WO2019015672A1 - 吡啶并咪唑类化合物及其应用 - Google Patents

吡啶并咪唑类化合物及其应用 Download PDF

Info

Publication number
WO2019015672A1
WO2019015672A1 PCT/CN2018/096447 CN2018096447W WO2019015672A1 WO 2019015672 A1 WO2019015672 A1 WO 2019015672A1 CN 2018096447 W CN2018096447 W CN 2018096447W WO 2019015672 A1 WO2019015672 A1 WO 2019015672A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
mmol
acid
solution
added
Prior art date
Application number
PCT/CN2018/096447
Other languages
English (en)
French (fr)
Inventor
王大海
钱文远
刘世岚
陈曙辉
Original Assignee
南京明德新药研发股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京明德新药研发股份有限公司 filed Critical 南京明德新药研发股份有限公司
Publication of WO2019015672A1 publication Critical patent/WO2019015672A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/41841,3-Diazoles condensed with carbocyclic rings, e.g. benzimidazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/437Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having nitrogen as a ring hetero atom, e.g. indolizine, beta-carboline
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/24Benzimidazoles; Hydrogenated benzimidazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 2
    • C07D235/30Nitrogen atoms not forming part of a nitro radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems

Definitions

  • the present invention relates to a series of pyridoimidazole compounds and their use as inhibitors of IDH mutants, and in particular to compounds of the formula ( ⁇ ), tautomers thereof or pharmaceutically acceptable salts thereof.
  • Isocitrate dehydrogenase is an important enzyme in the citric acid cycle, catalyzing the oxidative decarboxylation of isocitrate to 2-oxoglutaric acid (ie 2- ⁇ -ketoglutarate, ⁇ -KG).
  • the protein encoded by IDH 1 is a NADP(+)-dependent isocitrate dehydrogenase found in the cytoplasm and peroxisomes, which contains a PTS-1 peroxidase targeting signal sequence. The presence of this enzyme in the oxidase body suggests an effect in the regeneration of the internal NADPH.
  • Non-mutation such as wild-type IDH, catalyzes the oxidative decarboxylation of isocitrate while reducing NAD + (NADP + ) to NADP (NADPH):
  • IDH 1/2 mutation has been found in a variety of tumors, including glioma, acute myeloid leukemia (AML), chondrosarcoma, intrahepatic cholangiocarcinoma, melanoma, prostate cancer, and angioimmunoblastic T-cell lymphoma.
  • Protein (IDH 1/2m) (Balss J. Acta Neuropathol. 2008 Dec; 1 16(6): 597-602, Mardis ER, N Engl J Med. 2009 Sep 10; 361(11): 1058-66, Amary MF, J Pathol.2011 Jul; 224(3): 334-43, Borger DR, Oncologist. 2012; 17(1): 72-9, Shibata T, Am J Pathol.
  • the IDH mutein has a novel protein function, namely catalytic reduction of ⁇ -KG to produce the oncogenic metabolite 2-hydroxyglutaric acid (2-HG).
  • the production of 2-HG is believed to contribute to the formation and development of cancer (Dang L, Nature, 2009 Dec 10; 462 (7274): 739-44).
  • the level of 2-HG produced in normal cells is very low, but cells with IDH mutations can produce high levels of 2-HG. High levels of 2-HG can also be found in tumors with IDH mutations.
  • the inhibition of mutant IDH and its novel activity is a potential method for cancer treatment, and there is a new effect of requiring an inhibitor of IDH mutant to inhibit its production of 2-HG.
  • the present invention provides a compound of the formula (I), an isomer thereof or a pharmaceutically acceptable salt thereof,
  • T 1 is selected from N or C(R 1 );
  • T 2 is selected from N or C (R 2 );
  • T 3 is selected from N or C(R 3 );
  • T 1 , T 2 , and T 3 is selected from N;
  • R 1 is selected from the group consisting of: H, F, Cl, Br, I, OH, NH 2 ;
  • R 2 is selected from the group consisting of: H, F, Cl, Br, I, OH, NH 2 ;
  • R 3 is selected from H, F, Cl, Br, I, OH, NH 2 or selected from C 1 1-3 alkyl, C 1-3 heteroalkyl optionally substituted by 1, 2 or 3 R;
  • R is selected from the group consisting of: F, Cl, Br, I, OH, NH 2 ;
  • the number of the above heteroatoms or heteroatoms is independently selected from 1, 2, 3 or 4.
  • the above T 1 is selected from N or CH.
  • the T 2 is selected from N or CH.
  • R 3 is selected from the group consisting of H, F, Cl, Br, I, OH, NH 2 or selected from C 1-3 alkyl optionally substituted by 1, 2 or 3 R, C 1-3 alkoxy, R is as defined in the invention.
  • R 3 is selected from the group consisting of: H, F, Cl, Br, I, OH, NH 2 , Me, Et, CF 3 ,
  • the T 3 is selected from the group consisting of: N, CH, C(F), C(Me), C(CF 3 ), C(Et), C(OCH 3 ).
  • T 1 is selected from N or CH, and other variables are as defined in the present invention.
  • the T 2 is selected from N or CH, and other variables are as defined herein.
  • R 3 is selected from the group consisting of H, F, Cl, Br, I, OH, NH 2 or selected from C 1-3 alkyl optionally substituted by 1, 2 or 3 R, C 1-3 alkoxy, other variables are as defined in the present invention.
  • R 3 is selected from the group consisting of: H, F, Cl, Br, I, OH, NH 2 , Me, Et, CF 3 , Other variables are as defined by the present invention.
  • the T 3 is selected from the group consisting of: N, CH, C (F), C (Me), C (CF 3 ), C (Et), C (OCH 3 ), and other variables such as the present invention. definition.
  • the above compound, or a pharmaceutically acceptable salt thereof is selected from the group consisting of
  • R 1 , R 2 and R 3 are as defined above.
  • the present invention also provides a compound of the formula: or a pharmaceutically acceptable salt thereof, which is selected from the group consisting of:
  • the above compound, an isomer thereof, or a pharmaceutically acceptable salt thereof is selected from the group consisting of:
  • R 1 , R 2 and R 3 are as defined above.
  • the above compound, an isomer thereof, or a pharmaceutically acceptable salt thereof is selected from the group consisting of:
  • the present invention also provides a pharmaceutical composition
  • a pharmaceutical composition comprising a therapeutically effective amount of the above compound or a pharmaceutically acceptable salt thereof as an active ingredient together with a pharmaceutically acceptable carrier.
  • the present invention also provides the use of the above compound or a pharmaceutically acceptable salt thereof or the above composition for the preparation of a drug related to an IDH mutant inhibitor.
  • the compounds of the present invention have good selectivity and brain permeability, and have significant inhibitory effects on IDH1 mutants in vitro.
  • pharmaceutically acceptable salt refers to a salt of a compound of the invention prepared from a compound having a particular substituent found in the present invention and a relatively non-toxic acid or base.
  • a base addition salt can be obtained by contacting a neutral amount of such a compound with a sufficient amount of a base in a neat solution or a suitable inert solvent.
  • Pharmaceutically acceptable base addition salts include sodium, potassium, calcium, ammonium, organic ammonia or magnesium salts or similar salts.
  • an acid addition salt can be obtained by contacting a neutral form of such a compound with a sufficient amount of an acid in a neat solution or a suitable inert solvent.
  • pharmaceutically acceptable acid addition salts include inorganic acid salts including, for example, hydrochloric acid, hydrobromic acid, nitric acid, carbonic acid, hydrogencarbonate, phosphoric acid, monohydrogen phosphate, dihydrogen phosphate, sulfuric acid, Hydrogen sulfate, hydroiodic acid, phosphorous acid, etc.; and an organic acid salt, such as acetic acid, propionic acid, isobutyric acid, maleic acid, malonic acid, benzoic acid, succinic acid, suberic acid, Similar acids such as fumaric acid, lactic acid, mandelic acid, phthalic acid, benzenesulfonic acid, p-toluenesulfonic acid, citric acid, tartaric acid, and me
  • the salt is contacted with a base or acid in a conventional manner, and the parent compound is separated, thereby regenerating the neutral form of the compound.
  • the parent form of the compound differs from the form of its various salts by certain physical properties, such as differences in solubility in polar solvents.
  • a "pharmaceutically acceptable salt” is a derivative of a compound of the invention wherein the parent compound is modified by salt formation with an acid or with a base.
  • pharmaceutically acceptable salts include, but are not limited to, inorganic or organic acid salts of bases such as amines, alkali metal or organic salts of acid groups such as carboxylic acids, and the like.
  • Pharmaceutically acceptable salts include the conventional non-toxic salts or quaternary ammonium salts of the parent compound, for example salts formed from non-toxic inorganic or organic acids.
  • non-toxic salts include, but are not limited to, those derived from inorganic acids and organic acids selected from the group consisting of 2-acetoxybenzoic acid, 2-hydroxyethanesulfonic acid, acetic acid, ascorbic acid, Benzenesulfonic acid, benzoic acid, hydrogencarbonate, carbonic acid, citric acid, edetic acid, ethane disulfonic acid, ethanesulfonic acid, fumaric acid, glucoheptose, gluconic acid, glutamic acid, glycolic acid, Hydrobromic acid, hydrochloric acid, hydroiodide, hydroxyl, hydroxynaphthalene, isethionethane, lactic acid, lactose, dodecylsulfonic acid, maleic acid, malic acid, mandelic acid, methanesulfonic acid, nitric acid, oxalic acid, Pamoic acid, pantothenic acid, phenylacetic acid, phen
  • the pharmaceutically acceptable salts of the present invention can be synthesized from the parent compound containing an acid group or a base by conventional chemical methods.
  • such salts are prepared by reacting these compounds in water or an organic solvent or a mixture of the two via a free acid or base form with a stoichiometric amount of a suitable base or acid.
  • a nonaqueous medium such as ether, ethyl acetate, ethanol, isopropanol or acetonitrile is preferred.
  • the compounds of the invention may exist in specific geometric or stereoisomeric forms.
  • the present invention contemplates all such compounds, including the (R)- and (S)-enantiomers, and mixtures thereof, such as (R)- and (S)-enantiomerically enriched mixtures, all of which are Within the scope of the invention.
  • Additional asymmetric carbon atoms may be present in the substituents such as alkyl groups. All such isomers, as well as mixtures thereof, are included within the scope of the invention.
  • wedge-shaped dashed keys Represents the absolute configuration of a solid center with straight solid keys
  • straight dashed keys Indicates the relative configuration of the stereocenter, using wavy lines Indicates a wedge solid key Or wedge-shaped dotted key Or with wavy lines Represents a straight solid key And straight dashed keys
  • the terms "enriched in one isomer”, “isomer enriched”, “enriched in one enantiomer” or “enantiomeric enriched” refer to one of the isomers or pairs
  • the content of the oligo is less than 100%, and the content of the isomer or enantiomer is 60% or more, or 70% or more, or 80% or more, or 90% or more, or 95% or more, or 96% or more, or 97% or more, 98% or more, 99% or more, 99.5% or more, 99.6% or more, 99.7% or more, 99.8% or more, or greater than or equal to 99.9%.
  • the term “isomer excess” or “enantiomeric excess” refers to the difference between the two isomers or the relative percentages of the two enantiomers. For example, if one of the isomers or enantiomers is present in an amount of 90% and the other isomer or enantiomer is present in an amount of 10%, the isomer or enantiomeric excess (ee value) is 80%. .
  • optically active (R)- and (S)-isomers can be prepared by chiral synthesis or chiral reagents or other conventional techniques. If an enantiomer of a compound of the invention is desired, it can be prepared by asymmetric synthesis or by derivatization with a chiral auxiliary wherein the resulting mixture of diastereomers is separated and the auxiliary group cleaved to provide pure The desired enantiomer.
  • a molecule contains a basic functional group (e.g., an amino group) or an acidic functional group (e.g., a carboxyl group)
  • a diastereomeric salt is formed with a suitable optically active acid or base, and then by conventional methods well known in the art.
  • the diastereomers are resolved and the pure enantiomer is recovered.
  • the compounds of the present invention may contain unnatural proportions of atomic isotopes on one or more of the atoms that make up the compound.
  • radiolabeled compounds can be used, such as tritium (3 H), iodine -125 (125 I) or C-14 (14 C). Alterations of all isotopic compositions of the compounds of the invention, whether radioactive or not, are included within the scope of the invention.
  • substituted means that any one or more hydrogen atoms on a particular atom are replaced by a substituent, and may include variants of heavy hydrogen and hydrogen, as long as the valence of the particular atom is normal and the substituted compound is stable. of.
  • Oxygen substitution does not occur on the aromatic group.
  • optionally substituted means that it may or may not be substituted, and unless otherwise specified, the kind and number of substituents may be arbitrary on the basis of chemically achievable.
  • any variable eg, R
  • its definition in each case is independent.
  • the group may optionally be substituted at most by two R, and each case has an independent option.
  • combinations of substituents and/or variants thereof are permissible only if such combinations result in stable compounds.
  • heteroalkyl by itself or in conjunction with another term denotes a stable straight chain, branched hydrocarbon radical or combination thereof, having a number of carbon atoms and at least one heteroatom.
  • the heteroatoms are selected from the group consisting of B, O, N, and S, wherein the nitrogen and sulfur atoms are optionally oxidized, and the nitrogen heteroatoms are optionally quaternized.
  • the hetero atom or heteroatom group may be located at any internal position of the heterohydrocarbyl group, including where the hydrocarbyl group is attached to the rest of the molecule, but the terms "alkoxy", “alkylamino” and “alkylthio” (or thioalkoxy).
  • alkyl groups which are attached to the remainder of the molecule through an oxygen atom, an amino group or a sulfur atom, respectively.
  • examples include, but are not limited to, -CH 2 -CH 2 -O-CH 3 , -CH 2 -CH 2 -NH-CH 3 , -CH 2 -CH 2 -N(CH 3 )-CH 3 , -CH 2 -S -CH 2 -CH 3 , -CH 2 -CH 2 , -S(O)-CH 3 , -CH 2 -CH 2 -S(O) 2 -CH 3 .
  • Up to two heteroatoms may be consecutive, for example, -CH 2 -NH-OCH 3.
  • alkyl is used to denote a straight or branched saturated hydrocarbon group, which may be monosubstituted (eg, -CH 2 F) or polysubstituted (eg, -CF 3 ), and may be monovalent (eg, Methyl), divalent (such as methylene) or polyvalent (such as methine).
  • alkyl group include methyl (Me), ethyl (Et), propyl (e.g., n-propyl and isopropyl), butyl (e.g., n-butyl, isobutyl, s-butyl). , t-butyl), pentyl (eg, n-pentyl, isopentyl, neopentyl) and the like.
  • alkoxy represents attached through an oxygen bridge, unless otherwise specified, C 1-3 alkoxy groups include C 1, C 2 and C 3 alkoxy is. Examples of alkoxy groups include, but are not limited to, methoxy, ethoxy, n-propoxy, isopropoxy.
  • the compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments set forth below, combinations thereof with other chemical synthetic methods, and those well known to those skilled in the art. Equivalent alternatives, preferred embodiments include, but are not limited to, embodiments of the invention.
  • the solvent used in the present invention is commercially available.
  • the present invention employs the following abbreviations: aq for water; HATU for O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate ; EDC stands for N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride; m-CPBA stands for 3-chloroperoxybenzoic acid; eq stands for equivalent, equivalent; CDI stands for Carbonyldiimidazole; DCM stands for dichloromethane; PE stands for petroleum ether; DIAD stands for diisopropyl azodicarboxylate; DMF stands for N,N-dimethylformamide; DMSO stands for dimethyl sulfoxide; EtOAc stands for acetic acid Esters; EtOH for ethanol; MeOH for methanol; CBz for benzyl
  • Example 2 inhibits the level of 2-HG in brain tumors of Balb/c mice, a) 2-HG content in mouse brain tumors after 0.25 hours, 2 hours and 8 hours of administration.
  • HNO 3 (814.83 mg, 12.93 mmol) was added dropwise to a solution of compound 11A (1.3 g, 6.47 mmol) in H 2 SO 4 (2 mL). After stirring for one hour, the reaction system was warmed to 15 ° C. After stirring for 1 hour, the reaction was poured into 20 ml of ice water, and the pH was adjusted to 7 by adding NaOH aqueous solution. The precipitated solid was washed with 10 ml of water, and the solid was further purified by column chromatography to give compound 11B.
  • Compound 17J was subjected to SFC chiral resolution (SFC resolution conditions: column: ChiralPak IC-3 150 x 4.6 mm ID, 3 um; mobile phase: A: CO 2 B: isopropanol (0.05% diethylamine); gradient: Isopropanol in CO 2 was obtained from 5% to 40% (5.5 minutes), maintained at 40% for 3 minutes, then at 5% for 1.5 minutes; flow rate of 2.5 mL/min. column temperature 40 ° C) to obtain Example 17, retained The time was 7.452 minutes; in Example 18, the retention time was 8.191 minutes.
  • SFC resolution conditions column: ChiralPak IC-3 150 x 4.6 mm ID, 3 um; mobile phase: A: CO 2 B: isopropanol (0.05% diethylamine); gradient: Isopropanol in CO 2 was obtained from 5% to 40% (5.5 minutes), maintained at 40% for 3 minutes, then at 5% for 1.5 minutes; flow rate of 2.5 mL/min. column temperature 40 ° C) to obtain
  • Ethyl (E)-3-(4,4,5,5) was added to a mixed solvent of compound 19B (8.2 g, 26.97 mmol) in dioxane (80 ml) and water (20 ml) at 20 °C. -tetramethyl-1,3,2-dioxoboran-2-yl)prop-2-enoate (7.93 g, 35.05 mmol), Pd(dppf)Cl 2 (3.95 g, 5.39 mmol) , 0.2 eq) and cesium carbonate (13.18 g, 40.45 mmol). After the reaction mixture was stirred at 100 ° C in a nitrogen atmosphere, the reaction was completed.
  • Example 19 To a mixed solvent of the compound 19I (0.31 g, 597.80 micromoles, 1 eq) in methanol (5 ml) and water (5 ml) was added LiOH ⁇ H 2 O (50.17 mg, 1.20 mmol, 2 eq). After completion of the reaction, the reaction solution was concentrated and then separated to give Example 19.
  • the IDH1 mutant catalyzes the reduction of NADPH-dependent ⁇ -KG to 2-HG, and the consumed NADPH can be read by fluorescence.
  • Base Reaction Buffer 50 mM KH 2 PO 4 , pH 7.5, 10 mM MgCl 2 , 10% glycerol (glycerol), 150 mM NaCl, 0.05% BSA (bovine serum albumin), 2 mM b-ME (2-mercaptoethanol), 0.003 %Brij35 (oxyethylene lauryl ether)
  • IDH1 wt wild type: 65 ⁇ M isocitric acid + 50 ⁇ M NADP
  • IDH1 (R132H): 1500 ⁇ M ⁇ -KG+15 ⁇ M NADPH
  • IDH1 (R132C): 500 ⁇ M ⁇ -KG+15 ⁇ M NADPH
  • 1.33X enzyme (not added in the control well), buffer and NADP or NADPH (control well) were added to the wells of the reaction plate, and the test compound was dissolved in 100% DMSO and added to the enzyme mixture (Echo550, Nanoscale). After simple centrifugation, the cells were incubated for 60 minutes, and a mixture of 4X substrate and cofactor was added to start the reaction. After simple centrifugation, the mixture was shaken and incubated at room temperature for 45 minutes.
  • Example IDH1 R132H(nM) Example 2 12.19
  • Example 3 93.01 Example 4 3.46
  • Example 5 1649
  • Example 6 166.9
  • Example 7 675.3
  • Example 8 53.01
  • Example 9 2137
  • Example 10 396.4
  • Example 11 639.8 Example 12 58.91
  • Example 15 3710
  • Example 17 ⁇ 0.5
  • Example 18 13.2 Example 19 1.91
  • IDH1 catalyzes the reduction of isocitrate to alpha-ketoglutarate ( ⁇ -KG) in vivo, while the IDH1 mutant further catalyzes the reduction of ⁇ -KG to 2-hydroxyglutarate (2HG).
  • the U87MG-IDH1-R132H cell line is a stable cell line stably expressing the IDH1-R132H mutant by transfecting U87MG cells with IDH1-R132H, and the HT1080 cell line contains an endogenous IDH1-R132C mutant.
  • the compound was diluted with DMSO in a 3-fold gradient and added to the cell culture plate for a total of 10 concentrations, each with double duplicate wells.
  • the negative control wells contained only DMSO and the positive control wells contained AGI-5198 at a final concentration of 5 [mu]M.
  • the final concentration of DMSO in all wells was 0.5%.
  • the IDH1 mutant cell strain was seeded at a density of 40,000 cells/well into a cell culture plate containing the compound. The cells were incubated with the compounds for 3 days at 37 ° C in a 5% CO 2 incubator.
  • Inhibition rate% (CPD-ZPE)/(HPE-ZPE) ⁇ 100%*
  • the cell viability data was used to calculate the percent cytotoxicity (% cytotoxicity) of the compound against the IDH1 mutant cell line, and the formula was:
  • Cytotoxicity% (1-CPD/ZPE) ⁇ 100%*
  • ZPE mean value of negative control well signal, replacing compound with 0.5% DMSO
  • HPE Mean value of positive control well signal, containing 5 ⁇ M AGI-5198
  • Example U87MG IDH1-R132H(nM) Example 1 137.82
  • Example 2 33.09
  • Example 3 189.2
  • Example 4 Example 4 42.58
  • Example 6 243.5
  • Example 7 419
  • Example 8 104.3
  • Example 9 1776 Example 10 396.4
  • Example 13 3003
  • Example 14 622.5 Example 17 49.99
  • Example HT1080 IDH1 R132C(nM) Example 2 13.32
  • Example 4 19.39
  • a U87 stable cell line expressing exogenous expression of IDH1R132H was established, and a brain orthotopic tumor model of the cell line was constructed to detect the reduction effect of IDH1 inhibitor on the level of carcinogenic metabolite 2-HG. And compared with BAY1436032 (BAY032).
  • mice bearing U87-IDH1R132H brain orthotopic tumors were divided into three groups and treated with 100 mg/kg BAY032 or 200 mg/kg for Example 2, twice daily for 3 times, and the other group.
  • the mice were not treated as a negative control.
  • the brain tumor, paracancerous brain tissue, and plasma of 3 mice were separately measured for 2-HG content, and the corresponding tissues of the negative control mice were used as controls.
  • Example 2 The experimental results are shown in Figure 1.
  • Administration of 0.25 hours of Example 2 can greatly reduce the content of the oncogenic metabolite 2-HG in the tumor, and the effect is faster than BAY032, and the effect can last at least 8 hours.
  • the total exposure (AUC) of Example 2 in plasma, normal paraventricular tissue, and brain tumors was 416,856 nM ⁇ hr, 97,429 nmol/kg.h, and 1967,33 nmol/kg.h, respectively, in BAY032 in plasma, normal paracranial tissues, and brain tumors.
  • the total exposure (AUC) was 387498 nM ⁇ hr, 125962 nmol/kg.h and 230405 nmol/kg.h, respectively, indicating that Example 2 has a blood-brain barrier permeability close to that of BAY032.
  • the compounds of the present invention have good selectivity and brain permeability, and have significant inhibitory effects on IDH1 mutants in vivo, and 2-HG inhibition in mouse brain tumors is superior to BAY032.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

