WO2019016903A1 - 非水電解液及びそれを用いた蓄電デバイス - Google Patents

非水電解液及びそれを用いた蓄電デバイス Download PDF

Info

Publication number
WO2019016903A1
WO2019016903A1 PCT/JP2017/026151 JP2017026151W WO2019016903A1 WO 2019016903 A1 WO2019016903 A1 WO 2019016903A1 JP 2017026151 W JP2017026151 W JP 2017026151W WO 2019016903 A1 WO2019016903 A1 WO 2019016903A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
dioxolan
lithium
oxo
Prior art date
Application number
PCT/JP2017/026151
Other languages
English (en)
French (fr)
Inventor
圭 島本
宏行 瀬戸口
洋輔 佐藤
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to PCT/JP2017/026151 priority Critical patent/WO2019016903A1/ja
Publication of WO2019016903A1 publication Critical patent/WO2019016903A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte capable of improving electrochemical characteristics in a wide temperature range, and an electricity storage device using the same.
  • storage devices particularly lithium secondary batteries
  • PHEVs plug-in hybrid electric vehicles
  • BEVs battery electric vehicles
  • lithium secondary battery Due to the long travel distance of cars, they can be used in a wide temperature range from very hot areas in the tropics to extremely cold areas. Therefore, particularly these storage devices for vehicles are required to have no deterioration in electrochemical characteristics even when used in a wide temperature range from high temperature to low temperature.
  • the term lithium secondary battery is used as a concept including so-called lithium ion secondary battery.
  • a lithium secondary battery is mainly composed of a positive electrode and a negative electrode containing a material capable of absorbing and desorbing lithium ions, a lithium salt, and a non-aqueous electrolytic solution composed of a non-aqueous solvent, and ethylene carbonate (EC And carbonates such as propylene carbonate (PC) are used.
  • EC And carbonates such as propylene carbonate (PC)
  • a negative electrode of a lithium secondary battery metal lithium, a metal compound capable of inserting and extracting lithium ions (a single metal, a metal oxide, an alloy with lithium, etc.) and a carbon material are known.
  • lithium secondary batteries using carbon materials capable of absorbing and desorbing lithium ions, such as coke, artificial graphite and natural graphite have been widely put to practical use.
  • a lithium secondary battery using a highly crystallized carbon material such as natural graphite or artificial graphite as a negative electrode material is a decomposed product generated by reduction decomposition of the solvent in the non-aqueous electrolyte on the surface of the negative electrode during charging. It has been found that gas deposits on the negative electrode surface and results in a decrease in cycling characteristics as it inhibits the desired electrochemical response of the cell. In addition, when the decomposition product of the non-aqueous solvent is accumulated, it is not possible to smoothly insert and extract lithium ions to the negative electrode, and the electrochemical characteristics in the case of using in a wide temperature range are easily deteriorated.
  • lithium secondary batteries using lithium metal or an alloy thereof, a metal simple substance such as tin or silicon, or a metal oxide as a negative electrode material have a high initial capacity, but pulverization proceeds during use as an electricity storage device. It is known that the reductive decomposition of the non-aqueous solvent occurs in an accelerated manner and the battery performance such as the battery capacity and the cycle characteristics is greatly reduced compared to the negative electrode of the carbon material. In addition, when pulverization of these negative electrode materials and decomposition products of non-aqueous solvent are accumulated, absorption and release of lithium ions to the negative electrode can not be performed smoothly, and the electrochemical characteristics are easily deteriorated when used in a wide temperature range. Become.
  • the positive electrode material and the non-aqueous electrolyte are used when the non-aqueous solvent in the non-aqueous electrolyte is charged.
  • decomposition products and gases generated by partial oxidation decomposition locally are deposited on the negative electrode surface to inhibit the desired electrochemical reaction of the battery, so the electricity when used also in a wide temperature range It has been found to cause a decrease in chemical properties.
  • the battery performance has been lowered by the movement of lithium ions being inhibited or the battery being swollen by decomposition products and gas when the non-aqueous electrolyte is decomposed on the positive electrode and the negative electrode.
  • multifunctionalization of electronic devices equipped with lithium secondary batteries is in progress and power consumption is increasing. Therefore, the capacity of lithium secondary batteries is increasing, the density of the electrodes is increased, and the useless space volume in the batteries is reduced, and the volume occupied by the non-aqueous electrolyte in the batteries is small. It has become. Therefore, with the decomposition of a small amount of non-aqueous electrolyte, the electrochemical characteristics are likely to deteriorate when used in a wide temperature range.
  • Patent Document 1 discloses an electrolyte solution for a secondary battery containing an electrolyte salt and an electrolyte solvent, wherein the electrolyte solution contains a compound in which a cyclic carbonate group and a sulfonate group are linked via an alkylene group. There is. Patent Document 1 describes 1,3-dioxolane-2-onylmethyl allyl sulfonate as one of the compounds described above, and by adding to the electrolytic solution, the discharge capacity retention ratio after cycling of the battery is improved. It is supposed to be.
  • the present invention provides a non-aqueous electrolyte capable of improving the electrochemical properties in a wide temperature range, a storage device using the same, and a novel (2-oxo-1,3-dioxolan-4-yl) oxy compound
  • the purpose is
  • Patent Document 1 does not at all describe or suggest the effect of improving the low temperature discharge characteristics after high temperature storage.
  • cycle characteristics under high temperature, low temperature discharge characteristics after high temperature storage, etc. The fact is that no sufficient effect has been obtained for the problem of improving the electrochemical characteristics in a wide temperature range of. Therefore, the present inventors have intensively studied to solve the above problems, and by containing a specific compound in a non-aqueous electrolyte in which an electrolyte salt is dissolved in a non-aqueous solvent, a wide temperature range can be obtained.
  • the inventors have found that the electrochemical characteristics of a storage device, in particular, the lithium battery can be improved, and the present invention has been completed.
  • the present invention provides the following (1), (2) and (3).
  • R 2 and R 3 each independently represent a hydrogen atom, a halogen atom, or an alkyl group having 1 to 6 carbon atoms, and n represents an integer of 1 to 3.
  • R 4 represents an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, an aralkyl group having 7 to 13 carbon atoms, It represents an aryl group having 6 to 12 carbon atoms or an alkoxycarbonyl group having 2 to 6 carbon atoms.
  • R 5 represents a halogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or 7 to 13 carbon atoms It represents an aralkyl group, an aryl group having 6 to 12 carbon atoms, or an alkoxy group having 1 to 6 carbon atoms.
  • R 6 and R 7 each independently represent a halogen atom, an alkoxy group having 1 to 6 carbon atoms, or an aryloxy group having 6 to 12 carbon atoms.
  • n is 3
  • at least one hydrogen atom of the alkyl group, the aralkyl group, the aryl group, the alkoxycarbonyl group, the alkoxy group, and the aryloxy group may be substituted by a halogen atom.
  • a power storage device comprising a positive electrode, a negative electrode, and a non-aqueous electrolytic solution in which an electrolyte salt is dissolved in a non-aqueous solvent, wherein the non-aqueous electrolytic solution is the non-aqueous electrolytic solution according to (1) Power storage device characterized by.
  • R 2 and R 3 each independently represent a hydrogen atom, a halogen atom, or an alkyl group having 1 to 6 carbon atoms, and n represents an integer of 1 to 3.
  • R 5 represents a halogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or 7 to 13 carbon atoms It represents an aralkyl group, an aryl group having 6 to 12 carbon atoms, or an alkoxy group having 1 to 6 carbon atoms.
  • R 6 and R 7 each independently represent a halogen atom, an alkoxy group having 1 to 6 carbon atoms, or an aryloxy group having 6 to 12 carbon atoms.
  • R 9 represents a haloalkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or 7 to 13 carbon atoms in which at least one hydrogen atom is substituted by a halogen atom And an aralkyl group, an aryl group having 6 to 12 carbon atoms, or an alkoxycarbonyl group having 2 to 6 carbon atoms.
  • n is 3
  • at least one hydrogen atom of the alkyl group, the aralkyl group, the aryl group, the alkoxycarbonyl group, the alkoxy group, and the aryloxy group may be substituted by a halogen atom.
  • a non-aqueous electrolyte capable of improving the electrochemical characteristics of a storage device over a wide temperature range, particularly the low temperature discharge characteristics after high temperature charge storage, a storage device such as a lithium secondary battery using the same, and a novel (2-oxo-1,3-dioxolan-4-yl) oxy compounds can be provided.
  • the present invention relates to a non-aqueous electrolytic solution and an electricity storage device using the same.
  • the non-aqueous electrolytic solution of the present invention is a non-aqueous electrolytic solution in which an electrolyte salt is dissolved in a non-aqueous solvent, and is represented by the general formula (I) in the non-aqueous electrolytic solution (2-oxo-1, It is characterized by containing a 3-dioxolan-4-yl) oxy compound.
  • the compound used in the present invention is a cyclic carbonate in which a polar group is directly bonded to a ring without an alkylene group as described in the general formula (I). Therefore, the decomposition is more electrochemical than that of 1,3-dioxolane-2-onylmethyl allyl sulfonate, which is a compound in which the cyclic carbonate group described in Patent Document 1 and a sulfonate group as a polar group are linked via an alkylene group. Forming a dense and heat-resistant film on the positive electrode and the negative electrode. Therefore, it is considered that the electrochemical characteristics in a wide temperature range such as the low temperature discharge characteristics after high temperature charge storage can be improved.
  • the compound contained in the non-aqueous electrolytic solution of the present invention is a (2-oxo-1,3-dioxolan-4-yl) oxy compound represented by the following general formula (I).
  • R 2 and R 3 each independently represent a hydrogen atom, a halogen atom, or an alkyl group having 1 to 6 carbon atoms, and n represents an integer of 1 to 3.
  • R 4 represents an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, an aralkyl group having 7 to 13 carbon atoms, It represents an aryl group having 6 to 12 carbon atoms or an alkoxycarbonyl group having 2 to 6 carbon atoms.
  • R 5 represents a halogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or 7 to 13 carbon atoms It represents an aralkyl group, an aryl group having 6 to 12 carbon atoms, or an alkoxy group having 1 to 6 carbon atoms.
  • R 6 and R 7 each independently represent a halogen atom, an alkoxy group having 1 to 6 carbon atoms, or an aryloxy group having 6 to 12 carbon atoms.
  • n is 3
  • at least one hydrogen atom of the alkyl group, the aralkyl group, the aryl group, the alkoxycarbonyl group, the alkoxy group, and the aryloxy group may be substituted by a halogen atom.
  • R 1 include halogen atoms such as hydrogen atom, fluorine atom, chlorine atom and bromine atom; methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group and n-hexyl group And straight-chain alkyl groups such as isopropyl group, sec-butyl group, 2-pentyl group, 3-pentyl group, tert-butyl group, tert-amyl group and the like branched alkyl groups; fluoromethyl group, difluoromethyl group Group, trifluoromethyl group, 2-fluoroethyl group, 2,2-difluoroethyl group, 2,2,2-trifluoroethyl group, 3-fluoropropyl group, 3-chloropropyl group, 3,3-difluoropropyl group Halogenated alkyl groups such as 3,3,3-trifluoropropyl, 2,2,3,3
  • R 1 hydrogen atom, fluorine atom, methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, isopropyl group, sec-butyl group, 2 -Pentyl group, tert-butyl group, tert-amyl group, trifluoromethyl group, 2-fluoroethyl group, cyclopropyl group, cyclobutyl group, cyclohexyl group, vinyl group, 1-propen-1-yl group, 2-propene -1-yl group, 1-propen-2-yl group, ethynyl group, 2-propynyl group, 2-butynyl group, benzyl group, 4-methylbenzyl group, phenyl group, 4-methylphenyl group, acetyloxy group, Propionyloxy group, fluorosulfonyloxy group
  • R 2 and R 3 independently include halogen atoms such as hydrogen atom, fluorine atom, chlorine atom and bromine atom; methyl group, ethyl group, n-propyl group, n-butyl group, n- Straight-chain alkyl groups such as pentyl group and n-hexyl group; branched alkyl groups such as isopropyl group, sec-butyl group, 2-pentyl group, pentan-3-yl group, tert-butyl group and tert-amyl group Alkyl group; fluoromethyl group, difluoromethyl group, trifluoromethyl group, 2-fluoroethyl group, 2,2-difluoroethyl group, 2,2,2-trifluoroethyl group, 3-fluoropropyl group, 3-chloro Propyl, 3,3-difluoropropyl, 3,3,3-trifluoropropyl, 2,2,3,3-t
  • each of R 2 and R 3 independently represents a hydrogen atom, a fluorine atom, a chlorine atom, a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an isopropyl group, a sec-butyl group, or tert.
  • -Butyl group or trifluoromethyl group is preferable, and a hydrogen atom, a fluorine atom or a methyl group is more preferable.
  • R 4 include linear alkyl groups such as methyl, ethyl, n-propyl, n-butyl, n-pentyl and n-hexyl; isopropyl and sec-butyl; Branched alkyl groups such as 2-pentyl group, 3-pentyl group, tert-butyl group, tert-amyl group; fluoromethyl group, chloromethyl group, difluoromethyl group, trifluoromethyl group, 2-fluoroethyl group 2,2,2-trifluoroethyl group, 3-fluoropropyl group, 3-chloropropyl group, 3,3,3-trifluoropropyl group, 2,2,3,3-tetrafluoropropyl group, 2, Halogenated alkyl groups such as 2,3,3,3-pentafluoropropyl group; cycloamides such as cyclopropyl group, cyclobutyl group, cyclopentyl group
  • Aralkyl group phenyl group, 2-methyl Aryl groups such as hexyl group, 3-methylphenyl group, 4-methylphenyl group, 4-tert-butylphenyl group; 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 2-trifluoromethyl Phenyl group, 3-trifluoromethylphenyl group, 4-trifluoromethylphenyl group, 4-fluoro-2-trifluoromethylphenyl group, 4-fluoro-3-trifluoromethylphenyl group, 2,6-difluorophenyl group Halogenated aryl groups such as 3,5-difluorophenyl group, 2,4,6-trifluorophenyl group, 2,3,5,6-tetrafluorophenyl group, perfluorophenyl and the like; methoxycarbonyl group, ethoxycarbonyl group And the like.
  • 2-methyl Aryl groups such as hexyl group, 3-
  • R 4 methyl group, ethyl group, n-propyl group, isopropyl group, tert-butyl group, fluoromethyl group, chloromethyl group, trifluoromethyl group, 2-fluoroethyl group, cyclopropyl group , Cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, vinyl group, 1-propen-1-yl group, ethynyl group, 2-propynyl group, phenyl group, 2-methylphenyl group, 3-methylphenyl group, 4 -Methylphenyl group, 4-fluorophenyl group, 4-trifluoromethylphenyl group, methoxycarbonyl group, or ethoxycarbonyl group is preferable, and methyl group, ethyl group, isopropyl group, trifluoromethyl group, cyclopropyl group, cyclohex
  • R 5 include halogen atoms such as fluorine atom, chlorine atom and bromine atom; straight lines such as methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group and n-hexyl group -Chain alkyl groups; branched alkyl groups such as isopropyl, sec-butyl, 2-pentyl and 3-pentyl; fluoromethyl, chloromethyl, trifluoromethyl and 2,2,2- Halogenated alkyl groups such as trifluoroethyl group and 1,1,2,2,3,3,4,4,4-nonafluorobutyl group; cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group Cycloalkyl groups such as hexyl group; alkenyl groups such as vinyl group, 1-propen-1-yl group, 2-propyl
  • R 6 and R 7 are each independently a halogen atom such as fluorine atom, chlorine atom or bromine atom; methoxy group, ethoxy group, n-propoxy group, n-butoxy group, n-pentoxy group, straight-chain alkoxy groups such as n-hexyloxy group; branched alkoxy such as isopropoxy group, sec-butoxy group, 2-pentoxy group, pentan-3-yloxy group, tert-butoxy group, tert-amyloxy group and the like Group: 2-fluoroethoxy group, 2,2-difluoroethoxy group, 2,2,2-trifluoroethyl group, 3-fluoropropyl group, 3-chloropropyl group, 3,3-difluoropropoxy group, 3,3 Halogen such as 3, 3-trifluoropropoxy group, 2,2,3,3-tetrafluoropropoxy group, 2,2,3,3,3-pentafluoropropoxy group
  • R 6 and R 7 each independently represent a fluorine atom, chlorine atom, methoxy group, ethoxy group, n-propoxy group, n-butoxy group, isopropoxy group, sec-butoxy group, tert-butoxy group Group, 2,2-difluoroethoxy group, 2,2,2-trifluoroethoxy group, 2,2,3,3-tetrafluoropropoxy group, 2,2,3,3,3-pentafluoropropoxy group, phenoxy Group, 2-methyl phenoxy group, 3-methyl phenoxy group, 4-methyl phenoxy group, 2-fluoro phenoxy group 4- fluoro phenoxy group, or 4- trifluoromethyl phenoxy group is preferable, and a fluorine atom, a methoxy group, an ethoxy group , 2,2-difluoroethoxy, 2,2,2-trifluoroethoxy or phenoxy is more preferred.
  • E15, F1 to F3, F5 to F7, F9 to F11, and G1 to G3 are preferably at least one member selected from the group consisting of A1, A2, A4, A7, A8, A16 to A18.
  • Dioxolan-4-yl sulfolofluoridate (structural formula C1), 2-oxo-1,3-dioxolan-4-yl methanesulfonate (structural formula C2), 2-oxo 1,3-dioxolan-4-yl trifluoromethanesulfonate (structural formula C7), 2-oxo-1,3-dioxolan-4-yl ethene sulfonate (structural formula C9), methyl (2-oxo-1,3-dioxolane 4-yl) sulfate (structural formula C17), 5-fluoro-2-oxo-1,3-dioxolan-4-yl methanesulfonate (structural formula C18), 5-methyl-2-oxo-1,3-dioxolane -4-yl methanesulfonate (structural formula C19), 2-oxo-1,3-dioxolane-4,5
  • particularly preferred compounds are 2-oxo-1,3-dioxolan-4-yl acetate (structural formula A1), 2-oxo-1,3-dioxolan-4-yl 2,2,2-triacetate Fluoroacetate (Structural formula A4), 2-oxo-1,3-dioxolan-4-yl acrylate (Structural formula A7), 2-oxo-1,3-dioxolan-4-yl methacrylate (Structural formula A8), bis ( 2-oxo-1,3-dioxolan-4-yl) oxalate (structural formula B1), 2-oxo-1,3-dioxolan-4-yl sulfolofluoridate (structural formula C1), 2-oxo-1, 3-Dioxolan-4-yl methanesulfonate (structural formula C2), 2-oxo-1,3-dioxolan-4
  • the (2-oxo-1,3-dioxolan-4-yl) oxy derivative compound of the present invention can be synthesized by the following two methods, but is not limited to these methods.
  • A Method by the reaction of an alkyl halide and a potassium salt of carboxylic acid
  • the above compound is obtained by reacting an alkyl halide and a potassium salt of carboxylic acid in a solvent by the method described in Chemische Berichte, 1970, 112 , 148. Can.
  • the above-mentioned compound can be obtained by reacting an alkyl halide and silver sulfonate in a solvent by the method described in Synthesis, 1971, 150.
  • the content of the (2-oxo-1,3-dioxolan-4-yl) oxy compound represented by the above general formula (I) contained in the non-aqueous electrolytic solution is not particularly limited.
  • the content is preferably 0.01 to 10% by mass in the water electrolyte. If the content is 10% by mass or less, there is little possibility that the film is excessively formed on the electrode and the low temperature characteristics are deteriorated, and if it is 0.01% by mass or more, the formation of the film is sufficient and a wide temperature
  • the above range is preferable because the improvement effect of the electrochemical characteristics in the range is enhanced.
  • the content is more preferably 0.05% by mass or more in the non-aqueous electrolyte, and still more preferably 0.1% by mass or more. Moreover, 5 mass% or less is more preferable, and, as for the upper limit, 3 mass% or less is still more preferable.
  • the (2-oxo-1,3-dioxolan-4-yl) oxy compound represented by the above general formula (I) is described in the following non-aqueous solvent, electrolyte salt, and others.
  • the combination of additives produces a unique effect that the electrochemical properties are synergistically improved over a wide temperature range.
  • Non-aqueous solvent As a non-aqueous solvent used for the non-aqueous electrolyte solution of this invention, 1 type (s) or 2 or more types selected from the group which consists of cyclic carbonate, chain
  • a chain ester more preferably to include a chain carbonate, and further to include both a cyclic carbonate and a chain ester.
  • both cyclic carbonate and linear carbonate are preferably included.
  • the term "linear ester" is used as a concept including linear carbonate and linear carboxylic acid ester.
  • the cyclic carbonates include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 4-fluoro-1,3-dioxolan-2-one (FEC), trans or Cis-4,5-difluoro-1,3-dioxolan-2-one (hereinafter collectively referred to as “DFEC”), vinylene carbonate (VC), vinyl ethylene carbonate (VEC), and 4-ethynyl-1 And 3-dioxolan-2-one (EEC), and ethylene carbonate (EC), propylene carbonate (PC), 4-fluoro-1,3-dioxolan-2-one (EC), and the like.
  • FEC vinylene carbonate
  • VC vinylene carbonate
  • VC 4-ethynyl-1,3-dioxolane
  • One or more members selected from the group consisting of 2-one is more preferred.
  • cyclic carbonates having an unsaturated bond such as a carbon-carbon double bond or a carbon-carbon triple bond or a fluorine atom
  • the electrochemical characteristics in a high temperature environment are further improved. It is more preferable to include both a cyclic carbonate containing an unsaturated bond such as a carbon-carbon double bond or a carbon-carbon triple bond and a cyclic carbonate having a fluorine atom.
  • VC, VEC, or EEC is preferable as a cyclic carbonate having an unsaturated bond such as a carbon-carbon double bond or a carbon-carbon triple bond
  • FEC or DFEC is preferable as a cyclic carbonate having a fluorine atom.
  • the content of the cyclic carbonate having an unsaturated bond such as a carbon-carbon double bond or a carbon-carbon triple bond is preferably 0.07% by volume or more, more preferably 0.2% by volume, relative to the total volume of the non-aqueous solvent.
  • the upper limit is preferably 7% by volume or less, more preferably 4% by volume or less, and still more preferably 2.5% by volume or less. It is preferable that the content is in the above range, since the electrochemical characteristics in a wider temperature range can be increased without impairing the Li ion permeability.
  • the content of the cyclic carbonate having a fluorine atom is preferably 0.07% by volume or more, more preferably 4% by volume or more, still more preferably 6% by volume or more, based on the total volume of the non-aqueous solvent.
  • the upper limit is preferably 35% by volume or less, more preferably 25% by volume or less, and further 15% by volume or less. It is preferable that the content is in the above range, since the electrochemical characteristics in a wider temperature range can be improved without deteriorating the Li ion permeability.
  • the non-aqueous solvent contains both cyclic carbonate having unsaturated bond such as carbon-carbon double bond or carbon-carbon triple bond and cyclic carbonate having fluorine atom
  • carbon relative to the content of cyclic carbonate having fluorine atom The content of cyclic carbonate having an unsaturated bond such as a carbon double bond or a carbon-carbon triple bond is preferably 0.2% by volume or more, more preferably 3% by volume or more, still more preferably 7% by volume or more
  • the upper limit thereof is preferably 40% by volume or less, more preferably 30% by volume or less, and further preferably 15% by volume or less. It is particularly preferable that the content is in the above range, since the electrochemical characteristics in a wider temperature range can be improved without impairing the Li ion permeability.
  • the non-aqueous solvent contains both ethylene carbonate and a cyclic carbonate having unsaturated bonds such as carbon-carbon double bonds or carbon-carbon triple bonds
  • the electrical properties over a wide temperature range of the film formed on the electrode The content of a cyclic carbonate having an unsaturated bond such as ethylene carbonate and a carbon-carbon double bond or a carbon-carbon triple bond is preferable with respect to the total volume of the non-aqueous solvent, since the chemical properties can be improved. Is 3% by volume or more, more preferably 5% by volume or more, still more preferably 7% by volume or more, and the upper limit thereof is preferably 45% by volume or less, more preferably 35% by volume or less, still more preferably 25% by volume % Or less.
  • These solvents may be used alone or in combination of two or more, since the effect of improving the electrochemical characteristics in a high temperature environment is further improved, which is preferable, and a combination of three or more is used. It is particularly preferred to Preferred combinations of these cyclic carbonates include EC and PC, EC and VC, PC and VC, VC and FEC, EC and FEC, PC and FEC, FEC and DFEC, EC and DFEC, PC and DFEC, VC and DFEC , VEC and DFEC, VC and EEC, EC and EEC, EC and PC and VC, EC and PC and FEC, EC and VC and FEC, EC and VC and VEC, EC and VC and EEC, EC and EEC and FEC, PC And VC and FEC, EC and VC and DFEC, PC and VC and DFEC, EC, PC and VC and FEC, or EC and PC and VC and DFEC, etc.
  • ⁇ Chain ester> As the chain ester, one or more asymmetric chains selected from the group consisting of methyl ethyl carbonate (MEC), methyl propyl carbonate (MPC), methyl isopropyl carbonate (MIPC), methyl butyl carbonate and ethyl propyl carbonate Carbonates; one or more symmetrical linear carbonates selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate and dibutyl carbonate; methyl pivalate, ethyl pivalate, pivalate 1 or 2 or more chain
  • MEC methyl ethy
  • dimethyl carbonate DMC
  • MEC methyl ethyl carbonate
  • MPC methyl propyl carbonate
  • MIPC methyl isopropyl carbonate
  • EA methyl butyl carbonate
  • a linear carbonate having a methyl group is preferable, and in particular, a linear carbonate having a methyl group is preferable.
  • chain ester in which at least one hydrogen atom is substituted by a fluorine atom is included.
  • chained esters in which at least one hydrogen atom is substituted with a fluorine atom include: 2,2-difluoroethyl acetate (DFEA), 2,2,2-trifluoroethyl acetate (TFEA), 2,2 -Difluoroethyl propionate, 2,2,2-trifluoroethyl propionate, methyl 2,2-difluoropropionate, methyl 2,2,2-trifluoropropionate, methyl (2,2-difluoroethyl) 1) At least one member selected from the group consisting of carbonate (MDFEC), methyl (2,2,2- trifluoroethyl) carbonate (MTFEC), and ethyl (2,2,2- trifluoroethyl) carbonate (ETF
  • TFEA 2,2,2-trifluoroethyl acetate
  • MDFEC 2,2-difluoroethyl carbonate
  • MDFEC methyl (2, 2, 2- trifluoroethyl) carbonate
  • EDFEC ethyl (2, 2, 2- trifluoroethyl) carbonate
  • a linear carbonate when using a linear carbonate, it is preferable to use 2 or more types. Furthermore, it is more preferable that both symmetrical linear carbonate and asymmetric linear carbonate are contained, and it is further preferable that the content of symmetrical linear carbonate is larger than that of asymmetric linear carbonate.
  • the content of the linear ester is not particularly limited, but is preferably in the range of 60 to 90% by volume with respect to the total volume of the non-aqueous solvent.
  • the content is 60% by volume or more, the viscosity of the non-aqueous electrolyte does not become too high, and when it is 90% by volume or less, the electrical conductivity of the non-aqueous electrolyte decreases and the electrochemical characteristics in a wide temperature range Since it is less likely to decrease, the above range is preferable.
  • the symmetrical linear carbonate comprises dimethyl carbonate.
  • the asymmetric linear carbonate has a methyl group, and methyl ethyl carbonate (MEC) is particularly preferable. In the above case, the electrochemical characteristics in a wider temperature range are improved, which is preferable.
  • the ratio of cyclic carbonate to linear ester is preferably 10/90 to 45/55, and more preferably 15/85 to 40/60, from the viewpoint of improving the electrochemical properties at high temperatures. Is more preferable, and 20/80 to 35/65 is even more preferable.
  • nonaqueous solvents In the present invention, other nonaqueous solvents can be added in addition to the above-mentioned nonaqueous solvents.
  • Other nonaqueous solvents include cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, etc., chains such as 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane, etc.
  • the content of the other non-aqueous solvent is usually 1% by volume or more, preferably 2% by volume or more, and usually 40% by volume or less, preferably 30% by volume or less, based on the total volume of the non-aqueous solvent Preferably it is 20 volume% or less.
  • additives In order to improve the electrochemical properties over a wider temperature range, it is preferable to further add other additives to the non-aqueous electrolyte.
  • specific examples of the other additives include the following compounds (A) to (I).
  • nitriles selected from the group consisting of acetonitrile, propionitrile, succinonitrile, glutaronitrile, adiponitrile, pimeronitrile, suberonitrile, and sebaconitrile.
  • (F) One or more cyclic acetal compounds selected from the group consisting of 1,3-dioxolane, 1,3-dioxane, and 1,3,5-trioxane.
  • Linear carboxylic acid anhydrides such as acetic anhydride and propionic anhydride, succinic anhydride, maleic anhydride, 3-allyl succinic anhydride, glutaric anhydride, itaconic anhydride, and 3-sulfo-propionic anhydride Or one or more cyclic acid anhydrides selected from the group consisting of
  • cyclic phosphazene compounds selected from the group consisting of methoxypentafluorocyclotriphosphazene, ethoxypentafluorocyclotriphosphazene, phenoxypentafluorocyclotriphosphazene, and ethoxyheptafluorocyclotetraphosphazene.
  • nitriles one or more selected from the group consisting of succinonitrile, glutaronitrile, adiponitrile, and pimeronitrile are more preferable.
  • aromatic compounds one or two selected from biphenyl, terphenyl (o-, m-, p-form), fluorobenzene, cyclohexylbenzene, tert-butylbenzene, and tert-amylbenzene The above is more preferable, and one or more selected from the group consisting of biphenyl, o-terphenyl, fluorobenzene, cyclohexylbenzene and tert-amylbenzene are more preferable.
  • isocyanate compounds (C) one or more selected from hexamethylene diisocyanate, octamethylene diisocyanate, 2-isocyanatoethyl acrylate, and 2-isocyanatoethyl methacrylate are more preferable.
  • the content of the compounds (A) to (C) is preferably 0.01 to 7% by mass in the non-aqueous electrolyte. In this range, the coating is sufficiently formed without becoming too thick, and the electrochemical properties in a wider temperature range are enhanced.
