WO2019015473A1 - 一种数据的处理方法、移动性管理设备和终端设备 - Google Patents

一种数据的处理方法、移动性管理设备和终端设备 Download PDF

Info

Publication number
WO2019015473A1
WO2019015473A1 PCT/CN2018/093997 CN2018093997W WO2019015473A1 WO 2019015473 A1 WO2019015473 A1 WO 2019015473A1 CN 2018093997 W CN2018093997 W CN 2018093997W WO 2019015473 A1 WO2019015473 A1 WO 2019015473A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobility management
management device
terminal device
data
sent
Prior art date
Application number
PCT/CN2018/093997
Other languages
English (en)
French (fr)
Inventor
邓强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18835888.1A priority Critical patent/EP3648532B1/en
Publication of WO2019015473A1 publication Critical patent/WO2019015473A1/zh
Priority to US16/746,088 priority patent/US11272399B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/09Management thereof
    • H04W28/0925Management thereof using policies
    • H04W28/0942Management thereof using policies based on measured or predicted load of entities- or links
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0284Traffic management, e.g. flow control or congestion control detecting congestion or overload during communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/0827Triggering entity
    • H04W28/0831Core entity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/0867Load balancing or load distribution among entities in the downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/088Load balancing or load distribution among core entities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/02Protecting privacy or anonymity, e.g. protecting personally identifiable information [PII]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/10Integrity