一种吡啶并咪唑类化合物及其作为IDH突变体抑制剂的应用,具体为式(Ι)所示化合物、其互变异构体或其药学上可接受的盐。

Description

吡啶并咪唑类化合物及其应用
相关申请的引用
本申请主张如下优先权:
CN201710600014.0,申请日2017-07-21。
技术领域
本发明涉及一系列吡啶并咪唑类化合物及其作为IDH突变体抑制剂的应用,具体涉及式(Ι)所示化合物、其互变异构体或其药学上可接受的盐。
技术背景
异柠檬酸脱氢酶(Isocitrate dehydrogenase)是柠檬酸循环过程中的重要酶,催化异柠檬酸氧化脱羧成2-氧代戊二酸(即2-α-酮戊二酸,α-KG)。IDH 1这种基因编码的蛋白是在细胞质和过氧化物酶体中发现的NADP(+)-依赖性异柠檬酸脱氢酶,其中含有PTS-1过氧化物酶靶向信号序列。该酶在氧化物酶体中的存在暗示在用于内部NADPH再生中的作用。
非突变例如野生型IDH催化异柠檬酸氧化脱羧的同时,还原NAD +(NADP +)至NADP(NADPH):
异柠檬酸酯+NAD +(NADP +)→α-KG+CO 2+NADP(NADPH)+H +
已经在多种肿瘤,包括胶质瘤、急性髓性白血病(AML)、软骨肉瘤、肝内胆管瘤、黑色素瘤、***癌、血管免疫母细胞性T细胞淋巴瘤中,发现IDH 1/2突变蛋白(IDH 1/2m)(Balss J.Acta Neuropathol.2008Dec;1 16(6):597-602,Mardis ER,N Engl J Med.2009Sep 10;361(11):1058-66,Amary MF,J Pathol.2011Jul;224(3):334-43,Borger DR,Oncologist.2012;17(1):72-9,Shibata T,Am J Pathol.2011Mar;178(3):1395-402,Ghiam AF,Oncogene.2012Aug 16;31(33):3826,CairnsRA,Blood.2012Feb 23;9(8):901-3)。胶质瘤中,非原发性胶质母细胞瘤中70%以上具有IDH1突变,IDH1突变肿瘤中92.7%是精氨酸被组氨酸替代(即IDH1 R132H)(Hartmann C,Acta Neuropathol.2009Oct;1 18(4):469-74).
IDH突变蛋白具有新的蛋白功能,即催化还原α-KG生成致癌代谢物2-羟基戊二酸(2-HG)。2-HG的产生据信有助于癌症的形成和发展(Dang L,Nature,2009Dec 10;462(7274):739-44)。正常细胞中产生2-HG的水平非常低,但是具有IDH突变的细胞能产生高水平的2-HG。在具有IDH突变的肿瘤中同样能够发现高水平的2-HG。
因此突变IDH及其新活性的抑制是用于癌症治疗的潜在方法,也就存在需要获得IDH突变体的抑制剂来抑制其产生2-HG的新作用。
Acta Neuropathol(2017,Vol(133),Issue 4,629–644)公开了化合物BAY1436032的具体结构。
Figure PCTCN2018096447-appb-000001
发明内容
本发明提供了式(Ⅰ)所示化合物、其异构体或其药学上可接受的盐,
Figure PCTCN2018096447-appb-000002
其中,
T 1选自N或C(R 1);
T 2选自N或C(R 2);
T 3选自N或C(R 3);
且T 1、T 2、T 3中至少1个选自N;
R 1选自:H、F、Cl、Br、I、OH、NH 2
R 2选自:H、F、Cl、Br、I、OH、NH 2
R 3选自H、F、Cl、Br、I、OH、NH 2,或选自任选被1、2或3个R取代的:C 1-3烷基、C 1-3杂烷基;
R选自:F、Cl、Br、I、OH、NH 2
所述C 1-3杂烷基之“杂”分别独立地选自:O、S、NH、-C(=O)NH-;
上述杂原子或杂原子团的数目分别独立地选自1、2、3或4。
本发明的一些方案中,上述T 1选自N或CH。
本发明的一些方案中,上述T 2选自N或CH。
本发明的一些方案中,上述R 3选自H、F、Cl、Br、I、OH、NH 2,或选自任选被1、2或3个R取代的:C 1-3烷基、C 1-3烷氧基,R如本发明所定义。
本发明的一些方案中,上述R 3选自:H、F、Cl、Br、I、OH、NH 2、Me、Et、CF 3
Figure PCTCN2018096447-appb-000003
本发明的一些方案中,上述T 3选自:N、CH、C(F)、C(Me)、C(CF 3)、C(Et)、C(OCH 3)。
本发明的一些方案中,上述T 1选自N或CH,其它变量如本发明所定义。
本发明的一些方案中,上述T 2选自N或CH,其它变量如本发明所定义。
本发明的一些方案中,上述R 3选自H、F、Cl、Br、I、OH、NH 2,或选自任选被1、2或3个R取代的:C 1-3烷基、C 1-3烷氧基,其它变量如本发明所定义。
本发明的一些方案中,上述R 3选自:H、F、Cl、Br、I、OH、NH 2、Me、Et、CF 3
Figure PCTCN2018096447-appb-000004
其它变量如本发明所定义。
本发明的一些方案中,上述T 3选自:N、CH、C(F)、C(Me)、C(CF 3)、C(Et)、C(OCH 3),其它变量如本发明所定义。
本发明的一些方案中,上述化合物或其药学上可接受的盐,其选自:
Figure PCTCN2018096447-appb-000005
其中,
R 1、R 2、R 3如上述所定义。
本发明还有一些方案是由上述变量任意组合而来。
本发明还提供了下式所示化合物或其药学上可接受的盐,其选自:
Figure PCTCN2018096447-appb-000006
Figure PCTCN2018096447-appb-000007
本发明的一些方案中,上述化合物、其异构体或其药学上可接受的盐,其选自:
Figure PCTCN2018096447-appb-000008
其中,
R 1、R 2、R 3如上述所定义。
本发明的一些方案中,上述化合物、其异构体或其药学上可接受的盐,其选自:
Figure PCTCN2018096447-appb-000009
Figure PCTCN2018096447-appb-000010
本发明还提供了一种药物组合物,包括治疗有效量的上述的化合物或其药学上可接受的盐作为活性成分以及药学上可接受的载体。
本发明还提供了上述的化合物或其药学上可接受的盐或者上述组合物在制备IDH突变体抑制剂相关药物上的应用。
技术效果:
本发明化合物具有良好的选择性和透脑性,对IDH1突变体的体外体内抑制作用显著。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在具有下列含义。一个特定的术语或短语在没有特别 定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文中出现商品名时,意在指代其对应的商品或其活性成分。这里所采用的术语“药学上可接受的”,是针对那些化合物、材料、组合物和/或剂型而言,它们在可靠的医学判断的范围之内,适用于与人类和动物的组织接触使用,而没有过多的毒性、刺激性、过敏性反应或其它问题或并发症,与合理的利益/风险比相称。
术语“药学上可接受的盐”是指本发明化合物的盐,由本发明发现的具有特定取代基的化合物与相对无毒的酸或碱制备。当本发明的化合物中含有相对酸性的功能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的碱与这类化合物的中性形式接触的方式获得碱加成盐。药学上可接受的碱加成盐包括钠、钾、钙、铵、有机氨或镁盐或类似的盐。当本发明的化合物中含有相对碱性的官能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的酸与这类化合物的中性形式接触的方式获得酸加成盐。药学上可接受的酸加成盐的实例包括无机酸盐,所述无机酸包括例如盐酸、氢溴酸、硝酸、碳酸,碳酸氢根,磷酸、磷酸一氢根、磷酸二氢根、硫酸、硫酸氢根、氢碘酸、亚磷酸等;以及有机酸盐,所述有机酸包括如乙酸、丙酸、异丁酸、马来酸、丙二酸、苯甲酸、琥珀酸、辛二酸、反丁烯二酸、乳酸、扁桃酸、邻苯二甲酸、苯磺酸、对甲苯磺酸、柠檬酸、酒石酸和甲磺酸等类似的酸;还包括氨基酸(如精氨酸等)的盐,以及如葡糖醛酸等有机酸的盐(参见Berge et al.,"Pharmaceutical Salts",Journal of Pharmaceutical Science 66:1-19(1977))。本发明的某些特定的化合物含有碱性和酸性的官能团,从而可以被转换成任一碱或酸加成盐。
优选地,以常规方式使盐与碱或酸接触,再分离母体化合物,由此再生化合物的中性形式。化合物的母体形式与其各种盐的形式的不同之处在于某些物理性质,例如在极性溶剂中的溶解度不同。
本文所用的“药学上可接受的盐”属于本发明化合物的衍生物,其中,通过与酸成盐或与碱成盐的方式修饰所述母体化合物。药学上可接受的盐的实例包括但不限于:碱基比如胺的无机酸或有机酸盐、酸根比如羧酸的碱金属或有机盐等等。药学上可接受的盐包括常规的无毒性的盐或母体化合物的季铵盐,例如无毒的无机酸或有机酸所形成的盐。常规的无毒性的盐包括但不限于那些衍生自无机酸和有机酸的盐,所述的无机酸或有机酸选自2-乙酰氧基苯甲酸、2-羟基乙磺酸、乙酸、抗坏血酸、苯磺酸、苯甲酸、碳酸氢根、碳酸、柠檬酸、依地酸、乙烷二磺酸、乙烷磺酸、富马酸、葡庚糖、葡糖酸、谷氨酸、乙醇酸、氢溴酸、盐酸、氢碘酸盐、羟基、羟萘、羟乙磺酸、乳酸、乳糖、十二烷基磺酸、马来酸、苹果酸、扁桃酸、甲烷磺酸、硝酸、草酸、双羟萘酸、泛酸、苯乙酸、磷酸、多聚半乳糖醛、丙酸、水杨酸、硬脂酸、亚乙酸、琥珀酸、氨基磺酸、对氨基苯磺酸、硫酸、单宁、酒石酸和对甲苯磺酸。
本发明的药学上可接受的盐可由含有酸根或碱基的母体化合物通过常规化学方法合成。一般情况下,这样的盐的制备方法是:在水或有机溶剂或两者的混合物中,经由游离酸或碱形式的这些化合物与化学计量的适当的碱或酸反应来制备。一般地,优选醚、乙酸乙酯、乙醇、异丙醇或乙腈等非水介质。
本发明的化合物可以存在特定的几何或立体异构体形式。本发明设想所有的这类化合物,包括(R)- 和(S)-对映体及其混合物,例如(R)-和(S)-对映体富集的混合物,所有这些混合物都属于本发明的范围之内。烷基等取代基中可存在另外的不对称碳原子。所有这些异构体以及它们的混合物,均包括在本发明的范围之内。
除非另有说明,用楔形实线键
Figure PCTCN2018096447-appb-000011
和楔形虚线键
Figure PCTCN2018096447-appb-000012
表示一个立体中心的绝对构型,用直形实线键
Figure PCTCN2018096447-appb-000013
和直形虚线键
Figure PCTCN2018096447-appb-000014
表示立体中心的相对构型,用波浪线
Figure PCTCN2018096447-appb-000015
表示楔形实线键
Figure PCTCN2018096447-appb-000016
或楔形虚线键
Figure PCTCN2018096447-appb-000017
或用波浪线
Figure PCTCN2018096447-appb-000018
表示直形实线键
Figure PCTCN2018096447-appb-000019
和直形虚线键
Figure PCTCN2018096447-appb-000020
除非另有说明,术语“富含一种异构体”、“异构体富集”、“富含一种对映体”或者“对映体富集”指其中一种异构体或对映体的含量小于100%,并且,该异构体或对映体的含量大于等于60%,或者大于等于70%,或者大于等于80%,或者大于等于90%,或者大于等于95%,或者大于等于96%,或者大于等于97%,或者大于等于98%,或者大于等于99%,或者大于等于99.5%,或者大于等于99.6%,或者大于等于99.7%,或者大于等于99.8%,或者大于等于99.9%。
除非另有说明,术语“异构体过量”或“对映体过量”指两种异构体或两种对映体相对百分数之间的差值。例如,其中一种异构体或对映体的含量为90%,另一种异构体或对映体的含量为10%,则异构体或对映体过量(ee值)为80%。
可以通过的手性合成或手性试剂或者其他常规技术制备光学活性的(R)-和(S)-异构体。如果想得到本发明某化合物的一种对映体,可以通过不对称合成或者具有手性助剂的衍生作用来制备,其中将所得非对映体混合物分离,并且辅助基团裂开以提供纯的所需对映异构体。或者,当分子中含有碱性官能团(如氨基)或酸性官能团(如羧基)时,与适当的光学活性的酸或碱形成非对映异构体的盐,然后通过本领域所公知的常规方法进行非对映异构体拆分,然后回收得到纯的对映体。本发明的化合物可以在一个或多个构成该化合物的原子上包含非天然比例的原子同位素。例如,可用放射性同位素标记化合物,比如氚( 3H),碘-125( 125I)或C-14( 14C)。本发明的化合物的所有同位素组成的变换,无论放射性与否,都包括在本发明的范围之内。
“任选”或“任选地”指的是随后描述的事件或状况可能但不是必需出现的,并且该描述包括其中所述事件或状况发生的情况以及所述事件或状况不发生的情况。
术语“被取代的”是指特定原子上的任意一个或多个氢原子被取代基取代,可以包括重氢和氢的变体,只要特定原子的价态是正常的并且取代后的化合物是稳定的。当取代基为氧(即=O)时,意味着两个氢原子被取代。氧取代不会发生在芳香基上。术语“任选被取代的”是指可以被取代,也可以不被取代,除非另有规定,取代基的种类和数目在化学上可以实现的基础上可以是任意的。
当任何变量(例如R)在化合物的组成或结构中出现一次以上时,其在每一种情况下的定义都是独立的。因此,例如,如果一个基团被0-2个R所取代,则所述基团可以任选地至多被两个R所取代, 并且每种情况下的R都有独立的选项。此外,取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
除非另有规定,术语“杂烷基”本身或者与另一术语联合表示稳定的直链的、支链的烃原子团或其组合物,有一定数目的碳原子和至少一个杂原子组成。在一个典型实施例中,杂原子选自B、O、N和S,其中氮和硫原子任选地被氧化,氮杂原子任选地被季铵化。杂原子或杂原子团可以位于杂烃基的任何内部位置,包括该烃基附着于分子其余部分的位置,但术语“烷氧基”、“烷氨基”和“烷硫基”(或硫代烷氧基)属于惯用表达,是指分别通过一个氧原子、氨基或硫原子连接到分子的其余部分的那些烷基基团。实例包括但不限于-CH 2-CH 2-O-CH 3、-CH 2-CH 2-NH-CH 3、-CH 2-CH 2-N(CH 3)-CH 3、-CH 2-S-CH 2-CH 3、-CH 2-CH 2、-S(O)-CH 3、-CH 2-CH 2-S(O) 2-CH 3。至多两个杂原子可以是连续的,例如-CH 2-NH-OCH 3
除非另有规定,术语“烷基”用于表示直链或支链的饱和烃基,可以是单取代(如-CH 2F)或多取代的(如-CF 3),可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。烷基的例子包括甲基(Me),乙基(Et),丙基(如,n-丙基和异丙基),丁基(如,n-丁基,异丁基,s-丁基,t-丁基),戊基(如,n-戊基,异戊基,新戊基)等。
“烷氧基”代表通过氧桥连接的具有特定数目碳原子的上述烷基,除非另有规定,C 1-3烷氧基包括C 1、C 2和C 3的烷氧基。烷氧基的例子包括但不限于:甲氧基、乙氧基、正丙氧基、异丙氧基。
本发明的化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明所使用的溶剂可经市售获得。本发明采用下述缩略词:aq代表水;HATU代表O-(7-氮杂苯并***-1-基)-N,N,N',N'-四甲基脲六氟磷酸盐;EDC代表N-(3-二甲基氨基丙基)-N'-乙基碳二亚胺盐酸盐;m-CPBA代表3-氯过氧苯甲酸;eq代表当量、等量;CDI代表羰基二咪唑;DCM代表二氯甲烷;PE代表石油醚;DIAD代表偶氮二羧酸二异丙酯;DMF代表N,N-二甲基甲酰胺;DMSO代表二甲亚砜;EtOAc代表乙酸乙酯;EtOH代表乙醇;MeOH代表甲醇;CBz代表苄氧羰基,是一种胺保护基团;BOC代表叔丁基羰基是一种胺保护基团;HOAc代表乙酸;NaCNBH 3代表氰基硼氢化钠;r.t.代表室温;O/N代表过夜;THF代表四氢呋喃;Boc 2O代表二-叔丁基二碳酸酯;TFA代表三氟乙酸;DIPEA代表二异丙基乙基胺;SOCl 2代表氯化亚砜;CS 2代表二硫化碳;TsOH代表对甲苯磺酸;NFSI代表N-氟-N-(苯磺酰基)苯磺酰胺;NCS代表1-氯吡咯烷-2,5-二酮;n-Bu 4NF代表氟化四丁基铵;iPrOH代表2-丙醇;mp代表熔点;LDA代表二异丙基胺基锂;EDCI代表1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐。
化合物经手工或者
Figure PCTCN2018096447-appb-000021
软件命名,市售化合物采用供应商目录名称。
附图说明
图1:实施例2抑制Balb/c小鼠脑瘤中2-HG的水平,a)给药0.25小时、2小时和8小时后,小鼠脑瘤内2-HG含量。
具体实施方式
下面通过实施例对本发明进行详细描述,但并不意味着对本发明任何不利限制。本文已经详细地描述了本发明,其中也公开了其具体实施例方式,对本领域的技术人员而言,在不脱离本发明精神和范围的情况下针对本发明具体实施方式进行各种变化和改进将是显而易见的。
流程A
Figure PCTCN2018096447-appb-000022
实施例1、2
Figure PCTCN2018096447-appb-000023
步骤1:化合物1A的制备
Figure PCTCN2018096447-appb-000024
15℃下,3,3,5-三甲基环己酮(10.00克,71.32毫摩尔)和NH 2OH·HCl(7.43克,106.98毫摩尔)的水溶液(100毫升)中加入KOH(12.01克,213.96毫摩尔)。混合物在15℃搅拌16小时,过滤白色 固体,减压抽至恒重得到标题化合物,直接用于下一步,没有进一步纯化。MS-ESI(m/z):156(M+H) +
步骤2:化合物1B的制备
Figure PCTCN2018096447-appb-000025
化合物1A(9.50克,61.20毫摩尔)的乙醇(200.00毫升)溶液加热到80℃,小块Na(14.07克,612.00毫摩尔)加入反应液中,溶液回流16小时后,再加入Na(7.03克,306.00毫摩尔),继续回流5小时。反应液用水小心萃灭后加入2M HCl调节pH为3-4,浓缩去除乙醇后,加入4M NaOH调节pH为9-10,用CH 2Cl 2(200毫升×3)萃取,盐水(300毫升)洗涤,无水硫酸钠干燥,过滤,减压浓缩得到化合物1B。 1H NMR(400MHz,氘代氯仿)δ=2.75(tt,J=3.9,11.4Hz,1H),1.79-1.70(m,1H),1.62-1.50(m,1H),1.46(td,J=1.6,12.6Hz,1H),1.27-1.19(m,2H),0.86-0.81(m,9H),0.70-0.60(m,1H),0.50(q,J=11.9Hz,1H).
步骤3:化合物1C的制备
Figure PCTCN2018096447-appb-000026
15℃下,化合物1B(2.47克,17.50毫摩尔),2-氯-6-甲氧基-3硝基-吡啶(3克,15.91毫摩尔)的四氢呋喃(20.00毫升)溶液中加入K 2CO 3(2.64g,19.09毫摩尔)。反应液加热到70℃至原料消耗完毕。加入水(20.00毫升)萃灭反应,乙酸乙酯(20毫升×3)萃取,合并的有机层用水和盐水各20毫升洗涤,无水硫酸钠干燥,过滤,减压浓缩得到的化合物1C,直接用于下一步。
步骤4:化合物1D
Figure PCTCN2018096447-appb-000027