  • the content is more preferably 0.05% by mass or more, further preferably 0.1% by mass or more, still more preferably 0.2% by mass or more, and the upper limit thereof is 5% by mass or less in the non-aqueous electrolyte. Is more preferable, and 3% by mass or less is more preferable.
  • cyclic or chain-like S O group-containing compounds selected from (D) triple bond-containing compounds, (E) sultones, cyclic sulfites, sulfonic acid esters, and vinyl sulfones (however, triple bond-containing compounds, and the aforementioned general compounds) (F) cyclic acetal compounds, (G) phosphorus-containing compounds, (H) cyclic acid anhydrides, or (I) cyclic phosphazene compounds, which do not include specific compounds represented by any of the formulas It is preferable because the electrochemical properties in the temperature range are improved.
  • 2-propynyl methyl carbonate, 2-propynyl methacrylate, 2-propynyl methanesulfonic acid, 2-propynyl vinyl sulfonate, 2-propynyl 2- (methanesulfonyloxy) propionate One or two or more selected from (2-propynyl) ogitalate, methyl 2-propynyl oxyallate, ethyl 2-propynyl oxygenate, and 2-butyne-1,4-diyl dimethanesulfonate are preferable, and methanesulfonic acid 2-propynyl is preferred.
  • 1-type selected from the group consisting of vinylpropanoic acid 2-propynyl, 2- (methanesulfonyloxy) propionic acid 2-propynyl, di (2-propynyl) oxolate, and 2-butyne-1,4-diyl dimethanesulfonate Or two or more Preferred.
  • (E) Of the cyclic or chain-like S O group-containing compounds, 1,3-propane sultone, 1,4-butane sultone, 2,4-butane sultone, 2,2-dioxide-1,2-oxathiolane-4 One or more selected from the group consisting of -yl acetate, ethylene sulfate, pentafluorophenyl methanesulfonate and divinyl sulfone are more preferable.
  • the cyclic acetal compound (F) 1,3-dioxolane or 1,3-dioxane is preferable, and 1,3-dioxane is more preferable.
  • (G) As the phosphorus-containing compound, tris (2,2,2-trifluoroethyl) phosphate, tris (1,1,1,3,3,3-hexafluoropropan-2-yl) phosphate, methyl 2- (Dimethylphosphoryl) acetate, ethyl 2- (dimethylphosphoryl) acetate, methyl 2- (diethylphosphoryl) acetate, ethyl 2- (diethylphosphoryl) acetate, 2-propynyl 2- (dimethylphosphoryl) acetate, 2-propynyl 2 -(Diethylphosphoryl) acetate, methyl 2- (dimethoxyphosphoryl) acetate, ethyl 2- (dimethoxyphosphoryl) acetate, methyl 2- (diethoxyphosphoryl) acetate, ethyl 2- (diethoxyphosphoryl) acetate, 2-propynyl 2- (Dimet Preferred is cyphosphoryl) acetate or 2-propyny
  • the cyclic phosphazene compound is preferably a cyclic phosphazene compound such as methoxypentafluorocyclotriphosphazene, ethoxypentafluorocyclotriphosphazene or phenoxypentafluorocyclotriphosphazene, and is preferably methoxypentafluorocyclotriphosphazene or ethoxypentafluorocyclo Triphosphazene is more preferred.
  • the content of the compounds (D) to (I) is preferably 0.001 to 5% by mass in the non-aqueous electrolyte. In this range, the coating is sufficiently formed without becoming too thick, and the electrochemical properties in a wider temperature range are enhanced.
  • the content is more preferably 0.01% by mass or more, further preferably 0.1% by mass or more, still more preferably 0.2% by mass or more, and the upper limit thereof is 3% by mass or less in the non-aqueous electrolytic solution. Is more preferable, and 2% by mass or less is more preferable.
  • LiFSI lithium bis (fluo
  • lithium salt selected from the group consisting of LiBOB, LiDFOB, LiTFOP, LiDFOP, LiPO 2 F 2 , LiTFMSB, LMS, LES, LFES, FSO 3 Li, and LiFSI, LiDFOP, LiPO It is more preferable to include a lithium salt selected from the group consisting of 2 F 2 , LES, and LiFSI.
  • the total content of the lithium salt in the non-aqueous solvent is preferably 0.001 M or more and 0.5 M or less. Within this range, the effect of improving the electrochemical characteristics in a wide temperature range is further exhibited. Preferably it is 0.01 M or more, More preferably, it is 0.03 M or more, More preferably, it is 0.04 M or more. The upper limit thereof is preferably 0.4 M or less, more preferably 0.2 M or less.
  • M represents mol / L.
  • lithium salt As an electrolyte salt used for this invention, the following lithium salt is mentioned suitably.
  • inorganic lithium salts such as LiPF 6 , LiBF 4 , LiClO 4 , LiPO 2 F 2 , LiN (SO 2 F) 2 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2, LiCF 3 SO 3, LiC (SO 2 CF 3) 3, LiPF 4 (CF 3) 2, LiPF 3 (C 2 F 5) 3, LiPF 3 (CF 3) 3, LiPF 3 (iso-C 3 F 7 ) 3 , lithium salts containing a linear fluorinated alkyl group such as LiPF 5 (iso-C 3 F 7 ), (CF 2 ) 2 (SO 2 ) 2 NLi, (CF 2 ) 3 (SO 2 )
  • LiPF 6 LiBF 4, LiPO 2 F 2, LiN (SO 2 F) 2, LiN (SO 2 CF 3) 2, and LiN (SO 2 C 2 F 5 ) 1 kind or 2 selected from 2
  • the species is more preferable, and LiPF 6 is more preferable.
  • the concentration of the electrolyte salt is preferably 0.3 M or more, more preferably 0.7 M or more, and still more preferably 1.1 M or more, in the non-aqueous electrolyte.
  • the upper limit thereof is preferably 2.5 M or less, more preferably 2.0 M or less, and still more preferably 1.6 M or less.
  • preferable combinations of these electrolyte salts include LiPF 6 and at least one lithium selected from LiBF 4 , LiN (SO 2 CF 3 ) 2 , and LiN (SO 2 F) 2 [LiFSI]. It is preferred that the salt be contained in the non-aqueous electrolyte.
  • the proportion of lithium salt other than LiPF 6 in the non-aqueous solvent is 0.001 M or more, the effect of improving the electrochemical characteristics in a wide temperature range is easily exhibited, and if it is 1.0 M or less, the wide temperature range It is preferable because there is little concern that the improvement effect of the electrochemical characteristics in
  • the content of lithium salt other than LiPF 6 is preferably 0.01 M or more, more preferably 0.03 M or more, still more preferably 0.04 M or more, and the upper limit thereof is preferably 0.8 M or less, more preferably It is 0.6 M or less, more preferably 0.4 M or less.
  • the non-aqueous electrolytic solution of the present invention can be obtained, for example, by mixing the above-mentioned non-aqueous solvent, adding to the above-mentioned electrolytic salt and the above-mentioned non-aqueous electrolytic solution, It can be obtained by adding a 3-dioxolan-4-yl) oxy compound. Under the present circumstances, it is preferable to refine
  • the non-aqueous electrolyte solution of the present invention can be used in the following first to fourth electricity storage devices, and as the non-aqueous electrolyte, not only liquid ones but also gelled ones can be used. Furthermore, the non-aqueous electrolytic solution of the present invention can also be used for solid polymer electrolytes. Above all, it is preferable to use as a first storage battery device (that is, for lithium battery) or a fourth storage battery device (that is, for lithium ion capacitor) that uses lithium salt for electrolyte salt. It is more preferable to use for lithium secondary batteries.
  • the lithium battery which is the first electricity storage device, is a general term for lithium primary batteries and lithium secondary batteries, and the term lithium secondary battery is used as a concept including so-called lithium ion secondary batteries.
  • the lithium battery of the present invention comprises a positive electrode, a negative electrode, and the non-aqueous electrolytic solution in which an electrolyte salt is dissolved in a non-aqueous solvent.
  • the constituent members such as the positive electrode and the negative electrode other than the non-aqueous electrolyte can be used without particular limitation.
  • a positive electrode active material of a positive electrode for a lithium secondary battery a composite metal oxide with lithium containing one or more selected from the group consisting of cobalt, manganese, and nickel is used. These positive electrode active materials can be used singly or in combination of two or more.
  • lithium composite metal oxides for example, LiCoO 2 , LiCo 1 -x M x O 2 (where M is Sn, Mg, Fe, Ti, Al, Zr, Cr, V, Ga, Zn, and One or more elements selected from Cu, 0.001 ⁇ x ⁇ 0.05), LiMn 2 O 4 , LiNiO 2 , LiCo 1-x Ni x O 2 (0.01 ⁇ x ⁇ 1), LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiNi 0.5 Mn 0.3 Co 0.2 O 2 , LiNi 0.8 Mn 0.1 Co 0.1 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 , LiNi 1/2 Mn 3/2 O 4 , solid solution of Li 2 MnO 3 and LiMO 2 (M is a transition metal such as Co, Ni, Mn, Fe, etc.), and LiNi consisting of 1/2 Mn 3/2 O 4 More 1 or more are suitably exemplified chosen, or two or more is more preferable. Further, LiM
  • the electrochemical characteristics are likely to be degraded in a high temperature environment due to a reaction with an electrolyte during charge, but in the lithium secondary battery according to the present invention The deterioration of these electrochemical properties can be suppressed.
  • the non-aqueous solvent is generally decomposed on the surface of the positive electrode by the catalytic action of Ni, and the resistance of the battery tends to increase.
  • the electrochemical characteristics in a high temperature environment tend to be deteriorated, but the lithium secondary battery according to the present invention is preferable because the deterioration of these electrochemical characteristics can be suppressed.
  • the above effect is remarkable when the positive electrode active material in which the ratio of the atomic concentration of Ni to the atomic concentration of all transition metal elements in the positive electrode active material exceeds 10 atomic% is preferable, and 20 atomic% or more is more preferable. And 30 atomic% or more is particularly preferable.
  • LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiNi 0.5 Mn 0.3 Co 0.2 O 2 , LiNi 0.8 Mn 0.1 Co 0.1 O 2 , One or more selected from the group consisting of LiNi 1/2 Mn 3/2 O 4 and LiNi 0.8 Co 0.15 Al 0.05 O 2 is preferably mentioned.
  • a lithium-containing olivine-type phosphate can also be used as the positive electrode active material.
  • a lithium-containing olivine-type phosphate containing one or more selected from the group consisting of iron, cobalt, nickel and manganese include one or more selected from LiFePO 4 , LiCoPO 4 , LiNiPO 4 , LiMnPO 4 , and LiFe 1-x Mn x PO 4 (0.1 ⁇ x ⁇ 0.9).
  • lithium-containing olivine-type phosphates may be substituted with other elements, and some of iron, cobalt, nickel and manganese may be replaced with Co, Mn, Ni, Mg, Al, B, Ti, V, Nb Alternatively, it may be substituted with one or more elements selected from Cu, Zn, Mo, Ca, Sr, W, and Zr, or may be coated with a compound or carbon material containing these other elements. Among these, LiFePO 4 or LiMnPO 4 is preferred.
  • the lithium-containing olivine-type phosphate can also be used, for example, as a mixture with the above-mentioned positive electrode active material.
  • the lithium-containing olivine-type phosphate forms a stable phosphoric acid (PO 4 ) structure and is excellent in thermal stability at the time of charging, so that it can improve the electrochemical characteristics in a wide temperature range.
  • the positive electrode for lithium primary battery CuO, Cu 2 O, Ag 2 O, Ag 2 CrO 4, CuS, CuSO 4, TiO 2, TiS 2, SiO 2, SnO, V 2 O 5, V 6 O 12 , VO x , Nb 2 O 5 , Bi 2 O 3 , Bi 2 Pb 2 O 5 , Sb 2 O 3 , CrO 3 , Cr 2 O 3 , MoO 3 , WO 3 , SeO 2 , MnO 2 , Mn 2 O 3 Oxides or chalcogen compounds of one or more metal elements such as Fe 2 O 3 , FeO, Fe 3 O 4 , Ni 2 O 3 , NiO, CoO 3 , CoO etc., sulfur such as SO 2 , SOCl 2 etc. compounds of the general formula (CF x) fluorocarbon (graphite fluoride) represented by n, and the like. Among these, MnO 2 , V 2 O 5 , fluorinated graphite and the like are preferable.
  • the conductive agent of the positive electrode is not particularly limited as long as it is an electron conductive material which does not cause a chemical change.
  • graphite such as natural graphite (scalate graphite etc.), artificial graphite etc., carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black or thermal black etc. may be mentioned.
  • graphite and carbon black may be appropriately mixed and used.
  • the amount of the conductive agent added to the positive electrode mixture is preferably 1 to 10% by mass, and more preferably 2 to 5% by mass.
  • the positive electrode includes the above-mentioned positive electrode active material as a conductive agent such as acetylene black and carbon black, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), copolymer of styrene and butadiene (SBR), acrylonitrile and butadiene Mixed with a binder such as copolymer (NBR), carboxymethyl cellulose (CMC), ethylene propylene diene terpolymer, etc., added with a high boiling point solvent such as 1-methyl-2-pyrrolidone and kneaded to prepare a positive electrode mixture Then, the positive electrode mixture is applied to an aluminum foil of a current collector, a stainless steel lath plate, etc., dried and pressure-molded, and then under a vacuum at a temperature of about 50 ° C.
  • a conductive agent such as acetylene black and carbon black, polytetrafluoroethylene (PTFE), polyvinylidene flu
  • the density of the part except the collector of the positive electrode is usually at 1.5 g / cm 3 or more, for further increasing the capacity of the battery, it is preferably 2 g / cm 3 or more, more preferably, 3 g / cm 3 It is the above, More preferably, it is 3.6 g / cm 3 or more. The upper limit thereof is preferably 4 g / cm 3 or less.
  • a highly crystalline carbon material such as artificial graphite or natural graphite in the ability to absorb and release lithium ions
  • the lattice spacing (d 002 ) of the lattice plane ( 002 ) is 0.
  • the upper limit of the peak intensity ratio I (110) / I (004) is preferably 0.5 or less, and 0. 0. 3 or less is more preferable.
  • the highly crystalline carbon material (core material) is coated with a carbon material having a lower crystallinity than the core material, because the electrochemical characteristics in a wide temperature range are further improved.
  • the crystallinity of the coated carbon material can be confirmed by transmission electron microscopy (TEM).
  • TEM transmission electron microscopy
  • the use of a highly crystalline carbon material generally tends to react with the non-aqueous electrolyte during charging and to lower the electrochemical properties at low or high temperatures by increasing the interfacial resistance, but the lithium according to the present invention
  • the secondary battery has good electrochemical characteristics in a wide temperature range.
  • metal compounds capable of inserting and extracting lithium ions as the negative electrode active material include Si, Ge, Sn, Pb, P, Sb, Bi, Al, Ga, In, Ti, Mn, Fe, Co, Ni, Examples thereof include compounds containing at least one metal element such as Cu, Zn, Ag, Mg, Sr, or Ba. These metal compounds may be used in any form such as an alloy, an oxide, a nitride, a sulfide, a boride, an alloy with lithium, or any of an alloy, an oxide, an alloy with an oxide or lithium. It is preferable because it can increase the capacity. Among them, one containing at least one element selected from the group consisting of Si, Ge and Sn is preferable, and one containing at least one element selected from Si and Sn is more preferable because the capacity of the battery can be increased.
  • the negative electrode is kneaded using the same conductive agent, binder and high boiling point solvent as in the preparation of the above positive electrode to form a negative electrode mixture, and this negative electrode mixture is then applied to copper foil of the current collector and the like. After drying and pressure molding, it can be manufactured by heat treatment at a temperature of about 50 ° C. to 250 ° C. for about 2 hours under vacuum.
  • the density of the part excluding the current collector of the negative electrode is usually 1.1 g / cm 3 or more, and is preferably 1.5 g / cm 3 or more, more preferably 1.7 g to further increase the capacity of the battery. / cm 3 or more, the upper limit is preferably 2 g / cm 3 or less.
  • lithium metal or a lithium alloy is mentioned as a negative electrode active material for lithium primary batteries.
  • the structure of the lithium battery is not particularly limited, and a coin battery, a cylindrical battery, a prismatic battery, a laminate battery or the like having a single layer or multilayer separator can be applied.
  • the battery separator is not particularly limited, but a microporous film, woven fabric, non-woven fabric, etc. of a single layer or laminated layer of polyolefin such as polypropylene, polyethylene, ethylene-propylene copolymer, etc. can be used.
  • a laminate of polyolefin a laminate of polyethylene and polypropylene is preferable, and a three-layer structure of polypropylene / polyethylene / polypropylene is more preferable.
  • the thickness of the separator is preferably 2 ⁇ m or more, more preferably 3 ⁇ m or more, still more preferably 4 ⁇ m or more, and the upper limit thereof is 30 ⁇ m or less, preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less.
  • the lithium secondary battery according to the present invention is excellent in electrochemical characteristics in a wide temperature range even when the charge termination voltage is 4.2 V or more, particularly 4.3 V or more, and further, the characteristics are excellent even at 4.4 V or more is there.
  • the discharge termination voltage can be usually 2.8 V or more, and further 2.5 V or more, but the lithium secondary battery in the present invention can be 2.0 V or more.
  • the current value is not particularly limited, it is usually used in the range of 0.1 to 30C.
  • the lithium battery in the present invention can be charged and discharged at -40 to 100 ° C, preferably -10 to 80 ° C.
  • a method of providing a safety valve on the battery cover or making a notch in a member such as a battery can or a gasket can also be adopted.
  • a current blocking mechanism that senses the internal pressure of the battery and cuts off the current can be provided on the battery cover.
  • the second electricity storage device of the present invention is an electricity storage device that contains the non-aqueous electrolyte solution of the present invention and stores energy using the electric double layer capacity at the interface between the electrolyte solution and the electrode.
  • One example of the present invention is an electric double layer capacitor.
  • the most typical electrode active material used for this storage device is activated carbon.
  • the bilayer capacity increases approximately in proportion to the surface area.
  • the third electricity storage device of the present invention is an electricity storage device that includes the non-aqueous electrolyte solution of the present invention and stores energy using the electrode doping / dedoping reaction.
  • the electrode active material used in the electricity storage device include metal oxides such as ruthenium oxide, iridium oxide, tungsten oxide, molybdenum oxide and copper oxide, and ⁇ -conjugated polymers such as polyacene and polythiophene derivatives. Capacitors using these electrode active materials can store energy associated with electrode doping / de-doping reactions.
  • a fourth electricity storage device of the present invention is an electricity storage device that includes the non-aqueous electrolyte solution of the present invention and stores energy using intercalation of lithium ions to a carbon material such as graphite which is a negative electrode. It is called a lithium ion capacitor (LIC).
  • the positive electrode include those using an electric double layer between an activated carbon electrode and an electrolytic solution, and those using a doping / dedoping reaction of a ⁇ -conjugated polymer electrode.
  • the electrolyte includes lithium salts such as at least LiPF 6.
  • the (2-oxo-1,3-dioxolan-4-yl) oxy derivative compound which is a novel compound of the present invention is represented by the following general formula (II).
  • R 2 and R 3 each independently represent a hydrogen atom, a halogen atom, or an alkyl group having 1 to 6 carbon atoms, and n represents an integer of 1 to 3.
  • R 5 represents a halogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or 7 to 13 carbon atoms It represents an aralkyl group, an aryl group having 6 to 12 carbon atoms, or an alkoxy group having 1 to 6 carbon atoms.
  • R 6 and R 7 each independently represent a halogen atom, an alkoxy group having 1 to 6 carbon atoms, or an aryloxy group having 6 to 12 carbon atoms.
  • R 9 represents a haloalkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or 7 to 13 carbon atoms in which at least one hydrogen atom is substituted by a halogen atom And an aralkyl group, an aryl group having 6 to 12 carbon atoms, or an alkoxycarbonyl group having 2 to 6 carbon atoms.
  • n is 3
  • at least one hydrogen atom of the alkyl group, the aralkyl group, the aryl group, the alkoxycarbonyl group, the alkoxy group, and the aryloxy group may be substituted by a halogen atom.
  • R 8 include halogen atoms such as hydrogen atom, fluorine atom, chlorine atom and bromine atom; methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group and the like Straight-chain alkyl groups of: branched alkyl groups such as isopropyl group, sec-butyl group, 2-pentyl group, 3-pentyl group, tert-butyl group, tert-amyl group, etc .; fluoromethyl group, difluoromethyl group , Trifluoromethyl group, 2-fluoroethyl group, 2,2-difluoroethyl group, 2,2,2-trifluoroethyl group, 3-fluoropropyl group, 3-chloropropyl group, 3,3-difluoropropyl group And halogenated alkyl groups such as 3,3,3-trifluoropropyl
  • R 9 is a fluoromethyl group, chloromethyl group, difluoromethyl group, trifluoromethyl group, 2-fluoroethyl group, 2,2,2-trifluoroethyl group, 3-fluoropropyl group, 3-chloropropyl group Halogenated alkyl groups such as 3,3,3-trifluoropropyl group, 2,2,3,3-tetrafluoropropyl group, 2,2,3,3,3-pentafluoropropyl group; cyclopropyl group, Cycloalkyl groups such as cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl; ethynyl, 2-propynyl, 2-butynyl, 3-butynyl, 4-heptynyl, 1-methyl-2-propynyl, Alkynyl groups such as 1,1-dimethyl-2-propynyl group, 1-methyl-3-butynyl group, 1-methyl
  • fluoromethyl group trifluoromethyl group, 2-fluoroethyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, ethynyl group, 2-propynyl group, phenyl group, 2-methyl group A phenyl group, 3-methylphenyl group, 4-methylphenyl group, 4-fluorophenyl group, 4-trifluoromethylphenyl group, methoxycarbonyl group or ethoxycarbonyl group is preferable, and a trifluoromethyl group, cyclopropyl group, cyclohexyl A group, ethynyl group, phenyl group, 4-fluorophenyl group, 4-trifluorophenyl group, methoxycarbonyl group or ethoxycarbonyl group is more preferable.
  • Specific compounds represented by the general formula (II) are the same as described and preferred in the specific compounds of the general formula (I) except for compounds having a structural formula of A1 to A3, A7 to A8, or A20. It is.
  • the filtrate is concentrated under reduced pressure, diethyl ether is added to the residue, and filtration is performed to obtain 2.00 g (yield 44%) of the target 2-oxo-1,3-dioxolan-4-yl methanesulfonate as a white solid.
  • the obtained 2-oxo-1,3-dioxolan-4-yl methanesulfonate was subjected to measurement of 1 H-NMR spectrum to confirm its structure. The results are shown below.
  • Synthesis Example 4 [Synthesis of 2-oxo-1,3-dioxolan-4-yl 2,2,2-trifluoroacetate (Structural Formula A4)]
  • silver methanesulfonate is changed to silver trifluoroacetate, and in the same manner as in the synthesis example 3, the target 2-oxo-1,3-dioxolan-4-yl 2,2,2-trifluoroacetate was obtained as a colorless oil.
  • the 1 H-NMR spectrum of the obtained 2-oxo-1,3-dioxolan-4-yl 2,2,2-trifluoroacetate was measured to confirm its structure. The results are shown below.
  • Synthesis Example 5 Synthesis of 2-oxo-1,3-dioxolan-4-yl ethene sulfonate (structural formula C9)]
  • the target 2-oxo-1,3-dioxolan-4-yl ethene sulfonate was obtained as a white solid.
  • the obtained 2-oxo-1,3-dioxolan-4-yl ethene sulfonate was subjected to measurement of 1 H-NMR spectrum to confirm its structure. The results are shown below.
  • the target dimethyl (2-oxo-1,3-dioxolan-4-yl) is obtained by isolating the residue by silica gel column chromatography (eluent: n-hexane / ethyl acetate (1: 1 to 1: 4)). 0.72 g (50% yield) of phosphate was obtained as an oil.
  • the obtained dimethyl (2-oxo-1,3-dioxolan-4-yl) phosphate was subjected to measurement of 1 H-NMR spectrum to confirm its structure. The results are shown below.
  • Synthesis Example 7 Synthesis of Diethyl (2-oxo-1,3-dioxolan-4-yl) phosphate (Structural Formula E11)]
  • dimethyl phosphate was changed to diethyl phosphate, and in the same manner as in Synthesis Example 6, the target diethyl (2-oxo-1,3-dioxolan-4-yl) phosphate was obtained as a white solid.
  • the obtained diethyl (2-oxo-1,3-dioxolan-4-yl) phosphate was subjected to measurement of 1 H-NMR spectrum to confirm its structure. The results are shown below.
  • Examples 1 to 24 and Comparative Examples 1 to 2 [Fabrication of lithium ion secondary battery] LiNi 0.33 Mn 0.33 Co 0.34 O 2 94% by mass, acetylene black (conductive agent) 3% by mass are mixed, and 3% by mass of polyvinylidene fluoride (binding agent) in advance is 1-methyl-2- The mixture was added to a solution dissolved in pyrrolidone and mixed to prepare a positive electrode mixture paste. The positive electrode material mixture paste was applied to one side of an aluminum foil (current collector), dried and pressurized, and cut into a predetermined size to prepare a strip-shaped positive electrode sheet. The density of the portion of the positive electrode excluding the current collector was 3.6 g / cm 3 .
  • a negative electrode mixture paste was prepared by adding 5% by mass to a solution in which 1% by mass was dissolved in 1-methyl-2-pyrrolidone and mixing.
  • the negative electrode material mixture paste was applied to one side of a copper foil (current collector), dried and pressurized, and cut into a predetermined size to prepare a negative electrode sheet.
  • the density of the part except the current collector of the negative electrode was 1.5 g / cm 3 .
  • the peak intensity I of the (110) plane of the graphite crystal and the ratio of the peak intensity I (004) of the (004) plane [I (110) / I (004) ) was 0.1.
  • the obtained positive electrode sheet, microporous polyethylene film separator, and negative electrode sheet were laminated in this order, and the non-aqueous electrolytic solution of the composition shown in Table 1 and Table 2 was added to prepare a laminate type battery.
  • Discharge capacity maintenance rate after high temperature cycle Using the battery fabricated by the above method, the battery is charged to a final voltage of 4.25 V for 3 hours at a constant current of 1 C and a constant voltage in a thermostatic chamber at 55 ° C., and then a discharge voltage of 3.0 V under a constant current of 1 C The discharging up to 1 cycle was repeated until this reached 300 cycles. And the discharge capacity maintenance factor after a cycle was calculated
  • required by the following formula. Discharge capacity retention rate (%) (discharge capacity at 300th cycle / discharge capacity at 1st cycle) ⁇ 100
  • Example 25 and Comparative Example 3 A positive electrode sheet was produced using lithium nickel manganate (LiNi 1/2 Mn 3/2 O 4 , positive electrode active material) in place of the positive electrode active material used in Example 1 and Comparative Example 1. 94% by mass of LiNi 1/2 Mn 3/2 O 4 coated with amorphous carbon and 3% by mass of acetylene black (conductive agent) are mixed, and 3% by mass of polyvinylidene fluoride (binding agent) is mixed in advance. The solution was added to a solution dissolved in methyl-2-pyrrolidone and mixed to prepare a positive electrode mixture paste.
  • lithium nickel manganate LiNi 1/2 Mn 3/2 O 4 coated with amorphous carbon and 3% by mass of acetylene black (conductive agent)
  • conductive agent 3% by mass of polyvinylidene fluoride (binding agent) is mixed in advance.
  • the solution was added to a solution dissolved in methyl-2-pyrrolidone and mixed to prepare a positive electrode mixture paste.
  • This positive electrode material mixture paste was applied on one side of an aluminum foil (current collector), dried, pressurized and cut into a predetermined size to prepare a positive electrode sheet, and the charge termination voltage at the time of battery evaluation.
  • a laminate type battery was produced in the same manner as in Example 4 and Comparative Example 1 except that the discharge termination voltage was set to 2.7 V, and the battery evaluation was performed. The results are shown in Table 4.
  • Examples 26, 27 and Comparative Example 4 A negative electrode sheet was produced using lithium titanate (Li 4 Ti 5 O 12 , a negative electrode active material) in place of the negative electrode active material used in Example 4 and Comparative Example 1. 80% by mass of lithium titanate and 15% by mass of acetylene black (conductive agent) are mixed, and 5% by mass of polyvinylidene fluoride (binder) is added to a solution previously dissolved in 1-methyl-2-pyrrolidone The mixture was mixed to prepare a negative electrode mixture paste. The negative electrode material mixture paste was applied to one side of a copper foil (current collector), dried, pressurized and cut into a predetermined size to prepare a negative electrode sheet, and the charge termination voltage at the time of battery evaluation.
  • lithium titanate Li 4 Ti 5 O 12
  • a negative electrode active material a negative electrode active material
  • Example 5 In the same manner as in Example 1 and Comparative Example 1, except that the voltage of the discharge was 2.8 V and the discharge end voltage was 1.2 V, and the composition of the non-aqueous electrolyte was changed to a predetermined one, a laminate type battery was produced. The battery was evaluated. The results are shown in Table 5.
  • Example 25 and Comparative Example 3 the same applies to the case where lithium titanate is used for the negative electrode and the case where lithium titanate is used for the negative electrode from the comparison of Examples 26 to 27 and Comparative Example 4 Effect is seen. Therefore, it is clear that the effect of the present invention is not dependent on a specific positive electrode or negative electrode.
  • non-aqueous electrolyte of the present invention also has the effect of improving the discharge characteristics of the lithium primary battery in a wide temperature range.
  • the non-aqueous electrolytic solution of the present invention By using the non-aqueous electrolytic solution of the present invention, it is possible to obtain an electricity storage device having excellent electrochemical characteristics in a wide temperature range.
  • the electric storage devices when used as a non-aqueous electrolyte for storage devices such as lithium secondary batteries mounted in hybrid electric vehicles, plug-in hybrid electric vehicles, battery electric vehicles, etc., the electric storage devices whose electrochemical characteristics are unlikely to deteriorate over a wide temperature range You can get
  • the novel compounds of the present invention due to their special structures, are generally used as materials for electrolyte applications, heat resistant applications, etc. in the fields of general chemistry, in particular in the fields of organic chemistry, electrochemistry, biochemistry and polymer chemistry. Are useful as intermediate materials such as electronic materials and polymer materials, or as battery materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)

