distance between the first travel route P1 and the second travel route P2 is less than the predetermined threshold in step S5, it is determined that the shapes of the first travel route P1 and the second travel route P2 are similar, and the process proceeds to step S6. .
  • step S6 the route comparison unit 13 determines whether or not the angle formed by the tangents at points of the shortest distance between the predetermined positions on the first travel route P1 and the second travel route P2 is less than a predetermined threshold value. Thus, it is determined whether or not the directions (directions) of the first travel route P1 and the second travel route P2 are similar. If the angle between the tangents is equal to or greater than a predetermined threshold value, it is determined that the directions (orientations) of the first travel route P1 and the second travel route P2 are not similar and switching from the first travel route P1 to the second travel route P2 It is decided to stand by without making a transition to step S10.
  • step S6 determines whether the angle formed by the tangents in step S6 is less than the predetermined threshold value, it is determined that the directions (directions) of the first travel path P1 and the second travel path P2 are similar, and the process proceeds to step S7.
  • step S7 the speed comparison unit 15 compares the current vehicle speed of the host vehicle acquired by the vehicle speed acquisition unit 14 with the planned speed when traveling on the second traveling route P2 and determines whether or not they are similar. Thus, when the vehicle is switched to the second travel route P2, it is determined from the current vehicle speed of the host vehicle whether it is possible to follow the planned speed when traveling the second travel route P2. For example, if the difference between the current vehicle speed of the subject vehicle and the planned speed when traveling on the second travel path P2 is less than a predetermined threshold, the speed comparison unit 15 determines that they are similar and follow each other.
  • step S8 If the difference between the current vehicle speed and the planned speed when traveling on the second travel route P2 is equal to or greater than a predetermined threshold, they are not similar to each other and it is determined that the vehicle can not follow. If it is determined that follow-up is possible, the process proceeds to step S8.
  • step S8 the route switching unit 16 switches the traveling route to be followed by the host vehicle C1 from the first traveling route P1 to the second traveling route P2 at a predetermined timing.
  • the vehicle control device 7 executes driving support control on the host vehicle C1 so as to follow the second travel path P2.
  • the vehicle speed of the host vehicle C1 is made close to the planned speed by performing acceleration / deceleration control of the host vehicle so that the target vehicle speed when traveling on the second traveling path P2 from the current host vehicle speed of the host vehicle.
  • step S9 the vehicle speed of the host vehicle C1 is set to the planned speed by performing acceleration / deceleration control of the host vehicle so as to be able to follow the planned speed when traveling on the second travel path P2 from the current host vehicle speed of the host vehicle. Get close. Then, the vehicle speed of the own vehicle C1 is planned by performing acceleration / deceleration control of the own vehicle by switching to the second traveling route P2 at the timing when the vehicle speed of the own vehicle becomes the followable vehicle speed and performing the planned speed. Close to speed.
  • step S10 it is determined whether the ignition is turned off. If it is determined that the ignition has been turned off, the process ends. If it is determined that the ignition is not turned off, the process returns to step S1. If it is determined at step S4 or S5 that the first travel route P1 and the second travel route P2 are not similar by the route comparison unit 13, the first route is returned at step S1 returned from step S10.
  • the generation unit 11 may generate the first travel path P1 again so that the first travel path P1 is similar to the second travel path P2. For example, the first route generation unit 11 generates the first travel route P1 as in the previous step S1 so that the first travel route P1 generated again along with the movement of the host vehicle and the preceding vehicle is the second travel It may be similar to the route P2. Alternatively, the first route generation unit 11 may generate a first travel route P1 offset such that the amount of deviation from the second travel route P2 becomes smaller as it gets farther forward.
  • the first route generation unit 11 generates the first travel route P1 followed by the own vehicle, and the vehicle control device 7 performs the travel support control of the own vehicle based on the first travel route.
  • the second route generation unit 12 generates the second travel route P2 based on the high precision map information around the vehicle, and the route comparison unit 13 makes the first travel route P1 and the second travel route P2 similar. It is determined whether or not.
  • the route switching unit 16 switches the travel route to be followed by the host vehicle from the first travel route P1 to the second travel route P2. .
  • the route P1 and the second travel route P2 are similar, and the mutual shift amount is small, the travel route can be switched, and unnatural behavior such as fluctuation during switching can be suppressed. Can.
  • the route switching unit 16 switches the travel route to be followed by the host vehicle from the first travel route P1 to the second travel route P2: When the mutual deviation amounts are large, the traveling route is switched, which may cause unnatural behavior such as fluctuation at the time of switching.
  • the route switching unit 16 switches the travel route to be followed by the vehicle from the first travel route P1 to the second travel route P2 The distance traveled before switching from the first travel route to the second travel route is long.
  • the processing circuit 1 determines whether or not there is high precision map information corresponding to the road on which the host vehicle is traveling, and when high precision map information is present, the processing circuit 1 determines 2 Generate a travel route. This makes it possible to switch from the first route to the second route when there is a high precision map.
  • the processing circuit 1 determines that there is high-accuracy map information corresponding to the road on which the host vehicle is traveling, when the host vehicle travels on a road with high-precision map information.
  • the first travel route P1 can be switched to the second travel route P2.
  • the determination as to whether or not there is high-accuracy map information may be performed at predetermined intervals (for example, 100 ms).
  • the route comparison unit 13 determines that the first travel route P1 and the second travel route P2 are similar. Thereby, switching of the traveling route is performed based on the interval between the first traveling route P1 and the second traveling route P2, so that the traveling route is switched when the mutual deviation amount between the first traveling route P1 and the second traveling route P2 is small. It is possible to suppress unnatural behavior such as fluttering at the time of switching.
  • the route comparison unit 13 determines whether the distance between the first travel route P1 and the second travel route P2 is less than a predetermined threshold at a distance L0 or more ahead of the own vehicle C1. Do. As a result, the distance from the forward fixation point, which is the control target point, is taken into consideration, and unlike the case where attention is paid to the instantaneous control amount, the stability thereafter is also taken into consideration. Can. Furthermore, compared with the case where the distance between the first travel route P1 and the second travel route P2 is determined including the region in front of the distance L0 of the front fixation point of the host vehicle C1, the calculation load can be suppressed. .
  • the route comparison unit 13 determines the angle ⁇ between the tangent L0 of the point p1 on the first travel route P1 and the tangent of the point p2 on the second travel route P2 as shown in FIG.
  • a predetermined threshold value it is determined that the first travel route P1 and the second travel route P2 are similar.
  • the traveling route can be switched when the directions (directions) of the first traveling route P1 and the second traveling route P2 are similar, and there is no case where the curve section is suddenly switched to the straight section. Smooth switching from the route P1 to the second travel route P2 can be realized.
  • the first route generation unit 11 determines that the first travel route P1 and the second travel route P2 Are similar, and the first traveling path P1 is generated again so that the switching condition is met. As a result, it is possible to suppress a state in which switching from the first travel route P1 to the second travel route P2 is not finally performed.
  • the first traveling path P1 is switched to the second traveling path P2 by determining whether the current vehicle speed of the host vehicle C1 and the planned speed when traveling on the second traveling path P2 are similar. In this case, it is determined from the current vehicle speed of the host vehicle C1 whether it is possible to follow the planned speed when traveling on the second travel path P2. When it is determined from the current vehicle speed of the host vehicle C1 that the planned speed when traveling on the second travel path P2 can be followed, the first travel path P1 is switched to the second travel path P2. Thereby, when switching from the first travel route P1 to the second travel route P2, smooth switching can be realized also in terms of speed.
  • the host vehicle so as to approach the planned speed when traveling on the second travel path P2.
  • the acceleration / deceleration control of C1 is performed to switch from the first traveling route P1 to the second traveling route P2.
  • acceleration / deceleration control is performed so that switching is possible even when it is determined that switching of the traveling route is not possible, so that a state where the traveling route is not finally switched can be avoided as much as possible.
  • the current speed of the host vehicle C1 is compared with the planned speed when traveling on the second travel path P2 at the farthest one of the first and second travel paths P2 and P2. It is determined that follow-up is possible when the acceleration or deceleration required from the current vehicle speed of C1 to the planned speed is less than a predetermined threshold. In this way, acceleration / deceleration control can be performed and the traveling route can be switched when it is possible to perform tracking before reaching the shortest farthest point of the first traveling route P1 and the second traveling route P2, and sudden acceleration / deceleration Can be performed to achieve smooth switching.
  • the first route generation unit 11 While the host vehicle C1 is traveling in the section S1 in which the high accuracy map information is not present, the first route generation unit 11 generates a first travel route P1 based on the travel locus of the preceding vehicle C2.
  • the second route generation unit 12 does not generate the second travel route P2 because there is no high precision map information.
  • the route switching unit 16 determines that switching of the travel route to be followed from the first travel route P1 to the second travel route P2 is unnecessary.
  • the host vehicle C1 travels following the first travel path P1.
  • the host vehicle C1 enters from a section S1 without high precision map information to a section S2 with high precision map information.
  • the first route generation unit 11 continuously generates the first traveling route P1 based on the traveling trajectory of the preceding vehicle C2.
  • the second route generation unit 12 generates the second travel route P2 because there is high-accuracy map information.
  • the route switching unit 16 determines that it is necessary to switch the traveling route to be followed from the first traveling route P1 to the second traveling route P2.
  • the route comparison unit 13 determines whether the first travel route P1 and the second travel route P2 are similar. When it is determined that the first travel route P1 and the second travel route P2 are similar, the route switching unit 16 switches the travel route to be followed by the host vehicle from the first travel route P1 to the second travel route P2.
  • the first route generation unit 11 generates a first traveling route P1 based on the traveling trajectory of the preceding vehicle C2 while the host vehicle C1 is traveling in a section S1 in which there is no high-accuracy map information (an area without hatching of oblique lines) S1.
  • the second route generation unit 12 does not generate the second travel route P2 because there is no high precision map information.
  • the route switching unit 16 determines that switching of the travel route to be followed from the first travel route P1 to the second travel route P2 is unnecessary.
  • the host vehicle C1 travels following the first travel path P1.
  • the host vehicle C1 turns left and enters from a section S1 without high precision map information to a section S2 with high precision map information (an area with hatching).
  • the first route generation unit 11 continuously generates the first traveling route P1 based on the traveling trajectory of the preceding vehicle C2.
  • the second route generation unit 12 generates the second travel route P2 because there is high-accuracy map information.
  • the route switching unit 16 determines that it is necessary to switch the traveling route to be followed from the first traveling route P1 to the second traveling route P2.
  • the route comparison unit 13 determines whether the first travel route P1 and the second travel route P2 are similar. When it is determined that the first travel path P1 and the second travel path P2 are similar to each other, the path switching unit 16 switches the travel path to be followed by the host vehicle from the first travel path P1 to the second travel path P2.
  • the first route generation unit 11 generates a first traveling route P1 based on the traveling trajectory of the preceding vehicle C2 while the host vehicle C1 is traveling in a section S1 in which there is no high-accuracy map information (an area without hatching of oblique lines) S1.
  • the second route generation unit 12 does not generate the second travel route P2 because there is no high precision map information.
  • the route switching unit 16 determines that switching of the travel route to be followed from the first travel route P1 to the second travel route P2 is unnecessary.
  • the host vehicle C1 travels following the first travel path P1.
  • the first route generation unit 11 continuously generates the first traveling route P1 based on the traveling trajectory of the preceding vehicle C2.
  • the second route generation unit 12 generates the second travel route P2 because there is high-accuracy map information.
  • the route switching unit 16 determines that it is necessary to switch the traveling route to be followed from the first traveling route P1 to the second traveling route P2.
  • the route comparison unit 13 determines whether the first travel route P1 and the second travel route P2 are similar. When it is determined that the first travel path P1 and the second travel path P2 are similar to each other, the path switching unit 16 switches the travel path to be followed by the host vehicle from the first travel path P1 to the second travel path P2.
  • the first traveling route P1 to the second traveling route also from the first traveling route P1 to the second traveling route from the first traveling route P1 to the second traveling route S2 when the own vehicle enters the region S2 having high accuracy map information It is possible to switch to P2 smoothly.
  • the case where the second travel route P2 is generated after entering the section S2 having high accuracy map information has been exemplified, but the approach S2 is performed on the section S2 having high accuracy map information
  • the second traveling route P2 may be generated in S2 before the process, and the similarity determination processing of the first traveling route P1 and the second traveling route P2 may be performed.
  • first travel route P1 and the second travel route P2 are similar at a point where the host vehicle switches from the section S1 without high precision map information to the section S2 with high precision map information, a high precision map It is also possible to switch from the first travel route P1 to the second travel route P2 immediately after entering the section S2 where there is information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Navigation (AREA)