Definitions

  • the embodiments of the present invention relate to communication technologies, and in particular, to a data processing method, a mobility management device, and a terminal device.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency-Division Multiple Access
  • SC-FDMA single carrier FDMA
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • the new wireless access network can provide a higher transmission rate than the LTE network, and the new wireless access network is also called a 5G network, a next generation network, and the like.
  • UMTS is a third generation mobile communication system adopting WCDMA air interface technology, adopting a structure similar to that of the second generation mobile communication system, and generally also The UMTS system is called a WCDMA communication system.
  • the UMTS system includes a Radio Access Network (RAN) and a Core Network (CN).
  • RAN Radio Access Network
  • CN Core Network
  • the wireless access network is used to handle all wireless related functions, while the CN handles all voice calls and data connections in the UMTS system and implements switching and routing functions with the external network.
  • the CN is logically divided into a Circuit Switched Domain (CS) and a Packet Switched Domain (PS).
  • CS Circuit Switched Domain
  • PS Packet Switched Domain
  • the core network includes the Mobile Switching Center (MSC)/Visitor Location Register (VLR), and the Serving GPRS (General Packet Radio Service) Support Node, SGSN. ), Home Location Register (HLR), Gateway Mobile-services Switching Centre (Gateway Mobile-services Switching Centre) and Gateway GPRS Support Node Network (GGSN), and other network elements.
  • the external network can be connected to the external network through the GMSC or the GGSN, for example, through the GMSC and the Public Land Mobile Network (PLMN), the Public Switched Telephone Network (PSTN), the integrated service number.
  • a connection such as an Integrated Services Digital Network (ISDN) can be connected to the Internet (INTERNET) through the GGSN.
  • ISDN Integrated Services Digital Network
  • the interface between the user equipment (UE) and the universal terrestrial radio access network (UTRAN) is a Uu interface, and the interface between the Node B and the radio network controller (RNC) passes through the Iub interface. Connected. Within the UTRAN, Radio Network Controllers (RNCs) are interconnected by Iur, and Iur can be connected through a direct physical connection between RNCs or through a transport network.
  • RNCs Radio Network Controllers
  • the interface between UTRAN and CN is collectively referred to as an Iu interface, including an Iu-CS interface and an Iu-PS interface.
  • the NodeB is interconnected with the RNC through the Iub interface, and is used to complete the processing of the physical layer protocol of the Uu interface, allocate and control the radio resources of the NodeB connected or associated with the NodeB, and complete the conversion of the data stream between the Iub interface and the Uu interface.
  • the RNC is used to control the radio resources of the UTRAN, and mainly performs functions such as connection establishment and disconnection, handover, macro diversity, and radio resource management control.
  • 3GPP proposes a new evolution network architecture to meet the application requirements of mobile networks in the next ten years or even longer, including system architecture evolution (SAE) and access network.
  • SAE system architecture evolution
  • LTE Long Term Evolution
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • the goal of network evolution is to provide a low latency, high data rate, high system capacity and coverage, low cost, fully IP based network.
  • the evolved packet core network may include a Mobility Management Entity (MME), a Serving Gateway (S-GW), and The packet data network gateway (PDN (Packet Data Network) Gateway, P-GW) has three logical functional entities.
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • PDN Packet Data Network Gateway
  • the MME is responsible for mobility management of the control plane, including user context and mobility state management, assigning user temporary identity, etc., corresponding to the control plane portion of the current GPRS/UMTS system internal service GPRS support section SGSN.
  • the S-GW is responsible for initiating paging for downlink data in an idle state, managing and storing IP bearer parameters and intra-network routing information, etc., corresponding to the current GPRS/UMTS system internal SGSN and Gateway GPRS Support Node Network (GGSN, Gateway GPRS Support Node).
  • GGSN Gateway GPRS Support Node Network
  • the P-GW acts as a user plane anchor between different access systems.
  • the Home Subscriber Server (HSS) is used to store user subscription information.
  • the SGSN mainly performs functions such as routing and forwarding, mobility management, session management, logical link management, authentication and encryption, bill generation and output of packet data packets.
  • the SGSN connects to the GERAN network BSC through the Gb interface, or connects to the UTRAN network RNC through the Iu-PS interface to perform mobile data management, such as user identification, encryption, and compression.
  • PCRF Policy and Charging Rule Function
  • the MME is connected to the eNB of the E-UTRAN through the S1-MME interface, and the MME is connected to the Serving Gateway through the S11 interface, and the Serving Gateway and the PDNGateway are connected through the S5 interface.
  • the Internet of Things is an information carrier such as the Internet and traditional telecommunication networks, enabling all ordinary objects that can perform independent functions to realize interconnection and interoperability.
  • the core and foundation of the Internet of Things is still the Internet. It is an extended and extended network based on the Internet. Its client extends and extends to any item and item for information exchange and communication, such as IoT devices such as water meters and electricity meters. Information can be sent to the communication network infrequently.
  • the Internet of Things will digitize the real world and have a wide range of applications.
  • the Internet of Things brings together scattered information and integrates digital information of things and things.
  • the application areas of the Internet of Things mainly include the following aspects: transportation and logistics, health care, intelligent environment (home, office, factory), personal and
  • the social field has a very broad market and application prospects.
  • the 3rd Generation Partership Project defines a method for transmitting data through NAS messages, as shown in FIG. 3, which is a prior art.
  • FIG. 3 A schematic flow chart of a method for processing data.
  • a radio resource control (RRC) connection is established between the UE in the ECM Idle state and the eNB, and the UE sends uplink data to the eNB through the NAS message in the RRC connection establishment process.
  • RRC radio resource control
  • Non-Access Stratum (NAS) signaling connection that is, a dedicated S1 connection is not established
  • the UE is in an EPS Connection Management (ECM) idle state (ECM Idle) state
  • ECM EPS Connection Management
  • the RRC connection establishment is performed between the UE in the Idle state and the eNB, and the UE sends an RRC connection setup request to the eNB, where the RRC connection setup request carries a NAS DATA Protocol Data Unit (NAS DATA PDU)
  • the NAS DATA PDU carries an uplink data and an Evolved Packet System (EBI), wherein the NAS DATA PDU is a NAS message and belongs to Control Plane data.
  • EBI Evolved Packet System
  • Step 302 The eNB sends an Initial UE message to the MME through the S1-MME interface.
  • the Initial UE message carries the NAS DATA PDU, wherein the NAS DATA PDU carries the uplink data and the EBI.
  • step 303 the MME performs integrity detection and decrypts the uplink data.
  • steps 304-307 are also performed, otherwise step 308 is directly executed after execution step 303 is performed.
  • Step 304 The MME sends a modify bearer request to the S-GW.
  • the MME sends a modify bearer request to the S-GW. If the tunnel identifier of the MME changes, step 307 is directly performed after step 304, if the location of the UE occurs. If the change is made, then steps 305-307 are performed after step 304.
  • step 305 the S-GW sends a modify bearer request to the P-GW.
  • Step 306 The P-GW sends a modify bearer response to the S-GW.
  • Step 307 The S-GW sends a modify bearer response to the MME.
  • Step 308 the MME sends uplink data (uplink data) to the P-GW through the S-GW.
  • steps 308-313 are also performed.
  • Step 308 The P-GW sends downlink data (downlink date) to the MME through the S-GW.
  • step 310 the MME performs encryption and integrity protection on the downlink data.
  • Step 311 The MME sends downlink data to the eNB through an S1-MME interface between the eNB and the MME.
  • step 311' is performed.
  • step 311' the MME sends a context release command to the eNB through the S1-MME interface.
  • step 312 the eNB sends the downlink data to the UE through the NAS Data PDU.
  • the eNB sends an RRC message to the UE, the RRC message carrying a NAS data PDU, the NAS data PDU carrying downlink data and EBI.
  • Step 313 activation detection of the MME.
  • Step 314 the release process of the S1-MME interface between the eNB and the MME.
  • the UE sends the uplink data to the MME in the NAS message, and the MME sends the data to the S-GW through the S11 interface between the MME and the S-GW, and the S-GW sends the data to the P through the S5/S8 interface.
  • the transmission of the data is called a control plane (Control Plane) data transmission method.
  • the User Plane transmission method is for the UE to transmit data to the eNB through the air interface bearer.
  • the eNB transmits data to the SGW through an S1-U interface between the eNB and the SGW.
  • the uplink data is transmitted through Control Plane data
  • the number of IoT devices may be large.
  • a large number of IoT devices transmitting data through the NAS may impose an additional signaling burden on the MME. Therefore, when the MME is overloaded, an appropriate control mechanism and data processing method are required. .
  • the MME when the MME determines that the overload, for example, the MME determines that the amount of data to be processed or the number of IoT devices is greater than or equal to a threshold, the MME first sends an uplink NAS packet carrying the uplink data through the Control Plane, and then transmits the Control Plane. After the user plans to transmit the uplink data after the transmission, the MME sends a back-off timer to the UE, and the back-off timer is used to indicate that the UE does not send the NAS message again during the timer period.
  • the MME needs to send the uplink NAS data packet that currently carries the uplink data to the S-GW through the Control Plane. If the S11-U bearer between the eNB and the MME has been established, the MME sends the current uplink. After the uplink NAS data of the data is released, the S11-UE is released; if the S11-U bearer between the eNB and the MME is not established, the MME needs to first establish an S11-U bearer, and then send the current uplink data through the established S11-U bearer. The upstream NAS packet is then released by the S11-U bearer.
  • the S11-U bearer needs to be established first, and then the unprocessed uplink is transmitted.
  • the NAS data packet is sent to the S-GW, and the S11-U bearer is released, which causes waste of signaling.
  • the unprocessed uplink NAS data packet needs to be transmitted to the S-GW when the MME is overloaded. S-GW will affect the quality of communication.
  • a data processing method, apparatus, and terminal device are provided, which can improve reliability while ensuring service transmission quality.
  • a first aspect of the present invention provides a data processing method, including: a mobility management device receiving uplink data sent by a terminal device by using a NAS message, and determining, according to processing capability of the mobility management device, whether the mobility management device is overloaded; When the mobility management device is overloaded, the mobility management device notifies the terminal device to transmit uplink data through the user plane.
  • the mobility management device notifies the terminal device that, when the user equipment retransmits the overload, the mobility management device receives, by the control plane, the uplink that is received by the terminal device but is not sent to the service device. data.
  • the mobility management device sends uplink data that is received by the control device from the terminal device but is not sent to the service device by using a signaling message to the service device when the mobility management device is overloaded by using a signaling message.
  • the signaling message includes a modify bearer request message.
  • the mobility management device uses a NAS message to The terminal device sends downlink data that has not been sent when the mobility management device is overloaded.
  • the sending, by the mobility management device, the downlink data that has not been sent by the mobility management device when the mobility management device is overloaded by using the NAS message specifically includes: the mobility management device establishes a request by using an initial context. And carrying the downlink data to the access network device, where the downlink data is further sent by the access network device to the terminal device by using a radio bearer setup complete message.
  • the mobility management device uses a NAS message to The terminal device sends a back-off timer and downlink data that has not been sent when the mobility management device is overloaded.
  • the sending, by the mobility management device, the back-off timer to the terminal device by using the NAS message, and the downlink data that has not been sent when the mobility management device is overloaded specifically includes: the mobility The management device carries the back-off timer and the downlink data by using the NAS message, and sends the downlink data to the access network device, where the back-off timer and the downlink data are further used by the access network device to pass the RRC downlink message. Send to the terminal device.
  • a second aspect of the present invention provides a data processing method, including: a terminal device sends uplink data to a mobility management device by using a NAS message; and the terminal device receives, according to the processing capability of the mobility management device, the mobility management device Determining, by the user, transmitting a notification that the uplink data is transmitted through the user plane; and the terminal device sends the uplink data to the mobility management device by using the user according to the notification.
  • the terminal device receives a retransmission indication sent by the mobility management device, where the retransmission indication is used to notify the terminal device that when the mobility management device is overloaded by the user plane, Uplink data received by the mobility management device from the terminal device but not sent to the service device by the control plane; the terminal device retransmitting the mobility management device by using the user plane according to the retransmission indication And the uplink data that is received by the mobility management device from the terminal device but not sent to the service device by the control plane.
  • the retransmission indication is used to notify the terminal device that when the mobility management device is overloaded by the user plane, Uplink data received by the mobility management device from the terminal device but not sent to the service device by the control plane; the terminal device retransmitting the mobility management device by using the user plane according to the retransmission indication And the uplink data that is received by the mobility management device from the terminal device but not sent to the service device by the control plane.
  • the terminal device receives the mobility management device The downlink data that has not been transmitted when the mobility management device is sent by the NAS message is overloaded.
  • the terminal device receives the mobility management device A back-off timer sent by the NAS message and downlink data that has not been sent when the mobility management device is overloaded.
  • a third aspect of the present invention provides a data processing apparatus, including: a receiver, configured to receive uplink data sent by a terminal device by using a NAS message, and a processor, configured to determine, according to a processing capability thereof, whether the processor is overloaded; And sending a notification to the terminal device to notify the terminal device to transmit uplink data through a user plane when the processor is overloaded.
  • the transmitter is further configured to notify the terminal device that when the user equipment retransmits the overload, the receiver receives the uplink from the terminal device but the transmitter does not send the service device data.
  • the receiver receives uplink data that is sent by the receiver but is not sent by the sender to the service device to the service. device.
  • the signaling message includes a modify bearer request.
  • the transmitter is further configured to use the NAS message to the terminal.
  • the device sends downlink data that has not been sent when the processor is overloaded.
  • the sender carries the downlink data by using an initial context setup request and sends the downlink data to the access network device, where the downlink data is further sent by the access network device to the terminal by using a radio bearer setup complete message.
  • the device sends.
  • the transmitter is further configured to use the NAS message to the terminal.
  • the device sends a back-off timer and downlink data that has not been sent when the processor is overloaded.
  • the transmitter carries the back-off timer and the downlink data by using a NAS message, and sends the downlink data to the access network device, where the back-off timer and the downlink data are further accessed by the access
  • the network device sends the RRC downlink message to the terminal device.
  • a fourth aspect of the present invention provides a terminal device, including: a transmitter, configured to send uplink data to a mobility management device by using a NAS message, and a receiver, configured to receive the mobility management device according to the mobility management device
  • the processing capability determines a notification that the uplink data is transmitted through the user plane and is sent when the overload occurs; the sender is further configured to send the uplink data to the mobility management device by using the user according to the notification.
  • the receiver is further configured to receive a retransmission indication sent by the mobility management device, where the retransmission indication is used to notify the terminal device to retransmit the mobility management device by using the user plane.
  • the receiver is further configured to receive the mobile The downlink data that has not been sent by the mobility management device when the mobility management device is overloaded by the NAS message.
  • the receiver is further configured to receive the mobile The back-off timer sent by the sex management device through the NAS message and the downlink data that has not been sent when the mobility management device is overloaded.
  • a fifth aspect of the invention provides a data processing apparatus comprising: a processor, a memory, and a transceiver, the memory for storing instructions, the processor for executing the memory stored instructions to control a transceiver Receiving and transmitting a signal, the data processing apparatus for performing the method of any one of claims 1 to 8 when the processor executes the instruction stored by the memory.
  • a sixth aspect of the invention provides a data processing apparatus comprising: a processor, a memory, and a transceiver, the memory for storing instructions, the processor for executing the memory stored instructions to control a transceiver Receiving and transmitting a signal, the data processing apparatus for performing the method of any one of claims 9 to 12 when the processor executes the instruction stored by the memory.
  • the data processing method, device and terminal device described above can improve reliability while ensuring service transmission quality.
  • FIG. 1 is a schematic structural diagram of a UMTS communication system in the prior art
  • FIG. 2 is a schematic diagram of a packet core network architecture evolved in the prior art
  • FIG. 3 is a schematic flow chart of a method for processing data in the prior art
  • FIG. 4 is a schematic structural diagram of a communication system according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an LTE communication system according to another embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a new radio access network according to another embodiment of the present invention.
  • FIG. 7 is a schematic flowchart diagram of a data processing method according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a communication system according to another embodiment of the present invention.
  • FIG. 9 is a schematic flowchart diagram of a data processing method according to another embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a communication system according to another embodiment of the present invention.
  • FIG. 11 is a schematic flowchart diagram of a data processing method of an LTE communication system according to another embodiment of the present invention.
  • FIG. 12 is a schematic flowchart diagram of a data processing method of a new radio access network according to another embodiment of the present invention.
  • FIG. 13 is a schematic flowchart diagram of a data processing method according to another embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a communication system according to another embodiment of the present invention.
  • FIG. 15 is a schematic flowchart diagram of a data processing method in an LTE communication system according to another embodiment of the present invention.
  • FIG. 16 is a schematic flowchart diagram of a data processing method of a new radio access network according to another embodiment of the present invention.
  • FIG. 17 is a schematic flowchart diagram of a data processing method according to another embodiment of the present invention.
  • FIG. 18 is a schematic structural diagram of a communication system according to another embodiment of the present invention.
  • FIG. 19 is a schematic flowchart diagram of a data processing method of an LTE communication system according to another embodiment of the present invention.
  • FIG. 20 is a schematic flowchart diagram of a data processing method of a new radio access network according to another embodiment of the present invention.
  • FIG. 21 is a schematic flowchart diagram of a data processing method according to another embodiment of the present invention.
  • FIG. 22 is a schematic structural diagram of a communication system according to another embodiment of the present invention.
  • FIG. 23 is a schematic flowchart diagram of a data processing method of an LTE communication system according to another embodiment of the present invention.
  • FIG. 24 is a schematic flowchart diagram of a data processing method of a new radio access network according to another embodiment of the present invention.
  • a “module” as referred to herein generally refers to a program or instruction stored in a memory that is capable of performing certain functions;
  • "unit” as referred to herein generally refers to a functional structure that is logically divided, the "unit” It can be implemented by pure hardware or a combination of hardware and software.
  • Multiple as referred to herein means two or more. "and/or”, describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character "/" generally indicates that the contextual object is an "or" relationship.
  • the techniques described herein can be used in various communication systems, such as current 2G, 3G, 4G communication systems and new radio access networks, such as GSM systems, CDMA systems, TDMA systems, WCDMA systems, FDMA systems, OFDMA systems, SC-FDMA Systems, GPRS systems, LTE systems, UMTS networks, new wireless access networks, and other such communication systems.
  • the new wireless access network can provide a higher transmission rate than the LTE network, and the new wireless access network is also called a 5G network, a next generation network, and the like.
  • the terminal device may be a wireless terminal or a wired terminal, and the wireless terminal may be a device that provides voice and/or data connectivity to the receiving end, a handheld device with wireless connection function, or a wireless modem connected to the wireless modem. Other processing equipment.
  • the wireless terminal can communicate with one or more core networks via a radio access network (eg, RAN, Radio Access Network), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and with a mobile terminal
  • RAN Radio Access Network
  • the computers for example, can be portable, pocket-sized, handheld, computer-integrated or in-vehicle mobile devices that exchange language and/or data with the wireless access network.
  • a wireless terminal may also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, an access point, or an access point.
  • Remote Terminal Access Terminal, User Terminal, User Equipment, or User Agent.
  • a base station may refer to a device in an access network that communicates with a wireless terminal over one or more sectors over an air interface.
  • the base station can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, or may be a base station (NodeB) in a WCDMA system, or may be an evolved base station (eNodeB or eNB or e- in an LTE system).
  • NodeB may also be an access network device of a new radio access network, which is not limited in this application.
  • the access network device of the new radio access network is also referred to as a base station (gNB), an NR Node (node), or an NR BS (Base Station), which is not limited herein, but is convenient for description, and is collectively referred to herein.
  • gNB base station
  • node NR Node
  • NR BS Base Station
  • the base station controller (ie, the control node) may be a base station controller (BSC) in the GSM system or the CDMA system, or may be a radio network controller (RNC) in the WCDMA. Not limited.
  • BSC base station controller
  • RNC radio network controller
  • FIG. 4 is a schematic structural diagram of a communication system according to an embodiment of the present invention.
  • the communication system may be a 2G, 3G, 4G communication system or a new wireless access network, such as a GSM system, a CDMA system, or a TDMA system.
  • the communication system may include a terminal device 401, an access network device 402, a mobility management device 403, and a service device 404.
  • the access network device 402 may be a base station of a 2G, 3G or 4G communication system, or may be a 5G communication.
  • the gNB of the system is different according to the system of the communication system (that is, the access technology is different), and the nouns of the devices and the interface nouns between the devices are different.
  • the access network device 402 is an eNB
  • the mobility management device 403 is an MME
  • the service device 404 is an S-GW
  • the access network device 402 is a gNB
  • the mobility management device 403 is an Access and Mobility Management Function (AMF) entity
  • the service device 404 includes a Session Management Function (SMF).
  • SMF Session Management Function
  • Entity and User Plane Fucntion (UPF) entities the network architecture and interfaces of the LTE communication system and the new radio access network are specifically as shown in FIG. 5 and FIG. 6.
  • FIG. 5 is a schematic structural diagram of an LTE communication system according to another embodiment of the present invention.
  • the LTE communication system may include a terminal device 501, a base station (eNB) 502, an MME 503, an S-GW 504, and a P-GW 505.
  • eNB base station
  • MME Mobility Management Entity
  • S-GW Serving GW
  • P-GW Packet Data Network
  • the terminal device 501 may be an IoT device such as a water meter or an electric meter, and communicates with the eNB 502 through an air interface.
  • the eNB 502 communicates with the MME 503 through an S1-MME interface, the eNB 502 communicates with the S-GW 504 through an S1-U interface, and the MME 503 communicates with the S-GW 504 through an S11 interface, the S- The GW 504 communicates with the P-GW 505 via an S5 or S8 (S5/S8) interface.
  • FIG. 6 is a schematic structural diagram of a new radio access network according to another embodiment of the present invention.
  • the new radio access network is also referred to as a 5G network, a next generation network, etc.
  • the new radio access network may include The terminal device 601, the gNB 602, the AMF entity 603, the SMF entity 604, the UPF entity 605, the data network (DN) 606, the authentication service function (AUSF) entity 607, and the unified data management (Unified Data Management) , UDM) entity 608, Policy Control Function (PCF) entity 609 and application function (AF) entity 610.
  • PCF Policy Control Function
  • AF application function
  • the terminal device 501 may be an IoT device such as a water meter or an electric meter, and the interface between the terminal device 601 and the gNB 602 is an air interface, and the interface between the terminal device 601 and the AMF 603 is an N1 interface, and the gNB 602
  • the interface with the AMF 603 is an N2 interface
  • the interface between the gNB 602 and the UPF 605 is an N3 interface
  • the interface between the AMF 603 and the SMF 604 is an N11 interface
  • the SMF 604 and the UPF 605 are The interface is an N4 interface, and other interfaces are specifically as shown in Figure 6, and are not described here.
  • FIG. 7 is a schematic flowchart diagram of a data processing method according to another embodiment of the present invention, where the data processing method can be applied to various communication systems, such as an LTE communication system or a new wireless access network, as described.
  • the data processing method in this embodiment is described by taking the network architecture of FIG. 4 as an example.
  • the main process is as follows.
  • Step 701 The mobility management device receives the uplink data sent by the terminal device by using the NAS message, and determines whether the mobility management device is overloaded according to the processing capability of the mobility management device.
  • the terminal device sends a NAS message to the mobility management device by using the access network device, where the NAS message carries uplink data, for example, the NAS message is a service request (Service Request, SR) of the control plane.
  • the mobility management device receives the uplink data sent by the terminal device by using the service request, the mobility management device receives all data (such as uplink and/or downlink data) and all signaling (such as uplink and And/or downlink signaling) and its processing capability to determine whether its processing capability reaches a threshold, for example, the mobility management device determines whether the computing resource or storage resource it has used is greater than or equal to a first threshold (eg, equal to a maximum value) or The mobility management device determines whether the computing resource or storage resource available to it is less than or equal to a second threshold.
  • a first threshold eg, equal to a maximum value
  • the mobility management device determines whether the computing resource or storage resource available to it is less than or equal to a second threshold.
  • the mobility management device when the user plane bearer between the mobility management device and the service device is not established, the mobility management device according to all data and control signaling it currently receives (eg, uplink data and/or Uplink control signaling) determines whether its processing capability reaches a threshold.
  • the mobility management device when the user plane bearer between the mobility management device and the service device is established, the mobility management device according to all data and control signaling that it currently receives (eg, uplink data, uplink control signaling) , downlink data and/or downlink control signaling) determine whether the processing capability reaches a threshold.
  • the mobility management device determines that its processing capability reaches the threshold, for example, the mobility management device determines that the computing resource or storage resource it has used is greater than or equal to the first threshold (eg, equal to a maximum value) or The mobility management device determines that the available computing resources or storage resources are less than or equal to the second threshold, and the mobility management device determines that it is overloaded. If the mobility management device determines that its processing capability has not reached the threshold, for example, the mobility management device determines that the computing resource or storage resource it has used is less than the first threshold (eg, does not reach a maximum value) or The mobility management device determines that the computing resource or storage resource available to it is greater than the second threshold, and the mobility management device determines that it is not overloaded.
  • the first threshold eg, equal to a maximum value
  • the mobility management device determines that the computing resource or storage resource it has used is less than the first threshold (eg, does not reach a maximum value) or The mobility management device determines that the computing resource or storage resource available to it is greater
  • Step 702 When the mobility management device is overloaded, the mobility management device notifies the terminal device to transmit uplink data through the user plane and notify the terminal device to retransmit the overload through the user plane. Uplink data received from the terminal device but not sent to the serving device by the control plane.
  • the mobility management device sends a NAS message to the access network device, for example, the NAS message is an Initial Context Setup Request or a Service Accept message, and the NAS message is Carrying a user plane transmission indication and a retransmission indication, the access network device transmitting the user plane transmission indication and a retransmission indication to the terminal device, where the user plane transmission indication is used to notify the terminal device to pass the user plane thereafter Transmitting uplink data, that is, the user plane transmission indication is used to notify the terminal device that after the mobility management device is overloaded by the user plane, the mobility management device passes the uplink data received by the control device from the terminal device. Upstream data.
  • the retransmission indication is used to notify the terminal device that when the mobility management device is overloaded by the user plane, the mobility management device receives from the terminal device through the control plane but does not send the information to the service device. Upstream data.
  • the NAS message further includes a back-off timer, where the back-off timer is used to indicate that the terminal device does not send the NAS during the back-off timer period. Message.
  • the user plane transmission indication, the retransmission indication, and the backoff timer may be carried by different NAS messages or by two different NAS messages, respectively.
  • the mobility management device when the mobility management device is overloaded, when the mobility management device discards an overload, the mobility management device receives from the terminal device through a control plane but does not The uplink data sent by the service device.
  • the mobility management device passes through the control plane when the mobility management device discards the overload regardless of whether the mobility management device and the service device have a user plane bearer established.
  • the mobility management device if the mobility management device and the service device have established a user plane bearer, and the mobility management device receives downlink data from the service device, when the mobility When the management device determines that it is overloaded, the mobility management device sends downlink data to the access network device by using NAS signaling, for example, the mobility management device sends an initial context setup request (Initial Context) to the access network device.
  • the initial context setup request carries the downlink data
  • the access network device sends a radio bearers setup complete message to the terminal device, where the radio bearer setup complete message carries the Downstream data.
  • the initial context setup request and the radio bearer setup complete message further carry the backoff timer.
  • the mobility management device if the mobility management device and the service device have established a user plane bearer, and the mobility management device receives downlink data from the service device, when the mobility When the management device determines that it is overloaded, the mobility management device sends the NAS to the access network through a NAS message (for example, a downlink S1-AP message, for example, the downlink S1-AP message is a downlink NAS transport message)
  • a NAS message for example, a downlink S1-AP message, for example, the downlink S1-AP message is a downlink NAS transport message
  • the device sends the back-off timer and the downlink data, and the access network device sends the back-off timer to the terminal device by using a NAS message, such as a Downlink RRC direct transfer message.
  • a NAS message such as a Downlink RRC direct transfer message.
  • Step 703 When the mobility management device is not overloaded, the mobility management device continues to receive uplink data sent by the terminal device through the NAS message, and sends the received uplink data to the service device.
  • the terminal device when the backoff timer expires or the terminal device transmits uplink data, the terminal device re-initiates a Packet Data Network (PDN) connection establishment, where After the PDN connection is established, the terminal device sends the uplink data to the mobility management device by using the NAS message.
  • PDN Packet Data Network
  • the PDN connection refers to a connection that sequentially passes through an access network device and an S-GW to a P-GW.
  • the mobility management device when the mobility management device is overloaded, whether the user plane bearer is established between the mobility management device and the service device, the current unprocessed uplink carrying the uplink data is discarded.
  • a NAS data packet and notifying the terminal device to transmit uplink data through the user plane and notifying the terminal device that the mobility management device receives the overload from the terminal device through the control plane when the terminal device retransmits the overload through the user plane. Determining the uplink data sent by the service device, therefore, the mobility management device does not need to transmit the unprocessed uplink data packet to the service device when overloading, so the communication quality, especially the mobility, can be improved.
  • the bearer between the management device and the service device is not established, the bearer re-release bearer does not need to be established first, which saves signaling and resources.
  • FIG. 8 is a schematic structural diagram of a communication system according to another embodiment of the present invention.
  • the communication system may be a 2G, 3G, 4G communication system or a new wireless access network, such as a GSM system, a CDMA system, or a TDMA.
  • a new wireless access network such as a GSM system, a CDMA system, or a TDMA.
  • System WCDMA system, FDMA system, OFDMA system, SC-FDMA system, GPRS system, LTE system, UMTS network, new wireless access network and other such communication systems, wherein the new wireless access network is also called 5G network, Next generation networks, etc.
  • the communication system may include a terminal device 81, an access network device 82, a data processing device 83, and a service device 84.
  • the access network device 82 may be a base station of a 2G, 3G or 4G communication system, or may be a 5G communication system.
  • the gNB is different according to the system of the communication system (that is, the access technology is different), and the nouns of the devices and the interface nouns between the devices are different.
  • the data processing device 83 may be a mobility management device.
  • the access network device 82 is an eNB
  • the data processing device 83 is an MME
  • the service device 84 is an S-GW.
  • the access network device 82 is a gNB
  • the data processing device 83 is an AMF entity
  • the service device 84 includes an SMF entity and a UPF entity
  • the LTE communication system and the new The network architecture and interface of the wireless access network are as shown in FIG. 5 and FIG. 6.
  • the terminal device 81 may be an IoT device such as a water meter or an electric meter.
  • the data processing apparatus 83 includes a receiver 831, a processor 832, a transmitter 833, and a memory 834, wherein the receiver 831, the processor 832, the transmitter 833, and the memory 834 communicate with each other through a bus.
  • the processor 832 can be an Erasable Programmable Logic Device (EPLD), a Field Programmable Gate Array (FPGA), or a Digital Signal Processor (Digital Signal). Processor, DSP) chip, Application Specific Integrated Circuit (ASIC), or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • EPLD Erasable Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • the memory 834 is used to store code or instruction information, and may also store information of a device type.
  • the memory 834 can include a Read-Only Memory (ROM) and a Random Access Memory (RAM) for providing instructions and data to the processor 832.
  • a portion of the memory 834 may also include a non-volatile random access memory.
  • the receiver 831 is configured to receive uplink data sent by the terminal device by using a NAS message.
  • the processor 832 is configured to determine whether the mobility management device is overloaded according to a processing capability of the mobility management device.
  • the receiver 831 receives a NAS message sent by the terminal device by using the access network device 82, where the NAS message carries uplink data, for example, the NAS message is a service request of a control plane,
  • the processor 832 receives all data (such as uplink and/or downlink data) and all signaling (such as uplink and/or downlink) according to the current reception.
  • the processor 832 determines whether the computing resource or storage resource it has used is greater than or equal to a first threshold (eg, equal to a maximum value) or the processor 832 determines whether the available computing resources or storage resources are less than or equal to a second threshold.
  • a first threshold eg, equal to a maximum value
  • the processor 832 is based on all data and control signaling currently received by the receiver 831 (eg, uplink). Data and/or uplink control signaling) determines if its processing power has reached a threshold.
  • the processor 832 is based on all data and control signaling currently received by the receiver 831 (eg, uplink data, The uplink control signaling, the downlink data, and/or the downlink control signaling determine whether the processing capability reaches a threshold.
  • the processor 832 determines that its processing capability has reached the threshold, for example, the processor 832 determines that the computing resource or storage resource it has used is greater than or equal to the first threshold (eg, equal to a maximum value) or the process. The processor 832 determines that the available computing resources or storage resources are less than or equal to the second threshold, and the processor 832 determines that it is overloaded. If the processor 832 determines that its processing capability has not reached the threshold, for example, the processor 832 determines that the computing resource or storage resource it has used is less than the first threshold (eg, does not reach a maximum value) or the process The processor 832 determines that the available computing resources or storage resources are greater than the second threshold, and the processor 832 determines that it is not overloaded.
  • the processor 832 determines that its processing capability has not reached the threshold, for example, the processor 832 determines that the computing resource or storage resource it has used is less than the first threshold (eg, does not reach a maximum value) or the process.
  • the transmitter 833 is configured to notify the terminal device to transmit uplink data through the user plane and notify the terminal device to retransmit the overload through the user plane when the processor 832 determines that the overload is over the control plane from the terminal. Uplink data received by the device but not sent to the serving device.
  • the sender 833 sends a NAS message to the access network device 82
  • the NAS message is an Initial Context Setup Request or a Service Accept message
  • the NAS message carries a user plane transmission indication, where the user plane transmission indication is used to notify the terminal device to transmit uplink data through the user plane, and the retransmission indication is used to notify the terminal device to retransmit the mobile plane through the user plane.
  • the sexual management device is overloaded, the mobility management device receives uplink data that is received from the terminal device but is not sent to the service device through a control plane.
  • the NAS message further includes a back-off timer, where the back-off timer is used to indicate that the terminal device does not send the NAS during the back-off timer period. Message.
  • the user plane transmission indication, the retransmission indication, and the backoff timer may be carried by different NAS messages or by two different NAS messages, respectively.
  • the processor 832 when the processor 832 determines that the overload is performed, the processor 832 is further configured to determine that the device is received from the terminal device through the control plane but is not sent to the service device when the overload is discarded.
  • the upstream data when the processor 832 determines that the overload is performed, the processor 832 is further configured to determine that the device is received from the terminal device through the control plane but is not sent to the service device when the overload is discarded. The upstream data.
  • the processor 832 determines that the overload is received from the terminal device through the control plane. But the uplink data is not sent to the service device.
  • the transmitter 833 transmits downlink data to the terminal device 81 through NAS signaling, for example, the transmitter 833 sends an initial context setup request to the access network device 82 (Initial Context Setup Request)
  • the initial context setup request carries the downlink data
  • the access network device 82 sends a radio bearers setup complete message to the terminal device 81, where the radio bearer setup complete message carries the Downstream data.
  • the initial context setup request and the radio bearer setup complete message further carry the backoff timer.
  • the transmitter 833 sends the NAS to the access network device 82 through a NAS message (for example, a downlink S1-AP message, for example, the downlink S1-AP message is a downlink NAS transmission message).
  • a NAS message for example, a downlink S1-AP message, for example, the downlink S1-AP message is a downlink NAS transmission message.
  • the back-off timer and the downlink data are further described, and the access network device 82 sends the back-off timer and the downlink data to the terminal device 81 through a NAS message (for example, a downlink RRC direct transmission message).
  • the receiver 831 is further configured to: when the processor 832 determines that the device is not overloaded, continue to receive uplink data sent by the terminal device by using a NAS message, where the transmitter 833 is further configured to send the received uplink data to the The service device 84 sends.
  • the terminal device 81 when the backoff timer expires or the terminal device 81 transmits the uplink data, the terminal device re-initiates the PDN connection establishment, and after the PDN connection is established, the receiving The device 831 is further configured to receive uplink data that is carried by the terminal device by using a NAS message.
  • FIG. 9 is a schematic flowchart diagram of a data processing method according to another embodiment of the present invention, where the data processing method can be applied to various communication systems, such as an LTE communication system or a new wireless access network, as described.
  • the data processing method in this embodiment is described by taking the network architecture of FIG. 4 as an example.
  • the main process is as follows.
  • Step 901 The terminal device sends a NAS message to the mobility management device, where the NAS message carries uplink data.
  • the terminal device sends a NAS message to the mobility management device by using the access network device, where the NAS message carries uplink data, for example, the NAS message is a service request (Service Request, SR) of the control plane.
  • SR Service Request
  • Step 902 The terminal device receives, when the mobility management device is overloaded, a notification that the uplink data is transmitted through the user plane, and when the mobility management device retransmits the overload through the user plane, the mobility management device receives from the terminal device through the control plane. However, the notification of the uplink data that is not sent to the service device.
  • the mobility management device receives uplink data sent by the terminal device through the NAS message, and according to the mobility management device, currently receives all data (such as uplink and/or downlink data) and all signaling (for example, uplink and/or downlink information).
  • the processing power of the processing capability determines whether the mobility management device is overloaded.
  • the mobility management device determines whether the processing capability thereof reaches a threshold, for example, the mobility management device determines that the usage has been used. Whether the resource or storage resource is greater than or equal to a first threshold (eg, equal to a maximum value) or whether the mobility management device determines whether the available computing resource or storage resource is less than or equal to a second threshold.
  • a first threshold eg, equal to a maximum value
  • the mobility management device when the user plane bearer between the mobility management device and the service device is not established, the mobility management device according to all data and control signaling it currently receives (eg, uplink data and/or Uplink control signaling) determines whether its processing capability reaches a threshold.
  • the mobility management device when the user plane bearer between the mobility management device and the service device is established, the mobility management device according to all data and control signaling that it currently receives (eg, uplink data, uplink control signaling) , downlink data and/or downlink control signaling) determine whether the processing capability reaches a threshold.
