WO2019019942A1 - 一种mems三轴陀螺仪 - Google Patents

一种mems三轴陀螺仪 Download PDF

Info

Publication number
WO2019019942A1
WO2019019942A1 PCT/CN2018/096076 CN2018096076W WO2019019942A1 WO 2019019942 A1 WO2019019942 A1 WO 2019019942A1 CN 2018096076 W CN2018096076 W CN 2018096076W WO 2019019942 A1 WO2019019942 A1 WO 2019019942A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
mass
decoupling structure
spring
axis
Prior art date
Application number
PCT/CN2018/096076
Other languages
English (en)
French (fr)
Inventor
邹波
郭梅寒
Original Assignee
深迪半导体(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深迪半导体(上海)有限公司 filed Critical 深迪半导体(上海)有限公司
Priority to US16/631,838 priority Critical patent/US11085767B2/en
Priority to SG11202000536WA priority patent/SG11202000536WA/en
Publication of WO2019019942A1 publication Critical patent/WO2019019942A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5705Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using masses driven in reciprocating rotary motion about an axis
    • G01C19/5712Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using masses driven in reciprocating rotary motion about an axis the devices involving a micromechanical structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5642Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating bars or beams
    • G01C19/5656Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating bars or beams the devices involving a micromechanical structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5642Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating bars or beams
    • G01C19/5663Manufacturing; Trimming; Mounting; Housings