Abstract

車両が現在走行している走行経路から高精度地図に基づく走行経路に切り替える際に、車両の不自然な挙動を抑制することができる走行支援方法を提供するために、車両の周囲環境に基づき第1走行経路を生成し(S1)、車両の周囲の高精度地図情報に基づき第2走行経路を生成し(S2)、第1走行経路と第2走行経路とが類似するか否かを判定し(S5~S7)、第1走行経路と第2走行経路とが類似すると判定された場合、車両が走行支援制御を実行して走行する走行経路を、第1走行経路から第2走行経路に切り替える(S8,S9)。

Description

走行支援方法及び走行支援装置
 本発明は、走行支援方法及び走行支援装置に関する。
 従来、車両が交差点等を走行中は手動運転で走行し、自動運転可能な区間に入ると、自動運転で走行予定の車線を走行しているか否かを判定し、走行予定の車線を走行していると判定されたら自動運転を開始する技術がある(特許文献1参照)。
特開2016-50901号公報
 しかしながら、走行予定の車線を走行していたとしても、その車線内において車両の現在走行している走行経路と、自動運転のための高精度地図に基づく走行経路とにズレがある場合、高精度地図に基づく走行経路に切り替えた際に、車両に不自然な挙動が発生する場合がある。
 上記問題点に鑑み、本発明は、車両が現在走行している走行経路から高精度地図に基づく走行経路に切り替える際に、車両の不自然な挙動を抑制することができる走行支援方法及び走行支援装置を提供することを目的とする。
 本発明の一態様によれば、自車両の周囲環境を検出し、周囲環境に基づき第1走行経路を生成し、第1走行経路に基づいて、自車両の走行支援制御を実行する走行支援装置及び走行支援方法において、自車両の周囲の高精度地図情報に基づき第2走行経路を生成し、第1走行経路と第2走行経路とが類似するか否かを判定し、第1走行経路と第2走行経路とが類似すると判定された場合、自車両が走行支援制御を実行して走行する走行経路を、第1走行経路から第2走行経路に切り替えることを特徴とする。
 本発明によれば、車両が現在走行している走行経路から高精度地図に基づく走行経路に切り替える際に、車両の不自然な挙動を抑制することができる走行支援方法及び走行支援装置を提供することができる。
本発明の実施形態に係る走行支援装置の一例を示すブロック図である。 車線変更時に走行経路を切り替える場面の一例を示す概略図である。 図2Aに引き続く走行経路を切り替える場面の一例を示す概略図である。 図2Bに引き続く走行経路を切り替える場面の一例を示す概略図である。 類否判定処理の一例を示す概略図である。 類否判定処理の一例を示す概略図である。 類否判定処理の一例を示す概略図である。 旋回時に走行経路を切り替える場面の一例を示す概略図である。 図6Aに引き続く走行経路を切り替える場面の一例を示す概略図である。 図6Bに引き続く走行経路を切り替える場面の一例を示す概略図である。 旋回時の類否判定処理の一例を示す概略図である。 減速時に走行経路を切り替える場面の一例を示す概略図である。 第1走行経路及び第2走行経路の速度プロファイルを表すグラフである。 減速時の類否判定処理の一例を示す概略図である。 本発明の実施形態に係る走行支援方法の一例を示すフローチャートである。 交差点で走行経路を切り替える場面の一例を示す概略図である。 図11Aに引き続く走行経路を切り替える場面の一例を示す概略図である。 旋回時に走行経路を切り替える場面の一例を示す概略図である。 図12Aに引き続く走行経路を切り替える場面の一例を示す概略図である。 車線変更時に走行経路を切り替える場面の一例を示す概略図である。 図13Aに引き続く走行経路を切り替える場面の一例を示す概略図である。
 以下において、図面を参照して、本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を貼付している。なお、各図面は模式的なものであって、現実のものとは異なる場合がある。また、以下に示す本発明の実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の構造、配置等を下記のものに特定するものではない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。
(走行支援装置)
 本発明の実施形態に係る走行支援装置は、例えば車両に搭載される(以下、本発明の実施形態に係る走行支援装置が搭載される車両を「自車両」という)。本発明の実施形態に係る走行支援装置は、自車両が走行経路に従って走行するように自動で運転する自動運転と、自車両が走行経路に従って走行するように運転者に対して促す案内とを、走行支援として実行可能である。自動運転は、乗員(運転者)が関与せずに自車両の駆動、制動及び操舵のすべての制御を実行する場合を含み、自車両の駆動、制動及び操舵の少なくとも1つの制御を行う場合も含む。自動運転は、先行車追従制御、車間距離制御、車線逸脱防止制御等であってもよい。一方、手動運転は、本発明の実施形態に係る走行支援装置が自車両の駆動、制動及び操舵のいずれの制御も行わず、運転者の操作による運転を意味する。
 本発明の実施形態に係る走行支援装置は、図1に示すように、走行経路切替判定装置(処理回路)1、車両センサ2、周囲センサ3、記憶装置4、ユーザインターフェース(I/F)5、アクチュエータ6及び車両制御装置7を備える。処理回路1、車両センサ2、周囲センサ3、記憶装置4、ユーザI/F5、アクチュエータ6及び車両制御装置7は、コントローラエリアネットワーク(CAN)バス等の有線又は無線でデータや信号を送受信可能である。
 車両センサ2は、自車両の現在位置及び自車両の走行状態を検出するセンサである。車両センサ2は、全地球型測位システム(GNSS)受信機21、車速センサ22、加速度センサ23及びジャイロセンサ24を備える。なお、車両センサ2の種類及び個数はこれに限定されない。GNSS受信機21は、地球測位システム(GPS)受信機等であり、複数の航法衛星から電波を受信して自車両の現在位置を取得し、取得した自車両の現在位置を処理回路1に出力する。車速センサ22は、自車両の車輪速を検出し、検出された車輪速から車速を検出し、検出された車速を処理回路1に出力する。加速度センサ23は、自車両の前後方向及び車幅方向等の加速度を検出し、検出された加速度を処理回路1に出力する。ジャイロセンサ24は、自車両の角速度を検出し、検出された角速度を処理回路1に出力する。
 周囲センサ3は、自車両の前方の環境を含む自車両の周囲環境(周囲状況)を検出するセンサである。周囲センサ3は、カメラ31、レーダ32及び通信機33を備える。なお、周囲センサ3の種類や個数はこれに限定されない。カメラ31としては、CCDカメラ等が使用可能である。カメラ31は単眼カメラであってもよく、ステレオカメラであってもよい。カメラ31は、自車両の周囲環境を撮像し、撮像画像から先行車等の車両(他車両)、歩行者又は自転車等の物体と自車両との相対位置、物体と自車両との距離、道路上の車線境界線(白線)等の道路構造等を自車両の周囲環境のデータとして検出し、検出された周囲環境のデータを処理回路1に出力する。
 レーダ32としては、例えばミリ波レーダや超音波レーダ、レーザレンジファインダ(LRF)等が使用可能である。レーダ32は、物体と自車両との相対位置、物体と自車両との距離、物体と自車両との相対速度等を自車両の周囲環境のデータとして検出し、検出された周囲環境のデータを処理回路1に出力する。通信機33は、他車両との車車間通信、路側機との路車間通信、又は交通情報センタとの通信等を行うことにより、他車両の位置、他車両の速度等を自車両の周囲環境のデータとして受信し、受信した周囲環境のデータを処理回路1に出力する。
 記憶装置4としては、半導体記憶装置、磁気記憶装置又は光学記憶装置等が使用可能であり、処理回路1に内蔵されていてもよい。記憶装置4は、ナビゲーション用の地図情報(以下、「ナビ地図情報」という。)を記憶するナビ地図情報記憶部41と、高精度地図情報を記憶する高精度地図情報記憶部42とを備える。なお、ナビ地図情報及び高精度地図情報のデータベースをサーバで管理し、更新されたナビ地図情報及び高精度地図情報の差分データを、例えばテレマティクスサービスを通じて取得し、ナビ地図情報記憶部41に記憶されたナビ地図情報及び高精度地図情報記憶部42に記憶された高精度地図情報の更新を行ってもよい。また、ナビ地図情報及び高精度地図情報を自車両が走行している位置に合わせて、車車間通信や路車間通信により取得するようにしてもよい。このように、テレマティクスサービス(車車間通信、路車間通信)を用いることにより、自車両では、データ容量が大きいナビ地図情報及び高精度地図情報を有しておく必要がなく、メモリの容量の抑制することができる。また、テレマティクスサービス(車車間通信、路車間通信)を用いることにより、更新されたナビ地図情報及び高精度地図情報を取得できるようになるため、道路構造の変化、工事現場の有無等、実際の走行状況を正確に把握できるようになる。加えて、また、テレマティクスサービス(車車間通信、路車間通信)を用いることにより、自車両以外の複数の他車両から集められたデータに基づいて作成されたナビ地図情報及び高精度地図情報を用いることができるようになるため、正確な情報を把握できるようになる。
 ナビ地図情報記憶部41に記憶されているナビ地図情報は道路単位の情報を含む。例えば、ナビ地図情報は道路単位の情報として、道路基準線(例えば道路の中央の線)上の基準点を示す道路ノードの情報と、道路ノード間の道路の区間態様を示す道路リンクの情報を含む。道路ノードの情報は、その道路ノードの識別番号、位置座標、接続される道路リンク数、接続される道路リンクの識別番号を含む。道路リンクの情報は、その道路リンクの識別番号、道路規格、リンク長、車線数、道路の幅員、制限速度を含む。ナビ地図情報は、車線情報を含まない。なお、ナビ地図情報記憶部41に記憶されているナビ地図情報は、道路単位の情報よりも詳細な車線単位の情報を含まないものとする。
 高精度地図情報記憶部42に記憶されている高精度地図情報は、ナビ地図情報よりも高精度の地図情報であり、道路単位の情報よりも詳細な車線単位の情報を含む。例えば、高精度地図情報は車線単位の情報として、車線基準線(例えば車線内の中央の線)上の基準点を示す車線ノードの情報と、車線ノード間の車線の区間態様を示す車線リンクの情報を含む。車線ノードの情報は、その車線ノードの識別番号、位置座標、接続される車線リンク数、接続される車線リンクの識別番号を含む。車線リンクの情報は、その車線リンクの識別番号、車線の種類、車線の幅員、車線境界線の種類、車線の形状、車線基準線の形状を含む。高精度地図情報は更に、車線上又はその近傍に存在する信号機、停止線、標識、建物、電柱、縁石、横断歩道等の地物の種類及び位置座標と、地物の位置座標に対応する車線ノードの識別番号及び車線リンクの識別番号等の、地物の情報を含む。
 高精度地図は、車線単位のノード及びリンク情報を含むため、走行ルートにおいて自車両が走行する車線を特定可能である。高精度地図は、車線の延伸方向及び幅方向における位置を表現可能な座標を有する。更に、高精度地図は、3次元空間における位置を表現可能な座標(例えば経度、緯度及び高度)を有し、車線や上記地物は三次元空間における形状として記述され得る。
 処理回路1及び車両制御装置7は、本発明の実施形態に係る走行支援装置が行う動作に必要な処理の算術論理演算を行う電子制御ユニット(ECU)等のコントローラであり、例えば、プロセッサ、記憶装置及び入出力I/Fを備えてもよい。プロセッサには、算術論理演算装置(ALU)、制御回路(制御装置)、各種レジスタ等を含む中央演算処理装置(CPU)等に等価なマイクロプロセッサ等を対応させることができる。処理回路1及び車両制御装置7に内蔵又は外付けされる記憶装置は、半導体メモリやディスクメディア等からなり、レジスタ、キャッシュメモリ、主記憶装置として使用されるROM及びRAM等の記憶媒体を含んでいてもよい。例えば、記憶装置に予め記憶された、本発明の実施形態に係る走行支援装置の動作に必要な一連の処理を示すプログラム(走行支援プログラム)をプロセッサが実行し得る。
 処理回路1は、第1経路生成部11、第2経路生成部12、経路比較部13、車速取得部14、速度比較部15、経路切替部16及び提示制御部17等の論理ブロックを機能的若しくは物理的なハードウェア資源として備える。これらの論理ブロックを、フィールド・プログラマブル・ゲート・アレイ(FPGA)等のプログラマブル・ロジック・デバイス(PLD)等で物理的に構成してもよく、汎用の半導体集積回路中にソフトウェアによる処理で等価的に設定される機能的な論理回路等でも構わない。
 また、処理回路1を構成する第1経路生成部11、第2経路生成部12、経路比較部13、車速取得部14、速度比較部15、経路切替部16及び提示制御部17等は、単一のハードウェアから構成されてもよく、それぞれ別個のハードウェアから構成されてもよい。また、車両制御装置7が処理回路1に内蔵されていてもよい。例えば、処理回路1は車載インフォテイメント(IVI)システム等のカーナビゲーションシステムで構成でき、車両制御装置7は先進走行支援システム(ADAS)等の走行支援システムで構成できる。
 第1経路生成部11は、少なくとも周囲センサ3により検出された自車両の周囲環境に基づき、第1走行経路P1を生成する。第1走行経路P1は、自車両に対して走行支援制御を実行するときの走行経路の候補である。例えば、自車両に対して先行車追従制御を実行する場合には、第1経路生成部11は、周囲センサ3により検出された先行車に基づき先行車の走行軌跡を算出し、算出した先行車の走行軌跡を第1走行経路(CFP:Car Following Path)として生成する。例えば、先行車の車幅中心の位置の軌跡が先行車の走行軌跡として算出される。先行車の走行軌跡に基づく第1走行経路は、例えば100m程度の長さであり、先行車が走行すれば逐次更新される。なお、第1経路生成部11は、先行車の走行軌跡をそのまま第1走行経路として生成してもよく、先行車の走行軌跡を車線の幅方向にオフセットした軌跡を第1走行経路P1を生成してもよい。
 自車両に対して先行車追従制御を実行しない場合、第1経路生成部11は、ナビ地図情報記憶部41に記憶されたナビ地図情報を参照して第1走行経路を生成してもよい。例えば、第1経路生成部11は、乗員からの指示情報等に基づきナビ地図情報記憶部41に記憶されたナビ地図情報における目的地を設定する。第1経路生成部11は、ダイクストラ法等を用いて、ナビ地図情報記憶部41に記憶されたナビ地図情報における自車両の現在位置(出発地)から目的地までの走行予定経路を探索する。第1経路生成部11は、探索された走行予定経路に従って直進や右左折を行うように、周囲センサ3により検出された車線境界線の位置等の自車両の周囲環境に基づき、例えば車線内の中央を通るように第1走行経路を生成する。
 第1経路生成部11は、ナビ地図情報記憶部41に記憶されたナビ地図情報を参照せずに、周囲センサ3により検出された車線境界線の位置等の自車両の周囲環境に基づき目標軌跡を算出し、算出した目標軌跡を第1走行経路として生成してもよい。第1経路生成部11は、自車両の現在位置から所定の距離までの所定の区間において第1走行経路を生成してもよい。所定の区間は、周囲センサ3により自車両の走行支援制御に必要な周囲環境を検出可能な範囲で適宜設定可能である。
 第2経路生成部12は、少なくとも高精度地図情報記憶部42に記憶された高精度地図情報に基づき、第2走行経路(NDP:Navigation Drive Path)を生成する。第2走行経路は、自車両に対して走行支援制御を実行するときの走行経路の候補である。例えば、第2経路生成部12は、高精度地図情報記憶部42に記憶された高精度地図情報及び周囲センサ3により検出された道路構造等の自車両の周囲環境に基づき、高精度地図上の自車両の位置を特定し、自車両の位置を基準にして、車線内に引かれるように第2走行経路を生成する。第2走行経路は、車線内の中央を通るように生成されてもよい。
 第2経路生成部12は、ナビ地図情報記憶部41に記憶されたナビ地図情報における出発地から目的地までの走行予定経路の区間において、走行予定経路に従って直進や右左折を行うように第2走行経路を生成してもよい。第2走行経路P2は、自車両の現在位置から所定の距離までの所定の区間までの第2走行経路を生成してもよい。所定の区間は高精度地図情報が存在する範囲内で適宜設定可能である。
 次に、図2A~図2Cを参照して、本発明の実施形態に係る走行支援装置による走行支援制御の一例を説明する。図2Aに示すように、同一進行方向の車線L1,L2が並走する二車線道路において、自車両C1が先行車C2に追従制御を実行しており、自車両C1が左側の車線L1から右側の車線L2に車線変更しようとしている。ここで、先行車C2の走行軌跡に基づく第1走行経路P1から、高精度地図に基づく第2走行経路P2に追従対象とする走行経路を切り替えることを考える。
 このとき、第1走行経路P1が右側の車線L2内に生成され、第2走行経路P2が左側の車線L1内に生成されており、第1走行経路P1及び第2走行経路P2にはズレがあり互いに類似しない(第1走行経路P1及び第2走行経路P2の類否判定については後述する)。このため、第1走行経路P1から第2走行経路P2へ走行経路を切り替えると、自車両C1にふらつき等の不自然な挙動が発生するので、図2Aに示すタイミングでは第1走行経路P1から第2走行経路P2へ切り替えずに待機する。
 その後、図2Bに示すように、自車両C1が左側の車線L1から右側の車線L2に車線変更する。この際、第1走行経路P1が右側の車線L2内に生成され、第2走行経路P2が左側の車線L1内に生成されており、第1走行経路P1と第2走行経路P2とが類似しないので、第1走行経路P1から第2走行経路P2へ切り替えずに待機する。
 その後、図2Cに示すように、自車両C1が右側の車線L2に移動したことに伴って第2走行経路P2が右側の車線L2内に生成される。この結果、第1走行経路P1と第2走行経路P2と同一の車線L2内にあり、第1走行経路P1と第2走行経路P2のズレが小さくなり互いに類似する場合には、第1走行経路P1から第2走行経路P2へ走行経路を切り替える処理を行う。これにより、第1走行経路P1から第2走行経路P2へ切り替える際の自車両C1のふらつき等の不自然な挙動の発生を抑制することができる。
 図1に示した経路比較部13は、第1経路生成部11により生成された第1走行経路P1と、第2経路生成部12により生成された第2走行経路P2とを比較し、第1走行経路P1と第2走行経路P2とが類似するか否かを判定する。本発明の実施形態においては、「類似」は「同一」を含むものとし、第1走行経路P1及び第2走行経路P2が完全に合致して同一である場合も、第1走行経路P1と第2走行経路P2とが類似すると判定する場合に含まれるものとする。
 例えば、経路比較部13は、第1走行経路P1と第2走行経路P2との間隔が所定の閾値未満か否かを判定することにより、第1走行経路P1と第2走行経路P2の形状が互いに類似するか否かを判定してもよい。即ち、経路比較部13は、第1走行経路P1と第2走行経路P2との間隔が所定の閾値以上の場合に第1走行経路P1と第2走行経路P2とが類似しないと判定し、第1走行経路P1と第2走行経路P2との間隔が所定の閾値未満の場合に第1走行経路P1と第2走行経路P2とが類似すると判定してもよい。所定の閾値は適宜設定可能であり、記憶装置4等に予め記憶されていてもよい。
 例えば図3に示すように、経路比較部13は、自車両C1の前方の第1走行経路P1又は第2走行経路P2のうちの距離が短い一方である第1走行経路P1の全区間(換言すれば、第1走行経路P1及び第2走行経路P2が重複する全区間)Z0に亘って、第2走行経路P2との最短距離Di(i=0~n;nは正数)を算出し、すべての最短距離Diが所定の閾値Dt未満か否かを判定する。経路比較部13は、すべての最短距離Diが所定の閾値Dt未満の場合、第1走行経路P1と第2走行経路P2とが類似すると判定し、最短距離Diのいずれか1つ以上が所定の閾値Dt以上の場合に第1走行経路P1と第2走行経路P2とが類似しないと判定する。最短距離Diの数は多いほど高精度となり無限大でもよいが、演算負荷の観点からは有限個で所定の間隔で算出されてもよい。例えば、第1走行経路P1がふらつき蛇行している場合でも、すべての最短距離Diが所定の閾値Dt未満であれば第1走行経路P1と第2走行経路P2とが類似すると判定される。
 最短距離Diと比較する所定の閾値Dtは、例えば図4に示すように、車線L2の幅W、先行車C2の幅Wに基づき、同一の車線L2内であるための値として、式(1)で求めることができる。
 
