WO2019021359A1 - 真空断熱材、断熱箱および真空断熱材の製造方法 - Google Patents

真空断熱材、断熱箱および真空断熱材の製造方法 Download PDF

Info

Publication number
WO2019021359A1
WO2019021359A1 PCT/JP2017/026778 JP2017026778W WO2019021359A1 WO 2019021359 A1 WO2019021359 A1 WO 2019021359A1 JP 2017026778 W JP2017026778 W JP 2017026778W WO 2019021359 A1 WO2019021359 A1 WO 2019021359A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
vacuum heat
insulating material
heat insulation
vacuum
Prior art date
Application number
PCT/JP2017/026778
Other languages
English (en)
French (fr)
Inventor
一正 藤村
貴祥 向山
夕貴 大森
尚平 安孫子
浩明 高井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019532241A priority Critical patent/JP7129979B2/ja
Priority to AU2017424996A priority patent/AU2017424996B2/en
Priority to PCT/JP2017/026778 priority patent/WO2019021359A1/ja
Priority to CN201780091802.XA priority patent/CN110892187B/zh
Priority to TW107121299A priority patent/TWI659177B/zh
Publication of WO2019021359A1 publication Critical patent/WO2019021359A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/10Insulation, e.g. vacuum or aerogel insulation

Definitions

  • the present invention relates to a vacuum heat insulating material used as a heat insulating material for a refrigerator or the like, a heat insulating box, and a method of manufacturing the vacuum heat insulating material.
  • a conventional vacuum heat insulating material of this type has a core material and an adsorbent for adsorbing moisture or gas covered with an outer packaging material, and the inside of the outer packaging material is decompressed to near vacuum and sealed (for example, Patent Document 1).
  • a reduction in the degree of vacuum inside the outer packaging material leads to a reduction in the heat insulation performance.
  • moisture is released from the core material after depressurizing and sealing the inside of the outer packaging material by previously drying the core material in the drying furnace before inserting the core material into the outer packaging material.
  • the degree of vacuum inside the outer packaging material is increased, and the decrease in heat insulation performance is suppressed.
  • Patent Document 1 drying is performed before inserting the core material into the outer packaging material, but the amount of water removed from the core material by drying in the drying furnace depends on the relative humidity in the drying furnace. Since the relative humidity in the drying oven changes depending on the season and the weather, the amount of water removed from the core also changes. Therefore, after the inside of the outer packaging material into which the core material is inserted is sealed under reduced pressure, the amount of water released from the core material into the outer packaging material also varies. As a result, there has been a problem that the degree of vacuum inside the outer packaging material varies depending on the season, the weather, etc., and the variation in the heat insulating performance of the vacuum heat insulating material becomes large.
  • the present invention has been made to solve the problems as described above, and it is an object of the present invention to provide a vacuum heat insulating material, a heat insulating box and a method of manufacturing the vacuum heat insulating material with less variation in heat insulating performance.
  • the vacuum heat insulating material according to the present invention comprises a core material for holding a vacuum space, a hydroxide, and an outer packaging material for covering the core material and the hydroxide, and the inside of the outer packaging material is decompressed and sealed
  • the weight of the hydroxide is at least 0.01 times the weight of the core material.
  • the heat insulation box which concerns on this invention is equipped with said vacuum heat insulating material.
  • a core material for holding a vacuum space and an oxide are covered with an outer packaging material and sealed to form a sealed body, and the sealed body is heat-treated. And a step of decompressing and sealing the inside of the outer packaging material of the sealed body.
  • the weight of the hydroxide in the outer wrapping material is 0.01 times or more of the weight of the core material, it is possible to obtain a vacuum heat insulating material and a heat insulating box with less variation in heat insulating performance.
  • the core material is coated with the outer packaging material and then subjected to heat treatment, it is possible to realize uniform drying of the core material without depending on the relative humidity of the heat treatment furnace, and a vacuum heat insulating material with little variation in heat insulation performance.
  • Embodiment 1 A vacuum heat insulating material and a method of manufacturing the same according to Embodiment 1 of the present invention will be described.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a vacuum heat insulating material according to Embodiment 1 of the present invention.
  • the vacuum heat insulating material 1 includes a core material 2, an adsorbent 3, a hydroxide 4, and an outer wrapping material 5 that covers these.
  • the internal space of the outer packaging material 5 is sealed in a state of being decompressed to a degree of vacuum of about 1 Pa to 3 Pa.
  • the vacuum heat insulating material 1 has a substantially rectangular and flat plate shape as a whole.
  • the core material 2 is used for the purpose of holding a vacuum space.
  • a fiber aggregate such as glass wool is used for the core material 2.
  • the fiber assembly constituting the core material 2 may be one that has been subjected to heat and pressure molding, one that has been sealed and sealed using an inclusion material, or one that has been bonded with a binder.
  • the adsorbent 3 adsorbs the gas or moisture inside the vacuum heat insulating material 1.
  • the adsorbent 3 is used for the purpose of adsorbing gas or moisture inside the vacuum heat insulating material 1 to maintain the degree of vacuum inside the vacuum heat insulating material 1.
  • calcium oxide (CaO) is used as the adsorbent 3.
  • the adsorbent 3 may be silica gel or zeolite, or a combination thereof.
  • the outer packaging material 5 is an outer packaging material 5 used for an existing vacuum heat insulating material, and is a laminated film having a multilayer structure.
  • This multilayer structure has, for example, a structure in which a polyethylene layer, an aluminum-deposited ethylene-vinyl alcohol layer, an aluminum-deposited polyethylene terephthalate layer, and a nylon layer on the outermost layer are laminated in order from the core 2 side.
  • the outer packaging material 5 is not limited to the said structure, It replaces with aluminum vapor deposition and alumina vapor deposition or silica vapor deposition may be used.
  • the outer packaging material 5 should just have gas-barrier property.
  • the hydroxide 4 holds the moisture released from the core material 2 by the heat treatment described later.
  • the weight of the hydroxide 4 is at least 0.01 times the weight of the adsorbent 3 and the core material 2.
  • calcium hydroxide (Ca (OH) 2 ) is used as the hydroxide 4.