Definitions

  • the present invention relates to the field of inertial technology, and more particularly to a MEMS three-axis gyroscope.
  • MEMS Micro Electro Mechanical System
  • three-axis gyroscope includes a driving part and a detecting part, and the measurement of the moving angular velocity is realized by the coupling action of the driving part and the detecting part; the gyroscope is in the driving mode, and the driving mode is When the angular motion is input in the axial direction of the state motion, the angular velocity is detected by measuring the displacement of the modality by measuring the motion of the modal state in the detection axis due to the Coriolis effect gyro.
  • the traditional MEMS triaxial gyroscope mechanical structure consists of three independent X, Y, Z single-axis gyroscopes.
  • Each single-axis gyroscope mechanical structure contains independent mass, drive structure and detection structure, and the corresponding ASIC.
  • the circuit needs to be driven by three independent driving circuits, which results in a larger volume of the three-axis gyro.
  • the gyroscope mechanical structure includes three sets of mass blocks, a set of driving structures and three sets of detecting structures. That is, using a set of driving structures to simultaneously drive the corresponding masses of the three axes of X, Y, and Z, the mechanical structure of the MEMS triaxial gyroscope saves the area of the two sets of driving structures, and the corresponding ASIC circuit also It can save the area of two sets of drive circuits.
  • the technical problem to be solved by the present invention is how to reduce inter-axis signal crosstalk.
  • the present invention provides a MEMS triaxial gyroscope.
  • the present invention provides the following technical solutions:
  • a MEMS three-axis gyroscope comprising a central anchor point, a first sub-mass block, a second sub-mass block and a third sub-mass arranged in order from the inside to the outside, wherein in the driving mode, the MEMS three The axis gyro resonates in a third direction; in the detection mode, the first sub-mass can resonate about an axis of the first direction, and the second sub-mass can resonate about an axis of the second direction, the The three sub-mass may resonate in a first direction or a second direction; the first direction, the second direction and the third direction are perpendicular to each other; the first sub-mass and the second sub-mass Provided with a first decoupling structure, the first decoupling structure being symmetrically connected to the first sub-mass in a first direction, the first decoupling structure being symmetrically connected in a second direction Said on the second sub-quality block.
  • the MEMS triaxial gyroscope further includes a second decoupling structure disposed between the third sub-mass block and the second sub-mass, the second decoupling structure along the second direction y is symmetrically connected to the second sub-mass.
  • the first sub-mass is suspended on the central anchor point by a first spring that is symmetric in the first direction.
  • the first decoupling structure is suspended on the first sub-mass by a second spring that is symmetric in a first direction.
  • the second sub-mass is suspended on the first decoupling structure by a third spring that is symmetric in the second direction.
  • the second decoupling structure is suspended on the second sub-mass by a fourth spring symmetrical in a second direction, the third sub-mass passing through the fifth spring Suspended on the second decoupling structure.
  • the third sub-mass includes molecular masses symmetrically arranged in a first direction or symmetrically arranged in a second direction, the number of the molecular masses being an even number.
  • the third sub-mass is symmetrically arranged with two molecular masses in a first direction and two molecular masses symmetrically arranged in a second direction.
  • the molecular masses in the third sub-mass block each have a molecular detecting electrode, and the molecular detecting electrode is a comb detecting electrode.
  • adjacent molecular masses in the third sub-mass are coupled to each other by a sixth spring.
  • the second decoupling structure is further provided with a groove for accommodating the sixth spring.
  • a plurality of peripheral anchor points are further included, and the second decoupling structure is connected to the plurality of peripheral anchor points through a seventh spring.
  • the number of the peripheral anchor points is four, which are respectively arranged at the four corners of the second decoupling structure.
  • the driving electrodes of the MEMS triaxial gyroscope are symmetrically disposed at four corners of the second decoupling structure for driving the second decoupling structure to wrap around in the third direction
  • the central anchor point resonates.
  • the axis of the second decoupling structure about the second direction is collinear with the axis of the second sub-mass about the second direction.
  • the axis of the first decoupling structure about the first direction is collinear with the axis of the first sub-mass about the first direction.
  • the intersection of the first decoupling structure about the first direction and the second decoupling structure about the axis of the second direction passes through the center of the central anchor point.
  • the moving direction is approximately the first Directional motion
  • the first sub-mass when the first sub-mass is subjected to the angular velocity around the second direction, a Coriolis force in the third direction is generated, and the first sub-mass generates a displacement around the first direction under the Coriolis force, due to The axis of the first decoupling structure is also in the first direction.
  • FIG. 1 is a schematic top plan view of a MEMS three-axis gyroscope according to a first embodiment of the present invention
  • FIG. 2 is a schematic top plan view of a MEMS three-axis gyroscope according to Embodiment 2 of the present invention
  • FIG. 3 is a schematic top plan view of a MEMS three-axis gyroscope according to Embodiment 3 of the present invention.
  • FIG. 4 is a schematic top plan view of a MEMS three-axis gyroscope according to Embodiment 4 of the present invention.
  • 100 is a central anchor point
  • 200 is a first sub-mass block
  • 300 is a first decoupling structure
  • 400 is a second sub-mass block
  • 500 is a second decoupling structure
  • 600 is a third sub-mass block
  • 700 is The driving electrode
  • 800 is a third detecting electrode
  • 900 is a peripheral anchor point
  • 1 is a first spring
  • 2 is a second spring
  • 3 is a third spring
  • 4 is a fourth spring
  • 5a and 5b are fifth springs
  • 6 is The sixth spring and 7 are the seventh spring.
  • the first core of the present invention is to provide a MEMS three-axis gyroscope that reduces crosstalk between signals.
  • a MEMS triaxial gyroscope according to an embodiment of the present invention includes a central anchor point 100, a first sub-mass block 200, a second sub-mass 400, and a third sub-mass arranged in order from the inside to the outside.
  • Block 600 wherein, in the driving mode, the MEMS triaxial gyro resonates around the third direction z; in the detecting mode, the first sub-mass 200 can resonate about the axis of the first direction x, the second sub-mass 400 may resonate about an axis of the second direction y, the third sub-mass 600 may resonate in a first direction x or a second direction y; the first direction x, the second direction y and the third direction z are perpendicular to each other; the first sub A first decoupling structure 300 is disposed between the mass block 200 and the second sub-mass block 400. The first decoupling structure 300 is symmetrically coupled to the first sub-mass block 200 along a first direction, and the first decoupling structure 300 is along The second direction is symmetrically connected to the second sub-mass 400.
  • the first sub-quality block 200 corresponds to the detection mode of the first direction x
  • the second sub-quality block 400 corresponds to the detection mode of the second direction y
  • the third sub-quality block 600 corresponds to the detection of the third direction z.
  • the entire MEMS triaxial gyroscope resonates around the third direction z; the moving direction of the first sub-mass block 200 is approximately moving in the first direction x, and the moving direction of the second sub-mass block 400 is approximately in the second direction
  • the y motion, the third sub-mass 600 motion direction approximates movement in the first direction x or the second direction y.
  • the first sub-mass block 200 When the first sub-mass block 200 resonates in a driving mode about the third direction, its moving direction is approximately moving in the first direction x, and when the first sub-mass block 200 detects the angular velocity in the second direction y, The first sub-mass 200 generates a Coriolis force in a third direction z, and the first sub-mass 200 generates a displacement that is rotated about the first direction x, and the displacement is detected by the first sub-detection electrode corresponding to the first sub-mass 200 An angular velocity in the second direction y can be characterized;
  • the second sub-mass 400 When the second sub-mass 400 resonates in a driving mode about the third direction, its moving direction approximates moving in the second direction y, and when the second sub-mass 400 detects an angular velocity about the first direction x, The second sub-mass 400 generates a Coriolis force in a third direction z, the second sub-mass 400 generates a displacement that rotates about the second direction y, and the displacement is detected by the second sub-detection electrode corresponding to the second sub-mass 400 An angular velocity of the first direction x can be characterized;
  • the third sub-mass 600 When the third sub-mass 600 resonates in a driving mode about the third direction, the third sub-mass 600 moves in a direction approximately moving in the second direction y or the first direction x.
  • the third sub-mass 600 detects an angular velocity about the third direction z, the third sub-mass 600 generates a Coriolis force in the first direction x, and the third sub-mass 600 generates a displacement in the first direction x;
  • the third sub-mass 600 generates a Coriolis force in the second direction y, the third sub-mass 600 generates a displacement in the second direction y, and the displacement is detected by the third sub-detection electrode corresponding to the third sub-mass 600
  • the angular velocity in the third direction z can be characterized.
  • the MEMS triaxial gyroscope in the embodiment of the present invention has the first decoupling structure 300, so that the first sub-mass block 200 has little force transmitted to the first decoupling structure in the detection mode of the first direction x. 300, thereby achieving decoupling between the first sub-mass block 200 and the second sub-mass 400; the second sub-mass 400 has little force transmitted to the first solution in the detection mode of the second direction y
  • the structure 300 is coupled to achieve decoupling between the second sub-mass 400 and the first sub-mass 200.
  • the moving direction is approximately in the first direction x, and at this time, if the angular velocity around the second direction y is received, the first sub- The mass 200 will be subjected to a Coriolis force in a third direction z, and the first sub-mass 200 will produce a displacement about the first direction x, since the first decoupling structure 300 is symmetrically connected in the first direction at the first sub-mass On the block 200, therefore, only a small part of the force of the first sub-mass block 200 in the detection mode of the first direction x is transmitted to the first decoupling structure 300, and the first decoupling structure 300 is passed to the second decoupling structure 300.
  • the force of the sub-mass 400 will also be small, reducing motion interference between the first sub-mass 200 and the second sub-mass 400, thereby reducing cross-axis signal crosstalk of the MEMS triaxial gyroscope.
  • the moving direction is approximately in the second direction y, and at this time, if subjected to an angular velocity around the first direction x, the second sub-mass
  • the block 400 is subjected to a Coriolis force in a third direction z, and the second sub-mass 400 will produce a displacement about the second direction y, since the first decoupling structure 300 is symmetrically mounted in the second direction in the second sub-mass 400, therefore, the second sub-mass 400 transmits only a small part of the force in the second direction y detection mode to the first decoupling structure 300, and the first decoupling structure 300 passes to the first sub-mass
  • the force of the block 200 will also be small, reducing motion interference between the second sub-mass 400 and the first sub-mass 200, thereby reducing cross-axis signal crosstalk of the MEMS triaxial gyroscope.
  • the first sub-mass block 200 corresponds to the first sub-detection electrode
  • the second sub-mass block 400 corresponds to the second sub-detection electrode
  • the block 600 corresponds to a third sub-detection electrode 800, wherein the first sub-detection electrode and the first sub-mass 200 are arranged along a third direction z, and the second sub-detection electrode and the second sub-mass 400 are arranged along a third direction z .
  • the third sub-detection electrode corresponding to the third sub-mass 600 and the third sub-mass 600 are in a plane defined by the first direction x and the second direction y.
  • the first sub-mass 200 has an axis that rotates about a first direction x
  • the first decoupling structure 300 has an axis that rotates about a first direction x
  • the force transmitted by the first sub-mass block 200 to the first decoupling structure 300 through the second spring 2 is negligible, the first solution
  • the force transmitted by the coupling structure 300 to the second sub-mass 400 by the third spring 3 is smaller.
  • a second decoupling structure 500 is disposed between the third sub-mass block 600 and the second sub-mass 400, and the second decoupling structure 500 is along the The two directions y are symmetrically connected to the second sub-mass 400.
  • the second sub-mass 400 has a small force transmitted to the second decoupling structure 500 in the detection mode of the second direction x, thereby reaching the second sub-mass 400 and Decoupling between the third sub-mass 600; the third sub-mass 600 has little force transmitted to the second decoupling structure 500 in the detection mode of the third direction y, thereby reaching the third sub-mass Decoupling between 600 and the second sub-mass 400.
  • the moving direction is approximately in the second direction y, and at this time, if the angular velocity around the first direction x is received, the second sub- The mass 400 will be subjected to a Coriolis force in a third direction z, and the second sub-mass 400 will produce a displacement about the second direction y, since the second decoupling structure 500 is symmetrically connected in the second direction y in the second sub On the mass 400, therefore, only a small part of the force of the second sub-mass 400 in the detection mode of the second direction y is transmitted to the second decoupling structure 500, and the second decoupling structure 500 is passed to the The force of the three sub-mass 600 will also be small, reducing the motion interference between the second sub-mass 400 and the third sub-mass 600, thereby reducing the inter-axis signal crosstalk of the MEMS triaxial gyroscope.
  • the moving direction is approximately moving in the second direction y.
  • the third sub-mass The block 600 is subjected to a Coriolis force in a first direction x, and the third sub-mass 600 produces a displacement in the first direction x, since the second decoupling structure 500 and the third sub-mass 600 are in a first direction
  • the stiffness of x is small.
  • the second decoupling structure 500 and the third sub-mass 600 are more susceptible to deformation and absorb most of the energy, only A small part of the force is transmitted to the second decoupling structure 500, and the force transmitted by the second decoupling structure 500 to the second sub-mass 400 is also small, reducing the third sub-mass 600 and the second sub-mass Motion interference between 400, thereby reducing cross-axis signal crosstalk between MEMS triaxial gyroscopes.
  • the third sub-mass 600 when the third sub-mass 600 resonates in a driving mode about the third direction z, the direction of motion is approximately in the first direction x, and at this time, if subjected to an angular velocity around the third direction z, the third sub-mass The block 600 is subjected to a Coriolis force in the second direction y, and the third sub-mass 600 generates a displacement in the second direction y, since the second decoupling structure 500 and the third sub-mass are configured along the The stiffness of the second direction y is small.
  • the second decoupling structure 500 and the third sub-mass 600 are more susceptible to deformation and absorb most of the Only a small part of the energy is transferred to the second decoupling structure 500, and the force transmitted by the second decoupling structure 500 to the second sub-mass 400 is also small, reducing the third sub-mass 600 and Motion interference between the second sub-mass 400 reduces the inter-axis signal crosstalk of the MEMS triaxial gyroscope.
  • the second sub-mass 400 has an axis that rotates about a second direction y
  • the second decoupling structure 500 has an axis that rotates about a second direction y
  • the force transmitted by the second sub-mass 400 to the second decoupling structure 500 through the fourth spring 4 is negligible, and the second solution