       Dt=W/2-W/2    …(1)
 
 なお、図3の場合とは逆に、第2走行経路P2の長さが第1走行経路P1よりも短い場合には、第2走行経路P2の全区間において第1走行経路P1との最短距離Diを算出してもよい。また、第1走行経路P1と第2走行経路P2が重複する全区間で最短距離Diを算出する代わりに、第1走行経路P1と第2走行経路P2が重複する最も遠方の地点よりも手前の所定の位置までの所定の区間内で、最短距離Diを算出してもよい。
 経路比較部13は、自車両C1の現在位置を含まずに、自車両C1の現在位置よりも前方の所定区間において、第1走行経路P1と第2走行経路P2の最短距離Diを算出してもよい。経路比較部13は、例えば図5に示すように、自車両C1の現在位置から前方注視点までの距離L0未満の領域は含まずに、自車両C1から前方注視点の距離L0以上遠方で、第1走行経路P1と第2走行経路P2の最短距離Diを算出してもよい。前方注視点の距離L0は、例えば自車両C1の車速に予め設定された所定の自定数を乗算することで算出可能である。例えば、自車両C1から前方注視点の距離L0だけ離れた位置から、先行車C2の後部位置までの領域の所定の位置又は所定の区間で最短距離Diを算出してもよい。図5では、自車両C1から前方注視点の距離L0の位置で最短距離Diを算出する場合を示している。
 経路比較部13は、走行経路を追従する上で制御目標点としている前方注視点の距離をL0、自車両C1の現在の車速をV、走行経路の切替に許容する自車両C1の挙動として横移動速度をVs(例えばVs=0.2m/s)とした場合、最短距離Diと比較する所定の閾値Dtを式(2)で求めてもよい。
 
       Dt=L0×Vs/V…(2)
 