  • the hydroxide 4 may be magnesium hydroxide or aluminum hydroxide, or a combination thereof.
  • FIG. 2 is a manufacturing process diagram of the vacuum heat insulating material according to the first embodiment of the present invention.
  • the core material 2, the adsorbent 3 and the oxide are covered with the outer packaging material 5 and sealed (step S11) to form a sealed body.
  • the oxide is, for example, calcium oxide.
  • the sealed body is subjected to heat treatment (step S12).
  • the condition of the heat treatment is, for example, 100 ° C. for 2 hours.
  • the conditions for the heat treatment may be any conditions under which moisture is released from the core material 2.
  • the hydroxide 4 is produced by the chemical reaction between the water released from the core material 2 and the oxide. That is, the water released from the core material 2 is held by the hydroxide 4.
  • the hydroxide 4 produced is, for example, calcium hydroxide.
  • step S13 a part of the outer packaging material 5 is opened.
  • step S14 the inside of the outer packaging material 5 in a partially opened state is decompressed and sealed. That is, the inside of the outer packaging material 5 is depressurized to a vacuum degree of about 1 Pa to 3 Pa, and the unsealing portion is sealed by heat sealing or the like in the depressurized state.
  • step S11 a step of adding the adsorbent 3 into the outer wrapping material 5 is further provided between step S13 and step S14.
  • step S21 a step of adding the adsorbent 3 into the outer wrapping material 5
  • FIG. 3 is a cross-sectional view showing a schematic configuration of a vacuum heat insulating material to which an adsorbent has been added in step S21 of the manufacturing process of FIG.
  • the adsorbent 3 a when the adsorbent 3 a is added separately from the adsorbent 3, the adsorbent 3 a can be disposed in a region different from the region where the hydroxide 4 is disposed. If the adsorbent 3a to be added in this manner is disposed in a region different from the hydroxide 4, the bulkiness is prevented, and the outer wrapping material 5 can be prevented from being damaged from the inside.
  • the adsorbent 3 corresponds to the first adsorbent of the present invention, and the adsorbent 3a corresponds to the second adsorbent of the present invention.
  • the core material 2 is covered with the outer wrapping material 5 and then heat treatment is performed. Therefore, uniform drying of the core material 2 can be realized without depending on the relative humidity of the heat treatment furnace. Therefore, the amount of water released from the core material 2 does not fluctuate depending on the season and the weather after the reduced pressure sealing step inside the outer packaging material 5 in step S14. As a result, the variation in the degree of vacuum inside the outer packaging material 5 in each vacuum heat insulating material 1 is reduced, and the variation in the thermal conductivity of the vacuum heat insulating material 1, that is, the heat insulating performance is reduced.
  • Example 1 In Example 1, the variation in the thermal conductivity of the vacuum heat insulating material 1 was examined.
  • the samples and various conditions in Example 1 are as follows (1) to (5).
  • Core material 2 Glass wool having a weight of 5 kg
  • Outer packaging material 5 polyethylene layer, aluminum-deposited ethylene-vinyl alcohol layer, aluminum-deposited polyethylene terephthalate layer, and laminate having a multilayer structure in which a nylon layer is laminated on the outermost layer.
  • Adsorbent 3 100 g of calcium oxide (4)
  • Heat treatment 100 ° C. for 2 hours (5)
  • Reduced pressure treatment Reduced pressure to a vacuum degree of about 1 Pa to 3 Pa
  • Step S11 in FIG. 2 is a step of covering and sealing the core material 2, the adsorbent 3 and the oxide with the outer packaging material 5, but using calcium oxide of the above (3) as the adsorbent 3 Therefore, it is an oxide. Therefore, after all, in step S11, the core material 2 and the oxide of the above (3) are covered with the outer packaging material 5 and sealed. Moreover, the process of "adsorbent addition" of step S21 is not performed. And after measuring the heat conductivity of the vacuum heat insulating material 1, the vacuum heat insulating material 1 was opened and the weight of calcium hydroxide which is the hydroxide 4 was measured.
  • Comparative Example 1 has the same samples and various conditions as the above (1) to (5) of Example 1. And after covering the core material 2 with the outer packaging material 5, the comparative example 1 performs said heat processing of (4) in the state which is not sealed. Next, the adsorbent 3 is disposed inside the outer wrapping material 5, and the inside of the outer wrapping material 5 is sealed.
  • Table 1 shows the results of comparison of the average value of the thermal conductivity, the standard deviation, and the weight of calcium hydroxide of ten vacuum heat insulating materials 1 manufactured under the conditions of Example 1 and Comparative Example 1 respectively. It is.
  • the average value of the thermal conductivity of the vacuum heat insulating material is 1.9 mW / (m ⁇ K), and the standard deviation is 0.3 mW / (m ⁇ K).
  • the weight of calcium hydroxide was 0.8 g, which was 0.00016 times the weight of the core material.
  • Example 1 the average value of the thermal conductivity of the vacuum heat insulating material 1 is 1.8 mW / (m ⁇ K), which is lower than that of Comparative Example 1. That is, the heat insulation performance of Example 1 is higher than that of Comparative Example 1.
  • the standard deviation is 0.1 mW / (m ⁇ K), which is smaller than that of Comparative Example 1. That is, Example 1 has less variation in thermal conductivity than Comparative Example 1.
  • Example 1 the weight of calcium hydroxide was 106.8 g, which was 0.021 times the weight of the core material.
  • Example 2 The second embodiment has the same samples and various conditions as the above (1) to (5) of the first embodiment.
  • the difference between the second embodiment and the first embodiment is that while the step of “addition of adsorbent” in step S21 is not performed in the first embodiment, the second embodiment is performed.
  • 10 sheets of vacuum heat insulating material 1 were produced. After measuring the thermal conductivity of the vacuum heat insulating material 1, the vacuum heat insulating material 1 was opened and the weight of calcium hydroxide was measured.
  • the sample used in Comparative Example 2 also has the same samples and various conditions as the above (1) to (5) of Example 1. And in the comparative example 2, the core material 2 and the adsorbent 3 were coat
  • Table 2 shows the results of comparison of the average value of the thermal conductivity, the standard deviation, and the weight of calcium hydroxide of 10 vacuum heat insulating materials manufactured under the conditions of Example 1 and Comparative Example 1, respectively. is there.
  • the average value of the vacuum heat insulating material was 1.8 mW / (m ⁇ K), and the standard deviation was 0.2 mW / (m ⁇ K).
  • the weight of calcium hydroxide was 15.2 g, which was 0.0030 times the weight of the core material.