  • the coupling mechanism 500 transmits less force to the third sub-mass 600 through the fifth spring.
  • the intersection of the first decoupling structure 300 about the axis of the first direction x and the axis of the second decoupling structure 500 about the second direction y passes through the center of the central anchor point 100.
  • the first sub-mass block and the central anchor point are implemented, the first decoupling structure and the first sub-mass block, the first decoupling structure and the second sub-mass block, the second sub-mass block and the second decoupling
  • the structure, the connection between the second decoupling structure and the third sub-mass is a conventional connection form, which is connected by a spring, and the spring may be an elastic beam or a folded beam.
  • the first sub-mass 200 is suspended from the central anchor 100 by a first spring 1 that is symmetric in a first direction x; further, the first decoupling structure 300 is suspended by a second spring 2 that is symmetric in a first direction x Further, the second sub-mass 400 is suspended on the first decoupling structure 300 by a third spring 3 that is symmetric in the second direction y.
  • the second decoupling structure 500 is suspended from the second sub-mass 400 by a fourth spring 4 that is symmetric in the second direction y, and the third sub-mass 600 is suspended by the fifth spring on the second decoupling structure 500.
  • the sub-mass block 600 includes molecular masses symmetrically arranged in a first direction x or symmetrically arranged in a second direction y, the number of molecular masses being an even number, each molecular mass being suspended by a fifth spring in a second decoupling structure 500.
  • the molecular masses in the third sub-mass 600 correspond to one molecular detecting electrode, and the molecular detecting electrode is a comb detecting electrode.
  • the adjacent molecular masses in the third sub-mass 600 are coupled to each other by the sixth spring 6, which can further ensure the vibration frequency, the consistency of the amplitude, reduce the dependence on the consistency of the processing process, and enhance the impact on the outside world. resistance.
  • the second decoupling structure 500 is also provided with a recess for receiving the sixth spring 6.
  • the embodiment of the present invention may be provided with a peripheral anchor point 900, wherein the central anchor point 100 and the peripheral anchor point 900 all function to connect the substrate, and the driving electrode 700 drives the entire MEMS triaxial axis.
  • the central anchor point 100 and the peripheral anchor point 900 are not moved.
  • the central anchor point 100 is disposed at a central position of the MEMS triaxial gyroscope, the peripheral anchor point 900 is located around the central anchor point 100, the number of the peripheral anchor points 900 is plural, and the plurality of peripheral anchor points 900 are symmetrically arranged.
  • the MEMS triaxial gyroscope includes a central anchor point 100, a first sub-mass 200, a first decoupling structure 300, a second sub-mass 400, a second decoupling structure 500, and
  • the third sub-mass 600, the third sub-mass 600 includes two molecular masses symmetrically arranged in the first direction x, the two molecular masses being suspended on the second decoupling structure 500 by the fifth spring 5a.
  • the first sub-mass block 200 is connected to the central anchor point 100 by a first spring 1 , and the first sub-mass block 200 is connected by a second spring 2 to a first decoupling structure 300 surrounding its circumference, the first decoupling structure 300
  • the third spring 3 is connected to the second sub-mass 400, and the second sub-mass 400 is connected to the second decoupling structure 500 by the fourth spring 4, and the second decoupling structure 500 is connected to the third sub-mass 600 by the fifth spring.
  • the first spring 1 and the second spring 2 have a small rigidity about the first direction x such that the first sub-mass 200 rotates about the first direction x, and the third spring 3 has a large rigidity about the first direction x, the first solution
  • the coupling structure 300 does not rotate with the second sub-mass 400 in the first direction x.
  • the third spring 3 and the fourth spring 4 have a small rigidity in the second direction y such that the second sub-mass 400 rotates about the second direction y.
  • the stiffness of the fifth spring 5a in the second direction y is large, and the second decoupling structure 500 does not rotate in the second direction y with the second sub-mass 400.
  • the stiffness of the fifth spring 5a in the first direction x is small, so that the left and right molecular masses in the third sub-mass 600 are easily moved in the first direction x.
  • the driving electrode 700 drives the second decoupling structure 500 to resonate around the axis of the third direction z, and sequentially drives the masses of the masses to revolve around the axis in the third direction z through the connected springs;
  • the MEMS triaxial gyroscope When the MEMS triaxial gyroscope is subjected to an angular velocity about the second direction y, the first sub-mass 200 is subjected to a Coriolis force in the third direction z, and the first sub-mass 200 is displaced about the first direction x by detecting the The displacement characterizes the angular velocity about the second direction y.
  • the MEMS triaxial gyroscope When the MEMS triaxial gyroscope is subjected to an angular velocity about the first direction x, the second sub-mass 400 is subjected to a Coriolis force in the third direction z, and the second sub-mass 400 is displaced about the second direction y by detecting the The displacement characterizes the angular velocity about the first direction x.
  • the MEMS triaxial gyroscope When the MEMS triaxial gyroscope is subjected to an angular velocity about the third direction z, the left and right molecular masses in the third sub-mass 600 are subjected to a Coriolis force along the first direction x, and the two molecular masses are generated along the The displacement of a direction x, by detecting the displacement, characterizes the angular velocity about the third direction z.
  • the MEMS triaxial gyroscope includes a central anchor point 100, a first sub-mass 200, a first decoupling structure 300, a second sub-mass 400, and a second decoupling structure 500.
  • the third sub-mass 600, the third sub-mass 600 includes two molecular masses symmetrically arranged in the second direction y, the two molecular masses being suspended on the second decoupling structure 500 by the fifth spring 5b.
  • the first sub-mass block 200 is connected to the central anchor point 100 by a first spring 1 , and the first sub-mass block 200 is connected by a second spring 2 to a first decoupling structure 300 surrounding its circumference, the first decoupling structure 300
  • the third spring 3 is connected to the second sub-mass 400, and the second sub-mass 400 is connected to the second decoupling structure 500 by the fourth spring 4, and the second decoupling structure 500 is connected to the third sub-mass 600 by the fifth spring 5b.
  • the first spring 1 and the second spring 2 have a small stiffness in the first direction x such that the first sub-mass 200 rotates about the first direction x, and the third spring 3 is stiff in the first direction x, the first decoupling The structure 300 does not rotate with the second sub-mass 400 in the first direction x.
  • the third spring 3 and the fourth spring 4 have a small rigidity in the second direction y such that the second sub-mass 400 rotates about the second direction y.
  • the stiffness of the fifth spring 5b is greater in the second direction y, and the second decoupling structure 500 does not rotate in the second direction y with the second sub-mass 400.
  • the stiffness of the fifth spring 5b in the second direction y is small, so that the upper and lower molecular masses in the third sub-mass 600 are easily moved in the second direction y.
  • the driving electrode 700 drives the second decoupling structure 500 to resonate around the axis of the third direction z, and sequentially drives the axial resonance of each mass around the third direction z through the connected springs.
  • the MEMS triaxial gyroscope When the MEMS triaxial gyroscope is subjected to the angular velocity about the second direction y, the first sub-mass 200 is subjected to the Coriolis force in the third direction z, and the first sub-mass 200 is displaced in the first direction x, and is detected. This displacement characterizes the angular velocity of the second direction y.
  • the MEMS triaxial gyroscope When the MEMS triaxial gyroscope is subjected to the angular velocity around the first direction x, the second sub-mass 400 is subjected to the Coriolis force in the third direction z, and the second sub-mass 400 is displaced in the second direction y, This displacement characterizes the angular velocity of the first direction x.
  • the MEMS triaxial gyroscope When the MEMS triaxial gyroscope is subjected to an angular velocity about the third direction z, the upper and lower molecular masses in the third sub-mass 600 are subjected to a Coriolis force in the second direction y, and the two molecular masses are generated along the The displacement of the second direction y, by detecting the displacement, characterizes the angular velocity of the third direction z.
  • the MEMS triaxial gyroscope includes a central anchor point 100, a first sub-mass 200, a first decoupling structure 300, a second sub-mass 400, a second decoupling structure 500, and a third sub-mass 600, the third sub-mass 600 including two molecular masses symmetrically arranged in a first direction x and two molecular masses symmetrically arranged in a second direction y, the four molecular masses passing through Five springs are suspended on the second decoupling structure 500, and the four molecular masses are coupled to each other by a sixth spring 6.
  • the first sub-mass block 200 is connected to the central anchor point 100 by a first spring 1 , and the first sub-mass block 200 is connected by a second spring 2 to a first decoupling structure 300 surrounding its circumference, the first decoupling structure 300
  • the third spring 3 is connected to the second sub-mass 400, and the second sub-mass 400 is connected to the second decoupling structure 500 via the fourth spring 4.
  • the left and right molecular masses are connected to the second decoupling structure 500 via the fifth spring 5a.
  • the upper and lower molecular masses in the third sub-mass 600 are connected to the second decoupling structure 500 by the fifth spring 5b.
  • the first spring 1 and the second spring 2 have a small rigidity about the first direction x such that the first sub-mass 200 rotates about the first direction x, and the third spring 3 has a large rigidity about the first direction x, the first solution
  • the coupling structure 300 does not rotate with the second sub-mass 400 in the first direction x.
  • the third spring 3 and the fourth spring 4 have a small rigidity in the second direction y such that the second sub-mass 400 rotates about the second direction y.
  • the stiffness of the fifth spring in the second direction y is large, and the second decoupling structure 500 does not rotate in the second direction y with the second sub-mass 400.
  • the fifth spring 5a connecting the two left and right molecular masses has a small rigidity in the first direction x, so that the left and right molecular masses in the third sub-mass 600 are easily moved in the first direction x.
  • the fifth spring 5b connecting the upper and lower two molecular masses has a small rigidity in the second direction y, so that the upper and lower molecular masses in the third sub-mass 600 are easily moved in the second direction y.
  • the driving electrode 700 drives the second decoupling structure 500 to resonate around the axis of the third direction z, and sequentially drives the masses of the masses to revolve around the axis in the third direction z through the connected springs;
  • the MEMS triaxial gyroscope When the MEMS triaxial gyroscope is subjected to the angular velocity about the second direction y, the first sub-mass 200 is subjected to the Coriolis force in the third direction z, and the first sub-mass 200 is displaced in the first direction x, and is detected. This displacement characterizes the angular velocity of the second direction y.
  • the MEMS triaxial gyroscope When the MEMS triaxial gyroscope is subjected to the angular velocity around the first direction x, the second sub-mass 400 is subjected to the Coriolis force in the third direction z, and the second sub-mass 400 is displaced in the second direction y, This displacement characterizes the angular velocity of the first direction x.
  • the left and right molecular masses in the third sub-mass 600 are subjected to a Coriolis force along the first direction x, and the two molecular masses are generated along the a displacement of a direction x; the upper and lower molecular masses in the third sub-mass 600 are subjected to a Coriolis force in a second direction y, the two molecular masses generating a displacement in the second direction y, the above four sub-mass
  • the blocks are coupled to each other by a sixth spring 6, and the angular velocity in the third direction is characterized by detecting their displacement.
  • the MEMS triaxial gyroscope includes a central anchor point 100, four peripheral anchor points 900, a first sub-mass block 200, a first decoupling structure 300, and a second sub-mass block 400. a second decoupling structure 500 and a third sub-mass block 600.
  • the third sub-mass block 600 includes two molecular masses symmetrically arranged in a first direction x and two molecular masses symmetrically arranged in a second direction y.
  • the first sub-mass block 200 is connected to the central anchor point 100 by a first spring 1
  • the first sub-mass block 200 is connected by a second spring 2 to a first decoupling structure 300 surrounding its circumference, the first decoupling structure 300
  • the third spring 3 is connected to the second sub-mass 400
  • the second sub-mass 400 is connected to the second decoupling structure 500 through the fourth spring 4.
  • the second decoupling structure 500 is connected to the third sub-mass 600 by the fifth spring.
  • the decoupling structure 500 is coupled to the perimeter anchor 900 by a seventh spring 7.
  • the number of peripheral anchor points 900 is four, which are respectively arranged at the four corners of the second decoupling structure 500.
  • the driving electrodes 700 of the MEMS triaxial gyroscope are symmetrically disposed at the four corners of the second decoupling structure 500 for driving the second decoupling structure 500 to resonate around the central anchor point 100 in the third direction z.
  • the first spring 1 and the second spring 2 have a small rigidity about the first direction x such that the first sub-mass 200 rotates about the first direction x, and the third spring 3 has a large rigidity about the first direction x, the first solution
  • the coupling structure 300 does not rotate with the second sub-mass 400 in the first direction x.
  • the third spring 3 and the fourth spring 4 have a small rigidity in the second direction y such that the second sub-mass 400 rotates about the second direction y.
  • the stiffness of the fifth spring in the second direction y is large, and the second decoupling structure 500 does not rotate in the second direction y with the second sub-mass 400.
  • the fifth spring 5a connecting the two left and right molecular masses has a small rigidity in the first direction x, so that the left and right molecular masses in the third sub-mass 600 are easily moved in the first direction x.
  • the fifth spring 5b connecting the upper and lower two molecular masses has a small rigidity in the second direction y, so that the upper and lower molecular masses in the third sub-mass 600 are easily moved in the second direction y.
  • the first spring 1 and the seventh spring 7 are less rigid in the third direction z, forming a driving mode in which the entire movable sub-mass reciprocates in the first direction x and the second direction y about the third direction z.
  • the driving electrode 700 drives the second decoupling structure 500 to resonate around the axis of the third direction z, and sequentially drives the axes of the masses to revolve around the axis in the third direction z through the connected springs;
  • the MEMS triaxial gyroscope When the MEMS triaxial gyroscope is subjected to the angular velocity about the second direction y, the first sub-mass 200 is subjected to the Coriolis force in the third direction z, and the first sub-mass 200 is displaced in the first direction x, and is detected. This displacement characterizes the angular velocity of the second direction y.
  • the MEMS triaxial gyroscope When the MEMS triaxial gyroscope is subjected to the angular velocity around the first direction x, the second sub-mass 400 is subjected to the Coriolis force in the third direction z, and the second sub-mass 400 is displaced in the second direction y, This displacement characterizes the angular velocity of the first direction x.
  • the left and right molecular masses in the third sub-mass 600 are subjected to a Coriolis force along the first direction x, and the two molecular masses are generated along the a displacement of a direction x; the upper and lower molecular masses in the third sub-mass 600 are subjected to a Coriolis force in a second direction y, the two molecular masses generating a displacement in the second direction y, the above four sub-mass
  • the blocks are coupled to each other by a sixth spring 6, and the angular velocity of the third direction z is characterized by detecting their displacement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Manufacturing & Machinery (AREA)
  • Gyroscopes (AREA)