 経路比較部13は、第1走行経路P1及び第2走行経路P2の少なくとも一方の長さが所定の閾値(例えば10m)未満の場合、自車両C1の前方の第1走行経路P1と第2走行経路P2の類似性を適切に判定できないため、第1走行経路P1と第2走行経路P2とが類似しないと判定してもよい。例えば、自車両C1と先行車C2とが接近したときに、第1走行経路P1の長さが短くなる場合がある。また、高精度地図情報が得られる範囲の端部付近では第2走行経路P2の長さが短くなる場合がある。
 次に、図6A~図6Cを参照して、本発明の実施形態に係る走行支援装置による走行支援制御の一例を説明する。図6Aは、自車両C1が先行車C2に追従して、交差点(T字路)を左折して車線L1に進入しようとしている場面を示す。この際、先行車C2の走行軌跡に基づく第1走行経路P1から、高精度地図に基づく第2走行経路P2に追従対象とする走行経路を切り替えることを考える。図6Bに示すように、自車両C1が旋回中のときに第1走行経路P1から第2走行経路P2へ走行経路を切り替えると、自車両C1の現在位置における第1走行経路P1の方向(向き)と第2走行経路P2の方向(向き)とがズレているため、自車両C1に不自然な挙動が発生する。そのため、本発明の実施形態に係る走行支援装置は、図6Cに示すように、第1走行経路P1の方向と第2走行経路P2の方向とが類似してから第1走行経路P1から第2走行経路P2へ走行経路を切り替える処理を行う。
 即ち、経路比較部13は、第1走行経路P1と第2走行経路P2との方向(向き)が類似するか否かを判定することにより、第1走行経路P1と第2走行経路P2の形状が互いに類似するか否かを判定してもよい。経路比較部13は、例えば図7に示すように、第1走行経路P1と第2走行経路P2が重複する所定の位置において、互いに最も距離が近い第1走行経路P1上の点p1の接線LAと、第2走行経路P2上の点p2の接線LBとがなす角度θが、所定の閾値θt未満の場合に、第1走行経路P1と第2走行経路P2が類似すると判定し、角度θが所定の閾値θt以上の場合に、第1走行経路P1と第2走行経路P2が類似しないと判定する。所定の閾値θtは適宜設定可能であり、記憶装置4等に予め記憶されていてもよい。なお、第1走行経路P1と第2走行経路P2が重複する複数の位置で角度θを複数算出した場合には、複数の角度θのすべてが所定の閾値θt未満の場合に、第1走行経路P1と第2走行経路P2が類似すると判定し、複数の角度θのいずれかが所定の閾値θt以上の場合に、第1走行経路P1と第2走行経路P2が類似しないと判定してもよい。
 自車両C1前方の所定区間は、例えば第1走行経路P1と第2走行経路P2の長さが短い方の全区間に設定される。経路比較部13は、自車両の現在位置において、第1走行経路P1と第2走行経路P2との方向が類似するか否かを判定してもよい。或いは、経路比較部13は、自車両の前方注視点の距離において、第1走行経路P1と第2走行経路P2との方向が類似するか否かを判定してもよい。
 次に、図8は、先行車C2の走行軌跡に基づく第1走行経路P1と、高精度地図に基づく第2走行経路P2とが生成されており、第2走行経路P2が右折する場面を示す。この際、第1走行経路P1から第2走行経路P2に追従対象とする走行経路を切り替えることを考える。第2走行経路P2を走行する時の速度(計画速度)が低速であり、先行車C2の走行軌跡に基づく第1走行経路P1を追従している自車両C1の現在の車速が、第2走行経路P2を走行する時の速度と乖離している場合、第1走行経路P1から第2走行経路P2へ走行経路を切り替えると、急減速することとなり、自車両C1に不自然な挙動が発生する。そのため、本発明の実施形態に係る走行支援装置は、自車両C1の現在の車速と、第2走行経路P2を走行する時の速度との類否を考慮して、第1走行経路P1から第2走行経路P2へ走行経路を切り替える処理を行う。
 車速取得部14は、車速センサ22により検出された自車両C1の現在の車速を取得する。車速取得部14は更に、第2経路生成部12により生成された第2走行経路P2を走行する時に計画されている車速(計画速度)を取得する。第2走行経路P2を走行する時の計画速度は、例えばナビ地図情報記憶部41に記憶されたナビ地図情報又は高精度地図情報記憶部42に記憶された高精度地図情報に含まれる制限速度の情報に基づき算出してもよい。或いは、第2走行経路P2を走行する時の計画速度は、周囲センサ3により検出された自車両の周囲の他車両の速度の情報に基づき算出してもよい。或いは、第2走行経路P2を走行する時の計画速度は、高精度地図情報記憶部42に記憶された高精度地図情報から得られる道路構造(道路形状)や、周囲センサ3により検出された周囲環境に含まれる道路構造(道路形状)に基づき算出してもよい。第2走行経路P2を走行する時の計画速度は、第2走行経路P2の全区間で一定に計画されていてもよく、変化するように計画されていてもよい。
 速度比較部15は、車速取得部14により取得された自車両の現在の車速と、車速取得部14により取得された第2走行経路P2を走行する時の計画速度とを比較して類似するか否かを判定することにより、第1走行経路P1から第2走行経路P2に追従対象を切り替えた場合に、自車両C1の現在の車速から第2走行経路P2を走行する時の計画速度に追従可能か否かを判定する。即ち、速度比較部15は、自車両の現在の車速と第2走行経路P2を走行する時の計画速度とが類似する場合には、自車両C1の現在の車速から第2走行経路P2を走行する時の計画速度に追従可能と判定し、自車両の現在の車速と第2走行経路P2を走行する時の計画速度とが類似しない場合には、自車両C1の現在の車速から第2走行経路P2を走行する時の計画速度に追従不可能と判定する。
 例えば、速度比較部15は、車速取得部14により取得された自車両の現在の車速と、第2走行経路P2を走行する時の計画速度との差分を算出する。速度比較部15は、算出した差分の絶対値が所定の閾値未満の場合に、自車両の現在の車速と第2走行経路P2を走行する時の計画速度とが類似し、自車両C1の現在の車速が第2走行経路P2を走行する時の計画速度に追従可能と判定する。一方、速度比較部15は、算出した差分の絶対値が所定の閾値以上の場合に、自車両の現在の車速と第2走行経路P2を走行する時の計画速度とが類似せず、自車両C1の現在の車速が第2走行経路P2を走行する時の計画速度に追従不可能と判定する。所定の閾値は適宜設定可能であり、記憶装置4等に予め記憶されていてもよい。
 或いは、速度比較部15は、図9A及び図9Bに示すように、車速取得部14により取得された自車両C1の現在の車速V1と、自車両C1の現在位置から第1走行経路P1と第2走行経路P2との重複する区間の最も遠方の地点までの距離Lcと、最も遠方の地点における第2走行経路P2を走行する時の計画速度V2とに基づき、自車両の現在位置から最も遠方の地点に到達するまでに、自車両の現在の車速V1から計画速度V2まで減速するのに必要な減速度αを算出する。更に、速度比較部15は、算出した減速度αが所定の閾値αt未満の場合に追従可能と判定し、算出した減速度αが所定の閾値αt以上の場合に追従不可能と判定する。所定の閾値αtは適宜設定可能であり、記憶装置4等に予め記憶されていてもよい。
 図9A及び図9Bでは、自車両C1に対して減速制御を行う場合を例示したが、自車両C1に対して加速制御を行う場合も同様である。即ち、速度比較部15は、車速取得部14により取得した自車両C1の現在の車速が、第2走行経路P2を走行する時の計画速度よりも低く、自車両C1の現在の車速と第2走行経路P2を走行する時の計画速度との差分が所定の閾値以上の場合、自車両C1の現在の車速から第2走行経路P2の計画車速まで加速するのに必要な加速度を算出する。算出した加速度が予め設定した所定の閾値(最大加速度)より小さい場合に速度追従可能と判定する。速度比較部15は、算出した加速度が所定の閾値未満の場合に追従可能と判定し、算出した加速度が所定の閾値以上の場合に追従不可能と判定する。所定の閾値は適宜設定可能であり、記憶装置4等に予め記憶されていてもよい。
 経路切替部16は、自車両C1が走行支援制御を実行して走行する走行経路を、現在走行している第1走行経路P1から、走行経路の候補である第2走行経路P2に切り替える必要があるか判定する。例えば、自車両C1の前方の道路区間の高精度地図情報が無く、第2経路生成部12により第2走行経路P2が生成されていない場合は、追従対象とする走行経路の切り替えは不要と判定する。また、経路切替部16は、第1走行経路P1が先行車C2の走行軌跡に基づく走行経路であり、第2走行経路P2が生成されている場合、先行車C2が自車両C1の目的地と異なる方向へ進行する可能性があるため、追従対象とする走行経路の切り替えが必要と判定する。また、経路切替部16は、第2走行経路P2が生成されている場合には常に、追従対象とする走行経路の切り替えが必要と判定してもよい。
 経路切替部16は、経路比較部13による第1走行経路P1と第2走行経路P2との類似性の判定結果と、速度比較部15による車速の類似性の判定結果に応じて、自車両C1が走行支援制御を実行して走行する走行経路を、自車両C1が現在追従して走行している第1走行経路P1から、追従候補である第2走行経路P2に所定のタイミングで切り替える。
 例えば、経路切替部16は、経路比較部13により第1走行経路P1と第2走行経路P2とが類似すると判定され、且つ速度比較部15により自車両C1の現在の車速から第2走行経路P2を走行する時の計画速度に追従可能と判定された場合、第1走行経路P1から第2走行経路P2へ追従対象とする走行経路を切り替えてもよい。或いは、経路切替部16は、経路比較部13により第1走行経路P1と第2走行経路P2とが類似すると判定された場合、又は速度比較部15により自車両C1の現在の車速から第2走行経路P2を走行する時の計画速度に追従可能と判定された場合に、第1走行経路P1から第2走行経路P2へ追従対象とする走行経路を切り替えてもよい。なお、経路切替部16は、第1走行経路P1から第2走行経路P2に追従対象とする走行経路を切り替える前に、走行経路の切り替えの許可を乗員に対して求め、乗員の許可が得られた場合に切り替えるようにしてもよい。
 一方、経路切替部16は、経路比較部13により第1走行経路P1と第2走行経路P2とが類似しないと判定された場合、第1走行経路P1から第2走行経路P2へ追従対象を切り替えを行わずに待機する。即ち、第1走行経路P1が先行車の走行軌跡に基づき生成された場合、先行車は一般的には車線内の中央付近を直進して走行することが想定される。一方、第2走行経路P2は、一般的には車線内の中央を通るように生成される。このため、第1走行経路P1と第2走行経路P2とが現時点で類似していなくても、第1走行経路P1と第2走行経路P2とはいずれはズレ量が小さくなって類似する可能性があることを想定し、経路比較部13により第1走行経路P1と第2走行経路P2とが類似すると判定されるまで待機する。
 経路切替部16は、第1走行経路P1と第2走行経路P2とが類似すると判定された場合、類否判定の対象となった第1走行経路P1と第2走行経路P2を走行中の所定のタイミングで第1走行経路P1から第2走行経路P2へ切り替える。例えば、自車両の現在位置から所定の距離までの所定の区間で類否判定を行った場合には、所定の区間内を走行中に第1走行経路P1から第2走行経路P2へ切り替えてもよい。或いは、第1走行経路P1と第2走行経路P2との重複する区間うちの所定の位置で類否判定を行った場合には、その所定の位置に到達したタイミングで切り替えてもよい。例えば、図5に示すように、自車両C1の現在位置から前方注視点の距離L0未満の領域は含まずに、自車両C1から前方注視点の距離L0以上遠方で類否判定を行った場合には、前方注視点の距離L0以上遠方の位置に到達したタイミングで切り替えてもよい。