  • Example 2 the average value of the thermal conductivity of the vacuum heat insulating material 1 is 1.7 mW / (m ⁇ K), which is lower than that of the comparative example. That is, the heat insulation performance of the second embodiment is higher than that of the second comparative example.
  • the standard deviation is 0.1 mW / (m ⁇ K), which is smaller than that of Comparative Example 2. That is, Example 2 has less variation in thermal conductivity than Comparative Example 2.
  • Example 2 the weight of calcium hydroxide was 120.4 g, which was 0.024 times the weight of the core material.
  • Example 3 In Example 3, the above conditions (1), (2), (4) and (5) of Example 1 are the same. Then, using the adsorbent 3 as calcium oxide, the amount of calcium oxide was increased by 10 g from 10 g to 100 g, and ten pieces of vacuum heat insulating material 1 were produced in the manufacturing process shown in FIG. That is, ten vacuum heat insulating materials 1 are prepared with 10 g of calcium oxide adsorbent 3 and ten vacuum heat insulating materials 1 are prepared with 20 g calcium oxide adsorbent 3. In addition, the process of "adsorbent addition" of FIG.2 S21 is not performed.
  • FIG. 4 is a view showing the relationship between the thermal conductivity and the weight ratio of calcium hydroxide to the core weight under the conditions of Example 3 in the vacuum heat insulating material according to Embodiment 1 of the present invention.
  • the horizontal axis is the weight ratio [by] of calcium hydroxide to the core material weight
  • the vertical axis is the thermal conductivity [mW / (m ⁇ K)].
  • a group of plot points roughly arranged in the vertical direction in FIG. 4 is a plot point in the case of the same amount of calcium oxide, and is a plot point in the case of 10 g, 20 g,. ing.
  • the vacuum heat insulating material in which the weight of calcium hydroxide is 0.01 times or more of the weight of the core material 2 has less variation in thermal conductivity and variation in heat insulating performance.
  • the weight of calcium hydroxide is at least 0.01 times the weight of the core material 2 when the calcium oxide as the adsorbent 3 is 50 g or more.
  • the amount of water held by the core 2 before heat treatment is at most 0.005 times the weight of the core.
  • the mass per calcium hydroxide molecule is about four times the mass per water molecule. Therefore, if the weight of calcium hydroxide is at least 0.01 times the weight of the core material obtained by integrating “0.005” and “4”, almost all the water released from the core material 2 is hydroxylated It will be held by calcium. That is, the vacuum heat insulating material 1 in which the weight of calcium hydroxide is at least 0.01 times the weight of the core material 2 is the amount of water released from the core material 2 after sealing the inside of the outer packaging material 5 under reduced pressure.
  • the amount of water released from the core material 2 does not change after sealing the inside of the outer packaging material 5 under reduced pressure, so that the variation of the degree of vacuum inside the outer packaging material 5 is small and the variation of the heat insulation performance is small. You can get one.
  • the weight of calcium hydroxide is 0.021 times the weight of the core material 2, and in Example 2, it is 0.024 times and 0.01 times or more. It is contained in the range and the vacuum heat insulating material 1 with few dispersions of heat insulation performance is obtained.
  • the lower limit value of the weight ratio of calcium hydroxide to the core material weight is 0.01 times or more as described above, but the upper limit value is 0.1 times.
  • the reason why the upper limit value is set to 0.1 times is as follows. That is, when it is more than 0.1 times, the heat insulation performance is lowered, and the cost becomes high and can not be implemented industrially.
  • FIG. 5 is a cross-sectional view showing a schematic configuration of a heat insulation box according to Embodiment 2 of the present invention.
  • the heat insulation box 100 is used as, for example, a case of a refrigerator or the like which requires high heat insulation performance.
  • the heat insulation box 100 has an inner case 110 and an outer case 120.
  • the vacuum heat insulating material 1 described in the first embodiment is disposed, and heat insulation is performed between the inner box 110 and the outer box 120.
  • the position where the vacuum heat insulating material 1 is disposed is, for example, a position in close contact with the outer wall surface 110 a of the inner box 110 or the like, and is disposed at a position where heat insulation can be performed between the inner box 110 and the outer box 120. And in the space between the inner case 110 and the outer case 120, the urethane foam heat insulating material 130 is filled in a portion other than the vacuum heat insulating material 1.
  • the heat insulating box 100 is provided with the vacuum heat insulating material 1 with less variation in thermal conductivity. Thereby, the variation in the heat insulation performance of the heat insulation box 100 can be reduced. In a refrigerator or the like provided with the heat insulation box 100, the power consumption can be reduced.
  • the vacuum heat insulating material 1 has high heat insulation performance compared with the urethane foam heat insulating material 130 grade
  • the vacuum heat insulating material 1 has a higher thermal insulation than the urethane foam heat insulating material 130 and the like. In order to have performance, the foamed urethane heat insulating material 130 may be omitted.
  • the vacuum heat insulating material 1 is in close contact with the outer wall surface 110 a of the inner box 110, but the vacuum heat insulating material 1 may be in close contact with the inner wall surface 120 a of the outer case 120.
  • the vacuum heat insulating material 1 may be disposed in the space between the inner box 110 and the outer box 120 so as not to be in close contact with both the inner box 110 and the outer box 120 by using a spacer or the like.
  • vacuum heat insulating material which concerns on this invention can be variously deformed not only in the above-mentioned embodiment, and it is possible to combine and implement each above-mentioned embodiment and modification.
  • the vacuum heat insulating material 1 can also be used for a heat insulation box of a heat preservation container equipped with a heat source, a heat insulation box not equipped with a cold heat source and a heat source, such as a cooler box.
  • the shape of the vacuum heat insulating material 1 is not limited to a predetermined non-deformable shape, but may be a deformable shape. As what used the vacuum heat insulating material 1 of a deformable shape, the heat insulation bag or the heat insulation container etc. which were equipped with the outer bag and the inner bag correspond, for example.
  • Vacuum heat insulating material 1
  • 2 cores 3 adsorbents, 4 hydroxides
  • 5 outer packaging materials 100 heat insulation box, 110 inner box, 110a outer wall, 120 outer box, 120a inner wall, 130 urethane foam insulation.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)