40℃下,化合物1C(4.6克,15.68毫摩尔)的DMF(50.00毫升)溶液中加入NBS(4.19克,23.52毫摩尔),40℃搅拌16小时后,加入水(100.00毫升)萃灭反应,乙酸乙酯(50毫升×3)萃取,合并的有机层用水(50毫升×2)和盐水50毫升洗涤,无水硫酸钠干燥,过滤,减压浓缩得到的化合物1D,直接用于下一步。MS-ESI(m/z):372,374(M+H) +
步骤5:化合物1E
Figure PCTCN2018096447-appb-000028
化合物1D(5.80克,15.58毫摩尔),(E)-3-(4,4,5,5-四甲基-1,3,2-氧硼烷-2-基)丙烯酸乙酯(4.23克,18.70毫摩尔),1,1,-二(二苯膦基)二茂铁二氯化钯(2.28克,3.12毫摩尔),碳酸钾(4.31克,31.16毫摩尔)的二氧六环(60.00毫升)和水(6.00毫升)混合溶液用氮气置换三次,然后加热到100℃搅拌16小时,反应混合物过滤后,滤液用乙酸乙酯(50毫升×3)萃取,合并的有机层用水和盐水各50毫升洗涤,无水硫酸钠干燥,过滤,减压浓缩得到的残余物通过硅胶柱分离纯化得到化合物1E,用于下一步反应。
步骤6:化合物1F
Figure PCTCN2018096447-appb-000029
化合物1E(7.50克,19.16毫摩尔)的甲醇(100毫升)溶液中加入钯碳(0.8克,10%纯度),把悬浮液抽真空置换氢气多次然后在氢气(15psi)氛围下15℃搅拌16小时。过滤反应液,滤液进行减压浓缩得到的残余物通过硅胶柱分离纯化得到化合物1F。 1H NMR(400MHz,氘代氯仿)δ=6.77(s,1H),4.11(q,J=7.1Hz,3H),3.86(br s,2H),2.72(br s,3H),2.56-2.50(m,2H),2.09(br d,J=11.2Hz,1H),1.92(brd,J=12.2Hz,1H),1.77(dddd,J=3.5,6.5,12.0,15.3Hz,1H),1.39(br d,J=13.1Hz,1H),1.29-1.20(m,4H),1.02(s,3H),0.94-0.91(m,6H),0.89-0.84(m,1H),0.81-0.74(m,1H).MS-ESI(m/z):364(M+H) +.
步骤7:化合物1G-A、化合1G-B的制备
Figure PCTCN2018096447-appb-000030
在30℃下,化合物1F(500.00毫克,1.38毫摩尔)的四氢呋喃(3.00毫升)溶液中加入1-异硫氰基-4-(三氟甲氧基)苯(301.50毫克,1.38毫摩尔),30℃搅拌1小时,然后再加入EDCI(527.38毫克,2.75毫摩尔),反应液升温到70℃搅拌1小时,加入水(5毫升)萃灭反应,乙酸乙酯(10毫升×3)萃取,合并的有机层用水和盐水各20毫升洗涤,无水硫酸钠干燥,过滤,减压浓缩得到的残余物通过硅 胶柱分离纯化得到标题化合物的消旋体,消旋体经过SFC(SFC拆分条件:柱:Chiralcel OD-3 100×4.6mmI.D.,3μm;流动相:A:CO 2B:异丙醇(0.05%二乙胺);梯度:CO 2中异丙醇的含量从5%到40%(0.05%二乙胺),流速:3mL/min,波长:220nm)拆分得到化合物1G-A,保留时间为1.609分钟;化合物1G-B,保留时间为1.689分钟。
步骤8:实施例1、2
Figure PCTCN2018096447-appb-000031
20℃下,化合物1G-A(267毫克,486.70微摩尔)的甲醇(2.00毫升)和水(2.00毫升)溶液中加入一水合氢氧化锂(40.85毫克,973.39微摩尔),反应液在50℃搅拌1小时,反应混合物减压浓缩后制备分离得到实施例1。 1H NMR(400MHz,氘代甲醇)δ=7.51(s,1H),7.46-7.41(m,2H),7.22(d,J=8.3Hz,2H),4.66-4.51(m,1H),3.98(s,3H),2.97-2.88(m,2H),2.67(t,J=12.4Hz,1H),2.59(t,J=7.5Hz,2H),2.24(q,J=12.7Hz,1H),1.88(br d,J=9.5Hz,2H),1.51(br t,J=15.7Hz,2H),1.04(d,J=10.5Hz,6H),0.99(d,J=6.3Hz,4H)。
20℃下,化合物1G-B(330毫克,601.53微摩尔)的甲醇(5.00毫升)和水(5.00毫升)溶液中加入一水合氢氧化锂(50.49毫克,1.20毫摩尔),反应液在50℃搅拌1小时,反应混合物减压浓缩后制备分离得到实施例2。 1H NMR(400MHz,氘代甲醇)δ=7.50(s,1H),7.46-7.40(m,2H),7.21(d,J=8.3Hz,2H),4.64-4.51(m,1H),3.97(s,3H),2.95-2.87(m,2H),2.66(t,J=12.4Hz,1H),2.58(t,J=7.7Hz,2H),2.23(q,J=12.5Hz,1H),1.86(br d,J=11.0Hz,2H),1.50(br t,J=14.4Hz,2H),1.03(d,J=10.5Hz,6H),1.01-0.96(m,4H)。
实施例3、4
Figure PCTCN2018096447-appb-000032
步骤1:化合物3A的制备
Figure PCTCN2018096447-appb-000033
5-溴-2-氯-6-甲基-3-硝基吡啶(2克,7.95毫摩尔)的DMF溶液(20.00毫升)中加入化合物1B(1.69克,11.93毫摩尔)和K 2CO 3(1.32g,9.54毫摩尔)。反应液加热到70℃至原料消耗完毕。反应体系加入水(150毫升)中,乙酸乙酯(50毫升×2)萃取,合并的有机层用盐水(100毫升×2)洗涤,无水硫酸钠干燥,过滤,减压浓缩柱层析纯化得到的化合物3A。 1H NMR(400MHz,氘代氯仿)δ=8.52-8.45(m,1H),8.01(br d,J=7.5Hz,1H),4.40(ttd,J=3.9,8.0,11.9Hz,1H),2.59(s,3H),2.12-2.04(m,1H),1.85-1.73(m,2H),1.42(br d,J=13.3Hz,1H),1.08(d,J=12.0Hz,1H),1.03(s,3H),0.98(s,3H),0.94(d,J=6.5Hz,3H),0.89-0.80(m,2H).
步骤2:化合物3B的制备
Figure PCTCN2018096447-appb-000034
氮气下,化合物3A(2克,5.61毫摩尔)的二氧六环(60.00毫升)和水(6.00毫升)的混合溶液中加入(E)-3-(4,4,5,5-四甲基-1,3,2-氧硼烷-2-基)丙烯酸乙酯(2.54克,11.23毫摩尔),1,1,-二(二苯膦基)二茂铁二氯化钯(410.77毫克,561.39微摩尔),碳酸钾(2.33克,16.84毫摩尔),然后加热到90℃搅拌5小时,反应混合物倾入100毫升水中,乙酸乙酯(50毫升×2)萃取,合并的有机层用饱和盐水(50毫升×2)洗涤,无水硫酸钠干燥,过滤,减压浓缩得到的残余物通过硅胶柱分离纯化得到化合物3B。 1H NMR(400MHz,氘代氯仿)δ=8.59(s,1H),8.19(br d,J=7.5Hz,1H),7.77(d,J=15.8Hz,1H),6.31(d,J=15.8Hz,1H),4.49(dtd,J=4.0,8.0,12.0Hz,1H),4.27(q,J=7.2Hz,2H),2.60(s,3H),2.15-2.02(m,1H),1.95-1.78(m,2H),1.43(br d,J=13.6Hz,1H),1.35(t,J=7.2Hz,3H),1.12-1.07(m,1H),1.04(s,3H),0.98(s,3H),0.95(d,J=6.5Hz,3H),0.89-0.78(m,2H).
步骤3:化合物3C的制备
Figure PCTCN2018096447-appb-000035
化合物3B(2.1克,5.59毫摩尔)的甲醇(60毫升)溶液中加入钯碳(200毫克,10%纯度),把悬浮液抽真空置换氢气多次然后在氢气(15psi)氛围下20℃搅拌16小时。过滤反应液,滤液进行减压浓缩得到化合物3C,直接用于下一步反应。
步骤4:化合物3D的制备
Figure PCTCN2018096447-appb-000036
10℃下,化合物3C(1.9克,5.47毫摩尔)的四氢呋喃(20毫升)溶液中加入1-异硫氰基-4-(三氟甲氧基)苯(1.32克,6.01毫摩尔),反应体系在40℃搅拌16小时后加入EDCI(1.26克,6.56毫摩尔),反应液升温到80℃搅拌2小时,反应体系倾入水(30毫升)中,乙酸乙酯(30毫升×2)萃取,合并的有机层用饱和盐水(30毫升×2)洗涤,无水硫酸钠干燥,过滤,减压浓缩得到的残余物通过硅胶柱分离纯化得到化合物3D。 1H NMR(400MHz,氘代氯仿)δ=7.51(br d,J=9.3Hz,2H),7.25-7.18(m,2H),6.42(br s,1H),4.53(br t,J=12.0Hz,1H),4.19-4.13(m,2H),3.04-2.97(m,2H),2.63-2.56(m,5H),2.31(br t,J=12.8Hz,1H),2.06-1.98(m,1H),1.93-1.75(m,2H),1.58(br d,J=11.5Hz,1H),1.47(br d,J=12.8Hz,1H),1.27-1.23(m,3H),1.07-1.01(m,6H),0.99(d,J=6.3Hz,3H),0.89-0.82(m,1H).
步骤5:实施例3、4的制备
Figure PCTCN2018096447-appb-000037
20℃下,化合物3D(2.5克,4.69毫摩尔)的THF(24毫升)和水(12毫升)溶液中加入一水合氢氧化锂(984.88毫克,23.47毫摩尔),反应液在40℃搅拌16小时,反应混合物减压浓缩后加入1MHCl调pH=2,乙酸乙酯(15毫升×2)萃取,合并的有机层用饱和盐水(20毫升×2)洗涤,无水硫酸钠干燥,过滤,减压浓缩得到标题化合物的消旋体,消旋体经过SFC(SFC拆分条件:柱:Chiralpak AD-3 150×4.6mm I.D.,3um.流动相:A:CO 2B:异丙醇(0.05%二乙胺).梯度:5分钟内,B的含量5分钟内从5%到40%,保持在40%含量2.5分钟,然后B保持在5%含量2.5min.流速:2.5mL/min.柱温:35℃)拆分得到实施例3,保留时间为4.638分钟;实施例4,保留时间为5.043分钟。实施例3: 1H NMR(400MHz,氘代氯仿)δ=7.95(s,1H),7.17(br d,J=8.3Hz,2H),7.05(br d,J=8.8Hz,2H),4.05(br t,J=12.2 Hz,1H),3.17-2.99(m,2H),2.81-2.65(m,2H),2.59(s,3H),2.53(br t,J=12.5Hz,1H),2.07(q,J=12.4Hz,1H),1.59(br d,J=11.8Hz,1H),1.43(br d,J=11.8Hz,2H),1.28(br d,J=10.5Hz,1H),0.97-0.88(m,4H),0.85(br d,J=6.3Hz,3H),0.49(s,3H)。实施例4: 1H NMR(400MHz,氘代氯仿)δ=7.96(s,1H),7.17(d,J=8.5Hz,2H),7.08-7.02(m,2H),4.09-3.99(m,1H),3.15-2.99(m,2H),2.81-2.71(m,1H),2.71-2.61(m,1H),2.59(s,3H),2.53(t,J=12.7Hz,1H),2.07(q,J=12.1Hz,1H),1.59(br d,J=12.0Hz,1H),1.43(br d,J=12.0Hz,2H),1.28(br d,J=11.0Hz,1H),0.97-0.88(m,4H),0.85(d,J=6.3Hz,3H),0.49(s,3H)。
实施例5、6
Figure PCTCN2018096447-appb-000038
步骤1:化合物5A的制备
Figure PCTCN2018096447-appb-000039
化合物1B(713.88毫克,5.05毫摩尔),5-溴-2-氯-3硝基-吡啶(1克,4.21毫摩尔)的DMF(30.00毫升)溶液中加入K 2CO 3(1.16g,8.42毫摩尔)。反应液加热到70℃至原料消耗完毕。反应体系倾入水(150毫升)中,乙酸乙酯(150毫升×3)萃取,合并的有机层用盐水(150毫升×2)洗涤,无水硫酸钠干燥,过滤,减压浓缩得到的残余物经过柱层析纯化得到化合物5A,直接用于下一步。
步骤2:化合物5B的制备
Figure PCTCN2018096447-appb-000040
化合物5A(1.25克,3.65毫摩尔),(E)-3-(4,4,5,5-四甲基-1,3,2-氧硼烷-2-基)丙烯酸乙酯(1.65克,7.31毫摩尔),1,1,-二(二苯膦基)二茂铁二氯化钯(267.26毫克,365.25微摩尔),碳酸铯(2.98克,9.13毫摩尔)的二氧六环(32毫升)和水(8毫升)混合溶液用氮气置换三次,然后加热到90℃搅拌 16小时,反应混合物过滤后,用200mL H 2O稀释后乙酸乙酯(150毫升×3)萃取,合并的有机层用盐水(100毫升×2)洗涤,无水硫酸钠干燥,过滤,减压浓缩得到的残余物通过硅胶柱分离纯化得到化合物5B,用于下一步反应。 1H NMR(400MHz,氘代氯仿)δ=8.59-8.52(m,2H),8.24(br d,J=7.8Hz,1H),7.59(d,J=16.1Hz,1H),6.38(d,J=16.1Hz,1H),4.46(tdt,J=4.0,8.0,11.9Hz,1H),4.31-4.23(m,2H),2.13(br d,J=12.5Hz,1H),1.85-1.74(m,2H),1.43(br d,J=13.3Hz,1H),1.37-1.32(m,3H),1.17-1.09(m,1H),1.04(s,3H),0.99(s,3H),0.96-0.92(m,3H),0.90-0.80(m,2H).
步骤3:化合物5C的制备
Figure PCTCN2018096447-appb-000041
化合物5B(1.1克,3.04毫摩尔)的甲醇(30毫升)溶液中加入钯碳(0.6克,10%纯度),把悬浮液抽真空置换氢气多次然后在氢气(15psi)氛围下10℃搅拌16小时。过滤反应液,滤液进行减压浓缩得到的残余物通过硅胶柱分离纯化得到化合物5C。 1H NMR(400MHz,氘代氯仿)δ=7.59(d,J=1.8Hz,1H),6.71(d,J=2.0Hz,1H),4.16-4.11(m,2H),3.49(s,1H),3.11(br s,2H),2.82-2.72(m,2H),2.59-2.49(m,2H),2.21(br d,J=12.3Hz,1H),1.86-1.73(m,2H),1.71-1.57(m,1H),1.41-1.35(m,1H),1.29-1.22(m,4H),1.04-1.00(m,3H),0.95(s,3H),0.91-0.87(m,3H),0.79(t,J=12.5Hz,1H),0.59(q,J=11.8Hz,1H).
步骤4:化合物5D的制备
Figure PCTCN2018096447-appb-000042
化合物5C(0.95克,2.85毫摩尔)的四氢呋喃(30毫升)溶液中加入1-异硫氰基-4-(三氟甲氧基)苯(686.86毫克,3.13毫摩尔),反应体系在30℃搅拌2小时后加入EDCI(655.36毫克,3.42毫摩尔),反应液升温到70℃搅拌16小时,反应结束后,体系减压浓缩得到的残余物通过硅胶柱分离纯化得到化合物5D。 1H NMR(400MHz,氘代氯仿)δ=8.01(s,1H),7.63-7.45(m,3H),7.21(br d,J=8.5Hz,2H),6.63(br s,1H),4.56-4.40(m,1H),4.15-4.12(m,2H),3.05-2.97(m,2H),2.64(br t,J=7.8Hz,2H),2.33(br t,J=12.8Hz,1H),2.11-2.05(m,1H),1.89(br d,J=11.8Hz,1H),1.84-1.73(m,1H),1.57(br d,J=12.0Hz,1H),1.45(br d,J=13.3Hz,1H),1.25-1.23(m,3H),1.03(s,3H),1.00(s,3H),0.97(br d,J=6.3Hz,4H).
步骤5:实施例5、6
Figure PCTCN2018096447-appb-000043
20℃下,化合物5D(1.1克,2.12毫摩尔)的THF(20毫升)和水(20毫升)溶液中加入一水合氢氧化锂(445.07毫克,10.61毫摩尔),反应液在40℃搅拌2小时,反应混合物减压浓缩后加入1MHCl调pH=3-4,乙酸乙酯300毫升萃取,合并的有机层用饱和盐水(200毫升×2)洗涤,无水硫酸钠干燥,过滤,减压浓缩得到标题化合物的消旋体,消旋体经过SFC(SFC拆分条件:柱:Chiralpak AD-3150×4.6mm I.D.,3um.流动相:A:CO 2B:异丙醇(0.05%二乙胺).梯度:B的含量5分钟内从5%升到40%,保持在40%2.5分钟,然后降为5%2.5min.流速:2.5mL/min.柱温:35℃)拆分得到实施例5,保留时间为4.354分钟;实施例6,保留时间为4.872分钟。实施例5: 1H NMR(400MHz,DMSO-d)δ=12.14(s,1H),9.22(s,1H),7.93-7.87(m,3H),7.56(s,1H),7.33(d,J=8.8Hz,2H),4.70-4.64(m,1H),2.86(t,J=7.2Hz,2H),2.59-2.55(m,3H),2.17-2.03(m,1H),1.95-1.75(m,2H),1.45-1.39(m,2H),1.05(s,3H),0.96-0.85(m,7H)。实施例6: 1H NMR(400MHz,DMSO-d)δ=9.23(s,1H),7.93-7.87(m,3H),7.55(s,1H),7.33(d,J=8.8Hz,2H),4.67(q,J=11.6Hz,1H),2.85(t,J=7.2Hz,2H),2.59-2.55(m,3H),2.17-2.03(m,1H),1.95-1.75(m,2H),1.45-1.36(m,2H),1.05(s,3H),0.96-0.90(m,7H)。
实施例7、8
Figure PCTCN2018096447-appb-000044
步骤1:化合物7A的制备
Figure PCTCN2018096447-appb-000045
3-氟-2-硝基-吡啶(200毫克,1.41毫摩尔)的四氢呋喃(20.00毫升)溶液中加入K 2CO 3(291.80毫克,2.11毫摩尔)和化合物1B(198.83毫克,1.41毫摩尔)。反应液在10℃搅拌16小。加入水(10.00毫升)萃灭反应,乙酸乙酯(10毫升×3)萃取,合并的有机层用盐水10毫升洗涤,无水硫酸钠干燥,过滤,减压浓缩得到的化合物7A,直接用于下一步。 1H NMR(400MHz,氘代氯仿)δ=7.79(dd,J=1.3,3.9Hz,1H),7.63-7.54(m,1H),7.37-7.31(m,1H),7.29-7.23(m,1H),3.57(tdt,J=3.9,7.7,11.6Hz,1H),2.05-1.98(m,1H),1.76-1.64(m,2H),1.41-1.35(m,1H),1.06(t,J=12.3Hz,1H),0.94(d,J=15.8Hz,6H),0.88(d,J=6.5Hz,3H),0.84-0.76(m,2H).
步骤2:化合物7B的制备
Figure PCTCN2018096447-appb-000046
化合物7A(200毫克,759.49微摩尔)和NaOAc(62.30毫克,759.49微摩尔)的AcOH(2.00毫升)溶液中滴加加入Br 2(182.06毫克,1.14毫摩尔)的AcOH(0.50毫升)溶液,25℃搅拌16小时后,反应体系减压浓缩去除HOAc得到的残余物在0℃用饱和NaHCO 3溶液(10毫升)稀释,乙酸乙酯(10毫升×3)萃取,合并的有机层用盐水20毫升洗涤,无水硫酸钠干燥,过滤,减压浓缩得到残余物经过柱层析纯化得到化合物7B。 1H NMR(400MHz,氘代氯仿)δ=7.67(br d,J=6.6Hz,1H),7.44(d,J=8.9Hz,1H),7.16(d,J=8.9Hz,1H),3.54(tdt,J=3.9,7.7,11.7Hz,1H),2.06-1.93(m,1H),1.76-1.61(m,2H),1.43-1.34(m,1H),1.07(t,J=12.3Hz,1H),1.02-0.74(m,12H).