Abstract

非水溶媒に電解質塩が溶解されている非水電解液であって、下記一般式(I)で表される(2-オキソ-1,3-ジオキソラン-4-イル)オキシ化合物を含有することを特徴とする、広い温度範囲での電気化学特性を向上できる非水電解液、蓄電デバイス、及び新規な(2-オキソ-1,3-ジオキソラン-4-イル)オキシ化合物を提供する。 (式中、R1は、水素原子、ハロゲン原子、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アラルキル基、アリール基、-OC(=O)-R4、-OS(=O)2-R5、又は-OP(=O)(-R6)-R7を示す。R2及びR3は、それぞれ独立に、水素原子、ハロゲン原子、又はアルキル基を示し、nは1~3の整数を示す。R4は、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アラルキル基、アリール基、又はアルコキシカルボニル基を示す。R5は、ハロゲン原子、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アラルキル基、アリール基、又はアルコキシ基を示す。R6及びR7は、それぞれ独立に、ハロゲン原子、アルコキシ基、又はアリールオキシ基を示す。nが1の場合、L1は-C(=O)-R4、-S(=O)2-R5、又は-P(=O)(-R6)-R7を示し、nが2の場合、L1は-C(=O)C(=O)-、-S(=O)2-、又は-P(=O)(-R6)-を示し、nが3の場合、L1は-P(=O)(-)2を示す。)