 なお、経路切替部16は、第1走行経路P1から第2走行経路P2に追従対象とする走行経路を切り替えた後に、第2走行経路P2から第1走行経路P1に追従対象とする走行経路を切り替えることもできる。例えば、自車両C1が高精度地図情報が無い道路区間に進入する場合や、高精度地図情報の精度が所定の閾値よりも低い場合に、第2走行経路P2から第1走行経路P1に追従対象を切り替えてもよい。
 提示制御部17は、経路切替部16による走行経路の切り替え結果に応じて乗員に対して案内情報を提示するようにユーザI/F5のディスプレイ52及びスピーカ53を制御する制御信号を出力する。提示制御部17は、経路切替部16により第1走行経路P1から第2走行経路P2へ切り替える前には、乗員に対して第1走行経路P1を走行するように促してもよい。提示制御部17は、経路切替部16により第1走行経路P1から第2走行経路P2へ切り替える場合には、その旨を乗員に対して提示してもよい。
 ユーザI/F5は、入力装置51、ディスプレイ52及びスピーカ53を備える。入力装置51としては、スイッチ、ボタン、キーボード、マイク、タッチパネル等が採用可能である。入力装置51は、自車両の目的地を設定する情報、自動運転と手動運転との切り替えを指示する情報、第1走行経路P1から第2走行経路P2への切り替えを許可する情報等を乗員から受け付ける。ディスプレイ52は、例えば液晶ディスプレイ(LCD)等であり、提示制御部17からの制御信号に基づき、文字情報やアイコン等の画像を表示する。スピーカ53は、提示制御部17からの制御信号に基づき、音声や報知音を出力する。
 車両制御装置7は、第1経路生成部、もしくは第2経路生成部で生成された走行経路に基づいて、アクチュエータ6の制御量を算出する。算出した制御量は、アクチュエータ6に送信する。
 車両制御装置7は、経路切替部16により第1走行経路P1から第2走行経路P2へ追従対象を切り替える前は、第1走行経路P1に追従して走行するように、アクチュエータ6を制御するための制御信号を出力する。この際、車両制御装置7は、乗員が関与せずに自動的に走行する自動運転を行ってもよく、駆動、制動、操舵の少なくとも一つを制御する自動運転を行ってもよい。
 車両制御装置7は、経路切替部16により第1走行経路P1から第2走行経路P2へ追従対象を切り替えた場合、第2走行経路P2に追従するように、アクチュエータ6を制御するための制御信号を出力する。この際、車両制御装置7は、乗員が関与せずに自動的に走行する自動運転を行ってもよく、駆動、制動、操舵の少なくとも一つを制御する自動運転を行ってもよい。車両制御装置7は、経路切替部16により第1走行経路P1から第2走行経路P2へ追従対象を切り替える前に、自車両C1の現在の車速から第2走行経路P2を走行する時の計画速度に近づけるように自車両C1の加減速制御を行ってもよい。
 アクチュエータ6は、車両制御装置7からの制御信号に応じて自車両の走行を制御する。アクチュエータ6は、例えば駆動アクチュエータ61、ブレーキアクチュエータ62及びステアリングアクチュエータ63を備える。駆動アクチュエータ61は、例えば電子制御スロットルバルブからなり、車両制御装置7からの制御信号に基づき自車両のアクセル開度を制御する。ブレーキアクチュエータ62は、例えば油圧回路からなり、車両制御装置7からの制御信号に基づき自車両のブレーキの制動動作を制御する。ステアリングアクチュエータ63は、車両制御装置7からの制御信号に基づき自車両のステアリングを制御する。
(走行支援方法)
 次に、図10のフローチャートを参照しながら、本発明の実施形態に係る走行支援方法の一例を説明する。ここでは、自車両C1が第1経路生成部11により生成された第1走行経路P1に追従して走行していることを前提とする。
 ステップS1において、周囲センサ3が、自車両C1の周囲環境を検出する。第1経路生成部11が、周囲センサ3により検出された自車両C1の周囲環境に基づき、自車両C1が現在追従して走行している第1走行経路P1を生成する。例えば、第1経路生成部11が、周囲センサ3により検出された先行車に基づき先行車の走行軌跡を算出し、算出した先行車C2の走行軌跡を第1走行経路P1として生成する。この場合、先行車C2の走行に合わせて、先行車C2の走行軌跡が逐次更新され、第1走行経路P1も逐次生成される。
 ステップS2において、第2経路生成部12が、高精度地図情報記憶部42に記憶された高精度地図情報に基づき、自車両C1の追従対象とする走行経路の候補である第2走行経路P2を生成する。例えば、第2経路生成部12が、高精度地図情報記憶部42に記憶された高精度地図情報から自車両C1の前方の道路構造を抽出し、抽出した道路構造に基づき第2走行経路P2を生成する。
 ステップS3において、車速センサ22が自車両C1の車速を逐次検出する。車速取得部14が、車速センサ22により検出された自車両C1の車速を取得する。また、周囲センサ3が、第2経路生成部12により生成された第2走行経路P2を走行する時の計画速度を検出する。車速取得部14が、周囲センサ3により検出された第2走行経路P2を走行する時の計画速度を取得する。
 ステップS4において、経路切替部16が、第1経路生成部11により生成された第1走行経路P1から第2経路生成部12により生成された第2走行経路P2へ追従対象とする走行経路の切り替えが必要か否かを判定する。例えば、第2走行経路P2が存在しない場合は、追従対象とする走行経路の切り替えが不要と判定し、第2走行経路P2が存在するときには追従対象とする走行経路の切り替えが必要と判定する。追従対象とする走行経路の切り替えが必要と判定された場合、ステップS5に移行する。
 ステップS5及びS6において、経路比較部13が、第1経路生成部11により生成された第1走行経路P1と、第2経路生成部12により生成された第2走行経路P2とが類似するか否かを判定する類否判定処理を行う。ステップS5において、経路比較部13が、第1走行経路P1と第2走行経路P2の間隔が所定の閾値未満か否かを判定することにより、第1走行経路P1及び第2走行経路P2の形状が類似するか否かを判定する。なお、経路比較部13が、第1走行経路P1及び第2走行経路P2の少なくとも一方の長さが所定の閾値未満の場合、第1走行経路P1及び第2走行経路P2の形状が類似しないと判定してもよい。第1走行経路P1と第2走行経路P2の間隔が所定の閾値以上であり、第1走行経路P1及び第2走行経路P2の形状が類似しないと判定された場合には、第1走行経路P1から第2走行経路P2へ切り替えはせずに待機することとし、ステップS10へ移行する。一方、ステップS5で第1走行経路P1と第2走行経路P2の間隔が所定の閾値未満の場合、第1走行経路P1及び第2走行経路P2の形状が類似すると判定され、ステップS6へ移行する。
 ステップS6において、経路比較部13は、第1走行経路P1及び第2走行経路P2上の所定の位置の互いに最短距離の点における接線同士がなす角度が所定の閾値未満か否かを判定することにより、第1走行経路P1及び第2走行経路P2の方向(向き)が類似するか否かを判定する。接線同士がなす角度が所定の閾値以上の場合、第1走行経路P1及び第2走行経路P2の方向(向き)が類似しないと判定され、第1走行経路P1から第2走行経路P2へ切り替えはせずに待機することとし、ステップS10へ移行する。一方、ステップS6で接線同士がなす角度が所定の閾値未満の場合、第1走行経路P1及び第2走行経路P2の方向(向き)が類似すると判定され、ステップS7へ移行する。
 ステップS7において、速度比較部15が、車速取得部14により取得された自車両の現在の車速と第2走行経路P2を走行する時の計画速度とを比較して類似するか否かを判定することにより、第2走行経路P2に切り替えた場合に、自車両の現在の車速から第2走行経路P2を走行する時の計画速度に追従可能か否かを判定する。例えば、速度比較部15が、自車両の現在の車速と第2走行経路P2を走行する時の計画速度との差分が所定の閾値未満の場合、互いに類似し追従可能と判定し、自車両の現在の車速と第2走行経路P2を走行する時の計画速度との差分が所定の閾値以上の場合、互いに類似せず、追従不可能と判定する。追従可能と判定された場合、ステップS8に移行する。
 ステップS8において、経路切替部16が、所定のタイミングで、自車両C1が追従対象とする走行経路を、第1走行経路P1から第2走行経路P2へ切り替える。車両制御装置7は、第2走行経路P2に追従するように自車両C1に対して走行支援制御を実行する。自車両の現在の車速から第2走行経路P2を走行する時の計画速度になるように、自車両の加減速制御を行うことにより自車両C1の車速を計画速度に近づける。
 一方、ステップS7で速度追従不可能と判定された場合には、ステップS9に移行する。ステップS9において、自車両の現在の車速から第2走行経路P2を走行する時の計画速度に追従可能となるように、自車両の加減速制御を行うことにより自車両C1の車速を計画速度に近づける。そして、自車両の車速が追従可能な車速になったタイミングで、第2走行経路P2に切り替えて、計画速度になるように、自車両の加減速制御を行うことにより自車両C1の車速を計画速度に近づける。なお、自車両の現在の車速から第2走行経路P2を走行する時の計画速度に追従可能となるために必要な加速度又は減速度が所定の閾値以上の場合には、第1走行経路P1から第2走行経路P2へ切り替えずに待機してもよい。
 ステップS10において、イグニションがオフされたか否かを判定する。イグニションがオフされたと判定された場合、処理を終了する。イグニションがオフされていないと判定された場合、ステップS1に戻る。なお、ステップS4及びS5のいずれかで経路比較部13により第1走行経路P1と第2走行経路P2とが類似しないと判定された場合には、ステップS10から戻ったステップS1において、第1経路生成部11が、第1走行経路P1が第2走行経路P2に類似するように第1走行経路P1を再度生成してもよい。例えば、第1経路生成部11は、前回のステップS1と同様に第1走行経路P1を生成することで、自車両及び先行車の移動に伴い再度生成された第1走行経路P1が第2走行経路P2と類似する可能性がある。或いは、第1経路生成部11は、第2走行経路P2とのズレ量が前方に遠ざかるほど小さくなるようにオフセットした第1走行経路P1を生成してもよい。
 (効果)
 本発明の実施形態によれば、第1経路生成部11が自車両が追従中の第1走行経路P1を生成し、車両制御装置7が第1走行経路に基づいて自車両の走行支援制御を実行する。この際、第2経路生成部12が自車両の周囲の高精度地図情報に基づき第2走行経路P2を生成し、経路比較部13が第1走行経路P1と第2走行経路P2とが類似するか否かを判定する。そして、第1走行経路P1と第2走行経路P2とが類似すると判定された場合、経路切替部16が自車両の追従対象とする走行経路を第1走行経路P1から第2走行経路P2に切り替える。これにより、第1走行経路P1と第2走行経路P2とが類似し、互いのズレ量が小さいときに走行経路を切り替えることができ、切り替えの際のふらつき等の不自然な挙動を抑制することができる。
 尚、第1走行経路P1と第2走行経路P2とが類似しない場合に、経路切替部16が自車両の追従対象とする走行経路を第1走行経路P1から第2走行経路P2に切り替える場合、互いのズレ量が大きいときに走行経路を切り替えることとなり、切り替えの際のふらつき等の不自然な挙動が発生する恐れがある。加えて、第1走行経路P1と第2走行経路P2とが類似しない場合に、経路切替部16が自車両の追従対象とする走行経路を第1走行経路P1から第2走行経路P2に切り替える場合、第1走行経路から第2走行経路に切り替えるまでに走行する距離が長くなる。第1走行経路から第2走行経路に切り替えるまでに走行する距離が長くなると、切り替えの際のふらつき等の不自然な挙動を抑制するためには、自車両から離れた位置まで正確な制御目標、切替経路を生成する必要がある。また、自車両から離れた位置まで正確に周囲状況を把握する必要が出てくる。自車両の周囲状況や、センサの能力次第では、自車両から離れた位置まで正確な制御目標、切替経路を生成することや、自車両から離れた位置まで周囲状況を正確に把握すること、が難しいことがある。この場合、切り替えの際のふらつき等の不自然な挙動が発生する可能性が高くなる。しかし、本実施形態では、第1走行経路P1と第2走行経路P2とが類似し、互いのズレ量が小さいときに走行経路を切り替えることができ、切り替えの際のふらつき等の不自然な挙動を抑制することができる。