步骤3:化合物7C的制备
Figure PCTCN2018096447-appb-000047
化合物7B(1.2克,3.51毫摩尔),(E)-3-(4,4,5,5-四甲基-1,3,2-氧硼烷-2-基)丙烯酸乙酯(1.19克,5.26毫摩尔),1,1,-二(二苯膦基)二茂铁二氯化钯(256.57毫克,350.64微摩尔),碳酸钾(1.45克,10.52毫摩尔)的二氧六环(20.00毫升)和水(5.00毫升)混合溶液用氮气置换三次,然后加热到80℃搅拌1.5小时,反应混合物加入30毫升水后,用乙酸乙酯(20毫升×3)萃取,合并的有机层用盐水50毫升洗涤,无水硫酸钠干燥,过滤,减压浓缩得到的残余物通过硅胶柱分离纯化得到化合物7C。 1H NMR(400MHz,氘代氯仿)δ=7.81(br d,J=7.4Hz,1H),7.70-7.57(m,2H),7.34(d,J=8.9Hz,1H),6.69(d,J=15.9Hz,1H),4.28(q,J=7.1Hz,1H),4.33-4.21(m,1H),3.76-3.61(m,1H),2.11(br d,J=12.4Hz,1H),1.87-1.73(m,2H),1.47(br d,J=13.3Hz,1H),1.35(t,J=7.2Hz,3H),1.17(t,J=12.2Hz,1H),1.06(s,3H),1.02(s,3H), 0.98(d,J=6.5Hz,3H),0.95-0.86(m,2H).
步骤4:化合物7D的制备
Figure PCTCN2018096447-appb-000048
化合物7C(500毫克,1.38毫摩尔)的甲醇(10毫升)溶液中加入钯碳(0.1克,10%纯度),把悬浮液抽真空置换氢气多次然后在氢气(15psi)氛围下15℃搅拌16小时。过滤反应液,滤液进行减压浓缩得到化合物7D。MS-ESI(m/z):334(M+H) +.
步骤5:化合物7E-A、7E-B的制备
Figure PCTCN2018096447-appb-000049
化合物7D(500.00毫克,1.50毫摩尔)的四氢呋喃(10毫升)溶液中加入1-异硫氰基-4-(三氟甲氧基)苯(361.51毫克,1.65毫摩尔),30℃搅拌3小时后再加入EDCI(574.88毫克,3.00毫摩尔),反应液升温到70℃搅拌3小时,加入水(20毫升)萃灭反应,乙酸乙酯(10毫升×3)萃取,合并的有机层用盐水20毫升洗涤,无水硫酸钠干燥,过滤,减压浓缩得到的残余物通过硅胶柱分离纯化得到标题化合物的消旋体,消旋体经过SFC(SFC拆分条件:柱:Chiralpak AD-3 100×4.6mm I.D.,3um,流动向:A:CO 2,B:异丙醇(0.05%二乙胺);梯度:异丙醇(0.05%二乙胺)在二氧化碳中的含量从5%到40%,流速:3mL/min,波长:220nm)拆分得到化合物7E-A,保留时间为2.550分钟;化合物7E-B,保留时间为2.651分钟。
步骤6:实施例7、8的制备
Figure PCTCN2018096447-appb-000050
化合物7E-A(90毫克,173.55微摩尔)的THF(1.00毫升)和水(1.00毫升)溶液中加入一水合氢氧化锂(21.85毫克,520.66微摩尔),反应液在15℃搅拌16小时,反应混合物加入1M HCl调pH=7,乙酸乙酯(10毫升×3)萃取,合并的有机层用饱和盐水(20毫升)洗涤,无水硫酸钠干燥,过滤,减压浓缩后制备分离得到实施例7。 1H NMR(400MHz,氘代甲醇)δ=8.25(dd,J=2.7,8.1Hz,1H),7.91-7.75(m,2H),7.34(d,J=8.3Hz,2H),7.24(d,J=8.2Hz,1H),4.86-4.78(m,1H),3.21(t,J=7.2Hz,2H),2.84(t,J=7.2Hz,2H),2.13-1.96(m,3H),1.79-1.65(m,2H),1.53(br d,J=13.2Hz,1H),1.21-1.12(m,4H),1.10(s,3H),1.06(d,J=6.4Hz,3H).
化合物7E-B(80毫克,154.27微摩尔)的THF(1.00毫升)和水(1.00毫升)溶液中加入一水合氢氧化锂(19.42毫克,462.81微摩尔),反应液在15℃搅拌16小时,反应混合物加入1M HCl调pH=7,乙酸乙酯(10毫升×3)萃取,合并的有机层用饱和盐水(20毫升)洗涤,无水硫酸钠干燥,过滤,减压浓缩后制备分离得到实施例8。 1H NMR(400MHz,氘代甲醇)δ=8.27(d,J=8.1Hz,1H),7.91-7.73(m,2H),7.35(br d,J=8.4Hz,2H),7.25(d,J=8.2Hz,1H),4.85-4.77(m,1H),3.22(t,J=7.3Hz,2H),2.85(t,J=7.2Hz,2H),2.13-1.93(m,3H),1.78-1.64(m,2H),1.53(br d,J=13.3Hz,1H),1.21-1.12(m,4H),1.10(s,3H),1.06(d,J=6.4Hz,3H).
实施例9、10
Figure PCTCN2018096447-appb-000051
步骤1:化合物9A的制备
Figure PCTCN2018096447-appb-000052
-40℃下,2,6-二氟-3-硝基吡啶(2克,12.49毫摩尔)的THF溶液(20.00毫升)中滴加加入化合物1B(3.53克,24.99毫摩尔)。反应液在-40℃反应半小时。反应体系倾入水(80毫升)中,乙酸乙酯(50毫升×2)萃取,合并的有机层用饱和盐水(50毫升×2)洗涤,无水硫酸钠干燥,过滤,减压浓缩后柱层析纯化得到的化合物9A。 1H NMR(400MHz,氘代氯仿)δ=8.51(dd,J=7.3,8.8Hz,1H),8.30(br d,J=5.5Hz,1H),6.19-6.14(m,1H),4.28(tdt,J=4.0,8.0,12.0Hz,1H),2.15-2.07(m,1H),1.83-1.73(m,2H),1.42(td,J=1.7,13.1Hz,1H),1.14-1.09(m,1H),1.03(s,3H),0.98(s,3H),0.93(d,J=6.5Hz,3H),0.89- 0.84(m,1H),0.83-0.78(m,1H).
步骤2:化合物9B的制备
Figure PCTCN2018096447-appb-000053
化合物9A(3.1克,11.02毫摩尔)的CH 3CN(40毫升)溶液中加入NBS(1.96克,11.02毫摩尔)和AcOH(6.62毫克,110.19微摩尔),反应体系在70℃搅拌2小时后,倾倒入100毫升水中,乙酸乙酯(80毫升×2)萃取,合并的有机层用盐水(80毫升×2)洗涤,无水硫酸钠干燥,过滤,减压浓缩得到化合物9B,直接用于下一步。 1H NMR(400MHz,氘代氯仿)δ=8.61-8.56(m,1H),8.13(br d,J=5.8Hz,1H),4.16(tdt,J=4.0,8.0,11.9Hz,1H),2.05-1.98(m,1H),1.76-1.64(m,2H),1.34(br dd,J=1.6,14.9Hz,1H),1.02(d,J=3.8Hz,1H),0.95(s,3H),0.92-0.88(m,3H),0.86(d,J=6.5Hz,3H),0.81-0.76(m,1H),0.75-0.70(m,1H).
步骤3:化合物9C的制备
Figure PCTCN2018096447-appb-000054
氮气下,化合物9B(500毫克,1.39毫摩尔)的二氧六环(30.00毫升)溶液中加入(E)-3-(4,4,5,5-四甲基-1,3,2-氧硼烷-2-基)丙烯酸乙酯(627.6毫克,2.78毫摩尔),1,1,-二(二苯膦基)二茂铁二氯化钯(101.56毫克,138.80微摩尔),KF(241.93毫克,4.16毫摩尔),然后反应体系加热到90℃搅拌16小时,反应混合物倾入50毫升水后,用乙酸乙酯(50毫升×2)萃取,合并的有机层用盐水(50毫升×2)洗涤,无水硫酸钠干燥,过滤,减压浓缩得到的残余物通过硅胶柱分离纯化得到化合物9C。 1H NMR(400MHz,氘代氯仿)δ=8.74-8.65(m,1H),8.38(br d,J=7.8Hz,1H),7.57(d,J=16.3Hz,1H),6.82-6.73(m,1H),4.36-4.24(m,3H),2.14-2.07(m,1H),1.86-1.71(m,2H),1.43(br d,J=13.6Hz,1H),1.35(t,J=7.2Hz,3H),1.16-1.09(m,1H),1.03(s,3H),0.99(s,3H),0.94(d,J=6.5Hz,3H),0.90-0.79(m,2H).
步骤4:化合物9D的制备
Figure PCTCN2018096447-appb-000055
化合物9C(610毫克,1.61毫摩尔)的甲醇(10毫升)溶液中加入NiCl·6H 2O(1.53克,6.43毫摩尔),之后加入NaBH4(121.65毫克,3.22毫摩尔)的DMF(5毫升)溶液(反应内温不高于10℃),10℃搅拌16小时。反应混合物倾入30毫升水和10毫升乙酸乙酯中,硅藻土过滤后,乙酸乙酯(10毫升×2)洗涤,乙酸乙酯(30毫升×2)萃取,合并的有机层用盐水(50毫升×2)洗涤,无水硫酸钠干燥,过滤,减压浓缩得到的化合物9D直接用于下一步。 1H NMR(400MHz,氘代氯仿)δ=8.03(s,1H),6.90-6.78(m,1H),4.14-4.11(m,2H),4.01(br s,1H),2.97(s,1H),2.97-2.97(m,1H),2.44(t,J=7.4Hz,2H),1.76(br d,J=12.3Hz,1H),1.38(br d,J=13.3Hz,1H),1.24-1.22(m,3H),1.10-1.04(m,1H),1.02(s,3H),0.95(s,3H),0.89(d,J=6.5Hz,3H),0.79(t,J=12.7Hz,1H),0.60(q,J=11.9Hz,1H).
步骤5:化合物9E的制备
Figure PCTCN2018096447-appb-000056
10℃下,化合物9D(590.00毫克,1.68毫摩尔)的四氢呋喃(10毫升)溶液中加入1-异硫氰基-4-(三氟甲氧基)苯(404.74毫克,1.85毫摩尔),反应体系在40℃搅拌16小时后再加入EDCI(386.18毫克,2.01毫摩尔),反应液升温到80℃搅拌4小时,加入水(25毫升)萃灭反应,乙酸乙酯(25毫升×2)萃取,合并的有机层用盐水(30毫升×2)洗涤,无水硫酸钠干燥,过滤,减压浓缩得到的残余物通过硅胶柱分离纯化得到化合物9E。 1H NMR(400MHz,氘代氯仿)δ=7.69(d,J=8.8Hz,1H),7.52(d,J=9.0Hz,2H),7.23(d,J=8.5Hz,2H),6.19(s,1H),4.39(br t,J=12.2Hz,1H),4.15-4.10(m,2H),3.02(t,J=7.5Hz,2H),2.66(t,J=7.7Hz,2H),2.31-2.21(m,1H),2.04-1.96(m,1H),1.94-1.75(m,2H),1.47(br d,J=14.1Hz,1H),1.32(br s,1H),1.26-1.22(m,3H),1.08(br d,J=12.5Hz,1H),1.04(d,J=6.0Hz,6H),1.00(d,J=6.3Hz,3H).
步骤6:实施例9、10
Figure PCTCN2018096447-appb-000057
化合物9E(230毫克,428.66微摩尔)的二氧六环(5毫升)溶液中加入浓盐酸(2.2毫升,2.24 克),反应液在10℃搅拌16小时,反应混合物倾入15毫升水中,乙酸乙酯(15毫升×2)萃取,合并的有机层用饱和盐水(20毫升×2)洗涤,无水硫酸钠干燥,过滤,减压浓缩后得到标题化合物的消旋体。消旋体经过SFC(SFC拆分条件:柱:Chiralpak AD-3 150×4.6mm I.D.,3um.流动向A:CO 2B:异丙醇(0.05%二乙胺).梯度:B的含量5分钟内从5%升到40%,保持在40%2.5分钟,然后降为5%保持2.5min.流速:2.5mL/min.柱温:35℃)拆分得到实施例9,保留时间为3.895分钟;实施例10,保留时间为4.312分钟。
实施例9: 1H NMR(400MHz,氘代氯仿)δ=8.02(br d,J=8.5Hz,1H),7.18(br d,J=8.3Hz,2H),7.03(br d,J=8.3Hz,2H),4.07(br t,J=12.2Hz,1H),3.07(br s,2H),2.83-2.63(m,2H),2.37(br t,J=12.5Hz,1H),2.04-1.89(m,1H),1.61(br d,J=11.0Hz,1H),1.42(br d,J=11.0Hz,2H),1.27(br d,J=11.8Hz,1H),0.99(br s,1H),0.94(br s,3H),0.86(br d,J=6.0Hz,3H),0.51(s,3H)。
实施例10: 1H NMR(400MHz,氘代氯仿)δ=8.01(br d,J=8.8Hz,1H),7.18(br d,J=8.5Hz,2H),7.04(br d,J=8.8Hz,2H),4.14-3.99(m,1H),3.07(br t,J=5.8Hz,2H),2.81-2.63(m,2H),2.40-2.29(m,1H),1.97(q,J=12.1Hz,1H),1.61(br d,J=11.5Hz,1H),1.42(br d,J=12.5Hz,2H),1.33-1.22(m,2H),0.94(s,3H),0.86(d,J=6.5Hz,3H),0.51(s,3H)。
实施例11、12
Figure PCTCN2018096447-appb-000058
步骤1:化合物11A的制备
Figure PCTCN2018096447-appb-000059
0℃下,2-氨基6-乙基吡啶(1克,8.19毫摩尔)的CHCl 3(40.00毫升)溶液中分批加入NBS(1.46克,8.19毫摩尔),1小时后,反应体系减压浓缩得到残余物经过柱层析纯化后得到化合物11A,直接用于下一步。 1H NMR(400MHz,氘代氯仿)δ=7.44(d,J=8.6Hz,1H),6.23(d,J=8.7Hz,1H),6.05(s,2H),2.63(q,J=7.5Hz,2H),1.12(t,J=7.5Hz,3H)。
步骤2:化合物11B的制备
Figure PCTCN2018096447-appb-000060
0℃下,HNO 3(814.83毫克,12.93毫摩尔)滴加入化合物11A(1.3克,6.47毫摩尔)的H 2SO 4溶液(2毫升)中,继续搅拌1小时后,反应体系升温到15℃搅拌1小时,反应倾入20毫升冰水中,加入NaOH水溶液调pH到7,析出的固体用10毫升水洗涤,固体进一步经过柱层析纯化后得到化合物11B。
步骤3:化合物11C的制备
Figure PCTCN2018096447-appb-000061
0℃下,化合物11B(450毫克,1.83毫摩尔)的浓HCl溶液(10毫升)中加入NaNO 2(630.90毫克,9.14毫摩尔),反应在15℃搅拌16小时后,反应体系用饱和NaHCO3溶液调至pH=8,乙酸乙酯(20毫升×3)萃取,合并的有机层用饱和盐水(30毫升)洗涤,无水硫酸钠干燥,浓缩得到的残余物经柱层析纯化后得到化合物11C。 1H NMR(400MHz,氘代氯仿)δ=8.41(s,1H),3.05(q,J=7.4Hz,2H),1.36(t,J=7.5Hz,3H).
步骤4:化合物11D的制备
Figure PCTCN2018096447-appb-000062
15℃下,化合物11C(300毫克,1.13毫摩尔)的四氢呋喃(2.00毫升)溶液中加入K 2CO 3(312.34毫克,2.26毫摩尔)和化合物1B(191.54毫克,1.36毫摩尔)。反应结束后,加入水(20.00毫升)萃灭反应,乙酸乙酯(10毫升×3)萃取,合并的有机层用盐水各20毫升洗涤,无水硫酸钠干燥,过滤,减压浓缩得到的化合物11D,直接用于下一步。
步骤5:化合物11E的制备
Figure PCTCN2018096447-appb-000063
化合物11D(300毫克,810.19微摩尔),(E)-3-(4,4,5,5-四甲基-1,3,2-氧硼烷-2-基)丙烯酸乙酯(274.75毫克,1.22毫摩尔)的二氧六环(4毫升)和水(1毫升)混合溶液中加入1,1,-二(二苯膦基)二茂铁二氯化钯(59.28毫克,81.02微摩尔),碳酸钾(335.92毫克,2.43毫摩尔)用氮气置换三次,然后加热到80℃搅拌2小时,反应混合物加入20毫升水,乙酸乙酯(10毫升×3)萃取,合并的有机层用盐水20毫升洗涤,无水硫酸钠干燥,过滤,减压浓缩得到的残余物通过硅胶柱分离纯化得到化合物11E。 1H NMR(400MHz,氘代氯仿)δ=8.64-8.53(m,1H),8.20(br d,J=7.5Hz,1H),7.82(d,J=15.8Hz,1H),6.39- 6.24(m,1H),4.57-4.44(m,1H),4.33-4.24(m,2H),2.94(q,J=7.4Hz,2H),2.12(br d,J=12.2Hz,1H),1.91-1.79(m,2H),1.44(br d,J=13.2Hz,1H),1.38-1.30(m,6H),1.13-1.08(m,1H),1.05(s,3H),0.99-0.95(m,6H),0.92-0.83(m,2H)。
步骤6:化合物11F的制备
Figure PCTCN2018096447-appb-000064
化合物11E(400毫克,1.03毫摩尔)的甲醇(100毫升)溶液中加入钯碳(0.1克,10%纯度),把悬浮液抽真空置换氢气多次然后在氢气(15psi)氛围下10℃搅拌15小时。过滤反应液,滤液进行减压浓缩得到的化合物11F,直接用于下一步。
步骤7:化合物11G-A、11G-B的制备
Figure PCTCN2018096447-appb-000065
在30℃下,化合物11F(300.00毫克,829.83微摩尔)的四氢呋喃(6毫升)溶液中加入1-异硫氰基-4-(三氟甲氧基)苯(200.07毫克,912.81微摩尔),30℃搅拌3小时后再加入EDCI(318.16毫克,1.66毫摩尔),反应液升温到70℃搅拌3小时,加入水20毫升萃灭反应,乙酸乙酯(10毫升×3)萃取,合并的有机层用盐水20毫升洗涤,无水硫酸钠干燥,过滤,减压浓缩得到的残余物通过硅胶柱分离纯化得到标题化合物的消旋体,消旋体经过SFC(SFC拆分条件:柱:Chiralcel OD-3 100×4.6mm I.D.,3um;流动相:A:CO 2B:异丙醇(0.05%二乙胺);梯度:CO 2中异丙醇的含量从5%到40%,流速:3mL/min,波长:220nm)拆分得到化合物11G-A,保留时间为1.7849分钟;化合物11G-B,保留时间为1.918分钟。
步骤8:实施例11、12
Figure PCTCN2018096447-appb-000066
15℃下,化合物11G-A(90毫克,156.74微摩尔)的THF(1毫升)和水(1毫升)溶液中加入一水合氢氧化锂(19.73毫克,470.23微摩尔),反应液在15℃搅拌16小时,反应混合物加入1M HCl调pH=6,乙酸乙酯(5毫升×3)萃取,合并的有机层用饱和盐水(10毫升)洗涤,无水硫酸钠干燥,过滤,减压浓缩后经HPLC制备分离得到实施例11。 1H NMR(400MHz,氘代甲醇)δ=7.64-7.62(m,2H),7.53(s,1H),7.44-7.47(m,2H),4.79-4.71(m,1H),3.08-3.04(m,2H),2.97-2.93(m,2H),2.86(t,J=12.4Hz,1H),2.66-2.63(m,2H),2.29(q,J=12.7Hz,1H),2.06-1.90(m,2H),1.75-1.68(m,1H),1.61-1.51(m,1H),1.38(t,J=7.2Hz,3H),1.20-1.14(m,1H),1.09(d,J=10.5Hz,6H),1.08-1.03(m,3H)。