Description

非水電解液及びそれを用いた蓄電デバイス
 本発明は、広い温度範囲での電気化学特性を向上できる非水電解液及びそれを用いた蓄電デバイスに関する。
 近年、蓄電デバイス、特にリチウム二次電池は、携帯電話やノート型パソコン等の小型電子機器の電源、電気自動車や電力貯蔵用の電源として広く使用されている。これらの電子機器や自動車は、真夏の高温下や極寒の低温下等の広い温度範囲で使用される可能性があるため、広い温度範囲でバランス良く電気化学特性を向上させることが求められている。
 特に地球温暖化防止のため、CO排出量を削減することが急務となっており、リチウム二次電池やキャパシタ等の蓄電デバイスからなる蓄電装置を搭載した環境対応車の中でも、ハイブリッド電気自動車(HEV)、プラグインハイブリッド電気自動車(PHEV)、バッテリー電気自動車(BEV)の早期普及が求められている。自動車は移動距離が長いため、熱帯の非常に暑い地域から極寒の地域まで幅広い温度範囲の地域で使用される可能性がある。従って、特にこれらの車載用の蓄電デバイスは、高温から低温まで幅広い温度範囲で使用しても電気化学特性が低下しないことが要求されている。
 なお、本明細書において、リチウム二次電池という用語は、いわゆるリチウムイオン二次電池も含む概念として用いる。
 リチウム二次電池は、主にリチウムイオンを吸蔵及び放出可能な材料を含む正極及び負極、リチウム塩、並びに非水溶媒からなる非水電解液から構成され、非水溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)等のカーボネートが使用されている。
 また、リチウム二次電池の負極としては、金属リチウム、リチウムイオンを吸蔵及び放出可能な金属化合物(金属単体、金属酸化物、リチウムとの合金等)や炭素材料が知られている。特にリチウムイオンを吸蔵及び放出することが可能なコークス、人造黒鉛、天然黒鉛等の炭素材料を用いたリチウム二次電池が広く実用化されている。
 例えば、天然黒鉛や人造黒鉛等の高結晶化した炭素材料を負極材料として用いたリチウム二次電池は、非水電解液中の溶媒が充電時に負極表面で還元分解することにより発生した分解物やガスが負極表面に堆積し、電池の望ましい電気化学的反応を阻害するため、サイクル特性の低下を生じることが分かっている。また、非水溶媒の分解物が蓄積すると、負極へのリチウムイオンの吸蔵及び放出がスムーズにできなくなり、広い温度範囲で使用した場合における電気化学特性が低下しやすくなる。
 更に、リチウム金属やその合金、スズ又はケイ素等の金属単体や金属酸化物を負極材料として用いたリチウム二次電池は、初期の容量は高いものの、蓄電デバイスとして使用中に微粉化が進むため、炭素材料の負極に比べて非水溶媒の還元分解が加速的に起こり、電池容量やサイクル特性のような電池性能が大きく低下することが知られている。また、これらの負極材料の微粉化や非水溶媒の分解物が蓄積すると、負極へのリチウムイオンの吸蔵及び放出がスムーズにできなくなり、広い温度範囲で使用した場合における電気化学特性が低下しやすくなる。
 一方、正極材料として、例えばLiCoO、LiMn、LiNiO、LiFePO等を用いたリチウム二次電池は、非水電解液中の非水溶媒が充電状態で正極材料と非水電解液との界面において、局部的に一部酸化分解することにより発生した分解物やガスが負極表面に堆積し、電池の望ましい電気化学的反応を阻害するため、やはり広い温度範囲で使用した場合における電気化学特性の低下を生じることが分かっている。
 以上のように、正極上や負極上で非水電解液が分解するときの分解物やガスにより、リチウムイオンの移動が阻害されたり、電池が膨れたりすることで電池性能が低下していた。そのような状況にも関わらず、リチウム二次電池が搭載されている電子機器の多機能化はますます進み、電力消費量が増大する流れにある。そのため、リチウム二次電池の高容量化はますます進んでおり、電極の密度を高めたり、電池内の無駄な空間容積を減らす等しており、電池内の非水電解液の占める体積が小さくなっている。従って、少しの非水電解液の分解で、広い温度範囲で使用した場合における電気化学特性が低下しやすい状況にある。
 特許文献1には、電解質塩及び電解液溶媒を含む二次電池用電解液において、前記電解液が、環状カーボネート基とスルホネート基がアルキレン基を介して結合した化合物を含む電解液が開示されている。特許文献1には、前記化合物の1つとして、1,3-ジオキソラン-2-オニルメチルアリルスルホネートが記載されており、電解液に添加することで電池のサイクル後の放電容量維持率が向上するとされている。
国際公開第2008/035928号
 本発明は、広い温度範囲での電気化学特性を向上できる非水電解液、それを用いた蓄電デバイス、及び新規な(2-オキソ-1,3-ジオキソラン-4-イル)オキシ化合物を提供することを目的とする。
 特許文献1には、高温保存後の低温放電特性を向上させる効果については、全く記載も示唆もされていない。
 本発明者らは、特許文献1の電解液の性能について詳細に検討した結果、特許文献1の電解液を用いた二次電池では、高温下でのサイクル特性及び高温保存後の低温放電特性等の広い温度範囲での電気化学特性を向上させるという課題に対しては十分な効果が得られていないのが実情であった。
 そこで、本発明者らは、上記課題を解決するために鋭意研究を重ね、非水溶媒に電解質塩が溶解されている非水電解液において、特定の化合物を含有させることで、広い温度範囲で蓄電デバイスの電気化学特性、特にリチウム電池の電気化学特性を改善できることを見出し、本発明を完成した。
 すなわち、本発明は、下記の(1)、(2)及び(3)を提供するものである。
 (1)非水溶媒に電解質塩が溶解されている非水電解液であって、下記一般式(I)で表される(2-オキソ-1,3-ジオキソラン-4-イル)オキシ化合物を含有することを特徴とする非水電解液。
Figure JPOXMLDOC01-appb-C000003
(式中、Rは、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、炭素数7~13のアラルキル基、炭素数6~12のアリール基、-OC(=O)-R、-OS(=O)-R、又は-OP(=O)(-R)-Rを示す。R及びRは、それぞれ独立に、水素原子、ハロゲン原子、又は炭素数1~6のアルキル基を示し、nは1~3の整数を示す。
 Rは、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、炭素数7~13のアラルキル基、炭素数6~12のアリール基、又は炭素数2~6のアルコキシカルボニル基を示す。Rは、ハロゲン原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、炭素数7~13のアラルキル基、炭素数6~12のアリール基、又は炭素数1~6のアルコキシ基を示す。また、R及びRは、それぞれ独立に、ハロゲン原子、炭素数1~6のアルコキシ基、又は炭素数6~12のアリールオキシ基を示す。
 nが1の場合、Lは、-C(=O)-R、-S(=O)-R、又は-P(=O)(-R)-Rを示し、nが2の場合、Lは、-C(=O)C(=O)-、-S(=O)-、又は-P(=O)(-R)-を示し、nが3の場合、Lは、-P(=O)(-)を示す。
 また、アルキル基、アラルキル基、アリール基、アルコキシカルボニル基、アルコキシ基、及びアリールオキシ基の少なくとも1つの水素原子はハロゲン原子で置換されていてもよい。)
 (2)正極、負極、及び非水溶媒に電解質塩が溶解されている非水電解液を備えた蓄電デバイスであって、該非水電解液が前記(1)に記載の非水電解液であることを特徴とする蓄電デバイス。
 (3)下記一般式(II)で表される(2-オキソ-1,3-ジオキソラン-4-イル)オキシ化合物。
Figure JPOXMLDOC01-appb-C000004
(式中、Rは、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、炭素数7~13のアラルキル基、炭素数6~12のアリール基、-OC(=O)-R、-OS(=O)-R、又は-OP(=O)(-R)-Rを示す。R及びRは、それぞれ独立に、水素原子、ハロゲン原子、又は炭素数1~6のアルキル基を示し、nは1~3の整数を示す。
 Rは、ハロゲン原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、炭素数7~13のアラルキル基、炭素数6~12のアリール基、又は炭素数1~6のアルコキシ基を示す。R及びRは、それぞれ独立に、ハロゲン原子、炭素数1~6のアルコキシ基、又は炭素数6~12のアリールオキシ基を示す。Rは、少なくとも1つの水素原子がハロゲン原子で置換された炭素数1~6のハロアルキル基、炭素数3~6のシクロアルキル基、炭素数2~6のアルキニル基、炭素数7~13のアラルキル基、炭素数6~12のアリール基、又は炭素数2~6のアルコキシカルボニル基を示す。
 nが1の場合、Lは、-C(=O)-R、-S(=O)-R、又は-P(=O)(-R)-Rを示し、nが2の場合、Lは、-C(=O)C(=O)-、-S(=O)-、又は-P(=O)(-R)-を示し、nが3の場合、Lは、-P(=O)(-)を示す。
 また、アルキル基、アラルキル基、アリール基、アルコキシカルボニル基、アルコキシ基、及びアリールオキシ基の少なくとも1つの水素原子はハロゲン原子で置換されていてもよい。)
 なお、本明細書中に記載する-P(=O)(-)なる部分構造は、下記一般式(III)で表される構造を意味する。
Figure JPOXMLDOC01-appb-C000005
 本発明によれば、広い温度範囲での蓄電デバイスの電気化学特性、特に高温充電保存後の低温放電特性を向上できる非水電解液、それを用いたリチウム二次電池等の蓄電デバイス、及び新規な(2-オキソ-1,3-ジオキソラン-4-イル)オキシ化合物を提供することができる。
 本発明は、非水電解液及びそれを用いた蓄電デバイスに関する。
〔非水電解液〕
 本発明の非水電解液は、非水溶媒に電解質塩が溶解されている非水電解液であって、非水電解液中に一般式(I)で表される(2-オキソ-1,3-ジオキソラン-4-イル)オキシ化合物を含有することを特徴とする。
 本発明の非水電解液が、広い温度範囲で蓄電デバイスの電気化学特性を大幅に改善できる理由は必ずしも明らかではないが、以下のように考えられる。
 本発明で使用される化合物は、一般式(I)に記載のとおり、アルキレン基を介さず極性基が環に直接結合した環状カーボネートである。その為、特許文献1に記載の環状カーボネート基と極性基であるスルホネート基がアルキレン基を介して結合した化合物である1,3-ジオキソラン-2-オニルメチルアリルスルホネートよりも電気化学的な分解をうけやすく、正極及び負極上に緻密で耐熱性の高い被膜を形成する。その為、高温充電保存後の低温放電特性のような広い温度範囲での電気化学特性を向上させることができると考えられる。
〔一般式(I)で表される化合物〕
 本発明の非水電解液に含まれる化合物は、下記一般式(I)で表される(2-オキソ-1,3-ジオキソラン-4-イル)オキシ化合物である。
Figure JPOXMLDOC01-appb-C000006
(式中、Rは、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、炭素数7~13のアラルキル基、炭素数6~12のアリール基、-OC(=O)-R、-OS(=O)-R、又は-OP(=O)(-R)-Rを示す。R及びRは、それぞれ独立に、水素原子、ハロゲン原子、又は炭素数1~6のアルキル基を示し、nは1~3の整数を示す。
 Rは、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、炭素数7~13のアラルキル基、炭素数6~12のアリール基、又は炭素数2~6のアルコキシカルボニル基を示す。Rは、ハロゲン原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、炭素数7~13のアラルキル基、炭素数6~12のアリール基、又は炭素数1~6のアルコキシ基を示す。また、R及びRは、それぞれ独立に、ハロゲン原子、炭素数1~6のアルコキシ基、又は炭素数6~12のアリールオキシ基を示す。
 nが1の場合、Lは、-C(=O)-R、-S(=O)-R、又は-P(=O)(-R)-Rを示し、nが2の場合、Lは、-C(=O)C(=O)-、-S(=O)-、又は-P(=O)(-R)-を示し、nが3の場合、Lは、-P(=O)(-)を示す。
 また、アルキル基、アラルキル基、アリール基、アルコキシカルボニル基、アルコキシ基、及びアリールオキシ基の少なくとも1つの水素原子はハロゲン原子で置換されていてもよい。)
 前記Rの具体例としては、水素原子、フッ素原子、塩素原子、臭素原子等のハロゲン原子;メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基等の直鎖のアルキル基;イソプロピル基、sec-ブチル基、2-ペンチル基、3-ペンチル基、tert-ブチル基、tert-アミル基等の分枝鎖のアルキル基;フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2-フルオロエチル基、2,2-ジフルオロエチル基、2,2,2-トリフルオロエチル基、3-フルオロプロピル基、3-クロロプロピル基、3,3-ジフルオロプロピル基、3,3,3-トリフルオロプロピル基、2,2,3,3-テトラフルオロプロピル基、2,2,3,3,3-ペンタフルオロプロピル基等のハロゲン化アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基;ビニル基、1-プロペン-1-イル基、2-プロペン-1-イル基、1-プロペン-2-イル基、2-ブテン-1-イル基、3-ブテン-1-イル基、4-ペンテン-1-イル基、5-ヘキセン-1-イル基、1-プロペン-2-イル基、1-ブテン-2-イル基、2-メチル-2-プロペン-1-イル基等のアルケニル基;エチニル基、2-プロピニル基、2-ブチニル基、3-ブチニル基、4-ヘプチニル基、1-メチル-2-プロピニル基、1,1-ジメチル-2-プロピニル基、1-メチル-3-ブチニル基、1-メチル-4-ヘプチニル基等のアルキニル基;ベンジル基、4-メチルベンジル基、4-tert-ブチルベンジル基、4-フルオロベンジル基、4-クロロベンジル基、1-フェニルエタン-1-イル基、2-フェニルエタン-1-イル基、3-フェニルプロパン-1-イル基等のアラルキル基;フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、4-tert-ブチルフェニル基等のアリール基;2-フルオロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基、2-トリフルオロメチルフェニル基、3-トリフルオロメチルフェニル基、4-トリフルオロメチルフェニル基、4-フルオロ-2-トリフルオロメチルフェニル基、4-フルオロ-3-トリフルオロメチルフェニル基、2,6-ジフルオロフェニル基、3,5-ジフルオロフェニル基、2,4,6-トリフルオロフェニル基、2,3,5,6-テトラフルオロフェニル基、パーフルオロフェニル等のハロゲン化アリール基;アセチルオキシ基、プロピオニルオキシ基、フルオロスルホニルオキシ基、メタンスルホニルオキシ基、ビニルスルホニルオキシ基、ジフルオロホスホリル基、ジメトキシホスホリル基、又はジエトキシホスホリル基等が挙げられる。
 これらの中でも、Rとしては、水素原子、フッ素原子、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、イソプロピル基、sec-ブチル基、2-ペンチル基、tert-ブチル基、tert-アミル基、トリフルオロメチル基、2-フルオロエチル基、シクロプロピル基、シクロブチル基、シクロヘキシル基、ビニル基、1-プロペン-1-イル基、2-プロペン-1-イル基、1-プロペン-2-イル基、エチニル基、2-プロピニル基、2-ブチニル基、ベンジル基、4-メチルベンジル基、フェニル基、4-メチルフェニル基、アセチルオキシ基、プロピオニルオキシ基、フルオロスルホニルオキシ基、メタンスルホニルオキシ基、ビニルスルホニルオキシ基、ジフルオロホスホリル基、ジメトキシホスホリル基、又はジエトキシホスホリル基が好ましく、水素原子、フッ素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、tert-ブチル基、トリフルオロメチル基、シクロプロピル基、シクロヘキシル基、ビニル基、1-プロペン-1-イル基、1-プロペン-2-イル基、エチニル基、2-プロピニル基、フェニル基、4-メチルフェニル基、アセチルオキシ基、フルオロスルホニルオキシ基、メタンスルホニルオキシ基、ビニルスルホニルオキシ基、ジフルオロホスホリル基、ジメトキシホスホリル基、又はジエトキシホスホリル基がより好ましい。
 前記R及びRの具体例としては、それぞれ独立に、水素原子、フッ素原子、塩素原子、臭素原子等のハロゲン原子;メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基等の直鎖のアルキル基;イソプロピル基、sec-ブチル基、2-ペンチル基、ペンタン-3-イル基、tert-ブチル基、tert-アミル基等の分枝鎖のアルキル基;フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2-フルオロエチル基、2,2-ジフルオロエチル基、2,2,2-トリフルオロエチル基、3-フルオロプロピル基、3-クロロプロピル基、3,3-ジフルオロプロピル基、3,3,3-トリフルオロプロピル基、2,2,3,3-テトラフルオロプロピル基、2,2,3,3,3-ペンタフルオロプロピル基等のハロゲン化アルキル基が挙げられる。
 これらの中でも、R及びRとしては、それぞれ独立に、水素原子、フッ素原子、塩素原子、メチル基、エチル基、n-プロピル基、n-ブチル基、イソプロピル基、sec-ブチル基、tert-ブチル基、又はトリフルオロメチル基が好ましく、水素原子、フッ素原子、又はメチル基がより好ましい。
 前記Rの具体例としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基等の直鎖のアルキル基;イソプロピル基、sec-ブチル基、2-ペンチル基、3-ペンチル基、tert-ブチル基、tert-アミル基等の分枝鎖のアルキル基;フルオロメチル基、クロロメチル基、ジフルオロメチル基、トリフルオロメチル基、2-フルオロエチル基、2,2,2-トリフルオロエチル基、3-フルオロプロピル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、2,2,3,3-テトラフルオロプロピル基、2,2,3,3,3-ペンタフルオロプロピル基等のハロゲン化アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基;ビニル基、1-プロペン-1-イル基、2-プロペン-1-イル基、2-ブテン-1-イル基、3-ブテン-1-イル基、4-ペンテン-1-イル基、5-ヘキセン-1-イル基、1-プロペン-2-イル基、1-ブテン-2-イル基、2-メチル-2-プロペン-1-イル基等のアルケニル基;エチニル基、2-プロピニル基、2-ブチニル基、3-ブチニル基、4-ヘプチニル基、1-メチル-2-プロピニル基、1,1-ジメチル-2-プロピニル基、1-メチル-3-ブチニル基、1-メチル-4-ペンチニル基等のアルキニル基;ベンジル基、4-メチルベンジル基、1-フェニルエタン-1-イル基、2-フェニルエタン-1-イル基、3-フェニルプロパン-1-イル基等のアラルキル基;フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、4-tert-ブチルフェニル基等のアリール基;2-フルオロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基、2-トリフルオロメチルフェニル基、3-トリフルオロメチルフェニル基、4-トリフルオロメチルフェニル基、4-フルオロ-2-トリフルオロメチルフェニル基、4-フルオロ-3-トリフルオロメチルフェニル基、2,6-ジフルオロフェニル基、3,5-ジフルオロフェニル基、2,4,6-トリフルオロフェニル基、2,3,5,6-テトラフルオロフェニル基、パーフルオロフェニル等のハロゲン化アリール基;メトキシカルボニル基、エトキシカルボニル基等のアルコキシカルボニル基が挙げられる。
 これらの中でも、Rとしては、メチル基、エチル基、n-プロピル基、イソプロピル基、tert-ブチル基、フルオロメチル基、クロロメチル基、トリフルオロメチル基、2-フルオロエチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、ビニル基、1-プロペン-1-イル基、エチニル基、2-プロピニル基、フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、4-フルオロフェニル基、4-トリフルオロメチルフェニル基、メトキシカルボニル基、又はエトキシカルボニル基が好ましく、メチル基、エチル基、イソプロピル基、トリフルオロメチル基、シクロプロピル基、シクロヘキシル基、ビニル基、1-プロペン-2-イル基、エチニル基、フェニル基、4-フルオロフェニル基、4-トリフルオロフェニル基、メトキシカルボニル基、又はエトキシカルボニル基がより好ましい。
 前記Rの具体例としては、フッ素原子、塩素原子、臭素原子等のハロゲン原子;メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基等の直鎖のアルキル基;イソプロピル基、sec-ブチル基、2-ペンチル基、3-ペンチル基等の分枝鎖のアルキル基;フルオロメチル基、クロロメチル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、1,1,2,2,3,3,4,4,4-ノナフルオロブチル基等のハロゲン化アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチヘキシル基等のシクロアルキル基、ビニル基、1-プロペン-1-イル基、2-プロペン-1-イル基等のアルケニル基;エチニル基、2-プロピニル基等のアルキニル基;ベンジル基、4-メチルベンジル基、1-フェニルエタン-1-イル基、2-フェニルエタン-1-イル基、3-フェニルプロパン-1-イル基等のアラルキル基;フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、4-tert-ブチルフェニル基等のアリール基;2-フルオロフェニル基、2-クロロフェニル基、2-ブロモフェニル基、4-フルオロフェル基、4-クロロフェニル基、4-トリフルオロメチルフェニル基等のハロゲン化アリール基;メトキシ基、エトキシ基等のアルコキシ基が挙げられる。
 これらの中でも、Rとしては、フッ素原子、メチル基、エチル基、n-プロピル基、トリフルオロメチル基、シクロプロピル基、シクロブチル基、シクロヘキシル基、ビニル基、エチニル基、フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、4-フルオロフェニル基、4-トリフルオロメチルフェニル基、メトキシ基、又はエトキシ基が好ましく、フッ素原子、メチル基、エチル基、プロピル基、ヘキシル基、イソプロピル基、トリフルオロメチル基、シクロヘキシル基、ビニル基、エチニル基、フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、4-フルオロフェニル基、4-トリフルオロメチルフェニル基、又はメトキシ基がより好ましい。
 前記R及びRの具体例としては、それぞれ独立に、フッ素原子、塩素原子、臭素原子等のハロゲン原子;メトキシ基、エトキシ基、n-プロポキシ基、n-ブトキシ基、n-ペントキシ基、n-ヘキシルオキシ基等の直鎖のアルコキシ基;イソプロポキシ基、sec-ブトキシ基、2-ペントキシ基、ペンタン-3-イルオキシ基、tert-ブトキシ基、tert-アミルオキシ基等の分枝鎖のアルコキシ基;2-フルオロエトキシ基、2,2-ジフルオロエトキシ基、2,2,2-トリフルオロエチル基、3-フルオロプロピル基、3-クロロプロピル基、3,3-ジフルオロプロポキシ基、3,3,3-トリフルオロプロポキシ基、2,2,3,3-テトラフルオロプロポキシ基、2,2,3,3,3-ペンタフルオロプロポキシ基等のハロゲン化アルコキシ基;又はフェノキシ基、2-メチルフェノキシ基、3-メチルフェノキシ基、4-メチルフェノキシ基、4-tert-ブチルフェノキシ基、2-フルオロフェノキシ基、2-クロロフェノキシ基、2-ブロモフェノキシ基、4-フルオロフェノキシ基、4-クロロフェノキシ基、4-トリフルオロメチルフェノキシ基等のアリールオキシ基が好適に挙げられる。
 これらの中でも、R及びRとしては、それぞれ独立に、フッ素原子、塩素原子、メトキシ基、エトキシ基、n-プロポキシ基、n-ブトキシ基、イソプロポキシ基、sec-ブトキシ基、tert-ブトキシ基、2,2-ジフルオロエトキシ基、2,2,2-トリフルオロエトキシ基、2,2,3,3-テトラフルオロプロポキシ基、2,2,3,3,3-ペンタフルオロプロポキシ基、フェノキシ基、2-メチルフェノキシ基、3-メチルフェノキシ基、4-メチルフェノキシ基、2-フルオロフェノキシ基4-フルオロフェノキシ基、又は4-トリフルオロメチルフェノキシ基が好ましく、フッ素原子、メトキシ基、エトキシ基、2,2-ジフルオロエトキシ基、2,2,2-トリフルオロエトキシ基、又はフェノキシ基がより好ましい。
 前記一般式(I)で表される化合物の具体例は、以下のとおりである。
(1)nが1、Lが-C(=O)-Rの場合は、以下の化合物が好適に挙げられる。
Figure JPOXMLDOC01-appb-C000007
(2)nが2、Lが-C(=O)C(=O)-の場合は、以下の化合物が好適に挙げられる。
Figure JPOXMLDOC01-appb-C000008
(3)nが1、Lが-S(=O)-Rの場合は、以下の化合物が好適に挙げられる。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
(4)nが2、Lが-S(=O)-の場合は、以下の化合物が好適に挙げられる。
Figure JPOXMLDOC01-appb-C000011