Abstract

真空断熱材は、真空空間を保持する芯材と、水酸化物と、芯材と水酸化物とを被覆する外包材とを備え、外包材の内部が減圧されて密封されており、水酸化物の重量が、芯材の重量の0.01倍以上である。また、真空断熱材の製造方法は、真空空間を保持する芯材と、酸化物とを、外包材で被覆して密封して密封体を形成する工程と、密封体を加熱処理する工程と、密封体の外包材の内部を減圧して密封する工程とを備える。

Description

真空断熱材、断熱箱および真空断熱材の製造方法
 本発明は、冷蔵庫等の断熱材として用いられている真空断熱材、断熱箱および真空断熱材の製造方法に関するものである。
 この種の従来の真空断熱材は、芯材と、水分またはガスを吸着する吸着剤とを外包材で被覆し、外包材の内部を真空近くまで減圧して密閉された構成を有する(例えば、特許文献1参照)。このような真空断熱材では、外包材の内部の真空度の低下が断熱性能の低下に繋がる。このため、特許文献1の真空断熱材では、芯材を、外包材に挿入する前に予め乾燥炉で乾燥させることにより、外包材の内部を減圧して密封した後に芯材から放出される水分を低減して、外包材の内部の真空度を高め、断熱性能の低下を抑制している。
特開2004-286050号公報
 特許文献1では、芯材を外包材に挿入する前に乾燥を行っているが、乾燥炉における乾燥によって芯材から除去される水分の量は、乾燥炉内の相対湿度に依存する。乾燥炉内の相対湿度は季節および天候等によって変わるため、芯材から除去される水分の量も変動する。したがって、芯材を挿入した外包材の内部を減圧密封した後、芯材から外包材内に放出される水分の量も変動する。その結果、外包材内部の真空度が季節および天候等によってばらつき、真空断熱材の断熱性能のばらつきが大きくなるという課題があった。
 本発明は、上述のような問題点を解決するためになされたものであり、断熱性能のばらつきが少ない真空断熱材、断熱箱および真空断熱材の製造方法を提供することを目的とする。
 本発明に係る真空断熱材は、真空空間を保持する芯材と、水酸化物と、芯材と水酸化物とを被覆する外包材とを備え、外包材の内部が減圧されて密封されており、水酸化物の重量が、芯材の重量の0.01倍以上であるものである。
 また、本発明に係る断熱箱は、上記の真空断熱材を備えるものである。
 また、本発明に係る真空断熱材の製造方法は、真空空間を保持する芯材と、酸化物とを、外包材で被覆して密封して密封体を形成する工程と、密封体を加熱処理する工程と、密封体の外包材の内部を減圧して密封する工程とを備えたものである。
 本発明によれば、外包材内の水酸化物の重量が、芯材の重量の0.01倍以上であるため、断熱性能のばらつきが少ない真空断熱材および断熱箱を得ることができる。また、芯材を外包材で被覆した後に加熱処理しているため、加熱処理炉の相対湿度に依存することがなく芯材の均一的な乾燥を実現でき、断熱性能のばらつきが少ない真空断熱材の製造方法を提供することができる。
本発明の実施の形態1に係る真空断熱材の概略構成を示す断面図である。 本発明の実施の形態1に係る真空断熱材の製造工程図である。 図2の製造工程のステップS21で吸着剤3が追加された、真空断熱材の概略構成を示す断面図である。 本発明の実施の形態1に係る真空断熱材において、実施例3の条件における熱伝導率と芯材重量に対する水酸化カルシウムの重量比との関係を示す図である。 本発明の実施の形態2に係る断熱箱の概略構成を示す断面図である。
実施の形態1.
 本発明の実施の形態1に係る真空断熱材およびその製造方法について説明する。
 図1は、本発明の実施の形態1に係る真空断熱材の概略構成を示す断面図である。なお、図1を含む以下の図面では、各構成部材の寸法の関係および形状等が実際のものとは異なる場合がある。各構成部材の具体的な寸法等は、以下の説明を参酌した上で判断すべきものである。
 図1に示すように、真空断熱材1は、芯材2と、吸着剤3と、水酸化物4と、これらを被覆する外包材5とを備えている。外包材5の内部空間は、1Paから3Pa程度の真空度に減圧された状態で密封されている。真空断熱材1は、全体として略長方形で平板状の形状を有している。
 芯材2は、真空空間を保持する目的で使用される。芯材2には、グラスウール等の繊維集合体が用いられる。また、芯材2を構成する繊維集合体は、加熱加圧成形をしたものでもよいし、内包材を用いて密封封止したものでもよいし、また、結合剤により結着したものでもよい。
 吸着剤3は、真空断熱材1の内部のガスまたは水分を吸着するものである。吸着剤3は、真空断熱材1の内部のガスまたは水分を吸着して真空断熱材1の内部の真空度を保つ目的で使用される。真空断熱材1の内部の真空度を保つことで、熱伝導率の上昇つまり断熱性能の低下を抑制することができる。吸着剤3としては、例えば酸化カルシウム(CaO)が用いられる。吸着剤3は、シリカゲル、またはゼオライトであってもよく、これらの組合せでもよい。
 外包材5は、既存の真空断熱材に使用されている外包材5であり、多層構造をなすラミネートフィルムである。この多層構造は、例えば芯材2側から順に、ポリエチレン層、アルミ蒸着エチレン-ビニルアルコール層、アルミ蒸着ポリエチレンテレフタレート層、および最外層にナイロン層が積層された構造を有する。なお、外包材5は、上記構成に限定されず、アルミ蒸着に代えて、アルミナ蒸着またはシリカ蒸着が用いられていてもよい。外包材5は、ガスバリア性を有するものであればよい。
 水酸化物4は、後述の加熱処理によって芯材2から放出された水分を保持するものである。水酸化物4の重量は、吸着剤3および芯材2の重量の0.01倍以上の重量である。水酸化物4としては、例えば水酸化カルシウム(Ca(OH))が用いられる。また、水酸化物4は、水酸化マグネシウム、または水酸化アルミニウムであってもよく、これらの組合せでもよい。
 次に、本実施の形態1に係る真空断熱材1の製造工程について説明する。
 図2は、本発明の実施の形態1に係る真空断熱材の製造工程図である。
 本実施の形態1に係る真空断熱材1の製造工程では、まず、芯材2と吸着剤3と酸化物とを外包材5で被覆して密封し(ステップS11)、密封体を形成する。酸化物は、例えば酸化カルシウムである。そして、密封体を加熱処理する(ステップS12)。加熱処理の条件は、例えば100℃で2時間である。加熱処理の条件は、芯材2から水分が放出される条件であればよい。