 更に、処理回路1は、自車両が走行している道路に対応した高精度地図情報があるか否か判定し、高精度地図情報がある場合に、車両の周囲の高精度地図情報に基づき第2走行経路を生成する。これにより、高精度地図がある場合に、第1経路から第2経路に切り替えることができるようになる。また、処理回路1が、自車両が走行している道路に対応した高精度地図情報があるか否か判定するため、自車両が高精度地図情報のある道路を走行するようになったときに、第1走行経路P1から第2走行経路P2に切り替えることができるようになる。尚、高精度地図情報があるか否か判定は、予め定めた所定の間隔(例えば、100ms)で実行するようにしてもよい。
 更に、経路比較部13が、第1走行経路P1と第2走行経路P2との間隔が所定の閾値未満の場合に、第1走行経路P1と第2走行経路P2とが類似すると判定する。これにより、第1走行経路P1と第2走行経路P2の間隔に基づき走行経路の切り替えを行うので、第1走行経路P1と第2走行経路P2の互いのズレ量が小さいときに走行経路を切り替えることができ、切り替えの際のふらつき等の不自然な挙動を抑制することができる。
 更に、経路比較部13が、図5に示すように、自車両C1の前方注視点の距離L0以上遠方で、第1走行経路P1と第2走行経路P2との間隔が所定の閾値未満か判定する。これにより、制御目標点である前方注視点より遠方を考慮しているので、瞬間の制御量に注目した場合と異なり、その後の安定性も考慮されるので、切り替え後も安定して走行することができる。更に、自車両C1の前方注視点の距離L0より手前の領域も含めて第1走行経路P1と第2走行経路P2との間隔を判定する場合と比較して、演算負荷を抑制することができる。
 更に、経路比較部13が、図7に示すように、互いに最短距離である第1走行経路P1上の点p1の接線L0と、第2走行経路P2上の点p2の接線同士のなす角度θが所定の閾値未満の場合に、第1走行経路P1と第2走行経路P2とが類似すると判定する。これにより、第1走行経路P1と第2走行経路P2の方向(向き)が類似するときに走行経路を切り替えることができ、カーブ区間から急に直線区間に切り替わるようなことがなく、第1走行経路P1から第2走行経路P2へスムーズな切り替えを実現することができる。
 更に、経路比較部13により第1走行経路P1と第2走行経路P2とが類似しないと判定された場合には、第1経路生成部11が、第1走行経路P1と第2走行経路P2とが類似し、切り替え条件に合致するように、第1走行経路P1を再度生成する。これにより、第1走行経路P1から第2走行経路P2へ最終的に切り替わらないという状態を抑制することができる。
 更に、自車両C1の現在の車速と、第2走行経路P2を走行する時の計画速度とが類似するか否かを判定することにより、第1走行経路P1から第2走行経路P2に切り替えた場合に自車両C1の現在の車速から第2走行経路P2を走行する時の計画速度に追従可能か否かを判定する。そして、自車両C1の現在の車速から第2走行経路P2を走行する時の計画速度に追従可能と判定された場合、第1走行経路P1から第2走行経路P2に切り替える。これにより、第1走行経路P1から第2走行経路P2に切り替える際に、速度の面でもスムーズな切り替えを実現することができる。
 更に、自車両C1の現在の車速から第2走行経路P2を走行する時の計画速度に追従不可能と判定された場合、第2走行経路P2を走行する時の計画速度に近づくように自車両C1の加減速制御を行って第1走行経路P1から第2走行経路P2に切り替える。これにより、走行経路の切り替え不可と判定された場合においても切り替え可能になるように加減速制御を行うので、走行経路が最終的に切り替わらないという状態を極力避けることができる。
 更に、自車両C1の現在の車速と、第1走行経路及び第2走行経路P2の短い一方の最も遠方の地点における第2走行経路P2を走行する時の計画速度とを比較して、自車両C1の現在の車速から計画速度とするまでに必要な加速度又は減速度が所定の閾値未満の場合に追従可能と判定する。これにより、第1走行経路P1及び第2走行経路P2の短い一方の最も遠方の地点に到達するまでに加減速制御を行って追従可能な場合に走行経路を切り替えることができ、急な加減速を行うことを抑制し、スムーズな切り替えを実現することができる。
 (変形例)
 本発明の実施形態の変形例として、自車両が高精度地図情報が無い区間から、高精度地図情報が有る区間へ進行する場合を説明する。図11Aに示すように、車線L1,L2,L3,L4が並走する片側二車線の道路が交差点で交錯する場面を考える。交差点の手前の高精度地図情報が無い区間(斜線のハッチングが無い領域)S1であり、交差点を抜けると高精度地図情報が有る区間(斜線のハッチングが有る領域)S2となる場合を考える。高精度地図情報が無い区間S1を自車両C1が走行中、第1経路生成部11は、先行車C2の走行軌跡に基づく第1走行経路P1を生成する。第2経路生成部12は、高精度地図情報が無いため第2走行経路P2を生成しない。経路切替部16は、第1走行経路P1から第2走行経路P2への追従対象とする走行経路の切り替えが不要と判定する。自車両C1は第1走行経路P1に追従して走行する。
 図11Bに示すように、自車両C1が高精度地図情報が無い区間S1から高精度地図情報が有る区間S2に進入する。この際、第1経路生成部11は、先行車C2の走行軌跡に基づく第1走行経路P1を継続して生成する。第2経路生成部12は、高精度地図情報が有るため第2走行経路P2を生成する。経路切替部16は、第1走行経路P1から第2走行経路P2への追従対象とする走行経路の切り替えが必要と判定する。経路比較部13は、第1走行経路P1と第2走行経路P2とが類似するか否か判定する。経路切替部16は、第1走行経路P1と第2走行経路P2とが類似すると判定された場合、自車両の追従対象とする走行経路を第1走行経路P1から第2走行経路P2へ切り替える。
 また、図12Aに示すように、交差点(T字路)において自車両C1が先行車C2を追従走行中に左折する場面を考える。高精度地図情報が無い区間(斜線のハッチングが無い領域)S1を自車両C1が走行中、第1経路生成部11は、先行車C2の走行軌跡に基づく第1走行経路P1を生成する。第2経路生成部12は、高精度地図情報が無いため第2走行経路P2を生成しない。経路切替部16は、第1走行経路P1から第2走行経路P2への追従対象とする走行経路の切り替えが不要と判定する。自車両C1は第1走行経路P1に追従して走行する。
 図12Bに示すように、自車両C1が左折して高精度地図情報が無い区間S1から高精度地図情報が有る区間(斜線のハッチングが有る領域)S2に進入する。この際、第1経路生成部11は、先行車C2の走行軌跡に基づく第1走行経路P1を継続して生成する。第2経路生成部12は、高精度地図情報が有るため第2走行経路P2を生成する。経路切替部16は、第1走行経路P1から第2走行経路P2への追従対象とする走行経路の切り替えが必要と判定する。経路比較部13は、第1走行経路P1と第2走行経路P2とが類似するか否か判定する。経路切替部16は、第1走行経路P1と第2走行経路P2とが類似すると判定された場合、自車両の追従対象とする走行経路を第1走行経路P1から第2走行経路P2へ切り替える。
 また、図13Aに示すように、二車線道路において、自車両C1が先行車C2を追従走行中に、左側の車線L1から右側の車線L2へ車線変更を行う場面を考える。高精度地図情報が無い区間(斜線のハッチングが無い領域)S1を自車両C1が走行中、第1経路生成部11は、先行車C2の走行軌跡に基づく第1走行経路P1を生成する。第2経路生成部12は、高精度地図情報が無いため第2走行経路P2を生成しない。経路切替部16は、第1走行経路P1から第2走行経路P2への追従対象とする走行経路の切り替えが不要と判定する。自車両C1は第1走行経路P1に追従して走行する。
 図13Bに示すように、自車両C1が左側の車線L1から右側の車線L2へ車線変更を行うとともに、高精度地図情報が無い区間S1から高精度地図情報が有る区間(斜線のハッチングが有る領域)S2に進入する。この際、第1経路生成部11は、先行車C2の走行軌跡に基づく第1走行経路P1を継続して生成する。第2経路生成部12は、高精度地図情報が有るため第2走行経路P2を生成する。経路切替部16は、第1走行経路P1から第2走行経路P2への追従対象とする走行経路の切り替えが必要と判定する。経路比較部13は、第1走行経路P1と第2走行経路P2とが類似するか否か判定する。経路切替部16は、第1走行経路P1と第2走行経路P2とが類似すると判定された場合、自車両の追従対象とする走行経路を第1走行経路P1から第2走行経路P2へ切り替える。
 本発明の実施形態の変形例によれば、自車両が高精度地図情報が無い区間S1から、高精度地図情報が有る区間S2へ進入する場合にも、第1走行経路P1から第2走行経路P2へスムーズに切り替えることができる。なお、本発明の実施形態の変形例においては、高精度地図情報が有る区間S2に進入してから第2走行経路P2を生成する場合を例示したが、高精度地図情報が有る区間S2に進入する前にS2に第2走行経路P2を生成し、第1走行経路P1と第2走行経路P2の類否判定処理を行ってもよい。自車両が高精度地図情報が無い区間S1から高精度地図情報が有る区間S2に切り替わる地点において第1走行経路P1と第2走行経路P2とが類似すると予め判定された場合には、高精度地図情報が有る区間S2に進入した直後に、第1走行経路P1から第2走行経路P2に切り替えることもできる。
 (その他の実施形態)
 上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面は本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
 例えば、交差点のように、右左折が必要であったり、停止線で一時停止が必要であったり、信号機が設置されていたり、多くの車両が走行していたりして、先行車C2の軌跡や周囲センサ3により検出される自車両C1の周囲環境等に基づく第1走行経路P1では走行が困難又は不可能であり、周囲センサ3の検出負荷も高く、高精度地図情報に基づく第2走行経路P2が有効な所定の道路構造がある。このような第2走行経路P2が有効な所定の道路構造において、第1生成経路P1から第2走行経路P2に切り替えることにより、第2走行経路P2に追従して安定した走行を実現でき、周囲センサ3の検出負荷も抑制できる。一方、高速道路等の比較的走行し易い道路構造では、先行車C2の軌跡や周囲センサ3により検出される自車両C1の周囲環境等に基づく第1走行経路P1を追従する走行も可能ではあるが、高精度地図情報に基づく第2走行経路に追従して走行することで、より安定した走行が可能であるとともに、周囲センサ3の検出負荷も抑制できる。
 本発明はここでは記載していない様々な実施形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
1…処理回路
2…車両センサ
3…周囲センサ
4…記憶装置
5…ユーザI/F
6…アクチュエータ
7…車両制御装置
11…第1経路生成部
12…第2経路生成部
13…経路比較部
14…車速取得部
15…速度比較部
16…経路切替部
17…提示制御部
21…GNSS受信機
22…車速センサ
23…加速度センサ
24…ジャイロセンサ
31…カメラ
32…レーダ
33…通信機
41…ナビ地図情報記憶部
42…高精度地図情報記憶部
51…入力装置
52…ディスプレイ
53…スピーカ
61…駆動アクチュエータ
62…ブレーキアクチュエータ
63…ステアリングアクチュエータ

