WO2019020862A1 - Omnidirectional platform - Google Patents

Omnidirectional platform Download PDF

Info

Publication number
WO2019020862A1
WO2019020862A1 PCT/ES2018/070535 ES2018070535W WO2019020862A1 WO 2019020862 A1 WO2019020862 A1 WO 2019020862A1 ES 2018070535 W ES2018070535 W ES 2018070535W WO 2019020862 A1 WO2019020862 A1 WO 2019020862A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
platform
omnidirectional
axis
wheel
Prior art date
Application number
PCT/ES2018/070535
Other languages
Spanish (es)
French (fr)
Inventor
Juan José CANUTO GIL
Carles Domenech Mestres
Original Assignee
Universitat Politècnica De Catalunya
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat Politècnica De Catalunya filed Critical Universitat Politècnica De Catalunya
Publication of WO2019020862A1 publication Critical patent/WO2019020862A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D11/00Steering non-deflectable wheels; Steering endless tracks or the like
    • B62D11/02Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides
    • B62D11/04Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides by means of separate power sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/24Steering controls, i.e. means for initiating a change of direction of the vehicle not vehicle-mounted
    • B62D1/28Steering controls, i.e. means for initiating a change of direction of the vehicle not vehicle-mounted non-mechanical, e.g. following a line or other known markers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/007Manipulators mounted on wheels or on carriages mounted on wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/36Arrangement or mounting of transmissions in vehicles for driving tandem wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D11/00Steering non-deflectable wheels; Steering endless tracks or the like
    • B62D11/02Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides
    • B62D11/06Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides by means of a single main power source
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D61/00Motor vehicles or trailers, characterised by the arrangement or number of wheels, not otherwise provided for, e.g. four wheels in diamond pattern
    • B62D61/02Motor vehicles or trailers, characterised by the arrangement or number of wheels, not otherwise provided for, e.g. four wheels in diamond pattern with two road wheels in tandem on the longitudinal centre line of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F7/00Lifting frames, e.g. for lifting vehicles; Platform lifts
    • B66F7/06Lifting frames, e.g. for lifting vehicles; Platform lifts with platforms supported by levers for vertical movement
    • B66F7/0625Lifting frames, e.g. for lifting vehicles; Platform lifts with platforms supported by levers for vertical movement with wheels for moving around the floor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F7/00Lifting frames, e.g. for lifting vehicles; Platform lifts
    • B66F7/06Lifting frames, e.g. for lifting vehicles; Platform lifts with platforms supported by levers for vertical movement
    • B66F7/065Scissor linkages, i.e. X-configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F7/00Lifting frames, e.g. for lifting vehicles; Platform lifts
    • B66F7/28Constructional details, e.g. end stops, pivoting supporting members, sliding runners adjustable to load dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/063Automatically guided
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/065Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks non-masted
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/07554Counterweights
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/07586Suspension or mounting of wheels on chassis
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/027Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising intertial navigation means, e.g. azimuth detector