15℃下,化合物11G-B(140毫克,221.80微摩尔)的THF(1毫升)和水(1毫升)溶液中加入一水合氢氧化锂(27.92毫克,665.39微摩尔),反应液在15℃搅拌16小时,反应混合物加入1M HCl调pH=6,乙酸乙酯(5毫升×3)萃取,合并的有机层用饱和盐水(10毫升)洗涤,无水硫酸钠干燥,过滤,减压浓缩后经HPLC制备分离得到实施例12。 1H NMR(400MHz,氘代甲醇)δ=7.65-7.62(m,2H),7.55(s,1H),7.49-7.51(m,2H),4.81-4.74(m,1H),3.08-3.04(m,2H),2.97-2.93(m,2H),2.86(t,J=12.4Hz,1H),2.66-2.63(m,2H),2.29(q,J=12.7Hz,1H),2.06-1.90(m,2H),1.75-1.68(m,1H),1.61-1.51(m,1H),1.38(t,J=7.2Hz,3H),1.20-1.14(m,1H),1.09(d,J=10.5Hz,6H),1.08-1.03(m,3H)。
实施例13、14
Figure PCTCN2018096447-appb-000067
步骤1:化合物13A的制备
Figure PCTCN2018096447-appb-000068
2-氯3-硝基6-三氟甲基吡啶(500毫克,2.21毫摩尔)的DMF溶液(8毫升)中滴加加入化合物1B(342.94毫克,2.43毫摩尔)和K 2CO 3(366.04毫克,2.65毫摩尔)。反应液在70℃搅拌16小时。反应体系倾入水(50毫升)中,乙酸乙酯(50毫升×2)萃取,合并的有机层用饱和盐水(50毫升×2)洗涤,无水硫酸钠干燥,过滤,减压浓缩后柱层析纯化得到的化合物13A。 1H NMR(400MHz,氘代氯仿)δ=8.55(d,J=8.3Hz,1H),8.02(br d,J=6.3Hz,1H),6.92(d,J=8.5Hz,1H),4.40(tdt,J=4.1,7.9,11.8Hz,1H),2.11(br d,J=12.0Hz,1H),1.90-1.74(m,2H),1.47-1.38(m,1H),1.12-1.05(m,1H),1.03(s,3H),0.98(s, 3H),0.95(d,J=6.5Hz,3H),0.90-0.81(m,2H).
步骤2:化合物13B的制备
Figure PCTCN2018096447-appb-000069
化合物13A(610毫克,1.84毫摩尔)的HOAc(8毫升)溶液中加入NBS(491.52毫克,2.76毫摩尔),反应体系在110℃搅拌16小时后,NaHCO 3饱和溶液中和至pH=11,乙酸乙酯(20毫升×2)萃取,合并的有机层用盐水(20毫升×2)洗涤,无水硫酸钠干燥,过滤,减压浓缩得到化合物13B,直接用于下一步。 1H NMR(400MHz,氘代氯仿)δ=8.69(s,1H),7.93(br d,J=7.0Hz,1H),4.36(tdt,J=4.0,7.8,11.8Hz,1H),2.11-2.03(m,1H),1.88-1.75(m,2H),1.43(td,J=1.8,13.2Hz,1H),1.09-1.04(m,1H),1.02(s,3H),0.97(s,3H),0.95(d,J=6.5Hz,3H),0.90-0.83(m,2H).
步骤3:化合物13C的制备
Figure PCTCN2018096447-appb-000070
氮气下,化合物13B(750毫克,1.83毫摩尔)的二氧六环(12.00毫升)和H 2O(3毫升)的混合溶液中加入(E)-3-(4,4,5,5-四甲基-1,3,2-氧硼烷-2-基)丙烯酸乙酯(826.65毫克,3.66毫摩尔),1,1,-二(二苯膦基)二茂铁二氯化钯(133.77毫克,182.82微摩尔),K 2CO 3(758.02毫克,5.48毫摩尔),然后反应体系加热到100℃搅拌16小时,反应混合物倾入30毫升水后,用乙酸乙酯(30毫升×2)萃取,合并的有机层用盐水(30毫升×2)洗涤,无水硫酸钠干燥,过滤,减压浓缩得到的残余物通过硅胶柱分离纯化得到化合物13C。 1H NMR(400MHz,氘代氯仿)δ=8.78(s,1H),8.10(br d,J=7.5Hz,1H),7.88(dd,J=2.0,15.8Hz,1H),6.37(d,J=15.8Hz,1H),4.44(dtd,J=3.9,7.8,11.8Hz,1H),4.29(q,J=7.1Hz,2H),2.09(br d,J=12.3Hz,1H),1.90-1.75(m,2H),1.44(br d,J=13.1Hz,1H),1.35(t,J=7.2Hz,3H),1.14-1.06(m,1H),1.03(s,3H),0.98(s,3H),0.96(d,J=6.5Hz,3H),0.92-0.83(m,2H).
步骤4:化合物13D的制备
Figure PCTCN2018096447-appb-000071
氮气下,化合物13C(380毫克,884.89微摩尔)的甲醇(15毫升)溶液中加入Pd/C(38毫克,10%纯 度),置换几次H 2后,反应在10℃,15psi H 2下搅拌16小时。反应混合物通过硅藻土过滤,乙醇(10毫升×4)洗涤,滤液减压浓缩得到的化合物13D直接用于下一步。 1H NMR(400MHz,氘代氯仿)δ=6.75(s,1H),4.15-4.13(m,2H),3.80-3.67(m,1H),3.35(br s,2H),2.93(br t,J=7.8Hz,2H),2.54(t,J=7.8Hz,2H),2.10(br d,J=12.0Hz,1H),1.90(br dd,J=1.8,12.0Hz,1H),1.85-1.72(m,1H),1.40(br d,J=11.3Hz,1H),1.27-1.20(m,3H),1.03(s,3H),0.94(s,3H),0.92(d,J=6.5Hz,3H),0.87(s,1H),0.85-0.79(m,1H),0.69(q,J=12.0Hz,1H).
步骤5:化合物13E-A、13E-B的制备
Figure PCTCN2018096447-appb-000072
10℃下,化合物13D(300毫克,747.26微摩尔)的四氢呋喃(8毫升)溶液中加入1-异硫氰基-4-(三氟甲氧基)苯(180.17毫克,821.99微摩尔),反应体系在80℃搅拌16小时后倾入水(20毫升)中,乙酸乙酯(20毫升×2)萃取,合并的有机层用盐水(20毫升×2)洗涤,无水硫酸钠干燥,过滤,减压浓缩得到的残余物通过硅胶柱分离纯化得到标题化合物的消旋体,消旋体经过SFC(SFC拆分条件:柱:(R,R)Whelk-01 100×4.6mm I.D.,3um.流动相:A:CO 2B:异丙醇(0.05%二乙胺)梯度:B在5.5分钟内从5%到40%并在40%保持3min,然后B在5%保持1.5min,流速:2.5mL/min,柱温:40℃)拆分得到化合物13E-A(SFC保留时间3.378分钟)和化合物13E-B(SFC保留时间3.192分钟)。
步骤6:实施例13、14
Figure PCTCN2018096447-appb-000073
20℃下,化合物13E-A(35毫克,59.67微摩尔)的THF(1毫升)和水(1毫升)溶液中加入一水合氢氧化锂(12.52毫克,298.35微摩尔),反应液在40℃搅拌16小时,反应混合物加入1M HCl调pH到3,乙酸乙酯(15毫升×2)萃取,合并的有机相用饱和食盐水(20毫升×2)洗涤,Na 2SO 4干燥后,过滤后减压浓缩得到实施例13。 1H NMR(400MHz,氘代氯仿)δ=7.99(br s,1H),7.26-7.07(m,4H),4.42-4.01(m,1H),3.26(br d,J=5.5Hz,2H),2.76(br d,J=3.0Hz,2H),2.46(br t,J=12.4Hz,1H),2.04(q,J=12.3 Hz,1H),1.70(br d,J=10.5Hz,1H),1.53(br s,1H),1.47(br d,J=12.3Hz,1H),1.33(br d,J=13.1Hz,1H),0.96(s,3H),0.94(br s,1H),0.89(d,J=6.3Hz,3H),0.66(br s,3H)。
20℃下,化合物13E-B(60毫克,102.29微摩尔)的THF(1毫升)和水(1.00毫升)溶液中加入一水合氢氧化锂(21.46毫克,511.45微摩尔),反应液在4℃搅拌16小时,反应混合物加入1M HCl调pH到3,乙酸乙酯(15毫升×2)萃取,合并的有机相用饱和食盐水(20毫升×2)洗涤,Na 2SO 4干燥后,过滤后减压浓缩得到实施例14。 1H NMR(400MHz,氘代氯仿)δ=8.05(br s,1H),7.21(br s,4H),4.72(br s,1H),4.16(br s,1H),3.26(br s,2H),2.85-2.71(m,2H),2.46(br t,J=12.5Hz,1H),2.03(q,J=12.0Hz,1H),1.72-1.60(m,1H),1.66(br d,J=12.3Hz,1H),1.46(br d,J=12.3Hz,2H),1.37-1.25(m,2H),0.95(s,3H),0.88(br d,J=6.3Hz,3H),0.61(br s,3H)。
实施例15、16
Figure PCTCN2018096447-appb-000074
步骤1:化合物15A
Figure PCTCN2018096447-appb-000075
0℃下,2-溴-5氟吡啶(5克,28.41毫摩尔)的TFA(10毫升)溶液中滴加加入H 2O 2(17.70克,156.11毫摩尔,30%纯度),反应液在70℃搅拌16小时后倾倒入10mL冰水中,DCM(10毫升x 2)萃取,合并的有机相先后用10毫升Na 2SO 3和食盐水洗涤,Na 2SO 4干燥后浓缩得到粗产物,粗产物经过柱层析纯化得到化合物15A。 1H NMR(400MHz,氘代氯仿)δ=8.39(dd,J=2.6,4.1Hz,1H),7.66(dd,J=6.5,9.2Hz,1H),7.02(ddd,J=2.6,6.5,9.2Hz,1H).
步骤2:化合物15B
Figure PCTCN2018096447-appb-000076
0℃下,化合物15A(3.6克,18.75毫摩尔)的浓H 2SO 4(32.31克,329.45毫摩尔)溶液中滴加加入浓HNO 3(12.29克,195.08毫摩尔),加完后,反应液在120℃搅拌16小时。冷却后倾倒入20mL冰水中,乙酸乙酯(20毫升x 3)萃取,合并的有机相先后用10毫升水和食盐水洗涤,Na 2SO 4干燥后浓缩得到化合物15B的粗产物,粗产物直接用于下一步反应。
步骤3:化合物15C
Figure PCTCN2018096447-appb-000077
15℃下,化合物15B(1.7克,7.69毫摩尔)的DMF溶液(20.00毫升)中加入化合物1B(1.09克,7.69毫摩尔)和K 2CO 3(2.13克,15.39毫摩尔)。搅拌2小时后,反应体系加入水(40毫升)中,乙酸乙酯(20毫升×3)萃取,合并的有机层用30毫升水和盐水洗涤,无水硫酸钠干燥,过滤,减压浓缩柱层析纯化得到的化合物15C。MS-ESI(m/z):342,344(M+H) +.
步骤4:化合物15D
Figure PCTCN2018096447-appb-000078
化合物15C(2克,5.84毫摩尔),(E)-3-(4,4,5,5-四甲基-1,3,2-氧硼烷-2-基)丙烯酸乙酯(1.59克,7.01毫摩尔),1,1,-二(二苯膦基)二茂铁二氯化钯(855.22毫克,1.17毫摩尔),碳酸铯(3.81克,11.69毫摩尔)的二氧六环(20.00毫升)和水(5.00毫升)混合溶液用氮气置换三次,然后加热到90℃搅拌16小时,反应混合物加入20毫升水后,用乙酸乙酯(20毫升×3)萃取,合并的有机层用水和盐水各20毫升洗涤,无水硫酸钠干燥,过滤,减压浓缩得到的残余物通过硅胶柱分离纯化得到化合物15D。 1H NMR(400MHz,氘代氯仿)δ=8.58(s,1H),8.01(s,1H),7.85(br d,J=7.5Hz,1H),7.61(d,J=15.4Hz,1H),6.77(d,J=15.6Hz,1H),4.33-4.24(m,2H),3.92(tdt,J=3.9,7.7,11.7Hz,1H),2.21-2.13(m,1H),1.93-1.76(m,2H),1.49(td,J=1.7,13.3Hz,1H),1.36(t,J=7.2Hz,3H),1.18(t,J=12.2Hz,1H),1.10-1.06(m,3H),1.02(s,3H),0.99(d,J=6.5Hz,3H),0.97-0.87(m,2H).
步骤5:化合物15E
Figure PCTCN2018096447-appb-000079
15℃下,化合物15D(1.29克,3.57毫摩尔)的甲醇(20毫升)溶液中加入钯碳(0.12克,10%纯度),把悬浮液抽真空置换氢气多次然后在氢气(15psi)氛围下15℃搅拌16小时。过滤反应液,滤液进行减压浓缩得到化合物15E。 1H NMR(400MHz,氘代氯仿)δ=7.80-7.72(m,1H),6.40(s,1H),4.11-3.99(m,2H),3.23(tdd,J=3.7,7.7,11.3Hz,1H),2.90-2.79(m,2H),2.72-2.59(m,2H),2.30-2.21(m,1H),1.96 (br d,J=12.3Hz,1H),1.75-1.68(m,1H),1.67-1.52(m,2H),1.31(br d,J=13.0Hz,1H),1.21-1.13(m,3H),0.87(d,J=6.7Hz,6H),0.82(d,J=6.5Hz,3H),0.72(br t,J=12.7Hz,1H),0.64-0.52(m,1H),0.59(q,J=12.0Hz,1H).
步骤6:化合物15F-A、15F-B
Figure PCTCN2018096447-appb-000080
化合物15E(1.19克,3.57毫摩尔)的四氢呋喃(12毫升)溶液中加入1-异硫氰基-4-(三氟甲氧基)苯(782.17毫克,3.57毫摩尔),30℃搅拌1小时后再加入EDCI(1.37克,7.14毫摩尔),反应液升温到70℃搅拌1小时,加入水(20毫升)萃灭反应,乙酸乙酯(15毫升×3)萃取,合并的有机层用水和盐水各15毫升洗涤,无水硫酸钠干燥,过滤,减压浓缩得到的残余物通过制备HPLC分离纯化得到标题化合物的消旋体,消旋体经过SFC(SFC拆分条件:柱:Chiralpak AD-3 100×4.6mm I.D.,3um;流动相:A:CO 2B:异丙醇(0.05%二乙胺);梯度:CO 2中的异丙醇从5%到40%(0.05%二乙胺);流速3mL/min.波长:220nm)拆分得到化合物15F-A,保留时间为2.329分钟;化合物15F-B,保留时间为2.415分钟。
步骤7:实施例15、16
Figure PCTCN2018096447-appb-000081
20℃下,化合物15F-A(50毫克,86.49微摩尔)的甲醇(2毫升)和水(0.5毫升)溶液中加入一水合氢氧化锂(9.07毫克,216.22微摩尔),反应液在20℃搅拌16小时,反应混合物浓缩后加入1MHCl调pH到5,析出的固体抽滤后经制备HPLC纯化得到实施例15。 1H NMR(400MHz,氘代甲醇)δ=8.76(s,1H),8.38(s,1H),7.76-7.70(m,2H),7.45(s,1H),7.34(d,J=8.6Hz,2H),4.83-4.73(m,1H),3.19(t,J=6.8Hz,2H),2.75(t,J=6.8Hz,2H),2.11-1.95(m,3H),1.77-1.66(m,2H),1.52(br d,J=12.7Hz,1H),1.21-1.13(m,4H),1.12-1.04(m,6H)。
20℃下,化合物15F-B(120毫克,230.41微摩尔)的甲醇(4毫升)和水(1.00毫升)溶液中加入一水合氢氧化锂(24.17毫克,576.03微摩尔),反应液在4℃搅拌1小时,反应混合物浓缩后加入1M  HCl调pH到5,析出的固体抽滤后经制备HPLC纯化得到实施例16。 1H NMR(400MHz,氘代甲醇)δ=8.66(s,1H),7.66-7.61(m,2H),7.37(s,1H),7.23(d,J=8.6Hz,2H),4.72-4.63(m,1H),3.10(t,J=7.0Hz,2H),2.68(t,J=6.9Hz,2H),1.99-1.86(m,3H),1.65-1.55(m,2H),1.40(br d,J=13.0Hz,1H),1.08-1.02(m,4H),1.00-0.93(m,6H).
实施例17、18
Figure PCTCN2018096447-appb-000082
步骤1:化合物17A的制备
Figure PCTCN2018096447-appb-000083
0℃下,5-溴3-胺基吡啶(49克,283.22毫摩尔)的DCM溶液(500毫升)中加入吡啶(67.21克,849.66毫摩尔)和氯甲酸乙酯(33.3克,306.85毫摩尔),反应液在20℃搅拌2小时。反应液浓缩后加入100mL正己烷打浆,过滤得到的固体分散到2L DCM和1L水中,有机相分开后再用500mL 0.5N HCl和1L食盐水洗涤,无水硫酸钠干燥,过滤,浓缩后用1L石油醚洗涤,得到化合物17A. 1H NMR(400MHz,氘代甲醇)δ=8.37(d,J=1.8Hz,2H),8.27(br s,1H),6.70(br s,1H),4.27(q,J=7.2Hz,2H),1.34(t,J=7.2Hz,3H).
步骤2:化合物17B的制备
Figure PCTCN2018096447-appb-000084
0℃下,化合物17A(45克,183.62毫摩尔)分批加入135mL浓硫酸和90mL浓硝酸的混合溶液中,反应液在0℃搅拌0.5小时后在25℃搅拌15.5小时。反应液倾入500mL冰水中,过滤得到的固体,再用200mL水洗涤,真空干燥,得到化合物17B,直接用于下一步。
步骤3:化合物17C的制备
Figure PCTCN2018096447-appb-000085
25℃下,化合物17B(48克,165.48毫摩尔)的600mL甲醇溶液中加入NaOMe(44.70克, 827.39毫摩尔),反应液在65℃搅拌16小时后加入1L水淬灭反应,浓缩去除甲醇后过滤得到化合物17C,直接用于下一步。
步骤4:化合物17D的制备
Figure PCTCN2018096447-appb-000086
亚硝酸异戊酯(12.47克,106.42毫摩尔)的200mL乙腈溶液中加入CuCl 2(11.13克,82.77毫摩尔),混合物升温到55℃,分批加入化合物17C(10克,59.12毫摩尔)。反应液在65℃下搅拌2小时。浓缩去除乙腈后加入200mL水,乙酸乙酯(200mL x 2)萃取,有机相用食盐水(200mL x 3)洗涤后,无水硫酸钠干燥,过滤浓缩后,柱层析纯化得到化合物17D。MS-ESI(m/z):189(M+H) +.
步骤5:化合物17E的制备
Figure PCTCN2018096447-appb-000087
化合物17D(5克,26.52毫摩尔)的50mL DMF溶液中加入化合物1B(5.62克,39.77毫摩尔)和碳酸钾(4.40克,31.82毫摩尔),反应液在90℃加热16小时后,倾入350mL水中,乙酸乙酯(200mL x 2)萃取,有机相用食盐水(300mL x 2)洗涤,无水硫酸钠干燥,过滤浓缩后,柱层析纯化得到化合物17E。MS-ESI(m/z):294(M+H) +.
步骤6:化合物17F的制备
Figure PCTCN2018096447-appb-000088
化合物17E(1.7克,5.79毫摩尔)的20mL DMF溶液中加入NBS(1.13克,6.37毫摩尔),反应液在25℃搅拌16小时后,倾入150mL水中,乙酸乙酯(150mL x 2)萃取,有机相用食盐水(200mL x 2)洗涤,无水硫酸钠干燥,过滤浓缩后,得到化合物17F,直接用于下一步。MS-ESI(m/z):372&374(M+H) +.