Abstract

一种MEMS三轴陀螺仪,包括由内到外依次布置的中央锚点(100)、第一子质量块(200)、第一解耦结构(300)、第二子质量块(400)和第三子质量块(600)。当第一子质量块(200)在绕第三方向(z)的驱动模态下发生谐振时,其运动方向近似于沿第一方向(x)运动,当第一子质量块(200)受到绕第二方向(y)的角速度时,会产生沿第三方向(z)的科氏力,在科氏力作用下第一子质量块(200)会产生绕第一方向(x)的位移,由于第一解耦结构(300)的轴也在第一方向(x)上,因此,第一子质量块(200)在第一方向(x)的检测模态下仅有很小的一部分力传递到第一解耦结构(300)上,而第一解耦结构(300)传递给第二子质量块(400)的力也会很小,减少了第一子质量块(200)和第二子质量块(400)之间的运动干扰,从而减少了MEMS三轴陀螺仪的轴间信号串扰。

Description

一种MEMS三轴陀螺仪 技术领域
本发明涉及惯性技术领域,更具体地说,涉及一种MEMS三轴陀螺仪。
背景技术
MEMS(Micro Electro Mechanical System,微机电***)三轴陀螺仪包括驱动部分和检测部分,通过驱动部分和检测部分的耦合作用实现对运动角速度的测量;陀螺仪处于驱动模态,当在与驱动模态运动轴向垂直的方向有角速度输入时,由于科里奥利效应陀螺仪在检测轴向产生检测模态的运动,通过测量检测模态的位移,来实现对角速度的检测。
传统的MEMS三轴陀螺仪机械结构由三个独立的X,Y,Z单轴陀螺仪构成,每个单轴陀螺仪机械结构分别包含独立的质量块、驱动结构和检测结构,并且相应的ASIC电路中需要采用三套独立的驱动电路分别驱动,从而导致三轴陀螺体积较大。
为了解决MEMS三轴陀螺仪体积较大的问题,又一种共享质量块的MEMS三轴陀螺仪应运而生,该陀螺仪机械结构包括三组质量块、一组驱动结构和三组检测结构,即,使用一组驱动结构同时对X,Y,Z三个轴的对应质量块进行驱动,该MEMS三轴陀螺仪机械结构方面节省了两组驱动结构的面积,并且相对应的ASIC电路中也可以节省两套驱动电路的面积。但是,上述结构的MEMS三轴陀螺仪当驱动结构对X、Y和Z三个轴对应的质量块进行驱动时,各轴质量块之间存在运动干扰,从而造成了MEMS三轴陀螺仪的轴间信号串扰。
因此,如何减少轴间信号串扰,成为本领域技术人员亟待解决的技术问题。
发明内容
有鉴于此,本发明所要解决的技术问题是如何减少轴间信号串扰,为此,本发明提供了一种MEMS三轴陀螺仪。
为实现上述目的,本发明提供如下技术方案:
一种MEMS三轴陀螺仪,包括由内到外依次布置的中央锚点、第一子质量块、第二子质量块和第三子质量块,其中,在驱动模态下,所述MEMS三轴陀螺仪绕第三方向谐振;在检测模态下,所述第一子质量块可绕第一方向的轴谐振,所述第二 子质量块可绕第二方向的轴谐振,所述第三子质量块可沿第一方向或第二方向谐振;所述第一方向,所述第二方向和所述第三方向相互垂直;所述第一子质量块和所述第二子质量块之间设置有第一解耦结构,所述第一解耦结构沿第一方向对称的连接在所述第一子质量块上,所述第一解耦结构沿第二方向对称的连接在所述第二子质量块上。
优选地,上述MEMS三轴陀螺仪中,还包括设置在所述第三子质量块与所述第二子质量块之间的第二解耦结构,所述第二解耦结构沿第二方向y对称的连接在所述第二子质量块上。
优选地,上述MEMS三轴陀螺仪中,所述第一子质量块通过在第一方向对称的第一弹簧悬挂在中央锚点上。
优选地,上述MEMS三轴陀螺仪中,所述第一解耦结构通过在第一方向对称的第二弹簧悬挂在所述第一子质量块上。
优选地,上述MEMS三轴陀螺仪中,所述第二子质量块通过在第二方向对称的第三弹簧悬挂在所述第一解耦结构上。
优选地,上述MEMS三轴陀螺仪中,所述第二解耦结构通过在第二方向对称的第四弹簧悬挂在所述第二子质量块上,所述第三子质量块通过第五弹簧悬挂在所述第二解耦结构上。
优选地,上述MEMS三轴陀螺仪中,所述第三子质量块包括在第一方向对称布置或在第二方向对称布置的分子质量块,所述分子质量块的数量为偶数个。
优选地,上述MEMS三轴陀螺仪中,所述第三子质量块在第一方向对称布置有两个分子质量块,在第二方向对称布置有两个分子质量块。
优选地,上述MEMS三轴陀螺仪中,所述第三子质量块中的分子质量块均对应有一个分子检测电极,所述分子检测电极为梳齿检测电极。
优选地,上述MEMS三轴陀螺仪中,所述第三子质量块中相邻的分子质量块通过第六弹簧相互耦合。
优选地,上述MEMS三轴陀螺仪中,所述第二解耦结构还设置有容纳所述第六弹簧的凹槽。
优选地,上述MEMS三轴陀螺仪中,还包括多个周边锚点,所述第二解耦结构通过第七弹簧与多个所述周边锚点连接。
优选地,上述MEMS三轴陀螺仪中,所述周边锚点的数量为四个,分别布置在 所述第二解耦结构的四角。
优选地,上述MEMS三轴陀螺仪中,所述MEMS三轴陀螺仪的驱动电极对称的设置在所述第二解耦结构的四角,用于驱动所述第二解耦结构在第三方向绕中央锚点谐振。
优选地,上述MEMS三轴陀螺仪中,所述第二解耦结构绕第二方向的轴与所述第二子质量块绕第二方向的轴共线。
优选地,上述MEMS三轴陀螺仪中,所述第一解耦结构绕第一方向的轴与所述第一子质量块绕第一方向的轴共线。
优选地,上述MEMS三轴陀螺仪中,所述第一解耦结构绕第一方向的轴与所述第二解耦结构绕第二方向的轴的交点通过所述中央锚点的中心。
从上述的技术方案可以看出,采用本发明实施例中的MEMS三轴陀螺仪,当第一子质量块在绕第三方向的驱动模态下发生谐振时,其运动方向近似于沿第一方向运动,当第一子质量块受到绕第二方向的角速度时,会产生沿第三方向的科氏力,在科氏力作用下第一子质量块会产生绕第一方向的位移,由于第一解耦结构的轴也在第一方向上,因此,第一子质量块在第一方向的检测模态下仅有很小的一部分力传递到第一解耦结构上,而第一解耦结构传递给第二子质量块的力也会很小,减少了第一子质量块和第二子质量块之间的运动干扰,从而减少了MEMS三轴陀螺仪的轴间信号串扰。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例一所提供的一种MEMS三轴陀螺仪的俯视结构示意图;
图2为本发明实施例二所提供的一种MEMS三轴陀螺仪的俯视结构示意图;
图3为本发明实施例三所提供的一种MEMS三轴陀螺仪的俯视结构示意图;
图4为本发明实施例四所提供的一种MEMS三轴陀螺仪的俯视结构示意图。
其中,100为中央锚点、200为第一子质量块、300为第一解耦结构、400为第二子质量块、500为第二解耦结构、600为第三子质量块、700为驱动电极、800为 第三检测电极、900为周边锚点、1为第一弹簧、2为第二弹簧、3为第三弹簧、4为第四弹簧、5a和5b为第五弹簧、6为第六弹簧、7为第七弹簧。
具体实施方式
本发明的第一个核心在于提供一种MEMS三轴陀螺仪,在减少轴间信号串扰。
以下,参照附图对实施例进行说明。此外,下面所示的实施例不对权利要求所记载的发明内容起任何限定作用。另外,下面实施例所表示的构成的全部内容不限于作为权利要求所记载的发明的解决方案所必需的。
请参阅图1至图4,本发明实施例的MEMS三轴陀螺仪,包括由内到外依次布置的中央锚点100、第一子质量块200、第二子质量块400和第三子质量块600,其中,在驱动模态下,MEMS三轴陀螺仪绕第三方向z谐振;在检测模态下,第一子质量块200可绕第一方向x的轴谐振,第二子质量块400可绕第二方向y的轴谐振,第三子质量块600可沿第一方向x或第二方向y谐振;第一方向x,第二方向y和第三方向z相互垂直;第一子质量块200和第二子质量块400之间设置有第一解耦结构300,第一解耦结构300沿第一方向对称的连接在第一子质量块200上,第一解耦结构300沿第二方向对称的连接在第二子质量块400上。
需要说明的是,第一子质量块200对应第一方向x的检测模态,第二子质量块400对应第二方向y的检测模态,第三子质量块600对应第三方向z的检测模态。在驱动模态下,整个MEMS三轴陀螺仪绕第三方向z谐振;第一子质量块200运动方向近似于沿第一方向x运动,第二子质量块400运动方向近似于沿第二方向y运动,第三子质量块600运动方向近似于沿第一方向x或第二方向y运动。
第一子质量块200在绕第三方向的驱动模态下发生谐振时,其运动方向近似于沿第一方向x运动,当第一子质量块200检测到绕第二方向y的角速度时,第一子质量块200产生第三方向z的科氏力,第一子质量块200会产生绕第一方向x转动的位移,通过第一子质量块200对应的第一子检测电极检测该位移可表征第二方向y的角速度;
第二子质量块400在绕第三方向的驱动模态下发生谐振时,其运动方向近似于沿第二方向y运动,当第二子质量块400检测到绕第一方向x的角速度时,第二子质量块400产生第三方向z的科氏力,第二子质量块400会产生绕第二方向y转动的位移,通过第二子质量块400对应的第二子检测电极检测该位移可以表征第一方 向x的角速度;
第三子质量块600在绕第三方向的驱动模态下发生谐振时,第三子质量块600运动方向近似于沿第二方向y或第一方向x运动。当第三子质量块600检测到绕第三方向z的角速度时,第三子质量块600产生第一方向x的科氏力,第三子质量块600会产生沿第一方向x的位移;或者第三子质量块600产生第二方向y的科氏力,第三子质量块600会产生沿第二方向y的位移,通过第三子质量块600对应的第三子检测电极检测该位移可以表征第三方向z的角速度。
本发明实施例中的MEMS三轴陀螺仪通过设置第一解耦结构300,使得第一子质量块200在第一方向x的检测模态下有很少的作用力传递给第一解耦结构300,从而达到第一子质量块200与第二子质量块400之间的解耦;第二子质量块400在第二方向y的检测模态下有很少的作用力传递给第一解耦结构300,从而达到第二子质量块400与第一子质量块200之间的解耦。具体的,当第一子质量块200在绕第三方向z的驱动模态下发生谐振时,运动方向近似于沿第一方向x,此时若受到绕第二方向y的角速度,第一子质量块200会受沿第三方向z的科氏力,第一子质量块200会产生绕第一方向x的位移,由于第一解耦结构300在第一方向对称的连接在第一子质量块200上,因此,第一子质量块200在第一方向x的检测模态下仅有很小的一部分力传递到第一解耦结构300上,而第一解耦结构300传递给第二子质量块400的力也会很小,减少了第一子质量块200与第二子质量块400之间的运动干扰,从而减少了MEMS三轴陀螺仪的轴间信号串扰。
反之,当第二子质量块400在绕第三方向z的驱动模态下发生谐振时,运动方向近似于沿第二方向y,此时若受到绕第一方向x的角速度,第二子质量块400会受沿第三方向z的科氏力,第二子质量块400会产生绕第二方向y的位移,由于第一解耦结构300在第二方向对称的安装在第二子质量块400上,因此,第二子质量块400在第二方向y检测模态下仅有很小的一部分力传递到第一解耦结构300上,而第一解耦结构300传递给第一子质量块200的力也会很小,减少了第二子质量块400与第一子质量块200之间的运动干扰,从而减少了MEMS三轴陀螺仪的轴间信号串扰。
实现检测上述各方向的位移有很多种,在本发明实施例中,第一子质量块200对应有第一子检测电极,第二子质量块400对应有第二子检测电极,第三子质量块600对应有第三子检测电极800,其中,第一子检测电极与第一子质量块200沿第 三方向z布置,第二子检测电极与第二子质量块400沿第三方向z布置。第三子质量块600对应的第三子检测电极与第三子质量块600在第一方向x和第二方向y确定的平面内。
上述第一子质量块200具有绕第一方向x旋转的轴,第一解耦结构300具有绕第一方向x旋转的轴,当第一子质量块200具有绕第一方向x旋转的轴与第一解耦结构300具有绕第一方向x旋转的轴共线(重合)时,第一子质量块200通过第二弹簧2传递给第一解耦结构300的力可忽略不计,第一解耦结构300通过第三弹簧3传递给第二子质量块400的力更小,采用此种布置形式可完全达到第一子质量块200与第二子质量块400的机械解耦以及第二子质量块400与第一子质量块200的机械解耦。
为了进一步减少轴间信号串扰,该MEMS三轴陀螺仪中,在第三子质量块600与第二子质量块400之间设置有第二解耦结构500,该第二解耦结构500沿第二方向y对称的连接在第二子质量块400上。通过设置第二解耦结构500,使得第二子质量块400在第二方向x的检测模态下有很少的作用力传递给第二解耦结构500,从而达到第二子质量块400与第三子质量块600之间的解耦;第三子质量块600在第三方向y的检测模态下有很少的作用力传递给第二解耦结构500,从而达到第三子质量块600与第二子质量块400之间的解耦。
具体的,当第二子质量块400在绕第三方向z的驱动模态下发生谐振时,运动方向近似于沿第二方向y,此时若受到绕第一方向x的角速度,第二子质量块400会受沿第三方向z的科氏力,第二子质量块400会产生绕第二方向y的位移,由于第二解耦结构500在第二方向y对称的连接在第二子质量块400上,因此,第二子质量块400在第二方向y的检测模态下仅有很小的一部分力传递到第二解耦结构500上,而第二解耦结构500传递给第三子质量块600的力也会很小,减少了第二子质量块400与第三子质量块600之间的运动干扰,从而减少了MEMS三轴陀螺仪的轴间信号串扰。