Definitions

  • the present invention concerns the field of omnidirectional platforms and conveyors. It will be understood that an omnidirectional platform is a mobile vehicle that can move in any horizontal direction, while an omnidirectional conveyor will be understood to be a non-despiazabie device that allows to move a load in any horizontal direction within its radius of action.
  • the platform and the proposed conveyor are of the type that achieve said omnidirectional capacity using only motorized single wheels arranged and controlled in a way that allows said omnidirectionality, s [n need to use complex wheels like spherical wheels, compound wheels, wheels with translational capacity lateral, etc.
  • Document EP0716974 describes an omnidirectional platform which, according to the embodiment shown in Figs. 22 and 23 of said document. It includes a first module equipped with two coaxial and opposing driving wheels, said first module being connected through a vertical shaft with a second module supported on four spherical wheels. The controlled drive of the drive wheels of the first module and the rotation of the vertical shaft allow. obtain an omnidirectional displacement of the omnidirectional platform, allowing any displacement of translation and any rotation of the second module.
  • the solution described in this document lacks the means to ensure a correct contact of the driving wheels with the terrain in case the platform circulates on uneven terrain, one or both of which may skid when momentarily separated from the ground, producing a loss of traction, being able to even be the embarrassed platform.
  • ES2226560 which describes a mobile platform equipped with a main frame supported on two self-orientating freewheeling wheels and a fixed-wheel drive wheel, and which therefore can only drive the platform forward or backward , and also provided with an auxiliary frame supported on the main frame to which it joins by means of an articulated joint, and also supported on two free-rotating self-adjusting wheels.
  • the aforementioned platform allows to adapt to irregular terrains maintaining at all times the contact of the driving wheel with the terrain, thanks to the fact that the main frame only has contact points with terrain, the two freewheeling wheels and the wheel fixed orientation motor. If said platform has more than three wheels that offer points of contact with the ground, it is no longer necessary to make sure that this contact with the ground is maintained at all times.
  • said platform does not have the capacity to move in an omnidirectional way, since its lateral translation is impossible.
  • the present invention concerns an omnidirectional platform.
  • An omnidirectional platform is a mobile vehicle that can move in any horizontal direction, ie forward, backward, sideways by lateral translation, in diagonal, etc., and also make turns on itself.
  • the proposed omnidirectional platform comprises, in a known way:
  • a first module that defines a center of rotation of the omnidirectional platform in which a coordinate origin with an orthogonal axis X, axis Y and axis Z is located, said first module having:
  • a control device connected to the first, second and third actuators to control its coordinated actuation configured to obtain an omnidirectional displacement of the platform by means of precise control of the displacement of the center of rotation, obtained by means of the actuation of the first and second actuators, and by precise control of the orientation of the second module by the precise actuation of the third actuator;
  • the proposed omnidirectional platform includes a second module that defines a loading platform rotatably connected to a first module integrating a first and second driving wheels whose trees are cop ⁇ anares on a vertical piano distanced from the axis of rotation between the first and second ones. second modules.
  • the independent drive of the two driving wheels and its against! from the control device allow to determine a forward and backward displacement of the platform omnidireccionai, in a straight line if both first and second wheels rotate at the same tangential speed or determining a rotation of the omnidirecclonal platform if different tangential speeds are obtained in both driving wheels .
  • said first and second wheels are spaced from the third rotation shaft, coaxial to the vertical Z-axis a distance D, said third shaft determining the rotation of the first module with respect to the second module.
  • the proposed omnidirectional platform also includes, in an innovative way, the following characteristics:
  • the second module is composed of a main frame and an auxiliary frame articulated between it by means of an articulated joint, the main frame being supported on the third vertical shaft of the first module and also supported on two rolling elements of free and automatic rotation. orientable, and the auxiliary frame being supported on the articulated joint and on two free-rotating and self-adjusting rolling elements; • wherein the auxiliary frame is partially superimposed on the main frame defining a loading plane, the articulated joint being provided with a degree of freedom around a horizontal axis, or having two degrees of freedom around two horizontal orthogonal articulation axes between yes, where
  • At least one suspension device is interposed.
  • the main frame is supported on three elements that provide stability. On the one hand it is supported on the first module through the third vertical shaft, said first module providing the traction and the direction by means of the precise control of the first and second driving wheels, and on the other hand it is supported on two rolling elements of rotation. free.
  • a rolling element is a wheel or similar that allows the transmission of vertical loads on a point of contact with the ground, while allowing a horizontal displacement without friction or with a negligible friction.
  • Said rolling element may have two degrees of freedom of horizontal displacement with little friction, such as for example a spherical wheel, or more preferably a single horizontal degree of freedom with little friction said rolling element being self-orientating in the direction of travel, such as a self-adjusting wheel.
  • An auxiliary frame is also supported on three elements that provide stability. On one side it is supported on the main frame, and on the other hand it is supported on two free-running rolling elements.
  • connection between the auxiliary frame and the main frame will consist of an articulated joint with a degree of freedom around a horizontal axis, ie for example a hinge or hinge whose axis is horizontal that allows a tilting movement of the auxiliary frame with respect to to the main frame, forming or altering an angle that they form with respect to a vertical plane.
  • said articulated joint will be provided with two degrees of freedom around two horizontal articulation axes orthogonal to each other.
  • This type of articulation allows a tilting movement of the subframe with respect to to the main frame, forming or altering two angles that form with respect to two vertical perpendicular pianos.
  • said articulated joint will not allow to modify the angular position of the auxiliary frame with respect to the main frame around a vertical axis, so that a rotation of the main frame will be transmitted to the auxiliary frame.
  • the proposed omnidirectional platform will therefore have a total of four freewheeling rolling elements, preferably at the four corners of the second module, and a first module provided with a first and a second driving wheel, said first module preferably being confined between the four rolling elements and arranged below the second module.
  • the set of rolling elements and the first and second drive wheels make a total of six points of support of the omnidirectional platform with the ground.
  • the main frame will have four support points, two corresponding to the two freewheeling elements and another two corresponding to the first and second driving wheels of the first module.
  • At least one suspension device is provided on the omnidirectional platform to cushion any irregularities or bumps in the ground.
  • Said suspension device may be integrated, for example, between each of the driving wheels and the first module, and / or between each of the rolling elements and the main frame, or between the first module and the second module.
  • the first module may include a segment to which the first and second drive wheels are fixed, and a second independent segment which it integrates the third vertical shaft joined to the second module, the suspension device being interposed between the first and second segments.
  • Said suspension device can be, for example, a block of eiastomeric material, such as rubber or rubber, or it can consist of springs, pistons, air cushions, etc.
  • the suspension device integrates articulations about an axis parallel to the axis Y, and optionally may also integrate articulations around the X axis, interposed between the segments of the first module.
  • Said at least one suspension device may alternatively consist of an arm with a first end hinged to the first module and a second end connected to the first wheel or to the second wheel, said arm being joined to the first module by an elastic element.
  • said arm may include an angular position sensor, for example an encoder, to measure the precise angular position of the arm at all times and transmit this information to the control device, which will be configured to adjust the calculations of drive of each wheel depending on the precise position of the arm detected by said sensor.
  • the control device can take this displacement of the arm into account when carrying out the calculations and prevent such deviation from occurring.
  • any of the described embodiments of the suspension device will ensure that the first and second drive wheels have a correct contact with the ground even if it is uneven, which allows precise control of the rotation of the driving wheels to produce omnidirectional displacement in all cases. desired from the omnidirectional platform.
  • each rolling element be a third single or double freewheeling wheel about a fourth horizontal tree, said third wheel being self-orientating by means of a fifth vertical shaft parallel to the Z axis misaligned with respect to the center of the third wheel, said fifth shaft being free-form relative to the first module by means of a bearing.
  • This type of wheels are the wheels known as idlers; self-adjusting wheels or "caster wheel”.
  • the free-swinging horizontal shaft allows the single wheel or double wheel to rotate with minimal resistance.
  • said wheel is connected to the first module through a fifth tree offset from the center of the simple wheel or to the center of the double wheel assembly, by changing the direction of the wheel; displacement of the first module the single or double wheel is reoriented and aligned with the new direction of movement of the first module, allowing the free rotation of said single or double wheel.
  • the first drive wheel, and / or the second drive wheel and / or each of the third wheels may further include a tire, either with a chamber or solid, preferably being a perimetric covering of eiastomeric material such as rubber, rubber or the like.
  • the aforementioned articulated joint be arranged in an intermediate portion of the main frame located between the third shaft and the freewheeling rolling elements. This ensures that the loads borne by the subframe are transmitted in a central portion of the main frame, and by so much transmitted approximately uniformly between their points of support on the ground provided by the driving wheels and by the two rolling elements.
  • the omnidirectional platform will further include a position detector connected to the control device, which will be configured to determine the relative position of the omnidirectional platform with respect to fixed reference points external to said omnidirectional platform, said control device also being configured to check if a real position detected by said position detector coincides with an estimated position calculated by the control device from the displacement of the ordered platform from said control device. That is to say that the control device checks whether the actual displacement of the omnidirectional platform coincides with the displacement that has been calculated and ordered by said control device, thus allowing to detect deviations due for example to an accumulation of small errors in the displacement caused by mechanical tolerances, inaccuracies in the movement of the wheels, obstacles or unforeseen potholes in the ground, poor grip of any of the driving wheels with the ground, etc. This allows detecting deviations from the platform.
  • the control device will also be configured to command a corrective displacement of the position of the platform based on the deviations detected, placing the platform in the correct location initially calculated.
  • the control platform may also include a communicating device connected to the control device, which allows the sending and receiving of data and / or control commands from the omnipresent platform to a control center, or receiving commands from a remote operator. It is also proposed that the control device be configured to communicate with other nearby omnidirectional platforms and to coordinate its displacement with the displacement of said omnidirectional platforms nearby, either to avoid collisions or jams, or to transport loads in a coordinated manner, for example. example a large load simultaneously supported on several of said omnidirectional platforms.
  • the omnidirectional platform may also include a lifting device that allows to modify the distance between at least part of the auxiliary frame and the substrate on which the wheels rest, therefore raising or lowering the auxiliary frame, which allows for example to be able to slide the Omnidirectional platform under a certain object and raise it by then holding its weight on the subframe for transport.
  • Said auxiliary frame may integrate a lower panel and a parallel upper panel, and a scissor mechanism interposed between them to modify their relative distance, said mechanism constituting the lifting device, and a lower panel being connected to the articulated joint.
  • the auxiliary frame may include elements selected from:
  • geometric position references such as parallel, perpendicular, tangent, etc. they refer to the position of the platform omnidirecclona ⁇ on a horizontal floor, and that admit deviations of up to ⁇ 5 ° with respect to the theoretical position defined by said nomenclature.
  • Fig. 1 shows a bottom view of the proposed omnidirectional platform according to a first embodiment provided with an independent suspension system for each first and second driving wheels based on a block of elastomeric material;
  • Fig. 2 shows a longitudinal section of the omnidirecclonai platform shown in Fig. 1, where an alternative position of the auxiliary frame pivoted around the articulated joint has been indicated in dashed line;
  • Fig. 3 shows a bottom view of the omnidirectional platform proposed according to a second embodiment provided with an alternative suspension system consisting of a torsion axis joining a segment of the first module integrating the first and second driving wheels with another segment of the first module that integrates the third vertical tree;
  • Fig. 4 shows a longitudinal section of the omnidirecclonai platform shown in Fig. 3, where an alternate position of the auxiliary frame pivoted around the articulated joint has been indicated in dashed line;
  • Fig. 5 shows a cross-section of the first embodiment of the omnidirectional platform shown in Figs. 1 and 2, where an alternative position of the auxiliary frame pivoted about the articulated joint has been indicated in dashed line;
  • Fig. 6 shows a cross section of the second embodiment of the omnidirectional platform shown in Figs. 3 and 4, where an alternative position of the auxiliary frame pivoted about the articulated joint, and an alternative position of a segment of the first module pivoted about the suspension device, and wherein the control device is shown in dashed line has been indicated in broken line. hidden to allow to see the suspension device;
  • Fig. 7 shows a longitudinal section of the omnidlrectional platform, the first module being provided with two segments connected to each other by a suspension device formed by an articulation about an axis parallel to the axis Y, and by an additional articulation articulated around the an axis parallel to the X axis, where an alternate position of the auxiliary frame pivoted about the articulated joint has been indicated in dashed line, and an alternative position of a segment of the first module pivoted about the suspension device;
  • Fig. 8 shows a cross-section of the same omnidirectional platform shown in Fig. 7, where an alternate position of a segment of the first module pivoted about the suspension device is seen in dashed line;
  • Fig. 9 shows the omnidirectional platform shown in Fig. 3 in an initial position of a lateral translation displacement! in the direction of the X axis indicated by a straight arrow, the same omnidirectional platform in a final position of said displacement shown in broken line, as well as the trajectories which the first driving wheel must follow, and the second driving wheel from the initial position to the final position in order to achieve that the center of rotation of the omnidlreccional platform moves in a straight line obtaining a lateral translation of the omnidlreccional platform;
  • Fig. 10 shows a view similar to that shown in Fig. 2 but according to an embodiment in the omnidlreccional platform it has a lifting device in the form of a scissors mechanism interposed between two surfaces integrated in the auxiliary frame;
  • Fig. 11 shows a view similar to that shown in Fig. 2 but according to an embodiment in which the omnidlreccional platform has protruding pallet forks on one side of the auxiliary frame, allowing the transport of loaded pallets by the platform omnidirectional, in this embodiment also including a counterweight moved in the form of a roller attached to articulated arms to the auxiliary frame, allowing to move the counterweight away from the horquiliae to balance a possible load supported on said forks.
  • a counterweight moved in the form of a roller attached to articulated arms to the auxiliary frame allowing to move the counterweight away from the horquiliae to balance a possible load supported on said forks.
  • Figs. 1, 2 and 5 show an embodiment of the omnidirectional platform provided with a second module 2 composed of a roughly square main frame 2a to which a rectangular auxiliary frame 2b is partially superimposed, providing a loading piano where packets to be transported can be deposited.
  • the auxiliary frame 2b is supported on the main frame by its superimposed end by an articulated joint 70, preferably on a central region of the main frame 2a.
  • the auxiliary frame 2b is also supported, at the end not superimposed on the main frame 2a, on two free-wheeling elements 40, which in this example are two self-turning double-free wheels called third wheels 40.
  • the main frame 2a which receives part of the load of the auxiliary frame 2b through the articulated joint 70, is in turn supported on two other rolling elements 40, which in this example are also two self-orienting wheels with free rotation. doubles called third wheels 40, and on a first module 1 to which it is connected through a third vertical shaft 31 that is connected to a third accordion 32.
  • Said third vertical tree 31 defines a center of rotation CG of the platform omnidireccionai where it locates a center of coordinates of three orthogonal axes X, Y and Z, being the third tree 31 concentric with the vertical Z axis.
  • the first module 1 of the present embodiment consists of first and second driving wheels 10 and 20 of equal diameter, facing each other and coaxially, the first driving wheel 10 being supported by a first shaft 11 parallel to the X axis and driven by a first actuator12 .
  • the second drive wheel 20 is supported by a second shaft 21 parallel to the X axis and driven by a second actuator 22.
  • the first and second shafts 11 and 21 are spaced a distance D from the third shaft 31 in the direction of the Y axis.
  • the first, second and third actuators 12, 22, 32 in this exemplary embodiment are electric motors controlled by a control device 3 arranged in said first module 1.
  • the third wheels 40 mentioned each have two wheels of equal diameter parallel, facing and coaxial, both supported on a fourth shaft 41 horizontal by means of bearings that allow free and independent rotation of each of said wheels.
  • the set of the two wheels and its corresponding fourth horizontal shaft 41 is connected to the second module 2 through a fifth vertical shaft 42, stand it to the axis Z and which is off center with respect to the center of the third wheel 40, in this case with respect to the center of the third wheel 40 double.
  • An arm covers the distance between both fourth and fifth trees 41 and 42 by connecting them.
  • This eccentricity of the fifth shaft 42 allows the displacement of the omnidirectional platform to cause the self-orientation of each third wheel 40 aligning it in the direction of said displacement, thus allowing the displacement of the omnidirectional platform in that displacement direction without friction, or with a very low friction offered by the bearings of the fourth and fifth trees 41 and 42.
  • the main frame 2a is supported on two third wheels 40 and on a first and second driving wheels 10, 20, therefore said main frame 2a has four points of support on the ground and therefore Therefore, if the ground was irregular, one of the wheels could be separated from the ground. If the wheel separated from the ground were a first or second drive wheel 10, 20, the omnidirectional platform would not move correctly.
  • the omnidirectional platform has a suspension device 50 interposed between the first and second driving wheels 10 and 20 and the second module 2 to ensure its correct contact with the ground at all times whatever its orography.
  • the suspension device 50 consists of an elastomeric block interposed between the third shaft 31 and the first and second shafts 11 and 21.
  • the first shaft 11, with its respective bearings and supports, is mounted as well as the first actuator 12 on a support attached to the rest of the first module 1 by a block of ethaltetric material that performs the functions of the suspension device 50, isolating possible vibrations and allowing the adaptation of the position of the first driving wheel 10 to the irregularities of the ground .
  • a block of ethaltetric material that performs the functions of the suspension device 50, isolating possible vibrations and allowing the adaptation of the position of the first driving wheel 10 to the irregularities of the ground .
  • Identical construction is applied in relation to the second driving wheel 20. It is obviously understood that the block of elastomeric material could be replaced "by a system of springs, pistons, or the like.
  • each third wheel 40 may also have a suspension device 50, for example being of an elastic material ef arm connecting the fourth horizontal shaft 41 and the fifth eccentric vertical shaft 42 of each of said third wheels 40, said elastic arm allowing a certain tilting of the corresponding third wheel 40 with respect to the rest of the omnidirectional platform.
  • a suspension device 50 for example being of an elastic material ef arm connecting the fourth horizontal shaft 41 and the fifth eccentric vertical shaft 42 of each of said third wheels 40, said elastic arm allowing a certain tilting of the corresponding third wheel 40 with respect to the rest of the omnidirectional platform.
  • the first module 1 consists of two segments, one carrier of the. first and second driving wheels 10 and 20 and their respective first and second shafts 11 and 21 connected to the respective first and second actuators 12 and 22, and another segment of the first module 1 carrying the third vertical shaft 31 and the third actuator 32, being both segments of the first module 1 connected through a suspension device 50, which in the present embodiment consists of a torsion bar about a horizontal axis parallel to the axis Y, but which admits other constructions such as an elastomeric block, a articulated joint and some springs or pistons connecting both segments, or another equivalent solution.
  • Said suspension device allows the carrier segment of the first and second driving wheels 10 and 20 to be pivotable with respect to the other segment of the first module 1, and therefore with respect to the rest of the omnidirectional platform, about a horizontal axis parallel to the axis Y ⁇ in the manner shown in Fig. 6 in dashed line), thus adapting the position of the first and second driving wheels 10 and 20 to possible irregularities of the ground ensuring its constant contact with the ground.
  • FIGS. 7 and 8 A variant of the last described embodiment is shown in FIGS. 7 and 8, where an omnidirectional platform as described is shown, provided with a suspension device that integrates a torsion bar around an axis parallel to the Y axis, but which also it integrates another articulation around the X axis, allowing the segment of the first module 1 carrying the first and second driving wheels 10 and 20 to pivot around the X axis and the Y axis, thus adapting its position to the ground, under any circumstances, ensuring Correct contact of the first and second driving wheels 10 and 20 with the ground. .
  • the omnidirectional platform described and shown in the Flgs.
  • the articulated joint 70 between the auxiliary frame 2b and the main frame 2a described above consists, in these examples, of a hinge around a horizontal pin that allows the auxiliary frame 2b to change the angle it forms with respect to the main frame 2a as shown in broken line in Figs. 2, 4 and 7. It is also proposed that the articulated joint 70 may further include another hinge around another horizontal pin arranged in a direction perpendicular to the pin of the other joint of the hinge joint, also allowing the auxiliary frame 2b to tilt laterally relative to the hinge. to the main frame 2a, as shown in broken line in Figs. 5 and 6. As seen in Fig. 8 this feature is not included in the embodiment shown in Fig. 7 and 8.
  • the suspension device 50 described above ensures that the first and second driving wheels 10 and 20 are in perfect contact with the ground, and that the main frame 2a rests on all of its wheels and rolling elements 40.
  • the use of an articulated joint 70 between the main frame 2a and the auxiliary frame 2b equipped with two joints allows adapting the position of the auxiliary frame 2b to any orography ensuring a permanent contact of its two third wheels 40 on the ground, its third point of support being the articulated joint 70, thus obtaining a support in fres points that is always stable.
  • articulated joint 70 described above could be provided with only one of said two articulations around horizontal pins.
  • permanent contact of the two third wheels 40 of the auxiliary frame 2b on the ground is not assured in some specific cases, depending on the terrain relief, but the described construction of the main frame 2a and the first module 1 provided with devices of 50 suspension ensure that in all cases the correct contact with the ground of the first and second driving wheels 10 and 20, which are those that print movement to the omnidirectional platform.
  • one of the third wheels 40 of the auxiliary frame 2b may not have a correct contact with the ground in specific moments will not affect the contact with the ground of the first and second wheels matrices 10 and 20, and therefore will not affect the displacement of the omnidirectional platform, avoiding any problem with the control and displacement of said platform on irregular terrains even in this alternative embodiment of the articulated joint 70 provided with a single articulation around a single horizontal pin.
  • Fig. 10 there is also shown a possible embodiment for the integration of a lifting device 70 in the auxiliary frame 2b, which allows its surface to be raised or lowered, thus modifying the total height of the omnidirectional platform.
  • the lifting device 70 comprises a scissors mechanism interposed between a lower panel and an upper panel integrating the auxiliary frame 2b. The actuation of said scissor mechanism will produce a separation or approach of the two panels with respect to each other.
  • This lifting device 70 allows the omnidirectional platform to lift loads, such as cabinets, shelves, parts, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Civil Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Robotics (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

The invention relates to a platform comprising a first module (1) with a first drive wheel (10) and a second drive wheel (20) that are opposite and coaxial, and a second module (2) formed by a main frame (2a) and an auxiliary frame (2b) joined together by means of a hinged joint (70), the mainframe (2a) being supported on the first module (1) by means of a third vertical shaft (31) and on two freely rotating, self-directing rolling elements (40), the auxiliary frame (2b) being supported on the hinged joint (70) and on two freely rotating, self-directing rolling elements (40), wherein the hinged joint (70) is provided with one degree of freedom or two degrees of freedom, and the platform includes at least one suspension device (50).