步骤7:化合物17G的制备
Figure PCTCN2018096447-appb-000089
氮气下,化合物17F(1.9克,5.10毫摩尔)的28mL二氧六环和8mL水的混合溶液中加入(E)-3-(4,4,5,5-四甲基-1,3,2-氧硼烷-2-基)丙烯酸乙酯(1.73克,7.66毫摩尔),Pd(dppf)Cl 2(373.46毫克,510.4微摩尔),碳酸钾(2.12克,15.31毫摩尔)。反应液在90℃搅拌5小时后,倾入20mL水中,乙酸乙酯(20mL x 2)萃取,有机相用食盐水(20mL x 2)洗涤,无水硫酸钠干燥,过滤浓缩后,柱层析纯化得到化合物17G。MS-ESI(m/z):392(M+H) +.
步骤8:化合物17H的制备
Figure PCTCN2018096447-appb-000090
化合物17G(770毫克,1.96毫摩尔)的10mL MeOH溶液中加入NiCl 2·6H 2O(1.86克,7.83毫摩尔)后滴入NaBH 4(1.48.07毫克,3.91毫摩尔)的3mL DMF溶液,保持温度不超过10℃。反应液在25℃搅拌2小时后,倾入30mL水和30mL乙酸乙酯中,硅藻土过滤,乙酸乙酯(10mL x 2)洗涤。混合物再用乙酸乙酯(10mL x 2)萃取,有机相用食盐水(40mL x 2)洗涤,无水硫酸钠干燥,过滤浓缩后,得到化合物17H。MS-ESI(m/z):364(M+H) +.
步骤9:化合物17I的制备
Figure PCTCN2018096447-appb-000091
化合物17H(710毫克,1.95毫摩尔)的15mL THF溶液中加入1-异硫氰基-4-(三氟甲氧基)苯(470.94毫克,2.15毫摩尔)。反应液在40℃搅拌16小时后,加入EDCI(449.33毫克,2.34毫摩尔),反应液在40-80℃搅拌2小时后倾入15mL水中,乙酸乙酯(15mL x 2)萃取,有机相用食盐水(20mL x 2)洗涤,无水硫酸钠干燥,过滤浓缩后,柱层析得到化合物17I。MS-ESI(m/z):549(M+H) +.
步骤10:化合物17J的制备
Figure PCTCN2018096447-appb-000092
化合物17I(350毫克,637.99微摩尔)的5mL THF和5mL水的混合溶液中加入LiOH·H 2O(133.86毫克,3.19毫摩尔)。反应液在40℃搅拌16小时后,加入1M HCl调pH=2,乙酸乙酯(15mL x 2)萃取,有机相用食盐水(20mL x 2)洗涤,无水硫酸钠干燥,过滤浓缩后,得到化合物17J,直接用于下一步。MS-ESI(m/z):521(M+H) +.
步骤11:实施例17、18
Figure PCTCN2018096447-appb-000093
化合物17J经过SFC手性拆分(SFC拆分条件:柱:ChiralPak IC-3 150×4.6mm I.D.,3um;流动相:A:CO 2B:异丙醇(0.05%二乙胺);梯度:CO 2中的异丙醇从5%到40%(5.5分钟),保持在40%3分钟,之后在在5%1.5分钟;流速2.5mL/min.柱温40℃)得到实施例17,保留时间为7.452分钟;实施例18,保留时间为8.191分钟。
实施例17  1H NMR(400MHz,氘代甲醇)δ=7.64(br d,J=8.8Hz,2H),7.45(s,1H),7.23(br d,J=8.5Hz,2H),4.63-4.70(m,1H),3.95(s,3H),3.11(br t,J=7.5Hz,2H),2.71(br t,J=7.4Hz,2H),2.10-1.87(m,3H),1.84-1.69(m,1H),1.61(br d,J=11.0Hz,1H),1.48(br d,J=12.5Hz,1H),1.18-1.11(m,1H),1.09(s,3H),1.06(s,3H),1.03(br d,J=6.0Hz,3H).MS-ESI(m/z):521(M+H) +.
实施例18  1H NMR(400MHz,氘代甲醇)δ=7.63(br d,J=9.0Hz,2H),7.41(s,1H),7.22(br d,J=8.5Hz,2H),4.62-4.67(m,1H),3.94(s,3H),3.11(br t,J=7.9Hz,2H),2.70(br t,J=7.8Hz,2H),2.10-1.92(m,3H),1.73(q,J=12.3Hz,1H),1.60(br d,J=10.5Hz,1H),1.49(br d,J=14.1Hz,1H),1.16-1.10(m,1H),1.09(s,3H),1.06(s,3H),1.03(br d,J=6.3Hz,3H).MS-ESI(m/z):521(M+H) +.
实施例19
Figure PCTCN2018096447-appb-000094
步骤1:化合物19A的制备
Figure PCTCN2018096447-appb-000095
0℃下,向6-溴-5-甲基-吡啶-3-胺(14.5克,77.52毫摩尔)的二氯甲烷(150mL)溶液中加入吡啶(18.40克,232.57毫摩尔,18.77毫升)和氯甲酸乙酯(11克,101.36毫摩尔,9.65毫升)。20℃下搅拌一小时后TLC显示有一些残留,并且有一个新点生成。反应液浓缩后使用1N HCl处理。水相使用200毫升二氯甲烷萃取两次。有机相使用饱和食盐水洗涤,无水硫酸钠干燥,浓缩,硅胶柱层析(石油醚/乙酸乙酯10/1-1/1)后得到化合物19A. 1H NMR(400MHz,氘代氯仿)δ=8.11(d,J=2.8Hz,1H),7.89(br s,1H),6.60(br s,1H),4.25(q,J=7.2Hz,2H),2.39(s,3H),1.33(t,J=7.2Hz,3H).
步骤2:化合物19B的制备
Figure PCTCN2018096447-appb-000096
0℃下,浓硝酸(21.89克,347.36毫摩尔,15.63毫升,10eq)的浓硫酸(50毫升)溶液中加入化合物19A(9克,34.74毫摩尔)。20℃下搅拌反应完全后。反应液倒入200毫升冰水中,100毫升乙酸乙酯萃取两次。有机相分别用200毫升饱和碳酸氢钠溶液和200毫升饱和食盐水洗涤,无水硫酸钠干燥,浓缩后得到化合物19B。 1H NMR(400MHz,氘代氯仿)δ=9.60(br s,1H),8.96(s,1H),4.30(q,J=7.0Hz,2H),2.51(s,3H),1.37(t,J=7.2Hz,3H).
步骤3:化合物19C的制备
Figure PCTCN2018096447-appb-000097
20℃下,化合物19B(8.2克,26.97毫摩尔)的二氧六环(80毫升)和水(20毫升)的混合溶剂中加入乙基(E)-3-(4,4,5,5-四甲基-1,3,2-二氧代硼烷-2-基)丙-2-烯酸酯(7.93克,35.05毫摩尔),Pd(dppf)Cl 2 (3.95克,5.39毫摩尔,0.2eq)以及碳酸铯(13.18克,40.45毫摩尔)。氮气氛中反应液100℃下搅拌反应完全后。反应液浓缩后硅胶柱层析得到化合物19C。 1H NMR(400MHz,氘代氯仿)δ=9.58(s,1H),8.87(s,1H),7.80(d,J=15.3Hz,1H),7.09(d,J=15.3Hz,1H),4.30(dq,J=2.0,7.1Hz,4H),2.56(s,3H),1.36(q,J=7.2Hz,6H)
步骤4:化合物19D的制备
Figure PCTCN2018096447-appb-000098
20℃下,化合物19C(4.6克,14.23毫摩尔)的甲醇(50毫升)溶液中加入甲醇钠(2.31克,42.68毫摩尔)。反应液20℃搅拌2小时后往其中滴加浓硫酸(3.49克,35.57毫摩尔,1.90毫升),80℃下再搅拌一小时。反应液浓缩后使用冰水(20毫升)和饱和碳酸氢钠(20毫升)处理后用乙酸乙酯20毫升萃取两次。有机相饱和食盐水50毫升洗涤得到化合物19D的粗产物,直接用于下一步反应。 1H NMR(400MHz,氘代氯仿)δ=7.76(d,J=15.3Hz,1H),7.06(s,1H),7.02(d,J=15.3Hz,1H),5.98(br s,2H),3.82(s,3H),2.46(s,3H).
步骤5:化合物19E的制备
Figure PCTCN2018096447-appb-000099
20℃下,化合物19D(3.2克,13.49毫摩尔)的四氢呋喃(30毫升)和水(30毫升)的混合溶剂中加入4-甲基苯磺酰基肼(5.02克,26.98毫摩尔,2eq)和醋酸钠(3.32克,40.47毫摩尔)。反应液100℃下搅拌1小时后,反应液浓缩后加入水(30毫升)和乙酸乙酯(30毫升),水相用乙酸乙酯(30毫升)萃取两次。有机相合并后使用60毫升饱和食盐水洗涤,无水硫酸钠干燥,过滤,旋干后硅胶柱层析得到化合物19E. 1H NMR(400MHz,氘代氯仿)δ=7.01(s,1H),5.77(br s,2H),3.73(s,3H),3.04-2.98(m,2H),2.90-2.84(m,2H),2.35(s,3H).
步骤6:化合物19F的制备
Figure PCTCN2018096447-appb-000100
20℃下,化合物19D(1.5克,6.27毫摩尔)的乙腈(20毫升)溶液中加入异戊亚硝酸酯(1.47克,12.54毫摩尔,1.69毫升)和氯化铜(1.69克,12.54毫摩尔)。反应液80℃反应完全后。反应液浓缩后硅 胶柱层析得到化合物19F。 1H NMR(400MHz,氘代氯仿)δ=7.69(s,1H),3.70(s,3H),3.12-3.04(m,2H),2.90-2.83(m,2H),2.43(s,3H).
步骤7:化合物19G的制备
Figure PCTCN2018096447-appb-000101
20℃下,化合物19F(0.8克,3.09毫摩尔)的DMSO(10mL)溶液中加入DIEA(599.59毫克,4.64毫摩尔,)和(1R,5R)-3,3,5-三甲基环己基胺(655.32毫克,4.64毫摩尔)。反应液100℃下搅拌2小时。反应液倒入水(20毫升)中,乙酸乙酯(10毫升)萃取两次。有机相使用饱和食盐水洗涤(20毫升),无水硫酸钠干燥过滤,浓缩。硅胶柱层析得到化合物19G. 1H NMR(400MHz,氘代氯仿)δ=7.63-7.51(m,1H),7.04(s,1H),3.72(s,2H),3.70-3.54(m,2H),3.03-2.95(m,2H),2.90-2.79(m,2H),2.39(s,3H),2.07(br d,J=10.3Hz,1H),1.85-1.68(m,3H),1.44(br d,J=13.3Hz,1H),1.11(br t,J=12.3Hz,2H),1.04(s,3H),0.99(s,3H),0.95(d,J=6.5Hz,3H),0.92-0.89(m,1H),0.87(br d,J=4.3Hz,1H),0.84(br d,J=3.5Hz,1H).
步骤8:化合物19H的制备
Figure PCTCN2018096447-appb-000102
20℃下,化合物19G(300.00毫克,825.42微摩尔)的甲醇(10毫升)溶液中加入Pd/C(87.84毫克,82.54微摩尔,10%纯度。H 2(15psi)氛搅拌1小时后。反应液过滤后母液浓缩后得到化合物19H,直接用于下一步。
步骤9:化合物19I的制备
Figure PCTCN2018096447-appb-000103
20℃下,化合物19H(270.00毫克,809.68微摩尔)的四氢呋喃(5毫升)溶液加入1-异硫氰基-4-三氟甲氧基苯(212.96毫克,971.61微摩尔)。反应液50℃下搅拌半小时后加入EDCI(310.43毫克,1.62毫摩尔),然后80℃下搅拌半小时。反应液浓缩后硅胶柱层析得到化合物19I。 1H NMR(400MHz,氘 代氯仿)δ=7.61(br s,1H),7.67-7.56(m,1H),7.34(br s,1H),7.19(br d,J=8.5Hz,2H),6.43(br s,1H),4.21(br s,1H),3.69(s,3H),3.13(br s,2H),2.95(br s,2H),2.44(br s,3H),2.00-1.90(m,1H),1.86(br d,J=13.1Hz,2H),1.63(br d,J=14.8Hz,2H),1.50(br s,2H),1.05(s,3H),1.03-0.95(m,7H).
步骤10:实施例19的制备
Figure PCTCN2018096447-appb-000104
20℃下,化合物19I(0.31克,597.80微摩尔,1eq)的甲醇(5毫升)和水(5毫升)的混合溶剂中加入LiOH·H 2O(50.17毫克,1.20毫摩尔,2eq)。反应结束后,反应液浓缩后制备分离得到实施例19。 1H NMR(400MHz,DMSO-d6)Shift=12.31-11.84(m,1H),9.15(br s,1H),7.87(br d,J=8.3Hz,2H),7.69(br s,1H),7.34(br d,J=8.3Hz,2H),4.65(br s,1H),2.92(br s,2H),2.70(br s,2H),2.36(br s,3H),1.98(br t,J=12.2Hz,1H),1.86(br s,2H),1.76-1.63(m,1H),1.39(br s,2H),1.20-1.08(m,2H),1.05(br s,3H),0.98(br s,6H).MS-ESI(m/z):505.2(M+H) +.
实验例1:IDH1体外酶活性测试
IDH1突变体催化NADPH依赖的α-KG还原为2-HG,消耗的NADPH可以用荧光读出。
试剂:
基础反应缓冲液:50mM KH 2PO 4,pH 7.5,10mM MgCl 2,10%glycerol(甘油),150mM NaCl,0.05%BSA(牛血清白蛋白),2mM b-ME(2-巯基乙醇),0.003%Brij35(氧乙烯月桂醚)
底物和辅助因子:
IDH1 wt(野生型):65μM异柠檬酸+50μM NADP
IDH1(R132H):1500μMα-KG+15μM NADPH
IDH1(R132C):500μMα-KG+15μM NADPH
反应过程:
反应板的孔中加入1.33X的酶(对照孔中不加)、缓冲液和NADP或NADPH(对照孔),待测化合物溶于100%DMSO后加入酶混合物中(Echo550,纳升级别),简单离心后孵化60分钟,加入4X底物和辅助因子的混合物开始反应,简单离心后摇振,室温下孵化45分钟。制备3X硫辛酰胺脱氢酶和忍天青的混合物,加入至反应液中测试生成或剩余的NADPH量,简单离心后室温下孵化10分钟,使用多功能的酶标仪Envision测量(Ex/Em=535/590nm)。
实验结果见表1:
表1IDH1体外酶(IDH1 R132H)活性IC 50测试结果
实施例 IDH1 R132H(nM)
实施例2 12.19
实施例3 93.01
实施例4 3.46
实施例5 1649
实施例6 166.9
实施例7 675.3
实施例8 53.01
实施例9 2137
实施例10 396.4
实施例11 639.8
实施例12 58.91
实施例15 3710
实施例17 <0.5
实施例18 13.2
实施例19 1.91
表2IDH1体外酶(IDH1 R132C、WT)活性IC 50测试结果
实施例 IDH1 R132C(nM) IDH1 WT(nM)
实施例2 10.62 3043
实施例4 6.68 未测试
实验结论:在酶学水平测试中,本发明化合物对IDH1突变体(R132H、R132C)展现出良好的抑制作用,对IDH1 WT的抑制作用弱,具有良好的选择性。
实验例2:IDH1细胞学活性测试
本研究将化合物与IDH1突变体细胞系共同孵育后,通过LC-MS检测细胞培养上清中的2HG含量来判断化合物对IDH1突变体的抑制活性。IDH1会催化生物体内异柠檬酸还原为α-酮戊二酸(α-KG),而IDH1突变体则会进一步催化α-KG还原为2-羟戊二酸(2HG)。
U87MG-IDH1-R132H细胞株是通过用IDH1-R132H转染U87MG细胞后筛选得到的可以稳定表达IDH1-R132H突变体的稳转细胞株,HT1080细胞株则含有内源性的IDH1-R132C突变体。
实验流程如下:
1)化合物用DMSO作3倍梯度稀释后加入到细胞培养板中,共10个浓度,每个浓度双复孔。阴性对照孔只含DMSO,阳性对照孔含终浓度为5μM的AGI-5198。所有孔的DMSO终浓度为0.5%。
2)将IDH1突变体细胞株以40000个细胞/孔的密度种入已含化合物的细胞培养板中。将细胞与化合物在37℃、5%CO 2培养箱中共孵育3天。
3)3天后,取10μl细胞培养上清,用双氧水稀释20倍至200μl并混匀,从中取出50μl稀释液加入200μl沉淀剂(含0.4μg/ml D-α-Hydroxyglutaric acid(D-2-羟基戊二酸)- 13C5的乙腈)。4000rpm离心10分钟后,取100μl上清用LC-MS检测2HG的含量。
4)同时平行用ATPlite 1Step试剂盒按说明书方法检测化合物对IDH1突变体细胞株细胞活力的影响。
5)用2HG含量数据及时各浓度化合物对IDH1突变体的抑制率百分比(抑制率%),计算公式为:
抑制率%=(CPD-ZPE)/(HPE-ZPE)×100%*
用细胞活力数据计算化合物对IDH1突变体细胞株的细胞毒性百分比(细胞毒性%),计算公式为:
细胞毒性%=(1-CPD/ZPE)×100%*
CPD:化合物孔的信号值
ZPE:阴性对照孔信号平均值,用0.5%DMSO代替化合物
HPE:阳性对照孔信号平均值,含有5μM AGI-5198
6)将抑制率%和细胞毒性%用GraphPad Prism软件拟合剂量效应曲线,并得出测试化合物的IC 50值。
实验结果见表3:
表3 IDH1体外细胞(U87MG)活性IC 50测试结果
实施例 U87MG IDH1-R132H(nM)
实施例1 137.82
实施例2 33.09
实施例3 189.2
实施例4 42.58
实施例6 243.5
实施例7 419
实施例8 104.3
实施例9 1776
实施例10 396.4
实施例13 3003
实施例14 622.5
实施例17 49.99
表4 IDH1体外细胞(HT1080)活性IC 50测试结果
实施例 HT1080 IDH1 R132C(nM)
实施例2 13.32
实施例4 19.39
实施例17 27.58
结论:在细胞水平测试中,本发明化合物对具有IDH1突变体(R132H、R132C)的细胞展现出良好的2-HG抑制作用。
实验例3:IDH1抑制剂体内药效动力学:对Balb/c小鼠肿瘤及血浆2-HG水平的削减作用
建立IDH1R132H外源表达的U87稳定细胞株,并构建该细胞株的脑原位肿瘤模型,用以检测IDH1抑制剂对致癌代谢产物2-HG水平的削减作用。并与BAY1436032(BAY032)作对比。
将荷有U87-IDH1R132H脑原位肿瘤的小鼠分为三组,分别给于100mg/kg BAY032或者200mg/kg实施例2处理,每日给药两次,共给药3次,另一组小鼠不做任何处理作为阴性对照。给药0.25小时、2小时和8小时后,分别取3只小鼠的脑瘤、癌旁脑组织和血浆检测2-HG的含量,以阴性对照组小鼠的相应组织作为对照。
实验结果如图1所示。给药0.25小时实施例2即可大大降低肿瘤中致癌代谢产物2-HG的含量,作用效果快于BAY032,这一效果能至少持续到8小时。
实施例2在血浆、正常脑旁组织和脑瘤中的总暴露量(AUC)分别为416856nM·hr,97429nmol/kg.h和196733nmol/kg.h,BAY032在血浆、正常脑旁组织和脑瘤中的总暴露量(AUC)分别为387498nM·hr,125962nmol/kg.h和230405nmol/kg.h,表明实施例2具有与BAY032相接近的血脑屏障透过性。
结论:本发明化合物具有良好的选择性和透脑性,对IDH1突变体的体内抑制作用显著,在小鼠脑瘤内的2-HG抑制作用优于BAY032。