Claims (11)

  1.  自車両の周囲環境を検出し、
     前記周囲環境に基づき第1走行経路を生成し、
     前記第1走行経路に基づいて、前記自車両の走行支援制御を実行する走行支援方法において、
     前記自車両の周囲の高精度地図情報に基づき第2走行経路を生成し、
     前記第1走行経路と前記第2走行経路とが類似するか否かを判定し、
     前記第1走行経路と前記第2走行経路とが類似すると判定された場合、前記自車両が走行支援制御を実行して走行する走行経路を、前記第1走行経路から前記第2走行経路に切り替える
     ことを特徴とする走行支援方法。
  2.  前記自車両が走行している道路に対応した高精度地図情報があるか否か判定し、
     前記高精度地図情報がある場合に、前記自車両の周囲の高精度地図情報に基づき前記第2走行経路を生成する
     ことを特徴とする請求項1に記載の走行支援方法。
  3.  前記第1走行経路と前記第2走行経路との間隔が所定の閾値未満の場合に、前記第1走行経路と前記第2走行経路とが類似すると判定することを特徴とする請求項1又は2に記載の走行支援方法。
  4.  前記自車両の前方注視点の距離以上遠方で、前記間隔が所定の閾値未満か判定することを特徴とする請求項3に記載の走行支援方法。
  5.  前記第1及び第2走行経路の互いに最短距離の点における接線同士のなす角度が所定の閾値未満の場合に、前記第1走行経路と前記第2走行経路とが類似すると判定することを特徴とする請求項1~4のいずれか1項に記載の走行支援方法。
  6.  前記第1走行経路と前記第2走行経路とが類似しないと判定された場合に、前記第1走行経路を再度生成することを特徴とする請求項1~5のいずれか1項に記載の走行支援方法。
  7.  前記自車両の現在の車速と、前記第2走行経路を走行する時の計画速度とを取得し、
     前記第1走行経路から前記第2走行経路に切り替えた場合に、前記現在の車速から前記計画速度に追従可能か否かを判定し、
     前記追従可能と判定された場合、前記第1走行経路から前記第2走行経路に切り替える
     ことを特徴とする請求項1~6のいずれか1項に記載の走行支援方法。
  8.  前記追従不可能と判定された場合、前記自車両に対して前記計画速度に近づくように加減速制御を行った後に前記第1走行経路から前記第2走行経路に切り替えることを特徴とする請求項7に記載の走行支援方法。
  9.  前記自車両が前記第1及び第2走行経路が重複する最も遠方の地点に到達するまでに、前記現在の車速から前記最も遠方の地点の前記計画速度に変化させるための加速度又は減速度が所定の閾値未満の場合に、前記追従可能と判定することを特徴とする請求項7又は8に記載の走行支援方法。
  10.  前記第2走行経路が有効な所定の道路構造を走行する際に、前記第1走行経路から前記第2走行経路に切り替えることを特徴とする請求項1~9のいずれか1項に記載の走行支援方法。
  11.  自車両の周囲環境を検出するセンサと、
     前記周囲環境に基づき第1走行経路を生成する第1経路生成部と、
     前記第1走行経路に基づいて、前記自車両の走行支援制御を実行する走行支援装置において、
     前記自車両の周囲の高精度地図情報に基づき第2走行経路を生成する第2経路生成部と、
     前記第1走行経路と前記第2走行経路とが類似するか否かを判定し、前記第1走行経路と前記第2走行経路とが類似すると判定された場合、前記自車両が走行支援制御を実行して走行する走行経路を、前記第1走行経路から前記第2走行経路に切り替える処理回路
     とを備えることを特徴とする走行支援装置。
PCT/JP2017/027316 2017-07-27 2017-07-27 走行支援方法及び走行支援装置 WO2019021437A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
KR1020207005259A KR20200032168A (ko) 2017-07-27 2017-07-27 주행 지원 방법 및 주행 지원 장치
BR112020001645-4A BR112020001645A2 (pt) 2017-07-27 2017-07-27 método de assistência de deslocamento e dispositivo de assistência de deslocamento
RU2020108206A RU2741130C1 (ru) 2017-07-27 2017-07-27 Способ содействия движению и устройство содействия движению
JP2019532305A JP6809611B2 (ja) 2017-07-27 2017-07-27 走行支援方法及び走行支援装置
BR122023021234A BR122023021234A2 (pt) 2017-07-27 2017-07-27 Método de assistência de deslocamento e dispositivo de assistência de deslocamento
CA3071087A CA3071087A1 (en) 2017-07-27 2017-07-27 Travel assistance method and travel assistance device
EP17918739.8A EP3660455B1 (en) 2017-07-27 2017-07-27 Travel assistance method and travel assistance device
PCT/JP2017/027316 WO2019021437A1 (ja) 2017-07-27 2017-07-27 走行支援方法及び走行支援装置
CN201780093489.3A CN110959100A (zh) 2017-07-27 2017-07-27 行驶辅助方法及行驶辅助装置
US16/633,932 US11396290B2 (en) 2017-07-27 2017-07-27 Travel assistance method and travel assistance device
BR122023021198-7A BR122023021198A2 (pt) 2017-07-27 2017-07-27 Método de assistência de deslocamento e dispositivo de assistência de deslocamento