 この加熱処理によって、芯材2から放出された水分と酸化物との化学反応により水酸化物4が生成される。つまり、芯材2から放出された水分が水酸化物4によって保持される。生成される水酸化物4は、例えば水酸化カルシウムである。
 次に、外包材5の一部を開封する(ステップS13)。そして、一部が開封された状態の外包材5の内部を減圧して密封する(ステップS14)。すなわち、外包材5の内部を1Paから3Pa程度の真空度に減圧し、その減圧状態で開封部をヒートシール等で融着することで密封する。
 なお、ステップS11で吸着剤3を外包材5で被覆しているが、ステップS13とステップS14との間に、更に吸着剤3を外包材5内に追加する工程(ステップS21)を備えてもよい。吸着剤3を更に追加した状態を示した構成が次の図3である。
 図3は、図2の製造工程のステップS21で吸着剤が追加された、真空断熱材の概略構成を示す断面図である。
 図3に示すように、吸着剤3とは別に吸着剤3aを追加する際、吸着剤3aを、水酸化物4の配置領域とは別の領域に配置することもできる。このように追加する吸着剤3aを、水酸化物4とは別の領域に配置すれば、かさばらず、外包材5が内側から損傷することを防止できる。なお、吸着剤3が本発明の第1吸着剤に相当し、吸着剤3aが本発明の第2吸着剤に相当する。
 以上の工程では、芯材2を外包材5で被覆した後に加熱処理している。このため、加熱処理炉の相対湿度に依存することがなく、芯材2の均一的な乾燥を実現できる。よって、ステップS14の、外包材5の内部の減圧密封工程の後に、芯材2から放出される水分の量が、季節および天候によって変動しない。その結果、個々の真空断熱材1における、外包材5の内部の真空度のばらつきが少なくなり、真空断熱材1の熱伝導率つまり断熱性能のばらつきが少なくなる。
 次に、本実施の形態1の真空断熱材1を作製し、実施例1~3について比較例1~3との比較を行った。以下のその比較結果について説明する。
<実施例1>
 実施例1では、真空断熱材1の熱伝導率のばらつきについて調べた。実施例1における試料および各種条件は以下の(1)~(5)の通りである。
(1)芯材2:重量5kgのグラスウール
(2)外包材5:ポリエチレン層、アルミ蒸着エチレン-ビニルアルコール層、アルミ蒸着ポリエチレンテレフタレート層、および最外層にナイロン層が積層された多層構造をなすラミネートフィルム
(3)吸着剤3:100gの酸化カルシウム
(4)加熱処理:100℃で2時間
(5)減圧処理:1Paから3Pa程度の真空度に減圧
 以上の条件で、図2に示した製造工程で真空断熱材1を10枚作製した。なお、図2のステップS11は、芯材2と吸着剤3と酸化物とを外包材5で被覆して密封するステップであるが、吸着剤3には上記(3)の酸化カルシウムを使用するため、つまり酸化物である。このため、結局のところ、ステップS11では、芯材2と上記(3)の酸化物とを外包材5で被覆して密封する工程となる。また、ステップS21の「吸着剤追加」の工程は行っていない。そして、真空断熱材1の熱伝導率の測定を行った後、真空断熱材1を開封し、水酸化物4である水酸化カルシウムの重量を測定した。
 比較例1は、実施例1の上記(1)~(5)と同様の試料および各種条件を有する。そして、比較例1は、芯材2を外包材5で被覆した後、密封されない状態で上記(4)の加熱処理を行う。次に、外包材5の内部に吸着剤3を配置し、外包材5の内部を密封する。
 以上の比較例1の条件で真空断熱材1を10枚作製した。真空断熱材1の熱伝導率の測定を行った後、真空断熱材1を開封し、水酸化物4である水酸化カルシウムの重量を測定した。
 表1は、実施例1と比較例1とのそれぞれの条件で作製された10枚の真空断熱材1の熱伝導率の平均値と、標準偏差と、水酸化カルシウムの重量とを比較した結果である。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、比較例1では、真空断熱材の熱伝導率の平均値は、1.9mW/(m・K)であり、標準偏差は0.3mW/(m・K)であった。水酸化カルシウムの重量は、0.8gであり、芯材重量の0.00016倍であった。
 これに対して、実施例1では、真空断熱材1の熱伝導率の平均値は、1.8mW/(m・K)であり、比較例1よりも低い。つまり、実施例1は、比較例1は比べて断熱性能が高い。また、標準偏差は0.1mW/(m・K)であり、比較例1より小さい。つまり、実施例1は、熱伝導率のばらつきが比較例1よりも少ない。
 また、実施例1は、水酸化カルシウムの重量が、106.8gであり、芯材重量の0.021倍であった。
<実施例2>
 実施例2は、実施例1の上記(1)~(5)と同様の試料および各種条件を有する。実施例2と実施例1との違いは、上記実施例1では、ステップS21の「吸着剤の追加」の工程を行っていないのに対し、実施例2では行っている点である。そして、この実施例2の条件の元、真空断熱材1を10枚作製した。真空断熱材1の熱伝導率の測定を行った後、真空断熱材1を開封し、水酸化カルシウムの重量を測定した。
 比較例2に用いた試料も、実施例1の上記(1)~(5)と同様の試料および各種条件を有する。そして、比較例2では、芯材2と吸着剤3とを外包材5で被覆し、密封されない状態で上記(5)の加熱処理を行った。次に、吸着剤3aを追加で配置し、外包材5の内部を減圧密封した。
 この比較例2の条件の元、真空断熱材を10枚作製した。真空断熱材の熱伝導率の測定を行った後、真空断熱材を開封し、水酸化カルシウムの重量を測定した。
 表2は、実施例1と比較例1とのそれぞれの条件で作製された10枚の真空断熱材の熱伝導率の平均値と、標準偏差と、水酸化カルシウムの重量とを比較した結果である。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、比較例2では、真空断熱材の平均値は、1.8mW/(m・K)であり、標準偏差は0.2mW/(m・K)であった。水酸化カルシウムの重量は、15.2gであり、芯材重量の0.0030倍であった。
 これに対して実施例2では、真空断熱材1の熱伝導率の平均値は、1.7mW/(m・K)であり、比較例より低い。つまり、実施例2は、比較例2は比べて断熱性能が高い。また、標準偏差は0.1mW/(m・K)であり、比較例2より小さい。つまり、実施例2は、熱伝導率のばらつきが比較例2より少ない。