 
(5)nが1、Lが-P(=O)(-R)-Rの場合は、以下の化合物が好適に挙げられる。
Figure JPOXMLDOC01-appb-C000012
(6)nが2、Lが-P(=O)(-R)-の場合は、以下の化合物が好適に挙げられる。
Figure JPOXMLDOC01-appb-C000013
(7)nが3、Lが-P(=O)(-)の場合は、以下の化合物が好適に挙げられる。
Figure JPOXMLDOC01-appb-C000014
 上記化合物の中でも、A1~A10、A14~A19、B1~B3、C1~C9、C11~C20、C24~C27、C32、C34~C36、D1~D3、E1~E3、E5~E8、E10~E13、E15、F1~F3、F5~F7、F9~F11、及びG1~G3の構造式を有する化合物からなる群より選ばれる1種以上が好ましく、A1、A2、A4、A7、A8、A16~A18、B1、B2、C1~C3、C7、C9、C11、C14、C17~C19、C35、C36、D1、D2、E1、E2、E6、E7、E11、E12、F1、F2、F5、F6、F9、F10、G1、及びG2の構造式を有する化合物からなる群より選ばれる1種以上がより好ましく、2-オキソ-1,3-ジオキソラン-4-イル アセテート(構造式A1)、2-オキソ-1,3-ジオキソラン-4-イル 2,2,2-トリフルオロアセテート(構造式A4)、2-オキソ-1,3-ジオキソラン-4-イル アクリレート(構造式A7)、2-オキソ-1,3-ジオキソラン-4-イル メタクリレート(構造式A8)、メチル(2-オキソ-1,3-ジオキソラン-4-イル)オギザレート(構造式A16)、エチル(2-オキソ-1,3-ジオキソラン-4-イル)オギザレート(構造式A17)、ビス(2-オキソ-1,3-ジオキソラン-4-イル)オギザレート(構造式B1)、2-オキソ-1,3-ジオキソラン-4-イル スルホロフルオリデート(構造式C1)、2-オキソ-1,3-ジオキソラン-4-イル メタンスルホネート(構造式C2)、2-オキソ-1,3-ジオキソラン-4-イル トリフルオロメタンスルホネート(構造式C7)、2-オキソ-1,3-ジオキソラン-4-イル エテンスルホネート(構造式C9)、メチル(2-オキソ-1,3-ジオキソラン-4-イル)サルフェート(構造式C17)、5-フルオロ-2-オキソ-1,3-ジオキソラン-4-イル メタンスルホネート(構造式C18)、5-メチル-2-オキソ-1,3-ジオキソラン-4-イル メタンスルホネート(構造式C19)、2-オキソ-1,3-ジオキソラン-4,5-ジイル ジメタンスルホネート(構造式C35)、ビス(2-オキソ-1,3-ジオキソラン-4-イル)サルフェート(構造式D1)、2-オキソ-1,3-ジオキソラン-4-イル ホスホロジフルオリデート(構造式E1)、ジメチル(2-オキソ-1,3-ジオキソラン-4-イル)ホスフェート(構造式E6)、及びジエチル(2-オキソ-1,3-ジオキソラン-4-イル)ホスフェート(構造式E11)からなる群より選ばれる1種以上が更に好ましい。
 上記化合物の中でも、特に好ましい化合物は、2-オキソ-1,3-ジオキソラン-4-イル アセテート(構造式A1)、2-オキソ-1,3-ジオキソラン-4-イル 2,2,2-トリフルオロアセテート(構造式A4)、2-オキソ-1,3-ジオキソラン-4-イル アクリレート(構造式A7)、2-オキソ-1,3-ジオキソラン-4-イル メタクリレート(構造式A8)、ビス(2-オキソ-1,3-ジオキソラン-4-イル)オギザレート(構造式B1)、2-オキソ-1,3-ジオキソラン-4-イル スルホロフルオリデート(構造式C1)、2-オキソ-1,3-ジオキソラン-4-イル メタンスルホネート(構造式C2)、2-オキソ-1,3-ジオキソラン-4-イル トリフルオロメタンスルホネート(構造式C7)、2-オキソ-1,3-ジオキソラン-4-イル エテンスルホネート(構造式C9)、5-フルオロ-2-オキソ-1,3-ジオキソラン-4-イル メタンスルホネート(構造式C18)、5-メチル-2-オキソ-1,3-ジオキソラン-4-イル メタンスルホネート(構造式C19)、2-オキソ-1,3-ジオキソラン-4-イル ホスホロジフルオリデート(構造式E1)、ジメチル(2-オキソ-1,3-ジオキソラン-4-イル)ホスフェート(構造式E6)及びジエチル(2-オキソ-1,3-ジオキソラン-4-イル)ホスフェート(構造式E11)からなる群より選ばれる1種以上である。
 本発明の(2-オキソ-1,3-ジオキソラン-4-イル)オキシ誘導体化合物は、下記の2つの方法により合成することができるが、これらの方法に限定されるものではない。
 (a)アルキルハライドとカルボン酸カリウム塩との反応による方法
 Chemische Berichte, 1970, 112, 148 に記載の方法によって、アルキルハライドとカルボン酸カリウム塩を溶媒中で反応させることによって、前記化合物を得ることができる。
 (b)アルキルハライドとスルホン酸銀塩との反応による方法
 Synthesis, 1971, 150 に記載の方法によって、アルキルハライドとスルホン酸銀塩を溶媒中で反応させることによって、前記化合物を得ることができる。
 本発明の非水電解液において、非水電解液に含有される前記一般式(I)で表される(2-オキソ-1,3-ジオキソラン-4-イル)オキシ化合物の含有量は、非水電解液中に0.01~10質量%であることが好ましい。該含有量が10質量%以下であれば、電極上に過度に被膜が形成され低温特性が低下するおそれが少なく、また0.01質量%以上であれば被膜の形成が十分であり、広い温度範囲での電気化学特性の改善効果が高まるので上記範囲であることが好ましい。該含有量は、非水電解液中に0.05質量%以上がより好ましく、0.1質量%以上が更に好ましい。また、その上限は、5質量%以下がより好ましく、3質量%以下が更に好ましい。
 本発明の非水電解液において、前記一般式(I)で表される(2-オキソ-1,3-ジオキソラン-4-イル)オキシ化合物を以下に述べる非水溶媒、電解質塩、更にその他の添加剤を組み合わせることにより、広い温度範囲で電気化学特性が相乗的に向上するという特異な効果を発現する。
〔非水溶媒〕
 本発明の非水電解液に使用される非水溶媒としては、環状カーボネート、鎖状エステル、ラクトン、エーテル、及びアミドからなる群より選ばれる1種又は2種以上が好適に挙げられる。広い温度範囲で電気化学特性を相乗的に向上させるため、鎖状エステルが含まれることが好ましく、鎖状カーボネートが含まれることがより好ましく、環状カーボネートと鎖状エステルの両方が含まれることが更に好ましく、環状カーボネートと鎖状カーボネートの両方が含まれることが特に好ましい。
 なお、「鎖状エステル」なる用語は、鎖状カーボネート及び鎖状カルボン酸エステルを含む概念として用いる。
<環状カーボネート>
 環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、1,2-ブチレンカーボネート、2,3-ブチレンカーボネート、4-フルオロ-1,3-ジオキソラン-2-オン(FEC)、トランス又はシス-4,5-ジフルオロ-1,3-ジオキソラン-2-オン(以下、両者を総称して「DFEC」という)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、及び4-エチニル-1,3-ジオキソラン-2-オン(EEC)から選ばれる1種又は2種以上が挙げられ、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、4-フルオロ-1,3-ジオキソラン-2-オン(FEC)、ビニレンカーボネート(VC)及び4-エチニル-1,3-ジオキソラン-2-オンからなる群より選ばれる1種又は2種以上がより好適である。
 また、前記炭素-炭素二重結合又は炭素-炭素三重結合等の不飽和結合又はフッ素原子を有する環状カーボネートのうち少なくとも1種を使用すると高温環境下での電気化学特性が一段と向上するので好ましく、炭素-炭素二重結合又は炭素-炭素三重結合等の不飽和結合を含む環状カーボネートとフッ素原子を有する環状カーボネートを両方含むことがより好ましい。炭素-炭素二重結合又は炭素-炭素三重結合等の不飽和結合を有する環状カーボネートとしては、VC、VEC、又はEECが好ましく、フッ素原子を有する環状カーボネートとしては、FEC又はDFECが好ましい。
(環状カーボネートの含有量)
 炭素-炭素二重結合又は炭素-炭素三重結合等の不飽和結合を有する環状カーボネートの含有量は、非水溶媒の総体積に対して、好ましくは0.07体積%以上、より好ましくは0.2体積%以上、更に好ましくは0.7体積%以上であり、また、その上限は、好ましくは7体積%以下、より好ましくは4体積%以下、更に好ましくは2.5体積%以下である。前記含有量が上記範囲であると、Liイオン透過性を損なうことなく一段と広い温度範囲での電気化学特性を増すことができるので好ましい。
 フッ素原子を有する環状カーボネートの含有量は、非水溶媒の総体積に対して好ましくは0.07体積%以上、より好ましくは4体積%以上、更に好ましくは6体積%以上であり、また、その上限は、好ましくは35体積%以下、より好ましくは25体積%以下、更に15体積%以下である。前記含有量が上記範囲であると、Liイオン透過性を損なうことなく一段と広い温度範囲での電気化学特性を向上させることができるので好ましい。
 非水溶媒が、炭素-炭素二重結合又は炭素-炭素三重結合等の不飽和結合を有する環状カーボネートとフッ素原子を有する環状カーボネートの両方を含む場合、フッ素原子を有する環状カーボネートの含有量に対する炭素-炭素二重結合又は炭素-炭素三重結合等の不飽和結合を有する環状カーボネートの含有量は、好ましくは0.2体積%以上、より好ましくは3体積%以上、更に好ましくは7体積%以上であり、その上限は、好ましくは40体積%以下、より好ましくは30体積%以下、更に15体積%以下である。前記含有量が上記範囲であると、Liイオン透過性を損なうことなく一段と広い温度範囲での電気化学特性を向上させることができるので特に好ましい。
 また、非水溶媒が、エチレンカーボネートと炭素-炭素二重結合又は炭素-炭素三重結合等の不飽和結合を有する環状カーボネートの両方を含むと電極上に形成される被膜の広い温度範囲での電気化学特性を向上させることができるので好ましく、エチレンカーボネート及び炭素-炭素二重結合又は炭素-炭素三重結合等の不飽和結合を有する環状カーボネートの含有量は、非水溶媒の総体積に対し、好ましくは3体積%以上、より好ましくは5体積%以上、更に好ましくは7体積%以上であり、また、その上限は、好ましくは45体積%以下、より好ましくは35体積%以下、更に好ましくは25体積%以下である。
 これらの溶媒は1種類で使用してもよく、また2種類以上を組み合わせて使用した場合は、高温環境下での電気化学特性の改善効果が更に向上するので好ましく、3種類以上を組み合わせて使用することが特に好ましい。これらの環状カーボネートの好適な組合せとしては、ECとPC、ECとVC、PCとVC、VCとFEC、ECとFEC、PCとFEC、FECとDFEC、ECとDFEC、PCとDFEC、VCとDFEC、VECとDFEC、VCとEEC、ECとEEC、ECとPCとVC、ECとPCとFEC、ECとVCとFEC、ECとVCとVEC、ECとVCとEEC、ECとEECとFEC、PCとVCとFEC、ECとVCとDFEC、PCとVCとDFEC、ECとPCとVCとFEC、又はECとPCとVCとDFEC等が好ましい。前記の組合せのうち、ECとVC、ECとFEC、PCとFEC、ECとPCとVC、ECとPCとFEC、ECとVCとFEC、ECとVCとEEC、ECとEECとFEC、PCとVCとFEC、又はECとPCとVCとFEC等の組合せがより好ましい。
<鎖状エステル>
 鎖状エステルとしては、メチルエチルカーボネート(MEC)、メチルプロピルカーボネート(MPC)、メチルイソプロピルカーボネート(MIPC)、メチルブチルカーボネート、及びエチルプロピルカーボネートからなる群より選ばれる1種又は2種以上の非対称鎖状カーボネート;ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、ジプロピルカーボネート、及びジブチルカーボネートからなる群より選ばれる1種又は2種以上の対称鎖状カーボネート;ピバリン酸メチル、ピバリン酸エチル、ピバリン酸プロピル等のピバリン酸エステル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、酢酸メチル、及び酢酸エチル(EA)からなる群より選ばれる1種又は2種以上の鎖状カルボン酸エステルが好適に挙げられる。
 前記鎖状エステルの中でも、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、メチルプロピルカーボネート(MPC)、メチルイソプロピルカーボネート(MIPC)、メチルブチルカーボネート、プロピオン酸メチル、酢酸メチル及び酢酸エチル(EA)からなる群より選ばれるメチル基を有する鎖状エステルが好ましく、特にメチル基を有する鎖状カーボネートが好ましい。
 また、高電圧下での電気化学特性を向上させる観点から少なくとも1つの水素原子がフッ素原子で置換されている鎖状エステルを少なくとも1種を含むと好ましい。
 少なくとも1つの水素原子がフッ素原子で置換されている鎖状エステルの具体例としては、2,2-ジフルオロエチルアセテート(DFEA)、2,2,2-トリフルオロエチルアセテート(TFEA)、2,2-ジフルオロエチルプロピオネート、2,2,2-トリフルオロエチルプロピオネート、メチル 2,2-ジフルオロプロピオネート、メチル 2,2,2-トリフルオロプロピオネート、メチル(2,2-ジフルオロエチル)カーボネート(MDFEC)、メチル(2,2,2-トリルオロエチル)カーボネート(MTFEC)、及びエチル(2,2,2-トリルオロエチル)カーボネート(ETFEC)からなる群より選ばれる1種以上が好適に挙げられる。
 これらの中でも高温環境下での電気化学特性向上の観点から、2,2,2-トリフルオロエチルアセテート(TFEA)、2,2-ジフルオロエチルアセテート、メチル 2,2,2-トリフルオロプロピオネート、メチル(2,2-ジフルオロエチル)カーボネート(MDFEC)、メチル(2,2,2-トリルオロエチル)カーボネート(MTFEC)、及びエチル(2,2,2-トリルオロエチル)カーボネート(ETFEC)からなる群より選ばれる1種以上がより好ましい。
 また、鎖状カーボネートを用いる場合には、2種以上を用いることが好ましい。さらに対称鎖状カーボネートと非対称鎖状カーボネートの両方が含まれるとより好ましく、対称鎖状カーボネートの含有量が非対称鎖状カーボネートより多く含まれると更に好ましい。
(鎖状エステルの含有量)
 鎖状エステルの含有量は、特に制限されないが、非水溶媒の総体積に対して、60~90体積%の範囲で用いるのが好ましい。該含有量が60体積%以上であれば非水電解液の粘度が高くなりすぎず、90体積%以下であれば非水電解液の電気伝導度が低下して広い温度範囲での電気化学特性が低下するおそれが少ないので上記範囲であることが好ましい。
 鎖状カーボネート中に対称鎖状カーボネートが占める体積の割合は、51体積%以上が好ましく、55体積%以上がより好ましい。その上限は、95体積%以下がより好ましく、85体積%以下が更に好ましい。対称鎖状カーボネートにジメチルカーボネートが含まれると特に好ましい。また、非対称鎖状カーボネートはメチル基を有するとより好ましく、メチルエチルカーボネート(MEC)が特に好ましい。上記の場合に一段と広い温度範囲での電気化学特性が向上するので好ましい。
 環状カーボネートと鎖状エステルの割合は、高温下での電気化学特性向上の観点から、環状カーボネート/鎖状エステル(体積比)が10/90~45/55が好ましく、15/85~40/60がより好ましく、20/80~35/65が更に好ましい。
(その他の非水溶媒)
 本発明においては、上記の非水溶媒の他にその他の非水溶媒を添加することができる。
 その他の非水溶媒としては、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン等の環状エーテル、1,2-ジメトキシエタン、1,2-ジエトキシエタン、1,2-ジブトキシエタン等の鎖状エーテル、ジメチルホルムアミド等のアミド、スルホラン等のスルホン、及びγ-ブチロラクトン(GBL)、γ-バレロラクトン、α-アンゲリカラクトン等のラクトンからなる群より選ばれる1種又は2種以上が好適に挙げられる。
 上記その他の非水溶媒は通常、適切な物性を達成するために、混合して使用される。その組合せは、例えば、環状カーボネートと鎖状エステル(特に鎖状カーボネート)とラクトンとの組合せ、環状カーボネートと鎖状エステル(特に鎖状カーボネート)とエーテルとの組合せ等が好適に挙げられ、環状カーボネートと鎖状エステル(特に鎖状カーボネート)とラクトンとの組合せがより好ましく、ラクトンの中でもγ-ブチロラクトン(GBL)を用いると更に好ましい。
 その他の非水溶媒の含有量は、非水溶媒の総体積に対して、通常1体積%以上、好ましくは2体積%以上であり、また通常40体積%以下、好ましくは30体積%以下、より好ましくは20体積%以下である。
(その他の添加剤)
 一段と広い温度範囲での電気化学特性を向上させる目的で、非水電解液中にさらにその他の添加剤を加えることが好ましい。
その他の添加剤の具体例としては、以下の(A)~(I)の化合物が挙げられる。
 (A)アセトニトリル、プロピオニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、及びセバコニトリルからなる群より選ばれる1種又は2種以上のニトリル。
 (B)シクロヘキシルベンゼン、フルオロシクロヘキシルベンゼン化合物(1-フルオロ-2-シクロヘキシルベンゼン、1-フルオロ-3-シクロヘキシルベンゼン、1-フルオロ-4-シクロヘキシルベンゼン)、tert-ブチルベンゼン、tert-アミルベンゼン、1-フルオロ-4-tert-ブチルベンゼン等の分枝アルキル基を有する芳香族化合物や、ビフェニル、ターフェニル(o-、m-、p-体)、ジフェニルエーテル、フルオロベンゼン、ジフルオロベンゼン(o-、m-、p-体)、アニソール、2,4-ジフルオロアニソール、ターフェニルの部分水素化物(1,2-ジシクロヘキシルベンゼン、2-フェニルビシクロヘキシル、1,2-ジフェニルシクロヘキサン、o-シクロヘキシルビフェニル)からなる群より選ばれる1種又は2種以上の芳香族化合物。
 (C)メチルイソシアネート、エチルイソシアネート、ブチルイソシアネート、フェニルイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、オクタメチレンジイソシアネート、1,4-フェニレンジイソシアネート、2-イソシアナトエチル アクリレート、及び2-イソシアナトエチル メタクリレートからなる群より選ばれる1種又は2種以上のイソシアネート化合物。
 (D)2-プロピニル メチル カーボネート、酢酸 2-プロピニル、ギ酸 2-プロピニル、メタクリル酸 2-プロピニル、メタンスルホン酸 2-プロピニル、ビニルスルホン酸 2-プロピニル、2-(メタンスルホニルオキシ)プロピオン酸2-プロピニル、ジ(2-プロピニル)オギザレート、メチル 2-プロピニルオギザレート、エチル 2-プロピニルオギザレート、グルタル酸 ジ(2-プロピニル)、2-ブチン-1,4-ジイル ジメタンスルホネート、2-ブチン-1,4-ジイル ジホルメート、及び2,4-ヘキサジイン-1,6-ジイル ジメタンスルホネートからなる群より選ばれる1種又は2種以上の三重結合含有化合物。
 (E)1,3-プロパンスルトン、1,3-ブタンスルトン、2,4-ブタンスルトン、1,4-ブタンスルトン、1,3-プロペンスルトン、2,2-ジオキシド-1,2-オキサチオラン-4-イル アセテート、又は5,5-ジメチル-1,2-オキサチオラン-4-オン 2,2-ジオキシド、4-(メチルスルホニルメチル)-1,3,2-ジオキサチオラン 2-オキシド等のスルトン、エチレンサルファイト、ヘキサヒドロベンゾ[1,3,2]ジオキサチオラン-2-オキシド(1,2-シクロヘキサンジオールサイクリックサルファイトともいう)、5-ビニル-ヘキサヒドロ-1,3,2-ベンゾジオキサチオール-2-オキシド等の環状サルファイト、ブタン-2,3-ジイル ジメタンスルホネート、ブタン-1,4-ジイル ジメタンスルホネート、ジメチル メタンジスルホネート、ペンタフルオロフェニル メタンスルホネート、メチレンメタンジスルホネート等のスルホン酸エステル、ジビニルスルホン、1,2-ビス(ビニルスルホニル)エタン、又はビス(2-ビニルスルホニルエチル)エーテル等のビニルスルホン化合物等の鎖状のS=O基含有化合物からなる群より選ばれる1種又は2種以上のS=O基含有化合物。
 (F)1,3-ジオキソラン、1,3-ジオキサン、及び1,3,5-トリオキサンからなる群より選ばれる1種又は2種以上の環状アセタール化合物。
 (G)リン酸トリメチル、リン酸トリブチル、リン酸トリオクチル、リン酸トリス(2,2,2-トリフルオロエチル)、リン酸ビス(2,2,2-トリフルオロエチル)メチル、リン酸ビス(2,2,2-トリフルオロエチル)エチル、リン酸ビス(2,2,2-トリフルオロエチル)2,2-ジフルオロエチル、リン酸ビス(2,2,2-トリフルオロエチル)2,2,3,3-テトラフルオロプロピル、リン酸ビス(2,2-ジフルオロエチル)2,2,2-トリフルオロエチル、リン酸ビス(2,2,3,3-テトラフルオロプロピル)2,2,2-トリフルオロエチル、リン酸(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)メチル、リン酸トリス(1,1,1,3,3,3-ヘキサフルオロプロパン-2-イル)、メチレンビスホスホン酸メチル、メチレンビスホスホン酸エチル、エチレンビスホスホン酸メチル、エチレンビスホスホン酸エチル、ブチレンビスホスホン酸メチル、ブチレンビスホスホン酸エチル、メチル 2-(ジメチルホスホリル)アセテート、エチル 2-(ジメチルホスホリル)アセテート、メチル 2-(ジエチルホスホリル)アセテート、エチル 2-(ジエチルホスホリル)アセテート、2-プロピニル 2-(ジメチルホスホリル)アセテート、2-プロピニル 2-(ジエチルホスホリル)アセテート、メチル 2-(ジメトキシホスホリル)アセテート、エチル 2-(ジメトキシホスホリル)アセテート、メチル 2-(ジエトキシホスホリル)アセテート、エチル 2-(ジエトキシホスホリル)アセテート、2-プロピニル 2-(ジメトキシホスホリル)アセテート、2-プロピニル 2-(ジエトキシホスホリル)アセテート、及びピロリン酸メチル、ピロリン酸エチルからなる群より選ばれる1種又は2種以上のリン含有化合物。