反之,当第三子质量块600在绕第三方向z的驱动模态下发生谐振时,运动方向近似于沿第二方向y运动此时若受到绕第三方向z的角速度,第三子质量块600会受沿第一方向x的科氏力,第三子质量块600会产生沿第一方向x的位移,由于第二解耦结构500与第三子质量块600之间沿第一方向x的刚度较小,因此,第三子质量块600在第一运动方向x检测模态下,第二解耦结构500与第三子质量块600 较易发生形变而吸收大部分能量,仅有很小的一部分力传递到第二解耦结构500上,而第二解耦结构500传递给第二子质量块400的力也会很小,减少了第三子质量块600与第二子质量块400之间的运动干扰,从而减少了MEMS三轴陀螺仪的轴间信号串扰。
或者,当第三子质量块600在绕第三方向z的驱动模态下发生谐振时,运动方向近似于沿第一方向x,此时若受到绕第三方向z的角速度,第三子质量块600会受沿第二方向y的科氏力,第三子质量块600会产生沿第二方向y的位移,由于第二解耦结构500与第三子质量块之间被配置为沿第二方向y的刚度较小因此,第三子质量块600在沿第二方向y的检测模态下,第二解耦结构500与第三子质量块600之间较易发生形变而吸收大部分能量,仅有很小的一部分力传递到第二解耦结构500上,而第二解耦结构500通过传递给第二子质量块400的力也会很小,减少了第三子质量块600与第二子质量块400之间的运动干扰,从而减少了MEMS三轴陀螺仪的轴间信号串扰。
上述第二子质量块400具有绕第二方向y旋转的轴,第二解耦结构500具有绕第二方向y旋转的轴,当第二子质量块400具有绕第二方向y旋转的轴与第二解耦结构500具有绕第二方向y旋转的轴共线(重合)时,第二子质量块400通过第四弹簧4传递给第二解耦结构500的力可忽略不计,第二解耦结构500通过第五弹簧传递给第三子质量块600的力更小,采用此种布置形式可完全达到第二子质量块400与第三子质量块600的机械解耦以及第三子质量块600与第二子质量块400的机械解耦。
为了进一步优化上述方案,第一解耦结构300绕第一方向x的轴与第二解耦结构500绕第二方向y的轴的交点通过中央锚点100的中心。
本发明实施例中实现第一子质量块与中央锚点,第一解耦结构与第一子质量块,第一解耦结构与第二子质量块,第二子质量块与第二解耦结构,第二解耦结构与第三子质量块之间的连接方式为常规的连接形式,均通过弹簧连接,该弹簧可以为弹性梁或者折叠梁。具体的,
第一子质量块200通过在第一方向x对称的第一弹簧1悬挂在中央锚点100上;进一步的,第一解耦结构300通过在第一方向x对称的第二弹簧2悬挂在第一子质量块200上;进一步的,第二子质量块400通过在第二方向y对称的第三弹簧3悬挂在第一解耦结构300上。
第二解耦结构500通过在第二方向y对称的第四弹簧4悬挂在第二子质量块400上,第三子质量块600通过第五弹簧悬挂在第二解耦结构500上。
由于第三子质量块600在绕第三方向的驱动模态下发生谐振时,第三子质量块600运动方向近似于沿第二方向y或第一方向x运动。若第三子质量块600在检测到绕第三方向z的角速度时,会受到沿第一方向x的科氏力或者第二方向y的科氏力,为此,本发明实施例中第三子质量块600包括在第一方向x对称布置或在第二方向y对称布置的分子质量块,分子质量块的数量为偶数个,每个分子质量块通过第五弹簧悬挂在第二解耦结构500上。位于左右的两个分子质量块通过第五弹簧5a悬挂在第二解耦结构500上,位于上下的分子质量块通过第五弹簧5b悬挂在第二解耦结构500上。第三子质量块600中的分子质量块均对应有一个分子检测电极,分子检测电极为梳齿检测电极。
第三子质量块600中相邻的分子质量块通过第六弹簧6相互耦合,能够进一步确保了振动频率,幅度的一致性,减少了对加工工艺一致性的依赖,并且增强了对外界冲击的抵抗力。为了减小占用面积,第二解耦结构500还设置有容纳第六弹簧6的凹槽。
另外,本发明实施例中除了具有中央锚点100外,还可以设置有周边锚点900,其中中央锚点100以及周边锚点900的作用均连接基底,且在驱动电极700驱动整个MEMS三轴陀螺仪绕第三方向z谐振时,中央锚点100以及周边锚点900均不动。中央锚点100布置在MEMS三轴陀螺仪的中心位置,周边锚点900位于中央锚点100的四周,周边锚点900的数量为多个,多个周边锚点900对称布置。
实施例一
参阅图1,在该实施例中,该MEMS三轴陀螺仪包括中央锚点100、第一子质量块200、第一解耦结构300、第二子质量块400、第二解耦结构500和第三子质量块600,第三子质量块600包括在第一方向x对称布置有两个分子质量块,该两个分子质量块通过第五弹簧5a悬挂在第二解耦结构500上。
第一子质量块200通过第一弹簧1连接至中央锚点100,第一子质量块200通过第二弹簧2连接至环绕其周的第一解耦结构300,第一解耦结构300通过第三弹簧3连接第二子质量块400,第二子质量块400通过第四弹簧4连接第二解耦结构500,第二解耦结构500通过第五弹簧连接第三子质量块600。
第一弹簧1和第二弹簧2在绕第一方向x的刚度小,使得第一子质量块200绕 第一方向x转动,第三弹簧3在绕第一方向x的刚度大,第一解耦结构300不随第二子质量块400在第一方向x转动。
第三弹簧3和第四弹簧4在绕第二方向y的刚度小,使得第二子质量块400绕第二方向y转动。第五弹簧5a在绕第二方向y的刚度大,第二解耦结构500不会随第二子质量块400在第二方向y转动。
第五弹簧5a在沿第一方向x的刚度小,使第三子质量块600中的左右两分子质量块容易沿第一方向x运动。
驱动模态下,驱动电极700驱动第二解耦结构500绕第三方向z的轴谐振,通过相连的弹簧依次带动各质量块绕第三方向z的轴谐振;
当MEMS三轴陀螺仪受绕第二方向y的角速度时,第一子质量块200受沿第三方向z的科氏力,第一子质量块200绕第一方向x产生位移,通过检测该位移表征绕第二方向y的角速度。
当MEMS三轴陀螺仪受绕第一方向x的角速度时,第二子质量块400受沿第三方向z的科氏力,第二子质量块400绕第二方向y产生位移,通过检测该位移表征绕第一方向x的角速度。
当MEMS三轴陀螺仪受绕第三方向z的角速度时,第三子质量块600中的左右两个分子质量块受沿第一方向x的科氏力,该两个分子质量块产生沿第一方向x的位移,通过检测该位移表征绕第三方向z的角速度。
实施例二
请参阅图2,在该实施例中,该MEMS三轴陀螺仪包括中央锚点100、第一子质量块200、第一解耦结构300、第二子质量块400、第二解耦结构500和第三子质量块600,第三子质量块600包括在第二方向y对称布置有两个分子质量块,该两个分子质量块通过第五弹簧5b悬挂在第二解耦结构500上。
第一子质量块200通过第一弹簧1连接至中央锚点100,第一子质量块200通过第二弹簧2连接至环绕其周的第一解耦结构300,第一解耦结构300通过第三弹簧3连接第二子质量块400,第二子质量块400通过第四弹簧4连接第二解耦结构500,第二解耦结构500通过第五弹簧5b连接第三子质量块600。
第一弹簧1和第二弹簧2在绕第一方向x的刚度小,使得第一子质量块200绕第一方向x转动,第三弹簧3在绕第一方向x刚度大,第一解耦结构300不随第二子质量块400在第一方向x转动。
第三弹簧3和第四弹簧4在绕第二方向y的刚度小,使得第二子质量块400绕第二方向y转动。第五弹簧5b在绕第二方向y的刚度大,第二解耦结构500不会随第二子质量块400在第二方向y转动。
第五弹簧5b在沿第二方向y的刚度小,使第三子质量块600中的上下两分子质量块容易沿第二方向y运动。
驱动模态下,驱动电极700驱动第二解耦结构500绕第三方向z的轴谐振,通过相连的弹簧依次带动各质量块绕第三方向z的轴谐振
当MEMS三轴陀螺仪受绕第二方向y的角速度时,第一子质量块200受沿第三方向z的科氏力,第一子质量块200在绕第一方向x产生位移,通过检测该位移表征第二方向y的角速度。
当MEMS三轴陀螺仪受绕第一方向x的角速度时,第二子质量块400受沿第三方向z的科氏力,第二子质量块400在绕第二方向y产生位移,通过检测该位移表征第一方向x的角速度。
当MEMS三轴陀螺仪受绕第三方向z的角速度时,第三子质量块600中的上下两个分子质量块受沿第二方向y的科氏力,该两个分子质量块产生沿第二方向y的位移,通过检测该位移表征第三方向z的角速度。
实施例三
参阅图3,在该实施例中,该MEMS三轴陀螺仪包括中央锚点100、第一子质量块200、第一解耦结构300、第二子质量块400、第二解耦结构500和第三子质量块600,第三子质量块600包括在第一方向x对称布置有两个分子质量块和在第二方向y对称布置有两个分子质量块,该四个分子质量块通过第五弹簧悬挂在第二解耦结构500上,四个分子质量块之间通过第六弹簧6相互耦合。
第一子质量块200通过第一弹簧1连接至中央锚点100,第一子质量块200通过第二弹簧2连接至环绕其周的第一解耦结构300,第一解耦结构300通过第三弹簧3连接第二子质量块400,第二子质量块400通过第四弹簧4连接第二解耦结构500,左右两个分子质量块通过第五弹簧5a连接在第二解耦结构500上,第三子质量块600中的上下两个分子质量块通过第五弹簧5b连接在第二解耦结构500上。
第一弹簧1和第二弹簧2在绕第一方向x的刚度小,使得第一子质量块200绕第一方向x转动,第三弹簧3在绕第一方向x的刚度大,第一解耦结构300不随第二子质量块400在第一方向x转动。
第三弹簧3和第四弹簧4在绕第二方向y的刚度小,使得第二子质量块400绕第二方向y转动。第五弹簧在绕第二方向y的刚度大,第二解耦结构500不会随第二子质量块400在第二方向y转动。
连接左右两个分子质量块的第五弹簧5a在沿第一方向x的刚度小,使第三子质量块600中的左右两分子质量块容易沿第一方向x运动。
连接上下两个分子质量块的第五弹簧5b在沿第二方向y的刚度小,使第三子质量块600中的上下两分子质量块容易沿第二方向y运动。
驱动模态下,驱动电极700驱动第二解耦结构500绕第三方向z的轴谐振,通过相连的弹簧依次带动各质量块绕第三方向z的轴谐振;
当MEMS三轴陀螺仪受绕第二方向y的角速度时,第一子质量块200受沿第三方向z的科氏力,第一子质量块200在绕第一方向x产生位移,通过检测该位移表征第二方向y的角速度。
当MEMS三轴陀螺仪受绕第一方向x的角速度时,第二子质量块400受沿第三方向z的科氏力,第二子质量块400在绕第二方向y产生位移,通过检测该位移表征第一方向x的角速度。
当MEMS三轴陀螺仪受绕第三方向z的角速度时,第三子质量块600中的左右两个分子质量块受沿第一方向x的科氏力,该两个分子质量块产生沿第一方向x的位移;第三子质量块600中的上下两个分子质量块受沿第二方向y的科氏力,该两个分子质量块产生沿第二方向y的位移,以上四个子质量块通过第六弹簧6相互耦合,通过检测它们的位移表征第三方向的角速度。
实施例四
参阅图4,在该实施例中,该MEMS三轴陀螺仪包括中央锚点100、四个周边锚点900、第一子质量块200、第一解耦结构300、第二子质量块400、第二解耦结构500和第三子质量块600,第三子质量块600包括在第一方向x对称布置有两个分子质量块和在第二方向y对称布置有两个分子质量块,左右两个分子质量块通过第五弹簧5a连接在第二解耦结构500上,第三子质量块600中的上下两个分子质量块通过第五弹簧5b连接在第二解耦结构500上,四个分子质量块之间通过第六弹簧6相互耦合。
第一子质量块200通过第一弹簧1连接至中央锚点100,第一子质量块200通过第二弹簧2连接至环绕其周的第一解耦结构300,第一解耦结构300通过第三弹 簧3连接第二子质量块400,第二子质量块400通过第四弹簧4连接第二解耦结构500,第二解耦结构500通过第五弹簧连接第三子质量块600,第二解耦结构500通过第七弹簧7连接在周边锚点900上。周边锚点900的数量为四个,分别布置在第二解耦结构500的四角。
MEMS三轴陀螺仪的驱动电极700对称的设置在第二解耦结构500的四角,用于驱动第二解耦结构500在第三方向z绕中央锚点100谐振。
第一弹簧1和第二弹簧2在绕第一方向x的刚度小,使得第一子质量块200绕第一方向x转动,第三弹簧3在绕第一方向x的刚度大,第一解耦结构300不随第二子质量块400在第一方向x转动。
第三弹簧3和第四弹簧4在绕第二方向y的刚度小,使得第二子质量块400绕第二方向y转动。第五弹簧在绕第二方向y的刚度大,第二解耦结构500不会随第二子质量块400在第二方向y转动。
连接左右两个分子质量块的第五弹簧5a在沿第一方向x刚度小,使第三子质量块600中的左右两分子质量块容易沿第一方向x运动。
连接上下两个分子质量块的第五弹簧5b在沿第二方向y刚度小,使第三子质量块600中的上下两分子质量块容易沿第二方向y运动。
第一弹簧1和第七弹簧7在绕第三方向z刚度较小,形成整个可动子质量块绕第三方向z在第一方向x和第二方向y内往复转动的驱动模态。
驱动模态下,驱动电极700驱动第二解耦结构500绕第三方向z的轴谐振,并通过相连的弹簧依次带动各质量块绕第三方向z的轴谐振;
当MEMS三轴陀螺仪受绕第二方向y的角速度时,第一子质量块200受沿第三方向z的科氏力,第一子质量块200在绕第一方向x产生位移,通过检测该位移表征第二方向y的角速度。
当MEMS三轴陀螺仪受绕第一方向x的角速度时,第二子质量块400受沿第三方向z的科氏力,第二子质量块400在绕第二方向y产生位移,通过检测该位移表征第一方向x的角速度。
当MEMS三轴陀螺仪受绕第三方向z的角速度时,第三子质量块600中的左右两个分子质量块受沿第一方向x的科氏力,该两个分子质量块产生沿第一方向x的位移;第三子质量块600中的上下两个分子质量块受沿第二方向y的科氏力,该两 个分子质量块产生沿第二方向y的位移,以上四个子质量块通过第六弹簧6相互耦合,通过检测它们的位移表征第三方向z的角速度。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (17)