Claims (11)

  1. 式(Ⅰ)所示化合物、其异构体或其药学上可接受的盐,
    Figure PCTCN2018096447-appb-100001
    其中,
    T 1选自N或C(R 1);
    T 2选自N或C(R 2);
    T 3选自N或C(R 3);
    且T 1、T 2、T 3中至少1个选自N;
    R 1选自:H、F、Cl、Br、I、OH、NH 2
    R 2选自:H、F、Cl、Br、I、OH、NH 2
    R 3选自H、F、Cl、Br、I、OH、NH 2,或选自任选被1、2或3个R取代的:C 1-3烷基、C 1-3杂烷基;
    R选自:F、Cl、Br、I、OH、NH 2
    所述C 1-3杂烷基之“杂”分别独立地选自:O、S、NH、-C(=O)NH-;
    上述杂原子或杂原子团的数目分别独立地选自1、2、3或4。
  2. 根据权利要求1所述化合物、其异构体或其药学上可接受的盐,其中,T 1选自N或CH。
  3. 根据权利要求1或2所述化合物、其异构体或其药学上可接受的盐,其中,T 2选自N或CH。
  4. 根据权利要求1或2所述化合物、其异构体或其药学上可接受的盐,其中,R 3选自H、F、Cl、Br、I、OH、NH 2,或选自任选被1、2或3个R取代的:C 1-3烷基、C 1-3烷氧基。
  5. 根据权利要求4所述化合物、其异构体或其药学上可接受的盐,其中,R 3选自:H、F、Cl、Br、I、OH、NH 2、Me、Et、CF 3
    Figure PCTCN2018096447-appb-100002
  6. 根据权利要求1或5所述化合物、其异构体或其药学上可接受的盐,其中,T 3选自:N、CH、C(F)、C(Me)、C(CF 3)、C(Et)、C(OCH 3)。
  7. 根据权利要求1~6任意一项所述化合物、其异构体或其药学上可接受的盐,其选自:
    Figure PCTCN2018096447-appb-100003
    其中,
    R 1、R 2、R 3如权利要求1、4、5所定义。
  8. 根据权利要求7所述化合物、其异构体或其药学上可接受的盐,其选自:
    Figure PCTCN2018096447-appb-100004
    其中,
    R 1、R 2、R 3如权利要求1、4、5所定义。
  9. 下式所示化合物、其异构体或其药学上可接受的盐,其选自:
    Figure PCTCN2018096447-appb-100005
    Figure PCTCN2018096447-appb-100006
  10. 根据权利要求9所述化合物、其异构体或其药学上可接受的盐,其选自:
    Figure PCTCN2018096447-appb-100007
    Figure PCTCN2018096447-appb-100008
  11. 根据权利要求1~10任意一项所述化合物、其异构体或其药学上可接受的盐或者上述组合物在制备IDH突变体抑制剂相关药物上的应用。
PCT/CN2018/096447 2017-07-21 2018-07-20 吡啶并咪唑类化合物及其应用 WO2019015672A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710600014.0 2017-07-21
CN201710600014 2017-07-21