 (H)無水酢酸、無水プロピオン酸等の鎖状のカルボン酸無水物、無水コハク酸、無水マレイン酸、3-アリル無水コハク酸、無水グルタル酸、無水イタコン酸、及び3-スルホ-プロピオン酸無水物からなる群より選ばれる1種又は2種以上の環状酸無水物。
 (I)メトキシペンタフルオロシクロトリホスファゼン、エトキシペンタフルオロシクロトリホスファゼン、フェノキシペンタフルオロシクロトリホスファゼン、及びエトキシヘプタフルオロシクロテトラホスファゼンからなる群より選ばれる1種又は2種以上の環状ホスファゼン化合物。
 上記の中でも、(A)ニトリル、(B)芳香族化合物、及び(C)イソシアネート化合物からなる群より選ばれる少なくとも1種以上を含むと一段と広い温度範囲での電気化学特性が向上するので好ましい。
 (A)ニトリルの中では、スクシノニトリル、グルタロニトリル、アジポニトリル、及びピメロニトリルからなる群より選ばれる1種又は2種以上がより好ましい。
 (B)芳香族化合物の中では、ビフェニル、ターフェニル(o-、m-、p-体)、フルオロベンゼン、シクロヘキシルベンゼン、tert-ブチルベンゼン、及びtert-アミルベンゼンから選ばれる1種又は2種以上がより好ましく、ビフェニル、o-ターフェニル、フルオロベンゼン、シクロヘキシルベンゼン、及びtert-アミルベンゼンからなる群より選ばれる1種又は2種以上が更に好ましい。
 (C)イソシアネート化合物の中では、ヘキサメチレンジイソシアネート、オクタメチレンジイソシアネート、2-イソシアナトエチル アクリレート、及び2-イソシアナトエチル メタクリレートから選ばれる1種又は2種以上がより好ましい。
 前記(A)~(C)の化合物の含有量は、非水電解液中に0.01~7質量%が好ましい。この範囲では、被膜が厚くなり過ぎずに十分に形成され、一段と広い温度範囲での電気化学特性が高まる。該含有量は、非水電解液中に0.05質量%以上がより好ましく、0.1質量%以上が更に好ましく、0.2質量%以上がより更に好ましく、その上限は、5質量%以下がより好ましく、3質量%以下が更に好ましい。
 また、(D)三重結合含有化合物、(E)スルトン、環状サルファイト、スルホン酸エステル、ビニルスルホンから選ばれる環状又は鎖状のS=O基含有化合物(但し、三重結合含有化合物、及び前記一般式のいずれかで表される特定の化合物は含まない)、(F)環状アセタール化合物、(G)リン含有化合物、(H)環状酸無水物、又は(I)環状ホスファゼン化合物を含むと一段と広い温度範囲での電気化学特性が向上するので好ましい。
 (D)三重結合含有化合物としては、2-プロピニル メチル カーボネート、メタクリル酸 2-プロピニル、メタンスルホン酸 2-プロピニル、ビニルスルホン酸 2-プロピニル、2-(メタンスルホニルオキシ)プロピオン酸 2-プロピニル、ジ(2-プロピニル)オギザレート、メチル 2-プロピニル オギザレート、エチル 2-プロピニル オギザレート、及び2-ブチン-1,4-ジイル ジメタンスルホネートから選ばれる1種又は2種以上が好ましく、メタンスルホン酸 2-プロピニル、ビニルスルホン酸 2-プロピニル、2-(メタンスルホニルオキシ)プロピオン酸 2-プロピニル、ジ(2-プロピニル)オギザレート、及び2-ブチン-1,4-ジイル ジメタンスルホネートからなる群より選ばれる1種又は2種以上が更に好ましい。
 (E)前記環状又は鎖状のS=O基含有化合物の中でも、1,3-プロパンスルトン、1,4-ブタンスルトン、2,4-ブタンスルトン、2,2-ジオキシド-1,2-オキサチオラン-4-イル アセテート、エチレンサルフェート、ペンタフルオロフェニル メタンスルホネート、及びジビニルスルホンからなる群より選ばれる1種又は2種以上が更に好ましい。
 (F)環状アセタール化合物としては、1,3-ジオキソラン、又は1,3-ジオキサンが好ましく、1,3-ジオキサンがより好ましい。
 (G)リン含有化合物としては、リン酸トリス(2,2,2-トリフルオロエチル)、リン酸トリス(1,1,1,3,3,3-ヘキサフルオロプロパン-2-イル)、メチル 2-(ジメチルホスホリル)アセテート、エチル 2-(ジメチルホスホリル)アセテート、メチル 2-(ジエチルホスホリル)アセテート、エチル 2-(ジエチルホスホリル)アセテート、2-プロピニル 2-(ジメチルホスホリル)アセテート、2-プロピニル 2-(ジエチルホスホリル)アセテート、メチル 2-(ジメトキシホスホリル)アセテート、エチル 2-(ジメトキシホスホリル)アセテート、メチル 2-(ジエトキシホスホリル)アセテート、エチル 2-(ジエトキシホスホリル)アセテート、2-プロピニル 2-(ジメトキシホスホリル)アセテート、又は2-プロピニル 2-(ジエトキシホスホリル)アセテートが好ましく、リン酸トリス(2,2,2-トリフルオロエチル)、リン酸トリス(1,1,1,3,3,3-ヘキサフルオロプロパン-2-イル)、エチル 2-(ジエチルホスホリル)アセテート、2-プロピニル 2-(ジメチルホスホリル)アセテート、2-プロピニル 2-(ジエチルホスホリル)アセテート、エチル 2-(ジエトキシホスホリル)アセテート、2-プロピニル 2-(ジメトキシホスホリル)アセテート、又は2-プロピニル 2-(ジエトキシホスホリル)アセテートがより好ましい。
 (H)環状酸無水物としては、無水コハク酸、無水マレイン酸、又は3-アリル無水コハク酸が好ましく、無水コハク酸又は3-アリル無水コハク酸がより好ましい。
 (I)環状ホスファゼン化合物としては、メトキシペンタフルオロシクロトリホスファゼン、エトキシペンタフルオロシクロトリホスファゼン、又はフェノキシペンタフルオロシクロトリホスファゼン等の環状ホスファゼン化合物が好ましく、メトキシペンタフルオロシクロトリホスファゼン、又はエトキシペンタフルオロシクロトリホスファゼンがより好ましい。
 前記(D)~(I)の化合物の含有量は、非水電解液中に0.001~5質量%が好ましい。この範囲では、被膜が厚くなり過ぎずに十分に形成され、一段と広い温度範囲での電気化学特性が高まる。該含有量は、非水電解液中に0.01質量%以上がより好ましく、0.1質量%以上が更に好ましく、0.2質量%以上がより更に好ましく、その上限は、3質量%以下がより好ましく、2質量%以下が更に好ましい。
(リチウム塩)
 また、一段と広い温度範囲での電気化学特性を向上させる目的で、非水電解液中にさらに、シュウ酸構造を有するリチウム塩、リン酸構造を有するリチウム塩、及びS=O基を有するリチウム塩の中から選ばれる1種以上のリチウム塩を含むことが好ましい。
 リチウム塩の具体例としては、リチウム ビス(オキサラト)ボレート〔LiBOB〕、リチウム ジフルオロ(オキサラト)ボレート〔LiDFOB〕、リチウム テトラフルオロ(オキサラト)ホスフェート〔LiTFOP〕、リチウム ジフルオロビス(オキサラト)ホスフェート〔LiDFOP〕等のシュウ酸構造を有するリチウム塩、リチウム ジフルオロホスフェート〔LiPO〕やリチウム フルオロホスフェート〔LiPOF〕等のリン酸構造を有するリチウム塩、リチウム トリフルオロ((メタンスルホニル)オキシ)ボレート〔LiTFMSB〕、リチウム ペンタフルオロ((メタンスルホニル)オキシ)ホスフェート〔LiPFMSP〕、リチウム メチルサルフェート〔LMS〕、リチウムエチルサルフェート〔LES〕、リチウム 2,2,2-トリフルオロエチルサルフェート〔LFES〕、リチウム フルオロサルフェート〔FSOLi〕、及びリチウム ビス(フルオロスルホニル)イミド〔LiN(SOF);LiFSI〕等のS=O基を有するリチウム塩からなる群より選ばれる1種又は2種以上が好適に挙げられる。
 これらの中では、LiBOB、LiDFOB、LiTFOP、LiDFOP、LiPO、LiTFMSB、LMS、LES、LFES、FSOLi、及びLiFSIからなる群より選ばれるリチウム塩を含むことがより好ましく、LiDFOP、LiPO、LES、及びLiFSIからなる群より選ばれるリチウム塩を含むことがより好ましい。
 前記リチウム塩が非水溶媒中に占める合計含有量が、0.001M以上0.5M以下である場合が好ましい。この範囲にあると広い温度範囲での電気化学特性の向上効果が一段と発揮される。好ましくは0.01M以上、より好ましくは0.03M以上、更に好ましくは0.04M以上である。その上限は、好ましくは0.4M以下、より好ましくは0.2M以下である。ここで、Mはmol/Lを示す。
(電解質塩)
 本発明に使用される電解質塩としては、下記のリチウム塩が好適に挙げられる。
 リチウム塩としては、LiPF、LiBF、LiClO、LiPO、LiN(SOF)等の無機リチウム塩、LiN(SOCF、LiN(SO、LiCFSO、LiC(SOCF、LiPF(CF、LiPF(C、LiPF(CF、LiPF(iso-C7、LiPF(iso-C7)等の鎖状のフッ化アルキル基を含有するリチウム塩、(CF(SONLi、(CF(SONLi等の環状のフッ化アルキレン鎖を有するリチウム塩等からなる群より選ばれる1種又は2種以上が好適に挙げられる。これらの中でも、LiPF、LiBF、LiPO、LiN(SOF)、LiN(SOCF、及びLiN(SOから選ばれる1種又は2種以上がより好ましく、LiPFが更に好ましい。
 電解質塩の濃度は、前記の非水電解液において、通常0.3M以上が好ましく、0.7M以上がより好ましく、1.1M以上が更に好ましい。またその上限は、2.5M以下が好ましく、2.0M以下がより好ましく、1.6M以下が更に好ましい。
 また、これらの電解質塩の好適な組み合わせとしては、LiPFを含み、更にLiBF、LiN(SOCF、及びLiN(SOF)〔LiFSI〕から選ばれる少なくとも1種のリチウム塩が非水電解液中に含まれている場合が好ましい。
 LiPF以外のリチウム塩が非水溶媒中に占める割合は、0.001M以上であると、広い温度範囲での電気化学特性の向上効果が発揮されやすく、1.0M以下であると広い温度範囲での電気化学特性の向上効果が低下する懸念が少ないので好ましい。LiPF以外のリチウム塩の含有量は、好ましくは0.01M以上、より好ましくは0.03M以上、更に好ましくは0.04M以上であり、その上限は、好ましくは0.8M以下、より好ましくは0.6M以下、更に好ましくは0.4M以下である。
〔非水電解液の製造〕
 本発明の非水電解液は、例えば、前記の非水溶媒を混合し、これに前記の電解質塩及び該非水電解液に対して前記一般式(I)で表される(2-オキソ-1,3-ジオキソラン-4-イル)オキシ化合物を添加することにより得ることができる。
 この際、用いる非水溶媒及び非水電解液に加える前記化合物は、生産性を著しく低下させない範囲内で、予め精製して、不純物が極力少ないものを用いることが好ましい。
 本発明の非水電解液は、下記の第1~第4の蓄電デバイスに使用することができ、非水電解質として、液体状のものだけでなくゲル化されているものも使用し得る。更に本発明の非水電解液は固体高分子電解質用としても使用できる。中でも電解質塩にリチウム塩を使用する第1の蓄電デバイス用(即ち、リチウム電池用)又は第4の蓄電デバイス用(即ち、リチウムイオンキャパシタ用)として用いることが好ましく、リチウム電池用として用いることがより好ましく、リチウム二次電池用として用いることが更に好ましい。
〔第1の蓄電デバイス(リチウム電池)〕
 第1の蓄電デバイスであるリチウム電池とは、リチウム一次電池及びリチウム二次電池の総称であり、リチウム二次電池という用語は、いわゆるリチウムイオン二次電池も含む概念として用いる。
 本発明のリチウム電池は、正極、負極及び非水溶媒に電解質塩が溶解されている前記非水電解液からなる。非水電解液以外の正極、負極等の構成部材は特に制限なく使用できる。
 例えば、リチウム二次電池用正極の正極活物質としては、コバルト、マンガン、及びニッケルからなる群より選ばれる1種又は2種以上を含有するリチウムとの複合金属酸化物が使用される。これらの正極活物質は、1種単独で用いるか又は2種以上を組み合わせて用いることができる。
 このようなリチウム複合金属酸化物としては、例えば、LiCoO、LiCo1-x(但し、MはSn、Mg、Fe、Ti、Al、Zr、Cr、V、Ga、Zn、及びCuから選ばれる1種又は2種以上の元素、0.001≦x≦0.05)、LiMn、LiNiO、LiCo1-xNi(0.01<x<1)、LiCo1/3Ni1/3Mn1/3、LiNi0.5Mn0.3Co0.2、LiNi0.8Mn0.1Co0.1、LiNi0.8Co0.15Al0.05、LiNi1/2Mn3/2、LiMnOとLiMO(Mは、Co、Ni、Mn、Fe等の遷移金属)との固溶体、及びLiNi1/2Mn3/2からなる群より選ばれる1種以上が好適に挙げられ、2種以上がより好適である。また、LiCoOとLiMn、LiCoOとLiNiO、LiMnとLiNiOのように併用してもよい。
 高充電電圧で動作するリチウム複合金属酸化物を使用すると、一般的に、充電時における電解液との反応により高温環境下で電気化学特性が低下しやすいが、本発明に係るリチウム二次電池ではこれらの電気化学特性の低下を抑制することができる。
 特にNiを含む正極活物質を用いると、一般的に、Niの触媒作用により正極表面での非水溶媒の分解が起き、電池の抵抗が増加しやすい傾向にある。特に高温環境下での電気化学特性が低下しやすい傾向にあるが、本発明に係るリチウム二次電池ではこれらの電気化学特性の低下を抑制することができるので好ましい。特に、正極活物質中の全遷移金属元素の原子濃度に対するNiの原子濃度の割合が、10atomic%を超える正極活物質を用いた場合に上記効果が顕著になるので好ましく、20atomic%以上が更に好ましく、30atomic%以上が特に好ましい。具体的には、LiCo1/3Ni1/3Mn1/3、LiNi0.5Mn0.3Co0.2、LiNi0.8Mn0.1Co0.1、LiNi1/2Mn3/2、及びLiNi0.8Co0.15Al0.05からなる群より選ばれる1種以上が好適に挙げられる。
 更に、正極活物質として、リチウム含有オリビン型リン酸塩を用いることもできる。特に鉄、コバルト、ニッケル及びマンガンからなる群より選ばれる1種又は2種以上を含むリチウム含有オリビン型リン酸塩が好ましい。その具体例としては、LiFePO、LiCoPO、LiNiPO、LiMnPO、及びLiFe1-xMnPO(0.1<x<0.9)から選ばれる1種又は2種以上が挙げられる。
 これらのリチウム含有オリビン型リン酸塩の一部は他元素で置換してもよく、鉄、コバルト、ニッケル、マンガンの一部をCo、Mn、Ni、Mg、Al、B、Ti、V、Nb、Cu、Zn、Mo、Ca、Sr、W、及びZrから選ばれる1種又は2種以上の元素で置換したり、又はこれらの他元素を含有する化合物や炭素材料で被覆することもできる。これらの中では、LiFePO又はLiMnPOが好ましい。
 また、リチウム含有オリビン型リン酸塩は、例えば前記の正極活物質と混合して用いることもできる。
 リチウム含有オリビン型リン酸塩は、安定したリン酸(PO)構造を形成し、充電時の熱安定性に優れるため、広い温度範囲での電気化学特性を向上することができる。
 また、リチウム一次電池用正極としては、CuO、CuO、AgO、AgCrO、CuS、CuSO、TiO、TiS、SiO、SnO、V、V12、VO、Nb、Bi、BiPb,Sb、CrO、Cr、MoO、WO、SeO、MnO、Mn、Fe、FeO、Fe、Ni、NiO、CoO、CoO等の1種又は2種以上の金属元素の酸化物又はカルコゲン化合物、SO、SOCl等の硫黄化合物、一般式(CFnで表されるフッ化炭素(フッ化黒鉛)等が挙げられる。これらの中でも、MnO、V、フッ化黒鉛等が好ましい。
 正極の導電剤は、化学変化を起こさない電子伝導材料であれば特に制限はない。例えば、天然黒鉛(鱗片状黒鉛等)、人造黒鉛等のグラファイト、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、又はサーマルブラック等のカーボンブラック等が挙げられる。また、グラファイトとカーボンブラックを適宜混合して用いてもよい。導電剤の正極合剤への添加量は、1~10質量%が好ましく、2~5質量%がより好ましい。
 正極は、前記の正極活物質をアセチレンブラック、カーボンブラック等の導電剤、及びポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンとブタジエンの共重合体(SBR)、アクリロニトリルとブタジエンの共重合体(NBR)、カルボキシメチルセルロース(CMC)、エチレンプロピレンジエンターポリマー等の結着剤と混合し、これに1-メチル-2-ピロリドン等の高沸点溶剤を加えて混練して正極合剤とした後、この正極合剤を集電体のアルミニウム箔やステンレス製のラス板等に塗布して、乾燥、加圧成型した後、50℃~250℃程度の温度で2時間程度真空下で加熱処理することにより作製することができる。
 正極の集電体を除く部分の密度は、通常は1.5g/cm以上であり、電池の容量をさらに高めるため、好ましくは2g/cm以上であり、より好ましくは、3g/cm以上であり、更に好ましくは、3.6g/cm以上である。なお、その上限は、4g/cm以下が好ましい。
 リチウム二次電池用負極の負極活物質としては、リチウム金属、リチウム合金、及びリチウムイオンを吸蔵及び放出することが可能な炭素材料〔易黒鉛化炭素や、(002)面の面間隔が0.37nm以上の難黒鉛化炭素や、(002)面の面間隔が0.34nm以下の黒鉛等〕、スズ(単体)、スズ化合物、ケイ素(単体)、ケイ素化合物、及びLiTi12等のチタン酸リチウム化合物等からなる群より選ばれる1種又は2種以上が好ましい。
 これらの中では、リチウムイオンの吸蔵及び放出能力において、人造黒鉛や天然黒鉛等の高結晶性の炭素材料を使用することがより好ましく、格子面(002)の面間隔(d002)が0.340nm(ナノメータ)以下、特に0.335~0.337nmである黒鉛型結晶構造を有する炭素材料を使用することが更に好ましい。
 特に複数の扁平状の黒鉛質微粒子が互いに非平行に集合又は結合した塊状構造を有する人造黒鉛粒子や、鱗片状天然黒鉛粒子に圧縮力、摩擦力、剪断力等の機械的作用を繰り返し与え、球形化処理した黒鉛粒子を用いることが好ましい。
 このような黒鉛粒子の球形化処理により、負極の集電体を除く部分の密度を1.5g/cm以上となるように加圧成形したときの負極シートのX線回折測定から得られる黒鉛結晶の(110)面のピーク強度I(110)と(004)面のピーク強度I(004)の比I(110)/I(004)が、0.01以上となると一段と広い温度範囲での電気化学特性が向上するので好ましく、0.05以上となることがより好ましく、0.1以上となることが更に好ましい。また、過度に処理し過ぎて結晶性が低下し電池の放電容量が低下する場合があるので、ピーク強度の比I(110)/I(004)の上限は0.5以下が好ましく、0.3以下がより好ましい。
 また、高結晶性の炭素材料(コア材)はコア材よりも低結晶性の炭素材料によって被膜されていると、広い温度範囲での電気化学特性が一段と良好となるので好ましい。被覆の炭素材料の結晶性は、透過型電子顕微鏡(TEM)により確認することができる。
 高結晶性の炭素材料を使用すると、一般的に、充電時において非水電解液と反応し、界面抵抗の増加によって低温又は高温における電気化学特性を低下させる傾向があるが、本発明に係るリチウム二次電池では広い温度範囲での電気化学特性が良好となる。
 また、負極活物質としてのリチウムイオンを吸蔵及び放出可能な金属化合物としては、Si、Ge、Sn、Pb、P、Sb、Bi、Al、Ga、In、Ti、Mn、Fe、Co、Ni、Cu、Zn、Ag、Mg、Sr、又はBa等の金属元素を少なくとも1種含有する化合物が挙げられる。これらの金属化合物は単体、合金、酸化物、窒化物、硫化物、硼化物、リチウムとの合金等、何れの形態で用いてもよいが、単体、合金、酸化物、リチウムとの合金の何れかが高容量化できるので好ましい。中でも、Si、Ge及びSnからなる群より選ばれる少なくとも1種の元素を含有するものが好ましく、Si及びSnから選ばれる少なくとも1種の元素を含むものが電池を高容量化できるのでより好ましい。
 負極は、上記の正極の作製と同様な導電剤、結着剤、高沸点溶剤を用いて混練して負極合剤とした後、この負極合剤を集電体の銅箔等に塗布して、乾燥、加圧成型した後、50℃~250℃程度の温度で2時間程度真空下で加熱処理することにより作製することができる。
 負極の集電体を除く部分の密度は、通常は1.1g/cm以上であり、電池の容量をさらに高めるため、好ましくは1.5g/cm以上であり、より好ましくは1.7g/cm以上であり、その上限は、2g/cm以下が好ましい。
 また、リチウム一次電池用の負極活物質としては、リチウム金属又はリチウム合金が挙げられる。
 リチウム電池の構造には特に限定はなく、単層又は複層のセパレータを有するコイン型電池、円筒型電池、角型電池、ラミネート電池等を適用できる。
 電池用セパレータとしては、特に制限はないが、ポリプロピレン、ポリエチレン、エチレン-プロピレン共重合体等のポリオレフィンの単層又は積層の微多孔性フィルム、織布、不織布等を使用できる。
 ポリオレフィンの積層体としては、ポリエチレンとポリプロピレンとの積層体が好ましく、ポリプロピレン/ポリエチレン/ポリプロピレンの3層構造がより好ましい。
 セパレータの厚みは、好ましくは2μm以上、より好ましくは3μm以上、更に好ましくは4μm以上であり、その上限は、30μm以下、好ましくは20μm以下、より好ましくは15μm以下である。
 本発明におけるリチウム二次電池は、充電終止電圧が4.2V以上、特に4.3V以上の場合にも広い温度範囲での電気化学特性に優れ、更に、4.4V以上においても特性は良好である。放電終止電圧は、通常2.8V以上、更には2.5V以上とすることができるが、本発明におけるリチウム二次電池は、2.0V以上とすることができる。電流値については特に限定されないが、通常0.1~30Cの範囲で使用される。また、本発明におけるリチウム電池は、-40~100℃、好ましくは-10~80℃で充放電することができる。
 本発明においては、リチウム電池の内圧上昇の対策として、電池蓋に安全弁を設けたり、電池缶やガスケット等の部材に切り込みを入れる方法も採用することができる。また、過充電防止の安全対策として、電池の内圧を感知して電流を遮断する電流遮断機構を電池蓋に設けることができる。
〔第2の蓄電デバイス(電気二重層キャパシタ)〕
 本発明の第2の蓄電デバイスは、本発明の非水電解液を含み、電解液と電極界面の電気二重層容量を利用してエネルギーを貯蔵する蓄電デバイスである。本発明の一例は、電気二重層キャパシタである。この蓄電デバイスに用いられる最も典型的な電極活物質は、活性炭である。二重層容量は概ね表面積に比例して増加する。
〔第3の蓄電デバイス〕