 また、実施例2は、水酸化カルシウムの重量が、120.4gであり、芯材重量の0.024倍であった。
<実施例3>
 実施例3では、実施例1の上記(1)、(2)、(4)および(5)については同様の条件である。そして、吸着剤3を酸化カルシウムとし、10gから100gまで、10gずつ酸化カルシウムの量を増やし、それぞれの酸化カルシウムの量で、図2に示した製造工程で真空断熱材1を10枚作製した。つまり、吸着剤3を酸化カルシウム10gとした構成で真空断熱材1を10枚作製し、吸着剤3を酸化カルシウム20gとした構成で真空断熱材1を10枚作製し、といった具合である。なお、図2のステップS21の「吸着剤追加」の工程は行っていない。そして、以上のようにして作製した各真空断熱材の熱伝導率の測定を行った後、真空断熱材1を開封し、水酸化物4である水酸化カルシウムの重量を測定した。そして、各真空断熱材1のそれぞれについて、「熱伝導率」と、「芯材重量に対する水酸化カルシウムの重量比」との関係をプロットしたものが、次の図4である。
 図4は、本発明の実施の形態1に係る真空断熱材において、実施例3の条件における熱伝導率と芯材重量に対する水酸化カルシウムの重量比との関係を示す図である。図4において、横軸が、芯材重量に対する水酸化カルシウムの重量比[倍]、縦軸が熱伝導率[mW/(m・K)]である。また、図4において縦方向に大まかに並ぶプロット点のかたまりが、酸化カルシウムが同量の場合のプロット点であり、左から順に、10g、20g、・・・、100gの場合のプロット点となっている。
 図4に示すように、水酸化カルシウムの重量が、芯材2の重量の0.01倍以上である真空断熱材は、熱伝導率のばらつきおよび断熱性能のばらつきが少ない。そして、水酸化カルシウムの重量が芯材2の重量の0.01倍以上となるのは、吸着剤3である酸化カルシウムが50g以上の場合となっている。
 一般的に芯材2が加熱処理前に保持している水分は、最大で芯材重量の0.005倍である。また、水酸化カルシウム1分子あたりの質量は、水1分子あたりの質量の約4倍である。したがって、水酸化カルシウムの重量が、「0.005」と「4」とを積算した芯材重量の0.01倍以上であれば、芯材2から放出された水分のほぼすべてが、水酸化カルシウムで保持されていることになる。つまり、水酸化カルシウムの重量が、芯材2の重量の0.01倍以上となっている真空断熱材1は、外包材5の内部を減圧密封した後に芯材2から放出される水分の量が変動しないと言える。そして、外包材5の内部を減圧密封した後に芯材2から放出される水分の量が変動しないことで、外包材5の内部の真空度のばらつきが少なく、断熱性能のばらつきが少ない真空断熱材1を得ることができる。
 ここで、上述の実施例1を参照すると、水酸化カルシウムの重量が芯材2の重量の0.021倍であり、また、実施例2では0.024倍であり、0.01倍以上の範囲に含まれており、断熱性能のばらつきが少ない真空断熱材1が得られている。
 なお、芯材重量に対する水酸化カルシウムの重量比の下限値は、上述のように0.01倍以上であるが、上限値は、0.1倍である。上限値を0.1倍としたのは以下の理由による。すなわち、0.1倍より大きくなると、断熱性能が低下し、また、コストが高くなり工業的に実施しえないためである。
実施の形態2.
 図5は、本発明の実施の形態2に係る断熱箱の概略構成を示す断面図である。
 図5に示すように、断熱箱100は、高い断熱性能が求められる、例えば冷蔵庫等の筐体として用いられる。断熱箱100は、内箱110と外箱120とを有する。そして、内箱110と外箱120との間の空間には、実施の形態1において説明した真空断熱材1が配置されており、内箱110と外箱120との間で断熱を行う。真空断熱材1が配置される位置は、例えば内箱110の外壁面110aに密着した位置等であり、内箱110と外箱120との間で断熱できる位置に配置される。そして、内箱110と外箱120との間の空間のうち、真空断熱材1以外の部分には発泡ウレタン断熱材130が充填されている。
 このように断熱箱100には、熱伝導率のばらつきが少ない真空断熱材1が設けられている。これにより、断熱箱100の断熱性能のばらつきを少なくすることができる。断熱箱100を備えた冷蔵庫等においては、消費電力の削減につながる。
 また、真空断熱材1は、発泡ウレタン断熱材130等と比較して高い断熱性能を有する。このため、断熱箱100は、発泡ウレタン断熱材130のみを用いた断熱箱100よりも高い断熱性能を得られる。なお、ここでは、内箱110と外箱120との間の空間に発泡ウレタン断熱材130が充填された構成を示したが、真空断熱材1は発泡ウレタン断熱材130等と比較して高い断熱性能を有するため、発泡ウレタン断熱材130を省略してもよい。
 また、上記の説明では、真空断熱材1が内箱110の外壁面110aに密着しているが、真空断熱材1は外箱120の内壁面120aに密着していてもよい。また、スペーサ等を用いることにより、内箱110と外箱120との間の空間に、内箱110と外箱120との両方に密着しないように真空断熱材1が配置されていてもよい。
 なお、上記の説明において、一般的な冷蔵庫等に用いられている断熱箱100と同等である部分については、図示および説明を省略している。
 また、本発明に係る真空断熱材は、上述の実施の形態に限らず種々の変形が可能であり、上述の各実施の形態や変形例は、互いに組み合わせて実施することが可能である。
 また、上述の実施の形態2では、冷熱源(図示せず)を備える冷蔵庫の断熱箱に真空断熱材1が用いられた構成を例に挙げたが、本発明はこれに限られない。真空断熱材1は、温熱源を備える保温庫の断熱箱、冷熱源および温熱源を備えない断熱箱、例えば、クーラーボックス等に用いることもできる。また、真空断熱材1は、断熱箱だけでなく、空調機、車両用空調機、給湯機等の冷熱機器または温熱機器の断熱部材として用いてもよい。また、真空断熱材1の形状も、変形不可な所定の形状に限らず、変形自在な形状としてもよい。変形自在な形状の真空断熱材1を用いたものとしては、例えば外袋および内袋を備えた断熱袋または断熱容器等が該当する。
 1 真空断熱材、2 芯材、3 吸着剤、4 水酸化物、5 外包材、100 断熱箱、110 内箱、110a 外壁面、120 外箱、120a 内壁面、130 発泡ウレタン断熱材。