  1. 一种MEMS三轴陀螺仪,包括由内到外依次布置的中央锚点、第一子质量块、第二子质量块和第三子质量块,其中,在驱动模态下,所述MEMS三轴陀螺仪绕第三方向谐振;在检测模态下,所述第一子质量块可绕第一方向谐振,所述第二子质量块可绕第二方向谐振,所述第三子质量块可沿第一方向或第二方向谐振;所述第一方向,所述第二方向和所述第三方向相互垂直;其特征在于,所述第一子质量块和所述第二子质量块之间设置有第一解耦结构,所述第一解耦结构沿第一方向对称的连接在所述第一子质量块上,所述第一解耦结构沿第二方向对称的连接在所述第二子质量块上。
  2. 如权利要求1所述的MEMS三轴陀螺仪,其特征在于,还包括设置在所述第三子质量块与所述第二子质量块之间的第二解耦结构,所述第二解耦结构沿第二方向对称的连接在所述第二子质量块上。
  3. 如权利要求2所述的MEMS三轴陀螺仪,其特征在于,所述第一子质量块通过在第一方向对称的第一弹簧悬挂在中央锚点上。
  4. 如权利要求3所述的MEMS三轴陀螺仪,其特征在于,所述第一解耦结构通过在第一方向对称的第二弹簧悬挂在所述第一子质量块上.
  5. 如权利要求4所述的MEMS三轴陀螺仪,其特征在于,所述第二子质量块通过在第二方向对称的第三弹簧悬挂在所述第一解耦结构上。
  6. 如权利要求5所述的MEMS三轴陀螺仪,其特征在于,所述第二解耦结构通过在第二方向对称的第四弹簧悬挂在所述第二子质量块上,所述第三子质量块通过第五弹簧悬挂在所述第二解耦结构上。
  7. 如权利要求6所述的MEMS三轴陀螺仪,其特征在于,所述第三子质量块包括在第一方向对称布置或在第二方向对称布置的分子质量块,所述分子质量块的数量为偶数个。
  8. 如权利要求7所述的MEMS三轴陀螺仪,其特征在于,所述第三子质量块在第一方向对称布置有两个分子质量块,在第二方向对称布置有两个分子质量块。
  9. 如权利要求7所述的MEMS三轴陀螺仪,其特征在于,所述第三子质量块中的分子质量块均对应有一个分子检测电极,所述分子检测电极为梳齿检测电极。
  10. 如权利要求7所述的MEMS三轴陀螺仪,其特征在于,所述第三子质量块中相邻的分子质量块通过第六弹簧相互耦合。
  11. 如权利要求10所述的MEMS三轴陀螺仪,其特征在于,所述第二解耦结构还设置有容纳所述第六弹簧的凹槽。
  12. 如权利要求5所述的MEMS三轴陀螺仪,其特征在于,还包括多个周边锚点,所述第二解耦结构通过第七弹簧与多个所述周边锚点连接。
  13. 如权利要求12所述的MEMS三轴陀螺仪,其特征在于,所述周边锚点的数量为四个,分别布置在所述第二解耦结构的四角。
  14. 如权利要求2所述的MEMS三轴陀螺仪,其特征在于,所述MEMS三轴陀螺仪的驱动电极对称的设置在所述第二解耦结构的四角,用于驱动所述第二解耦结构在第三方向绕中央锚点谐振。
  15. 如权利要求2所述的MEMS三轴陀螺仪,其特征在于,所述第二解耦结构绕第二方向的轴与所述第二子质量块绕第二方向的轴共线。
  16. 如权利要求15所述的MEMS三轴陀螺仪,其特征在于,所述第一解耦结构绕第一方向的轴与所述第一子质量块绕第一方向的轴共线。
  17. 如权利要求16所述的MEMS三轴陀螺仪,其特征在于,所述第一解耦结构绕第一方向的轴与所述第二解耦结构绕第二方向的轴的交点通过所述中央锚点的中心。
PCT/CN2018/096076 2017-07-24 2018-07-18 一种mems三轴陀螺仪 WO2019019942A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/631,838 US11085767B2 (en) 2017-07-24 2018-07-18 Three-axis MEMS gyroscope
SG11202000536WA SG11202000536WA (en) 2017-07-24 2018-07-18 Three-axis mems gyroscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710606894.2 2017-07-24
CN201710606894.2A CN107192384B (zh) 2017-07-24 2017-07-24 一种mems三轴陀螺仪