  • the mobility management device determines that its processing capability reaches the threshold, for example, the mobility management device determines that the computing resource or storage resource it has used is greater than or equal to the first threshold (eg, equal to a maximum value) or The mobility management device determines that the available computing resources or storage resources are less than or equal to the second threshold, and the mobility management device determines that it is overloaded. If the mobility management device determines that its processing capability has not reached the threshold, for example, the mobility management device determines that the computing resource or storage resource it has used is less than the first threshold (eg, does not reach a maximum value) or The mobility management device determines that the computing resource or storage resource available to it is greater than the second threshold, and the mobility management device determines that it is not overloaded.
  • the first threshold eg, equal to a maximum value
  • the mobility management device determines that the computing resource or storage resource it has used is less than the first threshold (eg, does not reach a maximum value) or The mobility management device determines that the computing resource or storage resource available to it is greater
  • the terminal device receives the NAS message sent when the mobility management device is overloaded, for example, the NAS message is an Initial Context Setup Request or a Service Accept message, and the NAS message is used.
  • Carrying a user plane transmission indication where the user plane transmission indication is used to notify the terminal device to transmit uplink data through the user plane, and the retransmission indication is used to notify the terminal device to retransmit the user plane.
  • the mobility management device receives uplink data that is received from the terminal device but is not sent to the service device through a control plane.
  • the NAS message further includes a back-off timer, where the back-off timer is used to indicate that the terminal device does not send the NAS during the back-off timer period. Message.
  • the user plane transmission indication, the retransmission indication, and the backoff timer may be carried by different NAS messages or by two different NAS messages, respectively.
  • the mobility management device when the mobility management device is overloaded, when the mobility management device discards an overload, the mobility management device receives from the terminal device through a control plane but does not The uplink data sent by the service device.
  • the mobility management device passes through the control plane when the mobility management device discards the overload regardless of whether the mobility management device and the service device have a user plane bearer established.
  • the mobility management device if the mobility management device and the service device have established a user plane bearer, and the mobility management device receives downlink data from the service device, when the mobility When the management device determines that the overload occurs, the mobility management device sends downlink data to the terminal device by using NAS signaling, for example, the mobility management device sends an initial context setup request to the access network device (Initial Context Setup Request)
  • the initial context setup request carries the downlink data
  • the terminal device sends a radio bearer setup request to the access network device, and then receives the radio bearer setup sent by the access network device.
  • the Radio Bearers Setup Complete message is completed, and the radio bearer setup complete message carries the downlink data.
  • the initial context setup request and the radio bearer setup complete message further carry the backoff timer.
  • the mobility management device if the mobility management device and the service device have established a user plane bearer, and the mobility management device receives downlink data from the service device, when When the mobility management device determines that it is overloaded, the mobility management device sends the NAS to the access network device by using a NAS message (for example, a downlink S1-AP message, for example, the downlink S1-AP message is a downlink NAS transmission message).
  • a NAS message for example, a downlink S1-AP message, for example, the downlink S1-AP message is a downlink NAS transmission message.
  • the back-off timer and the downlink data are further, and the access network device sends the back-off timer and the downlink data to the terminal device by using a NAS message (for example, a downlink RRC direct transmission message).
  • Step 903 The terminal device transmits the uplink data after the overload through the user plane until the uplink data transmission that the terminal device needs to transmit is completed or the terminal device and the mobility management device re-establish control plane bearer, and the terminal device And transmitting, by the user plane, the uplink data that is received by the mobility management device from the terminal device but not sent to the service device by using the control plane when the mobility management device is overloaded.
  • the terminal device After receiving the user plane transmission indication, the terminal device establishes a Data Radio Bearer (DRB) with the access network device, and the access network device and the The service device establishes a user plane bearer, and the terminal device sends uplink data to the access network device by using the data radio bearer, and then the access network device transmits the uplink data to the a service device until the uplink data transmission that the terminal device needs to transmit is completed or the terminal device establishes a PDN connection with the mobility management device again, and the terminal device retransmits the mobility management device by using a user plane to overload
  • the mobility management device controls, by the control plane, uplink data that is received from the terminal device but is not sent to the service device.
  • DRB Data Radio Bearer
  • the terminal device when the back-off timer expires or the terminal device transmits uplink data, the terminal device initiates a PDN connection establishment, and after the PDN connection is established, the terminal device passes The NAS message carries uplink data to the mobility management device.
  • the terminal device when the mobility management device is not overloaded, the terminal device continues to send uplink data to the mobility management device by using a NAS message, and the mobility management device will receive the received data.
  • the uplink data is sent to the service device.
  • FIG. 10 is a schematic structural diagram of a communication system according to another embodiment of the present invention.
  • the communication system may be a 2G, 3G, 4G communication system or a new wireless access network, such as a GSM system, a CDMA system, or a TDMA.
  • a new wireless access network such as a GSM system, a CDMA system, or a TDMA.
  • System WCDMA system, FDMA system, OFDMA system, SC-FDMA system, GPRS system, LTE system, UMTS network, new wireless access network and other such communication systems, wherein the new wireless access network is also called 5G network, Next generation networks, etc.
  • the communication system may include a terminal device 101, an access network device 102, a mobility management device 103, and a service device 104, and the access network device 102 may be a base station of a 2G, 3G or 4G communication system, or may be a 5G communication.
  • the gNB of the system is different according to the system of the communication system (that is, the access technology is different), and the nouns of the devices and the interface nouns between the devices are different.
  • the access network device 102 is an eNB
  • the mobility management device 103 is an MME
  • the service device 104 is an S-GW
  • the access network device 102 is a gNB
  • the mobility management device 103 is an AMF entity
  • the service device 104 includes an SMF entity and a UPF entity
  • the network architecture and interface of the LTE communication system and the new radio access network are as follows.
  • the terminal device 101 may be an IoT device such as a water meter or an electric meter, and the terminal device 101 includes a receiver 1011, a processor 1012, a transmitter 1013, and a memory 1014, wherein the receiver 1011, the processor 1012, and the transmitter 1013
  • the memory 1014 communicates with each other via a bus.
  • the processor 1012 may be an EPLD, an FPGA, a DSP chip, an ASIC, or other programmable logic device, a discrete gate or a transistor logic device, a discrete hardware component, or the like.
  • the memory 1014 is configured to store code or instruction information, and may also store information of a device type.
  • the memory 1014 can include ROM and RAM for providing instructions and data to the processor 1012, and a portion of the memory 1014 can also include non-volatile random access memory.
  • the transmitter 1013 is configured to send a NAS message to the mobility management device 103, where the NAS message carries uplink data.
  • the sender 1013 sends a NAS message to the mobility management device 103 through the access network device 102, where the NAS message carries uplink data, for example, the NAS message is a service of the control plane. request.
  • the receiver 1011 is configured to receive, when the mobility management device 103 is overloaded, a notification that the uplink data is transmitted through the user plane, and the mobility management device 103 receives the overload from the terminal device 101 when the user plane retransmits the overload. However, the notification of the uplink data that is not sent to the service device 104.
  • the mobility management device 103 receives the uplink data sent by the transmitter 1013 of the terminal device 101 through the NAS message, and determines whether the mobility management device 103 is overloaded according to the processing capability of the mobility management device 103.
  • the mobility management device 103 receives all data (such as uplink and/or downlink data) and all signaling according to the current reception. (eg, uplink and/or downlink signaling) and its processing capability to determine whether its processing capability has reached a threshold, for example, the mobility management device 103 determines whether the computing resource or storage resource it has used is greater than or equal to a first threshold (eg, Equal to the maximum value) or the mobility management device 103 determines whether the computing resources or storage resources available to it are less than or equal to a second threshold.
  • a first threshold eg, Equal to the maximum value
  • the mobility management device 103 determines that its processing capability reaches the threshold, for example, the mobility management device 103 determines that the computing resource or storage resource it has used is greater than or equal to the first threshold (eg, equal to the maximum value). Or the mobility management device 103 determines that the computing resource or storage resource available to it is less than or equal to the second threshold, and the mobility management device 103 determines that it is overloaded.
  • the mobility management device 103 determines that its processing capability has not reached the threshold, for example, the mobility management device 103 determines that the computing resource or storage resource it has used is less than the first threshold (eg, does not reach a maximum value) Or the mobility management device 103 determines that the available computing resources or storage resources are greater than the second threshold, and the mobility management device 103 determines that it is not overloaded.
  • the mobility management device 103 when the user plane bearer between the mobility management device 103 and the service device 104 is not established, the mobility management device 103 according to all data and control signaling (eg, uplink data) that it currently receives. And/or uplink control signaling) to determine whether its processing capability reaches a threshold.
  • the mobility management device 103 when the user plane bearer between the mobility management device 103 and the service device 104 has been established, the mobility management device 103 according to all data and control signaling it currently receives (eg, uplink data, uplink) Control signaling, downlink data, and/or downlink control signaling) determine whether its processing capability has reached a threshold.
  • the receiver 1011 is further configured to receive a NAS message sent when the mobility management device 103 is overloaded, for example, the NAS message is an Initial Context Setup Request or a Service Accept message.
  • the NAS message carries a user plane transmission indication and a retransmission indication, where the user plane transmission indication is used to notify the terminal device 101 to transmit uplink data through the user plane, and the retransmission indication is used to notify the terminal device 101.
  • Uplink data received by the mobility management device 103 from the terminal device but not transmitted to the service device 104 through the control plane is retransmitted by the user plane when the mobility management device 103 is overloaded.
  • the NAS message further carries a back-off timer, where the back-off timer is used to indicate that the terminal device 101 is in the back-off timer period.
  • the sender 1013 does not send a NAS message.
  • the user plane transmission indication, the retransmission indication, and the backoff timer may be carried by different NAS messages or by two different NAS messages, respectively.
  • the mobility management device 103 when the mobility management device 103 is overloaded, the mobility management device 103 discards the overload when the mobility management device 103 receives from the terminal device 101 but does not The uplink data sent by the service device 104.
  • the mobility management device 103 discards the overload when the mobility management device 103 The uplink data received by the terminal device 101 but not sent to the service device 104.
  • the transmitter 1013 is further configured to transmit the uplink data after the overload by the user plane until the uplink data transmission that the terminal device 101 needs to transmit is completed or the terminal device 101 and the mobility management device 103 re-establish the control plane bearer.
  • the transmitter 1013 is further configured to retransmit, by the user plane, the uplink that is received by the mobility management device 103 from the terminal device but not sent to the service device 104 by the control plane when the mobility management device 103 is overloaded. data.
  • the processor 1011 is configured to establish a Data Radio Bearer (DRB) with the access network device 102, and the service.
  • the device 104 is configured to establish a user plane bearer, and the sender 1013 is configured to send uplink data to the access network device 102 by using the data radio bearer, and then the access network device 102 carries the
  • the service device 104 sends the uplink data until the uplink data transmission that the terminal device 101 needs to transmit is completed or the terminal device 101 establishes a PDN connection with the mobility management device 103 again, and the transmitter 1013 is further configured to pass
  • the user plane retransmits the uplink data that the mobility management device 103 receives from the terminal device 101 but does not send to the service device 104 when the mobility management device 103 is overloaded.
  • the receiver 1011 receives downlink data that is sent by the mobility management device 103 through NAS signaling, for example, the mobility management device 103 sends the access network device 102 to the access network device 102. And sending an initial context setup request, where the initial context setup request carries the downlink data, and the sender 1013 sends the RRC connection setup request to the access network device 102, and receives the access network.
  • the radio bearer setup complete message is sent by the device, and the radio bearer setup complete message carries the downlink data.
  • the initial context setup request and the radio bearer setup complete message further carry the backoff timer.
  • the mobility management device 103 and the service device 104 have established a user plane bearer, and the mobility management device 103 receives downlink data from the service device 104
  • the mobility management device 103 determines that it is overloaded
  • the mobility management device 103 passes the NAS message (for example, a downlink S1-AP message, for example, the downlink S1-AP message is a downlink NAS transmission message) to the
  • the access network device 102 sends the back-off timer and downlink data, and the transmitter 1013 further receives the back-off timer sent by the access network device 104 by using a NAS message (for example, a downlink RRC direct transmission message). Downstream data.
  • a NAS message for example, a downlink RRC direct transmission message
  • the processor 1012 when the backoff timer expires or the transmitter 1013 transmits the uplink data that the terminal device 101 needs to transmit, the processor 1012 re-initiates the PDN connection establishment. After the PDN connection is established, the sender 1013 carries the uplink data to the mobility management device 103 through the NAS message.
  • the receiver 1011 when the mobility management device 103 is not overloaded, the receiver 1011 is further configured to continue to send uplink data to the mobility management device 103 by using a NAS message, the mobility.
  • the management device 103 transmits the received uplink data to the service device 104.
  • FIG. 11 is a schematic flowchart diagram of a data processing method of an LTE communication system according to another embodiment of the present invention.
  • the main process of the data processing method is as follows.
  • step 1101 a radio resource control (RRC) connection is established between the terminal device in the idle state and the eNB, and the terminal device sends the uplink data to the eNB through the NAS message in the RRC connection establishment process.
  • RRC radio resource control
  • the terminal device and the MME do not have a NAS signaling connection, that is, the dedicated S1 connection is not established, the terminal device is in an idle (ECM Idle) state, and the RRC connection establishment is performed between the terminal device in the ECM Idle state and the eNB.
  • the terminal device sends a control plane service request to the eNB in the RRC connection setup process, where the control plane service request carries a NAS DATA PDU, where the NAS DATA PDU carries uplink data and EBI, where
  • the control plane service request is a NAS message and belongs to the control plane message.
  • Step 1102 The eNB sends an Initial UE message to the MME through the S1-MME interface.
  • the Initial UE message carries the control plane service request
  • the control plane service request is a NAS message and carries the NAS DATA PDU
  • the NAS DATA PDU carries the uplink data and the EBI .
  • Step 1103 The MME determines whether it is overloaded and whether an S11 user plane (S11-U) bearer between the MME and the S-GW has been established.
  • S11-U S11 user plane
  • the MME After the MME receives the uplink data sent by the terminal device by using the service request, the MME receives all data (such as uplink and/or downlink data) and all signaling (such as uplink and/or downlink signaling) and The processing capability determines whether the processing capability reaches a threshold. For example, the MME determines whether the computing resource or the storage resource that it has used is greater than or equal to a first threshold (eg, equal to a maximum value) or the MME determines that the computing resource is available. Or whether the storage resource is less than or equal to the second threshold.
  • a first threshold eg, equal to a maximum value
  • the MME determines that its processing capability reaches the threshold, for example, the MME determines that the computing resource or storage resource it has used is greater than or equal to the first threshold (eg, equal to a maximum value) or the MME determines that it is available. The computing resource or storage resource is less than or equal to the second threshold, and the MME determines that it is overloaded. If the MME determines that its processing capability does not reach the threshold, for example, the MME determines that the computing resource or storage resource it has used is less than the first threshold (eg, does not reach a maximum value) or the MME determines that it is available. The computing resource or storage resource is greater than the second threshold, and the MME determines that it is not overloaded.
  • the first threshold eg, equal to a maximum value
  • the MME determines that it is available.
  • the computing resource or storage resource is less than the first threshold (eg, does not reach a maximum value) or the MME determines that it is available.
  • the computing resource or storage resource is greater
  • the MME further determines whether an S11-U bearer has been established between the MME and the S-GW.
  • the MME sends an Initial Context Setup Request to the eNB.
  • the Initial context setup request carries a Service Accept message, where the Service Accept message carries a user plane transmission indication and a retransmission indication, where the user plane transmission indication is used to notify the terminal device to transmit uplink data through the user plane, that is, the The user plane transmission indication is used to notify the terminal device to transmit uplink data after the uplink data received by the MME from the terminal device by using the control plane when the MME is overloaded by the user plane.
  • the retransmission indication is used to notify the terminal device that when the mobility management device is overloaded by the user plane, the mobility management device receives from the terminal device through the control plane but does not send the information to the service device. Upstream data.
  • the service accept message further includes a back-off timer, where the back-off timer is used to indicate that the terminal device does not send within the back-off timer period. NAS message.
  • the header field or the idle field of the Service Accept message carries the user plane transmission indication, the retransmission indication, and the backoff timer.
  • the user plane transmission indication, the retransmission indication, and the backoff timer may be carried by different NAS messages or by header fields or idle fields of two different NAS messages, respectively.
  • Step 1105 The terminal device performs Radio Bearers Setup with the eNB.
  • the eNB sends the user plane transmission indication, the retransmission indication, and the backoff timer to the terminal device, for example, the terminal device sends a radio bearer setup request to the eNB, where the eNB sends the radio bearer setup request to the eNB.
  • the header field or the idle field of the Radio Bearers Setup Complete message sent by the eNB to the terminal device carries the user plane transmission indication, the retransmission indication, and the backoff timer.
  • Step 1106 The terminal device determines, according to the user plane transmission indication, that the uplink data is transmitted through the user plane and the MME is retransmitted by the user plane according to the retransmission indication, and the MME passes the control plane from the terminal. Uplink data received by the device but not sent to the S-GW.
  • the terminal device also does not send the NAS message during the back-off timer period according to the back-off timer.
  • Step 1107 The terminal device transmits uplink data by using a user plane.
  • the terminal device receives the MME from the eNB by using the data radio bearer, and the MME receives the MME from the terminal device through a control plane. Uplink data that is not sent to the S-GW until the terminal device transmits the uplink data.
  • the MME when the MME is overloaded, the MME sends the uplink data that is received by the MME from the terminal device but is not sent to the S-GW by using a control plane. For example, in the cache of the MME, the uplink data that is received by the control device from the terminal device but is not sent to the S-GW when the MME is overloaded is cleared.
  • Step 1108 the eNB sends an Initial Context Setup Complete message to the MME.
  • Step 1109 The MME sends a Modify Bearer request to the S-GW.
  • S1 user plane (S1-U) bearer Sending, by the MME, a Modify Bearer request to the S-GW, where the Modify Bearer request carries an address of the eNB and a tunnel identifier, where the Modify Bearer request is used to request establishment of the eNB and the S-GW.
  • S1 user plane (S1-U) bearer Sending, by the MME, a Modify Bearer request to the S-GW, where the Modify Bearer request carries an address of the eNB and a tunnel identifier, where the Modify Bearer request is used to request establishment of the eNB and the S-GW.
  • S1 user plane (S1-U) bearer S1 user plane
  • Step 1110 The S-GW sends a modify Bearer response to the MME.
  • the S1-U bearer setup between the eNB and the S-GW is completed.
  • the terminal device sends the uplink data after the MME is overloaded by the user to the S-GW according to the received user plane transmission indication, that is, the MME passes the control plane from the terminal device when the MME is overloaded.
  • Uplink data after the received uplink data until the uplink data transmission that the terminal device needs to transmit is completed or the terminal device establishes a PDN connection with the MME again, for example, the terminal device uses the data radio bearer to
  • the eNB sends the uplink data after the MME is overloaded, and the eNB sends the received uplink data to the S-GW through the S1-U bearer between the eNB and the S-GW, where the S- The GW sends the uplink data to the P-GW.
  • the P-GW sequentially sends downlink data (Downlik data) to the terminal device by using the S-GW and the eNB.
  • the P-GW sends downlink data to the terminal device through the S-GW and the eNB in sequence on the user plane, for example, the P-GW sends downlink data to the S-GW, where the S-GW And transmitting the downlink data to the eNB by using an S1-U bearer, where the eNB sends the downlink data to the terminal device.
  • the present invention is another A schematic flowchart of a data processing method of a new radio access network according to an embodiment, in combination with the network architecture of FIG. 6, the main process of the data processing method is as follows.
  • Step 1201 A radio resource control (RRC) connection is established between the terminal device in the idle state and the gNB, and the terminal device sends the uplink data to the gNB through the NAS message in the RRC connection establishment process.
  • RRC radio resource control
  • the terminal device in the idle state sends a control plane service request to the gNB in the RRC connection establishment process, where the control plane service request carries the NAS DATA PDU, where the NAS DATA PDU carries the uplink data and the EBI, where the control plane A service request is a NAS message that belongs to a control plane message.
  • step 1202 the gNB sends an Initial UE message to the AMF through the N2 interface.
  • the initial UE message carries a control plane service request
  • the control plane service request is a NAS message carrying the NAS DATA PDU
  • the NAS DATA PDU carries the uplink data And the EBI.
  • step 1203 the AMF determines whether it is overloaded and whether the N11 user plane (N11-U) bearer between the AMF and the SMF has been established.
  • N11-U N11 user plane
  • the AMF After the AMF receives the uplink data sent by the terminal device through the service request, the AMF receives all data (such as uplink and/or downlink data) and all signaling (such as uplink and/or downlink signaling) and Its processing capability determines whether its processing capability reaches a threshold, for example, the AMF determines whether the computing resource or storage resource it has used is greater than or equal to a first threshold (eg, equal to a maximum value) or the AMF determines its available computing resources. Or whether the storage resource is less than or equal to the second threshold.
  • a threshold eg, equal to a maximum value
  • the AMF determines that its processing capability reaches the threshold, for example, the AMF determines that the computing resource or storage resource it has used is greater than or equal to the first threshold (eg, equal to a maximum value) or the AMF determines that it is available The computing resource or storage resource is less than or equal to the second threshold, and the AMF determines its overload. If the AMF determines that its processing capability has not reached the threshold, for example, the AMF determines that the computing resource or storage resource it has used is less than the first threshold (eg, does not reach a maximum value) or the AMF determines that it is available The computing resource or storage resource is greater than the second threshold, and the AMF determines that it is not overloaded.
  • the threshold for example, the AMF determines that the computing resource or storage resource it has used is greater than or equal to the first threshold (eg, equal to a maximum value) or the AMF determines that it is available The computing resource or storage resource is less than the second threshold, and the AMF determines that it is not overloaded.
  • the AMF also determines whether an N11-U bearer has been established between the AMF and the SMF.
  • Step 1204 If the AMF is overloaded and the N11-U has not been established, the AMF sends an Initial context setup request to the gNB.
  • the Initial context setup request carries a Service Accept message, where the Service Accept message carries a user plane transmission indication and a retransmission indication, where the user plane transmission indication is used to notify the terminal device to transmit uplink data through the user plane, the weight The transmitting indication is used to notify the terminal device to retransmit the uplink data that is received by the mobility management device from the terminal device but not sent to the serving device by using the control plane when the mobility management device is overloaded by the user plane.
  • the service accept message further includes a back-off timer, where the back-off timer is used to indicate that the terminal device does not send within the back-off timer period. NAS message.
  • the header field or the idle field of the Service Accept message carries the user plane transmission indication, the retransmission indication, and the backoff timer.
  • the user plane transmission indication, the retransmission indication, and the backoff timer may be carried by different NAS messages or by header fields or idle fields of two different NAS messages, respectively.
  • Step 1205 The terminal device establishes a data radio bearer with the gNB.
  • the gNB sends the user plane transmission indication, the retransmission indication, and the backoff timer to the terminal device, for example, the terminal device sends a radio bearer setup request to the gNB,
  • the header field or the idle field of the Radio Bearers Setup Complete message sent by the gNB to the terminal device carries the user plane transmission indication, the retransmission indication, and the backoff timer.
  • Step 1206 the terminal device determines, according to the user plane transmission indication, that the uplink data is transmitted through the user plane and the AMF is retransmitted by the user plane according to the retransmission indication, and the AMF passes the control plane from the terminal. Uplink data received by the device but not sent to the SMF.
  • the terminal device also does not send the NAS message during the back-off timer period according to the back-off timer.
  • Step 1207 The terminal device transmits uplink data by using a user plane.
  • the terminal device receives the AMF overload from the gNB by using the data radio bearer, and the AMF receives the AMF through the control plane from the terminal device. Uplink data that is not sent to the SMF until the terminal device transmits the uplink data.
  • the gNB sends the received uplink data to the UPF through an N3 user plane (N3-U) bearer between the gNB and the UPF, and the UPF sends the uplink data to the DN is sent.
  • N3-U N3 user plane
  • the AMF when the AMF is overloaded, discards the uplink data that is received by the AMF from the terminal device but not sent to the SMF through an control plane, for example, And deleting, by the AMF, the uplink data that is received by the control device from the terminal device but is not sent to the SMF when the AMF is overloaded.
  • Step 1208 the gNB sends an Initial Context Setup Complete message to the AMF.
  • Step 1209 the AMF sends a Modify Bearer request to the UPF.
  • the AMF sends a Modify Bearer request to the UPF, where the Modify Bearer request carries an address and a tunnel identifier of the gNB, and the Modify Bearer request is used to request to establish an N3 user plane between the gNB and the UPF ( N3-U) bearer.
  • Step 1210 The UPF sends a modify Bearer response to the AMF.
  • the N3-U bearer setup between the gNB and the UPF is completed.
  • the terminal device sends the uplink data after the AMF overload to the UPF according to the received user plane transmission indication, that is, the AMF receives the AMF from the terminal device through the control plane when the AMF is overloaded.
  • Uplink data after the uplink data until the uplink data transmission that the terminal device needs to transmit is completed or the terminal device establishes a PDN connection with the AMF again, for example, the terminal device sends the data to the The gNB sends, the gNB sends the received uplink data to the UPF through the N3-U bearer between the gNB and the UPF, and the UPF sends the uplink data to the DN.
  • step 1211 the DN sequentially sends downlink data (Downlik data) to the terminal device through the UPF and the gNB.
  • Downlik data downlink data
  • the DN sends downlink data to the terminal device through the UPF and the gNB in sequence on the user plane.
  • FIG. 13 is a schematic flowchart diagram of a data processing method according to another embodiment of the present invention, where the data processing method can be applied to various communication systems, such as an LTE communication system or a new wireless access network, for description.
  • the data processing method in this embodiment is described by taking the network architecture of FIG. 4 as an example.
  • the main process is as follows.
  • Step 1301 The mobility management device receives the uplink data sent by the terminal device by using the NAS message, and determines whether the mobility management device is overloaded according to the processing capability of the mobility management device.
  • the terminal device sends a NAS message to the mobility management device by using the access network device, where the NAS message carries uplink data, for example, the NAS message is a service request of a control plane, and the mobility management After the device receives the uplink data sent by the terminal device through the service request, the mobility management device receives all data (such as uplink and/or downlink data) and all signaling (such as uplink and/or downlink signaling) according to the current.
  • the access network device where the NAS message carries uplink data
  • the NAS message is a service request of a control plane
  • the mobility management After the device receives the uplink data sent by the terminal device through the service request, the mobility management device receives all data (such as uplink and/or downlink data) and all signaling (such as uplink and/or downlink signaling) according to the current.
  • the mobility management device determines whether its processing capability reaches a threshold, for example, the mobility management device determines whether the computing resource or storage resource it has used is greater than or equal to a first threshold (eg, equal to a maximum value) or the mobility management device Determine whether the available computing resources or storage resources are less than or equal to a second threshold.
  • a first threshold eg, equal to a maximum value
  • the mobility management device determines that its processing capability reaches the threshold, for example, the mobility management device determines that the computing resource or storage resource it has used is greater than or equal to the first threshold (eg, equal to a maximum value) or The mobility management device determines that the available computing resources or storage resources are less than or equal to the second threshold, and the mobility management device determines that it is overloaded. If the mobility management device determines that its processing capability has not reached the threshold, for example, the mobility management device determines that the computing resource or storage resource it has used is less than the first threshold (eg, does not reach a maximum value) or The mobility management device determines that the computing resource or storage resource available to it is greater than the second threshold, and the mobility management device determines that it is not overloaded.
  • the first threshold eg, equal to a maximum value
  • the mobility management device determines that the computing resource or storage resource it has used is less than the first threshold (eg, does not reach a maximum value) or The mobility management device determines that the computing resource or storage resource available to it is greater
  • Step 1302 When the mobility management device is overloaded, the mobility management device notifies the terminal device to transmit uplink data through the user plane thereafter.
  • the mobility management device sends a NAS message, such as a context setup request or a service acceptance message, to the terminal device, where the NAS message carries a user plane transmission indication, the user plane
  • the transmission indication is used to notify the terminal device to transmit uplink data through the user plane, that is, the user plane transmission indication is used to notify the terminal device that when the mobility management device is overloaded by the user plane, the mobility management device passes Controlling the uplink data after the uplink data received by the terminal device.
  • the NAS message further includes a back-off timer, where the back-off timer is used to indicate that the terminal device does not send the NAS during the back-off timer period. Message.
  • the user plane transmission indication and the backoff timer may be carried by two different NAS messages, respectively.
  • the terminal device sends uplink data to the access network device by using a data radio bearer, and the access network device passes the uplink data.
  • the user plane bearer between the access network device and the service device is sent to the service device.
  • Step 1303 the mobility management device sends, by using a signaling message, the uplink data that is received by the control device from the terminal device but is not sent to the service device when the mobility management device is overloaded to the service by using a signaling message. device.
  • the mobility management device when the user plane bearer between the mobility management device and the service device is not established, the mobility management device sends a signaling message to the service device, such as a GPRS Tunneling Protocol (GTP). a message or a Modify Bearer Request message, the signaling message carrying the uplink received by the mobility management device from the terminal device but not sent to the serving device by the mobility management device when the mobility management device is overloaded data.
  • GTP GPRS Tunneling Protocol
  • the Modify Bearer Request message is used to request to establish a user plane bearer between the access network device and the service device.
  • the Modify Bearer Request message carries the uplink data that the mobility management device receives from the terminal device but is not sent to the service device by using the control plane when the mobility management device is overloaded, for example, the Modify The Bearer Request message carries, by its header field or idle field, the uplink data received by the control plane from the terminal device but not sent to the serving device when the mobility management device is overloaded.
  • Step 1304 When the mobility management device is not overloaded, the mobility management device continues to receive uplink data sent by the terminal device through the NAS message, and sends the received uplink data to the service device.
  • the terminal device when the back-off timer expires or the terminal device transmits the uplink data, the terminal device re-initiates the PDN connection establishment, and after the PDN connection is established, the terminal device The uplink data is carried by the NAS message and sent to the mobility management device.
  • the mobility management device when the mobility management device is overloaded, the mobility management device receives the mobility management device from the terminal device through the control plane when the mobility management device is overloaded by the Modify Bearer Request message.
  • the uplink data that is not sent to the service device is sent to the service device. Therefore, when the bearer between the mobility management device and the service device is not established, the bearer re-release bearer does not need to be established first. Save signaling and resources.
  • FIG. 14 is a schematic structural diagram of a communication system according to another embodiment of the present invention.
  • the communication system may be a 2G, 3G, 4G communication system or a new wireless access network, such as a GSM system, a CDMA system, or a TDMA.
  • a new wireless access network such as a GSM system, a CDMA system, or a TDMA.
  • System WCDMA system, FDMA system, OFDMA system, SC-FDMA system, GPRS system, LTE system, UMTS network, new wireless access network and other such communication systems, wherein the new wireless access network is also called 5G network, Next generation networks, etc.
  • the communication system may include a terminal device 141, an access network device 142, a data processing device 143, and a service device 144.
  • the access network device 142 may be a base station of a 2G, 3G or 4G communication system, or may be a 5G communication system.
  • the gNB is different according to the system of the communication system (that is, the access technology is different), and the nouns of the devices and the interface nouns between the devices are different.
  • the data processing device 143 may be a mobility management device.
  • the access network device 142 is an eNB
  • the data processing device 143 is an MME
  • the service device 144 is an S- GW
  • the access network device 142 is a gNB
  • the data processing device 143 is an AMF entity
  • the service device 144 includes an SMF entity and a UPF entity
  • the network architecture and interface of the new radio access network are as shown in FIG. 5 and FIG. 6.
  • the terminal device 141 may be an IoT device such as a water meter or an electric meter.
  • the data processing device 143 includes a receiver 1431, a processor 1432, a transmitter 1433, and a memory 1434, wherein the receiver 1431, the processor 1432, the transmitter 1433, and the memory 1434 communicate with each other through a bus.
  • the processor 1432 may be an EPLD, an FPGA, a DSP chip, an ASIC, or other programmable logic device, a discrete gate or a transistor logic device, a discrete hardware component, or the like.
  • the memory 1434 is used to store code or instruction information, and may also store information of a device type.
  • the memory 1434 can include ROM and RAM for providing instructions and data to the processor 1432.
  • a portion of the memory 1434 can also include a non-volatile random access memory.
  • the receiver 1431 is configured to receive uplink data sent by the terminal device 141 by using a NAS message, and determine, according to processing capability of the processor 1432, whether the data processing device 143 is overloaded.
  • the receiver 1431 receives a NAS message sent by the terminal device 141 through the access network device 142, where the NAS message carries uplink data, for example, the NAS message is a service request of a control plane.
  • the processor 1432 is configured to receive all data (such as uplink and/or downlink data) and all the information according to the receiver 1431.
  • the processor 1432 determines whether the computing resource or storage resource it has used is greater than or equal to a first threshold (eg, equal to The maximum value) or the processor 1432 determines whether the available computing resources or storage resources are less than or equal to a second threshold.
  • a first threshold eg, equal to The maximum value
  • the processor 1432 determines that its processing capability reaches the threshold, for example, the processor 1432 determines that the computing resource or storage resource it has used is greater than or equal to the first threshold (eg, equal to a maximum value) or the processing. The processor 1432 determines that the available computing resources or storage resources are less than or equal to the second threshold, and the processor 1432 determines that it is overloaded. If the processor 1432 determines that its processing capability has not reached the threshold, for example, the processor 1432 determines that the computing resource or storage resource it has used is less than the first threshold (eg, does not reach a maximum value) or the processing The processor 1432 determines that the available computing resources or storage resources are greater than the second threshold, and the processor 1432 determines that it is not overloaded.
  • the threshold for example, the processor 1432 determines that the computing resource or storage resource it has used is greater than or equal to the first threshold (eg, equal to a maximum value) or the processing.
  • the transmitter 1433 is configured to notify the terminal device 141 to transmit uplink data through the user plane thereafter.
  • the transmitter 1433 sends a NAS message, such as a context setup request or a Service Accept message, to the terminal device 141, where the NAS message carries a user plane transmission indication, the user plane.
  • the transmission indication is used to notify the terminal device 141 to transmit uplink data through the user plane thereafter, that is, the user plane transmission indication is used to notify the terminal device 141 to determine the overload by the user plane to transmit the processor 1432.
  • the uplink data after the uplink data received from the terminal device 141 by the control plane.
  • the NAS message further carries a back-off timer, where the back-off timer is used to indicate that the terminal device 141 does not send within the back-off timer period. NAS message.
  • the terminal device 141 sends uplink data to the access network device 142 through a data radio bearer, where the access network device 142
  • the uplink data is sent to the service device 144 by the user plane bearer between the access network device 142 and the service device 144.
  • the user plane transmission indication and the backoff timer may be carried by two different NAS messages, respectively.
  • the transmitter 1433 is further configured to send a signaling message to the service device 144, where the signaling message carries the information received from the terminal device 141 through the control plane when the data processing device 143 is overloaded.
  • the uplink data sent by the service device 144 is sent to.
  • the transmitter 1433 is further configured to send a signaling message to the service device 144, such as a GPRS tunneling protocol (GPRS). a tunneling protocol (GTP) message or a Modify Bearer Request message, the signaling message carrying the mobility management device being overloaded by the mobility management device from the terminal device but not sent to the service device by the control plane
  • GPRS GPRS tunneling protocol
  • GTP tunneling protocol
  • Modify Bearer Request message is used to request to establish a user plane bearer between the access network device 142 and the service device 144.
  • the Modify Bearer Request message carries the uplink data that the data processing device 143 receives from the terminal device 141 but is not sent to the service device 144 through the control plane when the data processing device 143 is overloaded, for example,
  • the Modify Bearer Request message carries, by its header field or idle field, the uplink data received by the control device from the terminal device 141 but not sent to the serving device 144 when the data processing device 143 is overloaded.
  • the receiver 1431 is further configured to continue to receive uplink data sent by the terminal device 141 by using a NAS message, where the transmitter 1433 is further configured to send the received uplink data to the device.
  • the service device 144 sends.
  • the terminal device 141 when the backoff timer expires or the terminal device 141 transmits the uplink data, the terminal device 141 re-initiates the PDN connection establishment, after the PDN connection is established, the The terminal device 141 transmits the uplink data to the data processing device 143 through the NAS message.
  • the data processing method described above when the mobility management device is overloaded, is received by the mobility management device from the terminal device 141 through the control plane when the mobility management device is overloaded by a Modify Bearer Request message.
  • the uplink data that is not sent to the service device 144 is sent to the service device 144. Therefore, when the bearer between the mobility management device and the service device 144 is not established, the bearer does not need to be established first. The bearer is released again, saving signaling and resources.
  • FIG. 15 is a schematic flowchart diagram of a data processing method in an LTE communication system according to another embodiment of the present invention. Referring to the structural diagram of the LTE communication system of FIG. 5, the main process of the data processing method is as follows.
  • Step 1501 A Radio Resource Control (RRC) connection is established between the terminal device in the idle state and the eNB, and the terminal device sends the uplink data to the eNB through the NAS message in the RRC connection establishment process.
  • RRC Radio Resource Control
  • the terminal device in an idle state sends a control plane service request to the eNB in an RRC connection setup process, where the control plane service request carries a NAS DATA PDU, wherein the NAS DATA PDU carries uplink data and an EBI, where the control plane A service request is a NAS message that belongs to a control plane message.
  • Step 1502 The eNB sends an Initial UE message to the MME through the S1-MME interface.
  • the Initial UE message carries a control plane service request
  • the control plane service request is a NAS message carrying the NAS DATA PDU
  • the NAS DATA PDU carries the uplink data and the EBI.
  • Step 1503 The MME determines whether it is overloaded and whether an S11 user plane (S11-U) bearer between the MME and the S-GW has been established.
  • S11-U S11 user plane
  • the MME After the MME receives the uplink data sent by the terminal device by using the service request, the MME receives all data (such as uplink and/or downlink data) and all signaling (such as uplink and/or downlink signaling) and The processing capability determines whether the processing capability reaches a threshold. For example, the MME determines whether the computing resource or the storage resource that it has used is greater than or equal to a first threshold (eg, equal to a maximum value) or the MME determines that the computing resource is available. Or whether the storage resource is less than or equal to the second threshold.
  • a first threshold eg, equal to a maximum value
  • the MME determines that its processing capability reaches the threshold, for example, the MME determines that the computing resource or storage resource it has used is greater than or equal to the first threshold (eg, equal to a maximum value) or the MME determines that it is available. The computing resource or storage resource is less than or equal to the second threshold, and the MME determines that it is overloaded. If the MME determines that its processing capability does not reach the threshold, for example, the MME determines that the computing resource or storage resource it has used is less than the first threshold (eg, does not reach a maximum value) or the MME determines that it is available. The computing resource or storage resource is greater than the second threshold, and the MME determines that it is not overloaded.
  • the first threshold eg, equal to a maximum value
  • the MME determines that it is available.
  • the computing resource or storage resource is less than the first threshold (eg, does not reach a maximum value) or the MME determines that it is available.
  • the computing resource or storage resource is greater
  • Step 1504 If the MME is overloaded and the S11-U is not yet established, the MME sends an Initial context setup request to the eNB.
  • the Initial context setup request carries a Service Accept message, where the Service Accept message carries a user plane transmission indication, and the user plane transmission indication is used to notify the terminal device to transmit uplink data through the user plane, that is, the user plane transmission indication. And configured to notify the terminal device to transmit, by using a user plane, uplink data after the uplink data received by the MME from the terminal device by using a control plane when the MME is overloaded.
  • the service accept message further includes a back-off timer, where the back-off timer is used to indicate that the terminal device does not send within the back-off timer period. NAS message.
  • the header field or the idle field of the Service Accept message carries the user plane transmission indication and the backoff timer.
  • the user plane transmission indication and the backoff timer may be carried by different NAS messages, respectively.
  • Step 1505 The terminal device establishes a data radio bearer with the eNB.
  • the eNB sends the user plane transmission indication and a backoff timer to the terminal device, for example, the terminal device sends a radio bearer setup request to the eNB, where the eNB sends The header field or the idle field of the Radio Bearers Setup Complete message sent by the terminal device carries the user plane transmission indication and the backoff timer.
  • Step 1506 The terminal device transmits uplink data by using a user plane.
  • the terminal device determines, according to the user plane transmission indication, that the uplink data is transmitted through the user plane, for example, the terminal device sends the data to the Transmitting, by the eNB, the uplink data after the uplink data received by the MME from the terminal device by the control plane, until the uplink data transmission that the terminal device needs to transmit is completed, or the terminal device and the MME are Establish a PDN connection again.
  • Step 1507 The eNB sends an Initial Context Setup Complete message to the MME.
  • Step 1508 the MME sends a Modify Bearer request to the S-GW.
  • Step 1509 The S-GW sends a modify Bearer response to the MME.
  • the S1-U bearer setup between the eNB and the S-GW is completed.
  • the eNB sends the received uplink data to the S-GW through an S1 user plane (S1-U) bearer between the eNB and the S-GW, where the S-GW sends the uplink data. Send to the P-GW.
  • S1-U S1 user plane
  • the P-GW sends downlink data (Downlik data) to the terminal device through the S-GW and the eNB in sequence on the user plane.
  • Downlik data downlink data
  • the P-GW sends downlink data to the S-GW, and the S-GW sends the downlink data to the eNB by using an S1-U bearer, where the eNB is to send the downlink data to the The terminal device sends.
  • FIG. 16 is a schematic flowchart of a data processing method of a new radio access network according to another embodiment of the present invention. Referring to the new radio access network structure diagram of FIG. 6, the main process of the data processing method is as follows: Said.
  • step 1601 a radio resource control (RRC) connection is established between the terminal device in the idle state and the gNB, and the terminal device sends the uplink data to the gNB through the NAS message in the RRC connection establishment process.
  • RRC radio resource control
  • the terminal device in the idle state sends a control plane service request to the gNB in the RRC connection establishment process, where the control plane service request carries the NAS DATA PDU, where the NAS DATA PDU carries the uplink data and the EBI, where the control plane A service request is a NAS message that belongs to a control plane message.
  • step 1602 the gNB sends an Initial UE message to the AMF through the N2 interface.
  • the Initial UE message carries a control plane service request
  • the control plane service request is a NAS message carrying the NAS DATA PDU
  • the NAS DATA PDU carries the uplink data and the EBI.
  • Step 1603 the AMF determines whether it is overloaded and whether an N11 user plane (N11-U) bearer between the AMF and the SMF has been established.
  • N11-U N11 user plane
  • the AMF After the AMF receives the uplink data sent by the terminal device through the service request, the AMF receives all data (such as uplink and/or downlink data) and all signaling (such as uplink and/or downlink signaling) and Its processing capability determines whether its processing capability reaches a threshold, for example, the AMF determines whether the computing resource or storage resource it has used is greater than or equal to a first threshold (eg, equal to a maximum value) or the AMF determines its available computing resources. Or whether the storage resource is less than or equal to the second threshold.
  • a threshold eg, equal to a maximum value
  • the AMF determines that its processing capability reaches the threshold, for example, the AMF determines that the computing resource or storage resource it has used is greater than or equal to the first threshold (eg, equal to a maximum value) or the AMF determines that it is available The computing resource or storage resource is less than or equal to the second threshold, and the AMF determines its overload. If the AMF determines that its processing capability has not reached the threshold, for example, the AMF determines that the computing resource or storage resource it has used is less than the first threshold (eg, does not reach a maximum value) or the AMF determines that it is available The computing resource or storage resource is greater than the second threshold, and the AMF determines that it is not overloaded.
  • the threshold for example, the AMF determines that the computing resource or storage resource it has used is greater than or equal to the first threshold (eg, equal to a maximum value) or the AMF determines that it is available The computing resource or storage resource is less than the second threshold, and the AMF determines that it is not overloaded.
  • Step 1604 if the AMF is overloaded and the N11-U has not been established, the AMF sends an Initial context setup request to the gNB.
  • the Initial context setup request carries a Service Accept message, where the Service Accept message carries a user plane transmission indication, and the user plane transmission indication is used to notify the terminal device to transmit uplink data through the user plane, that is, the user plane transmission indication. And the uplink data after the uplink data received by the AMF from the terminal device by the control plane when the terminal device transmits the AMF overload through the user plane.
  • the service accept message further includes a back-off timer, where the back-off timer is used to indicate that the terminal device does not send within the back-off timer period. NAS message.
  • the header field or the idle field of the Service Accept message carries the user plane transmission indication and the backoff timer.
  • the user plane transmission indication and the backoff timer may be carried by different NAS messages, respectively.
  • Step 1605 The terminal device establishes a data radio bearer with the gNB.
  • the gNB sends the user plane transmission indication and the backoff timer to the terminal device, for example, the terminal device sends a radio bearer setup request to the gNB, where the gNB The header field or the idle field of the Radio Bearers Setup Complete message sent by the terminal device carries the user plane transmission indication and the backoff timer.
  • Step 1606 The terminal device transmits uplink data by using a user plane.
  • the terminal device determines, according to the user plane transmission indication, that the uplink data is transmitted through the user plane, and the terminal device sends the data to the The gNB sends the uplink data after the AMF receives the uplink data received by the control plane from the terminal device, and the uplink data transmission that the terminal device needs to transmit is completed or the terminal device and the AMF are re-established. PDN connection.
  • Step 1607 the gNB sends an Initial Context Setup Complete message to the AMF.
  • Step 1608 the AMF sends a Modify Bearer request to the UPF.
  • the AMF sends a Modify Bearer request to the UPF, where the Modify Bearer request is used to request to establish an N3 user plane (N3-U) bearer between the gNB and the UPF, where the Modify Bearer request carries the AMF
  • N3-U N3 user plane
  • the Modify Bearer request carries the AMF
  • Step 1609 the UPF sends a modify Bearer response to the AMF.
  • the AMF receives the modify Bearer response, and the N3-U bearer setup between the gNB and the UPF is completed.
  • the gNB sends the received uplink data to the UPF through an N3-U bearer between the gNB and the UPF, and the UPF sends the uplink data to the DN.
  • the DN sequentially sends downlink data (Downlik data) to the terminal device by using the UPF and the gNB.
  • the DN sends downlink data to the UPF
  • the UPF sends the downlink data to the gNB by using an N3-U bearer.
  • the sending of the back-off timer may be another manner.
  • FIG. 17 a flow chart of a data processing method according to another embodiment of the present invention is shown.
  • the data processing method of the present embodiment can be applied to various communication systems such as an LTE communication system and a new wireless access network.
  • Step 1701 The mobility management device receives downlink data sent by the service device.
  • the user plane bearer between the mobility management device and the service device has been established, and the mobility management device receives the downlink data sent by the service device by using the user plane bearer.
  • Step 1702 When the mobility management device determines that it is overloaded, the NAS device sends, by the access network device, a NAS message carrying the back-off timer and downlink data that has not been sent when the mobility management device is overloaded.
  • the mobility management device After the mobility management device receives the uplink data, the downlink data, and/or the uplink and downlink control signaling, the mobility management device determines whether the processing capability thereof reaches a threshold. For example, the mobility management device determines that the mobility management device has used the calculation. Whether the resource or storage resource is greater than or equal to a first threshold (eg, equal to a maximum value) or whether the mobility management device determines whether the available computing resource or storage resource is less than or equal to a second threshold.
  • a first threshold eg, equal to a maximum value
  • the mobility management device determines that its processing capability reaches the threshold, for example, the mobility management device determines that the computing resource or storage resource it has used is greater than or equal to the first threshold (eg, equal to a maximum value) or The mobility management device determines that the available computing resources or storage resources are less than or equal to the second threshold, and the mobility management device determines that it is overloaded. If the mobility management device determines that its processing capability has not reached the threshold, for example, the mobility management device determines that the computing resource or storage resource it has used is less than the first threshold (eg, does not reach a maximum value) or The mobility management device determines that the computing resource or storage resource available to it is greater than the second threshold, and the mobility management device determines that it is not overloaded.
  • the first threshold eg, equal to a maximum value
  • the mobility management device determines that the computing resource or storage resource it has used is less than the first threshold (eg, does not reach a maximum value) or The mobility management device determines that the computing resource or storage resource available to it is greater
  • the mobility management device sends a DL S1-AP message to the access network device, where the DL S1-AP message carries the back-off timer and a downlink that has not been sent when the mobility management device is overloaded Data, for example, the DL S1-AP message may be a downlink NAS transport message.
  • the access network device sends the back-off timer and the downlink data that has not been sent when the mobility management device is overloaded to the terminal device by using an RRC DL message, for example, the access
  • the network device sends a Downlink RRC direct transfer message to the terminal device, where the Downlink RRC direct transfer message carries the back-off timer and downlink data that has not been sent when the mobility management device is overloaded.
  • Step 1703 The mobility management device releases a signaling connection and an RRC signaling connection between the mobility management device and the access network device.
  • FIG. 18 is a schematic structural diagram of a communication system according to another embodiment of the present invention.
  • the communication system may be a 2G, 3G, 4G communication system or a new wireless access network, such as a GSM system, a CDMA system, or a TDMA.
  • a new wireless access network such as a GSM system, a CDMA system, or a TDMA.
  • System WCDMA system, FDMA system, OFDMA system, SC-FDMA system, GPRS system, LTE system, UMTS network, new wireless access network and other such communication systems, wherein the new wireless access network is also called 5G network, Next generation networks, etc.
  • the communication system may include a terminal device 181, an access network device 182, a data processing device 183, and a service device 184.
  • the access network device 182 may be a base station of a 2G, 3G or 4G communication system, or may be a 5G communication system.
  • the gNB is different according to the system of the communication system (that is, the access technology is different), and the nouns of the devices and the interface nouns between the devices are different.
  • the data processing device 183 may be a mobility management device, in the LTE communication system, the access network device 182 is an eNB, the data processing device 183 is an MME, and the service device 184 is an S-GW;
  • the access network device 182 is a gNB, the data processing device 183 is an AMF entity, the service device 184 includes an SMF entity and a UPF entity, the LTE communication system and the new
  • the network architecture and interface of the wireless access network are as shown in FIG. 5 and FIG. 6.
  • the terminal device 181 can be an IoT device such as a water meter or an electric meter.
  • the data processing apparatus 183 includes a receiver 1831, a processor 1832, a transmitter 1833, and a memory 1834, wherein the receiver 1831, the processor 1832, the transmitter 1833, and the memory 1834 communicate with each other via a bus.
  • the processor 1832 may be an EPLD, an FPGA, a DSP chip, an ASIC, or other programmable logic device, a discrete gate or a transistor logic device, a discrete hardware component, or the like.
  • the memory 1834 is used to store code or instruction information, and may also store information of a device type.
  • the memory 1834 can include ROM and RAM for providing instructions and data to the processor 1832, and a portion of the memory 1834 can also include non-volatile random access memory.
  • the receiver 1831 is configured to receive downlink data sent by the service device 184.
  • the user plane bearer between the data processing device 183 and the service device 184 has been established, and the receiver 1831 receives the downlink data sent by the service device 184 through the user plane bearer.
  • the processor 1832 is configured to determine whether it is overloaded.
  • the transmitter 1833 is configured to send, by the access network device 182, the NAS message carrying the back-off timer and the downlink data that has not been sent when the mobility management device is overloaded to the terminal device 181.
  • the processor 1832 determines whether the processing capability thereof reaches a threshold. For example, the processor 1832 determines the computing resource or storage that it has used. Whether the resource is greater than or equal to the first threshold (eg, equal to the maximum value) or the processor 1832 determines whether the computing resource or storage resource available to it is less than or equal to the second threshold.
  • a threshold For example, the processor 1832 determines the computing resource or storage that it has used. Whether the resource is greater than or equal to the first threshold (eg, equal to the maximum value) or the processor 1832 determines whether the computing resource or storage resource available to it is less than or equal to the second threshold.
  • the processor 1832 determines that its processing capability has reached the threshold, for example, the processor 1832 determines that the computing resource or storage resource it has used is greater than or equal to the first threshold (eg, equal to a maximum value) or the process. The processor 1832 determines that the available computing resources or storage resources are less than or equal to the second threshold, and the processor 1832 determines that it is overloaded. If the processor 1832 determines that its processing capability has not reached the threshold, for example, the processor 1832 determines that the computing resource or storage resource it has used is less than the first threshold (eg, does not reach a maximum value) or the process The processor 1832 determines that the available computing resources or storage resources are greater than the second threshold, and the processor 1832 determines that it is not overloaded.
  • the processor 1832 determines that its processing capability has not reached the threshold, for example, the processor 1832 determines that the computing resource or storage resource it has used is less than the first threshold (eg, does not reach a maximum value) or the process.
  • the transmitter 1833 sends a DL S1-AP message to the access network device 182, where the DL S1-AP message carries the back-off timer and the processor 1832 determines that the uplink has not been sent when the overload occurs.
  • Data for example, the DL S1-AP message may be a downlink NAS transport message.
  • the access network device 182 sends the downlink data that has not been sent when the back-off timer and the data processing device 183 are overloaded to the terminal device 181 by using an RRC DL message, for example, the The access network device 182 sends a Downlink RRC direct transfer message to the terminal device 181, where the Downlink RRC direct transfer message carries the back-off timer and the data processing device 183 has not been sent when it is overloaded. Downstream data.
  • the processor 1832 is further configured to release a signaling connection and an RRC signaling connection between the mobility management device and the access network device.
  • FIG. 19 is a schematic flowchart of a data processing method of an LTE communication system according to another embodiment of the present invention.
  • an S11-U bearer between an MME and an S-GW is established.
  • a radio resource control (RRC) connection is established between the terminal device in the idle state and the eNB, and the terminal device sends the uplink data to the eNB through the NAS message in the RRC connection establishment process.
  • RRC radio resource control
  • the terminal device in an idle state sends a control plane service request to the eNB in an RRC connection setup process, where the control plane service request carries a NAS DATA PDU, wherein the NAS DATA PDU carries uplink data and an EBI, where the control plane A service request is a NAS message that belongs to a control plane message.
  • Step 1902 The eNB sends an Initial UE message to the MME through the S1-MME interface.
  • the Initial UE message carries a control plane service request
  • the control plane service request is a NAS message and carries the NAS DATA PDU
  • the NAS DATA PDU carries the uplink data and the EBI.
  • Step 1903 The MME sends uplink data to the S-GW through the S11-U bearer, and the S-GW forwards the uplink data to the P-GW.
  • the MME and the S-GW have established an S11-U bearer, and the MME sends uplink data to the S-GW through the S11-U bearer.
  • Step 1904 The MME receives downlink data sent by the P-GW through the S-GW by using the S11-U bearer.
  • Step 1905 the MME determines whether it is overloaded.
  • the MME determines whether the processing capability of the MME reaches a threshold. For example, the MME determines whether the used computing resource or the storage resource is greater than or equal to the first. A threshold (eg, equal to a maximum value) or whether the MME determines whether the available computing resources or storage resources are less than or equal to a second threshold.
  • a threshold eg, equal to a maximum value
  • the MME determines that its processing capability reaches the threshold, for example, the MME determines that the computing resource or storage resource it has used is greater than or equal to the first threshold (eg, equal to a maximum value) or the MME determines that it is available. The computing resource or storage resource is less than or equal to the second threshold, and the MME determines that it is overloaded. If the MME determines that its processing capability does not reach the threshold, for example, the MME determines that the computing resource or storage resource it has used is less than the first threshold (eg, does not reach a maximum value) or the MME determines that it is available. The computing resource or storage resource is greater than the second threshold, and the MME determines that it is not overloaded.
  • the first threshold eg, equal to a maximum value
  • the MME determines that it is available.
  • the computing resource or storage resource is less than the first threshold (eg, does not reach a maximum value) or the MME determines that it is available.
  • the computing resource or storage resource is greater
  • the MME sends, by using an S1-MME interface, a NAS message that carries a back-off timer and downlink data that has not been sent when the MME is overloaded.
  • the MME sends a downlink S1-AP message (DL S1-AP message) to the eNB through the S1-MME interface.
  • the DL S1-AP message may be a downlink NAS transport message.
  • the DL S1-AP message carries the back-off timer and the downlink data that has not been sent when the MME is overloaded.
  • a header field or an idle field of the DL S1-AP message carries the back- The off timer and the downlink data that have not been sent when the MME is overloaded, the backoff timer is used to indicate that the terminal device does not send the NAS message during the backoff timer period.
  • Step 1907 the eNB forwards the back-off timer to the terminal device and the downlink data that has not been sent when the MME is overloaded.
  • the eNB sends an RRC DL message to the terminal device.
  • the RRC DL message may be a Downlink RRC direct transfer message, and the RRC DL message carries the back. -off timer and the downlink data that has not been sent when the MME is overloaded, for example, the header field or the idle field of the RRC DL message carries the back-off timer and the not-sent when the MME is overloaded Downstream data.
  • Step 1908 the MME releases the S1 signaling connection and the RRC signaling connection.
  • the MME after transmitting the uplink data and/or the downlink data, releases the S1 signaling connection and the RRC signaling connection, and the releasing the S1 signaling connection includes releasing the S1-MME control plane bearer and the S1-U. Hosted. .
  • FIG. 20 it is a schematic flowchart of a data processing method of a new radio access network according to another embodiment of the present invention.
  • an N11-U bearer between an AMF and an SMF has been established.
  • a radio resource control (RRC) connection is established between the terminal device in the idle state and the gNB, and the terminal device sends uplink data to the eNB through the NAS message in the RRC connection establishment process.
  • RRC radio resource control
  • the terminal device in the idle state sends a control plane service request to the gNB in the RRC connection establishment process, where the control plane service request carries the NAS DATA PDU, where the NAS DATA PDU carries the uplink data and the EBI, where the control plane A service request is a NAS message that belongs to a control plane message.
  • step 2002 the gNB sends an Initial UE message to the AMF through the N2 interface.
  • the Initial UE message carries a control plane service request
  • the control plane service request is a NAS message and carries the NAS DATA PDU
  • the NAS DATA PDU carries the uplink data and the EBI.
  • step 2003 the AMF sends uplink data to the SMF through the N11-U bearer, and the uplink data is forwarded by the SMF to the UPF.
  • the AMF and the SMF have established an N11-U bearer, and the AMF sends uplink data to the SMF through the N11-U bearer.
  • Step 2004 The AMF receives the downlink data sent by the UPF and the SMF in sequence through the N11-U bearer receiving DN.
  • step 2005 the AMF determines whether it is overloaded.
  • the AMF determines whether the processing capability reaches a threshold. For example, the AMF determines whether the used computing resource or the storage resource is greater than or equal to the first. A threshold (eg, equal to a maximum value) or whether the AMF determines whether the available computing resource or storage resource is less than or equal to a second threshold.
  • a threshold eg, equal to a maximum value
  • the AMF determines that its processing capability reaches the threshold, for example, the AMF determines that the computing resource or storage resource it has used is greater than or equal to the first threshold (eg, equal to a maximum value) or the AMF determines that it is available The computing resource or storage resource is less than or equal to the second threshold, and the AMF determines its overload. If the AMF determines that its processing capability has not reached the threshold, for example, the AMF determines that the computing resource or storage resource it has used is less than the first threshold (eg, does not reach a maximum value) or the AMF determines that it is available The computing resource or storage resource is greater than the second threshold, and the AMF determines that it is not overloaded.
  • the threshold for example, the AMF determines that the computing resource or storage resource it has used is greater than or equal to the first threshold (eg, equal to a maximum value) or the AMF determines that it is available The computing resource or storage resource is less than the second threshold, and the AMF determines that it is not overloaded.
  • the AMF sends a back-off timer to the gNB through the N2 interface, and downlink data that has not been sent when the AMF is overloaded.
  • the AMF sends a downlink S1-AP message (DL S1-AP message) to the gNB through the N2 interface.
  • the DL S1-AP message may be a downlink NAS transmission message, and the DL S1-AP
  • the message carries the back-off timer and the downlink data that has not been sent when the AMF is overloaded, for example, a header field or an idle field of the DL S1-AP message carries the back-off timer and the AMF overload
  • the downlink data that has not been sent at the time, the back-off timer is used to indicate that the terminal device does not send the NAS message during the back-off timer period.
  • step 2007, the gNB forwards the back-off timer to the terminal device and the downlink data that has not been sent when the AMF is overloaded.
  • the gNB sends an RRC DL message to the terminal device.
  • the RRC DL message may be a downlink RRC direct transmission message, where the RRC DL message carries the backoff timer and the AMF.
  • the downlink data that has not been sent when the overload occurs for example, the header field or the idle field of the RRC DL message carries the back-off timer and the downlink data that has not been sent when the AMF is overloaded.
  • step 2008 the AMF releases the N2 signaling connection and the RRC signaling connection.
  • the AMF releases the N2 signaling connection and the RRC signaling connection.
  • the releasing the N2 signaling connection includes releasing the N2 interface user plane bearer and the N3-U bearer.
  • the sending of the downlink data may be another manner, for example, as shown in FIG. 21, which is a schematic flowchart of a data processing method according to another embodiment of the present invention.
  • the data processing method of an embodiment can be applied to various communication systems, such as an LTE communication system and a new wireless access network.
  • Step 2101 The mobility management device receives downlink data sent by the service device.
  • the user plane bearer between the mobility management device and the service device has been established, and the mobility management device receives the downlink data sent by the service device by using the user plane bearer.
  • Step 2102 when the mobility management device determines that it is overloaded, initiates establishment of a user plane bearer between the access network device and the service device, and establishes a data radio bearer between the access network device and the terminal device.
  • Step 2103 The mobility management device sends downlink data that has not been sent when the mobility management device is overloaded to the terminal device by using a NAS message.
  • the mobility management device determines whether its processing capability reaches a threshold, for example, the mobility management device determines that it has used Whether the computing resource or the storage resource is greater than or equal to a first threshold (eg, equal to a maximum value) or the mobility management device determines whether the available computing resource or storage resource is less than or equal to a second threshold.
  • a first threshold eg, equal to a maximum value
  • the mobility management device determines that its processing capability reaches the threshold, for example, the mobility management device determines that the computing resource or storage resource it has used is greater than or equal to the first threshold (eg, equal to a maximum value) or The mobility management device determines that the available computing resources or storage resources are less than or equal to the second threshold, and the mobility management device determines that it is overloaded. If the mobility management device determines that its processing capability has not reached the threshold, for example, the mobility management device determines that the computing resource or storage resource it has used is less than the first threshold (eg, does not reach a maximum value) or The mobility management device determines that the computing resource or storage resource available to it is greater than the second threshold, and the mobility management device determines that it is not overloaded.
  • the first threshold eg, equal to a maximum value
  • the mobility management device determines that the computing resource or storage resource it has used is less than the first threshold (eg, does not reach a maximum value) or The mobility management device determines that the computing resource or storage resource available to it is greater
  • the mobility management device When the mobility management device determines that it is overloaded, it initiates establishment of a user plane bearer between the access network device and the service device, and establishes a data radio bearer between the access network device and the terminal device.
  • the mobility management device sends an initial context setup request to the access network device, where the initial context setup request is used to request establishment of the access network device and the service device.
  • the user plane bearer the initial context setup request is a NAS message
  • the initial context setup request carries the downlink data that has not been sent when the mobility management device is overloaded.
  • the mobility management device after receiving the service request sent by the access network device, sends the initial context establishment request to the access network device.
  • the access network device After receiving the radio bearer setup request (Radio Bearers Setup Requet) sent by the terminal device, the access network device sends a radio bearer setup complete message to the terminal device, where the radio bearer setup is completed.
  • the message is a NAS message and carries the downlink data that has not been sent when the mobility management device is overloaded.
  • the initial context setup request and the radio bearer setup complete message further carry a backoff timer.
  • the initial context setup request and the radio bearer setup complete message carry the downlink data and the backoff timer through a header field or an idle field.
  • the mobility management device further initiates a release of a user plane bearer process between the mobility management device and the service device, for example, the mobility management device provides the service The device sends a Release Access Bearers Request, and then the mobility management device receives a Release Access Bearers Response sent by the service device.
  • FIG. 22 is a schematic structural diagram of a communication system according to another embodiment of the present invention.
  • the communication system may be a 2G, 3G, 4G communication system or a new wireless access network, such as a GSM system, a CDMA system, or a TDMA.
  • a new wireless access network such as a GSM system, a CDMA system, or a TDMA.
  • System WCDMA system, FDMA system, OFDMA system, SC-FDMA system, GPRS system, LTE system, UMTS network, new wireless access network and other such communication systems, wherein the new wireless access network is also called 5G network, Next generation networks, etc.
  • the communication system may include a terminal device 221, an access network device 222, a data processing device 223, and a service device 224.
  • the access network device 222 may be a base station of a 2G, 3G or 4G communication system, or may be a 5G communication system.
  • the gNB is different according to the system of the communication system (that is, the access technology is different), and the nouns of the devices and the interface nouns between the devices are different.
  • the data processing device 223 may be a mobility management device.
  • the access network device 222 is an eNB
  • the data processing device 223 is an MME
  • the service device 224 is an S-GW.
  • the access network device 222 is a gNB
  • the data processing device 223 is an AMF entity
  • the service device 224 includes an SMF entity and a UPF entity
  • the LTE communication system and the new The network architecture and interface of the wireless access network are as shown in FIG. 5 and FIG. 6.
  • the terminal device 221 can be an IoT device such as a water meter or an electric meter.
  • the data processing device 223 includes a receiver 2231, a processor 2232, a transmitter 2233, and a memory 2234, wherein the receiver 2231, the processor 2232, the transmitter 2233, and the memory 2234 communicate with each other through a bus.
  • the processor 2232 may be an EPLD, an FPGA, a DSP chip, an ASIC, or other programmable logic device, a discrete gate or a transistor logic device, a discrete hardware component, or the like.
  • the memory 2234 is used to store code or instruction information, and may also store information of a device type.
  • the memory 2234 can include ROM and RAM for providing instructions and data to the processor 2232, and a portion of the memory 2234 can also include non-volatile random access memory.
  • the receiver 2231 is configured to receive downlink data sent by the service device 224.
  • the user plane bearer between the data processing device 223 and the service device 224 has been established, and the receiver 2231 is configured to receive the downlink data sent by the service device 224 by using the user plane bearer.
  • the processor 2232 is configured to determine that the user plane bearer between the access network device 222 and the service device 224 is established and establish the connection between the access network device 222 and the terminal device 221 when the overload is determined.
  • the data is wirelessly carried.
  • the transmitter 2233 is configured to send, by using a NAS message, the downlink data that is not sent by the transmitter 2233 to the terminal device 221 when the processor 2232 determines to be overloaded.
  • the processor 2232 determines whether its processing capability reaches a threshold. For example, the processor 2232 determines the computing resources it has used. Or whether the storage resource is greater than or equal to a first threshold (eg, equal to a maximum value) or the processor 2232 determines whether the computing resource or storage resource available to it is less than or equal to a second threshold.
  • a first threshold eg, equal to a maximum value
  • the processor 2232 determines that its processing capability has reached the threshold, for example, the processor 2232 determines that the computing resource or storage resource it has used is greater than or equal to the first threshold (eg, equal to a maximum value) or the process. The processor 2232 determines that the available computing resources or storage resources are less than or equal to the second threshold, and the processor 2232 determines that it is overloaded. If the processor 2232 determines that its processing power has not reached the threshold, for example, the processor 2232 determines that the computing resource or storage resource it has used is less than the first threshold (eg, does not reach a maximum) or the process The processor 2232 determines that the available computing resources or storage resources are greater than the second threshold, and the processor 2232 determines that it is not overloaded.
  • the processor 2232 determines that its processing power has not reached the threshold, for example, the processor 2232 determines that the computing resource or storage resource it has used is less than the first threshold (eg, does not reach a maximum) or the process.
  • the sender 2233 sends an initial context setup request to the access network device 222, where the initial context setup request is used to request to establish the access network device 222 and the service device 224.
  • the user plane bearer between the initial context establishment request is a NAS message, and the initial context setup request carries the downlink data when the processor 2232 determines an overload and the transmitter 2233 has not sent.
  • the sender 2233 sends the initial context establishment request to the access network device 222.
  • the transmitter 2233 sends a radio bearer setup complete (Radio Bearers Setup Complete) message to the terminal device 221, where
  • the radio bearer setup complete message is a NAS message and carries the downlink data when the processor 2232 determines an overload and the transmitter 2233 has not sent.
  • the initial context setup request and the radio bearer setup completion also carry a backoff timer.
  • the initial context setup request and the radio bearer setup completion carry the downlink data and the backoff timer through a header field or an idle field.
  • the processor 2232 is further configured to release a user plane bearer between the data processing device 223 and the service device 224, for example, the transmitter 2233 to the service device 224 sends a release access bearer request, and then the receiver 2231 receives the release access bearer response sent by the service device 224.
  • FIG. 23 is a schematic flowchart of a data processing method of an LTE communication system according to another embodiment of the present invention.
  • an S11-U bearer between an MME and an S-GW is established.
  • Step 2301 The MME receives the downlink data sent by the P-GW through the S-GW by using the S11-U bearer.
  • Step 2302 The MME sends a paging message to the eNB through the S1-MME interface, and sends the paging message to the terminal device by using the eNB.
  • Step 2303 The terminal device sends an RRC connection establishment request to the eNB in response to the paging message.
  • the RRC connection setup request carries a control plane service request
  • the control plane service request is a NAS message and carries the NAS DATA PDU
  • the NAS DATA PDU carries the uplink data and the EBI.
  • Step 2304 The eNB sends an Initial UE message to the MME.
  • the Initial UE message carries a control plane service request
  • the control plane service request is a NAS message and carries the NAS DATA PDU
  • the NAS DATA PDU carries the uplink data and the EBI.
  • Step 2305 the MME determines whether it is overloaded. If the MME is overloaded, the MME determines to establish an S1-U bearer between the eNB and the S-GW.
  • the MME determines whether the processing capability of the MME reaches a threshold. For example, the MME determines whether the used computing resource or the storage resource is greater than or equal to the first. A threshold (eg, equal to a maximum value) or whether the MME determines whether the available computing resources or storage resources are less than or equal to a second threshold.
  • a threshold eg, equal to a maximum value
  • the MME determines that its processing capability reaches the threshold, for example, the MME determines that the computing resource or storage resource it has used is greater than or equal to the first threshold (eg, equal to a maximum value) or the MME determines that it is available. The computing resource or storage resource is less than or equal to the second threshold, and the MME determines that it is overloaded. If the MME determines that its processing capability does not reach the threshold, for example, the MME determines that the computing resource or storage resource it has used is less than the first threshold (eg, does not reach a maximum value) or the MME determines that it is available. The computing resource or storage resource is greater than the second threshold, and the MME determines that it is not overloaded.
  • the first threshold eg, equal to a maximum value
  • the MME determines that it is available.
  • the computing resource or storage resource is less than the first threshold (eg, does not reach a maximum value) or the MME determines that it is available.
  • the computing resource or storage resource is greater
  • the MME determines to establish an S1-U bearer between the eNB and the S-GW.
  • Step 2306 the MME releases an S11-U bearer with the S-GW.
  • the MME sends a Release Access Bearers Request (Release Access Bearers Request) to the S-GW, and the release access bearer request is used to request to release the S11-U between the MME and the S-GW.
  • the bearer the MME receives the release access bearer response sent by the S-GW, and the S11-U bearer is released.
  • Step 2307 The MME sends an Initial context setup request to the eNB.
  • the initial context setup request is a NAS message, and is used to request to establish an S1-U bearer between the eNB and the S-GW, where the initial context setup request carries a downlink that has not been sent when the MME is overloaded. data.
  • the initial context setup request also carries a backoff timer.
  • Step 2308 the eNB performs radio bearer setup with the terminal device.
  • the eNB After receiving the radio bearer setup request (Radio Bearers Setup Requet) sent by the terminal device, the eNB sends a radio bearer setup complete (Radio Bearers Setup Complete) message to the terminal device, where the radio bearer setup complete message is
  • the NAS message carries the downlink data that has not been sent when the MME is overloaded.
  • the radio bearer setup complete message further carries the backoff timer.
  • Step 2309 the eNB sends an Initial context setup complete message to the MME.
  • Step 2310 The MME performs user plane bearer establishment with the S-GW.
  • the MME sends a Create Session Request to the S-GW, where the Create Session Request is used to request to establish an S11 user plane (S11-U) bearer between the MME and the S-GW.
  • S11-U S11 user plane
  • the MME decides to switch to the user plane to perform downlink data transmission, and the MME sends the downlink data to the UE through the NAS message when establishing the data radio bearer.
  • FIG. 24 is a schematic flowchart of a data processing method of a new radio access network according to another embodiment of the present invention.
  • an N11-U bearer between an AMF and an SMF has been established.
  • Step 2401 The AMF receives, by using the N11-U bearer, downlink data that is sent by the UPF through the SMF.
  • the downlink data received by the UPF is delivered by the DN.
  • Step 2402 the AMF sends a paging message to the gNB through the N2-AMF interface, and sends the paging message to the terminal device by using the gNB.
  • Step 2403 The terminal device sends an RRC connection establishment request to the gNB in response to the paging message.
  • the RRC connection setup request carries a control plane service request
  • the control plane service request is a NAS message and carries the NAS DATA PDU
  • the NAS DATA PDU carries the uplink data and the EBI.
  • Step 2404 the gNB sends an Initial UE message to the AMF.
  • the Initial UE message carries a control plane service request
  • the control plane service request is a NAS message and carries the NAS DATA PDU
  • the NAS DATA PDU carries the uplink data and the EBI.
  • Step 2405 the AMF determines whether it is overloaded. If the AMF is overloaded, the AMF establishes an N3-U bearer between the gNB and the UPF.
  • the AMF determines whether the processing capability reaches a threshold. For example, the AMF determines whether the used computing resource or the storage resource is greater than or equal to the first. A threshold (eg, equal to a maximum value) or whether the AMF determines whether the available computing resource or storage resource is less than or equal to a second threshold.
  • a threshold eg, equal to a maximum value
  • the AMF determines that its processing capability reaches the threshold, for example, the AMF determines that the computing resource or storage resource it has used is greater than or equal to the first threshold (eg, equal to a maximum value) or the AMF determines that it is available The computing resource or storage resource is less than or equal to the second threshold, and the AMF determines its overload. If the AMF determines that its processing capability has not reached the threshold, for example, the AMF determines that the computing resource or storage resource it has used is less than the first threshold (eg, does not reach a maximum value) or the AMF determines that it is available The computing resource or storage resource is greater than the second threshold, and the AMF determines that it is not overloaded.
  • the threshold for example, the AMF determines that the computing resource or storage resource it has used is greater than or equal to the first threshold (eg, equal to a maximum value) or the AMF determines that it is available The computing resource or storage resource is less than the second threshold, and the AMF determines that it is not overloaded.
  • the AMF establishes an N3-U bearer between the gNB and the UPF.
  • Step 2406 the AMF releases an N11-U bearer with the SMF.
  • the AMF sends a Release Access Bearers Request (Release Access Bearers Request) to the SMF, where the release access bearer request is used to request to release an N11-U bearer between the AMF and the SMF,
  • the AMF receives the release access bearer response sent by the SMF, and the N11-U bearer is released.
  • Step 2407 the AMF sends an initial context setup request to the gNB.
  • the initial context setup request is a NAS message
  • the initial context setup request carries downlink data that has not been sent when the AMF is overloaded.
  • the initial context setup request also carries a backoff timer.
  • Step 2408 The gNB performs radio bearer setup with the terminal device.
  • the gNB After receiving the radio bearer setup request (Radio Bearers Setup Requet) sent by the terminal device, the gNB sends a radio bearer setup complete message to the terminal device, where the radio bearer setup complete message is The NAS message carries the downlink data that has not been sent when the AMF is overloaded. In another embodiment of the present invention, the radio bearer setup complete message further carries the backoff timer.
  • Step 2409 the gNB sends an Initial context setup complete message to the AMF.
  • Step 2410 Perform user plane bearer establishment between the AMF and the UPF.
  • the AMF decides to switch to the user plane for downlink data transmission, and the AMF sends the downlink data to the terminal device through the NAS message when establishing the data radio bearer.
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method. To avoid repetition, it will not be described in detail here.
  • sequence numbers of the above processes do not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be implemented in the embodiments of the present application.
  • the process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • This functionality if implemented as a software functional unit and sold or used as a standalone product, can be stored on a computer readable storage medium.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including The instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the method in accordance with various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明的多个方面公开一种数据处理方法、装置和终端设备,包括:移动性管理设备接收终端设备通过NAS消息发送的上行数据,根据所述移动性管理设备的处理能力确定所述移动性管理设备是否过载;当所述移动性管理设备过载时,所述移动性管理设备通知所述终端设备通过用户面传输上行数据。所述数据处理方法和装置,可以提高通信质量,尤其是所述移动性管理设备和所述服务设备之间的承载未建立时,不需要先建立承载再释放承载,节省信令和资源。

Description

一种数据的处理方法、移动性管理设备和终端设备
本申请要求于2017年7月19日提交中国专利局、申请号为201710592127.0、发明名称为“一种数据的处理方法、移动性管理设备和终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通信技术,尤其涉及一种数据的处理方法、移动性管理设备和终端设备。
背景技术
目前通信存在各种制式,例如第二代(2G)、第三代(3G)、***(4G)通信***和新无线接入网络,例如全球移动通信(Global System of Mobile communication,GSM)***,码分多址(Code Division Multiple Access,CDMA)***,时分多址(Time Division Multiple Access,TDMA)***,宽带码分多址(Wideband Code Division Multiple Access,WCDMA),频分多址(Frequency Division Multiple Addressing,FDMA)***,正交频分多址(Orthogonal Frequency-Division Multiple Access,OFDMA)***,单载波FDMA(SC-FDMA)***,通用分组无线业务(General Packet Radio Service,GPRS)***,长期演进(Long Term Evolution,LTE)***,通用移动通信***(Universal Mobile Telecommunications System,UMTS)以及其他此类通信***。其中,新无线接入网络能够提供比LTE网络更高的传输速率,新无线接入网络也称为5G网络、下一代网络等。
如图1所示,为现有技术中一种UMTS通信***的结构示意图,UMTS是采用WCDMA空中接口技术的第三代移动通信***,采用与第二代移动通信***类似的结构,通常也把UMTS***称为WCDMA通信***。
UMTS***包括无线接入网络(Radio Access Network,RAN)和核心网络(Core Network,CN)。其中,无线接入网络用于处理所有与无线有关的功能,而CN处理UMTS***内所有的话音呼叫和数据连接,并实现与外部网络的交换和路由功能。CN从逻辑上分为电路交换域(Circuit Switched Domain,CS)和分组交换域(Packet Switched Domain,PS)。
核心网(CN)包括移动交换中心(Mobile Switching Center,MSC)/访问位置寄存器(Visitor Location Register,VLR),服务GPRS支持节(Serving GPRS(通用分组无线业务,General Packet Radio Service)Support Node,SGSN),归属位置寄存器(Home Location Register,HLR),网关移动业务交换中心(Gateway Mobile-services Switching Centre)和网关GPRS支持节点网(GGSN,Gateway GPRS Support Node,GMSC)等各种网元。通过GMSC或GGSN可以和外部网络连接(External Network), 例如,通过GMSC可以和公共陆地移动通信网(Public Land Mobile Network,PLMN),公共开关电话网络(Public Switched Telephone Network,PSTN),综合业务数字网(Integrated Services Digital Network,ISDN)等连接,通过GGSN可以和因特网(INTERNET)连接。
用户设备(User Equipment,UE)与通用陆地无线接入网(Universal Terrestrial Radio Access Network,UTRAN)之间接口为Uu接口,Node B与无线网络控制器(Radio Network Controller,RNC)之间通过Iub接口相连。在UTRAN内部,无线网络控制器(RNC)之间通过Iur互联,Iur可以通过RNC之间的直接物理连接或通过传输网连接。UTRAN和CN之间的接口统称为Iu接口,包括Iu-CS接口和Iu-PS接口。
NodeB通过Iub接口和RNC互连,用于完成Uu接口物理层协议的处理,分配和控制与NodeB相连或相关的NodeB的无线资源,完成Iub接口和Uu接口之间的数据流的转换。
RNC用于控制UTRAN的无线资源,主要完成连接建立和断开、切换、宏分集合并、无线资源管理控制等功能。
为保持未来网络的竞争能力,3GPP提出了一种全新的演进网络架构以满足未来十年甚至更长时间内移动网络的应用需求,包括***架构演进(SAE,system architecture evolution)和接入网的长期演进(LTE,LongTermEvolution),其中演进的接入网称为演进通用陆地无线接入网(E-UTRAN,Evolved Universal Terrestrial Radio Access Network)。网络演进的目标是希望提供一种低时延、高数据速率、高***容量和覆盖、低成本、完全基于IP的网络。
如图2所示,为现有技术演进的分组核心网络架构示意图,所述演进的分组核心网络可以包括移动性管理实体(Mobility Management Entity,MME)、服务网关(Serving Gateway,S-GW)以及分组数据网网关(PDN(Packet Data Network)Gateway,P-GW)三个逻辑功能实体。
其中,MME负责控制面的移动性管理,包括用户上下文和移动状态管理,分配用户临时身份标识等,对应于当前GPRS/UMTS***内部服务GPRS支持节SGSN的控制平面部分。
S-GW负责空闲状态下为下行数据发起寻呼,管理保存IP承载参数和网络内路由信息等,对应于当前GPRS/UMTS***内部SGSN和网关GPRS支持节点网(GGSN,Gateway GPRS Support Node)的数据平面部分。
P-GW则充当不同接入***间的用户面锚点。
归属网络服务器(Home Subscriber Server,HSS)用于存储用户签约信息。
SGSN主要完成分组数据包的路由转发、移动性管理、会话管理、逻辑链路管理、鉴权和加密、话单产生和输出等功能。SGSN通过Gb接口与GERAN网络BSC连接,或通过Iu-PS口与UTRAN网络RNC连接,进行移动数据的管理,如用户身份识别,加密,压缩等功能。
策略和计费规则功能实体(Policy and Charging Rule Function,PCRF)用于策略控制决定和流计费控制功能。
MME通过S1-MME接口与E-UTRAN的eNB连接,MME与Serving Gateway通过S11接口连接,Serving Gateway与PDNGateway通过S5接口连接。
物联网(Internet of Things,IoT)是互联网、传统电信网等信息承载体,让所有能行使独立功能的普通物体实现互联互通的网络。物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信,例如水表、电表等IoT设备的信息可以非频繁的发送给通信网络。
物联网将现实世界数位化,应用范围十分广泛。物联网拉近分散的信息,统整物与物的数字信息,物联网的应用领域主要包括以下方面:运输和物流领域、健康医疗领域范围、智能环境(家庭、办公、工厂)领域、个人和社会领域等,具有十分广阔的市场和应用前景。
针对水表、电表等IoT设备的非频繁小数据传输特性,第三代合作伙伴计划(The3rd Generation Partership Project,3GPP)定义一种通过NAS消息传输数据的方法,如图3所示,为现有技术中一种数据的处理方法的流程示意图。
步骤301,ECM Idle态的UE与eNB之间进行无线资源控制(Radio Resource Control,RRC)连接建立,UE在RRC连接建立过程中通过NAS消息向eNB发送上行数据。
当UE和MME没有非接入层(Non-Access Stratum,NAS)信令连接即专用S1连接未建立时,该UE处于EPS连接状态管理(EPS Connection Management,ECM)空闲(ECM Idle)状态,ECM Idle态的UE与eNB之间进行RRC连接建立(RRC connection establishment),UE向eNB发送RRC连接建立请求,所述RRC连接建立请求携带NAS数据协议数据单元(NAS DATA Protocol Data Unit,NAS DATA PDU),其中,所述NAS DATA PDU携带上行数据和演进数据***承载标识(EPS(Evolved Packet System)Bearer ID,EBI),其中NAS DATA PDU是一种NAS消息,属于控制面(Control Plane)数据。
步骤302,eNB通过S1-MME接口向MME发送Initial UE message。
例如,所述Initial UE message携带所述NAS DATA PDU,其中,所述NAS DATA PDU携带所述上行数据和所述EBI。
步骤303,MME进行完整性检测和对上行数据进行解密。
可选的,在一些情况下,还执行步骤304-307,否则是执行步骤303执行完后直接执行步骤308。
步骤304,MME向所述S-GW发送修改承载请求(modify bearer request)。
例如,当UE的位置发生变化或者隧道标识发生改变,MME向所述S-GW发送修改承载请求,如果MME的隧道标识发生改变,则步骤304后就直接执行步骤307, 如果是UE的位置发生变化,则步骤304后执行步骤305-307。
步骤305,S-GW向P-GW发送modify bearer request。
步骤306,P-GW向S-GW发送修改承载响应(modify Bearer response)。
步骤307,S-GW向MME发送修改承载响应。
步骤308,MME通过S-GW向P-GW发送上行数据(uplink data)
可选的,如果有下行数据,还需执行步骤308-313。
步骤308,P-GW通过S-GW向MME发送下行数据(downlink date)。
步骤310,MME对下行数据进行加密和完整性保护。
步骤311,MME通过eNB和MME之间的S1-MME接口向eNB发送下行数据。
可选的,当下行数据发送完成后,执行步骤311’。
步骤311’,MME通过S1-MME接口向eNB发送上下文释放命令(context release command)。
步骤312,eNB将所述下行数据通过NAS Data PDU发送给UE。
例如,eNB向UE发送RRC消息,所述RRC消息携带NAS data PDU,所述NAS data PDU携带下行数据和EBI。
步骤313,MME的激活检测。
步骤314,eNB和MME之间S1-MME接口的释放过程。
上述过程中,UE将上行数据包含在NAS消息中发送给MME,MME通过MME和S-GW之间的S11接口将数据发送给S-GW,S-GW通过S5/S8接口将数据发送给P-GW,该数据的传输称为控制面(Control Plane)数据传输方法,与传统的通过用户面(User Plane)数据传输方法不同,User Plane传输方法即为UE通过空口承载将数据传给eNB,eNB通过eNB与SGW之间的S1-U接口将数据传给SGW。
但是上行数据通过Control Plane数据传输时,IoT设备可能数量众多,大量IoT设备通过NAS来传输数据会给MME带来额外的信令负担,因此当MME过载时,需要合适的控制机制和数据处理方法。
现在技术中,当MME判断过载时,例如MME判断需要处理的数据量或IoT设备数量大于或等于一阈值,MME先通过Control Plane发送当前携带上行数据的上行NAS数据包,然后再将Control Plane传输转换为User Plane传输发送之后的上行数据,并且MME向UE发送回退定时器(back-off timer),该回退定时器用于指示UE在该定时器时间段内不要再发NAS消息。
但是,当MME过载时,MME均需要先通过Control Plane将当前携带上行数据的上行NAS数据包发送给S-GW,如果eNB与MME之间的S11-U承载已经建立,则MME发送当前携带上行数据的上行NAS数据包后释放所述S11-UE;如果eNB与MME 之间的S11-U承载没有建立,MME需要先建立S11-U承载,再通过建立的S11-U承载发送当前携带上行数据的上行NAS数据包,然后释放S11-U承载。
因此,现在技术中,当MME过载时,为传输当前未处理的携带上行数据的上行NAS数据包,当没有S11-U承载时,需要先建立S11-U承载,然后传输所述未处理的上行NAS数据包给S-GW,再释放S11-U承载,造成了信令的浪费,当有S11-U承载,在MME过载时还需要传输所述未处理的上行NAS数据包给S-GW给S-GW会影响通信质量。
发明内容
本发明的多个方面,提供一种数据的处理方法、装置和终端设备,可以在保障业务传输质量的同时提高可靠性。
本发明的第一方面提供一种数据处理方法,包括:移动性管理设备接收终端设备通过NAS消息发送的上行数据,根据所述移动性管理设备的处理能力确定所述移动性管理设备是否过载;当所述移动性管理设备过载时,所述移动性管理设备通知所述终端设备通过用户面传输上行数据。
可选地,所述移动性管理设备通知所述终端设备通过所述用户面重传过载时所述移动性管理设备通过控制面从所述终端设备接收的但未向所述服务设备发送的上行数据。
可选地,所述移动性管理设备通过信令消息将所述移动性管理设备过载时通过控制面从所述终端设备接收的但未向所述服务设备发送的上行数据发送给所述服务设备。
可选地,所述信令消息包括修改承载请求消息。
可选地,如果所述移动性管理设备与所述服务设备已建立用户面承载,且所述移动性管理设备已从所述服务设备接收下行数据,所述移动性管理设备通过NAS消息向所述终端设备发送所述移动性管理设备过载时尚未发送的下行数据。
可选地,所述移动性管理设备通过所述NAS消息向所述终端设备发送所述移动性管理设备过载时尚未发送的所述下行数据具体包括:所述移动性管理设备通过初始上下文建立请求携带所述下行数据并向接入网设备发送,其中,所述下行数据再由所述接入网设备通过无线承载建立完成消息向所述终端设备发送。
可选地,如果所述移动性管理设备与所述服务设备已建立用户面承载,且所述移动性管理设备已从所述服务设备接收下行数据,所述移动性管理设备通过NAS消息向所述终端设备发送回退定时器和所述移动性管理设备过载时尚未发送的下行数据。
可选地,所述移动性管理设备通过所述NAS消息向所述终端设备发送所述回退定时器和所述移动性管理设备过载时尚未发送的所述下行数据具体包括:所述移动性管理设备通过NAS消息携带所述回退定时器和所述下行数据并向接入网设备发送,其中,所述回退定时器和所述下行数据再由所述接入网设备通过RRC下行消息向所述终端设 备发送。
本发明的第二方面提供一种数据处理方法,包括:终端设备通过NAS消息向移动性管理设备发送上行数据;所述终端设备接收所述移动性管理设备根据所述移动性管理设备的处理能力确定过载时发送的通过用户面传输上行数据的通知;所述终端设备根据所述通知通过用户面向所述移动性管理设备发送上行数据。
可选地,所述终端设备接收所述移动性管理设备发送的重传指示,所述重传指示用于通知所述终端设备通过所述用户面重传所述移动性管理设备过载时所述移动性管理设备通过控制面从所述终端设备接收的但未向所述服务设备发送的上行数据;所述终端设备根据所述重传指示通过所述用户面重传所述移动性管理设备过载时所述移动性管理设备通过控制面从所述终端设备接收的但未向所述服务设备发送的所述上行数据。
可选地,如果所述移动性管理设备与所述服务设备已建立用户面承载,且所述移动性管理设备已从所述服务设备接收下行数据,所述终端设备接收所述移动性管理设备通过NAS消息发送的所述移动性管理设备过载时尚未发送的下行数据。
可选地,如果所述移动性管理设备与所述服务设备已建立用户面承载,且所述移动性管理设备已从所述服务设备接收下行数据,所述终端设备接收所述移动性管理设备通过NAS消息发送的回退定时器和所述移动性管理设备过载时尚未发送的下行数据。
本发明的第三方面提供一种数据处理装置,包括:接收器,用于接收终端设备通过NAS消息发送的上行数据;处理器,用于根据其处理能力确定所述处理器是否过载;发送器,用于当所述处理器过载时,向所述终端设备发送通知,以通知所述终端设备通过用户面传输上行数据。
可选地,所述发送器还用于通知所述终端设备通过所述用户面重传过载时所述接收器从所述终端设备接收的但所述发送器未向所述服务设备发送的上行数据。
可选地,所述发送器通过信令消息将所述处理器过载时所述接收器从所述终端设备接收的但所述发送器未向所述服务设备发送的上行数据发送给所述服务设备。
可选地,所述信令消息包括修改承载请求。
可选地,如果所述数据处理装置与所述服务设备已建立用户面承载,且所述接收器已从所述服务设备接收下行数据,所述发送器还用于通过NAS消息向所述终端设备发送所述处理器过载时尚未发送的下行数据。
可选地,所述发送器通过初始上下文建立请求携带所述下行数据并向接入网设备发送,其中,所述下行数据再由所述接入网设备通过无线承载建立完成消息向所述终端设备发送。
可选地,如果所述数据处理装置与所述服务设备已建立用户面承载,且所述接收器已从所述服务设备接收下行数据,所述发送器还用于通过NAS消息向所述终端设备发送回退定时器和所述处理器过载时尚未发送的下行数据。
可选地,所述发送器通过NAS消息携带所述回退定时器和所述下行数据并向接入网设备发送,其中,所述回退定时器和所述下行数据再由所述接入网设备通过RRC下行消息向所述终端设备发送。
本发明的第四方面提供一种终端设备,包括:发送器,用于通过NAS消息向移动性管理设备发送上行数据;接收器,用于接收所述移动性管理设备根据所述移动性管理设备的处理能力确定过载时发送的通过用户面传输上行数据的通知;所述发送器还用于根据所述通知通过用户面向所述移动性管理设备发送上行数据。
可选地,所述接收器还用于接收所述移动性管理设备发送的重传指示,所述重传指示用于通知所述终端设备通过所述用户面重传所述移动性管理设备过载时所述移动性管理设备通过控制面从所述终端设备接收的但未向所述服务设备发送的上行数据;所述发送器还用于根据所述重传指示通过所述用户面重传所述移动性管理设备过载时所述移动性管理设备通过控制面从所述终端设备接收的但未向所述服务设备发送的所述上行数据。
可选地,如果所述移动性管理设备与所述服务设备已建立用户面承载,且所述移动性管理设备已从所述服务设备接收下行数据,所述接收器还用于接收所述移动性管理设备通过NAS消息发送的所述移动性管理设备过载时尚未发送的下行数据。
可选地,如果所述移动性管理设备与所述服务设备已建立用户面承载,且所述移动性管理设备已从所述服务设备接收下行数据,所述接收器还用于接收所述移动性管理设备通过NAS消息发送的回退定时器和所述移动性管理设备过载时尚未发送的下行数据。
本发明的第五方面提供一种数据处理装置,包括:包括处理器、存储器和收发器,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制收发器进行信号的接收和发送,当处理器执行所述存储器存储的指令时,所述数据处理装置用于完成如权利要求1至8任意一项所述的方法。
本发明的第六方面提供一种数据处理装置,包括:包括处理器、存储器和收发器,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制收发器进行信号的接收和发送,当处理器执行所述存储器存储的指令时,所述数据处理装置用于完成如权利要求9至12任意一项所述的方法。
上述描述的数据的处理方法、装置和终端设备,可以在保障业务传输质量的同时提高可靠性。
附图说明
图1为现有技术中一种UMTS通信***的结构示意图;
图2为现有技术演进的分组核心网络架构示意图;
图3为现有技术中一种数据的处理方法的流程示意图;
图4为本发明一实施例的一种通信***的结构示意图;
图5为本发明另一实施例的一种LTE通信***的结构示意图;
图6为本发明另一实施例的一种新无线接入网络的结构示意图;
图7为本发明一实施例的一种数据处理方法的流程示意图;
图8为本发明另一实施例的一种通信***的结构示意图;
图9为本发明另一实施例的一种数据处理方法的流程示意图;
图10为本发明另一实施例的一种通信***的结构示意图;
图11为本发明另一实施例的一种LTE通信***的数据处理方法的流程示意图;
图12为本发明另一实施例的一种新无线接入网络的数据处理方法的流程示意图;
图13为本发明另一实施例的一种数据处理方法的流程示意图;
图14为本发明另一实施例的一种通信***的结构示意图;
图15为本发明另一实施例的一种LTE通信***中的数据处理方法的流程示意图;
图16为本发明另一实施例的一种新无线接入网络的数据处理方法的流程示意图;
图17本发明另一实施例的一种数据处理方法的流程示意图;
图18为本发明另一实施例的一种通信***的结构示意图;
图19为本发明另一实施例的一种LTE通信***的数据处理方法的流程示意图;
图20为本发明另一实施例的一种新无线接入网络的数据处理方法的流程示意图;
图21为本发明另一实施例的一种数据处理方法的流程示意图;
图22为本发明另一实施例的一种通信***的结构示意图;
图23为本发明另一实施例的一种LTE通信***的数据处理方法的流程示意图;
图24为本发明另一实施例的一种新无线接入网络的数据处理方法的流程示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本文所提及的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。
在本文提及的“模块”通常是指存储在存储器中的能够实现某些功能的程序或指令;在本文中提及的“单元”通常是指按照逻辑划分的功能性结构,该“单元”可以由纯硬件实现,或者,软硬件的结合实现。
在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本文中描述的技术可用于各种通信***,例如当前2G、3G、4G通信***和新无线接入网络,例如GSM***、CDMA***、TDMA***、WCDMA***、FDMA***、OFDMA***、SC-FDMA***、GPRS***、LTE***、UMTS网络、新无线接入网络以及其他此类通信***。其中,新无线接入网络能够提供比LTE网络更高的传输速率,新无线接入网络也称为5G网络、下一代网络等。
本文中结合接收端和/或基站和/或基站控制器来描述各种方面。
终端设备(Terminal Device),可以是无线终端也可以是有线终端,无线终端可以是指向接收端提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(例如,RAN,Radio Access Network)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为***、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户设备(User Equipment)或用户代理(User Agent)。
基站(即,节点)可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是GSM***或CDMA***中的基站(Base Transceiver Station,BTS),也可以是WCDMA***中的基站(NodeB),还可以是LTE***中的演进型基站(eNodeB或eNB或e-NodeB),也可以是新无线接入网络的接入网设备,本申请并不限定。所述新无线接入网络的接入网设备也称为基站(gNB)、NR Node(节点)或者NR BS(基站,Base Station),在此不作限制,但为描 述方便,本文中统一称为gNB。
基站控制器(即,控制节点),可以是GSM***或CDMA***中的基站控制器(Base Station Controller,BSC),也可以是WCDMA中的无线网络控制器(Radio Network Controller,RNC),本申请并不限定。
如图4所示,为本发明一实施例的一种通信***的结构示意图,所述通信***可以为2G、3G、4G通信***或新无线接入网络,例如GSM***、CDMA***、TDMA***、WCDMA***、FDMA***、OFDMA***、SC-FDMA***、GPRS***、LTE***、UMTS网络、新无线接入网络以及其他此类通信***,其中,新无线接入网络也称为5G网络、下一代网络等。
所述通信***可以包括终端设备401、接入网设备402、移动性管理设备403和服务设备404,所述接入网设备402可以是2G、3G或4G通信***的基站,也可以是5G通信***的gNB,根据通信***的制式不同(即接入技术不同),各个设备的名词和各个设备之间的接口名词也不同。例如,在LTE通信***中,所述接入网设备402为eNB,所述移动性管理设备403为MME,所述服务设备404为S-GW;又例如,在新无线接入网络中,所述接入网设备402为gNB,所述移动性管理设备403为访问与移动性管理功能(Access and Mobility Management Function,AMF)实体,所述服务设备404包括会话管理功能(Session Management Function,SMF)实体和用户面功能(User Plane Fucntion,UPF)实体,所述LTE通信***和新无线接入网络的网络架构以及接口具体如图5和图6所示。
如图5所示,为本发明另一实施例的一种LTE通信***的结构示意图,所述LTE通信***可以包括终端设备501、基站(eNB)502、MME503、S-GW504和P-GW505。
所述终端设备501可以为水表、电表等IoT设备,通过空口与所述eNB 502通信。
所述eNB 502与所述MME503通过S1-MME接口通信,所述eNB 502与所述S-GW504通过S1-U接口通信,所述MME503与所述S-GW504通过S11接口通信,所述S-GW504与所述P-GW505通过S5或S8(S5/S8)接口通信。
如图6所示,为本发明另一实施例的一种新无线接入网络的结构示意图,新无线接入网络也称为5G网络、下一代网络等,所述新无线接入网络可以包括终端设备601、gNB602、AMF实体603、SMF实体604、UPF实体605、数据网络(data network,DN)606、鉴权服务功能实体(authentication server function,AUSF)实体607、统一数据管理(Unified Data Management,UDM)实体608、策略控制功能(Policy control function,PCF)实体609和应用功能(application function,AF)实体610。
所述终端设备501可以为水表、电表等IoT设备,所述终端设备601与所述gNB602之间的接口为空口,所述终端设备601与所述AMF603之间的接口为N1接口,所述gNB602与所述AMF603之间的接口为N2接口,所述gNB602与所述UPF605之间的接口为N3接口,所述AMF603与所述SMF604之间的接口为N11接口,所述SMF604与所述UPF605之间的接口为N4接口,其它的接口具体如图6所述,在此不再赘述。
如图7所示,为本发明另一实施例的一种数据处理方法的流程示意图,所述数据处理方法可以适用于各种通信***,例如LTE通信***或新无线接入网络,为描述的简洁,本实施例的所述数据处理方法以图4的网络架构为例进行说明,主要过程如下所述。
步骤701,移动性管理设备接收终端设备通过NAS消息发送的上行数据,根据所述移动性管理设备的处理能力确定所述移动性管理设备是否过载。
例如,所述终端设备通过接入网设备向移动性管理设备发送NAS消息,其中,所述所述NAS消息携带上行数据,例如,所述NAS消息为控制面的服务请求(Service Request,SR),所述移动性管理设备接收所述终端设备通过服务请求发送的上行数据后,所述移动性管理设备根据当前收到所有数据(例如上行和/或下行数据)和所有信令(例如上行和/或下行信令)以及其处理能力判断其处理能力是否达到阈值,例如,所述移动性管理设备判断其已经使用的计算资源或者存储资源是否大于或等于第一阈值(例如等于最大值)或者所述移动性管理设备判断其可利用的计算资源或者存储资源是否小于或等于第二阈值。
例如,当所述移动性管理设备与所述服务设备之间的用户面承载未建立时,所述移动性管理设备根据其当前所接收的所有数据和控制信令(例如,上行数据和/或上行控制信令)判断其处理能力是否达到阈值。当所述移动性管理设备与所述服务设备之间的用户面承载已建立时,所述移动性管理设备根据其当前所接收的所有数据和控制信令(例如,上行数据、上行控制信令、下行数据和/或下行控制信令)判断其处理能力是否达到阈值。
如果所述移动性管理设备判断其处理能力达到所述阈值,例如,所述移动性管理设备判断其已经使用的计算资源或者存储资源大于或等于所述第一阈值(例如等于最大值)或者所述移动性管理设备判断其可利用的计算资源或者存储资源小于或等于所述第二阈值,所述移动性管理设备确定其过载。如果所述移动性管理设备判断其处理能力未达到所述阈值,例如,所述移动性管理设备判断其已经使用的计算资源或者存储资源小于所述第一阈值(例如未达到最大值)或者所述移动性管理设备判断其可利用的计算资源或者存储资源大于所述第二阈值,所述移动性管理设备确定其未过载。
步骤702,当所述移动性管理设备过载时,所述移动性管理设备通知所述终端设备此后通过用户面传输上行数据以及通知所述终端设备通过用户面重传过载时所述移动性管理设备通过控制面从所述终端设备接收的但未向所述服务设备发送的上行数据。
例如,所述移动性管理设备向所述接入网设备发送NAS消息,例如,所述NAS消息为初始上下文建立请求(Initial Context Setup Request)或服务接受消息(Service Accept message),所述NAS消息携带用户面传输指示和重传指示,所述接入网设备向所述终端设备发送所述用户面传输指示和重传指示,所述用户面传输指示用于通知所述终端设备此后通过用户面传输上行数据,,即所述用户面传输指示用于通知所述终端设备通过用户面传输所述移动性管理设备过载时所述移动性管理设备通过控制面从所述终端设备接收的上行数据之后的上行数据。所述重传指示用于通知所述终端设备通过用 户面重传所述移动性管理设备过载时所述移动性管理设备通过控制面从所述终端设备接收的但未向所述服务设备发送的上行数据。在本发明的另一实施例中,所述NAS消息还携带回退定时器(back-off timer),该回退定时器用于指示所述终端设备在该回退定时器时间段内不发送NAS消息。
在本发明的另一实施例中,上述用户面传输指示、重传指示和回退定时器可以分别通过不同的NAS消息携带或者通过两个不同的NAS消息携带。
在本发明的另一实施例中,当所述移动性管理设备过载时,所述移动性管理设备丢弃过载时所述移动性管理设备通过控制面从所述终端设备接收的但未向所述服务设备发送的所述上行数据。
在本发明的另一实施例中,无论所述移动性管理设备与所述服务设备是否有建立用户面承载,所述移动性管理设备均丢弃过载时所述移动性管理设备通过控制面从所述终端设备接收的但未向所述服务设备发送的所述上行数据。
在本发明的另一实施例中,如果所述移动性管理设备与所述服务设备已建立用户面承载,且所述移动性管理设备从所述服务设备接收有下行数据,当所述移动性管理设备判断其过载时,所述移动性管理设备通过NAS信令向所述接入网设备发送下行数据,例如所述移动性管理设备向所述接入网设备发送初始上下文建立请求(Initial Context Setup Request),所述初始上下文建立请求携带所述下行数据,所述接入网设备向所述终端设备发送无线承载建立完成(Radio bearers setup Complete)消息,所述无线承载建立完成消息携带所述下行数据。在本发明的另一实施例中,所述初始上下文建立请求和所述无线承载建立完成消息还携带所述回退定时器。
在本发明的另一实施例中,如果所述移动性管理设备与所述服务设备已建立用户面承载,且所述移动性管理设备从所述服务设备接收有下行数据,当所述移动性管理设备判断其过载时,所述移动性管理设备通过NAS消息(例如,下行S1-AP消息,例如所述下行S1-AP消息为下行NAS传输(downlink NAS transport)消息)向所述接入网设备发送所述回退定时器和下行数据,再由所述接入网设备通过NAS消息(例如下行RRC直接传输(Downlink RRC direct transfer)消息)向所述终端设备发送所述回退定时器和下行数据。
步骤703,当所述移动性管理设备未过载时,所述移动性管理设备继续接收所述终端设备通过NAS消息发送的上行数据,并将所接收的上行数据向所述服务设备发送。
在本发明的另一实施例中,当回退定时器届满时或者所述终端设备传输完上行数据时,所述终端设备重新发起分组数据网络(Packet Data Network,PDN)连接建立,在所述PDN连接建立后,所述终端设备通过NAS消息携带上行数据发送给所述移动性管理设备。其中,所述PDN连接是指依次经过接入网设备、S-GW到P-GW的连接。
因此,上述描述的数据处理方法,当所述移动性管理设备过载时,无论所述移动性管理设备和所述服务设备之间是否有建立用户面承载,丢弃当前未处理的携带上行数据的上行NAS数据包,而通知所述终端设备此后通过用户面传输上行数据以及通知所述终端设备通过用户面重传过载时所述移动性管理设备通过控制面从所述终端设备 接收的但未向所述服务设备发送的上行数据,因此,所述移动性管理设备不需要在过载时还需要向所述服务设备传输所述未处理的上行数据包,因此可以提高通信质量,尤其是所述移动性管理设备和所述服务设备之间的承载未建立时,不需要先建立承载再释放承载,节省信令和资源。
如图8所示,为本发明另一实施例的一种通信***的结构示意图,所述通信***可以为2G、3G、4G通信***或新无线接入网络,例如GSM***、CDMA***、TDMA***、WCDMA***、FDMA***、OFDMA***、SC-FDMA***、GPRS***、LTE***、UMTS网络、新无线接入网络以及其他此类通信***,其中,新无线接入网络也称为5G网络、下一代网络等。
所述通信***可以包括终端设备81、接入网设备82、数据处理装置83和服务设备84,所述接入网设备82可以是2G、3G或4G通信***的基站,也可以是5G通信***的gNB,根据通信***的制式不同(即接入技术不同),各个设备的名词和各个设备之间的接口名词也不同。例如,所述数据处理装置83可以为移动性管理设备,在LTE通信***中,所述接入网设备82为eNB,所述数据处理装置83为MME,所述服务设备84为S-GW;又例如,在新无线接入网络中,所述接入网设备82为gNB,所述数据处理装置83为AMF实体,所述服务设备84包括SMF实体和UPF实体,所述LTE通信***和新无线接入网络的网络架构以及接口具体如图5和图6所示。
所述终端设备81可以为水表、电表等IoT设备。
所述数据处理装置83包括接收器831、处理器832、发送器833和存储器834,其中,所述接收器831、处理器832、发送器833和存储器834相互之间通过总线通信。
在本申请实施例中,该处理器832可以是可擦除可编辑逻辑器件(Erasable Programmable Logic Device,EPLD)、现场可编程门阵列(Field Programmable Gate Array,FPGA)、数字信号处理器(Digital Signal Processor,DSP)芯片、专用集成电路(Application Specific Integrated Circuit,ASIC)、或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。
所述存储器834用于存储代码或指令信息,还可以存储设备类型的信息。该存储器834可以包括只读存储器(Read-Only Memory,ROM)和随机存取存储器(Random Access Memory,RAM),用于向所述处理器832提供指令和数据。所述存储器834的一部分还可以包括非易失性随机存取存储器。
所述接收器831用于接收终端设备通过NAS消息发送的上行数据。
所述处理器832用于根据所述移动性管理设备的处理能力确定所述移动性管理设备是否过载。
例如,所述接收器831接收所述终端设备通过所述接入网设备82发送的NAS消息,其中,所述所述NAS消息携带上行数据,例如,所述NAS消息为控制面的服务请求,所述接收器831接收所述终端设备通过服务请求发送的上行数据后,所述处理器832根据当前收到所有数据(例如上行和/或下行数据)和所有信令(例如上行和/或下 行信令)以及其处理能力判断其处理能力是否达到阈值,例如,所述处理器832判断其已经使用的计算资源或者存储资源是否大于或等于第一阈值(例如等于最大值)或者所述处理器832判断其可利用的计算资源或者存储资源是否小于或等于第二阈值。
例如,当所述数据处理装置83与所述服务设备84之间的用户面承载未建立时,所述处理器832根据所述接收器831当前所接收的所有数据和控制信令(例如,上行数据和/或上行控制信令)判断其处理能力是否达到阈值。当所述数据处理装置83与所述服务设备84之间的用户面承载已建立时,所述处理器832根据所述接收器831当前所接收的所有数据和控制信令(例如,上行数据、上行控制信令、下行数据和/或下行控制信令)判断其处理能力是否达到阈值。
如果所述处理器832判断其处理能力达到所述阈值,例如,所述处理器832判断其已经使用的计算资源或者存储资源大于或等于所述第一阈值(例如等于最大值)或者所述处理器832判断其可利用的计算资源或者存储资源小于或等于所述第二阈值,所述处理器832确定其过载。如果所述处理器832判断其处理能力未达到所述阈值,例如,所述处理器832判断其已经使用的计算资源或者存储资源小于所述第一阈值(例如未达到最大值)或者所述处理器832判断其可利用的计算资源或者存储资源大于所述第二阈值,所述处理器832确定其未过载。
所述发送器833,用于当所述处理器832判断过载时,通知所述终端设备此后通过用户面传输上行数据以及通知所述终端设备通过用户面重传过载时通过控制面从所述终端设备接收的但未向所述服务设备发送的上行数据。
例如,所述发送器833向所述接入网设备82发送NAS消息,例如所述NAS消息为初始上下文建立请求(Initial Context Setup Request)或服务接受消息(Service Accept message),所述NAS消息携带用户面传输指示和重传指示,所述用户面传输指示用于通知所述终端设备此后通过用户面传输上行数据,所述重传指示用于通知所述终端设备通过用户面重传所述移动性管理设备过载时所述移动性管理设备通过控制面从所述终端设备接收的但未向所述服务设备发送的上行数据。在本发明的另一实施例中,所述NAS消息还携带回退定时器(back-off timer),该回退定时器用于指示所述终端设备在该回退定时器时间段内不发送NAS消息。
在本发明的另一实施例中,上述用户面传输指示、重传指示和回退定时器可以分别通过不同的NAS消息携带或者通过两个不同的NAS消息携带。
在本发明的另一实施例中,当所述处理器832判断过载时,所述处理器832还用于确定丢弃过载时通过控制面从所述终端设备接收的但未向所述服务设备发送的所述上行数据。
在本发明的另一实施例中,无论所述数据处理装置83与所述服务设备84是否有建立用户面承载,所述处理器832均确定丢弃过载时通过控制面从所述终端设备接收的但未向所述服务设备发送的所述上行数据。
在本发明的另一实施例中,如果所述数据处理装置83与所述服务设备84已建立用户面承载,且所述接收器831从所述服务设备84接收有下行数据,当所述处理器 832判断其过载时,所述发送器833通过NAS信令向所述终端设备81发送下行数据,例如所述发送器833向所述接入网设备82发送初始上下文建立请求(Initial Context Setup Request),所述初始上下文建立请求携带所述下行数据,所述接入网设备82向所述终端设备81发送无线承载建立完成(Radio bearers setup Complete)消息,所述无线承载建立完成消息携带所述下行数据。在本发明的另一实施例中,所述初始上下文建立请求和所述无线承载建立完成消息还携带所述回退定时器。
例如,在本发明的另一实施例中,如果所述数据处理装置83与所述服务设备84已建立用户面承载,且所述接收器831从所述服务设备84接收有下行数据,当所述处理器832判断其过载时,所述发送器833通过NAS消息(例如,下行S1-AP消息,例如所述下行S1-AP消息为下行NAS传输消息)向所述接入网设备82发送所述回退定时器和下行数据,再由所述接入网设备82通过NAS消息(例如下行RRC直接传输消息)向所述终端设备81发送所述回退定时器和下行数据。
所述接收器831还用于当所述处理器832判断未过载时,继续接收所述终端设备通过NAS消息发送的上行数据,所述发送器833还用于将所接收的上行数据向所述服务设备84发送。
在本发明的另一实施例中,当回退定时器届满时或者所述终端设备81传输完上行数据时,所述终端设备重新发起PDN连接建立,在所述PDN连接建立后,所述接收器831还用于接收所述终端设备通过NAS消息携带的上行数据。
如图9所示,为本发明另一实施例的一种数据处理方法的流程示意图,所述数据处理方法可以适用于各种通信***,例如LTE通信***或新无线接入网络,为描述的简洁,本实施例的所述数据处理方法以图4的网络架构为例进行说明,主要过程如下所述。
步骤901,终端设备向移动性管理设备发送NAS消息,所述所述NAS消息携带上行数据。
例如,所述终端设备通过接入网设备向移动性管理设备发送NAS消息,其中,所述所述NAS消息携带上行数据,例如,所述NAS消息为控制面的服务请求(Service Request,SR)。
步骤902,所述终端设备接收所述移动性管理设备过载时发送的通过用户面传输上行数据的通知以及通过用户面重传过载时所述移动性管理设备通过控制面从所述终端设备接收的但未向所述服务设备发送的上行数据的通知。
所述移动性管理设备接收终端设备通过NAS消息发送的上行数据,根据所述移动性管理设备当前收到所有数据(例如上行和/或下行数据)和所有信令(例如上行和/或下行信令)以及其处理能力的处理能力确定所述移动性管理设备是否过载。
例如,所述移动性管理设备接收所述终端设备通过服务请求发送的上行数据后,所述移动性管理设备判断其处理能力是否达到阈值,例如,所述移动性管理设备判断其已经使用的计算资源或者存储资源是否大于或等于第一阈值(例如等于最大值)或者所 述移动性管理设备判断其可利用的计算资源或者存储资源是否小于或等于第二阈值。
例如,当所述移动性管理设备与所述服务设备之间的用户面承载未建立时,所述移动性管理设备根据其当前所接收的所有数据和控制信令(例如,上行数据和/或上行控制信令)判断其处理能力是否达到阈值。当所述移动性管理设备与所述服务设备之间的用户面承载已建立时,所述移动性管理设备根据其当前所接收的所有数据和控制信令(例如,上行数据、上行控制信令、下行数据和/或下行控制信令)判断其处理能力是否达到阈值。
如果所述移动性管理设备判断其处理能力达到所述阈值,例如,所述移动性管理设备判断其已经使用的计算资源或者存储资源大于或等于所述第一阈值(例如等于最大值)或者所述移动性管理设备判断其可利用的计算资源或者存储资源小于或等于所述第二阈值,所述移动性管理设备确定其过载。如果所述移动性管理设备判断其处理能力未达到所述阈值,例如,所述移动性管理设备判断其已经使用的计算资源或者存储资源小于所述第一阈值(例如未达到最大值)或者所述移动性管理设备判断其可利用的计算资源或者存储资源大于所述第二阈值,所述移动性管理设备确定其未过载。
例如,所述终端设备接收所述移动性管理设备过载时发送的NAS消息,例如所述NAS消息为初始上下文建立请求(Initial Context Setup Request)或服务接受消息(Service Accept message),所述NAS消息携带用户面传输指示和重传指示,所述用户面传输指示用于通知所述终端设备此后通过用户面传输上行数据,所述重传指示用于通知所述终端设备通过用户面重传所述移动性管理设备过载时所述移动性管理设备通过控制面从所述终端设备接收的但未向所述服务设备发送的上行数据。在本发明的另一实施例中,所述NAS消息还携带回退定时器(back-off timer),该回退定时器用于指示所述终端设备在该回退定时器时间段内不发送NAS消息。
在本发明的另一实施例中,上述用户面传输指示、重传指示和回退定时器可以分别通过不同的NAS消息携带或者通过两个不同的NAS消息携带。
在本发明的另一实施例中,当所述移动性管理设备过载时,所述移动性管理设备丢弃过载时所述移动性管理设备通过控制面从所述终端设备接收的但未向所述服务设备发送的所述上行数据。
在本发明的另一实施例中,无论所述移动性管理设备与所述服务设备是否有建立用户面承载,所述移动性管理设备均丢弃过载时所述移动性管理设备通过控制面从所述终端设备接收的但未向所述服务设备发送的所述上行数据。
在本发明的另一实施例中,如果所述移动性管理设备与所述服务设备已建立用户面承载,且所述移动性管理设备从所述服务设备接收有下行数据,当所述移动性管理设备判断其过载时,所述移动性管理设备通过NAS信令向所述终端设备发送下行数据,例如所述移动性管理设备向所述接入网设备发送初始上下文建立请求(Initial Context Setup Request),所述初始上下文建立请求携带所述下行数据,所述终端设备向所述接入网设备发送无线承载建立请求(Radio Bearers Setup Request)后,接收所述接入网设备发送的无线承载建立完成(Radio Bearers Setup Complete)消息,所述无线承载建立完 成消息携带所述下行数据。在本发明的另一实施例中,所述初始上下文建立请求和所述无线承载建立完成消息还携带所述回退定时器。
例如,在本发明的另一实施例中,如果所述移动性管理设备与所述服务设备已建立用户面承载,且所述移动性管理设备从所述服务设备接收有下行数据,当所述移动性管理设备判断其过载时,所述移动性管理设备通过NAS消息(例如,下行S1-AP消息,例如所述下行S1-AP消息为下行NAS传输消息)向所述接入网设备发送所述回退定时器和下行数据,再由所述接入网设备通过NAS消息(例如下行RRC直接传输消息)向所述终端设备发送所述回退定时器和下行数据。
步骤903,所述终端设备通过用户面传输过载之后的上行数据直到所述终端设备需要传输的上行数据传输完成或所述终端设备与所述移动性管理设备重新建立控制面承载,并且所述终端设备通过用户面重传所述移动性管理设备过载时所述移动性管理设备通过控制面从所述终端设备接收的但未向所述服务设备发送的上行数据。
例如,所述终端设备在收到所述用户面传输指示后,所述终端设备与所述接入网设备建立数据无线承载(Data Radio Bearer,DRB),以及所述接入网设备与所述服务设备建立用户面承载,所述终端设备通过所述数据无线承载向所述接入网设备发送上行数据,再由所述接入网设备通过所述用户面承载传输所述上行数据给所述服务设备,直到所述终端设备需要传输的上行数据传输完成或所述终端设备与所述移动性管理设备再次建立PDN连接,并且所述终端设备通过用户面重传所述移动性管理设备过载时所述移动性管理设备通过控制面从所述终端设备接收的但未向所述服务设备发送的上行数据。
在本发明的另一实施例中,当回退定时器届满时或者所述终端设备传输完上行数据时,所述终端设备发起PDN连接建立,在所述PDN连接建立后,所述终端设备通过NAS消息携带上行数据发送给所述移动性管理设备。
在本发明的另一实施例中,当所述移动性管理设备未过载时,所述终端设备继续通过NAS消息向所述移动性管理设备发送上行数据,所述移动性管理设备将所接收的上行数据向所述服务设备发送。
如图10所示,为本发明另一实施例的一种通信***的结构示意图,所述通信***可以为2G、3G、4G通信***或新无线接入网络,例如GSM***、CDMA***、TDMA***、WCDMA***、FDMA***、OFDMA***、SC-FDMA***、GPRS***、LTE***、UMTS网络、新无线接入网络以及其他此类通信***,其中,新无线接入网络也称为5G网络、下一代网络等。
所述通信***可以包括终端设备101、接入网设备102、移动性管理设备103和服务设备104,所述接入网设备102可以是2G、3G或4G通信***的基站,也可以是5G通信***的gNB,根据通信***的制式不同(即接入技术不同),各个设备的名词和各个设备之间的接口名词也不同。例如,在LTE通信***中,所述接入网设备102为eNB,所述移动性管理设备103为MME,所述服务设备104为S-GW;又例如,在新无线接入网络中,所述接入网设备102为gNB,所述移动性管理设备103为AMF实体, 所述服务设备104包括SMF实体和UPF实体,所述LTE通信***和新无线接入网络的网络架构以及接口具体如图5和图6所示。
所述终端设备101可以为水表、电表等IoT设备,所述终端设备101包括接收器1011、处理器1012、发送器1013和存储器1014,其中,所述接收器1011、处理器1012、发送器1013和存储器1014相互之间通过总线通信。
在本申请实施例中,该处理器1012可以是EPLD、FPGA、DSP芯片、ASIC、或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。
所述存储器1014用于存储代码或指令信息,还可以存储设备类型的信息。该存储器1014可以包括ROM和RAM,用于向所述处理器1012提供指令和数据,所述存储器1014的一部分还可以包括非易失性随机存取存储器。
所述发送器1013用于向所述移动性管理设备103发送NAS消息,所述所述NAS消息携带上行数据。
例如,所述发送器1013通过所述接入网设备102向所述移动性管理设备103发送NAS消息,其中,所述所述NAS消息携带上行数据,例如,所述NAS消息为控制面的服务请求。
所述接收器1011用于接收所述移动性管理设备103过载时发送的通过用户面传输上行数据的通知以及通过用户面重传过载时所述移动性管理设备103从所述终端设备101接收的但未向所述服务设备104发送的上行数据的通知。
所述移动性管理设备103接收所述终端设备101的所述发送器1013通过NAS消息发送的上行数据,根据所述移动性管理设备103的处理能力确定所述移动性管理设备103是否过载。
例如,所述移动性管理设备103接收所述发送器1013通过服务请求发送的上行数据后,所述移动性管理设备103根据当前收到所有数据(例如上行和/或下行数据)和所有信令(例如上行和/或下行信令)以及其处理能力判断其处理能力是否达到阈值,例如,所述移动性管理设备103判断其已经使用的计算资源或者存储资源是否大于或等于第一阈值(例如等于最大值)或者所述移动性管理设备103判断其可利用的计算资源或者存储资源是否小于或等于第二阈值。
如果所述移动性管理设备103判断其处理能力达到所述阈值,例如,所述移动性管理设备103判断其已经使用的计算资源或者存储资源大于或等于所述第一阈值(例如等于最大值)或者所述移动性管理设备103判断其可利用的计算资源或者存储资源小于或等于所述第二阈值,所述移动性管理设备103确定其过载。如果所述移动性管理设备103判断其处理能力未达到所述阈值,例如,所述移动性管理设备103判断其已经使用的计算资源或者存储资源小于所述第一阈值(例如未达到最大值)或者所述移动性管理设备103判断其可利用的计算资源或者存储资源大于所述第二阈值,所述移动性管理设备103确定其未过载。
例如,当所述移动性管理设备103与所述服务设备104之间的用户面承载未建 立时,所述移动性管理设备103根据其当前所接收的所有数据和控制信令(例如,上行数据和/或上行控制信令)判断其处理能力是否达到阈值。当所述移动性管理设备103与所述服务设备104之间的用户面承载已建立时,所述移动性管理设备103根据其当前所接收的所有数据和控制信令(例如,上行数据、上行控制信令、下行数据和/或下行控制信令)判断其处理能力是否达到阈值。
例如,所述接收器1011还用于接收所述移动性管理设备103过载时发送的NAS消息,例如所述NAS消息为初始上下文建立请求(Initial Context Setup Request)或服务接受消息(Service Accept message),所述NAS消息携带用户面传输指示和重传指示,所述用户面传输指示用于通知所述终端设备101此后通过用户面传输上行数据,所述重传指示用于通知所述终端设备101通过用户面重传所述移动性管理设备103过载时所述移动性管理设备103通过控制面从所述终端设备接收的但未向所述服务设备104发送的上行数据。在本发明的另一实施例中,所述NAS消息还携带回退定时器(back-off timer),该回退定时器用于指示所述终端设备101在该回退定时器时间段内所述发送器1013不发送NAS消息。
在本发明的另一实施例中,上述用户面传输指示、重传指示和回退定时器可以分别通过不同的NAS消息携带或者通过两个不同的NAS消息携带。
在本发明的另一实施例中,当所述移动性管理设备103过载时,所述移动性管理设备103丢弃过载时所述移动性管理设备103从所述终端设备101接收的但未向所述服务设备104发送的所述上行数据。
在本发明的另一实施例中,无论所述移动性管理设备103与所述服务设备104是否有建立用户面承载,所述移动性管理设备103均丢弃过载时所述移动性管理设备103从所述终端设备101接收的但未向所述服务设备104发送的所述上行数据。
所述发送器1013还用于通过用户面传输过载之后的上行数据直到所述终端设备101需要传输的上行数据传输完成或所述终端设备101与所述移动性管理设备103重新建立控制面承载,所述发送器1013还用于通过用户面重传所述移动性管理设备103过载时所述移动性管理设备103通过控制面从所述终端设备接收的但未向所述服务设备104发送的上行数据。
例如,所述接收器1011在收到所述用户面传输指示后,所述处理器1012用于与所述接入网设备102建立数据无线承载(Data Radio Bearer,DRB),以及与所述服务设备104建立用户面承载,所述发送器1013用于通过所述数据无线承载向所述接入网设备102发送上行数据,再由所述接入网设备102通过所述用户面承载向所述服务设备104发送所述上行数据,直到所述终端设备101需要传输的上行数据传输完成或所述终端设备101与所述移动性管理设备103再次建立PDN连接,所述发送器1013还用于通过用户面重传所述移动性管理设备103过载时所述移动性管理设备103从所述终端设备101接收的但未向所述服务设备104发送的上行数据。
在本发明的另一实施例中,如果所述移动性管理设备103与所述服务设备104已建立用户面承载,且所述移动性管理设备103从所述服务设备104接收有下行数据, 当所述移动性管理设备103判断其过载时,所述接收器1011接收所述移动性管理设备103通过NAS信令发送的下行数据,例如所述移动性管理设备103向所述接入网设备102发送初始上下文建立请求(Initial Context Setup Request),所述初始上下文建立请求携带所述下行数据,所述发送器1013向所述接入网设备102发送RRC连接建立请求后,接收所述接入网设备发送的无线承载建立完成(Radio Bearers Setup Complete)消息,所述无线承载建立完成消息携带所述下行数据。在本发明的另一实施例中,所述初始上下文建立请求和所述无线承载建立完成消息还携带所述回退定时器。
例如,在本发明的另一实施例中,如果所述移动性管理设备103与所述服务设备104已建立用户面承载,且所述移动性管理设备103从所述服务设备104接收有下行数据,当所述移动性管理设备103判断其过载时,所述移动性管理设备103通过NAS消息(例如,下行S1-AP消息,例如所述下行S1-AP消息为下行NAS传输消息)向所述接入网设备102发送所述回退定时器和下行数据,所述发送器1013再接收所述接入网设备104通过NAS消息(例如下行RRC直接传输消息)发送的所述回退定时器和下行数据。
在本发明的另一实施例中,当回退定时器届满时或者所述发送器1013传输完所述终端设备101需要传输的上行数据时,所述处理器1012再发起PDN连接建立,在所述PDN连接建立后,所述发送器1013通过NAS消息携带上行数据发送给所述移动性管理设备103。
在本发明的另一实施例中,当所述移动性管理设备103未过载时,所述接收器1011还用于继续通过NAS消息向所述移动性管理设备103发送上行数据,所述移动性管理设备103将所接收的上行数据向所述服务设备104发送。
如图11所示,为本发明另一实施例的一种LTE通信***的数据处理方法的流程示意图,结合图5的LTE通信***架构,所述数据处理方法主要过程如下所述。
步骤1101,空闲态的终端设备与eNB之间进行无线资源控制(Radio Resource Control,RRC)连接建立,所述终端设备在RRC连接建立过程中通过NAS消息向eNB发送上行数据。
当终端设备和MME没有NAS信令连接即专用S1连接未建立时,该终端设备处于空闲(ECM Idle)状态,ECM Idle态的终端设备与eNB之间进行RRC连接建立(RRC connection establishment),所述终端设备在RRC连接建立过程中向eNB发送控制面服务请求(control plane service request),所述控制面服务请求携带NAS DATA PDU,其中,所述NAS DATA PDU携带上行数据和EBI,其中所述控制面服务请求是一种NAS消息,属于控制面消息。
步骤1102,eNB通过S1-MME接口向MME发送Initial UE message。
例如,所述Initial UE message携带所述控制面服务请求,所述控制面服务请求为一种NAS消息且携带所述NAS DATA PDU,其中,所述NAS DATA PDU携带所述上行数据和所述EBI。
步骤1103,所述MME判断其是否过载以及所述MME与所述S-GW之间的S11用户面(S11-U)承载是否已建立。
所述MME接收所述终端设备通过服务请求发送的上行数据后,所述MME根据当前收到所有数据(例如上行和/或下行数据)和所有信令(例如上行和/或下行信令)以及其处理能力判断其处理能力是否达到阈值,例如,所述MME判断其已经使用的计算资源或者存储资源是否大于或等于第一阈值(例如等于最大值)或者所述MME判断其可利用的计算资源或者存储资源是否小于或等于第二阈值。
如果所述MME判断其处理能力达到所述阈值,例如,所述MME判断其已经使用的计算资源或者存储资源大于或等于所述第一阈值(例如等于最大值)或者所述MME判断其可利用的计算资源或者存储资源小于或等于所述第二阈值,所述MME确定其过载。如果所述MME判断其处理能力未达到所述阈值,例如,所述MME判断其已经使用的计算资源或者存储资源小于所述第一阈值(例如未达到最大值)或者所述MME判断其可利用的计算资源或者存储资源大于所述第二阈值,所述MME确定其未过载。
所述MME还判断所述MME与所述S-GW之间S11-U承载是否已建立。
1104,如果所述MME过载且所述S11-U还未建立,所述MME向所述eNB发送初始上下文建立请求(Initial context setup request)。
所述Initial context setup request携带Service Accept message,所述Service Accept message携带用户面传输指示和重传指示,所述用户面传输指示用于通知所述终端设备此后通过用户面传输上行数据,即所述用户面传输指示用于通知所述终端设备通过用户面传输所述MME过载时所述MME通过控制面从所述终端设备接收的上行数据之后的上行数据。所述重传指示用于通知所述终端设备通过用户面重传所述移动性管理设备过载时所述移动性管理设备通过控制面从所述终端设备接收的但未向所述服务设备发送的上行数据。在本发明的另一实施例中,所述Service Accept message还携带回退定时器(back-off timer),该回退定时器用于指示所述终端设备在该回退定时器时间段内不发送NAS消息。
在本发明的另一实施例中,所述Service Accept message的头域或空闲字段携带所述用户面传输指示、重传指示和回退定时器。
在本发明的另一实施例中,上述用户面传输指示、重传指示和回退定时器可以分别通过不同的NAS消息携带或者通过两个不同的NAS消息的头域或空闲字段携带。
步骤1105,所述终端设备与所述eNB进行数据无线承载建立(Radio Bearers Setup)。
在数据无线承载建立过程中,所述eNB将所述用户面传输指示、重传指示和回退定时器发送给所述终端设备,例如,所述终端设备向所述eNB发送无线承载建立请求,所述eNB向所述终端设备发送的无线承载建立完成(Radio Bearers Setup Complete)消息的头域或空闲字段携带所述用户面传输指示、重传指示和回退定时器。
步骤1106,所述终端设备根据所述用户面传输指示确定此后通过用户面传输上行数据以及根据所述重传指示确定通过用户面重传所述MME过载时所述MME通过控制面从所述终端设备接收的但未向所述S-GW发送的上行数据。
所述终端设备还根据所述回退定时器在该回退定时器时间段内不发送NAS消息。
步骤1107,所述终端设备通过用户面传输上行数据。
例如,所述终端设备在收到所述重传指示后,所述终端设备通过所述数据无线承载向所述所述eNB发送所述MME过载时所述MME通过控制面从所述终端设备接收的但未向所述S-GW发送的上行数据,直到所述终端设备传输完该上行数据。
在本发明的另一实施例中,当所述MME过载时,所述MME丢弃过载时所述MME通过控制面从所述终端设备接收的但未向所述S-GW发送的所述上行数据,例如所述MME的缓存中清除所述MME过载时通过控制面从所述终端设备接收的但未向所述S-GW发送的所述上行数据。
步骤1108,所述eNB向所述MME发送初始上下文建立完成消息(Init context setup complete message)。
步骤1109,所述MME向所述S-GW发送Modify Bearer request。
所述MME向所述S-GW发送Modify Bearer request,所述Modify Bearer request携带所述eNB的地址和隧道标识,所述Modify Bearer request用于请求建立所述eNB与所述S-GW之间的S1用户面(S1-U)承载。
步骤1110,所述S-GW向所述MME发送modify Bearer response。
所述MME收到modify Bearer response后,所述eNB与所述S-GW之间的S1-U承载建立完成。
所述终端设备根据收到的所述用户面传输指示,通过用户面向所述S-GW发送所述MME过载之后的上行数据,即所述MME过载时所述MME通过控制面从所述终端设备接收的上行数据之后的上行数据,直到所述终端设备需要传输的上行数据传输完成或所述终端设备与所述MME再次建立PDN连接,例如,所述终端设备通过所述数据无线承载向所述eNB发送所述MME过载之后的上行数据,所述eNB将收到的上行数据通过所述eNB与所述S-GW之间的S1-U承载向所述S-GW发送,由所述S-GW将所述上行数据向所述P-GW发送。
所述步骤1111,所述P-GW依次通过所述S-GW和eNB向所述终端设备发送下行数据(Downlik data)。
例如,所述P-GW在用户面依次通过所述S-GW和eNB向所述终端设备发送下行数据,例如,所述P-GW向所述S-GW发送下行数据,所述S-GW将所述下行数据通过S1-U承载向所述eNB发送,所述eNB在将所述下行数据向所述终端设备发送。
上述实施例描述为LTE通信***中一种数据处理的方法,在新无线接入网络(例 如5G通信***)中也采用类似的数据处理方法,例如,如图12所示,为本发明另一实施例的一种新无线接入网络的数据处理方法的流程示意图,结合图6的网络架构,所述数据处理方法主要过程如下所述。
步骤1201,空闲态态的终端设备与gNB之间进行无线资源控制(Radio Resource Control,RRC)连接建立,所述终端设备在RRC连接建立过程中通过NAS消息向gNB发送上行数据。
空闲态的所述终端设备在RRC连接建立过程中向gNB发送控制面服务请求,所述控制面服务请求携带NAS DATA PDU,其中,所述NAS DATA PDU携带上行数据和EBI,其中所述控制面服务请求是一种NAS消息,属于控制面消息。
步骤1202,gNB通过N2接口向AMF发送Initial UE message。
例如,所述Initial UE message携带控制面服务请求(control plane service request),所述control plane service request为一种NAS消息,携带所述NAS DATA PDU,其中,所述NAS DATA PDU携带所述上行数据和所述EBI。
步骤1203,所述AMF判断其是否过载以及所述AMF与SMF之间的N11用户面(N11-U)承载是否已建立。
所述AMF接收所述终端设备通过服务请求发送的上行数据后,所述AMF根据当前收到所有数据(例如上行和/或下行数据)和所有信令(例如上行和/或下行信令)以及其处理能力判断其处理能力是否达到阈值,例如,所述AMF判断其已经使用的计算资源或者存储资源是否大于或等于第一阈值(例如等于最大值)或者所述AMF判断其可利用的计算资源或者存储资源是否小于或等于第二阈值。
如果所述AMF判断其处理能力达到所述阈值,例如,所述AMF判断其已经使用的计算资源或者存储资源大于或等于所述第一阈值(例如等于最大值)或者所述AMF判断其可利用的计算资源或者存储资源小于或等于所述第二阈值,所述AMF确定其过载。如果所述AMF判断其处理能力未达到所述阈值,例如,所述AMF判断其已经使用的计算资源或者存储资源小于所述第一阈值(例如未达到最大值)或者所述AMF判断其可利用的计算资源或者存储资源大于所述第二阈值,所述AMF确定其未过载。
所述AMF还判断所述AMF与所述SMF之间N11-U承载是否已建立。
步骤1204,如果所述AMF过载且所述N11-U还未建立,所述AMF向所述gNB发送Initial context setup request。
所述Initial context setup request携带Service Accept message,所述Service Accept message携带用户面传输指示和重传指示,所述用户面传输指示用于通知所述终端设备此后通过用户面传输上行数据,所述重传指示用于通知所述终端设备通过用户面重传所述移动性管理设备过载时所述移动性管理设备通过控制面从所述终端设备接收的但未向所述服务设备发送的上行数据。在本发明的另一实施例中,所述Service Accept message还携带回退定时器(back-off timer),该回退定时器用于指示所述终端设备在该回退定时器时间段内不发送NAS消息。
在本发明的另一实施例中,所述Service Accept message的头域或空闲字段携带所述用户面传输指示、重传指示和回退定时器。
在本发明的另一实施例中,上述用户面传输指示、重传指示和回退定时器可以分别通过不同的NAS消息携带或者通过两个不同的NAS消息的头域或空闲字段携带。
步骤1205,所述终端设备与所述gNB进行数据无线承载建立。
在数据无线承载建立过程中,所述gNB将所述用户面传输指示、重传指示和回退定时器发送给所述终端设备,例如,所述终端设备向所述gNB发送无线承载建立请求,所述gNB向所述终端设备发送的无线承载建立完成(Radio Bearers Setup Complete)消息的头域或空闲字段携带所述用户面传输指示、重传指示和回退定时器。
步骤1206,所述终端设备根据所述用户面传输指示确定此后通过用户面传输上行数据以及根据所述重传指示确定通过用户面重传所述AMF过载时所述AMF通过控制面从所述终端设备接收的但未向所述SMF发送的上行数据。
所述终端设备还根据所述回退定时器在该回退定时器时间段内不发送NAS消息。
步骤1207,所述终端设备通过用户面传输上行数据。
例如,所述终端设备在收到所述重传指示后,所述终端设备通过所述数据无线承载向所述所述gNB发送所述AMF过载时所述AMF通过控制面从所述终端设备接收的但未向所述SMF发送的上行数据,直到所述终端设备传输完该上行数据。所述gNB将收到的所述上行数据通过所述gNB与所述UPF的之间的N3用户面(N3-U)承载向所述UPF发送,由所述UPF将所述上行数据向所述DN发送。
在本发明的另一实施例中,当所述AMF过载时,所述AMF丢弃过载时所述AMF通过控制面从所述终端设备接收的但未向所述SMF发送的所述上行数据,例如所述AMF的缓存中清除所述AMF过载时通过控制面从所述终端设备接收的但未向所述SMF发送的所述上行数据。
步骤1208,所述gNB向所述AMF发送初始上下文建立完成消息(Init context setup complete message)。
步骤1209,所述AMF向所述UPF发送Modify Bearer request。
所述AMF向所述UPF发送Modify Bearer request,所述Modify Bearer request携带所述gNB的地址和隧道标识,所述Modify Bearer request用于请求建立所述gNB与所述UPF之间的N3用户面(N3-U)承载。
步骤1210,所述UPF向所述AMF发送modify Bearer response。
所述AMF收到modify Bearer response后,所述gNB与所述UPF之间的N3-U承载建立完成。
所述终端设备根据收到的所述用户面传输指示,通过用户面向所述UPF发送所述AMF过载之后的上行数据,即所述AMF过载时所述AMF通过控制面从所述终端设 备接收的上行数据之后的上行数据,直到所述终端设备需要传输的上行数据传输完成或所述终端设备与所述AMF再次建立PDN连接,例如,所述终端设备通过所述数据无线承载向所述所述gNB发送,所述gNB将收到的上行数据通过所述gNB与所述UPF之间的N3-U承载向所述UPF发送,由所述UPF将所述上行数据向所述DN发送。
所述步骤1211,所述DN依次通过所述UPF和gNB向所述终端设备发送下行数据(Downlik data)。
例如,所述DN在用户面依次通过所述UPF和gNB向所述终端设备发送下行数据。
如图13所示,为本发明另一实施例的一种数据处理方法的流程示意图,所述数据处理方法可以适用于各种通信***,例如LTE通信***或新无线接入网络,为描述的简洁,本实施例的所述数据处理方法以图4的网络架构为例进行说明,主要过程如下所述。
步骤1301,移动性管理设备接收终端设备通过NAS消息发送的上行数据,根据所述移动性管理设备的处理能力确定所述移动性管理设备是否过载。
例如,所述终端设备通过接入网设备向移动性管理设备发送NAS消息,其中,所述所述NAS消息携带上行数据,例如,所述NAS消息为控制面的服务请求,所述移动性管理设备接收所述终端设备通过服务请求发送的上行数据后,所述移动性管理设备根据当前收到所有数据(例如上行和/或下行数据)和所有信令(例如上行和/或下行信令)以及其处理能力判断其处理能力是否达到阈值,例如,所述移动性管理设备判断其已经使用的计算资源或者存储资源是否大于或等于第一阈值(例如等于最大值)或者所述移动性管理设备判断其可利用的计算资源或者存储资源是否小于或等于第二阈值。
如果所述移动性管理设备判断其处理能力达到所述阈值,例如,所述移动性管理设备判断其已经使用的计算资源或者存储资源大于或等于所述第一阈值(例如等于最大值)或者所述移动性管理设备判断其可利用的计算资源或者存储资源小于或等于所述第二阈值,所述移动性管理设备确定其过载。如果所述移动性管理设备判断其处理能力未达到所述阈值,例如,所述移动性管理设备判断其已经使用的计算资源或者存储资源小于所述第一阈值(例如未达到最大值)或者所述移动性管理设备判断其可利用的计算资源或者存储资源大于所述第二阈值,所述移动性管理设备确定其未过载。
步骤1302,当所述移动性管理设备过载时,所述移动性管理设备通知所述终端设备此后通过用户面传输上行数据。
例如,所述移动性管理设备向所述终端设备发送NAS消息,例如上下文建立请求(context setup request)或服务接受消息(Service Accept message),所述NAS消息携带用户面传输指示,所述用户面传输指示用于通知所述终端设备此后通过用户面传输上行数据,即所述用户面传输指示用于通知所述终端设备通过用户面传输所述移动性管理设备过载时所述移动性管理设备通过控制面从所述终端设备接收的上行数据之后的上行数据。在本发明的另一实施例中,所述NAS消息还携带回退定时器(back-off timer),该回退定时器用于指示所述终端设备在该回退定时器时间段内不发送NAS消息。
在本发明的另一实施例中,上述用户面传输指示和回退定时器可以分别通过两个不同的NAS消息携带。
例如,所述接入网设备与所述服务设备建立用户面承载后,所述终端设备通过数据无线承载向所述接入网设备发送上行数据,所述接入网设备将所述上行数据通过所述接入网设备与所述服务设备之间的所述用户面承载向所述服务设备发送。
步骤1303,所述移动性管理设备通过信令消息将所述移动性管理设备过载时通过控制面从所述终端设备接收的但未向所述服务设备发送的所述上行数据发送给所述服务设备。
例如,当所述移动性管理设备与所述服务设备之间的用户面承载未建立时,所述移动性管理设备向所述服务设备发送信令消息,例如GPRS隧道协议(GPRS Tunneling Protocol,GTP)消息或Modify Bearer Request消息,所述信令消息携带所述移动性管理设备过载时所述移动性管理设备通过控制面从所述终端设备接收的但未向所述服务设备发送的所述上行数据。例如,所述Modify Bearer Request消息用于请求建立所述接入网设备与所述服务设备之间的用户面承载。所述Modify Bearer Request消息携带所述移动性管理设备过载时所述移动性管理设备通过控制面从所述终端设备接收的但未向所述服务设备发送的所述上行数据,例如,所述Modify Bearer Request消息通过其头域或空闲字段携带所述移动性管理设备过载时通过控制面从所述终端设备接收的但未向所述服务设备发送的所述上行数据。
步骤1304,当所述移动性管理设备未过载时,所述移动性管理设备继续接收所述终端设备通过NAS消息发送的上行数据,并将所接收的上行数据向所述服务设备发送。
在本发明的另一实施例中,当回退定时器届满时或者所述终端设备传输完上行数据时,所述终端设备重新发起PDN连接建立,在所述PDN连接建立后,所述终端设备通过NAS消息携带上行数据发送给所述移动性管理设备。
因此,上述描述的数据处理方法,当所述移动性管理设备过载时,所述移动性管理设备通过Modify Bearer Request消息将所述移动性管理设备过载时通过控制面从所述终端设备接收的但未向所述服务设备发送的所述上行数据发送给所述服务设备,因此,当所述移动性管理设备和所述服务设备之间的承载未建立时,不需要先建立承载再释放承载,节省信令和资源。
如图14所示,为本发明另一实施例的一种通信***的结构示意图,所述通信***可以为2G、3G、4G通信***或新无线接入网络,例如GSM***、CDMA***、TDMA***、WCDMA***、FDMA***、OFDMA***、SC-FDMA***、GPRS***、LTE***、UMTS网络、新无线接入网络以及其他此类通信***,其中,新无线接入网络也称为5G网络、下一代网络等。
所述通信***可以包括终端设备141、接入网设备142、数据处理装置143和服务设备144,所述接入网设备142可以是2G、3G或4G通信***的基站,也可以是5G通信***的gNB,根据通信***的制式不同(即接入技术不同),各个设备的名词和各 个设备之间的接口名词也不同。例如,所述数据处理装置143可以为移动性管理设备,例如,在LTE通信***中,所述接入网设备142为eNB,所述数据处理装置143为MME,所述服务设备144为S-GW;又例如,在新无线接入网络中,所述接入网设备142为gNB,所述数据处理装置143为AMF实体,所述服务设备144包括SMF实体和UPF实体,所述LTE通信***和新无线接入网络的网络架构以及接口具体如图5和图6所示。
所述终端设备141可以为水表、电表等IoT设备。
所述数据处理装置143包括接收器1431、处理器1432、发送器1433和存储器1434,其中,所述接收器1431、处理器1432、发送器1433和存储器1434相互之间通过总线通信。
在本申请实施例中,该处理器1432可以是EPLD、FPGA、DSP芯片、ASIC、或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。
所述存储器1434用于存储代码或指令信息,还可以存储设备类型的信息。该存储器1434可以包括ROM和RAM,用于向所述处理器1432提供指令和数据。所述存储器1434的一部分还可以包括非易失性随机存取存储器。
所述接收器1431用于接收所述终端设备141通过NAS消息发送的上行数据,根据所述处理器1432的处理能力确定所述数据处理装置143是否过载。
例如,所述接收器1431接收所述终端设备141通过所述接入网设备142发送的NAS消息,其中,所述所述NAS消息携带上行数据,例如,所述NAS消息为控制面的服务请求。所述接收器1431接收所述终端设备141通过服务请求发送的上行数据后,所述处理器1432用于根据所述接收器1431当前收到所有数据(例如上行和/或下行数据)和所有信令(例如上行和/或下行信令)以及其处理能力判断其处理能力是否达到阈值,例如,所述处理器1432判断其已经使用的计算资源或者存储资源是否大于或等于第一阈值(例如等于最大值)或者所述处理器1432判断其可利用的计算资源或者存储资源是否小于或等于第二阈值。
如果所述处理器1432判断其处理能力达到所述阈值,例如,所述处理器1432判断其已经使用的计算资源或者存储资源大于或等于所述第一阈值(例如等于最大值)或者所述处理器1432判断其可利用的计算资源或者存储资源小于或等于所述第二阈值,所述处理器1432确定其过载。如果所述处理器1432判断其处理能力未达到所述阈值,例如,所述处理器1432判断其已经使用的计算资源或者存储资源小于所述第一阈值(例如未达到最大值)或者所述处理器1432判断其可利用的计算资源或者存储资源大于所述第二阈值,所述处理器1432确定其未过载。
当所述处理器1432判断过载时,所述发送器1433用于通知所述终端设备141此后通过用户面传输上行数据。
例如,所述发送器1433向所述终端设备141发送NAS消息,例如上下文建立请求(context setup request)或服务接受消息(Service Accept message),所述NAS消息携带用户面传输指示,所述用户面传输指示用于通知所述终端设备141此后通过用户面 传输上行数据,即所述用户面传输指示用于通知所述终端设备141通过用户面传输所述处理器1432确定过载时所述接收器1431通过控制面从所述终端设备141接收的上行数据之后的上行数据。在本发明的另一实施例中,所述NAS消息还携带回退定时器(back-off timer),该回退定时器用于指示所述终端设备141在该回退定时器时间段内不发送NAS消息。
例如,所述接入网设备142与所述服务设备144建立用户面承载后,所述终端设备141通过数据无线承载向所述接入网设备142发送上行数据,所述接入网设备142将所述上行数据通过所述接入网设备142与所述服务设备144之间的所述用户面承载向所述服务设备144发送。
在本发明的另一实施例中,上述用户面传输指示和回退定时器可以分别通过两个不同的NAS消息携带。
所述发送器1433还用于向所述服务设备144发送信令消息,其中,所述信令消息携带所述数据处理装置143过载时通过控制面从所述终端设备141接收的但未向所述服务设备144发送的所述上行数据发送给。
例如,当所述数据处理装置143与所述服务设备144之间的用户面承载未建立时,所述发送器1433还用于向所述服务设备144发送信令消息,例如GPRS隧道协议(GPRS Tunneling Protocol,GTP)消息或Modify Bearer Request消息,所述信令消息携带所述移动性管理设备过载时所述移动性管理设备通过控制面从所述终端设备接收的但未向所述服务设备发送的所述上行数据。例如,所述Modify Bearer Request消息用于请求建立所述接入网设备142与所述服务设备144之间的用户面承载。所述Modify Bearer Request消息携带所述数据处理装置143过载时所述数据处理装置143通过控制面从所述终端设备141接收的但未向所述服务设备144发送的所述上行数据,例如,所述Modify Bearer Request消息通过其头域或空闲字段携带所述数据处理装置143过载时通过控制面从所述终端设备141接收的但未向所述服务设备144发送的所述上行数据。
当所述处理器1432判断未过载时,所述接收器1431还用于继续接收所述终端设备141通过NAS消息发送的上行数据,所述发送器1433还用于将所接收的上行数据向所述服务设备144发送。
在本发明的另一实施例中,当回退定时器届满时或者所述终端设备141传输完上行数据时,所述终端设备141重新发起PDN连接建立,在所述PDN连接建立后,所述终端设备141通过NAS消息携带上行数据发送给所述数据处理装置143。
因此,上述描述的数据处理方法,当所述移动性管理设备过载时,所述移动性管理设备通过Modify Bearer Request消息将所述移动性管理设备过载时通过控制面从所述终端设备141接收的但未向所述服务设备144发送的所述上行数据发送给所述服务设备144,因此,当所述移动性管理设备和所述服务设备144之间的承载未建立时,不需要先建立承载再释放承载,节省信令和资源。
如图15所示,为本发明另一实施例的一种LTE通信***中的数据处理方法的流程示意图,结合图5的LTE通信***结构图,所述数据处理方法主要过程如下所述。
步骤1501,空闲态的终端设备与eNB之间进行无线资源控制(Radio Resource Control,RRC)连接建立,所述终端设备在RRC连接建立过程中通过NAS消息向eNB发送上行数据。
空闲态的所述终端设备在RRC连接建立过程中向eNB发送控制面服务请求,所述控制面服务请求携带NAS DATA PDU,其中,所述NAS DATA PDU携带上行数据和EBI,其中所述控制面服务请求是一种NAS消息,属于控制面消息。
步骤1502,eNB通过S1-MME接口向MME发送Initial UE message。
例如,所述Initial UE message携带控制面服务请求,所述control plane service request为一种NAS消息,携带所述NAS DATA PDU,其中,所述NAS DATA PDU携带所述上行数据和所述EBI。
步骤1503,所述MME判断其是否过载以及所述MME与所述S-GW之间的S11用户面(S11-U)承载是否已建立。
所述MME接收所述终端设备通过服务请求发送的上行数据后,所述MME根据当前收到所有数据(例如上行和/或下行数据)和所有信令(例如上行和/或下行信令)以及其处理能力判断其处理能力是否达到阈值,例如,所述MME判断其已经使用的计算资源或者存储资源是否大于或等于第一阈值(例如等于最大值)或者所述MME判断其可利用的计算资源或者存储资源是否小于或等于第二阈值。
如果所述MME判断其处理能力达到所述阈值,例如,所述MME判断其已经使用的计算资源或者存储资源大于或等于所述第一阈值(例如等于最大值)或者所述MME判断其可利用的计算资源或者存储资源小于或等于所述第二阈值,所述MME确定其过载。如果所述MME判断其处理能力未达到所述阈值,例如,所述MME判断其已经使用的计算资源或者存储资源小于所述第一阈值(例如未达到最大值)或者所述MME判断其可利用的计算资源或者存储资源大于所述第二阈值,所述MME确定其未过载。
步骤1504,如果所述MME过载且所述S11-U还未建立,所述MME向所述eNB发送初始上下文建立请求(Initial context setup request)。
所述Initial context setup request携带Service Accept message,所述Service Accept message携带用户面传输指示,所述用户面传输指示用于通知所述终端设备此后通过用户面传输上行数据,即所述用户面传输指示用于通知所述终端设备通过用户面传输所述MME过载时所述MME通过控制面从所述终端设备接收的上行数据之后的上行数据。在本发明的另一实施例中,所述Service Accept message还携带回退定时器(back-off timer),该回退定时器用于指示所述终端设备在该回退定时器时间段内不发送NAS消息。
在本发明的另一实施例中,所述Service Accept message的头域或空闲字段携带所述用户面传输指示和回退定时器。
在本发明的另一实施例中,上述用户面传输指示和回退定时器可以分别通过不 同的NAS消息携带。
步骤1505,所述终端设备与所述eNB进行数据无线承载建立。
在数据无线承载建立过程中,所述eNB将所述用户面传输指示和回退定时器发送给所述终端设备,例如,所述终端设备向所述eNB发送无线承载建立请求,所述eNB向所述终端设备发送的无线承载建立完成(Radio Bearers Setup Complete)消息的头域或空闲字段携带所述用户面传输指示和回退定时器。
步骤1506,所述终端设备通过用户面传输上行数据。
例如,所述终端设备在收到所述用户面传输指示后,所述终端设备根据所述用户面传输指示确定此后通过用户面传输上行数据,例如,所述终端设备通过数据无线承载向所述所述eNB发送所述MME过载时所述MME通过控制面从所述终端设备接收的上行数据之后的上行数据,直到所述终端设备需要传输的上行数据传输完成或所述终端设备与所述MME再次建立PDN连接。
步骤1507,所述eNB向所述MME发送初始上下文建立完成消息(Init context setup complete message)。
步骤1508,所述MME向所述S-GW发送Modify Bearer request。
所述MME向所述S-GW发送Modify Bearer request,所述Modify Bearer request用于请求建立所述eNB与所述S-GW之间的S1-U承载,所述Modify Bearer request携带所述MME过载时通过控制面从所述终端设备接收的但未向所述S-GW发送的所述上行数据、所述eNB的地址和隧道标识,例如通过所述Modify Bearer request的头域或空闲字段携带所述MME过载时通过控制面从所述终端设备接收的但未向所述S-GW发送的所述上行数据。
步骤1509,所述S-GW向所述MME发送modify Bearer response。
所述MME收到所述modify Bearer response后,所述eNB与所述S-GW之间的S1-U承载建立完成。
所述eNB将收到的上行数据通过所述eNB与所述S-GW之间的S1用户面(S1-U)承载向所述S-GW发送,由所述S-GW将所述上行数据向所述P-GW发送。
所述步骤1510,所述P-GW在用户面依次通过所述S-GW和eNB向所述终端设备发送下行数据(Downlik data)。
例如,所述P-GW向所述S-GW发送下行数据,所述S-GW将所述下行数据通过S1-U承载向所述eNB发送,所述eNB在将所述下行数据向所述终端设备发送。
如图16所示,为本发明另一实施例的一种新无线接入网络的数据处理方法的流程示意图,结合图6的新无线接入网络结构图,所述数据处理方法主要过程如下所述。
步骤1601,空闲态的终端设备与gNB之间进行无线资源控制(Radio Resource Control,RRC)连接建立,所述终端设备在RRC连接建立过程中通过NAS消息向gNB发送上行数据。
空闲态的所述终端设备在RRC连接建立过程中向gNB发送控制面服务请求,所述控制面服务请求携带NAS DATA PDU,其中,所述NAS DATA PDU携带上行数据和EBI,其中所述控制面服务请求是一种NAS消息,属于控制面消息。
步骤1602,gNB通过N2接口向AMF发送Initial UE message。
例如,所述Initial UE message携带控制面服务请求,所述control plane service request为一种NAS消息,携带所述NAS DATA PDU,其中,所述NAS DATA PDU携带所述上行数据和所述EBI。
步骤1603,所述AMF判断其是否过载以及所述AMF与所述SMF之间的N11用户面(N11-U)承载是否已建立。
所述AMF接收所述终端设备通过服务请求发送的上行数据后,所述AMF根据当前收到所有数据(例如上行和/或下行数据)和所有信令(例如上行和/或下行信令)以及其处理能力判断其处理能力是否达到阈值,例如,所述AMF判断其已经使用的计算资源或者存储资源是否大于或等于第一阈值(例如等于最大值)或者所述AMF判断其可利用的计算资源或者存储资源是否小于或等于第二阈值。
如果所述AMF判断其处理能力达到所述阈值,例如,所述AMF判断其已经使用的计算资源或者存储资源大于或等于所述第一阈值(例如等于最大值)或者所述AMF判断其可利用的计算资源或者存储资源小于或等于所述第二阈值,所述AMF确定其过载。如果所述AMF判断其处理能力未达到所述阈值,例如,所述AMF判断其已经使用的计算资源或者存储资源小于所述第一阈值(例如未达到最大值)或者所述AMF判断其可利用的计算资源或者存储资源大于所述第二阈值,所述AMF确定其未过载。
步骤1604,如果所述AMF过载且所述N11-U还未建立,所述AMF向所述gNB发送初始上下文建立请求(Initial context setup request)。
所述Initial context setup request携带Service Accept message,所述Service Accept message携带用户面传输指示,所述用户面传输指示用于通知所述终端设备此后通过用户面传输上行数据,即所述用户面传输指示用于通知所述终端设备通过用户面传输所述AMF过载时所述AMF通过控制面从所述终端设备接收的上行数据之后的上行数据。在本发明的另一实施例中,所述Service Accept message还携带回退定时器(back-off timer),该回退定时器用于指示所述终端设备在该回退定时器时间段内不发送NAS消息。
在本发明的另一实施例中,所述Service Accept message的头域或空闲字段携带所述用户面传输指示和回退定时器。
在本发明的另一实施例中,上述用户面传输指示和回退定时器可以分别通过不同的NAS消息携带。
步骤1605,所述终端设备与所述gNB进行数据无线承载建立。
在数据无线承载建立过程中,所述gNB将所述用户面传输指示和回退定时器发送给所述终端设备,例如,所述终端设备向所述gNB发送无线承载建立请求,所述gNB向所述终端设备发送的无线承载建立完成(Radio Bearers Setup Complete)消息的头域 或空闲字段携带所述用户面传输指示和回退定时器。
步骤1606,所述终端设备通过用户面传输上行数据。
例如,所述终端设备在收到所述用户面传输指示后,所述终端设备根据所述用户面传输指示确定此后通过用户面传输上行数据,所述终端设备通过数据无线承载向所述所述gNB发送所述AMF过载时所述AMF通过控制面从所述终端设备接收的上行数据之后的上行数据,直到所述终端设备需要传输的上行数据传输完成或所述终端设备与所述AMF再次建立PDN连接。
步骤1607,所述gNB向所述AMF发送初始上下文建立完成消息(Init context setup complete message)。
步骤1608,所述AMF向所述UPF发送Modify Bearer request。
所述AMF向所述UPF发送Modify Bearer request,所述Modify Bearer request用于请求建立所述gNB与所述UPF之间的N3用户面(N3-U)承载,所述Modify Bearer request携带所述AMF过载时通过控制面从所述终端设备接收的但未向所述SMF发送的所述上行数据、所述gNB的地址和隧道标识,例如通过所述Modify Bearer request的头域或空闲字段携带所述AMF过载时通过控制面从所述终端设备接收的但未向所述SMF发送的所述上行数据。
步骤1609,所述UPF向所述AMF发送modify Bearer response。
所述AMF收到所述modify Bearer response,所述gNB与所述UPF之间的N3-U承载建立完成。
所述gNB将收到的上行数据通过所述gNB与所述UPF之间的N3-U承载向所述UPF发送,由所述UPF将所述上行数据向所述DN发送。
所述步骤1610,所述DN依次通过所述UPF和gNB向所述终端设备发送下行数据(Downlik data)。
例如,所述DN向所述UPF发送下行数据,所述UPF通过N3-U承载向所述gNB发送所述下行数据。
在本发明的另一实施例中,所述回退定时器的发送也可以是另一种方式,例如如图17所示,为本发明另一实施例的一种数据处理方法的流程示意图,本实施例的数据处理方法可以适用于各种通信***,例如LTE通信***和新无线接入网络。
步骤1701,移动性管理设备接收服务设备发送的下行数据。
本实施例中,所述移动性管理设备与所述服务设备之间的用户面承载已经建立,所述移动性管理设备通过该用户面承载接收所述服务设备发送的所述下行数据。
步骤1702,移动性管理设备判断其过载时,通过接入网设备向终端设备发送携带回退定时器和所述移动性管理设备过载时还未发送的下行数据的NAS消息。
所述移动性管理设备接收上行数据、下行数据和/或上下行控制信令后,所述移 动性管理设备判断其处理能力是否达到阈值,例如,所述移动性管理设备判断其已经使用的计算资源或者存储资源是否大于或等于第一阈值(例如等于最大值)或者所述移动性管理设备判断其可利用的计算资源或者存储资源是否小于或等于第二阈值。
如果所述移动性管理设备判断其处理能力达到所述阈值,例如,所述移动性管理设备判断其已经使用的计算资源或者存储资源大于或等于所述第一阈值(例如等于最大值)或者所述移动性管理设备判断其可利用的计算资源或者存储资源小于或等于所述第二阈值,所述移动性管理设备确定其过载。如果所述移动性管理设备判断其处理能力未达到所述阈值,例如,所述移动性管理设备判断其已经使用的计算资源或者存储资源小于所述第一阈值(例如未达到最大值)或者所述移动性管理设备判断其可利用的计算资源或者存储资源大于所述第二阈值,所述移动性管理设备确定其未过载。
所述移动性管理设备向所述接入网设备发送DL S1-AP消息,其中,所述DL S1-AP消息携带所述回退定时器和所述移动性管理设备过载时还未发送的下行数据,例如,所述DL S1-AP message可以为下行NAS传输(downlink NAS transport)消息。所述接入网设备通过RRC下行消息(RRC DL message)将所述回退定时器和所述移动性管理设备过载时还未发送的下行数据发送给所述终端设备,例如,所述接入网设备向所述终端设备发送下行RRC直接传输(Downlink RRC direct transfer)消息,所述Downlink RRC direct transfer消息携带所述回退定时器和所述移动性管理设备过载时还未发送的下行数据。
步骤1703,所述移动性管理设备释放所述移动性管理设备与接入网设备之间的信令连接和RRC信令连接。
如图18所示,为本发明另一实施例的一种通信***的结构示意图,所述通信***可以为2G、3G、4G通信***或新无线接入网络,例如GSM***、CDMA***、TDMA***、WCDMA***、FDMA***、OFDMA***、SC-FDMA***、GPRS***、LTE***、UMTS网络、新无线接入网络以及其他此类通信***,其中,新无线接入网络也称为5G网络、下一代网络等。
所述通信***可以包括终端设备181、接入网设备182、数据处理装置183和服务设备184,所述接入网设备182可以是2G、3G或4G通信***的基站,也可以是5G通信***的gNB,根据通信***的制式不同(即接入技术不同),各个设备的名词和各个设备之间的接口名词也不同。例如,所述数据处理装置183可以为移动性管理设备,在LTE通信***中,所述接入网设备182为eNB,所述数据处理装置183为MME,所述服务设备184为S-GW;又例如,在新无线接入网络中,所述接入网设备182为gNB,所述数据处理装置183为AMF实体,所述服务设备184包括SMF实体和UPF实体,所述LTE通信***和新无线接入网络的网络架构以及接口具体如图5和图6所示。
所述终端设备181可以为水表、电表等IoT设备。
所述数据处理装置183包括接收器1831、处理器1832、发送器1833和存储器1834,其中,所述接收器1831、处理器1832、发送器1833和存储器1834相互之间通过总线通信。
在本申请实施例中,该处理器1832可以是EPLD、FPGA、DSP芯片、ASIC、或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。
所述存储器1834用于存储代码或指令信息,还可以存储设备类型的信息。该存储器1834可以包括ROM和RAM,用于向所述处理器1832提供指令和数据,所述存储器1834的一部分还可以包括非易失性随机存取存储器。
所述接收器1831用于接收所述服务设备184发送的下行数据。
本实施例中,所述数据处理装置183与所述服务设备184之间的用户面承载已经建立,所述接收器1831通过该用户面承载接收所述服务设备184发送的所述下行数据。
所述处理器1832用于判断其是否过载时。
所述发送器1833用于通过接入网设备182向终端设备181发送携带回退定时器和所述移动性管理设备过载时还未发送的下行数据的NAS消息。
所述接收器1831接收上行数据、下行数据和/或上下行控制信令后,所述处理器1832判断其处理能力是否达到阈值,例如,所述处理器1832判断其已经使用的计算资源或者存储资源是否大于或等于第一阈值(例如等于最大值)或者所述处理器1832判断其可利用的计算资源或者存储资源是否小于或等于第二阈值。
如果所述处理器1832判断其处理能力达到所述阈值,例如,所述处理器1832判断其已经使用的计算资源或者存储资源大于或等于所述第一阈值(例如等于最大值)或者所述处理器1832判断其可利用的计算资源或者存储资源小于或等于所述第二阈值,所述处理器1832确定其过载。如果所述处理器1832判断其处理能力未达到所述阈值,例如,所述处理器1832判断其已经使用的计算资源或者存储资源小于所述第一阈值(例如未达到最大值)或者所述处理器1832判断其可利用的计算资源或者存储资源大于所述第二阈值,所述处理器1832确定其未过载。
所述发送器1833向所述接入网设备182发送DL S1-AP消息,其中,所述DL S1-AP消息携带所述回退定时器和所述处理器1832确定过载时还未发送的下行数据,例如,所述DL S1-AP message可以为下行NAS传输(downlink NAS transport)消息。所述接入网设备182通过RRC下行消息(RRC DL message)将所述回退定时器和所述数据处理装置183过载时还未发送的下行数据发送给所述终端设备181,例如,所述接入网设备182向所述终端设备181发送下行RRC直接传输(Downlink RRC direct transfer)消息,所述Downlink RRC direct transfer消息携带所述回退定时器和所述数据处理装置183过载时还未发送的下行数据。
所述处理器1832还用于释放所述移动性管理设备与接入网设备之间的信令连接和RRC信令连接。
如图19所示,为本发明另一实施例的一种LTE通信***的数据处理方法的流程示意图,本实施例中,MME与S-GW之间的S11-U承载已经建立。
步骤1901,空闲态的终端设备与eNB之间进行无线资源控制(Radio Resource  Control,RRC)连接建立,所述终端设备在RRC连接建立过程中通过NAS消息向eNB发送上行数据。
空闲态的所述终端设备在RRC连接建立过程中向eNB发送控制面服务请求,所述控制面服务请求携带NAS DATA PDU,其中,所述NAS DATA PDU携带上行数据和EBI,其中所述控制面服务请求是一种NAS消息,属于控制面消息。
步骤1902,eNB通过S1-MME接口向MME发送Initial UE message。
例如,所述Initial UE message携带控制面服务请求,所述控制面服务请求为一种NAS消息且携带所述NAS DATA PDU,其中,所述NAS DATA PDU携带所述上行数据和所述EBI。
步骤1903,所述MME通过S11-U承载向S-GW发送上行数据,由所述S-GW将所述上行数据转发给P-GW。
本实施例中,所述MME与所述S-GW已经建立S11-U承载,所述MME通过S11-U承载向S-GW发送上行数据。
步骤1904,所述MME通过所述S11-U承载接收所述P-GW通过所述S-GW发送的下行数据。
步骤1905,所述MME判断其是否过载。
所述MME接收上行数据、下行数据和/或上下行控制信令后,所述MME判断其处理能力是否达到阈值,例如,所述MME判断其已经使用的计算资源或者存储资源是否大于或等于第一阈值(例如等于最大值)或者所述MME判断其可利用的计算资源或者存储资源是否小于或等于第二阈值。
如果所述MME判断其处理能力达到所述阈值,例如,所述MME判断其已经使用的计算资源或者存储资源大于或等于所述第一阈值(例如等于最大值)或者所述MME判断其可利用的计算资源或者存储资源小于或等于所述第二阈值,所述MME确定其过载。如果所述MME判断其处理能力未达到所述阈值,例如,所述MME判断其已经使用的计算资源或者存储资源小于所述第一阈值(例如未达到最大值)或者所述MME判断其可利用的计算资源或者存储资源大于所述第二阈值,所述MME确定其未过载。
1906,所述MME通过S1-MME接口向所述eNB发送携带回退定时器(back-off timer)和所述MME过载时还未发送的下行数据的NAS消息。
例如,所述MME通过所述S1-MME接口向所述eNB发送下行S1-AP消息(DL S1-AP message),例如,所述DL S1-AP message可以为下行NAS传输(downlink NAS transport)消息,所述DL S1-AP message携带所述back-off timer和所述MME过载时还未发送的所述下行数据,例如,所述DL S1-AP message的头域或空闲字段携带所述back-off timer和所述MME过载时还未发送的所述下行数据,该回退定时器用于指示所述终端设备在该回退定时器时间段内不发送NAS消息。
步骤1907,所述eNB向所述终端设备转发所述back-off timer和所述MME过载时还未发送的所述下行数据。
例如,所述eNB向所述终端设备发送RRC下行消息(RRC DL message),例如,所述RRC DL message可以为下行RRC直接传输(Downlink RRC direct transfer)消息,所述RRC DL message携带所述back-off timer和所述MME过载时还未发送的所述下行数据,例如,所述RRC DL message的头域或空闲字段携带所述back-off timer和所述MME过载时还未发送的所述下行数据。
步骤1908,MME释放S1信令连接和RRC信令连接。
本实施例中,所述MME在发送完上行数据和/或下行数据后,释放S1信令连接和RRC信令连接,所述释放S1信令连接包括释放S1-MME控制面承载和S1-U承载。。
例如,如图20所示,为本发明另一实施例的一种新无线接入网络的数据处理方法的流程示意图,本实施例中,AMF与SMF之间的N11-U承载已经建立。
步骤2001,空闲态的终端设备与gNB之间进行无线资源控制(Radio Resource Control,RRC)连接建立,所述终端设备在RRC连接建立过程中通过NAS消息向eNB发送上行数据。
空闲态的所述终端设备在RRC连接建立过程中向gNB发送控制面服务请求,所述控制面服务请求携带NAS DATA PDU,其中,所述NAS DATA PDU携带上行数据和EBI,其中所述控制面服务请求是一种NAS消息,属于控制面消息。
步骤2002,gNB通过N2接口向AMF发送Initial UE message。
例如,所述Initial UE message携带控制面服务请求,所述控制面服务请求为一种NAS消息且携带所述NAS DATA PDU,其中,所述NAS DATA PDU携带所述上行数据和所述EBI。
步骤2003,所述AMF通过N11-U承载向SMF发送上行数据,由所述SMF将所述上行数据转发给UPF。
本实施例中,所述AMF与所述SMF已经建立N11-U承载,所述AMF通过N11-U承载向SMF发送上行数据。
步骤2004,所述AMF通过所述N11-U承载接收DN依次通过UPF和所述SMF发送的下行数据。
步骤2005,所述AMF判断其是否过载。
所述AMF接收上行数据、下行数据和/或上下行控制信令后,所述AMF判断其处理能力是否达到阈值,例如,所述AMF判断其已经使用的计算资源或者存储资源是否大于或等于第一阈值(例如等于最大值)或者所述AMF判断其可利用的计算资源或者存储资源是否小于或等于第二阈值。
如果所述AMF判断其处理能力达到所述阈值,例如,所述AMF判断其已经使用的计算资源或者存储资源大于或等于所述第一阈值(例如等于最大值)或者所述AMF 判断其可利用的计算资源或者存储资源小于或等于所述第二阈值,所述AMF确定其过载。如果所述AMF判断其处理能力未达到所述阈值,例如,所述AMF判断其已经使用的计算资源或者存储资源小于所述第一阈值(例如未达到最大值)或者所述AMF判断其可利用的计算资源或者存储资源大于所述第二阈值,所述AMF确定其未过载。
2006,所述AMF通过N2接口向所述gNB发送携带回退定时器(back-off timer)和所述AMF过载时还未发送的下行数据。
例如,所述AMF通过所述N2接口向所述gNB发送下行S1-AP消息(DL S1-AP message),例如,所述DL S1-AP message可以为下行NAS传输消息,所述DL S1-AP message携带所述回退定时器和所述AMF过载时还未发送的所述下行数据,例如,所述DL S1-AP message的头域或空闲字段携带所述回退定时器和所述AMF过载时还未发送的所述下行数据,该回退定时器用于指示所述终端设备在该回退定时器时间段内不发送NAS消息。
步骤2007,所述gNB向所述终端设备转发所述回退定时器和所述AMF过载时还未发送的所述下行数据。
例如,所述gNB向所述终端设备发送RRC下行消息(RRC DL message),例如,所述RRC DL message可以下行RRC直接传输消息,所述RRC DL message携带所述回退定时器和所述AMF过载时还未发送的所述下行数据,例如,所述RRC DL message的头域或空闲字段携带所述回退定时器和所述AMF过载时还未发送的所述下行数据。
步骤2008,AMF释放N2信令连接和RRC信令连接。
本实施例中,所述AMF在发送完上行数据和/或下行数据后,释放N2信令连接和RRC信令连接。所述释放N2信令连接包括释N2接口用户面承载和N3-U承载。
在本发明的另一实施例中,所述下行数据的发送还可以是另一种方式,例如,如图21所示,为本发明另一实施例的一种数据处理方法的流程示意图,本实施例的数据处理方法可以适用于各种通信***,例如LTE通信***和新无线接入网络。
步骤2101,移动性管理设备接收服务设备发送的下行数据。
本实施例中,所述移动性管理设备与所述服务设备之间的用户面承载已经建立,所述移动性管理设备通过该用户面承载接收所述服务设备发送的所述下行数据。
步骤2102,所述移动性管理设备判断其过载时,发起建立所述接入网设备与服务设备之间的用户面承载和建立所述接入网设备与所述终端设备之间的数据无线承载。
步骤2103,所述移动性管理设备通过NAS消息将所述移动性管理设备过载时还未发送的下行数据发送给所述终端设备。
例如,所述移动性管理设备接收上行数据、下行数据和/或上下行控制信令后,所述移动性管理设备判断其处理能力是否达到阈值,例如,所述移动性管理设备判断其已经使用的计算资源或者存储资源是否大于或等于第一阈值(例如等于最大值)或者所述移动性管理设备判断其可利用的计算资源或者存储资源是否小于或等于第二阈值。
如果所述移动性管理设备判断其处理能力达到所述阈值,例如,所述移动性管理设备判断其已经使用的计算资源或者存储资源大于或等于所述第一阈值(例如等于最大值)或者所述移动性管理设备判断其可利用的计算资源或者存储资源小于或等于所述第二阈值,所述移动性管理设备确定其过载。如果所述移动性管理设备判断其处理能力未达到所述阈值,例如,所述移动性管理设备判断其已经使用的计算资源或者存储资源小于所述第一阈值(例如未达到最大值)或者所述移动性管理设备判断其可利用的计算资源或者存储资源大于所述第二阈值,所述移动性管理设备确定其未过载。
所述移动性管理设备判断其过载时,发起建立所述接入网设备与服务设备之间的用户面承载和建立所述接入网设备与所述终端设备之间的数据无线承载。
例如,所述移动性管理设备向所述接入网设备发送初始上下文建立请求(Initial context setup request),所述初始上下文建立请求用于请求建立所述接入网设备与所述服务设备之间的用户面承载,所述初始上下文建立请求为一种NAS消息,所述初始上下文建立请求携带所述移动性管理设备过载时还未发送的所述下行数据。在本发明的另一实施例中,所述移动性管理设备接收所述接入网设备发送的服务请求后,向所述接入网设备发送所述初始上下文建立请求。
所述接入网设备接收所述终端设备发送的无线承载建立请求(Radio Bearers Setup Requet)后向所述终端设备发送无线承载建立完成(Radio Bearers Setup Complete)消息,其中,所述无线承载建立完成消息为一种NAS消息且携带所述移动性管理设备过载时还未发送的所述下行数据。
在本发明的另一实施例中,所述初始上下文建立请求和所述无线承载建立完成消息还携带回退定时器。
在本发明的另一实施例中,所述初始上下文建立请求和所述无线承载建立完成消息通过头域或空闲字段携带所述下行数据和所述回退定时器。
在本发明的另一实施例中,所述移动性管理设备还发起释放所述移动性管理设备与所述服务设备之间的用户面承载过程,例如,所述移动性管理设备向所述服务设备发送释放接入承载请求(Release Access Bearers Request),然后所述移动性管理设备接收所述服务设备发送的释放接入承载响应(Release Access Bearers Response)。
如图22所示,为本发明另一实施例的一种通信***的结构示意图,所述通信***可以为2G、3G、4G通信***或新无线接入网络,例如GSM***、CDMA***、TDMA***、WCDMA***、FDMA***、OFDMA***、SC-FDMA***、GPRS***、LTE***、UMTS网络、新无线接入网络以及其他此类通信***,其中,新无线接入网络也称为5G网络、下一代网络等。
所述通信***可以包括终端设备221、接入网设备222、数据处理装置223和服务设备224,所述接入网设备222可以是2G、3G或4G通信***的基站,也可以是5G通信***的gNB,根据通信***的制式不同(即接入技术不同),各个设备的名词和各个设备之间的接口名词也不同。例如,所述数据处理装置223可以为移动性管理设备,在LTE通信***中,所述接入网设备222为eNB,所述数据处理装置223为MME,所 述服务设备224为S-GW;又例如,在新无线接入网络中,所述接入网设备222为gNB,所述数据处理装置223为AMF实体,所述服务设备224包括SMF实体和UPF实体,所述LTE通信***和新无线接入网络的网络架构以及接口具体如图5和图6所示。
所述终端设备221可以为水表、电表等IoT设备。
所述数据处理装置223包括接收器2231、处理器2232、发送器2233和存储器2234,其中,所述接收器2231、处理器2232、发送器2233和存储器2234相互之间通过总线通信。
在本申请实施例中,该处理器2232可以是EPLD、FPGA、DSP芯片、ASIC、或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。
所述存储器2234用于存储代码或指令信息,还可以存储设备类型的信息。该存储器2234可以包括ROM和RAM,用于向所述处理器2232提供指令和数据,所述存储器2234的一部分还可以包括非易失性随机存取存储器。
所述接收器2231用于接收所述服务设备224发送的下行数据。
本实施例中,所述数据处理装置223与所述服务设备224之间的用户面承载已经建立,所述接收器2231用于通过该用户面承载接收所述服务设备224发送的所述下行数据。
所述处理器2232用于判断其过载时,确定建立所述接入网设备222与所述服务设备224之间的用户面承载和建立所述接入网设备222与所述终端设备221之间的数据无线承载。
所述发送器2233用于通过NAS消息将所述处理器2232确定过载时且所述发送器2233还未发送的下行数据发送给所述终端设备221。
例如,所述接收器2231接收上行数据、下行数据和/或上下行控制信令后,所述处理器2232判断其处理能力是否达到阈值,例如,所述处理器2232判断其已经使用的计算资源或者存储资源是否大于或等于第一阈值(例如等于最大值)或者所述处理器2232判断其可利用的计算资源或者存储资源是否小于或等于第二阈值。
如果所述处理器2232判断其处理能力达到所述阈值,例如,所述处理器2232判断其已经使用的计算资源或者存储资源大于或等于所述第一阈值(例如等于最大值)或者所述处理器2232判断其可利用的计算资源或者存储资源小于或等于所述第二阈值,所述处理器2232确定其过载。如果所述处理器2232判断其处理能力未达到所述阈值,例如,所述处理器2232判断其已经使用的计算资源或者存储资源小于所述第一阈值(例如未达到最大值)或者所述处理器2232判断其可利用的计算资源或者存储资源大于所述第二阈值,所述处理器2232确定其未过载。
例如,所述发送器2233向所述接入网设备222发送初始上下文建立请求(Initial context setup request),所述初始上下文建立请求用于请求建立所述接入网设备222与所述服务设备224之间的用户面承载,所述初始上下文建立请求为一种NAS消息,所述初始上下文建立请求携带所述处理器2232确定过载时且所述发送器2233还未发送的所 述下行数据。在本发明的另一实施例中,所述接收器2231接收所述接入网设备222发送的服务请求后,所述发送器2233向所述接入网设备222发送所述初始上下文建立请求。
所述接收器2231接收所述终端设备发送的无线承载建立请求(Radio Bearers Setup Requet)后,所述发送器2233向所述终端设备221发送无线承载建立完成(Radio Bearers Setup Complete)消息,其中,所述无线承载建立完成消息为一种NAS消息且携带所述处理器2232确定过载时且所述发送器2233还未发送的所述下行数据。
在本发明的另一实施例中,所述初始上下文建立请求和所述无线承载建立完成还携带回退定时器。
在本发明的另一实施例中,所述初始上下文建立请求和所述无线承载建立完成通过头域或空闲字段携带所述下行数据和所述回退定时器。
在本发明的另一实施例中,所述处理器2232还用于释放所述数据处理装置223与所述服务设备224之间的用户面承载,例如,所述发送器2233向所述服务设备224发送释放接入承载请求,然后所述接收器2231接收所述服务设备224发送的释放接入承载响应。
如图23所示,为本发明另一实施例的一种LTE通信***的数据处理方法的流程示意图,本实施例中,MME与S-GW之间的S11-U承载已经建立。
步骤2301,MME通过所述S11-U承载接收所述P-GW通过所述S-GW发送的下行数据。
步骤2302,所述MME通过S1-MME接口向eNB发送寻呼消息,并通过所述eNB将所述寻呼消息发送给终端设备。
步骤2303,所述终端设备响应所述寻呼消息,向所述eNB发送RRC连接建立请求。
所述RRC连接建立请求携带控制面服务请求(Service request),所述控制面服务请求为一种NAS消息且携带所述NAS DATA PDU,其中,所述NAS DATA PDU携带所述上行数据和所述EBI。
步骤2304,所述eNB向所述MME发送Initial UE message。
所述Initial UE message携带控制面服务请求,所述控制面服务请求为一种NAS消息且携带所述NAS DATA PDU,其中,所述NAS DATA PDU携带所述上行数据和所述EBI。
步骤2305,所述MME判断其是否过载,如果所述MME过载,所述MME确定建立所述eNB与所述S-GW之间的S1-U承载。
所述MME接收上行数据、下行数据和/或上下行控制信令后,所述MME判断其处理能力是否达到阈值,例如,所述MME判断其已经使用的计算资源或者存储资源是否大于或等于第一阈值(例如等于最大值)或者所述MME判断其可利用的计算资源 或者存储资源是否小于或等于第二阈值。
如果所述MME判断其处理能力达到所述阈值,例如,所述MME判断其已经使用的计算资源或者存储资源大于或等于所述第一阈值(例如等于最大值)或者所述MME判断其可利用的计算资源或者存储资源小于或等于所述第二阈值,所述MME确定其过载。如果所述MME判断其处理能力未达到所述阈值,例如,所述MME判断其已经使用的计算资源或者存储资源小于所述第一阈值(例如未达到最大值)或者所述MME判断其可利用的计算资源或者存储资源大于所述第二阈值,所述MME确定其未过载。
如果所述MME过载,所述MME确定建立所述eNB与所述S-GW之间的S1-U承载。
步骤2306,所述MME释放与所述S-GW的之间S11-U承载。
例如,所述MME向所述S-GW发送释放接入承载请求(Release Access Bearers Request),所述释放接入承载请求用于请求释放所述MME与所述S-GW的之间S11-U承载,所述MME接收所述S-GW发送的释放接入承载响应,则所述S11-U承载被释放。
步骤2307,所述MME向所述eNB发送初始上下文建立请求(Initial context setup request)。
例如,所述初始上下文建立请求为一种NAS消息,用于请求建立eNB和所述S-GW之间的S1-U承载,所述初始上下文建立请求携带所述MME过载时还未发送的下行数据。在本发明的另一实施例中,所述初始上下文建立请求还携带回退定时器。
步骤2308,所述eNB与所述终端设备进行无线承载建立(Radio Bearers setup)。
所述eNB接收所述终端设备发送的无线承载建立请求(Radio Bearers Setup Requet)后向所述终端设备发送无线承载建立完成(Radio Bearers Setup Complete)消息,其中,所述无线承载建立完成消息为一种NAS消息且携带所述MME过载时还未发送的所述下行数据。在本发明的另一实施例中,所述无线承载建立完成消息还携带所述回退定时器。
步骤2309,所述eNB向所述MME发送初始上下文建立完成消息(Initial context setup complete message)。
步骤2310,所述MME与所述S-GW进行用户面承载建立。
所述MME向所述S-GW发送创建会话请求(Create Session Request),所述Create Session Request用于请求建立所述MME与所述S-GW之间的S11用户面(S11-U)承载,所述MME收到所述S-GW发送的创建会话响应(Create Session response)后,所述MME与所述S-GW之间的S11-U承载建立。
通过上述描述可以,当MME过载,下行数据到达MME时,MME决定切换到用户面进行下行数据的传输,MME在建立数据无线承载的时候将所述下行数据通过NAS消息发给UE。
如图24所示,为本发明另一实施例的一种新无线接入网络的数据处理方法的流程示意图,本实施例中,AMF与SMF之间的N11-U承载已经建立。
步骤2401,AMF通过所述N11-U承载接收所述UPF通过所述SMF发送的下行数据。
其中,所述UPF接收的下行数据由DN下发。
步骤2402,所述AMF通过N2-AMF接口向gNB发送寻呼消息,并通过所述gNB将所述寻呼消息发送给终端设备。
步骤2403,所述终端设备响应所述寻呼消息,向所述gNB发送RRC连接建立请求。
所述RRC连接建立请求携带控制面服务请求(Service request),所述控制面服务请求为一种NAS消息且携带所述NAS DATA PDU,其中,所述NAS DATA PDU携带所述上行数据和所述EBI。
步骤2404,所述gNB向所述AMF发送Initial UE message。
所述Initial UE message携带控制面服务请求,所述控制面服务请求为一种NAS消息且携带所述NAS DATA PDU,其中,所述NAS DATA PDU携带所述上行数据和所述EBI。
步骤2405,所述AMF判断其是否过载,如果所述AMF过载,所述AMF建立所述gNB与所述UPF之间的N3-U承载。
所述AMF接收上行数据、下行数据和/或上下行控制信令后,所述AMF判断其处理能力是否达到阈值,例如,所述AMF判断其已经使用的计算资源或者存储资源是否大于或等于第一阈值(例如等于最大值)或者所述AMF判断其可利用的计算资源或者存储资源是否小于或等于第二阈值。
如果所述AMF判断其处理能力达到所述阈值,例如,所述AMF判断其已经使用的计算资源或者存储资源大于或等于所述第一阈值(例如等于最大值)或者所述AMF判断其可利用的计算资源或者存储资源小于或等于所述第二阈值,所述AMF确定其过载。如果所述AMF判断其处理能力未达到所述阈值,例如,所述AMF判断其已经使用的计算资源或者存储资源小于所述第一阈值(例如未达到最大值)或者所述AMF判断其可利用的计算资源或者存储资源大于所述第二阈值,所述AMF确定其未过载。
如果所述AMF过载,所述AMF建立所述gNB与所述UPF之间的N3-U承载。
步骤2406,所述AMF释放与所述SMF的之间N11-U承载。
例如,所述AMF向所述SMF发送释放接入承载请求(Release Access Bearers Request),所述释放接入承载请求用于请求释放所述AMF与所述SMF的之间N11-U承载,所述AMF接收所述SMF发送的释放接入承载响应,则所述N11-U承载被释放。
步骤2407,所述AMF向所述gNB发送初始上下文建立请求(Initial context setup request)。
例如,所述初始上下文建立请求为一种NAS消息,所述初始上下文建立请求携带所述AMF过载时还未发送的下行数据。在本发明的另一实施例中,所述初始上下文建立请求还携带回退定时器。
步骤2408,所述gNB与所述终端设备进行无线承载建立(Radio Bearers setup)。
所述gNB接收所述终端设备发送的无线承载建立请求(Radio Bearers Setup Requet)后向所述终端设备发送无线承载建立完成(Radio Bearers Setup Complete)消息,其中,所述无线承载建立完成消息为一种NAS消息且携带所述AMF过载时还未发送的所述下行数据。在本发明的另一实施例中,所述无线承载建立完成消息还携带所述回退定时器。
步骤2409,所述gNB向所述AMF发送初始上下文建立完成消息(Initial context setup complete message)。
步骤2410,所述AMF与所述UPF之间进行用户面承载建立。
通过上述描述可以,当AMF过载,下行数据到达AMF时,AMF决定切换到用户面进行下行数据的传输,AMF在建立数据无线承载的时候将所述下行数据通过NAS消息发给所述终端设备。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
应理解,在本申请的各个实施例中,上述各过程的序号大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
该作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
该功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例该方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上该,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本申请的保护范围应以该权利要求的保护范围为准。

Claims (26)

  1. 一种数据处理方法,其特征在于,包括:
    移动性管理设备接收终端设备通过NAS消息发送的上行数据,根据所述移动性管理设备的处理能力确定所述移动性管理设备是否过载;
    当所述移动性管理设备过载时,所述移动性管理设备通知所述终端设备通过用户面传输上行数据。
  2. 如权利要求1所述的方法,其中,所述方法还包括:所述移动性管理设备通知所述终端设备通过所述用户面重传过载时所述移动性管理设备通过控制面从所述终端设备接收的但未向所述服务设备发送的上行数据。
  3. 如权利要求1所述的方法,其中,所述方法还包括:所述移动性管理设备通过信令消息将所述移动性管理设备过载时通过控制面从所述终端设备接收的但未向所述服务设备发送的上行数据发送给所述服务设备。
  4. 如权利要求3所述的方法,所述信令消息包括修改承载请求消息。
  5. 如权利要求1所述的方法,其中,所述方法还包括:如果所述移动性管理设备与所述服务设备已建立用户面承载,且所述移动性管理设备已从所述服务设备接收下行数据,所述移动性管理设备通过NAS消息向所述终端设备发送所述移动性管理设备过载时尚未发送的下行数据。
  6. 如权利要求5所述的方法,所述移动性管理设备通过所述NAS消息向所述终端设备发送所述移动性管理设备过载时尚未发送的所述下行数据具体包括:
    所述移动性管理设备通过初始上下文建立请求携带所述下行数据并向接入网设备发送,其中,所述下行数据再由所述接入网设备通过无线承载建立完成消息向所述终端设备发送。
  7. 如权利要求1所述的方法,其中,所述方法还包括:如果所述移动性管理设备与所述服务设备已建立用户面承载,且所述移动性管理设备已从所述服务设备接收下行数据,所述移动性管理设备通过NAS消息向所述终端设备发送回退定时器和所述移动性管理设备过载时尚未发送的下行数据。
  8. 如权利要求7所述的方法,其中,所述移动性管理设备通过所述NAS消息向所述终端设备发送所述回退定时器和所述移动性管理设备过载时尚未发送的所述下行数据具体包括:
    所述移动性管理设备通过NAS消息携带所述回退定时器和所述下行数据并向接入网设备发送,其中,所述回退定时器和所述下行数据再由所述接入网设备通过RRC下行消息向所述终端设备发送。
  9. 一种数据处理方法,其特征在于,包括:
    终端设备通过NAS消息向移动性管理设备发送上行数据;
    所述终端设备接收所述移动性管理设备根据所述移动性管理设备的处理能力确定过载时发送的通过用户面传输上行数据的通知;
    所述终端设备根据所述通知通过用户面向所述移动性管理设备发送上行数据。
  10. 如权利要求9所述的方法,所述方法还包括:
    所述终端设备接收所述移动性管理设备发送的重传指示,所述重传指示用于通知所述终端设备通过所述用户面重传所述移动性管理设备过载时所述移动性管理设备通过控制面从所述终端设备接收的但未向所述服务设备发送的上行数据;
    所述终端设备根据所述重传指示通过所述用户面重传所述移动性管理设备过载时所述移动性管理设备通过控制面从所述终端设备接收的但未向所述服务设备发送的所述上行数据。
  11. 如权利要求9所述的方法,所述方法还包括:如果所述移动性管理设备与所述服务设备已建立用户面承载,且所述移动性管理设备已从所述服务设备接收下行数据,所述终端设备接收所述移动性管理设备通过NAS消息发送的所述移动性管理设备过载时尚未发送的下行数据。
  12. 如权利要求9所述的方法,所述方法还包括:如果所述移动性管理设备与所述服务设备已建立用户面承载,且所述移动性管理设备已从所述服务设备接收下行数据,所述终端设备接收所述移动性管理设备通过NAS消息发送的回退定时器和所述移动性管理设备过载时尚未发送的下行数据。
  13. 一种数据处理装置,其特征在于,包括:
    接收器,用于接收终端设备通过NAS消息发送的上行数据;
    处理器,用于根据其处理能力确定所述处理器是否过载;
    发送器,用于当所述处理器过载时,向所述终端设备发送通知,以通知所述终端设备通过用户面传输上行数据。
  14. 如权利要求13所述的装置,其中,所述发送器还用于通知所述终端设备通过所述用户面重传过载时所述接收器从所述终端设备接收的但所述发送器未向所述服务设备发送的上行数据。
  15. 如权利要求13所述的方法,其中,所述发送器通过信令消息将所述处理器过载时所述接收器从所述终端设备接收的但所述发送器未向所述服务设备发送的上行数据发送给所述服务设备。
  16. 如权利要求15所述的装置,所述信令消息包括修改承载请求。
  17. 如权利要求13所述的装置,其中,如果所述数据处理装置与所述服务设备已建立用户面承载,且所述接收器已从所述服务设备接收下行数据,所述发送器还用于通过NAS消息向所述终端设备发送所述处理器过载时尚未发送的下行数据。
  18. 如权利要求17所述的装置,所述发送器通过初始上下文建立请求携带所述下 行数据并向接入网设备发送,其中,所述下行数据再由所述接入网设备通过无线承载建立完成消息向所述终端设备发送。
  19. 如权利要求13所述的装置,其中,如果所述数据处理装置与所述服务设备已建立用户面承载,且所述接收器已从所述服务设备接收下行数据,所述发送器还用于通过NAS消息向所述终端设备发送回退定时器和所述处理器过载时尚未发送的下行数据。
  20. 如权利要求19所述的装置,其中,所述发送器通过NAS消息携带所述回退定时器和所述下行数据并向接入网设备发送,其中,所述回退定时器和所述下行数据再由所述接入网设备通过RRC下行消息向所述终端设备发送。
  21. 一种终端设备,其特征在于,包括:
    发送器,用于通过NAS消息向移动性管理设备发送上行数据;
    接收器,用于接收所述移动性管理设备根据所述移动性管理设备的处理能力确定过载时发送的通过用户面传输上行数据的通知;
    所述发送器还用于根据所述通知通过用户面向所述移动性管理设备发送上行数据。
  22. 如权利要求21所述的装置,所述接收器还用于接收所述移动性管理设备发送的重传指示,所述重传指示用于通知所述终端设备通过所述用户面重传所述移动性管理设备过载时所述移动性管理设备通过控制面从所述终端设备接收的但未向所述服务设备发送的上行数据;
    所述发送器还用于根据所述重传指示通过所述用户面重传所述移动性管理设备过载时所述移动性管理设备通过控制面从所述终端设备接收的但未向所述服务设备发送的所述上行数据。
  23. 如权利要求21所述的装置,如果所述移动性管理设备与所述服务设备已建立用户面承载,且所述移动性管理设备已从所述服务设备接收下行数据,所述接收器还用于接收所述移动性管理设备通过NAS消息发送的所述移动性管理设备过载时尚未发送的下行数据。
  24. 如权利要求21所述的装置,如果所述移动性管理设备与所述服务设备已建立用户面承载,且所述移动性管理设备已从所述服务设备接收下行数据,所述接收器还用于接收所述移动性管理设备通过NAS消息发送的回退定时器和所述移动性管理设备过载时尚未发送的下行数据。
  25. 一种数据处理装置,其特征在于,包括:包括处理器、存储器和收发器,
    所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制收发器进行信号的接收和发送,当处理器执行所述存储器存储的指令时,所述数据处理装置用于完成如权利要求1至8任意一项所述的方法。
  26. 一种数据处理装置,其特征在于,包括:包括处理器、存储器和收发器,
    所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制收发器进行信号的接收和发送,当处理器执行所述存储器存储的指令时,所述数据处理装置用于完成如权利要求9至12任意一项所述的方法。
PCT/CN2018/093997 2017-07-19 2018-07-02 一种数据的处理方法、移动性管理设备和终端设备 WO2019015473A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18835888.1A EP3648532B1 (en) 2017-07-19 2018-07-02 Data processing method, mobility management device and terminal device
US16/746,088 US11272399B2 (en) 2017-07-19 2020-01-17 Data processing method, mobility management device, and terminal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710592127.0A CN109429348B (zh) 2017-07-19 2017-07-19 一种数据的处理方法、移动性管理设备和终端设备
CN201710592127.0 2017-07-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/746,088 Continuation US11272399B2 (en) 2017-07-19 2020-01-17 Data processing method, mobility management device, and terminal device

Publications (1)

Publication Number Publication Date
WO2019015473A1 true WO2019015473A1 (zh) 2019-01-24

Family

ID=65016260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/093997 WO2019015473A1 (zh) 2017-07-19 2018-07-02 一种数据的处理方法、移动性管理设备和终端设备

Country Status (4)

Country Link
US (1) US11272399B2 (zh)
EP (1) EP3648532B1 (zh)
CN (1) CN109429348B (zh)
WO (1) WO2019015473A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3979697A4 (en) * 2019-06-27 2022-06-01 Guangdong Oppo Mobile Telecommunications Corp., Ltd. DATA TRANSMISSION METHOD AND DEVICE AND TERMINAL
US11272042B2 (en) * 2020-01-21 2022-03-08 Cisco Technology, Inc. Methods and systems to track protocol and hardware resource state transitions
CN111356157A (zh) * 2020-03-15 2020-06-30 腾讯科技(深圳)有限公司 实现网络能力开放的方法及相关设备
US11805079B2 (en) * 2021-11-17 2023-10-31 Charter Communications Operating, Llc Methods and apparatus for coordinating data transmission in a communications network

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102056112A (zh) * 2009-11-05 2011-05-11 华为技术有限公司 一种传输数据的方法、设备和***
CN102387495A (zh) * 2010-08-30 2012-03-21 电信科学技术研究院 一种机器类通信设备的数据传输处理方法及设备
CN103889009A (zh) * 2012-12-21 2014-06-25 华为技术有限公司 切换方法和设备
EP2876927A1 (en) * 2012-07-20 2015-05-27 NEC Corporation Core network node, wireless terminal, method for controlling congestion, and non-temporary computer-readable medium
CN106961653A (zh) * 2016-01-11 2017-07-18 中兴通讯股份有限公司 一种实现数据传输的方法、装置和***

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101039506B (zh) * 2006-03-15 2011-02-02 华为技术有限公司 一种移动管理实体/用户面实体迁移方法
CN101047982B (zh) * 2006-04-02 2011-04-13 华为技术有限公司 一种网关迁移的方法
US8977227B2 (en) * 2011-07-26 2015-03-10 Htc Corporation Method of handling signaling in congested core network
EP2608567A1 (en) * 2011-12-13 2013-06-26 Panasonic Corporation Device triggering and congestion control
CN111586596B (zh) * 2013-10-30 2022-11-04 交互数字专利控股公司 用于处理优先级服务拥塞的***和方法
CA3014677C (en) * 2016-02-18 2023-04-11 Telefonaktiebolaget Lm Ericsson (Publ) System, methods, and apparatuses for managing data rate for control plane optimization
WO2018226072A2 (ko) * 2017-06-08 2018-12-13 엘지전자(주) 무선 통신 시스템에서 오버로드 제어 방법 및 이를 위한 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102056112A (zh) * 2009-11-05 2011-05-11 华为技术有限公司 一种传输数据的方法、设备和***
CN102387495A (zh) * 2010-08-30 2012-03-21 电信科学技术研究院 一种机器类通信设备的数据传输处理方法及设备
EP2876927A1 (en) * 2012-07-20 2015-05-27 NEC Corporation Core network node, wireless terminal, method for controlling congestion, and non-temporary computer-readable medium
CN103889009A (zh) * 2012-12-21 2014-06-25 华为技术有限公司 切换方法和设备
CN106961653A (zh) * 2016-01-11 2017-07-18 中兴通讯股份有限公司 一种实现数据传输的方法、装置和***

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTEL.: "CN Overload Control for Control Plane Only PDN Connection", 3GPP SA WG2 MEETING #117 S 2-165567, 21 October 2016 (2016-10-21), XP051169552 *
See also references of EP3648532A4

Also Published As

Publication number Publication date
CN109429348A (zh) 2019-03-05
CN109429348B (zh) 2022-03-29
EP3648532B1 (en) 2021-03-31
EP3648532A1 (en) 2020-05-06
US20200154317A1 (en) 2020-05-14
EP3648532A4 (en) 2020-05-06
US11272399B2 (en) 2022-03-08

Similar Documents

Publication Publication Date Title
JP7196983B2 (ja) データ伝送のための制御プレーンおよびユーザプレーンの選択
US10219143B2 (en) Data transmission method, mobility management entity, and mobile terminal
US11272399B2 (en) Data processing method, mobility management device, and terminal device
US10869342B2 (en) Radio bearer establishment method and base station
WO2019214729A1 (zh) 数据处理的方法和设备
US10623990B2 (en) User equipment and method for transmitting data, and network node and method for receiving data
WO2017063427A1 (zh) 一种通信方法、装置及终端
US20180199393A1 (en) Radio communication system and control method
WO2019129115A1 (zh) 一种***切换的方法及通信实体
WO2018127018A1 (zh) 多链接通信方法、设备和终端
WO2013040962A1 (zh) 数据发送和接收方法及设备
CN107079372B (zh) 一种网络终端设备进行通信的方法及装置
WO2018018621A1 (zh) 建立辅连接的方法和装置
JP2019527006A (ja) 報告受信方法及びネットワーク装置、並びに報告実行方法及び基地局
WO2019071900A1 (zh) 网络切换之后返回的方法、接入网设备和核心网设备
WO2014161293A1 (zh) 一种发送小数据的方法、***及用户设备
WO2013086949A1 (zh) 一种通信方法及设备
WO2010127580A1 (zh) 一种本地ip访问的寻呼方法及相关装置
WO2020001256A1 (zh) 一种数据传输方法及装置
WO2015143655A1 (zh) 数据分流的方法和基站
EP3324677B1 (en) Network access change for a terminal from an access through a relay terminal to a direct access
WO2020088177A1 (zh) 一种通信方法、移动性管理实体、用户设备及服务网关
CN108617030B (zh) 一种业务转发方法、网关及移动性管理实体
WO2024055985A1 (zh) 通信方法、装置及计算机可读存储介质
KR101449720B1 (ko) 베어러 설정 시간을 단축하기 위한 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18835888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018835888

Country of ref document: EP

Effective date: 20200129