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/027316 WO2019021437A1 (ja) 2017-07-27 2017-07-27 走行支援方法及び走行支援装置

Publications (1)

Publication Number Publication Date
WO2019021437A1 true WO2019021437A1 (ja) 2019-01-31

Family

ID=65041360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027316 WO2019021437A1 (ja) 2017-07-27 2017-07-27 走行支援方法及び走行支援装置

Country Status (9)

Country Link
US (1) US11396290B2 (ja)
EP (1) EP3660455B1 (ja)
JP (1) JP6809611B2 (ja)
KR (1) KR20200032168A (ja)
CN (1) CN110959100A (ja)
BR (3) BR122023021198A2 (ja)
CA (1) CA3071087A1 (ja)
RU (1) RU2741130C1 (ja)
WO (1) WO2019021437A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021039643A1 (ja) * 2019-08-30 2021-03-04 マツダ株式会社 中央演算装置
CN113492878A (zh) * 2020-03-19 2021-10-12 本田技研工业株式会社 行驶路径设定装置、行驶路径设定方法以及存储介质
JP7498150B2 (ja) 2021-05-18 2024-06-11 トヨタ自動車株式会社 移動体及び移動体の経路決定方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018208207A1 (de) * 2018-05-24 2019-11-28 Bayerische Motoren Werke Aktiengesellschaft Steuerung eines Kraftfahrzeugs
KR102245580B1 (ko) * 2020-09-22 2021-04-29 재단법인차세대융합기술연구원 Adas 데이터를 이용한 교통 밀도를 추정하는 관제 서버
GB2602496A (en) * 2021-01-05 2022-07-06 Nissan Motor Mfg Uk Ltd Vehicle control system
GB2602498B (en) * 2021-01-05 2023-09-13 Nissan Motor Mfg Uk Limited Vehicle control system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006126980A (ja) * 2004-10-27 2006-05-18 Nissan Motor Co Ltd 走行経路生成装置
JP2014211862A (ja) * 2013-04-02 2014-11-13 パナソニック株式会社 自律移動装置及び自律移動装置の自己位置推定方法
WO2016027394A1 (ja) * 2014-08-21 2016-02-25 パナソニックIpマネジメント株式会社 情報管理装置、車両、および、情報管理方法
JP2016050901A (ja) 2014-09-02 2016-04-11 アイシン・エィ・ダブリュ株式会社 自動運転支援システム、自動運転支援方法及びコンピュータプログラム
JP2017087816A (ja) * 2015-11-04 2017-05-25 トヨタ自動車株式会社 自動運転システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5646850A (en) * 1990-06-13 1997-07-08 Matsushita Electric Industrial Co., Ltd. Auto-drive control apparatus for use in vehicle apparatus
CN103635947B (zh) * 2011-08-31 2015-10-07 日产自动车株式会社 车辆驾驶辅助装置
US9633564B2 (en) * 2012-09-27 2017-04-25 Google Inc. Determining changes in a driving environment based on vehicle behavior
JP6241341B2 (ja) * 2014-03-20 2017-12-06 アイシン・エィ・ダブリュ株式会社 自動運転支援装置、自動運転支援方法及びプログラム
JP6082415B2 (ja) * 2015-03-03 2017-02-15 富士重工業株式会社 車両の走行制御装置
JP6025273B2 (ja) 2015-03-17 2016-11-16 富士重工業株式会社 車両の走行制御装置
US10012984B2 (en) * 2015-12-14 2018-07-03 Mitsubishi Electric Research Laboratories, Inc. System and method for controlling autonomous vehicles
CN107543547B (zh) * 2016-06-29 2020-09-18 杭州海康威视数字技术股份有限公司 一种导航方法、装置及***
JP6766006B2 (ja) * 2017-04-26 2020-10-07 株式会社クボタ 自動操舵システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006126980A (ja) * 2004-10-27 2006-05-18 Nissan Motor Co Ltd 走行経路生成装置
JP2014211862A (ja) * 2013-04-02 2014-11-13 パナソニック株式会社 自律移動装置及び自律移動装置の自己位置推定方法
WO2016027394A1 (ja) * 2014-08-21 2016-02-25 パナソニックIpマネジメント株式会社 情報管理装置、車両、および、情報管理方法
JP2016050901A (ja) 2014-09-02 2016-04-11 アイシン・エィ・ダブリュ株式会社 自動運転支援システム、自動運転支援方法及びコンピュータプログラム
JP2017087816A (ja) * 2015-11-04 2017-05-25 トヨタ自動車株式会社 自動運転システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3660455A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021039643A1 (ja) * 2019-08-30 2021-03-04 マツダ株式会社 中央演算装置
JP2021037781A (ja) * 2019-08-30 2021-03-11 マツダ株式会社 中央演算装置
CN114521179A (zh) * 2019-08-30 2022-05-20 马自达汽车株式会社 中央运算装置
JP7372784B2 (ja) 2019-08-30 2023-11-01 マツダ株式会社 中央演算装置
CN114521179B (zh) * 2019-08-30 2024-05-17 马自达汽车株式会社 中央运算装置
CN113492878A (zh) * 2020-03-19 2021-10-12 本田技研工业株式会社 行驶路径设定装置、行驶路径设定方法以及存储介质
JP7407034B2 (ja) 2020-03-19 2023-12-28 本田技研工業株式会社 走行経路設定装置、走行経路を設定する方法およびプログラム
CN113492878B (zh) * 2020-03-19 2024-05-07 本田技研工业株式会社 行驶路径设定装置、行驶路径设定方法以及存储介质
JP7498150B2 (ja) 2021-05-18 2024-06-11 トヨタ自動車株式会社 移動体及び移動体の経路決定方法

Also Published As

Publication number Publication date
KR20200032168A (ko) 2020-03-25
CA3071087A1 (en) 2019-01-31
BR122023021198A2 (pt) 2023-12-12
EP3660455A4 (en) 2020-10-07
EP3660455A1 (en) 2020-06-03
BR122023021234A2 (pt) 2023-12-12
RU2741130C1 (ru) 2021-01-22
JP6809611B2 (ja) 2021-01-06
JPWO2019021437A1 (ja) 2020-08-20
BR112020001645A2 (pt) 2020-07-21
US11396290B2 (en) 2022-07-26
US20200317193A1 (en) 2020-10-08
EP3660455B1 (en) 2023-12-20
CN110959100A (zh) 2020-04-03

Similar Documents

Publication Publication Date Title
JP6819788B2 (ja) 走行支援方法及び走行支援装置
JP6809611B2 (ja) 走行支援方法及び走行支援装置
CN110597243B (zh) 自动驾驶车辆的基于v2x通信的车辆车道***
US11292492B2 (en) Driving assistance method and driving assistance device
US20180237018A1 (en) Autonomous driving assistance system, autonomous driving assistance method, and computer program
JP7303667B2 (ja) 自動運転支援装置
CN109491378B (zh) 自动驾驶车辆的基于道路分段的路线引导***
JP2017110924A (ja) 経路探索装置及び車両用自動運転装置
US20210221367A1 (en) Driving Support Method and Driving Support Device
RU2743519C1 (ru) Способ помощи при вождении и устройство помощи при вождении
US11541892B2 (en) Vehicle control method and vehicle control device
JP7129495B2 (ja) 運転支援方法及び運転支援装置
JP2021060941A (ja) 物体認識方法及び物体認識システム
JP7058960B2 (ja) 道路形状を判別する方法及び道路形状を判別する装置
WO2021074659A1 (ja) 運転支援方法及び運転支援装置
JP2023075667A (ja) 運転支援方法及び運転支援装置
JP2022129177A (ja) 運転支援方法及び運転支援装置
JP2021115922A (ja) 走行支援方法及び走行支援装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17918739

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019532305

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3071087

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020001645

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20207005259

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017918739

Country of ref document: EP

Effective date: 20200227

ENP Entry into the national phase

Ref document number: 112020001645

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200124