Publications (1)

Publication Number Publication Date
WO2019019942A1 true WO2019019942A1 (zh) 2019-01-31

Family

ID=59884441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/096076 WO2019019942A1 (zh) 2017-07-24 2018-07-18 一种mems三轴陀螺仪

Country Status (5)

Country Link
US (1) US11085767B2 (zh)
CN (1) CN107192384B (zh)
SG (1) SG11202000536WA (zh)
TW (2) TWI699514B (zh)
WO (1) WO2019019942A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110926445A (zh) * 2019-12-06 2020-03-27 深迪半导体(上海)有限公司 一种三轴mems陀螺仪
CN111174772A (zh) * 2020-01-13 2020-05-19 无锡莱斯能特科技有限公司 一种三轴mems陀螺仪

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107192384B (zh) * 2017-07-24 2022-04-05 深迪半导体(绍兴)有限公司 一种mems三轴陀螺仪
CN117570952B (zh) * 2024-01-15 2024-03-19 中国船舶集团有限公司第七〇七研究所 减小半球谐振陀螺振动耦合的方法
CN117606459B (zh) * 2024-01-24 2024-03-22 南京元感微电子有限公司 一种单锚点mems陀螺仪

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101050966A (zh) * 2007-05-21 2007-10-10 哈尔滨工业大学 双自由度双解耦微机械振动陀螺传感器
CN101368826A (zh) * 2008-09-25 2009-02-18 中国人民解放军国防科学技术大学 采用隔振框架解耦的硅微陀螺及其制作方法
US20110094302A1 (en) * 2009-10-23 2011-04-28 The Regents Of The University Of California Micromachined Gyroscopes with 2-DOF Sense Modes Allowing Interchangeable Robust and Precision Operation
US8689632B2 (en) * 2012-01-17 2014-04-08 Freescale Semiconductor, Inc. Fully decoupled lateral axis gyroscope with thickness-insensitive Z-axis spring and symmetric teeter totter sensing element
CN105444748A (zh) * 2014-08-21 2016-03-30 上海矽睿科技有限公司 抗干扰的陀螺仪
CN107192384A (zh) * 2017-07-24 2017-09-22 深迪半导体(上海)有限公司 一种mems三轴陀螺仪