 本発明の第3の蓄電デバイスは、本発明の非水電解液を含み、電極のドープ/脱ドープ反応を利用してエネルギーを貯蔵する蓄電デバイスである。この蓄電デバイスに用いられる電極活物質として、酸化ルテニウム、酸化イリジウム、酸化タングステン、酸化モリブデン、酸化銅等の金属酸化物や、ポリアセン、ポリチオフェン誘導体等のπ共役高分子が挙げられる。これらの電極活物質を用いたキャパシタは、電極のドープ/脱ドープ反応にともなうエネルギー貯蔵が可能である。
〔第4の蓄電デバイス(リチウムイオンキャパシタ)〕
 本発明の第4の蓄電デバイスは、本発明の非水電解液を含み、負極であるグラファイト等の炭素材料へのリチウムイオンのインターカレーションを利用してエネルギーを貯蔵する蓄電デバイスである。リチウムイオンキャパシタ(LIC)と呼ばれる。正極は、例えば活性炭電極と電解液との間の電気ニ重層を利用したものや、π共役高分子電極のドープ/脱ドープ反応を利用したもの等が挙げられる。電解液には少なくともLiPF等のリチウム塩が含まれる。
 本発明の新規化合物である(2-オキソ-1,3-ジオキソラン-4-イル)オキシ誘導体化合物は、下記一般式(II)で表される。
Figure JPOXMLDOC01-appb-C000015
(式中、Rは、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、炭素数7~13のアラルキル基、炭素数6~12のアリール基、-OC(=O)-R、-OS(=O)-R、又は-OP(=O)(-R)-Rを示す。R及びRは、それぞれ独立に、水素原子、ハロゲン原子、又は炭素数1~6のアルキル基を示し、nは1~3の整数を示す。
 Rは、ハロゲン原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、炭素数7~13のアラルキル基、炭素数6~12のアリール基、又は炭素数1~6のアルコキシ基を示す。R及びRは、それぞれ独立に、ハロゲン原子、炭素数1~6のアルコキシ基、又は炭素数6~12のアリールオキシ基を示す。Rは、少なくとも1つの水素原子がハロゲン原子で置換された炭素数1~6のハロアルキル基、炭素数3~6のシクロアルキル基、炭素数2~6のアルキニル基、炭素数7~13のアラルキル基、炭素数6~12のアリール基、又は炭素数2~6のアルコキシカルボニル基を示す。
 nが1の場合、Lは、-C(=O)-R、-S(=O)-R、又は-P(=O)(-R)-Rを示し、nが2の場合、Lは、-C(=O)C(=O)-、-S(=O)-、又は-P(=O)(-R)-を示し、nが3の場合、Lは、-P(=O)(-)を示す。
 また、アルキル基、アラルキル基、アリール基、アルコキシカルボニル基、アルコキシ基、及びアリールオキシ基の少なくとも1つの水素原子はハロゲン原子で置換されていてもよい。)
 一般式(II)において、置換基R、R、R、R、及びRは一般式(I)におけるR、R、R、R、及びRと同義である。
 前記Rの具体例として、水素原子、フッ素原子、塩素原子、臭素原子等のハロゲン原子;メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基等の直鎖のアルキル基;イソプロピル基、sec-ブチル基、2-ペンチル基、3-ペンチル基、tert-ブチル基、tert-アミル基等の分枝鎖のアルキル基;フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2-フルオロエチル基、2,2-ジフルオロエチル基、2,2,2-トリフルオロエチル基、3-フルオロプロピル基、3-クロロプロピル基、3,3-ジフルオロプロピル基、3,3,3-トリフルオロプロピル基、2,2,3,3-テトラフルオロプロピル基、2,2,3,3,3-ペンタフルオロプロピル基等のハロゲン化アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基;ビニル基、1-プロペン-1-イル基、2-プロペン-1-イル基、2-ブテン-1-イル基、3-ブテン-1-イル基、4-ペンテン-1-イル基、5-ヘキセン-1-イル基、1-プロペン-2-イル基、1-ブテン-2-イル基、2-メチル-2-プロペン-1-イル基等のアルケニル基;エチニル基、2-プロピニル基、2-ブチニル基、3-ブチニル基、4-ヘプチニル基、1-メチル-2-プロピニル基、1,1-ジメチル-2-プロピニル基、1-メチル-3-ブチニル基、1-メチル-4-ヘプチニル基等のアルキニル基;ベンジル基、4-メチルベンジル基、4-tert-ブチルベンジル基;4-フルオロベンジル基、4-クロロベンジル基、1-フェニルエタン-1-イル基、2-フェニルエタン-1-イル基、3-フェニルプロパン-1-イル基等のアラルキル基;フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、4-tert-ブチルフェニル基等のアリール基;2-フルオロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基、2-トリフルオロメチルフェニル基、3-トリフルオロメチルフェニル基、4-トリフルオロメチルフェニル基、4-フルオロ-2-トリフルオロメチルフェニル基、4-フルオロ-3-トリフルオロメチルフェニル基、2,6-ジフルオロフェニル基、3,5-ジフルオロフェニル基、2,4,6-トリフルオロフェニル基、2,3,5,6-テトラフルオロフェニル基、パーフルオロフェニル等のハロゲン化アリール基;フルオロスルホニルオキシ基、メタンスルホニルオキシ基、ビニルスルホニルオキシ基、ジフルオロホスホリル基、ジメトキシホスホリル基、又はジエトキシホスホリル基等が好適に挙げられる。
 これらの中でも、水素原子、フッ素原子、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、イソプロピル基、sec-ブチル基、2-ペンチル基、tert-ブチル基、tert-アミル基、トリフルオロメチル基、2-フルオロエチル基、シクロプロピル基、シクロブチル基、シクロヘキシル基、ビニル基、1-プロペン-1-イル基、2-プロペン-1-イル基、1-プロペン-2-イル基、エチニル基、2-プロピニル基、2-ブチニル基、ベンジル基、4-メチルベンジル基、フェニル基、4-メチルフェニル基、フルオロスルホニルオキシ基、メタンスルホニルオキシ基、ビニルスルホニルオキシ基、ジフルオロホスホリル基、ジメトキシホスホリル基、又はジエトキシホスホリル基が好ましく、水素原子、フッ素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、tert-ブチル基、トリフルオロメチル基、シクロプロピル基、シクロヘキシル基、ビニル基、1-プロペン-1-イル基、1-プロペン-2-イル基、エチニル基、2-プロピニル基、フェニル基、4-メチルフェニル基、フルオロスルホニルオキシ基、メタンスルホニルオキシ基、ビニルスルホニルオキシ基、ジフルオロホスホリル基、ジメトキシホスホリル基、又はジエトキシホスホリル基がより好ましい。
 前記Rは、フルオロメチル基、クロロメチル基、ジフルオロメチル基、トリフルオロメチル基、2-フルオロエチル基、2,2,2-トリフルオロエチル基、3-フルオロプロピル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、2,2,3,3-テトラフルオロプロピル基、2,2,3,3,3-ペンタフルオロプロピル基等のハロゲン化アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基;エチニル基、2-プロピニル基、2-ブチニル基、3-ブチニル基、4-ヘプチニル基、1-メチル-2-プロピニル基、1,1-ジメチル-2-プロピニル基、1-メチル-3-ブチニル基、1-メチル-4-ペンチニル基等のアルキニル基;ベンジル基、4-メチルベンジル基、1-フェニルエタン-1-イル基、2-フェニルエタン-1-イル基、3-フェニルプロパン-1-イル基等のアラルキル基;フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、4-tert-ブチルフェニル基等のアリール基;2-フルオロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基、2-トリフルオロメチルフェニル基、3-トリフルオロメチルフェニル基、4-トリフルオロメチルフェニル基、4-フルオロ-2-トリフルオロメチルフェニル基、4-フルオロ-3-トリフルオロメチルフェニル基、2,6-ジフルオロフェニル基、3,5-ジフルオロフェニル基、2,4,6-トリフルオロフェニル基、2,3,5,6-テトラフルオロフェニル基、パーフルオロフェニル等のハロゲン化アリール基;メトキシカルボニル基、エトキシカルボニル基等のアルコキシカルボニル基が好適に挙げられる。
 これらの中でも、フルオロメチル基、トリフルオロメチル基、2-フルオロエチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、エチニル基、2-プロピニル基、フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、4-フルオロフェニル基、4-トリフルオロメチルフェニル基、メトキシカルボニル基、又はエトキシカルボニル基が好ましく、トリフルオロメチル基、シクロプロピル基、シクロヘキシル基、エチニル基、フェニル基、4-フルオロフェニル基、4-トリフルオロフェニル基、メトキシカルボニル基、又はエトキシカルボニル基がより好ましい。
 前記一般式(II)で表される具体的な化合物は、A1~A3、A7~A8、又はA20の構造式を有する化合物を除き一般式(I)の具体的化合物の記載、好ましい記載と同様である。
 以下、本発明の化合物を用いた電解液の実施例を示すが、本発明は、これらの実施例に限定されるものではない。
合成例1 〔2-オキソ-1,3-ジオキソラン-4-イル アセテート(構造式A1)の合成〕
 アセトニトリル20ml中にフッ化カリウム0.3g(5.2mmol)を懸濁させ、撹拌しながら4-クロロ-1,3-ジキソラン-2-オン3.0g(24.5mmol)、酢酸1.6g(26.6mmol)及びトリエチルアミン3.2g(31.6mmol)を加え、窒素気流下室温で撹拌した。室温まで冷却し濾過し、ろ液を減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(溶出液:n-ヘキサン/酢酸エチル(7:1))で単離することにより目的の2-オキソ-1,3-ジオキソラン-4-イル アセテート1.5g(収率42%)を油状物として得た。得られた2-オキソ-1,3-ジオキソラン-4-イル アセテートについて、H-NMRスペクトルの測定を行い、その構造を確認した。結果を以下に示す。
 H-NMR(400MHz,CDCl)δ= 6.72( dd, 1H, J=5.6, 1.9Hz ), 4.63( dd, 1H, J=10.1, 5.6Hz ), 4.42( dd, 1H, J=10.1, 1.9Hz ), 2.18( s, 3H )
合成例2 〔ビス(2-オキソ-1,3-ジオキソラン-4-イル)オギザレート(構造式B1)の合成〕
 合成例1と同様の方法により、目的のビス(2-オキソ-1,3-ジオキソラン-4-イル)を白色固体として得た。得られたビス(2-オキソ-1,3-ジオキソラン-4-イル)オギザレートについて、H-NMRスペクトルの測定を行い、その構造を確認した。結果を以下に示す。
 H-NMR(400MHz,DMSO-d6)δ= 6.79 - 6.75( m, 2H ), 4.85 - 4.79(m, 2H ), 4.66( dd, 2H, J=10.3, 1.8Hz )
合成例3 〔2-オキソ-1,3-ジオキソラン-4-イル メタンスルホネート(構造式C2)の合成〕
 ジクロロメタン10ml中にメタンスルホン酸銀6.09g(30.0mmol)を懸濁させ、撹拌しながら4-クロロ-1,3-ジキソラン-2-オン3.06g(25.0mmol)を加え、窒素気流下で6.5時間加熱還流した。室温まで冷却し濾過により生成した塩化銀を除去した。ろ液を減圧濃縮し、残渣にジエチルエーテルを加え、ろ過することにより、目的の2-オキソ-1,3-ジオキソラン-4-イル メタンスルホネート2.00g(収率44%)を白色固体として得た。得られた2-オキソ-1,3-ジオキソラン-4-イル メタンスルホネートについて、H-NMRスペクトルの測定を行い、その構造を確認した。結果を以下に示す。
 H-NMR(400MHz,CDCl)δ= 6.52( dd, 1H, J=5.7, 1.9Hz ),4.71( dd, 1H, J=10.5, 5.7Hz ), 4.55( dd, 1H, J=10.5, 1.9Hz ), 3.33( s, 3H )
合成例4 〔2-オキソ-1,3-ジオキソラン-4-イル 2,2,2-トリフルオロアセテート(構造式A4)の合成〕
 合成例3において、メタンスルホン酸銀をトリフルオロ酢酸銀に変え、合成例3と同様の方法により、目的の2-オキソ-1,3-ジオキソラン-4-イル 2,2,2-トリフルオロアセテートを無色油状物として得た。得られた2-オキソ-1,3-ジオキソラン-4-イル 2,2,2-トリフルオロアセテートについて、H-NMRスペクトルの測定を行い、その構造を確認した。結果を以下に示す。
 H-NMR(400MHz,CDCl)δ= 6.81( dd, 1H, J=5.5, 1.6Hz ), 4.76( dd, 1H, J=11.0, 5.5Hz ), 4.61 dd, 1H, J=11.0, 1.6Hz )
合成例5 〔2-オキソ-1,3-ジオキソラン-4-イル エテンスルホネート(構造式C9)の合成〕
 合成例3と同様の方法により、目的の2-オキソ-1,3-ジオキソラン-4-イル エテンスルホネートを白色固体として得た。得られた2-オキソ-1,3-ジオキソラン-4-イル エテンスルホネートについて、H-NMRスペクトルの測定を行い、その構造を確認した。結果を以下に示す。
 H-NMR(400MHz,CDCl)δ= 6.69( dd, 1H, J=16.5, 9.7Hz ), 6.54( dd, 1H, J=16.5, 0.8Hz ), 6.47( dd, 1H, J=5.6, 1.8Hz ), 6.27( dd, 1H, J=9.7, 0.8Hz ), 4.69( dd, 1H, J=10.5, 5.6Hz ), 4.55( dd, 1H, J=10.5, 1.8Hz )
合成例6 ジメチル(2-オキソ-1,3-ジオキソラン-4-イル)ホスフェート(構造式E6)の合成〕
リン酸ジメチル0.83g(6.6mmol)のアセトニトリル10ml溶液に、4-クロロ-1,3-ジキソラン-2-オン0.97g(7.9mmol)、酢酸銀1.99g(8.6mmol)を加え、窒素気流下で2時間加熱還流した。室温まで冷却後濾過し、ジエチルエーテルと水を加え分液し、有機相を飽和食塩水で洗浄した。次いで硫酸マグネシウムで乾燥した後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(溶出液:n-ヘキサン/酢酸エチル(1:1~1:4))で単離することにより目的のジメチル(2-オキソ-1,3-ジオキソラン-4-イル)ホスフェート0.72g(収率50%)を油状物として得た。得られたジメチル(2-オキソ-1,3-ジオキソラン-4-イル)ホスフェートについて、H-NMRスペクトルの測定を行い、その構造を確認した。結果を以下に示す。
 H-NMR(400MHz,CDCl)δ= 6.35( m, 1H ),4.62( m, 1H ), 4.46( dd, 1H, J=10.2, 2.0Hz ), 3.87( d, 3H, J=6.8Hz ), 3.84( d, 3H, J=6.8Hz )
合成例7 ジエチル(2-オキソ-1,3-ジオキソラン-4-イル)ホスフェート(構造式E11)の合成〕
合成例6において、リン酸ジメチルをリン酸ジエチルに変え、合成例6と同様の方法により、目的のジエチル(2-オキソ-1,3-ジオキソラン-4-イル)ホスフェートを白色固体として得た。得られたジエチル(2-オキソ-1,3-ジオキソラン-4-イル)ホスフェートについて、H-NMRスペクトルの測定を行い、その構造を確認した。結果を以下に示す。
 H-NMR(400MHz,CDCl)δ= 6.35( m, 1H ), 4.61( m, 1H ), 4.44( dd, 1H, J=10.4, 1.8Hz )4.19( m, 4H ), 1.37( m, 6H )
実施例1~24、比較例1~2
〔リチウムイオン二次電池の作製〕
 LiNi0.33Mn0.33Co0.34 94質量%、アセチレンブラック(導電剤)3質量%を混合し、予めポリフッ化ビニリデン(結着剤)3質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに裁断し、帯状の正極シートを作製した。正極の集電体を除く部分の密度は3.6g/cmであった。
 また、ケイ素(単体)10質量%、人造黒鉛(d002=0.335nm、負極活物質)80質量%、アセチレンブラック(導電剤)5質量%を混合し、予めポリフッ化ビニリデン(結着剤)5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、負極合剤ペーストを調製した。この負極合剤ペーストを銅箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに裁断し、負極シートを作製した。負極の集電体を除く部分の密度は1.5g/cmであった。この電極シートを用いてX線回折測定した結果、黒鉛結晶の(110)面のピーク強度I(110)と(004)面のピーク強度I(004)の比〔I(110)/I(004)〕は0.1であった。
 得られた正極シート、微多孔性ポリエチレンフィルム製セパレータ、負極シートの順に積層し、表1及び表2に記載の組成の非水電解液を加えて、ラミネート型電池を作製した。
〔高温サイクル後の放電容量維持率〕
 上記の方法で作製した電池を用いて55℃の恒温槽中、1Cの定電流及び定電圧で、終止電圧4.25Vまで3時間充電し、次に1Cの定電流下、放電電圧3.0Vまで放電することを1サイクルとし、これを300サイクルに達するまで繰り返した。
 そして、下記式によりサイクル後の放電容量維持率を求めた。
 放電容量維持率(%)=(300サイクル目の放電容量/1サイクル目の放電容量)×100
〔高温充電保存後の放電容量維持率〕
<初期の放電容量>
 上記の方法で作製したラミネート型電池を用いて、25℃の恒温槽中、1Cの定電流及び定電圧で、終止電圧4.35Vまで3時間充電し、-20℃に恒温槽の温度を下げ、1Cの定電流下終止電圧2.75Vまで放電して、初期の-20℃の放電容量を求めた。
<高温充電保存試験>
 次に、このラミネート型電池を65℃の恒温槽中、1Cの定電流及び定電圧で終止電圧4.35Vまで3時間充電し、4.35Vに保持した状態で7日間保存を行った。その後、25℃の恒温槽に入れ、一旦1Cの定電流下終止電圧2.75Vまで放電した。
<高温充電保存後の放電容量>
 更にその後、初期の放電容量の測定と同様にして、高温(65℃)充電保存後の-20℃の放電容量を求めた。
<高温(65℃)充電保存後の-20℃放電容量維持率>
 高温充電保存後の-20℃放電容量維持率を下記式により求めた。
 高温充電保存後の-20℃放電容量維持率(%)=(高温充電保存後の-20℃の放電容量/初期の-20℃の放電容量)×100
 また、電池の作製条件及び電池特性を表1~表3に示す。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
実施例25及び比較例3
 実施例1及び比較例1で用いた正極活物質に変えて、ニッケルマンガン酸リチウム(LiNi1/2Mn3/2、正極活物質)を用いて、正極シートを作製した。
 非晶質炭素で被覆されたLiNi1/2Mn3/2 94質量%、アセチレンブラック(導電剤)3質量%を混合し、予めポリフッ化ビニリデン(結着剤)3質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに裁断し、正極シートを作製したこと、電池評価の際の充電終止電圧を4.9V、放電終止電圧を2.7Vとしたことの他は、実施例4及び比較例1と同様にしてラミネート型電池を作製し、電池評価を行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000019
実施例26、27及び比較例4
 実施例4及び比較例1で用いた負極活物質に代えて、チタン酸リチウム(LiTi12、負極活物質)を用いて、負極シートを作製した。
 チタン酸リチウム80質量%、アセチレンブラック(導電剤)15質量%を混合し、予めポリフッ化ビニリデン(結着剤)5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、負極合剤ペーストを調製した。この負極合剤ペーストを銅箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに裁断し、負極シートを作製したこと、電池評価の際の充電終止電圧を2.8V、放電終止電圧を1.2Vとしたこと、非水電解液の組成を所定のものに変えたことの他は、実施例1及び比較例1と同様にしてラミネート型電池を作製し、電池評価を行った。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000020
 上記実施例1~24のリチウム二次電池は何れも、本発明の非水電解液において、一般式(I)で表される化合物を添加しない場合の比較例1、特許文献1に記載の化合物を添加した場合の比較例2のリチウム二次電池に比べ、高温サイクル特性、及び高温、高電圧保存特性を向上させている。以上より、本発明の蓄電デバイスを高電圧で使用した場合の効果は、非水電解液中に、一般式(I)で表される化合物を含有する場合に特有の効果であることが分かる。
 また、実施例25と比較例3の対比から、正極にニッケルマンガン酸リチウムを用いた場合や、実施例26~27と比較例4の対比から、負極にチタン酸リチウムを用いた場合にも同様な効果がみられる。
 従って、本発明の効果は、特定の正極や負極に依存した効果でないことは明らかである。
 更に、本発明の非水電解液は、リチウム一次電池の広い温度範囲での放電特性を改善する効果も有する。
 本発明の非水電解液を使用すれば、広い温度範囲における電気化学特性に優れた蓄電デバイスを得ることができる。特にハイブリッド電気自動車、プラグインハイブリッド電気自動車、バッテリー電気自動車等に搭載されるリチウム二次電池等の蓄電デバイス用の非水電解液として使用すると、広い温度範囲で電気化学特性が低下しにくい蓄電デバイスを得ることができる。
 また、本発明の新規な化合物は、その特殊な構造から、化学一般、特に有機化学、電気化学、生化学及び高分子化学の分野において、電解質用途、耐熱性用途等の材料として、医薬、農薬、電子材料、高分子材料等の中間原料、又は電池材料として有用である。
 