Publications (1)

Publication Number Publication Date
WO2019015672A1 true WO2019015672A1 (zh) 2019-01-24

Family

ID=65015000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/096447 WO2019015672A1 (zh) 2017-07-21 2018-07-20 吡啶并咪唑类化合物及其应用

Country Status (1)

Country Link
WO (1) WO2019015672A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3121166A1 (en) * 2015-07-21 2017-01-25 Bayer Pharma Aktiengesellschaft Fused imidazoles as midh1 inhibitors
WO2017019429A1 (en) * 2015-07-27 2017-02-02 Eli Lilly And Company 7-phenylethylamino-4h-pyrimido[4,5-d][1,3]oxazin-2-one compounds and theit use as mutant idh1 inhibitors
WO2017016992A1 (en) * 2015-07-27 2017-02-02 Bayer Pharma Aktiengesellschaft Inhibitor of the mutated isocitrate dehydrogenase idh1 r132h
CN106573897A (zh) * 2014-02-11 2017-04-19 拜耳制药股份公司 作为mIDH1抑制剂的苯并咪唑‑2‑胺
CN106905256A (zh) * 2017-03-06 2017-06-30 中国药科大学 苯并五元杂环类ido1抑制剂、其制备方法及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106573897A (zh) * 2014-02-11 2017-04-19 拜耳制药股份公司 作为mIDH1抑制剂的苯并咪唑‑2‑胺
EP3121166A1 (en) * 2015-07-21 2017-01-25 Bayer Pharma Aktiengesellschaft Fused imidazoles as midh1 inhibitors
WO2017019429A1 (en) * 2015-07-27 2017-02-02 Eli Lilly And Company 7-phenylethylamino-4h-pyrimido[4,5-d][1,3]oxazin-2-one compounds and theit use as mutant idh1 inhibitors
WO2017016992A1 (en) * 2015-07-27 2017-02-02 Bayer Pharma Aktiengesellschaft Inhibitor of the mutated isocitrate dehydrogenase idh1 r132h
CN106905256A (zh) * 2017-03-06 2017-06-30 中国药科大学 苯并五元杂环类ido1抑制剂、其制备方法及应用

Similar Documents

Publication Publication Date Title
TWI398444B (zh) 吡咯並〔2,3-d〕嘧啶化合物類
EP2598483B1 (en) Ampk-activating heterocyclic compounds and methods for using the same
JP6483034B2 (ja) オータキシン阻害剤としての新規オクタヒドロ−ピロロ[3,4−c]−ピロール誘導体及びそのアナログ
TWI280244B (en) Tropane derivatives
KR100816945B1 (ko) 선택적인 사이클린 의존성 키나제 4 억제제로서의이세싸이오네이트 염
EP2038283A2 (en) Heterobicyclic metalloprotease inhibitors
IE921462A1 (en) Fibrinogen receptor antagonists
AU2007246869A1 (en) p38 MAP kinase inhibitors
CN101821279A (zh) 某些化学个体、组合物和方法
US20070032468A1 (en) Novel thioxanthine derivatives for use as inhibitors of mpo
WO2020063856A1 (zh) 作为flt3和axl抑制剂的3,9-二氮杂螺[5,5]十一烷类化合物
US20220098175A1 (en) Direct ampk activators
WO2019015672A1 (zh) 吡啶并咪唑类化合物及其应用
EP3816158B1 (en) Benzimidazole derivatives and use thereof as idh1 inhibitors
TW200840570A (en) N-hydroxyacrylamide compounds
JP7237169B2 (ja) Pd-l1免疫調整剤であるフルオロビニルベンズアミド化合物
EP4144741A1 (en) Pyrimidine-based tricyclic compound and use thereof
US20100311776A1 (en) Novel sEH Inhibitors and their Use
CN105985335B (zh) 异羟肟酸类化合物、制备方法及其用途
US20100311775A1 (en) Novel sEH Inhibitors and Their Use
WO2018228476A1 (zh) 苯并咪唑类化合物及其应用
JPS62142165A (ja) フエニルピリダジノン誘導体
CA3233865A1 (en) Pyrimidine tricyclic derivative and pharmaceutical application thereof
WO2023056910A1 (en) Processes for preparing a macrocyclic compound having ent1 inhibiting activity
CN111057069A (zh) 一种环状化合物、其应用及组合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18835543

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18835543

Country of ref document: EP

Kind code of ref document: A1