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4598585A (en) * 1984-03-19 1986-07-08 The Charles Stark Draper Laboratory, Inc. Planar inertial sensor
US5488862A (en) * 1993-10-18 1996-02-06 Armand P. Neukermans Monolithic silicon rate-gyro with integrated sensors
US6845669B2 (en) * 2001-05-02 2005-01-25 The Regents Of The University Of California Non-resonant four degrees-of-freedom micromachined gyroscope
KR100436367B1 (ko) * 2001-12-14 2004-06-19 삼성전자주식회사 수직 진동 질량체를 갖는 멤스 자이로스코프
US6859751B2 (en) * 2001-12-17 2005-02-22 Milli Sensor Systems & Actuators, Inc. Planar inertial measurement units based on gyros and accelerometers with a common structure
US7377167B2 (en) * 2004-02-27 2008-05-27 The Regents Of The University Of California Nonresonant micromachined gyroscopes with structural mode-decoupling
US7421898B2 (en) * 2004-08-16 2008-09-09 The Regents Of The University Of California Torsional nonresonant z-axis micromachined gyroscope with non-resonant actuation to measure the angular rotation of an object
JP4887034B2 (ja) * 2005-12-05 2012-02-29 日立オートモティブシステムズ株式会社 慣性センサ
JP4310325B2 (ja) * 2006-05-24 2009-08-05 日立金属株式会社 角速度センサ
DE102007017209B4 (de) * 2007-04-05 2014-02-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mikromechanischer Inertialsensor zur Messung von Drehraten
DE102008002748A1 (de) * 2008-06-27 2009-12-31 Sensordynamics Ag Mikro-Gyroskop
DE102009001248B4 (de) * 2009-02-27 2020-12-17 Hanking Electronics, Ltd. MEMS-Gyroskop zur Ermittlung von Rotationsbewegungen um eine x-, y- oder z-Achse
US8256290B2 (en) * 2009-03-17 2012-09-04 Minyao Mao Tri-axis angular rate sensor
DE102009001922A1 (de) * 2009-03-26 2010-09-30 Sensordynamics Ag Mikro-Gyroskop zur Ermittlung von Rotationsbewegungen um drei senkrecht aufeinanderstehende Raumachsen x, y und z
IT1394007B1 (it) * 2009-05-11 2012-05-17 St Microelectronics Rousset Struttura microelettromeccanica con reiezione migliorata di disturbi di accelerazione
US8739626B2 (en) * 2009-08-04 2014-06-03 Fairchild Semiconductor Corporation Micromachined inertial sensor devices
US8534127B2 (en) * 2009-09-11 2013-09-17 Invensense, Inc. Extension-mode angular velocity sensor
ITTO20091042A1 (it) * 2009-12-24 2011-06-25 St Microelectronics Srl Giroscopio integrato microelettromeccanico con migliorata struttura di azionamento
US8616057B1 (en) * 2010-01-23 2013-12-31 Minyao Mao Angular rate sensor with suppressed linear acceleration response
US8813564B2 (en) * 2010-09-18 2014-08-26 Fairchild Semiconductor Corporation MEMS multi-axis gyroscope with central suspension and gimbal structure
DE102010062095A1 (de) * 2010-11-29 2012-05-31 Robert Bosch Gmbh Drehratensensor und Verahren zum Betrieb eines Drehratensensors
US8833162B2 (en) * 2011-09-16 2014-09-16 Invensense, Inc. Micromachined gyroscope including a guided mass system
FR2983574B1 (fr) * 2011-12-06 2014-01-10 Sagem Defense Securite Capteur angulaire inertiel de type mems equilibre et procede d'equilibrage d'un tel capteur
EP2607849A1 (en) * 2011-12-22 2013-06-26 Tronics Microsystems S.A. Multiaxial micro-electronic inertial sensor
DE102011057081A1 (de) * 2011-12-28 2013-07-04 Maxim Integrated Products, Inc. Mikro-Drehratensensor und Verfahren zum Betreiben eines Mikro-Drehratensensors
US9062972B2 (en) * 2012-01-31 2015-06-23 Fairchild Semiconductor Corporation MEMS multi-axis accelerometer electrode structure
EP2746724B1 (en) * 2012-12-20 2017-02-22 Tronics Microsystems S.A. Micromechanical gyroscope
FR3005160B1 (fr) * 2013-04-29 2016-02-12 Sagem Defense Securite Capteur angulaire inertiel de type mems equilibre et procede d'equilibrage d'un tel capteur
CN103528577B (zh) * 2013-10-12 2016-06-01 深迪半导体(上海)有限公司 一种z轴mems电容式陀螺仪
CN203587114U (zh) * 2013-10-12 2014-05-07 深迪半导体(上海)有限公司 一种z轴mems电容式陀螺仪
FI126071B (en) * 2014-01-28 2016-06-15 Murata Manufacturing Co Improved gyroscope structure and gyroscope
JP6344033B2 (ja) * 2014-04-22 2018-06-20 セイコーエプソン株式会社 角速度センサー、電子機器及び移動体
DE102014211646A1 (de) * 2014-06-18 2015-12-24 Robert Bosch Gmbh Mikromechanisches Sensorbauteil für einen Drehratensensor
CN105371834B (zh) * 2014-08-21 2018-08-31 上海矽睿科技有限公司 检测质量块及采用该检测质量块的陀螺仪
KR101659207B1 (ko) * 2015-02-05 2016-09-22 삼성전기주식회사 각속도 센서
FI127202B (en) * 2015-04-16 2018-01-31 Murata Manufacturing Co Three axis gyroscope
US20160370403A1 (en) * 2015-06-22 2016-12-22 Adel Merdassi Capacitive accelerometer devices and wafer level vacuum encapsulation methods
ITUA20162160A1 (it) * 2016-03-31 2017-10-01 St Microelectronics Srl Struttura micromeccanica di rilevamento di un giroscopio multiassiale mems, avente ridotte derive di relative caratteristiche elettriche
CN106597011B (zh) * 2016-12-23 2018-11-23 中北大学 双轴mems谐振式加速度传感器结构
CN106932609B (zh) * 2017-03-02 2019-05-21 清华大学 一种单锚定点四质量块mems六轴惯性传感器
US10732199B2 (en) * 2017-12-20 2020-08-04 Apple Inc. Multi-stage MEMS accelerometer for mixed g-level operation
JP6879391B2 (ja) * 2019-02-15 2021-06-02 株式会社村田製作所 同期フレームを有する多軸ジャイロスコープ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101050966A (zh) * 2007-05-21 2007-10-10 哈尔滨工业大学 双自由度双解耦微机械振动陀螺传感器
CN101368826A (zh) * 2008-09-25 2009-02-18 中国人民解放军国防科学技术大学 采用隔振框架解耦的硅微陀螺及其制作方法
US20110094302A1 (en) * 2009-10-23 2011-04-28 The Regents Of The University Of California Micromachined Gyroscopes with 2-DOF Sense Modes Allowing Interchangeable Robust and Precision Operation
US8689632B2 (en) * 2012-01-17 2014-04-08 Freescale Semiconductor, Inc. Fully decoupled lateral axis gyroscope with thickness-insensitive Z-axis spring and symmetric teeter totter sensing element
CN105444748A (zh) * 2014-08-21 2016-03-30 上海矽睿科技有限公司 抗干扰的陀螺仪
CN107192384A (zh) * 2017-07-24 2017-09-22 深迪半导体(上海)有限公司 一种mems三轴陀螺仪

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110926445A (zh) * 2019-12-06 2020-03-27 深迪半导体(上海)有限公司 一种三轴mems陀螺仪
US11639852B2 (en) 2019-12-06 2023-05-02 Senodia Technologies (Shaoxing) Co., Ltd. Three-axis microelectromechanical system (MEMS) gyroscope
CN111174772A (zh) * 2020-01-13 2020-05-19 无锡莱斯能特科技有限公司 一种三轴mems陀螺仪
CN111174772B (zh) * 2020-01-13 2023-05-02 无锡莱斯能特科技有限公司 一种三轴mems陀螺仪

Also Published As

Publication number Publication date
TW201908694A (zh) 2019-03-01
US20200166341A1 (en) 2020-05-28
TWI699514B (zh) 2020-07-21
SG11202000536WA (en) 2020-02-27
US11085767B2 (en) 2021-08-10
CN107192384A (zh) 2017-09-22
CN107192384B (zh) 2022-04-05
TWM575099U (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
WO2019019942A1 (zh) 一种mems三轴陀螺仪
KR101823325B1 (ko) 개선된 자이로스코프 구조체 및 자이로스코프
TWI613418B (zh) 具支點元件的微機電裝置
JP4368116B2 (ja) 回転型デカップルドmemsジャイロスコープ
JP2013092525A (ja) 軸外ばねシステムを有する慣性センサ
US20230314139A1 (en) Three-axis mems gyroscope
US20230266125A1 (en) Mems gyroscope for three-axis detection
US9612118B2 (en) Ring gyroscope structure and gyroscope
CN220153593U (zh) 一种可实现干扰模态隔离的解耦型音叉硅微机械陀螺仪
CN101363731B (zh) 基于剪应力检测的石英微机械陀螺及其制作方法
US20230266122A1 (en) Micromechanical gyroscope and electronic device
CN113959423A (zh) 一种mems陀螺仪及电子设备
WO2023226560A1 (zh) 一种用于检测角速度的装置、方法和***
CN105371834A (zh) 检测质量块及采用该检测质量块的陀螺仪
US11885618B2 (en) Three-axis micromachined gyroscope
US11585659B2 (en) MEMS wave gyroscope
CN212320730U (zh) 三轴mems陀螺仪
CN106233091A (zh) 具有环形弹簧的三轴微陀螺仪
CN111693036A (zh) 三轴mems陀螺仪
US12050104B2 (en) MEMS gyroscope
US20230213338A1 (en) Mems gyroscope
WO2021217667A1 (zh) 陀螺仪
US10082394B2 (en) Method and apparatus for electrostatic mode-alignment on planar MEMS gyroscopes
CN117848305A (zh) 一种弹性支撑的多环mems陀螺仪
CN105444748A (zh) 抗干扰的陀螺仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18837959

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18837959

Country of ref document: EP

Kind code of ref document: A1