Claims (10)

  1.  真空空間を保持する芯材と、
     水酸化物と、
     前記芯材と前記水酸化物とを被覆する外包材とを備え、
     前記外包材の内部が減圧されて密封されており、
     前記水酸化物の重量が、前記芯材の重量の0.01倍以上である真空断熱材。
  2.  前記水酸化物は、水酸化カルシウムである請求項1記載の真空断熱材。
  3.  前記外包材には更に、水分を吸着する吸着剤が被覆されている請求項1または請求項2記載の真空断熱材。
  4.  前記吸着剤は、酸化カルシウムである請求項3記載の真空断熱材。
  5.  前記芯材は、繊維集合体である請求項1~請求項4のいずれか一項に記載の真空断熱材。
  6.  前記繊維集合体は、グラスウールである請求項5記載の真空断熱材。
  7.  請求項1~請求項6のいずれか一項に記載の真空断熱材を備えた断熱箱。
  8.  真空空間を保持する芯材と、酸化物とを、外包材で被覆して密封して密封体を形成する工程と、
     前記密封体を加熱処理する工程と、
     前記密封体の前記外包材の内部を減圧して密封する工程と
    を備えた真空断熱材の製造方法。
  9.  前記密封体を形成する工程では、水分を吸着する第1吸着剤を更に前記外包材で被覆して密封する請求項8記載の真空断熱材の製造方法。
  10.  前記加熱処理の工程と、前記減圧して密封する工程との間に、前記外包材の内部に、第2吸着剤を追加する工程を有する請求項8または請求項9記載の真空断熱材の製造方法。
PCT/JP2017/026778 2017-07-25 2017-07-25 真空断熱材、断熱箱および真空断熱材の製造方法 WO2019021359A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019532241A JP7129979B2 (ja) 2017-07-25 2017-07-25 真空断熱材の製造方法
AU2017424996A AU2017424996B2 (en) 2017-07-25 2017-07-25 Vacuum insulation material, heat insulation box, and method for producing vacuum insulation material
PCT/JP2017/026778 WO2019021359A1 (ja) 2017-07-25 2017-07-25 真空断熱材、断熱箱および真空断熱材の製造方法
CN201780091802.XA CN110892187B (zh) 2017-07-25 2017-07-25 真空隔热件、隔热箱以及真空隔热件的制造方法
TW107121299A TWI659177B (zh) 2017-07-25 2018-06-21 真空絕熱材料、絕熱箱及真空絕熱材料之製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/026778 WO2019021359A1 (ja) 2017-07-25 2017-07-25 真空断熱材、断熱箱および真空断熱材の製造方法

Publications (1)

Publication Number Publication Date
WO2019021359A1 true WO2019021359A1 (ja) 2019-01-31

Family

ID=65040038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026778 WO2019021359A1 (ja) 2017-07-25 2017-07-25 真空断熱材、断熱箱および真空断熱材の製造方法

Country Status (5)