Description

DESCRIPCIÓN  DESCRIPTION
PLATAFORMA OMNIDIRECCIONAL  OMNIDIRECTIONAL PLATFORM
Campo de la tecnica Field of the technique
La presente invención concierne al campo de las plataformas y transportadores omnidireccionaies. Se entenderá que una plataforma omnidireccional es un vehículo móvil que puede desplazarse en cualquier dirección horizontal, mientras que un transportador omnidireccional se entenderá que es un dispositivo no despiazabie que permite mover una carga en cualquier dirección horizontal dentro de su radio de acción.  The present invention concerns the field of omnidirectional platforms and conveyors. It will be understood that an omnidirectional platform is a mobile vehicle that can move in any horizontal direction, while an omnidirectional conveyor will be understood to be a non-despiazabie device that allows to move a load in any horizontal direction within its radius of action.
La plataforma y ei transportador propuestos son del tipo que logran dicha capacidad omnidireccional utilizando únicamente ruedas simples motorizadas dispuestas y controladas de un modo que permite dicha omnidireccionalidad, s[n necesidad de utilizar ruedas complejas como ruedas esféricas, ruedas compuestas, ruedas con capacidad de traslación lateral, etc.  The platform and the proposed conveyor are of the type that achieve said omnidirectional capacity using only motorized single wheels arranged and controlled in a way that allows said omnidirectionality, s [n need to use complex wheels like spherical wheels, compound wheels, wheels with translational capacity lateral, etc.
Estado de la técnica  State of the art
El documento EP0716974 describe una plataforma omnidireccional que, según la realización mostrada en las Fíg. 22 y 23 de dicho documento, Incluye un primer módulo dotado de dos ruedas motrices coaxiales y enfrentadas, estando dicho primer módulo conectado a través de un árbol vertical con un segundo módulo soportado sobre cuatro ruedas esféricas. El accionamiento controlado de las ruedas motrices del primer módulo y del giro del árbol vertical permiten . obtener un desplazamiento omnidireccional de la plataforma omnidíreccionai, permitiendo cualquier desplazamiento de translación y cualquier giro del segundo módulo. Sin embargo la solución descrita en este documento carece de medios para asegurar un correcto contacto de ias ruedas motrices con ei terreno en caso de circular la plataforma sobre terrenos irregulares, pudiendo patinar una de ellas o ambas al quedar momentáneamente separadas del suelo, produciendo una pérdida de tracción, pudiendo incluso quedar la plataforma embarrancada. Document EP0716974 describes an omnidirectional platform which, according to the embodiment shown in Figs. 22 and 23 of said document. It includes a first module equipped with two coaxial and opposing driving wheels, said first module being connected through a vertical shaft with a second module supported on four spherical wheels. The controlled drive of the drive wheels of the first module and the rotation of the vertical shaft allow. obtain an omnidirectional displacement of the omnidirectional platform, allowing any displacement of translation and any rotation of the second module. However, the solution described in this document lacks the means to ensure a correct contact of the driving wheels with the terrain in case the platform circulates on uneven terrain, one or both of which may skid when momentarily separated from the ground, producing a loss of traction, being able to even be the embarrassed platform.
Se conoce también el documento ES2226560 que describe una plataforma móvil dotada de un bastidor principal soportado sobre dos ruedas de giro libre auto-orientables y de una rueda motriz de orientación fija, y que por io tanto solo puede impulsar Ea plataforma hacia adelante o hada atrás, y dotada también de un bastidor auxiliar soportado sobre ei bastidor principal al que se une mediante una unión articulada, y soportado también sobre dos ruedas de giro libre auto-orientables. La citada plataforma permite adaptarse a terrenos irregulares manteniendo en todo momento el contacto de la rueda motriz con el terreno, gracias a que el bastidor principal solo tiene bes puntos de contacto con ej terreno, las dos ruedas de giro libre auto- orientables y la rueda motriz de orientación fija. Si dicha plataforma tuviera más de tres ruedas que ofrecieran puntos de contacto con el terreno dejada de asegurarse que dicho contacto con el terreno se mantiene en todo momento. It is also known document ES2226560 which describes a mobile platform equipped with a main frame supported on two self-orientating freewheeling wheels and a fixed-wheel drive wheel, and which therefore can only drive the platform forward or backward , and also provided with an auxiliary frame supported on the main frame to which it joins by means of an articulated joint, and also supported on two free-rotating self-adjusting wheels. The aforementioned platform allows to adapt to irregular terrains maintaining at all times the contact of the driving wheel with the terrain, thanks to the fact that the main frame only has contact points with terrain, the two freewheeling wheels and the wheel fixed orientation motor. If said platform has more than three wheels that offer points of contact with the ground, it is no longer necessary to make sure that this contact with the ground is maintained at all times.
Además dicha plataforma no tiene capacidad para desplazarse de un modo omnidireccional, pues su traslación lateral resulta imposible.  Furthermore, said platform does not have the capacity to move in an omnidirectional way, since its lateral translation is impossible.
La presente invención concierne a una plataforma omnidireccional. Una plataforma omnidireccional es un vehículo móvil que puede desplazarse en cualquier dirección horizontal, es decir hacia adelante, hacia atrás, hacia los lados mediante traslación lateral, en diagonal, ete, y realizar también giros sobre sf mismo. The present invention concerns an omnidirectional platform. An omnidirectional platform is a mobile vehicle that can move in any horizontal direction, ie forward, backward, sideways by lateral translation, in diagonal, etc., and also make turns on itself.
La plataforma omnidireccional propuesta comprende, de un modo conocido:  The proposed omnidirectional platform comprises, in a known way:
• un primer módulo que define un centro de giro de la plataforma omnidireccional en el que se sitúa un origen de coordenadas dotado de un eje X, un eje Y y un eje Z ortogonales entre si, estando dicho primer módulo dotado de:  • a first module that defines a center of rotation of the omnidirectional platform in which a coordinate origin with an orthogonal axis X, axis Y and axis Z is located, said first module having:
• al menos de una primera rueda motriz conectada a un primer árbol horizontal paralelo al eje X y una segunda rueda motriz conectada a un segundo árbol horizontal paralelo al eje X, siendo ambos primer y segundo árboles coplanares con un mismo plano paralelo al eje Z, estando dicho plano separado una distancia D del eje Z, estando la primera rueda motriz accionada mediante un primer actuador, y estando la segunda rueda motriz accionada mediante un segundo actuador;  • at least one first drive wheel connected to a first horizontal shaft parallel to the X axis and a second driving wheel connected to a second horizontal shaft parallel to the X axis, both first and second coplanar axes having the same plane parallel to the Z axis, said separate plane being a distance D from the axis Z, the first drive wheel being actuated by a first actuator, and the second drive wheel being actuated by a second actuator;
• un segundo módulo horizontal conectado a dicho primer módulo mediante un tercer árbol vertical coaxial con el eje Z, siendo el giro relativo dei segundo módulo y el primer módulo accionado mediante un tercer actuador;  • a second horizontal module connected to said first module by means of a third vertical shaft coaxial with the Z axis, the relative rotation of the second module and the first module being actuated by a third actuator;
• un dispositivo de control conectado al primer, segundo y tercer actuadores para controlar su accionamiento coordinado configurado para obtener un deaplazamiento omnidireccional de la plataforma mediante un control preciso del desplazamiento del centro de giro, obtenido mediante el accionamiento del primer y segundo accionadores, y mediante un control preciso de la orientación del segundo módulo mediante el accionamiento preciso del tercer accionador; • a control device connected to the first, second and third actuators to control its coordinated actuation configured to obtain an omnidirectional displacement of the platform by means of precise control of the displacement of the center of rotation, obtained by means of the actuation of the first and second actuators, and by precise control of the orientation of the second module by the precise actuation of the third actuator;
Por lo tanto la plataforma omnidirecclonal propuesta incluye un segundo módulo que define una plataforma de carga conectado de forma rotativa a un primer módulo que íntegra una primera y segunda ruedas motrices cuyos árboles son copíanares sobre un piano vertical distanciado del eje de giro entre los primer y segundo módulos.  Therefore, the proposed omnidirectional platform includes a second module that defines a loading platform rotatably connected to a first module integrating a first and second driving wheels whose trees are copíanares on a vertical piano distanced from the axis of rotation between the first and second ones. second modules.
El accionamiento independiente de las dos ruedas motrices y su contra! desde et dispositivo de control permiten determinar un desplazamiento de avance y retroceso de la plataforma omnidireccionai, en línea recta si ambas primera y segunda ruedas giran a idéntica velocidad tangencial o determinando un giro de la plataforma omnidirecclonal si se obtienen velocidades tangenciales distintas en ambas ruedas motrices.  The independent drive of the two driving wheels and its against! from the control device allow to determine a forward and backward displacement of the platform omnidireccionai, in a straight line if both first and second wheels rotate at the same tangential speed or determining a rotation of the omnidirecclonal platform if different tangential speeds are obtained in both driving wheels .
Además dichas primera y segunda ruedas están distanciadas del tercer árbol de giro, coaxial al eje Z vertical una distancia D, determinando dicho tercer árbol el giro del primer módulo respecto al segundo módulo. Esta característica, junto con el control preciso dei primer, segundo y tercer actuadores, permite que un desplazamiento del primer módulo regido por una velocidad tangencial distinta de las primera y segunda ruedas motrices, determine un desplazamiento de traslación lateral dei centro de giro de la plataforma, permitiendo que si la rotación de dicho centro de gira es compensada mediante el accionamiento del tercer actuador, el segundo módulo tenga un desplazamiento transversal.  Furthermore, said first and second wheels are spaced from the third rotation shaft, coaxial to the vertical Z-axis a distance D, said third shaft determining the rotation of the first module with respect to the second module. This characteristic, together with the precise control of the first, second and third actuators, allows that a displacement of the first module governed by a tangential speed different from the first and second driving wheels, determines a displacement of lateral translation of the center of rotation of the platform , allowing that if the rotation of said pivot center is compensated by actuating the third actuator, the second module has a transverse displacement.
En otras palabras, que mediante la combinación del control preciso e independiente dei avance y retroceso de las primera y segunda ruedas se puede producir un desplazamiento del centro de giro del primer módulo en cualquier dirección sin necesidad de utilizar ruedas complejas que permitan una traslación lateral, como por ejemplo ruedas esféricas o ruedas compuestas. Al añadir el control del giro del segundo módulo respecto al primer módulo alrededor del tercer árbol, se obtiene una plataforma omnidireccionai. In other words, that by combining the precise and independent control of the forward and backward movement of the first and second wheels, a displacement of the center of rotation of the first module in any direction can be produced without using complex wheels that allow lateral translation, as for example spherical wheels or compound wheels. By adding the control of the rotation of the second module with respect to the first module around the third tree, an omnidirectional platform is obtained.
La plataforma omnidireccionai propuesta incluye además, de un modo innovador, las siguientes características:  The proposed omnidirectional platform also includes, in an innovative way, the following characteristics:
• el segundo módulo está compuesto por un bastidor principal y por un bastidor auxiliar articulados entre el mediante una unión articulada, estando el bastidor principal soportado sobre el tercer árbol vertical dei primer módulo y soportado también sobre dos elementos de rodadura de gira libre y auto-orientables, y estando el bastidor auxiliar soportado en la unión articulada y sobre dos elementos de rodadura de giro libre y auto-orientables; • en donde ei bastidor auxiliar está parcialmente superpuesto al bastidor principal definiendo un plano de carga, estando la unión articulada dotada de un grado de libertad alrededor de un eje horizontal, o dotada de dos grados de libertad alrededor de dos ejes de articulación horizontales ortogonales entre si, en donde • the second module is composed of a main frame and an auxiliary frame articulated between it by means of an articulated joint, the main frame being supported on the third vertical shaft of the first module and also supported on two rolling elements of free and automatic rotation. orientable, and the auxiliary frame being supported on the articulated joint and on two free-rotating and self-adjusting rolling elements; • wherein the auxiliary frame is partially superimposed on the main frame defining a loading plane, the articulated joint being provided with a degree of freedom around a horizontal axis, or having two degrees of freedom around two horizontal orthogonal articulation axes between yes, where
· entre las primera y segunda ruedas motrices y el bastidor principal, y/o entre los dos elementos de rodadura de giro libre del bastidor principal y el propio bastidor principal se interpone ai menos un dispositivo de suspensión.  Between the first and second drive wheels and the main frame, and / or between the two free-running rolling elements of the main frame and the main frame itself, at least one suspension device is interposed.
Asi pues el bastidor principal se soporta sobre tres elementos que le proporcionan estabilidad. Por una parte se soporta sobre ei primer módulo a través del tercer árbol vertical, proporcionando dicho primer móduio la tracción y la dirección mediante ei control preciso de las primera y segunda ruedas motrices, y por otro lado se soporta sobre dos elementos de rodadura de giro libre.  Thus the main frame is supported on three elements that provide stability. On the one hand it is supported on the first module through the third vertical shaft, said first module providing the traction and the direction by means of the precise control of the first and second driving wheels, and on the other hand it is supported on two rolling elements of rotation. free.
Se entenderá que un elemento de rodadura es una rueda o similar que permite la transmisión de cargas verticales sobre un punto de contacto con ei suelo, a la vez que permite un desplazamiento horizontal sin rozamiento o con un rozamiento despreciable. Dicho elemento de rodadura podrá tener dos grados de libertad de desplazamiento horizontal con escaso rozamiento, como por ejemplo una rueda esférica, o más preferiblemente un solo grado de libertad horizontal con escaso rozamiento siendo dicho elemento de rodadura auto-orientable en la dirección de desplazamiento, como por ejemplo una rueda auto-orientable.  It will be understood that a rolling element is a wheel or similar that allows the transmission of vertical loads on a point of contact with the ground, while allowing a horizontal displacement without friction or with a negligible friction. Said rolling element may have two degrees of freedom of horizontal displacement with little friction, such as for example a spherical wheel, or more preferably a single horizontal degree of freedom with little friction said rolling element being self-orientating in the direction of travel, such as a self-adjusting wheel.
Un bastidor auxiliar se soporta también sobre tres elementos que te proporcionan estabilidad. Por un lado se soporta sobre el bastidor principal, y por otro lado se soporta sobre dos elementos de rodadura de giro libre.  An auxiliary frame is also supported on three elements that provide stability. On one side it is supported on the main frame, and on the other hand it is supported on two free-running rolling elements.