 

Claims (15)

  1.  非水溶媒に電解質塩が溶解されている非水電解液であって、下記一般式(I)で表される(2-オキソ-1,3-ジオキソラン-4-イル)オキシ化合物を含有することを特徴とする非水電解液。
    Figure JPOXMLDOC01-appb-C000001

    (式中、Rは、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、炭素数7~13のアラルキル基、炭素数6~12のアリール基、-OC(=O)-R、-OS(=O)-R、又は-OP(=O)(-R)-Rを示す。R及びRは、それぞれ独立に、水素原子、ハロゲン原子、又は炭素数1~6のアルキル基を示し、nは1~3の整数を示す。
     Rは、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、炭素数7~13のアラルキル基、炭素数6~12のアリール基、又は炭素数2~6のアルコキシカルボニル基を示す。Rは、ハロゲン原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、炭素数7~13のアラルキル基、炭素数6~12のアリール基、又は炭素数1~6のアルコキシ基を示す。また、R及びRは、それぞれ独立に、ハロゲン原子、炭素数1~6のアルコキシ基、又は炭素数6~12のアリールオキシ基を示す。
     nが1の場合、Lは、-C(=O)-R、-S(=O)-R、又は-P(=O)(-R)-Rを示し、nが2の場合、Lは、-C(=O)C(=O)-、-S(=O)-、又は-P(=O)(-R)-を示し、nが3の場合、Lは、-P(=O)(-)を示す。
     また、アルキル基、アラルキル基、アリール基、アルコキシカルボニル基、アルコキシ基、及びアリールオキシ基の少なくとも1つの水素原子はハロゲン原子で置換されていてもよい。)
  2.  一般式(I)で表される化合物が、2-オキソ-1,3-ジオキソラン-4-イル アセテート、2-オキソ-1,3-ジオキソラン-4-イル 2,2,2-トリフルオロアセテート、2-オキソ-1,3-ジオキソラン-4-イル アクリレート、2-オキソ-1,3-ジオキソラン-4-イル メタクリレート、メチル(2-オキソ-1,3-ジオキソラン-4-イル)オギザレート、エチル(2-オキソ-1,3-ジオキソラン-4-イル)オギザレート、ビス(2-オキソ-1,3-ジオキソラン-4-イル)オギザレート、2-オキソ-1,3-ジオキソラン-4-イル スルホロフルオリデート、2-オキソ-1,3-ジオキソラン-4-イル メタンスルホネート、2-オキソ-1,3-ジオキソラン-4-イル トリフルオロメタンスルホネート、2-オキソ-1,3-ジオキソラン-4-イル エテンスルホネート、メチル(2-オキソ-1,3-ジオキソラン-4-イル)サルフェート、5-フルオロ-2-オキソ-1,3-ジオキソラン-4-イル メタンスルホネート、5-メチル-2-オキソ-1,3-ジオキソラン-4-イル メタンスルホネート、2-オキソ-1,3-ジオキソラン-4,5-ジイル ジメタンスルホネート、ビス(2-オキソ-1,3-ジオキソラン-4-イル)サルフェート、2-オキソ-1,3-ジオキソラン-4-イル ホスホロジフルオリデート、ジメチル(2-オキソ-1,3-ジオキソラン-4-イル)ホスフェート、及びジエチル(2-オキソ-1,3-ジオキソラン-4-イル)ホスフェートからなる群より選ばれる1種以上である請求項1に記載の非水電解液。
  3.  非水溶媒が、環状カーボネート及び鎖状エステルを含む、請求項1又は2に記載の非水電解液。
  4.  環状カーボネートが、エチレンカーボネート、プロピレンカーボネート、4-フルオロ-1,3-ジオキソラン-2-オン、ビニレンカーボネート、及び4-エチニル-1,3-ジオキソラン-2-オンからなる群より選ばれる1種又は2種以上を含む、請求項3に記載の非水電解液。
  5.  鎖状エステルとして対称鎖状カーボネートと非対称鎖状カーボネートの両方を含み、対称鎖状カーボネートが非対称鎖状カーボネートより多く含まれる、請求項3に記載の非水電解液。
  6.  鎖状エステルが、メチルエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、メチルブチルカーボネート、及びエチルプロピルカーボネートからなる群より選ばれる1種又は2種以上の非対称鎖状カーボネート;ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート、及びジブチルカーボネートからなる群より選ばれる1種又は2種以上の対称鎖状カーボネート;ピバリン酸メチル、ピバリン酸エチル、ピバリン酸プロピル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、酢酸メチル、及び酢酸エチルからなる群より選ばれる1種又は2種以上の鎖状カルボン酸エステルから選ばれる1種又は2種以上を含む、請求項3に記載の非水電解液。
  7.  更に、2,2,2-トリフルオロエチルアセテート、2,2-ジフルオロエチルアセテート、メチル 2,2,2-トリフルオロプロピオネート、メチル(2,2-ジフルオロエチル)カーボネート、メチル(2,2,2-トリルオロエチル)カーボネート、及びエチル(2,2,2-トリルオロエチル)カーボネートからなる群より選ばれる1種以上を含む、請求項6に記載の非水電解液。
  8.  更に、シュウ酸構造を有するリチウム塩、リン酸構造を有するリチウム塩、及びS=O基を有するリチウム塩からなる群より選ばれる1種以上のリチウム塩を含み、それらの総含有量が0.001mol/L以上0.5mol/L以下である、請求項1~7のいずれかに記載の非水電解液。
  9.  リチウム塩が、リチウム ビス(オキサラト)ボレート、リチウム ジフルオロ(オキサラト)ボレート、リチウム テトラフルオロ(オキサラト)ホスフェート、リチウム ジフルオロビス(オキサラト)ホスフェート、リチウム ジフルオロホスフェート、リチウム トリフルオロ((メタンスルホニル)オキシ)ボレート、リチウム メチルサルフェート、リチウムエチルサルフェート、リチウム 2,2,2-トリフルオロエチルサルフェート、リチウム フルオロサルフェート、及びリチウム ビス(フルオロスルホニル)イミドからなる群より選ばれる1種又は2種以上である、請求項8に記載の非水電解液。
  10.  電解質塩が、LiPF、LiBF、LiPO、LiN(SOF)、LiN(SOCF、及びLiN(SOから選ばれる1種又は2種以上である、請求項1~9のいずれかに記載の非水電解液。
  11.  蓄電デバイス用である、請求項1~10のいずれかに記載の非水電解液。
  12.  正極、負極、及び非水溶媒に電解質塩が溶解されている非水電解液を備えた蓄電デバイスであって、該非水電解液が請求項1に記載の非水電解液であることを特徴とする蓄電デバイス。
  13.  正極が、正極活物質として、コバルト、マンガン、及びニッケルからなる群より選ばれる1種又は2種以上を含有するリチウムとの複合金属酸化物、又は鉄、コバルト、ニッケル及びマンガンからなる群より選ばれる1種又は2種以上を含有するリチウム含有オリビン型リン酸塩を含む、請求項12に記載の蓄電デバイス。
  14.  負極が、負極活物質として、リチウム金属、リチウム合金、リチウムイオンを吸蔵及び放出することが可能な炭素材料、スズ、スズ化合物、ケイ素、ケイ素化合物、及びチタン酸リチウム化合物からなる群より選ばれる1種又は2種以上を含む、請求項12に記載の蓄電デバイス。
  15.  下記一般式(II)で表される(2-オキソ-1,3-ジオキソラン-4-イル)オキシ化合物。
    Figure JPOXMLDOC01-appb-C000002

    (式中、Rは、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、炭素数7~13のアラルキル基、炭素数6~12のアリール基、-OC(=O)-R、-OS(=O)-R、又は-OP(=O)(-R)-Rを示す。R及びRは、それぞれ独立に、水素原子、ハロゲン原子、又は炭素数1~6のアルキル基を示し、nは1~3の整数を示す。
     Rは、ハロゲン原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、炭素数7~13のアラルキル基、炭素数6~12のアリール基、又は炭素数1~6のアルコキシ基を示す。R及びRは、それぞれ独立に、ハロゲン原子、炭素数1~6のアルコキシ基、又は炭素数6~12のアリールオキシ基を示す。Rは、少なくとも1つの水素原子がハロゲン原子で置換された炭素数1~6のハロアルキル基、炭素数3~6のシクロアルキル基、炭素数2~6のアルキニル基、炭素数7~13のアラルキル基、炭素数6~12のアリール基、又は炭素数2~6のアルコキシカルボニル基を示す。
     nが1の場合、Lは、-C(=O)-R、-S(=O)-R、又は-P(=O)(-R)-Rを示し、nが2の場合、Lは、-C(=O)C(=O)-、-S(=O)-、又は-P(=O)(-R)-を示し、nが3の場合、Lは、-P(=O)(-)を示す。
     また、アルキル基、アラルキル基、アリール基、アルコキシカルボニル基、アルコキシ基、及びアリールオキシ基の少なくとも1つの水素原子はハロゲン原子で置換されていてもよい。)
     
PCT/JP2017/026151 2017-07-19 2017-07-19 非水電解液及びそれを用いた蓄電デバイス WO2019016903A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/026151 WO2019016903A1 (ja) 2017-07-19 2017-07-19 非水電解液及びそれを用いた蓄電デバイス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/026151 WO2019016903A1 (ja) 2017-07-19 2017-07-19 非水電解液及びそれを用いた蓄電デバイス

Publications (1)

Publication Number Publication Date
WO2019016903A1 true WO2019016903A1 (ja) 2019-01-24

Family

ID=65015524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026151 WO2019016903A1 (ja) 2017-07-19 2017-07-19 非水電解液及びそれを用いた蓄電デバイス

Country Status (1)

Country Link
WO (1) WO2019016903A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111725563A (zh) * 2019-03-18 2020-09-29 诺莱特电池材料(苏州)有限公司 一种锂离子电池非水电解液及锂离子电池
CN111883839A (zh) * 2020-08-03 2020-11-03 远景动力技术(江苏)有限公司 高压电解液及基于其的锂离子电池
WO2023016412A1 (zh) * 2021-08-09 2023-02-16 深圳新宙邦科技股份有限公司 一种非水电解液及电池
CN116315083A (zh) * 2021-12-20 2023-06-23 张家港市国泰华荣化工新材料有限公司 一种非水电解液及含有该非水电解液的锂离子电池
CN116848688A (zh) * 2023-02-20 2023-10-03 宁德时代新能源科技股份有限公司 非水电解质溶液及其锂二次电池和用电装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50137925A (ja) * 1974-04-11 1975-11-01
JPS50142516A (ja) * 1974-04-09 1975-11-17
JP2000063620A (ja) * 1998-08-19 2000-02-29 Dainippon Ink & Chem Inc 硬化性樹脂組成物
JP2003012725A (ja) * 2001-06-29 2003-01-15 Dainippon Ink & Chem Inc 電子材料及び該材料からなるフィルム
JP2009262533A (ja) * 2008-04-04 2009-11-12 Konica Minolta Opto Inc 光学フィルムの製造方法、光学フィルム、偏光板、及び表示装置
JP2013239443A (ja) * 2007-04-20 2013-11-28 Ube Ind Ltd リチウム二次電池用非水電解液及びそれを用いたリチウム二次電池
WO2015093532A1 (ja) * 2013-12-19 2015-06-25 宇部興産株式会社 非水電解液、それを用いた蓄電デバイス、及びそれに用いられるカルボン酸エステル化合物
JP2015527483A (ja) * 2012-06-15 2015-09-17 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 求核試薬の存在下での有機基材の陽極酸化
JP2017147130A (ja) * 2016-02-17 2017-08-24 宇部興産株式会社 非水電解液およびそれを用いた蓄電デバイス

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50142516A (ja) * 1974-04-09 1975-11-17
JPS50137925A (ja) * 1974-04-11 1975-11-01
JP2000063620A (ja) * 1998-08-19 2000-02-29 Dainippon Ink & Chem Inc 硬化性樹脂組成物
JP2003012725A (ja) * 2001-06-29 2003-01-15 Dainippon Ink & Chem Inc 電子材料及び該材料からなるフィルム
JP2013239443A (ja) * 2007-04-20 2013-11-28 Ube Ind Ltd リチウム二次電池用非水電解液及びそれを用いたリチウム二次電池
JP2009262533A (ja) * 2008-04-04 2009-11-12 Konica Minolta Opto Inc 光学フィルムの製造方法、光学フィルム、偏光板、及び表示装置
JP2015527483A (ja) * 2012-06-15 2015-09-17 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 求核試薬の存在下での有機基材の陽極酸化
WO2015093532A1 (ja) * 2013-12-19 2015-06-25 宇部興産株式会社 非水電解液、それを用いた蓄電デバイス、及びそれに用いられるカルボン酸エステル化合物
JP2017147130A (ja) * 2016-02-17 2017-08-24 宇部興産株式会社 非水電解液およびそれを用いた蓄電デバイス

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111725563A (zh) * 2019-03-18 2020-09-29 诺莱特电池材料(苏州)有限公司 一种锂离子电池非水电解液及锂离子电池
CN111725563B (zh) * 2019-03-18 2023-09-15 诺莱特电池材料(苏州)有限公司 一种锂离子电池非水电解液及锂离子电池
CN111883839A (zh) * 2020-08-03 2020-11-03 远景动力技术(江苏)有限公司 高压电解液及基于其的锂离子电池
CN111883839B (zh) * 2020-08-03 2021-12-14 远景动力技术(江苏)有限公司 高压电解液及基于其的锂离子电池
WO2023016412A1 (zh) * 2021-08-09 2023-02-16 深圳新宙邦科技股份有限公司 一种非水电解液及电池
CN116315083A (zh) * 2021-12-20 2023-06-23 张家港市国泰华荣化工新材料有限公司 一种非水电解液及含有该非水电解液的锂离子电池
CN116315083B (zh) * 2021-12-20 2024-03-01 张家港市国泰华荣化工新材料有限公司 一种非水电解液及含有该非水电解液的锂离子电池
CN116848688A (zh) * 2023-02-20 2023-10-03 宁德时代新能源科技股份有限公司 非水电解质溶液及其锂二次电池和用电装置

Similar Documents

Publication Publication Date Title
JP6866067B2 (ja) 非水電解液およびそれを用いた蓄電デバイス
JP6575521B2 (ja) 非水電解液およびそれを用いた蓄電デバイス
JP6380409B2 (ja) 非水電解液、それを用いた蓄電デバイス、及びそれに用いられるカルボン酸エステル化合物
JP6572897B2 (ja) 非水電解液、それを用いた蓄電デバイス、及びそれに用いるリン化合物
JP6036687B2 (ja) 非水電解液、それを用いた蓄電デバイス、及び環状スルホン酸エステル化合物
JP6225923B2 (ja) 非水電解液及びそれを用いた蓄電デバイス
JP6583267B2 (ja) 非水電解液、それを用いた蓄電デバイス、及びそれに用いるリチウム塩
JP6838363B2 (ja) 非水電解液及びそれを用いた蓄電デバイス
JPWO2017061464A1 (ja) 非水電解液及びそれを用いた蓄電デバイス
WO2019016903A1 (ja) 非水電解液及びそれを用いた蓄電デバイス
JP6773041B2 (ja) 非水電解液及びそれを用いた蓄電デバイス
WO2017047554A1 (ja) 蓄電デバイス用非水電解液及びそれを用いた蓄電デバイス
JP5822070B2 (ja) 非水電解液及びそれを用いた蓄電デバイス
KR20140025398A (ko) 비수 전해액, 그것을 이용한 축전 디바이스, 및 트라이플루오로메틸벤젠 화합물
WO2021065863A1 (ja) 非水電解液及びそれを用いた蓄電デバイス
JP2019207890A (ja) 非水電解液及びそれを用いた蓄電デバイス
JP7051422B2 (ja) 非水電解液およびそれを用いた蓄電デバイス
JP6015673B2 (ja) 非水電解液及びそれを用いた蓄電デバイス
JP5704277B1 (ja) 非水電解液およびそれを用いた蓄電デバイス
WO2022025241A1 (ja) 非水電解液及びそれを用いた蓄電デバイス
JP2016046242A (ja) 非水電解液およびそれを用いた蓄電デバイス
JP7051512B2 (ja) 非水電解液用カチオン、非水電解液、それを用いた蓄電デバイス、及びそれに用いるホスホニウム塩
JP6252200B2 (ja) 非水電解液およびそれを用いた蓄電デバイス
JP2022054303A (ja) 蓄電デバイス用非水電解液およびそれを用いた蓄電デバイス
JP2021054766A (ja) アルカリ金属塩化合物、それを用いた非水電解液、及びその非水電解液を用いた蓄電デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17918575

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17918575

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP