WO2019015972A1 - Armoire de congélateur dotée d'un dispositif de communication - Google Patents

Armoire de congélateur dotée d'un dispositif de communication Download PDF

Info

Publication number
WO2019015972A1
WO2019015972A1 PCT/EP2018/068150 EP2018068150W WO2019015972A1 WO 2019015972 A1 WO2019015972 A1 WO 2019015972A1 EP 2018068150 W EP2018068150 W EP 2018068150W WO 2019015972 A1 WO2019015972 A1 WO 2019015972A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
slot
cabinet
freezer cabinet
trapezoidal
Prior art date
Application number
PCT/EP2018/068150
Other languages
English (en)
Inventor
Stephen Michael BREEN
Roberto DARRA
Alberto PRAVATO
Oliver Klaus ROESCHER
Original Assignee
Unilever Plc
Unilever N.V.
Conopco, Inc., D/B/A Unilever
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever Plc, Unilever N.V., Conopco, Inc., D/B/A Unilever filed Critical Unilever Plc
Priority to US16/632,345 priority Critical patent/US20220349646A1/en
Priority to CN201880048534.8A priority patent/CN110945304B/zh
Priority to BR112020000402-2A priority patent/BR112020000402B1/pt
Priority to EP18734833.9A priority patent/EP3655715B8/fr
Publication of WO2019015972A1 publication Critical patent/WO2019015972A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/062Walls defining a cabinet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/005Mounting of control devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/12Arrangements of compartments additional to cooling compartments; Combinations of refrigerators with other equipment, e.g. stove

Definitions

  • the present invention relates to freezer cabinets of the type used to display and dispense frozen confections and to communication devices for use in such cabinets.
  • Freezer cabinets used in retail outlets typically serve a range of functions. Not only do they store frozen products, but they are also in many cases used as the point of dispense, with the consumer selecting and removing a chosen product directly from the cabinet. Thus information gathered regarding the state of cabinets can be useful for a number of purposes especially when such information can be gathered and transmitted to a remote location using telemetry.
  • the use of telemetry in electrical appliances has increased in recent years, largely driven by the low cost and ubiquity of wireless networks such as GSM networks. Applications of telemetry to refrigeration appliances have been described.
  • control unit attached to or embedded within a refrigeration appliance to monitor electric power voltage and/or frequency supplied by the mains.
  • control modules include an appliance communications module.
  • the appliance includes a cavity, defined by walls, that is adapted to receive the communications module. An opening in a wall of the appliance allows access to the cavity.
  • the communications module and corresponding cavity are shown in Fig. 5 to have a rectangular rear face and opening respectively.
  • the present inventors have recognized that for use in freezer cabinets, the features allowing convenient installation and removal of a communication device such as a telemetry device are advantageously such that the device can be installed in parts of the freezer that are not easily visible and/or accessible.
  • freezer cabinets are often optimized to present a visually appealing display to potential consumers.
  • most functional and utilitarian features are placed in parts of the cabinet which are not visible to the consumer (or at least are not at eye level) and as such are not readily accessible.
  • the compressor is usually stored in a separate compartment within the cabinet and the evaporator coils are usually embedded within the walls.
  • the present inventors have found that by providing a freezer cabinet with a specific shaped orifice and a communication device receivable in the orifice, the device can be easily installed into the cabinet even where the orifice is not readily visible to the installer.
  • the present invention is directed to a freezer cabinet comprising:
  • a sensor system for detecting at least one parameter indicative of the state of the freezer cabinet
  • a slot shaped to receive a communication device configured to communicate with the sensor system
  • slot extends into the cabinet from a trapezoidal orifice in an outer wall of the cabinet.
  • trapezoidal means quadrilateral having only one pair of parallel sides. Thus as only one pair of sides of the orifice is parallel, there is no rotational symmetry and so a communication device with a corresponding rear face can only be inserted into the slot in a single orientation. This means that a user cannot accidentally insert the device in the orifice in an incorrect orientation.
  • an inner surface of the slot comprises elongate cavities extending from the trapezoidal orifice and shaped to receive lugs on an outer surface of the communication device.
  • the elongate cavities extend only partially into the slot as then the abutment of the lugs at the end of the cavities can prevent the device being forced too far into the slot, which may otherwise damage the connector.
  • the communication device comprises a recess in a front face of the communication device, which recess can allow insertion of a finger and/or a removal tool.
  • the slot preferably comprises a connector for connecting the communication device with the sensor system and/or the power supply of the cabinet.
  • the connector of the slot (when present) is preferably adapted such that when the device is docked in the slot, the device is in communication with the sensor system.
  • the device preferably comprises pins which can transport electrical signals. Therefore the connector preferably comprises a communication socket for receiving pins projecting from a rear face of the communication device.
  • the device may comprise a battery or other power supply.
  • the connector comprises a power socket for electrically coupling the communication device to the power supply of the cabinet, as this dispenses with the need for the device to carry its own power supply.
  • the sensor system detects at least one parameter indicative of the state of the freezer cabinet.
  • the parameter or parameters which are measured will depend on the information required.
  • the quality of frozen products is sensitive to thermal history as well as humidity (high humidity may lead to frost formation). Thus information on such conditions is valuable in identifying and/or preventing quality deterioration.
  • the frequency with which a cabinet is opened and closed and/or the duration for which a cabinet stays open during each product selection event can be useful in informing on consumer behaviour.
  • the opening of the cabinet can produce temperature and humidity fluctuations, as well as affecting the energy efficiency of the cabinet. Thus information on such events can also help in understanding how to maintain product quality and/or improve energy efficiency of cabinets.
  • a further example relates to control of stock levels.
  • optical sensors, weight sensors and/or bar code readers and the like may be used to keep track of the amount and type of products in a freezer cabinet and that information used to automatically reorder stock and/or optimise the range of products supplied to particular cabinets.
  • the at least one parameter indicative of the state of the freezer cabinet is preferably indicative of one or more of temperature, humidity, power consumption, stock level, and opening state.
  • the sensor system will typically comprise at least one sensor (for example a temperature probe, humidity probe, door switch, optical sensor or the like).
  • the sensor may be wireless and communicate with the device and/or the connector of the slot via radio waves, infrared or ultrasound.
  • the sensor system comprises at least one communication line for carrying signals between the sensor and the connector.
  • the sensor system comprises a controller in communication with the one or more sensors.
  • the controller facilitates communication between the one or more sensors and the communication device through, for example translating the signals received from the sensor(s) into a communication protocol recognisable by the device.
  • the slot preferably comprises at least one clip for engaging with one or more raised elements on an outer surface of the device when the device is received in the slot. More preferably the one or more clips are located adjacent to the trapezoidal orifice of the slot. By locating the one or more clips adjacent to the orifice, they can be easily accessed to disengage from the raised elements when removing the device from the slot.
  • the present invention has particular utility when the slot is located at parts of the freezer cabinet which are hard to access and/or not normally visible.
  • the freezer cabinet comprises a compressor housed in a compressor compartment delimited by an inner compartment wall and a portion of the outer wall of the freezer cabinet comprising the trapezoidal orifice and the slot extends into the compressor compartment.
  • Other parts of freezer cabinets which are hard to access and/or not normally visible and so preferred for locating the slot include lighting compartments or the like.
  • the whole of the device is receivable in the slot.
  • the trapezoidal orifice is closed by a plate.
  • the plate can, for example be screwed in place over the orifice.
  • the plate is substantially flush with the outer surface of the outer wall of the freezer cabinet.
  • the communication device fits snugly and tightly through the orifice and is arranged in the slot so that the whole device is inside the slot and does not protrude through the orifice when docked in the slot.
  • the communication device comprises an outer case and a transmitter contained within the case. Whilst the transmitter in some embodiments could be configured to communicate exclusively with local systems, such as the sensor system, a visual display and/or the controller, in a preferred embodiment the communication device is a telemetry device and the transmitter is configured to communicate wirelessly with a remote server through a communication network. Most preferably the transmitter is configured to communicate with the server through a cellular network. The transmitter is preferably configured to both transmit and receive signals over the communication network.
  • the outer case comprises a rear trapezoidal face. Preferably also one or more pins project from the rear trapezoidal face and are receivable in a communication socket of the slot.
  • the rear trapezoidal face of the communication device comprises one or more projections along and/or around the pins and shaped to assist guiding of the pins into the communication socket when the communication device is pushed into the slot.
  • Such projections not only assist in locating the pins in the socket on insertion, but also help protect the pins from accidental damage.
  • the outer case is of generally prismatoid form and comprises a body extending from a front trapezoidal face to the rear trapezoidal face, as with such a form the whole outer case is kept in alignment by the trapezoidal orifice throughout insertion.
  • the body comprises at least two lugs located towards the front face and receivable by corresponding elongate cavities in an inner surface of the slot when the communication device is pushed into the slot.
  • the front trapezoidal face of the communication device comprises a recess to allow insertion of a finger and/or a removal tool.
  • the body comprises one or more raised elements positioned to be received by the one or more clips of the slot. More preferably the one or more raised elements are located on the outer surface of the body adjacent to the front trapezoidal face.
  • the present invention also provides the freezer cabinet of any embodiment of the first aspect and comprising the communication device of any embodiment of the second aspect docked in the slot.
  • Figure 1 shows a schematic sectional view of a freezer cabinet according to the invention.
  • Figure 2 shows a schematic sectional view of the freezer cabinet of Fig. 1 with a communication device docked in the slot.
  • Figure 3 shows a front perspective view of a communication device according to an embodiment of the invention, viewed from slightly below and to one side.
  • Figure 4 shows a back perspective view of the communication device of Fig. 3, viewed from slightly above and to the other side.
  • Figure 5 shows a front perspective view of a slot for receiving the device of Fig. 3, viewed from slightly above and to one side.
  • Figure 6 shows a back perspective view of slot of Fig. 5, viewed from slightly above and to the other side, and with certain internal elements shown in broken lines.
  • a freezer cabinet (1 ) comprising a chamber delimited by a base (7) and side walls (6) and closed by a lid (8).
  • the chamber is divided into two compartments (2, 4) by a compressor compartment wall (5).
  • the largest compartment (2) is provided for storing and displaying frozen products, especially frozen confections such as ice cream, water ices and the like.
  • the smaller compartment is the compressor compartment (4) and is located towards the bottom and one end of the cabinet (1 ).
  • the compressor compartment (4) houses the compressor/condenser (3) which cools and circulates coolant liquid around the cabinet walls (6) through an evaporator circuit (not shown) embedded within the walls (6).
  • the compressor (3) is connected to a cabinet power supply (41 ) via compressor power line (42).
  • the cabinet power supply (41 ) is connected to mains electricity via a mains power line (9).
  • An orifice (24) is located in a portion of one of the side walls (6) which bounds the compressor compartment (4).
  • the orifice (24) forms the entrance to a slot (23) extending into the compressor compartment (4).
  • At the rear of the slot (23) (the end of the slot distal from the orifice (24)) is a connector (26).
  • a communication device (10) can be docked into the slot (23) and the orifice closed by a cover plate (35).
  • the cover plate (35) is shown as standing proud of the outer surface of the cabinet wall (6) for illustration purposes. In practice it is preferred that the plate (35) is mounted flush with the outer surface of the wall (6).
  • the device (10) When installed in the slot (23), the device (10) is in electrical communication with a sensor probe (38), for example a temperature probe, through the connector (26) of the slot (23) via first communication line (39) to a controller (37) and a second communication line (40) between the controller (37) and the probe (38).
  • the controller (37) is preferably preprogrammed to translate signals received from the probe (38) into a communications protocol output to the communication device (10). Examples of commercial controllers include, for example, the DanfossTM ERC range of controllers.
  • Both the controller (37) and the connector (26) are preferably powered by the cabinet power supply (41 ), for example via a controller power line (44) and a slot power line (43) respectively.
  • the device (10) and slot (23) are provided with specific feature to allow convenient and reliable installation/removal as are shown in Figures 3 to 6 and will be further described below.
  • the communication device (10) comprises an outer case (1 1 ) substantially in the shape of a trapezoidal prism.
  • the body (12) of the case (1 1 ) extends from a front trapezoidal face (13) to a rear trapezoidal face (14) and has a top face (15) narrower than a bottom face (16).
  • the outer case (1 1 ) of the device (10) encloses most of the electronic components of the device (10), which include a transmitter/receiver (not shown), except for communication pins (18) which project from the rear face (14). Surrounding the pins (18) on three sides is a projecting rim (19).
  • the front face (13) of the device (10) has a recess (20) located towards the top face (15) and which is shaped to receive the finger of a user to allow the device (10) to be pulled out of the slot (23).
  • a raised element Located on the bottom face (16) of the body (12) adjacent to the front face (13) is a raised element (21 ).
  • the slot (23) extends backwards from a front trapezoidal orifice (24) to a rear face (25).
  • a connector (26) Located inside the slot (23) is a connector (26).
  • the connector (26) comprises a power socket (29), a communication socket (28) and connector pins (27), all mounted on a PCB (30).
  • the power socket (29) has an opening in the rear face (25) to allow connection to the cabinet power supply (41 ) via slot power line (43).
  • the communication pins (27) allow connection, at the rear face (25) of the slot (23), to a communication line (39) which is part of the sensor system.
  • the communication socket (28) is positioned to receive the device pins (18) when the device (10) is installed in the slot (23).
  • the PCB (30) provides connections between the power socket (29), the communication pins (27) and the socket (28) so that the device (10), when docked, can receive power from the power supply (41 ), and communicate with the controller (37).
  • the slot (23) includes additional features to assist in convenient installation and/or removal of the device (10) in the slot (23).
  • the inner surface (31 ) of the slot (23) comprises a pair of elongate cavities (32) therein.
  • the cavities (32) begin near the bottom and on either side of the orifice (24) and extend into the slot (23) for a short distance.
  • the cavities (32) are positioned and shaped to receive the lugs (17) of the device (10) when the device (10) is installed in the slot (23).
  • a clip (22) Extending a short distance into the slot (23) from the bottom edge of the orifice (24) is a clip (22) that is resiliency deflectable away from the slot.
  • the clip (22) is positioned and shaped to receive the raised element (21 ) of the device (10) when the device (10) is docked in the slot (23).
  • a user To install the device (10) in the slot (23) of the freezer cabinet (1 ), a user aligns the rear face (14) of the device (10) with the orifice (24) and slides the device (10) into the slot (23) until the device pins (18) are received in the communication socket (28) of the connector (26).
  • the corresponding shapes of the orifice (24) and device (10) ensure that the device (10) is not placed into the slot (23) in the incorrect orientation. If the device (10) is upside down or on its side then it will not fit into the trapezoidal orifice (24). If the device (10) is inserted backwards (i.e. front face (13) first) then the device (10) can only travel a short distance into the slot (23) before the lugs (17) abut against the ends of the elongate cavities (32).
  • the lugs (17) do not abut against the ends of the cavities (32) until the device has travelled far enough to ensure that the device pins (18) are received in the communication socket (28) of the connector (26). If the user attempts to push the device (10) further into the slot (23) then the abutment of the lugs (17) against the ends of the cavities (32) prevents futher movement of the device (10) into the slot (23) which would otherwise damage the connector (26) and/or the device pins (18).
  • the protruding rim (19) is pushed around the top and sides of the communication socket (28) and thereby guides the pins (18) into sound engagement with the socket (28).
  • the raised element (21 ) causes the clip (22) to be deflected downwards.
  • the raised element (21 ) is located inwards of the thickest portion of the clip (22). As such the clip (22) snaps back into alignment with the lower edge of the orifice (24), thus securing the device (10) in place.
  • the user then secures the cover plate (35) over the orifice (24).
  • the transmitter of the device (10) begins to transmit data received from the controller (37) to a remote server via a GSM or similar wireless network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

L'invention concerne une armoire de congélateur (1) comprenant un système de capteur (37, 38, 39, 40) pour détecter au moins un paramètre indicatif de son état; et une fente (23) formée pour recevoir un dispositif de communication (10) configuré pour communiquer avec le système de capteur (37, 38, 39, 40). La fente (23) s'étend dans l'armoire (1) depuis un orifice trapézoïdal (24) dans une paroi externe (6) de l'armoire (1)
PCT/EP2018/068150 2017-07-21 2018-07-04 Armoire de congélateur dotée d'un dispositif de communication WO2019015972A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/632,345 US20220349646A1 (en) 2017-07-21 2018-07-04 Freezer cabinet with communication device
CN201880048534.8A CN110945304B (zh) 2017-07-21 2018-07-04 具有通信装置的冷冻柜
BR112020000402-2A BR112020000402B1 (pt) 2017-07-21 2018-07-04 Gabinete congelador
EP18734833.9A EP3655715B8 (fr) 2017-07-21 2018-07-04 Armoire de réfrigération équipée d'un dispositif de communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP17182558 2017-07-21
EP17182558.1 2017-07-21

Publications (1)

Publication Number Publication Date
WO2019015972A1 true WO2019015972A1 (fr) 2019-01-24

Family

ID=59384048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/068150 WO2019015972A1 (fr) 2017-07-21 2018-07-04 Armoire de congélateur dotée d'un dispositif de communication

Country Status (5)

Country Link
US (1) US20220349646A1 (fr)
EP (1) EP3655715B8 (fr)
CN (1) CN110945304B (fr)
BR (1) BR112020000402B1 (fr)
WO (1) WO2019015972A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070220907A1 (en) 2006-03-21 2007-09-27 Ehlers Gregory A Refrigeration monitor unit
DE102011087777A1 (de) * 2011-12-06 2013-06-06 BSH Bosch und Siemens Hausgeräte GmbH Haushaltsgerät mit einer USB-Einrichtung und Verfahren zum Betreiben eines Haushaltsgeräts
DE102012023596A1 (de) * 2012-11-22 2014-05-22 Liebherr-Hausgeräte Ochsenhausen GmbH Kühl- und/oder Gefriergerät
CN105627668A (zh) * 2015-12-25 2016-06-01 青岛海尔股份有限公司 冰箱
CN205373217U (zh) * 2015-12-25 2016-07-06 青岛海尔股份有限公司 冰箱
WO2016185054A1 (fr) * 2015-05-21 2016-11-24 Alonso Echevarría Íñigo Procédé et système d'enregistrement d'au moins un paramètre lors du transport de produits périssables

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6658994B1 (en) * 2002-04-10 2003-12-09 Chromalox, Inc. Modular assembly for a holding cabinet controller
WO2005047786A1 (fr) * 2003-11-14 2005-05-26 Lg Electronics Inc. Refrigerateur
KR101346502B1 (ko) * 2008-02-21 2013-12-31 엘지전자 주식회사 냉장고 및 냉장고 도어의 제조방법
US9068768B2 (en) * 2010-05-19 2015-06-30 Prince Castle LLC Refrigerated point-of-use holding cabinet with downloadable software
CN203561134U (zh) * 2013-07-15 2014-04-23 飞龙家电集团有限公司 一种可转动的智能化冰箱
CN104422245A (zh) * 2013-09-08 2015-03-18 重庆市北碚区精神卫生中心 一种自动呼叫冰箱装置
CN105208355A (zh) * 2015-10-21 2015-12-30 合肥华凌股份有限公司 一种冰箱数据采集方法、***及冰箱
US11185191B2 (en) * 2016-05-20 2021-11-30 Marmon Foodservice Technologies, Inc. Modular food holding system
US11533784B2 (en) * 2019-09-24 2022-12-20 Sanden Vendo America, Inc. Hot food merchandising unit with roller grill
WO2021125653A1 (fr) * 2019-12-20 2021-06-24 삼성전자주식회사 Réfrigérateur et procédé de commande associé
US11602059B2 (en) * 2020-01-18 2023-03-07 True Manufacturing Co., Inc. Refrigeration appliance with detachable electronics module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070220907A1 (en) 2006-03-21 2007-09-27 Ehlers Gregory A Refrigeration monitor unit
DE102011087777A1 (de) * 2011-12-06 2013-06-06 BSH Bosch und Siemens Hausgeräte GmbH Haushaltsgerät mit einer USB-Einrichtung und Verfahren zum Betreiben eines Haushaltsgeräts
DE102012023596A1 (de) * 2012-11-22 2014-05-22 Liebherr-Hausgeräte Ochsenhausen GmbH Kühl- und/oder Gefriergerät
WO2016185054A1 (fr) * 2015-05-21 2016-11-24 Alonso Echevarría Íñigo Procédé et système d'enregistrement d'au moins un paramètre lors du transport de produits périssables
CN105627668A (zh) * 2015-12-25 2016-06-01 青岛海尔股份有限公司 冰箱
CN205373217U (zh) * 2015-12-25 2016-07-06 青岛海尔股份有限公司 冰箱

Also Published As

Publication number Publication date
BR112020000402A2 (pt) 2020-07-14
CN110945304A (zh) 2020-03-31
BR112020000402B1 (pt) 2024-04-30
EP3655715B8 (fr) 2021-03-24
US20220349646A1 (en) 2022-11-03
EP3655715B1 (fr) 2021-01-27
CN110945304B (zh) 2021-11-05
EP3655715A1 (fr) 2020-05-27

Similar Documents

Publication Publication Date Title
ES2272373T3 (es) Refrigerador de conservacion de alimentos con miembro de cierre que lleva una interfaz para controlar su funcionamiento.
US8354024B2 (en) Refrigeration device and water filter for said device
KR100309238B1 (ko) 냉장고용온도제어장치
US8732910B1 (en) Appliance handle assembly
EP2910877B1 (fr) Réfrigérateur avec un terminal d'information portable inséré dans le côté de la porte.
US8606180B2 (en) User interface for controlling a household electrical appliance remotely connected thereto
US8360802B2 (en) Adjustable connector system for connection to a modular appliance
EP3018437B1 (fr) Réfrigérateur
AU2008212033A1 (en) Refrigerator with plug-in power supply
KR101622601B1 (ko) 냉장고 및 그의 만빙감지장치
US20140334139A1 (en) Enclosure Lighting System
EP4386292A1 (fr) Réfrigérateur
EP3655715B1 (fr) Armoire de réfrigération équipée d'un dispositif de communication
EP2410271A2 (fr) Distributeur pour réfrigérateur et réfrigérateur le comportant
US6459590B2 (en) Central unit for grouping electronic components of refrigerators, freezers and similar appliances
CN106895634B (zh) 冰箱
US11497135B2 (en) Cooling apparatus comprising a connecting element for supporting tubes or wires or the like
JP2020139733A (ja) 冷蔵庫
US10655909B2 (en) Refrigerating appliance
US20180149421A1 (en) Home Appliance Device
CN218864569U (zh) 冰箱
KR20070082360A (ko) 웹패드를 구비한 냉장고
CN211224611U (zh) 存储盒及制冷设备
CN219368088U (zh) 冰箱
CN218304550U (zh) 供电座、加热组件、暖奶器及水杯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18734833

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020000402

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018734833

Country of ref document: EP

Effective date: 20200221

ENP Entry into the national phase

Ref document number: 112020000402

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200108