Country Link
JP (1) JP7129979B2 (ja)
CN (1) CN110892187B (ja)
AU (1) AU2017424996B2 (ja)
TW (1) TWI659177B (ja)
WO (1) WO2019021359A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10318487A (ja) * 1997-05-16 1998-12-04 Mitsubishi Gas Chem Co Inc 真空断熱材用ゲッタ
JPH11106539A (ja) * 1997-10-03 1999-04-20 Mitsubishi Gas Chem Co Inc 真空断熱材用ゲッタおよびその製造法
JP2015059642A (ja) * 2013-09-20 2015-03-30 パナソニック株式会社 真空断熱材及びそれを用いた冷蔵庫
JP2015178853A (ja) * 2014-03-19 2015-10-08 三菱電機株式会社 真空断熱材、断熱箱、及び真空断熱材の製造方法
JP2016084833A (ja) * 2014-10-23 2016-05-19 三菱電機株式会社 真空断熱材及び断熱箱

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59225275A (ja) * 1983-06-01 1984-12-18 松下電器産業株式会社 真空断熱材
JPH09229290A (ja) * 1996-02-28 1997-09-05 Mitsubishi Chem Corp 真空断熱材用複合材および真空断熱材の製造方法
CN1325864C (zh) * 2002-03-13 2007-07-11 松下冷机株式会社 冰箱
JP3559035B2 (ja) 2002-12-05 2004-08-25 松下冷機株式会社 真空断熱材およびその製造方法、並びに真空断熱材を使用した防寒具およびパーソナルコンピューター
CN100537215C (zh) * 2005-04-22 2009-09-09 海尔集团公司 一种宇航绝热板及其制备工艺
JP2011241988A (ja) * 2010-05-14 2011-12-01 Hitachi Appliances Inc 断熱箱体および冷蔵庫
KR101323490B1 (ko) * 2011-08-23 2013-10-31 (주)엘지하우시스 수분 및 가스 흡착용 게터재를 구비한 진공 단열재 및 그 제조 방법
KR101447767B1 (ko) * 2011-12-02 2014-10-07 (주)엘지하우시스 고온용 진공단열재
JP6258029B2 (ja) 2012-12-26 2018-01-10 日本合成化学工業株式会社 真空断熱構造体用外装袋及びそれを用いた真空断熱構造体、並びに真空断熱構造体用外装袋の保管または輸送方法、及び真空断熱構造体用外装袋の製法
WO2014174837A1 (ja) * 2013-04-23 2014-10-30 パナソニックIpマネジメント株式会社 気体吸着材を含む断熱体
JP6132715B2 (ja) * 2013-09-06 2017-05-24 三菱電機株式会社 真空断熱材の製造方法及び断熱箱
CN104712883A (zh) * 2013-12-13 2015-06-17 陈照峰 一种秸秆为芯材的真空绝热板
WO2017029727A1 (ja) * 2015-08-19 2017-02-23 三菱電機株式会社 真空断熱材及び断熱箱

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10318487A (ja) * 1997-05-16 1998-12-04 Mitsubishi Gas Chem Co Inc 真空断熱材用ゲッタ
JPH11106539A (ja) * 1997-10-03 1999-04-20 Mitsubishi Gas Chem Co Inc 真空断熱材用ゲッタおよびその製造法
JP2015059642A (ja) * 2013-09-20 2015-03-30 パナソニック株式会社 真空断熱材及びそれを用いた冷蔵庫
JP2015178853A (ja) * 2014-03-19 2015-10-08 三菱電機株式会社 真空断熱材、断熱箱、及び真空断熱材の製造方法
JP2016084833A (ja) * 2014-10-23 2016-05-19 三菱電機株式会社 真空断熱材及び断熱箱

Also Published As

Publication number Publication date
JPWO2019021359A1 (ja) 2020-02-06
AU2017424996A1 (en) 2019-12-19
TW201908640A (zh) 2019-03-01
TWI659177B (zh) 2019-05-11
AU2017424996B2 (en) 2021-03-11
CN110892187B (zh) 2021-08-27
JP7129979B2 (ja) 2022-09-02
CN110892187A (zh) 2020-03-17

Similar Documents

Publication Publication Date Title
US9726438B2 (en) Production of thermal insulation products
WO2015033717A1 (ja) 真空断熱材、断熱箱、及び真空断熱材の製造方法
MXPA01003196A (es) Panel de aislamiento al vacio y metodo para preparar el mismo.
WO2006080416A1 (ja) 断熱体
KR101657989B1 (ko) 어닐링 처리된 무바인더 유리섬유를 포함하는 진공 단열재
JP2005106090A (ja) 真空断熱パネル及びその製造方法
JP2016061435A (ja) 真空断熱材、断熱箱、及び真空断熱材の製造方法
WO2015177984A1 (ja) 密閉容器、断熱体、および気体吸着デバイス
KR101560125B1 (ko) 단열 성능이 향상된 단열 박스의 제조방법 및 이를 통해 제조된 단열 박스
WO2019021359A1 (ja) 真空断熱材、断熱箱および真空断熱材の製造方法
JP2001108187A (ja) 真空断熱体,真空断熱体の製造方法及び保温容器
AU2015405840B2 (en) Vacuum thermal insulator and thermal insulation container
KR101452211B1 (ko) 진공단열재용 심재 및 그를 이용한 진공단열재
AU2018412205B2 (en) Vacuum heat insulating material and heat insulating box
JPS59225275A (ja) 真空断熱材
JP2009063033A (ja) 断熱体
JP2008208844A (ja) 真空断熱箱体
JPH06281089A (ja) 真空断熱材
CN108551761B (zh) 真空隔热板的制备方法
KR101345275B1 (ko) 고순도 흄드 실리카를 이용한 진공단열재용 심재 및 그를 이용한 진공단열재
WO2024084774A1 (ja) 真空断熱材
RU2663675C2 (ru) Вакуумированный теплоизоляционный материал, теплоизоляционная камера и способ изготовления вакуумированного теплоизоляционного материала
EP2943620B1 (en) Production of a thermal insulation product
JP2010001922A (ja) 真空断熱材およびそれを用いた断熱箱体並びに真空断熱材の製造方法
JPS63279083A (ja) 真空断熱材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17918989

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019532241

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017424996

Country of ref document: AU

Date of ref document: 20170725

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17918989

Country of ref document: EP

Kind code of ref document: A1