La unión existente entre el bastidor auxiliar y el bastidor principal constará de una unión articulada dotada de un grado de libertad alrededor de un eje horizontal, es decir por ejemplo una bisagra o gozne cuyo eje sea horizontal que permite un movimiento de basculación del bastidor auxiliar respecto al bastidor principal, formando o alterando un ángulo que forman entre sí respecto a un plano vertical. The connection between the auxiliary frame and the main frame will consist of an articulated joint with a degree of freedom around a horizontal axis, ie for example a hinge or hinge whose axis is horizontal that allows a tilting movement of the auxiliary frame with respect to to the main frame, forming or altering an angle that they form with respect to a vertical plane.
Alternativamente dicha unión articulada estará dotada de dos grados de libertad alrededor de dos ejes de articulación horizontales ortogonales entre si. Este tipo de articulaciones permiten un movimiento de basculación del bastidor auxiliar respecto al bastidor principal, formando o alterando dos ángulos que forman entre sí respecto a dos pianos verticales perpendiculares. Alternatively said articulated joint will be provided with two degrees of freedom around two horizontal articulation axes orthogonal to each other. This type of articulation allows a tilting movement of the subframe with respect to to the main frame, forming or altering two angles that form with respect to two vertical perpendicular pianos.
En cualquiera de las dos alternativas dicha unión articulada no permitirá modificar la posición angular del bastidor auxiliar respecto al bastidor principal alrededor de un eje vertical, de modo que un giro del bastidor principal se transmitirá al bastidor auxiliar.  In either of the two alternatives said articulated joint will not allow to modify the angular position of the auxiliary frame with respect to the main frame around a vertical axis, so that a rotation of the main frame will be transmitted to the auxiliary frame.
La plataforma omnidireccional propuesta dispondrá por lo tanto de un total de cuatro elementos de rodadura de giro libre, preferiblemente en las cuatro esquinas del segundo módulo, y de un primer módulo dotado de una primera y una segunda rueda motriz, estando dicho primer módulo preferiblemente confinado entre los cuatro elementos de rodadura y dispuesto debajo del segundo módulo.  The proposed omnidirectional platform will therefore have a total of four freewheeling rolling elements, preferably at the four corners of the second module, and a first module provided with a first and a second driving wheel, said first module preferably being confined between the four rolling elements and arranged below the second module.
Por lo tanto el conjunto de los elementos de rodadura y las primera y segunda ruedas motrices hacen un total de seis puntos de apoyo de la plataforma omnidireccional con el suelo. Además el bastidor principal contará de cuatro puntos de apoyo, dos correspondientes a ios dos elementos de rodadura de giro libre y otros dos correspondientes a las primera y segunda ruedas motrices del primer módulo.  Therefore the set of rolling elements and the first and second drive wheels make a total of six points of support of the omnidirectional platform with the ground. In addition, the main frame will have four support points, two corresponding to the two freewheeling elements and another two corresponding to the first and second driving wheels of the first module.
A fin de garantizar un correcto contacto sobre dicho suelo de los citados cuatro puntos de apoyo del bastidor principal incluso cuando el suelo es irregular, y garantizar asf el contacto de las primera y segunda ruedas motrices con ei suelo para garantizar que su giro produce un desplazamiento de la plataforma omnidireccional, se dispone al menos de un dispositivo de suspensión en la plataforma omnidireccional para amortiguar las posibles irregularidades o baches del suelo.  In order to guarantee a correct contact on said floor of the said four points of support of the main frame even when the ground is irregular, and thus guarantee the contact of the first and second driving wheels with the ground to guarantee that its turning produces a displacement of the omnidirectional platform, at least one suspension device is provided on the omnidirectional platform to cushion any irregularities or bumps in the ground.
Dicho dispositivo de suspensión puede estar integrado por ejemplo entre cada una de las ruedas motrices y el primer módulo, y/o entre cada uno de ios elementos de rodadura y ei bastidor principal, o entre el primer módulo y el segundo módulo. Said suspension device may be integrated, for example, between each of the driving wheels and the first module, and / or between each of the rolling elements and the main frame, or between the first module and the second module.
Alternativamente el primer módulo puede incluir un segmento a la que se fijan las primera y segunda ruedas motrices, y un segundo segmento independiente que integra el tercer árbol vertical unido al segundo módulo, estando el dispositivo de suspensión interpuesto entre el primer y el segundo segmentos. Alternatively, the first module may include a segment to which the first and second drive wheels are fixed, and a second independent segment which it integrates the third vertical shaft joined to the second module, the suspension device being interposed between the first and second segments.
Dicho dispositivo de suspensión puede ser, por ejemplo, un bloque de material eiastomérico, como goma o caucho, o puede constar de muelles, pistones, cojines de aire, etc.  Said suspension device can be, for example, a block of eiastomeric material, such as rubber or rubber, or it can consist of springs, pistons, air cushions, etc.
Se contempla también que el dispositivo de suspensión integre articulaciones alrededor de un eje paralelo al eje Y, y opcionaimente puede integrar también articulaciones alrededor del eje X, interpuestas entre los segmentos del primer módulo.  It is also contemplated that the suspension device integrates articulations about an axis parallel to the axis Y, and optionally may also integrate articulations around the X axis, interposed between the segments of the first module.
Dicho ai menos un dispositivo de suspensión podrá constar alternativamente de un brazo con un primer extremo articulado al primer módulo y un segundo extremo conectado a la primera rueda o a le segunda rueda, estando dicho brazo unido al primer módulo mediante un elemento elástico. Said at least one suspension device may alternatively consist of an arm with a first end hinged to the first module and a second end connected to the first wheel or to the second wheel, said arm being joined to the first module by an elastic element.
En tal caso se propone también que dicho brazo pueda incluir un sensor de posición angular, por ejemplo un encoder, para medir ia posición angular precisa del brazo en todo momento y transmite esta información ai dispositivo de control, que estará configurado para ajusfar los cálculos de accionamiento de cada rueda en función de la posición precisa del brazo detectada por dicho sensor. Al desplazarse el brazo la posición de la rueda queda ligeramente alterada, lo que si no se corrige o ajusta ai realizar ios cálculos de accionamiento de las ruedas puede dar lugar a pequeñas desviaciones que pueden, por agregación, acabar siendo considerables. Al conocer la posición del brazo el dispositivo de control puede tener ese desplazamiento del brazo en cuenta al realizar los cálculos y evitar que se produzca tal desviación.  In such a case it is also proposed that said arm may include an angular position sensor, for example an encoder, to measure the precise angular position of the arm at all times and transmit this information to the control device, which will be configured to adjust the calculations of drive of each wheel depending on the precise position of the arm detected by said sensor. When the arm is moved, the position of the wheel is slightly altered, which if not corrected or adjusted when the wheel drive calculations are carried out, can result in small deviations that can, by aggregation, end up being considerable. By knowing the position of the arm, the control device can take this displacement of the arm into account when carrying out the calculations and prevent such deviation from occurring.
Cuaiquiera de ias realizaciones descritas del dispositivo de suspensión garantizará que las primera y segunda ruedas motrices tengan un correcto contacto con el suelo incluso si este es irregular, lo que permite que el control preciso del giro de ias ruedas motrices produzca en todo caso el desplazamiento omnidireccional deseado de ia plataforma omnidireccional.  Any of the described embodiments of the suspension device will ensure that the first and second drive wheels have a correct contact with the ground even if it is uneven, which allows precise control of the rotation of the driving wheels to produce omnidirectional displacement in all cases. desired from the omnidirectional platform.
Estando garantizado el cometo apoyo del primer módulo y del bastidor principal, el bastidor auxiliar soportado parcialmente por el bastidor principal puede garantizar también el correcto apoyo sobre el suelo de sus dos elementos de rodadura gracias a la unión articulada. Según una realización adicional se propone que cada elemento de rodadura sea una tercera rueda simple o doble de giro libre alrededor de un cuarto árbol horizontal, siendo dicha tercera rueda auto-orientable mediante un quinto árbol vertical paralelo al eje Z desalineado respecto al centro de la tercera rueda, estando dicho quinto árbol articulado de forma libre respecto al primer módulo mediante un rodamiento. Este tipo de ruedas son las ruedas conocidas como ruedas locas; ruedas auto-orientables o "caster wheel". With the support of the first module and the main frame being guaranteed, the auxiliary frame partially supported by the main frame can also guarantee the correct support on the ground of its two rolling elements thanks to the articulated joint. According to a further embodiment it is proposed that each rolling element be a third single or double freewheeling wheel about a fourth horizontal tree, said third wheel being self-orientating by means of a fifth vertical shaft parallel to the Z axis misaligned with respect to the center of the third wheel, said fifth shaft being free-form relative to the first module by means of a bearing. This type of wheels are the wheels known as idlers; self-adjusting wheels or "caster wheel".
Ei árbol horizontal de giro libre permite que la rueda simple o rueda doble gire con una mínima resistencia. Al estar dicha rueda unida al primer módulo a través de un quinto árbol descentrado respecto ai centro de la rueda simple o al centro del conjunto de la rueda doble, al cambiar ia dirección de! desplazamiento dei primer módulo la rueda simple o doble se reorienta y aliena con la nueva dirección de desplazamiento del primer módulo, permitiendo el giro libre de dicha rueda simple o doble.  The free-swinging horizontal shaft allows the single wheel or double wheel to rotate with minimal resistance. When said wheel is connected to the first module through a fifth tree offset from the center of the simple wheel or to the center of the double wheel assembly, by changing the direction of the wheel; displacement of the first module the single or double wheel is reoriented and aligned with the new direction of movement of the first module, allowing the free rotation of said single or double wheel.
La primera rueda motriz, y/o ia segunda rueda motriz y/o cada una de las terceras ruedas pueden incluir además un neumático, ya sea con cámara o macizo, preferiblemente siendo un recubrimiento perimetral de material eiastomérico como caucho, goma o similar.  The first drive wheel, and / or the second drive wheel and / or each of the third wheels may further include a tire, either with a chamber or solid, preferably being a perimetric covering of eiastomeric material such as rubber, rubber or the like.
Se propone también que la unión articulada antes mencionada esté dispuesta en una porción intermedia del bastidor principal situada entre el tercer árbol y los elementos de rodadura de giro libre. Esto garantiza que las cargas soportadas por el bastidor auxiliar son transmitidas en una porción central del bastidor principal, y por fo tanto transmitidas de forma aproximadamente uniforme entre sus puntos de apoyo sobre el suelo proporcionados por las ruedas motrices y por los dos elementos de rodadura.  It is also proposed that the aforementioned articulated joint be arranged in an intermediate portion of the main frame located between the third shaft and the freewheeling rolling elements. This ensures that the loads borne by the subframe are transmitted in a central portion of the main frame, and by so much transmitted approximately uniformly between their points of support on the ground provided by the driving wheels and by the two rolling elements.
Preferiblemente la plataforma omnidireccional Incluirá además un detector de posición conectado al dispositivo de control, que estará configurado para determinar ia posición relativa de la plataforma omnidireccional respecto a unos puntos de referencia fijos externos a dicha plataforma omnidireccional, estando dicho dispositivo de control configurado también para comprobar si una posición real detectada mediante dicho detector de posición coincide con una posición estimada calculada por el dispositivo de control a partir dei desplazamiento de la plataforma ordenado desde dicho dispositivo de control. Es decir que el dispositivo de control comprueba si el desplazamiento real de la plataforma omnidireccional coincide con el desplazamiento que se ha calculado y ordenado por dicho dispositivo de control, permitiendo asi detectar desviaciones debidas por ejemplo a una acumulación de pequeños errores en el desplazamiento causados por tolerancias mecánicas, por imprecisiones en ei movimiento de las ruedas, por obstáculos o baches imprevistos en el terreno, por un deficiente agarre de alguna de las ruedas motrices con el suelo, etc. Esto permite detectar desviaciones de la plataforma. El dispositivo de control estará también configurado para ordenar un desplazamiento correctivo de la posición de la plataforma en base las desviaciones detectadas, situando la plataforma en el émplazamiento correcto inicialmente calculado. Preferably the omnidirectional platform will further include a position detector connected to the control device, which will be configured to determine the relative position of the omnidirectional platform with respect to fixed reference points external to said omnidirectional platform, said control device also being configured to check if a real position detected by said position detector coincides with an estimated position calculated by the control device from the displacement of the ordered platform from said control device. That is to say that the control device checks whether the actual displacement of the omnidirectional platform coincides with the displacement that has been calculated and ordered by said control device, thus allowing to detect deviations due for example to an accumulation of small errors in the displacement caused by mechanical tolerances, inaccuracies in the movement of the wheels, obstacles or unforeseen potholes in the ground, poor grip of any of the driving wheels with the ground, etc. This allows detecting deviations from the platform. The control device will also be configured to command a corrective displacement of the position of the platform based on the deviations detected, placing the platform in the correct location initially calculated.
La plataforma ornnidlraccional puede incluir también un dispositivo comunlcador conectado al dispositivo de control, lo que permite Ea emisión y recepción de datos y/o órdenes de control desde la plataforma omnfdirecclonal a un centro de control, o recibir órdenes de un operador remoto. Se plantea también que ei dispositivo de control esté configurado para comunicarse con otras plataformas omnidireccionales próximas y para coordinar su desplazamiento con el desplazamiento de dichas plataformas omnidireccionales próximas, ya sea para evitar colisiones o atascos, o ya sea para transportar cargas de forma coordinada, por ejemplo una gran carga soportada simultáneamente sobre diversas de dichas plataformas omnidireccionales. The control platform may also include a communicating device connected to the control device, which allows the sending and receiving of data and / or control commands from the omnipresent platform to a control center, or receiving commands from a remote operator. It is also proposed that the control device be configured to communicate with other nearby omnidirectional platforms and to coordinate its displacement with the displacement of said omnidirectional platforms nearby, either to avoid collisions or jams, or to transport loads in a coordinated manner, for example. example a large load simultaneously supported on several of said omnidirectional platforms.
La plataforma omnidireccional podrá incluir también un dispositivo elevador que permita modificar la distancia entre al menos parte del bastidor auxiliar y el sustrato sobre el que se apoyan las ruedas, por lo tanto elevando o descendiendo el bastidor auxiliar, io que permite por ejemplo poder deslizar la plataforma omnidireccional debajo de cierto objeto y elevarlo sosteniendo entonces su peso sobre el bastidor auxiliar para su transporte.  The omnidirectional platform may also include a lifting device that allows to modify the distance between at least part of the auxiliary frame and the substrate on which the wheels rest, therefore raising or lowering the auxiliary frame, which allows for example to be able to slide the Omnidirectional platform under a certain object and raise it by then holding its weight on the subframe for transport.
Dicho bastidor auxiliar podrá integrar un panel Inferior y un panel superior paralelos, y un mecanismo de tijera interpuesto entre ambos para modificar su distancia relativa, dicho mecanismo dé «jera constituyendo el dispositivo elevador, y estando un panel inferior conectado a la unión articulada.  Said auxiliary frame may integrate a lower panel and a parallel upper panel, and a scissor mechanism interposed between them to modify their relative distance, said mechanism constituting the lifting device, and a lower panel being connected to the articulated joint.
Según otra realización ei bastidor auxiliar podrá incluir elementos seleccionados entre:  According to another embodiment, the auxiliary frame may include elements selected from:
• un transportador de rodillos;  • a roller conveyor;
· un transportador de rodillos motorizado;  · A motorized roller conveyor;
• una cinta transportadora;  • a conveyor belt;
• una cinta transportadora motorizada;  • a motorized conveyor belt;
• un acopie de arrastre;  • one pull-out fitting;
• horquillas de transpaieta sobresalientes por un lado del segundo módulo y un contrapeso situado en un lado opuesto del segundo módulo, o centrado en el segundo módulo o centrado en el primer módulo; • horquillas de transpaleta sobresalientes por un lado del segundo módulo y un contrapeso situado en un lado opuesto del segundo módulo y automáticamente desplazable para incrementar o disminuir su distancia horizontal respecto a dichas horquillas de transpaleta, equilibrando asi cualquier peso que se haya cargado en las horquillas. • protruding transpallet forks on one side of the second module and a counterweight located on an opposite side of the second module, or centered on the second module or centered on the first module; • protruding pallet forks on one side of the second module and a counterweight located on an opposite side of the second module and automatically movable to increase or decrease its horizontal distance with respect to said pallet forks, thus balancing any weight that has been loaded on the forks .
Cualquiera de estas opciones facilita que la plataforma omnidlreccional pueda manipular con mayor facilidad cargas para su transporte.  Either of these options makes it easier for the omnidlreccional platform to manipulate loads for transport.
Se entenderá que las referencias a posición geométricas, como por ejemplo paralelo, perpendicular, tangente, etc. hacen referencia a la posición de la plataforma omnidirecclonaí sobre un suelo horizontal, y que admiten desviaciones de hasta ±5° respecto a la posición teórica definida por dicha nomenclatura.  It will be understood that geometric position references, such as parallel, perpendicular, tangent, etc. they refer to the position of the platform omnidirecclonaí on a horizontal floor, and that admit deviations of up to ± 5 ° with respect to the theoretical position defined by said nomenclature.
Otras características de la invención aparecerán en la siguiente descripción detallada de un ejemplo de realización.  Other characteristics of the invention will appear in the following detailed description of an exemplary embodiment.
Breve descripcion de las figuras  Brief description of the figures
Las anteriores y otras ventajas y características se comprenderán más plenamente a partir de ia siguiente descripción detallada de un ejemplo de realización con referencia a los dibujos adjuntos, que deben tomarse a titulo ilustrativo y no limitativo,, en los que: The foregoing and other advantages and features will be more fully understood from the following detailed description of an exemplary embodiment with reference to the accompanying drawings, which should be taken by way of illustration and not limitation, in which:
ia Fig. 1 muestra una vista inferior de la plataforma omnidirecclonaí propuesta según una primera realización dotada de un sistema de suspensión independiente para cada primera y segunda ruedas motrices basado en un bloque de material elastomerico; Fig. 1 shows a bottom view of the proposed omnidirectional platform according to a first embodiment provided with an independent suspension system for each first and second driving wheels based on a block of elastomeric material;
la Fig. 2 muestra una sección longitudinal de ia plataforma omnidirecclonaí mostrada en la Fig. 1 , donde se ha indicado en linea discontinua una posición alternativa del bastidor auxiliar pivotado alrededor de la unión articulada; Fig. 2 shows a longitudinal section of the omnidirecclonai platform shown in Fig. 1, where an alternative position of the auxiliary frame pivoted around the articulated joint has been indicated in dashed line;
la Fig. 3 muestra una vista inferior de la plataforma omnidirecclonaí propuesta según una segunda realización dotada 'de un sistema de suspensión alternativo consistente en un eje de torsión que une un segmento del primer módulo que integra las primera y segunda ruedas motrices con otro segmento del primer módulo que integra el tercer árbol vertical; ia Fig. 4 muestra una sección longitudinal de la plataforma omnidirecclonaí mostrada en la Fig. 3, donde se ha Indicado en linea discontinua una posición alternativa del bastidor auxiliar pivotado alrededor de la unión articulada; la Fig. 5 muestra una sección transversal de ía primera realización de la plataforma omnidlreccional mostrada en las Figs. 1 y 2, donde se ha indicado en linea discontinua una posición alternativa del bastidor auxiliar pivotado alrededor de la unión articulada; Fig. 3 shows a bottom view of the omnidirectional platform proposed according to a second embodiment provided with an alternative suspension system consisting of a torsion axis joining a segment of the first module integrating the first and second driving wheels with another segment of the first module that integrates the third vertical tree; Fig. 4 shows a longitudinal section of the omnidirecclonai platform shown in Fig. 3, where an alternate position of the auxiliary frame pivoted around the articulated joint has been indicated in dashed line; Fig. 5 shows a cross-section of the first embodiment of the omnidirectional platform shown in Figs. 1 and 2, where an alternative position of the auxiliary frame pivoted about the articulated joint has been indicated in dashed line;
la Fig. 6 muestra una sección transversal de la segunda realización de la plataforma omnidlreccional mostrada en las Figs. 3 y 4, donde se ha indicado en linea discontinua una posición alternativa del bastidor auxiliar pivotado alrededor de ia unión articulada, y una posición alternativa de un segmento del primer módulo pivotado alrededor del dispositivo de suspensión, y en donde el dispositivo de control se muestra oculto para permitir ver el dispositivo de suspensión; Fig. 6 shows a cross section of the second embodiment of the omnidirectional platform shown in Figs. 3 and 4, where an alternative position of the auxiliary frame pivoted about the articulated joint, and an alternative position of a segment of the first module pivoted about the suspension device, and wherein the control device is shown in dashed line has been indicated in broken line. hidden to allow to see the suspension device;
la Fig. 7 muestra una sección longitudinal de la plataforma omnidlreccional, estando el primer módulo dotado de dos segmentos conectados entre sf por un dispositivo de suspensión formado por una articulación alrededor de un eje paralelo al eje Y, y por una articulación adicional articulada alrededor de un eje paralelo al eje X, donde se ha indicado en linea discontinua una posición alternativa del bastidor auxiliar pivotado alrededor de la unión articulada, y una posición alternativa de un segmento dei primer módulo pivotado alrededor del dispositivo de suspensión; Fig. 7 shows a longitudinal section of the omnidlrectional platform, the first module being provided with two segments connected to each other by a suspension device formed by an articulation about an axis parallel to the axis Y, and by an additional articulation articulated around the an axis parallel to the X axis, where an alternate position of the auxiliary frame pivoted about the articulated joint has been indicated in dashed line, and an alternative position of a segment of the first module pivoted about the suspension device;
la Fig. 8 muestra una sección transversal de ia misma plataforma omnidlreccional mostrada en la Fig. 7, donde se aprecia en linea discontinua una posición alternativa de un segmento dei primer módulo pivotado alrededor del dispositivo de suspensión; Fig. 8 shows a cross-section of the same omnidirectional platform shown in Fig. 7, where an alternate position of a segment of the first module pivoted about the suspension device is seen in dashed line;
la Fig. 9 muestra ia plataforma omnldireccionai mostrada en la Fig. 3 en una posición inicial de un desplazamiento de traslación latera! en ia dirección dei eje X indicado con una flecha recta, la misma plataforma omnldireccionai en una posición final de dicho desplazamiento mostrado en trazo discontinuo, asi como ias trayectorias qué deben seguir la primera rueda motriz, y la segunda rueda motriz desde ia posición inicial hasta ia posición final con el fin de conseguir que el centro de giro de ia plataforma omnidlreccional se desplace en línea recta consiguiendo una traslación lateral de la plataforma omnidlreccional; Fig. 9 shows the omnidirectional platform shown in Fig. 3 in an initial position of a lateral translation displacement! in the direction of the X axis indicated by a straight arrow, the same omnidirectional platform in a final position of said displacement shown in broken line, as well as the trajectories which the first driving wheel must follow, and the second driving wheel from the initial position to the final position in order to achieve that the center of rotation of the omnidlreccional platform moves in a straight line obtaining a lateral translation of the omnidlreccional platform;
ia Fig. 10 muestra una vista similar a la mostrada en la Fig. 2 pero según una realización en ia cuai ia plataforma omnidlreccional dispone de un dispositivo elevador en forma de mecanismo de tijeras interpuesto entre dos superficies integradas en el bastidor auxiliar; ia Fig. 11 muestra una vista simiiar a la mostrada en ia Fig. 2 pero según una realización en ia cual la plataforma omnidlreccional dispone de unas horquillas de transpaleta sobresalientes por un lateral del bastidor auxiliar, permitiendo ei transporte de palés con carga mediante la plataforma omnidireccional, en esta realización incluyendo además un contrapeso desplazaba en forma da rodillo unido a unos brazos articulados al bastidor auxiliar, permitiendo alejar o acercar el contrapeso a las horquiliae para equilibrar una posible carga soportada sobre dichas horquillas. Descripcion detallada de un ejemplo de realización Fig. 10 shows a view similar to that shown in Fig. 2 but according to an embodiment in the omnidlreccional platform it has a lifting device in the form of a scissors mechanism interposed between two surfaces integrated in the auxiliary frame; Fig. 11 shows a view similar to that shown in Fig. 2 but according to an embodiment in which the omnidlreccional platform has protruding pallet forks on one side of the auxiliary frame, allowing the transport of loaded pallets by the platform omnidirectional, in this embodiment also including a counterweight moved in the form of a roller attached to articulated arms to the auxiliary frame, allowing to move the counterweight away from the horquiliae to balance a possible load supported on said forks. Detailed description of an embodiment
Las figuras adjuntas muestran ejemplos de realización con carácter ilustrativo no {imitativo de la presente invención.  The attached figures show exemplary embodiments with non-mimetic illustrative character of the present invention.
Las Figs. 1, 2 y 5 muestran una realización de la plataforma omnidireccionai dotada de un segundo módulo 2 compuesto de un bastidor principal 2a aproximadamente cuadrado al que se superpone parcialmente un bastidor auxiliar 2b rectangular, proporcionando un piano de carga donde se pueden depositar paquetes a transportar. Figs. 1, 2 and 5 show an embodiment of the omnidirectional platform provided with a second module 2 composed of a roughly square main frame 2a to which a rectangular auxiliary frame 2b is partially superimposed, providing a loading piano where packets to be transported can be deposited.
El bastidor auxiliar 2b se soporta sobre ei bastidor principal por su extremo superpuesto mediante una unión articulada 70, preferiblemente sobre una región central del bastidor principal 2a. El bastidor auxiliar 2b se soporta también, por ei extremo no superpuesto al bastidor principal 2a, sobre dos elementos de rodadura 40 de giro libre, que en este ejemplo son dos ruedas auto-orientabtes de giro libre dobles llamadas terceras ruedas 40. The auxiliary frame 2b is supported on the main frame by its superimposed end by an articulated joint 70, preferably on a central region of the main frame 2a. The auxiliary frame 2b is also supported, at the end not superimposed on the main frame 2a, on two free-wheeling elements 40, which in this example are two self-turning double-free wheels called third wheels 40.
El bastidor principal 2a, que recibe parte de la carga del bastidor auxiliar 2b a través de la unión articulada 70, se soporta a su vez sobre otros dos elementos de rodadura 40, que en este ejemplo son también dos ruedas auto-orientabies de giro libre dobles llamadas terceras ruedas 40, y sobre un primer módulo 1 al que está unido a través de un tercer árbol 31 vertical que está conectado a un tercer accfonador 32. Dicho tercer árbol 31 vertical define un centro de giro CG de la plataforma omnidireccionai donde se localiza un centro de coordenadas de tres ejes ortogonales X, Y y Z, siendo el tercer árbol 31 concéntrico con el eje Z vertical. El primer módulo 1 de la presente realización consta de una primera y una segunda ruedes motrices 10 y 20 de igual diámetro, enfrentadas y coaxiales, estando la primera rueda motriz 10 soportada por un primer árbol 11 paralelo ai eje X y accionada por un primer accionador12. La segunda rueda motriz 20 está soportada por un segundo árbol 21 paralelo al eje X y accionada por un segundo accionador 22. El primer y segundo árboles 11 y 21 están separados una distancia D respecto al tercer árbol 31 en la dirección del eje Y. Loe primer, segundo y tercer accionadores 12, 22, 32 en este ejemplo de realización son motores eléctricos controlados por un dispositivo de control 3 dispuesto en dicho primer módulo 1. Ei control preciso del accionamiento de ios primer, segundo y tercer accionadores 12, 22, 32 mediante secuencias de control calculadas por el dispositivo de control 3, teniendo en cuenta et diámetro de las primera y segunda ruedas motrices 10, 20 y su distancia respecto al centro de giro CG, permiten obtener un desplazamiento omnidireccional de la plataforma omnidireccional. The main frame 2a, which receives part of the load of the auxiliary frame 2b through the articulated joint 70, is in turn supported on two other rolling elements 40, which in this example are also two self-orienting wheels with free rotation. doubles called third wheels 40, and on a first module 1 to which it is connected through a third vertical shaft 31 that is connected to a third accordion 32. Said third vertical tree 31 defines a center of rotation CG of the platform omnidireccionai where it locates a center of coordinates of three orthogonal axes X, Y and Z, being the third tree 31 concentric with the vertical Z axis. The first module 1 of the present embodiment consists of first and second driving wheels 10 and 20 of equal diameter, facing each other and coaxially, the first driving wheel 10 being supported by a first shaft 11 parallel to the X axis and driven by a first actuator12 . The second drive wheel 20 is supported by a second shaft 21 parallel to the X axis and driven by a second actuator 22. The first and second shafts 11 and 21 are spaced a distance D from the third shaft 31 in the direction of the Y axis. The first, second and third actuators 12, 22, 32 in this exemplary embodiment are electric motors controlled by a control device 3 arranged in said first module 1. The precise control of the actuation of the first, second and third actuators 12, 22 32, by means of control sequences calculated by the control device 3, taking into account the diameter of the first and second driving wheels 10, 20 and their distance from the center of rotation CG, allow obtaining an omnidirectional displacement of the omnidirectional platform.
Las terceras ruedas 40 citadas disponen, cada una, de dos ruedas de igual diámetro paralelas, enfrentadas y coaxiales, ambas soportadas sobre un cuarto árbol 41 horizontal mediante rodamientos que permiten el giro libre e independiente de cada una de dichas ruedas. El conjunto de las dos ruedas y su correspondiente cuarto árbol 41 horizontal está conectado con ei segundo módulo 2 a través de un quinto árbol 42 vertical páratelo al eje Z y que está descentrado respecto al centro de ia tercera rueda 40, en este caso respecto al centro de la tercera rueda 40 doble. Un brazo cubre la distancia entre ambos cuarto y quinto árboles 41 y 42 conectándolos. The third wheels 40 mentioned each have two wheels of equal diameter parallel, facing and coaxial, both supported on a fourth shaft 41 horizontal by means of bearings that allow free and independent rotation of each of said wheels. The set of the two wheels and its corresponding fourth horizontal shaft 41 is connected to the second module 2 through a fifth vertical shaft 42, stand it to the axis Z and which is off center with respect to the center of the third wheel 40, in this case with respect to the center of the third wheel 40 double. An arm covers the distance between both fourth and fifth trees 41 and 42 by connecting them.
Esta excentricidad del quinto árboi 42 permite que el desplazamiento de la plataforma omnidireccional provoque la auto-orientación de cada tercera rueda 40 alineándola en ia dirección de dicho desplazamiento, permitiendo así el desplazamiento de la plataforma omnidireccional en esa dirección de desplazamiento sin rozamiento, o con un rozamiento muy escaso ofrecido por los rodamientos de los cuartos y quintos árboles 41 y 42. This eccentricity of the fifth shaft 42 allows the displacement of the omnidirectional platform to cause the self-orientation of each third wheel 40 aligning it in the direction of said displacement, thus allowing the displacement of the omnidirectional platform in that displacement direction without friction, or with a very low friction offered by the bearings of the fourth and fifth trees 41 and 42.
De acuerdo con lo hasta ahora descrito el bastidor principal 2a está soportado sobre dos terceras ruedas 40 y sobre una primera y una segunda ruedas motrices 10, 20, por lo tanto dicho bastidor principal 2a dispone de cuatro puntos de apoyo sobre el suelo y por lo tanto, si ei suelo fuera Irregular, podría estar una de las ruedas separada dei suelo. SI ia rueda separada del suelo fuera una primera o segunda rueda motriz 10, 20, la plataforma omnidireccional no se desplazaría correctamente. According to what has been described up to now, the main frame 2a is supported on two third wheels 40 and on a first and second driving wheels 10, 20, therefore said main frame 2a has four points of support on the ground and therefore Therefore, if the ground was irregular, one of the wheels could be separated from the ground. If the wheel separated from the ground were a first or second drive wheel 10, 20, the omnidirectional platform would not move correctly.
Por lo tanto el correcto contacto de las primera y segunda ruedas motrices 10 y 20 con el suelo resulta vital para garantizar que el desplazamiento obtenido por ia plataforma es omnidireccional. Para tal fin la plataforma omnidireccional dispone de un dispositivo de suspensión 50 Interpuesto entre las primera y segunda ruedas motrices 10 y 20 y el segundo módulo 2 para asegurar su correcto contacto con el suelo en todo momento sea cual sea su orografía. En el ejemplo mostrado en las Figs. 1 , 2 y 5 el dispositivo de suspensión 50 consta de un bloque elastomérico interpuesto entre et tercer árbol 31 y los primer y segundo árboles 11 y 21. Concretamente se montan el primer árbol 11 , con sus respectivos rodamientos y soportes, asi como el primer accionador 12 sobre un soporte unido al resto del primer módulo 1 mediante un bloque de material etastomértico que hace las funciones del dispositivo de suspensión 50, aislando Sas posibles vibraciones y permitiendo la adaptación de la posición de la primera rueda motriz 10 a las irregularidades del terreno. Idéntica construcción se aplica en relación a la segunda rueda motriz 20. Evidentemente se entiende que el bloque de material elastomérico podría ser sustituido" por un sistema de muelles, pistones, o similar. Therefore the correct contact of the first and second driving wheels 10 and 20 with the ground is vital to guarantee that the displacement obtained by the platform is omnidirectional. For this purpose, the omnidirectional platform has a suspension device 50 interposed between the first and second driving wheels 10 and 20 and the second module 2 to ensure its correct contact with the ground at all times whatever its orography. In the example shown in Figs. 1, 2 and 5 the suspension device 50 consists of an elastomeric block interposed between the third shaft 31 and the first and second shafts 11 and 21. Specifically, the first shaft 11, with its respective bearings and supports, is mounted as well as the first actuator 12 on a support attached to the rest of the first module 1 by a block of ethaltetric material that performs the functions of the suspension device 50, isolating possible vibrations and allowing the adaptation of the position of the first driving wheel 10 to the irregularities of the ground . Identical construction is applied in relation to the second driving wheel 20. It is obviously understood that the block of elastomeric material could be replaced "by a system of springs, pistons, or the like.
Igualmente se contempla que cada tercera rueda 40 pueda disponer igualmente de un dispositiva de suspensión 50, por ejemplo siendo de un material elástico ef brazo que conecte el cuarto árbol 41 horizontal y el quinto árbol 42 vertical excéntrico de cada una de dichas terceras ruedas 40, permitiendo dicho brazo elástico una cierta basculación de la correspondiente tercera rueda 40 respecto al resto de la plataforma omnidireqclonal. It is also contemplated that each third wheel 40 may also have a suspension device 50, for example being of an elastic material ef arm connecting the fourth horizontal shaft 41 and the fifth eccentric vertical shaft 42 of each of said third wheels 40, said elastic arm allowing a certain tilting of the corresponding third wheel 40 with respect to the rest of the omnidirectional platform.
Según otra realización alternativa del dispositivo de suspensión 50, mostrada en las Figs. 3, 4 y 6, el primer módulo 1 conste de dos segmentos, uno portador de las. primera y segunda ruedas motrices 10 y 20 y sus respectivos primer y segundo árboles 11 y 21 conectados a ios respectivos primer y segundo actuadores 12 y 22, y otro Segmento del primer módulo 1 portador del tercer árbol 31 vertical y el tercer actuador 32, estando ambos segmentos del primer módulo 1 conectados a través de un dispositivo de suspensión 50, que en la presente realización consta de una barra de torsión alrededor de un eje horizontal paralelo al eje Y, pero que admite otras construcciones como puede ser un bloque elastomérico, una unión articulada y unos muelles o pistones conectando ambos segmentos, u otra solución equivalente. Dicho dispositivo de suspensión permite que el segmento portador de las primera y segunda ruedas motrices 10 y 20 pueda pivotar respecto al otro segmento del primer módulo 1, y por lo tanto respecto al resto de la plataforma omnldireccional, alrededor de un eje horizontal paralelo al eje Y {del modo mostrado en la Fig. 6 en linea discontinua), adaptando asi la posición de las primera y segunda ruedas motrices 10 y 20 a posibles irregularidades del terreno asegurando su constante contacto con el suelo. According to another alternative embodiment of the suspension device 50, shown in Figs. 3, 4 and 6, the first module 1 consists of two segments, one carrier of the. first and second driving wheels 10 and 20 and their respective first and second shafts 11 and 21 connected to the respective first and second actuators 12 and 22, and another segment of the first module 1 carrying the third vertical shaft 31 and the third actuator 32, being both segments of the first module 1 connected through a suspension device 50, which in the present embodiment consists of a torsion bar about a horizontal axis parallel to the axis Y, but which admits other constructions such as an elastomeric block, a articulated joint and some springs or pistons connecting both segments, or another equivalent solution. Said suspension device allows the carrier segment of the first and second driving wheels 10 and 20 to be pivotable with respect to the other segment of the first module 1, and therefore with respect to the rest of the omnidirectional platform, about a horizontal axis parallel to the axis Y {in the manner shown in Fig. 6 in dashed line), thus adapting the position of the first and second driving wheels 10 and 20 to possible irregularities of the ground ensuring its constant contact with the ground.
Una variante de la última realización descrita se muestra en fas Fig. 7 y 8, donde se muestra una plataforma omnidireccíonal como la descrita, dotada de un dispositivo de suspensión que integra una barra de torsión alrededor de un eje paralelo al eje Y, pero que además integra otra articulación alrededor del eje X, permitiendo que el segmento del primer módulo 1 portador de las primera y segunda ruedas motrices 10 y 20 pueda pívotar alrededor del eje X y del eje Y, adaptando asi su posición al terreno, en cualquier circunstancia, asegurando un correcto contacto de las primera y segunda ruedas motrices 10 y 20 con el suelo. . En cualquiera de fas realizaciones de la plataforma omnidireccional descrita y mostrada en las Flgs. 1 a 9, la unión articulada 70 entre el bastidor auxiliar 2b y el bastidor principal 2a antes descrita consta, en estos ejemplos, de una articulación alrededor de un pasador horizontal que permite que el bastidor auxiliar 2b cambie el ángulo que forma respecto al bastidor principal 2a como se muestra en linea discontinua en ias Figs. 2, 4 y 7. Se propone también que la unión articulada 70 pueda incluir además otra articulación alrededor de otro pasador horizontal dispuesto en una dirección perpendicular al pasador de la otra articulación de la unión articulada, permitiendo también que el bastidor auxiliar 2b bascule lateralmente respecto al bastidor principal 2a, tal y como se muestra en linea discontinua en las Fig. 5 y 6. Como se aprecia en la Fig. 8 esta característica no está incluida en la realización mostrada en las Fig. 7 y 8. A variant of the last described embodiment is shown in FIGS. 7 and 8, where an omnidirectional platform as described is shown, provided with a suspension device that integrates a torsion bar around an axis parallel to the Y axis, but which also it integrates another articulation around the X axis, allowing the segment of the first module 1 carrying the first and second driving wheels 10 and 20 to pivot around the X axis and the Y axis, thus adapting its position to the ground, under any circumstances, ensuring Correct contact of the first and second driving wheels 10 and 20 with the ground. . In any of the embodiments of the omnidirectional platform described and shown in the Flgs. 1 to 9, the articulated joint 70 between the auxiliary frame 2b and the main frame 2a described above consists, in these examples, of a hinge around a horizontal pin that allows the auxiliary frame 2b to change the angle it forms with respect to the main frame 2a as shown in broken line in Figs. 2, 4 and 7. It is also proposed that the articulated joint 70 may further include another hinge around another horizontal pin arranged in a direction perpendicular to the pin of the other joint of the hinge joint, also allowing the auxiliary frame 2b to tilt laterally relative to the hinge. to the main frame 2a, as shown in broken line in Figs. 5 and 6. As seen in Fig. 8 this feature is not included in the embodiment shown in Fig. 7 and 8.
El dispositivo de suspensión 50 antes descrito asegura que ias primera y segunda ruedas motrices 10 y 20 están en perfecto contacto con el suelo, y que el bastidor principal 2a se apoya en todas sus ruedas y elementos de rodadura 40. La utilización de una unión articulada 70 entre el bastidor principal 2a y el bastidor auxiliar 2b dotado de dos articulaciones permite adaptar la posición del bastidor auxiliar 2b a cualquier orografía asegurando un permanente contacto de sus dos terceras ruedas 40 sobre el terreno, siendo su tercer punto de apoyo la citada unión articulada 70, consiguiendo asi un apoyo en fres puntos que es siempre estable. The suspension device 50 described above ensures that the first and second driving wheels 10 and 20 are in perfect contact with the ground, and that the main frame 2a rests on all of its wheels and rolling elements 40. The use of an articulated joint 70 between the main frame 2a and the auxiliary frame 2b equipped with two joints allows adapting the position of the auxiliary frame 2b to any orography ensuring a permanent contact of its two third wheels 40 on the ground, its third point of support being the articulated joint 70, thus obtaining a support in fres points that is always stable.
Una realización alternativa la unión articulada 70 antes descrita- podría estar dotada de una sola de dichas dos articulaciones alrededor de pasadores horizontales. En tai caso no se asegurarla un contacto permanente de las dos terceras ruedas 40 del bastidor auxiliar 2b sobre el terreno en algunos casos concretos, dependiendo del relieve del terreno, pero 4a construcción descrita de bastidor principal 2a y del primer módulo 1 dotados de dispositivos de suspensión 50 aseguran que en todo caso el correcto contacto con el terreno de las primera y segunda ruedas motrices 10 y 20, que son las que imprimen movimiento a la plataforma omnidireccional. Por lo tanto el que en esta realización una de ias terceras ruedas 40 del bastidor auxiliar 2b pueda no tener un correcto contacto con el terreno en momentos puntuales no afectara al contacto con el terreno de las primera y segunda ruedas matrices 10 y 20, y por lo tanto no afectará al desplazamiento de la plataforma omnidireccional, evitándose cualquier problema con el control y desplazamiento de dicha plataforma sobre terrenos irregulares incluso en esta realización alternativa de la unión articulada 70 dotada de una sola articulación alrededor de un solo pasador horizontal. An alternative embodiment the articulated joint 70 described above could be provided with only one of said two articulations around horizontal pins. In such a case, permanent contact of the two third wheels 40 of the auxiliary frame 2b on the ground is not assured in some specific cases, depending on the terrain relief, but the described construction of the main frame 2a and the first module 1 provided with devices of 50 suspension ensure that in all cases the correct contact with the ground of the first and second driving wheels 10 and 20, which are those that print movement to the omnidirectional platform. Therefore, in this embodiment, one of the third wheels 40 of the auxiliary frame 2b may not have a correct contact with the ground in specific moments will not affect the contact with the ground of the first and second wheels matrices 10 and 20, and therefore will not affect the displacement of the omnidirectional platform, avoiding any problem with the control and displacement of said platform on irregular terrains even in this alternative embodiment of the articulated joint 70 provided with a single articulation around a single horizontal pin.
Evidentemente otras construcciones de la unión articulada 70 con una libertad de movimientos equivalente resultaría obvia para un experto en la materia sin necesidad de aplicar actividad inventiva alguna. Obviously other constructions of the articulated joint 70 with an equivalent freedom of movement would be obvious to a person skilled in the art without the need to apply any inventive activity.
En la Fig. 10 se muestra además una posible realización para la integración de un dispositivo de elevación 70 en el bastidor auxiliar 2b, que permite elevar o descender su superficie, modificando asi ia altura total de la plataforma omnidireccional. Según esta realización el dispositivo de elevación 70 consta de un mecanismo de tijeras interpuesto entre un panel inferior y un panel superior integrantes del bastidor auxiliar 2b. Ei accionamiento del dicho mecanismo de tijera producirá una separación o acercamiento de los dos paneles uno respecto al otro. Este dispositivo de elevación 70 permite a la plataforma omnidireccional elevar cargas, como por ejemplo armarios, estanterías, piezas, etc. In Fig. 10 there is also shown a possible embodiment for the integration of a lifting device 70 in the auxiliary frame 2b, which allows its surface to be raised or lowered, thus modifying the total height of the omnidirectional platform. According to this embodiment, the lifting device 70 comprises a scissors mechanism interposed between a lower panel and an upper panel integrating the auxiliary frame 2b. The actuation of said scissor mechanism will produce a separation or approach of the two panels with respect to each other. This lifting device 70 allows the omnidirectional platform to lift loads, such as cabinets, shelves, parts, etc.
Se entenderá que las diferentes partes que constituyen la invención descritas en una realización pueden ser libremente combinadas con las partes descritas en otras realizaciones distintas aunque no se haya descrito dicha combinación de forma explícita, siempre que no exista un perjuicio en la combinación. It will be understood that the different parts constituting the invention described in one embodiment can be freely combined with the parts described in other different embodiments although said combination has not been explicitly described, provided that there is no harm in the combination.

Claims

REIVINDICACIONES
1. Plataforma omnldireccional que comprende:  1. Omnidirectional platform comprising:
un primer módulo (1) que define un centro de giro (CG) de la plataforma omnidireccionai en el que se sitúa un origen de coordenadas dotado de un eje X, un eje Y y un eje Z ortogonales entre si, estando dicho primer módulo (1 ) dotado de: a first module (1) that defines a center of rotation (CG) of the omnidirectional platform in which a coordinate origin is placed with an X axis, a Y axis and a Z axis orthogonal to each other, said first module ( 1) endowed with:
al menos de una primera rueda motriz (10) conectada a un primer árbol (11) horizontal paralelo al eje X y una segunda rueda motriz (20) conectada a un segundo árbol (21) horizontal paralelo al eje X, siendo ambos primer y segundo árboles (11 , 2f) coplanarea con un mismo plano paralelo ai eje Z, estando dicho piano separado una distancia D del eje Z, estando la primera rueda motriz (10) accionada mediante un primer actuador (12), y estando la segunda rueda motriz (20) accionada mediante un segundo actuador (22); at least one first drive wheel (10) connected to a first horizontal shaft (11) parallel to the X axis and a second driving wheel (20) connected to a second horizontal shaft (21) parallel to the X axis, both being first and second trees (11, 2f) coplanarea with the same plane parallel to the axis Z, said plane being spaced apart a distance D from the axis Z, the first drive wheel (10) being actuated by a first actuator (12), and the second drive wheel being (20) actuated by a second actuator (22);
un segundo módulo (2) horizontal conectado a dicho primer módulo (1) mediante un tercer árbol (31) vertical coaxial con el eje Z, siendo el giro relativo del segundo módulo (2) y el primer módulo (1 ) accionado mediante un tercer actuador (32); a second horizontal module (2) connected to said first module (1) by means of a third vertical shaft (31) coaxial with the Z axis, the relative rotation of the second module (2) and the first module (1) being operated by a third one actuator (32);
un dispositivo de control (3) conectado al primer, segundo y tercer actuadores (12, 22, 32) para controlar su accionamiento coordinado configurado para obtener un desplazamiento omnidireccionai de la plataforma mediante un control precisó de) desplazamiento del centro de giro (CG), obtenido mediante el accionamiento dei primer y segundo accionadores (12, 22), y mediante un control preciso de la orientación del segundo módulo (2) mediante el accionamiento preciso del tercer accionador (32); a control device (3) connected to the first, second and third actuators (12, 22, 32) to control its coordinated actuation configured to obtain an omnidirectional displacement of the platform by means of a precise control of) displacement of the center of rotation (CG) , obtained by actuating the first and second actuators (12, 22), and by precise control of the orientation of the second module (2) by the precise actuation of the third actuator (32);
caracterizado porque characterized because
el segundo módulo (2) está compuesto por un bastidor principal (2a) y por un bastidor auxiliar (2b) articulados entre sí mediante una unión articulada (70), estando el bastidor principal (2a) soportado sobre el tercer árbol (31) vertical del primer módulo (1) y soportado también sobre dos elementos de rodadura (40) de giro libre y auto-orientables, y estando ei bastidor auxiliar (2b) soportado en la unión articulada (70) y sobre dos elementos de rodadura (40) de giro libre y auto-orientabiee; the second module (2) is composed of a main frame (2a) and an auxiliary frame (2b) hinged together by an articulated joint (70), the main frame (2a) being supported on the third vertical shaft (31) of the first module (1) and also supported on two rolling elements (40) of free rotation and self-adjustable, and the auxiliary frame (2b) being supported on the articulated joint (70) and on two rolling elements (40) of free spin and auto-orientabiee;
en donde el bastidor auxiliar (2b) está parcialmente superpuesto ai bastidor principal (2a) definiendo un piano de carga, estando la unión articulada (70) dotada de un grado de libertad alrededor de un eje horizontal, o dotada de dos grados de libertad alrededor de dos ejes de articulación horizontales ortogonales.entre sí, en donde entre las primera y segunda ruedas motrices (10, 20) y el bastidor principal (2a), y/o entre los dos elementos de rodadura {40) de giro libre del bastidor principal (2a) y el propio bastidor principal (2a) se interpone al menos un dispositivo de suspensión (50). wherein the auxiliary frame (2b) is partially superimposed on the main frame (2a) defining a loading piano, the articulated joint (70) being provided with a degree of freedom around a horizontal axis, or having two degrees of freedom around it of two horizontal articulation axes orthogonal.between, where between the first and second driving wheels (10, 20) and the main frame (2a), and / or between the two free-running elements (40) of the main frame (2a) and the main frame (2a) itself interposes at least one suspension device (50).
2. Plataforma omnidireccional según reivindicación 1 en donde, cada elemento de rodadura (40) es una tercera rueda (40) simple o doble de gira libre alrededor de un cuarto árbol (41) horizontal, siendo dicha tercera rueda (40) auto-orientable mediante un quinto árbol (42) vertical paralelo ai eje Z desalineado respecto ai centro de la tercera rueda (40), estando dicho quinto árbol (42) articulado de forma libre respecto al resto de la plataforma omnidireccional mediante un rodamiento. 2. Omnidirectional platform according to claim 1 wherein, each rolling element (40) is a third wheel (40) single or double free rotation around a fourth tree (41) horizontal, said third wheel (40) self-adjustable by means of a fifth shaft (42) vertical parallel to the Z axis misaligned with respect to the center of the third wheel (40), said fifth shaft (42) being articulated freely with respect to the rest of the omnidirectional platform by means of a bearing.
3. Plataforma omnidireccional según reivindicación 2 en donde la primera rueda motriz (10), y/o la segunda rueda motriz (20) y/o cada una de fas terceras ruedas (40) de giro libre incluyen un neumático.  3. Omnidirectional platform according to claim 2 wherein the first drive wheel (10), and / or the second drive wheel (20) and / or each of the third freewheeling wheels (40) include a tire.
4. Plataforma omnidireccional según reivindicación 1, 2 o 3 en donde dicho al menos un dispositivo de suspensión (50) incluye una articulación articulada alrededor de un eje paralelo al eje Y.  4. Omnidirectional platform according to claim 1, 2 or 3 wherein said at least one suspension device (50) includes a hinge articulated about an axis parallel to the axis Y.
5. Plataforma omnidireccional según reivindicación 1, 2, 3 o 4 en donde dicho al menos un dispositivo de suspensión (50) incluye una articulación articulada alrededor de un eje paralelo al eje X.  5. Omnidirectional platform according to claim 1, 2, 3 or 4 wherein said at least one suspension device (50) includes a hinge articulated about an axis parallel to the axis X.
6. Plataforma omnidireccional según una cualquiera de las reivindicaciones anteriores, en donde dicho al menos un dispositivo de suspensión (50) es un bloque de material elastomórico conectando dos segmentos independientes de la plataforma, un segmento portador de la primera rueda motriz (10), de la segunda rueda motriz (20) o de un elemento de rodadura (40), y ei otro segmento integrando ai menos el bastidor principal (2a). Omnidirectional platform according to any one of the preceding claims, wherein said at least one suspension device (50) is a block of elastomeric material connecting two independent segments of the platform, a carrier segment of the first drive wheel (10), of the second driving wheel (20) or of a rolling element (40), and the other segment integrating at least the main frame (2a).
7. Plataforma omnidireccional según una cualquiera de las reivindicaciones 1 a 5 anteriores, en donde dicho al menos un dispositivo de suspensión (50) consta de muelles o resortes que conectan segmentos independientes de la plataforma omnidireccional articulados entre si, un segmento portador de ia primera rueda motriz (10), de la segunda rueda motriz (20) o de un elemento de rodadura (40) y el otro segmento integrando al menos el bastidor principal (2a). 7. Omnidirectional platform according to any one of claims 1 to 5 above, wherein said at least one suspension device (50) consists of springs or springs that connect independent segments of the omnidirectional platform articulated with each other, a carrier segment of the first drive wheel (10), the second drive wheel (20) or a rolling element (40) and the other segment integrating at least the main frame (2a).
8. Plataforma omnidireccional según una cualquiera de las reivindicaciones 1 a 5 anteriores, en donde dicho al menos un dispositivo de suspensión (50) consta de un brazo con un primer extremo articulado al primer módulo (1) y un segundo extremo conectado a ia primera rueda (10) o a la segunda rueda (20), estando dicho brazo unido a! primer módulo (1) mediante un elemento elástico. 8. Omnidirectional platform according to any one of the preceding claims 1 to 5, wherein said at least one suspension device (50) consists of an arm with a first end hinged to the first module (1) and a second end connected to the first wheel (10) or the second wheel (20), said arm being attached to! first module (1) by an elastic element.
9. Plataforma ornnidireccional según reivindicación 8 en donde dicho brazo incluye un sensor de posición angular mide la posición angular precisa del brazo en todo momento y transmite esta información al dispositivo de control, que está configurado para ajustar los cálculos de accionamiento de cada rueda (10, 20) en función de la posición precisa del brazo detectada por dicho sensor.  9. Ornnidirectional platform according to claim 8 wherein said arm includes an angular position sensor measures the precise angular position of the arm at all times and transmits this information to the control device, which is configured to adjust the drive calculations of each wheel (10). , 20) depending on the precise position of the arm detected by said sensor.
10. Plataforma omnidírecclonai según una cualquiera de las reivindicaciones anteriores, en donde la unión articulada (70) está dispuesta en una porción intermedia del bastidor principal (2a) situada entre el tercer árbol (31) y ios elementos de rodadura (40) de giro libre.  An omnidirectional platform according to any one of the preceding claims, wherein the articulated joint (70) is arranged in an intermediate portion of the main frame (2a) located between the third shaft (31) and the rolling elements (40) of rotation. free.
11. Plataforma ornnidireccional según una cualquiera de las reivindicaciones anteriores, en donde se incluye además un detector de posición conectado ai dispositivo de control (3), configurado para determinar la posición relativa de ia plataforma respecto a unos puntos de referencia fijos externos a dicha plataforma ornnidireccional, estando dicho dispositivo de control (3) configurado para comprobar si una posición real detectada mediante dicho detector de posición coincide con una posición estimada calculada por el dispositivo de control a partir del desplazamiento de ia plataforma ornnidireccional ordenado desde dicho dispositivo de control (3), detectando desviaciones de la plataforma ornnidireccional, y estando el dispositivo de control (3) configurado para ordenar un desplazamiento correctivo de la posición de la plataforma ornnidireccional en base las desviaciones detectadas.  11. Ornnidirectional platform according to any one of the preceding claims, wherein a position detector connected to the control device (3) is further included, configured to determine the relative position of the platform with respect to fixed reference points external to said platform. ornnidirectional, said control device (3) being configured to check whether a real position detected by said position detector coincides with an estimated position calculated by the control device from the displacement of the ordered ornnidirectional platform from said control device (3). ), detecting deviations of the ornnidirectional platform, and the control device (3) being configured to order a corrective displacement of the position of the ornnidirectional platform based on the deviations detected.
12. Plataforma ornnidireccional según una cualquiera de las reivindicaciones anteriores, en donde se incluye además un dispositivo comunicador conectado al dispositivo de control (3) que permite ia emisión y recepción de datos y/o órdenes de control.  An ornnidirectional platform according to any one of the preceding claims, wherein a communicating device connected to the control device (3) is also included that allows the transmission and reception of data and / or control commands.
13. Plataforma ornnidireccional según reivindicación 11 en donde el dispositivo de control está configurado para comunicarse con otras plataformas omnidireccionales próximas y para coordinar su desplazamiento con el desplazamiento de dichas plataformas omnidireccionales próximas.  13. Ornnidirectional platform according to claim 11 wherein the control device is configured to communicate with other nearby omnidirectional platforms and to coordinate their displacement with the displacement of said omnidirectional next platforms.
14. Plataforma ornnidireccional según una cualquiera de las reivindicaciones anteriores, en donde la plataforma ornnidireccional incluye un dispositivo elevador (71) que permite modificar la distancia entre al menos parte del bastidor auxiliar (2b) y el sustrato sobre el que se apoyan las ruedas (10, 20, 40).  14. Ornnidirectional platform according to any one of the preceding claims, wherein the ornnidirectional platform includes a lifting device (71) that allows to modify the distance between at least part of the auxiliary frame (2b) and the substrate on which the wheels rest ( 10, 20, 40).
15. Plataforma ornnidireccional según reivindicación 14 en donde dicho bastidor auxiliar (2b) integra un panel inferior y un panel superior paralelos, y un mecanismo de tijera interpuesto entre ambos para modificar su distancia relativa, dicho mecanismo de tijera constituyendo el dispositivo elevador (71), y estando un panel inferior conectado a la unión articulada (70).15. Ornnidirectional platform according to claim 14 wherein said subframe (2b) integrates a lower panel and a parallel upper panel, and a scissor mechanism interposed between both to modify their relative distance, said scissor mechanism constituting the lifting device (71), and a lower panel being connected to the articulated joint (70).
16. Plataforma omnidireccional según una cualquiera de las reivindicaciones anteriores, en donde el bastidor auxiliar (2b) Incluye elementos seleccionados entre: 16. Omnidirectional platform according to any one of the preceding claims, wherein the auxiliary frame (2b) Includes elements selected from:
· un transportador de rodillos;.  · A roller conveyor;
• un transportador de rodillos motorizado;  • a motorized roller conveyor;
• una cinta transportadora;  • a conveyor belt;
• una cinta transportadora motorizada;  • a motorized conveyor belt;
• un acople de arrastre;  • a drag coupling;
· horquilles de transpaieta sobresalientes por un lado del segundo módulo y un contrapeso situado en un lado opuesto del segundo módulo, o centrado en el segundo módulo o centrado en el primer módulo;  · Protruding balustrade horquilles on one side of the second module and a counterweight located on an opposite side of the second module, or centered on the second module or centered on the first module;
• horquillas de transpaleta sobresalientes por un lado del segundo módulo y un contrapeso situado en un lado opuesto del segundo módulo y automáticamente desptazable para incrementar o disminuir su distancia horizontal respecto a dichas horquillas de transpaieta.  • protruding pallet forks on one side of the second module and a counterweight located on an opposite side of the second module and automatically removable to increase or decrease its horizontal distance with respect to said transpallet forks.
PCT/ES2018/070535 2017-07-26 2018-07-26 Omnidirectional platform WO2019020862A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201730977A ES2699407B2 (en) 2017-07-26 2017-07-26 OMNIDIRECTIONAL PLATFORM
ESP201730977 2017-07-26

Publications (1)

Publication Number Publication Date
WO2019020862A1 true WO2019020862A1 (en) 2019-01-31

Family

ID=64277720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2018/070535 WO2019020862A1 (en) 2017-07-26 2018-07-26 Omnidirectional platform

Country Status (2)

Country Link
ES (1) ES2699407B2 (en)
WO (1) WO2019020862A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020229603A1 (en) * 2019-05-16 2020-11-19 Homag Automation Gmbh Balancing unit for a driverless transport system and method for transporting an item of storage equipment
DE102021000838A1 (en) 2020-03-09 2021-09-09 Sew-Eurodrive Gmbh & Co Kg Mobile transport system
DE102021000839A1 (en) 2020-03-09 2021-09-09 Sew-Eurodrive Gmbh & Co Kg Mobile transport system
WO2022238005A1 (en) 2021-05-14 2022-11-17 Sew-Eurodrive Gmbh & Co. Kg Mobile transport system
DE102022001547A1 (en) 2021-05-14 2022-11-17 Sew-Eurodrive Gmbh & Co Kg Mobile transport system
JP7343244B1 (en) 2023-05-10 2023-09-12 佳一 米山 Wheel mechanisms and vehicles equipped with wheel mechanisms

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4221273A (en) * 1977-03-14 1980-09-09 Sentralinstitutt For Industriell Forskning Steerable and motor-driven undercarriage
EP0716974A1 (en) 1994-12-14 1996-06-19 Fuji Electric Co., Ltd. Omnidirectional vehicle and method of controlling the same
ES2226560A1 (en) 2003-04-08 2005-03-16 Gabriel Benet Soler Articulated vehicle
JP2005306178A (en) * 2004-04-21 2005-11-04 Symtec Hozumi:Kk Unmanned truck
JP2017045250A (en) * 2015-08-26 2017-03-02 トヨタ自動車株式会社 Omnidirectional mobile body, control method thereof and program

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1578742A (en) * 1976-02-24 1980-11-12 Nat Res Dev Peripatetic vehicles
GB2276854A (en) * 1993-04-08 1994-10-12 George Robert Kiss Omnidirectional drive and steering unit.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4221273A (en) * 1977-03-14 1980-09-09 Sentralinstitutt For Industriell Forskning Steerable and motor-driven undercarriage
EP0716974A1 (en) 1994-12-14 1996-06-19 Fuji Electric Co., Ltd. Omnidirectional vehicle and method of controlling the same
ES2226560A1 (en) 2003-04-08 2005-03-16 Gabriel Benet Soler Articulated vehicle
JP2005306178A (en) * 2004-04-21 2005-11-04 Symtec Hozumi:Kk Unmanned truck
JP2017045250A (en) * 2015-08-26 2017-03-02 トヨタ自動車株式会社 Omnidirectional mobile body, control method thereof and program

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020229603A1 (en) * 2019-05-16 2020-11-19 Homag Automation Gmbh Balancing unit for a driverless transport system and method for transporting an item of storage equipment
DE102021000838A1 (en) 2020-03-09 2021-09-09 Sew-Eurodrive Gmbh & Co Kg Mobile transport system
DE102021000839A1 (en) 2020-03-09 2021-09-09 Sew-Eurodrive Gmbh & Co Kg Mobile transport system
WO2021180361A1 (en) 2020-03-09 2021-09-16 Sew-Eurodrive Gmbh & Co. Kg Mobile transport system
WO2021180360A1 (en) 2020-03-09 2021-09-16 Sew-Eurodrive Gmbh & Co. Kg Mobile transport system
WO2022238005A1 (en) 2021-05-14 2022-11-17 Sew-Eurodrive Gmbh & Co. Kg Mobile transport system
DE102022001550A1 (en) 2021-05-14 2022-11-17 Sew-Eurodrive Gmbh & Co Kg Mobile transport system
DE102022001547A1 (en) 2021-05-14 2022-11-17 Sew-Eurodrive Gmbh & Co Kg Mobile transport system
WO2022238002A1 (en) 2021-05-14 2022-11-17 Sew-Eurodrive Gmbh & Co. Kg Mobile transport system
JP7343244B1 (en) 2023-05-10 2023-09-12 佳一 米山 Wheel mechanisms and vehicles equipped with wheel mechanisms

Also Published As

Publication number Publication date
ES2699407A1 (en) 2019-02-11
ES2699407B2 (en) 2020-03-13

Similar Documents

Publication Publication Date Title
WO2019020862A1 (en) Omnidirectional platform
WO2019020861A2 (en) Omnidirectional platform and omnidirectional transporter
ES2872329T3 (en) Transport unit and transport system for transporting load carriers
ES2821974T3 (en) Oscillating bogie
ES2957557T3 (en) driving train
US20070080000A1 (en) Modular dual wheel drive assembly, wheeled devices that include modular dual wheel drive assemblies and methods for moving and/or maneuvering wheeled devices using modular dual wheel drive assemblies
JP2015524763A (en) Crawler, system and method for transporting cargo
JP4561655B2 (en) Transport vehicle
US10787349B2 (en) Lifting device
KR101304721B1 (en) Moving apparatus using the omni-directional wheel
US20170362040A1 (en) Motor driven roller support
JP2013504469A (en) Transport platform for skid support helicopters
ES2902146T3 (en) Compact omnidirectional autonomous vehicle
US11267656B2 (en) Radial conveyor undercarriage apparatus, systems and methods
CN101456524B (en) Aerial lift device and vehicle equipped with such a device
BR112019011408A2 (en) wheel axle for a combined harvester
ES2955702T3 (en) Industrial vehicle and driving wheel bearing device for industrial vehicles
RU2650173C2 (en) Transporter
CN102791610B (en) Straddle carrier
ES2823156T3 (en) Vehicle for the accommodation of goods
ES2537169T3 (en) Motorized stair lift
ES2634253T3 (en) Hydraulic steering system for forklifts
EP2162297B1 (en) Running gear
CN107415905A (en) One kind lifting car bottom leveling structure
ES1228504U (en) COMPACT OMNIDIRECTIONAL AUTONOMOUS VEHICLE (Machine-translation by Google Translate, not legally binding)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18801008

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18801008

Country of ref document: EP

Kind code of ref document: A1