WO2019015426A1 - 一种多功能分布式光纤传感装置 - Google Patents

一种多功能分布式光纤传感装置 Download PDF

Info

Publication number
WO2019015426A1
WO2019015426A1 PCT/CN2018/091659 CN2018091659W WO2019015426A1 WO 2019015426 A1 WO2019015426 A1 WO 2019015426A1 CN 2018091659 W CN2018091659 W CN 2018091659W WO 2019015426 A1 WO2019015426 A1 WO 2019015426A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
fiber coupler
signal
pass filter
processing module
Prior art date
Application number
PCT/CN2018/091659
Other languages
English (en)
French (fr)
Inventor
吕立冬
孙晓艳
陶静
姚继明
李炳林
钟成
郭经红
Original Assignee
全球能源互联网研究院有限公司
国网河北省电力有限公司
国家电网有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 全球能源互联网研究院有限公司, 国网河北省电力有限公司, 国家电网有限公司 filed Critical 全球能源互联网研究院有限公司
Publication of WO2019015426A1 publication Critical patent/WO2019015426A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/322Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres using Brillouin scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • G01L1/246Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre using integrated gratings, e.g. Bragg gratings

Definitions

  • the present invention relates to the field of optical sensing technology, and in particular to a multifunctional distributed optical fiber sensing device.
  • optical fiber can double as a medium for communication and sensing, its passive, anti-electromagnetic interference, corrosion resistance, high temperature resistance and other characteristics determine its potential in the development of global energy Internet.
  • Mature fiber optic sensing technology and equipment have been used in the power industry, such as Raman optical time domain reflectometer for transformer temperature monitoring, Brillouin optical time domain reflectometer for submarine cable temperature/stress monitoring, Buri
  • the time-domain time domain analyzer is used for ice monitoring of transmission lines and the application of fiber gratings in temperature monitoring of switchgear.
  • all-fiber voltage transformers and current transformers have become the necessity of promoting substation intelligence. device.
  • the distance of a single transmission line can reach thousands of kilometers.
  • the physical parameters of the commercial fiber-optic sensing device are relatively simple, and it is impossible to comprehensively sense and analyze the state parameters such as temperature, stress, galloping, vibration, and line fault, and cannot meet the demand of the power system for multi-state parameter sensing.
  • Embodiments of the present invention are directed to provide a multi-functional distributed optical fiber sensing device that uses a direct switching control of a sensing optical signal and a dual-channel data acquisition and processing module to specifically process Rayleigh scattering signals and Brillouin scattering signals in a targeted manner. Finally, multi-function monitoring and display of attenuation, vibration, temperature and strain information of the fiber under test is realized.
  • the invention provides a multifunctional distributed optical fiber sensing device, comprising a laser (1), a first fiber coupler (201), a second fiber coupler (202), a third fiber coupler (211), and a fourth fiber. Coupler (212), acousto-optic modulator (3), fiber circulator (4), optical interface (5), first photodetector (601), second photodetector (602), first band pass filter (701), a second band pass filter (702), a third band pass filter (711), a fourth band pass filter (712), a first low noise amplifier (801), and a second low noise amplifier ( 802), optical switch (9), frequency synthesizer (10), mixer (11), low pass filter (12), dual channel data acquisition and processing module (13), and computer (14);
  • An output end of the laser (1) is connected to an input end of the first fiber coupler (201), and a first output end of the first fiber coupler (201) is connected to the acousto-optic modulator (3) Input end, a second output end of the first fiber coupler (201) is connected to an input end of the second fiber coupler (202); an output end of the acousto-optic modulator (3) is connected to the fiber a first port of the circulator (4), a second port of the fiber circulator (4) is connected to the fiber under test through the optical interface (5), and a third port of the fiber circulator (4) is connected to the An input end of the optical switch (9), a first output end of the optical switch (9) is connected to a second input end of the third fiber coupler (211), and a second output end of the optical switch (9) Connecting a second input end of the fourth fiber coupler (212); a first output end of the second fiber coupler (202) is coupled to a first input end of the third fiber coupler (211) The second output
  • An output of the frequency synthesizer (10) is coupled to a local oscillator input of the mixer (11), and an output of the mixer (11) is coupled to the pair via the low pass filter (12)
  • the laser light emitted by the laser (1) is split into two paths through the first fiber coupler (201), wherein one laser is modulated into a light pulse by the acousto-optic modulator (3), and the other path is A laser is coupled to the second fiber coupler (202).
  • the optical pulse is coupled to a first port of the fiber optic circulator (4), and a second port of the fiber optic circulator (4) outputs a light pulse, the optical pulse passing through the optical interface (5) Inject the fiber under test.
  • the backscattered light of the optical pulse in the fiber under test enters the second port of the fiber circulator (4) through the optical interface (5), and then passes through the fiber circulator ( 4) the third port is connected to the optical switch (9);
  • the second fiber coupler (202) splits the laser light input therein into two paths, one of which is connected to the third fiber coupler (211) and the other of which is input to the fourth fiber coupler (212).
  • the third fiber coupler (211) coheres the accessed laser light and the backscattered light to generate a first intermediate frequency signal, and outputs the first intermediate frequency signal to the first photodetector.
  • the first photodetector (601) converts the first intermediate frequency signal into a first radio frequency signal, and the first radio frequency signal sequentially passes through the first band pass filter (701), the first low noise
  • the amplifier (801) and the second band pass filter (702) perform primary filtering, amplification, and secondary filtering to obtain a Rayleigh scattering signal, and the Rayleigh scattering signal is connected to the dual channel data acquisition and processing module (13) The first channel.
  • the fourth fiber coupler (212) coheres the accessed laser and the backscattered light to generate a second intermediate frequency signal, and outputs the second intermediate frequency signal to the second photodetector.
  • the second photodetector (602) converts the second intermediate frequency signal into a second radio frequency signal, the second radio frequency signal sequentially passing through the third band pass filter (711), and the second low noise
  • the amplifier (802) and the fourth band pass filter (712) perform primary filtering, amplification, and secondary filtering to obtain a Brillouin scattering signal, and the Brillouin scattering signal is connected to a signal input end of the mixer;
  • the local oscillating signal output by the frequency synthesizer (10) is connected to a local oscillating input of the mixer (11), and the mixer (11) mixes the Brillouin scatter signal and the local oscillating signal.
  • a baseband signal is obtained, and the baseband signal is filtered by the low pass filter (12) and then connected to the second channel of the dual channel data acquisition and processing
  • the dual channel data acquisition and processing module (13) extracts the power information of the Rayleigh scatter signal collected by the first channel, and obtains the attenuation information of the fiber under test according to the power information of the Rayleigh scatter signal, and The extracted power information is subjected to Fourier transform to obtain vibration information of the fiber under test; and the dual channel data acquisition and processing module (13) extracts time domain, frequency domain and power of the Brillouin scattering signal collected by the second channel. The information is fitted to the Brillouin frequency corresponding to each position of the fiber under test to obtain the center frequency of the Brillouin spectrum.
  • the dual channel data acquisition and processing module (13) outputs attenuation information, vibration information, and a center frequency of the Brillouin spectrum of the fiber under test to the computer (14), the computer (14)
  • the data acquisition and processing module (13) is controlled to display attenuation information, vibration information, temperature information, and strain information of the fiber under test.
  • the dual channel data acquisition and processing module (13) sends a control command to the laser (1) for controlling the output frequency of the laser (1);
  • the dual channel data acquisition and processing module (13) simultaneously generates an electrical pulse that drives the acousto-optic modulator (3) to modulate the laser light into a light pulse.
  • the multi-functional distributed optical fiber sensing device provided by the embodiment of the present invention is provided with a laser, a first fiber coupler, a second fiber coupler, a third fiber coupler, a fourth fiber coupler, and an acousto-optic modulator.
  • fiber optic circulator optical interface, first photodetector, second photodetector, first band pass filter, second band pass filter, third band pass filter, fourth band pass filter, first Low noise amplifier, second low noise amplifier, optical switch, frequency synthesizer, mixer, low pass filter, dual channel data acquisition and processing module, and computer, using direct switching control of sensing optical signals and dual channel data acquisition and The processing module specifically processes the Rayleigh scattering signal and the Brillouin scattering signal in a targeted manner, and finally realizes multifunctional monitoring and display of attenuation, vibration, temperature and strain information of the optical fiber to be tested;
  • the technical solution provided by the embodiment of the present invention fully considers different extraction and processing modes of the Rayleigh scattering signal and the Brillouin scattering signal in the optical fiber to be tested, and uses the optical switch to flexibly switch the measurement mode, and adopts a corresponding algorithm and Supporting hardware to achieve simultaneous measurement of attenuation, vibration, temperature and strain of the fiber under test;
  • the technical solution provided by the embodiment of the present invention combines Rayleigh scatter temperature measurement/measuring strain with Brillouin scatter temperature measurement/strain measurement technology, and utilizes Rayleigh temperature, strain coefficient, Brillouin temperature, strain coefficient, and The temperature/strain data obtains specific temperature information and strain information, thus overcoming the cross-sensitivity of temperature/strain of Rayleigh scattering and Brillouin scattering, and achieving accurate demodulation of temperature and strain information of the fiber under test;
  • the technical solution provided by the embodiment of the invention combines the analog change and separation technology of the signal with the dual-channel digital signal processing technology, has high signal extraction and processing efficiency, is more practical, and is convenient for commercial development of the device.
  • FIG. 1 is a structural diagram of a multi-functional distributed optical fiber sensing device in an embodiment of the present invention
  • FIG. 2 is a schematic diagram showing power extraction results of Rayleigh scatter signals in an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of data extraction corresponding to a specific location for Rayleigh scatter signal storage for vibration frequency measurement in an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a distributed vibration frequency measurement result in an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of extracting Rayleigh spectrum and Rayleigh frequency shift by frequency-by-frequency point scanning according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of measuring Brillouin spectrum by frequency-by-frequency point scanning according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a center frequency of a Brillouin spectrum extracted in an embodiment of the present invention.
  • 1-laser 201-first fiber coupler, 202-second fiber coupler, 211-third fiber coupler, 212-fourth fiber coupler, 3-acoustic modulator, 4-fiber ring , 5-optical interface, 601-first photodetector, 602-second photodetector, 701-first bandpass filter, 702-second bandpass filter, 711-third bandpass filter, 712-fourth bandpass filter, 801 first low noise amplifier, 802-second low noise amplifier, 9-optical switch, 10-frequency synthesizer, 11-mixer, 12-low pass filter, 13- Dual channel data acquisition and processing module, 14-computer.
  • the embodiment of the present invention provides a multifunctional distributed optical fiber sensing device.
  • the specific structure is as shown in FIG. 1 , including a laser 1 , a first fiber coupler 201 , a second fiber coupler 202 , and a third fiber coupler 211 .
  • the second fiber coupler 202 can adopt a Y-type 3dB coupler
  • the third fiber coupler 211 and the fourth fiber coupler 212 can both adopt an X-type 3dB coupler
  • the optical switch 9 selects 1 ⁇ 2 optical path switching type switch
  • the frequency shift of the acousto-optic modulator 3 to the input laser is 200 MHz
  • the first photodetector 601 and the second photodetector 602 are both balanced photodetectors, wherein the first band pass The center frequency of the filter 701 and the second band pass filter 702 are both 200 MHz, both of which have a bandwidth of 10 MHz
  • the bandwidth of the second photodetector 602 is greater than 12 GHz
  • the gain bandwidth of the second low noise amplifier 802 is greater than 12 GHz.
  • the pass band widths of the three band pass filter 711 and the fourth band pass filter 712 are in the range of 150 MHz around the center frequency of the Brillouin electric spectrum Stokes component, and the pass band width of the low pass filter 12 is 10 MHz.
  • the connection relationship between them is as follows:
  • the output end of the laser 1 is connected to the input end of the first fiber coupler 201, the first output end of the first fiber coupler 201 is connected to the input end of the acousto-optic modulator 3, and the second output end of the first fiber coupler 201 is connected.
  • the third port is connected to the input end of the optical switch 9, the first output end of the optical switch 9 is connected to the second input end of the third fiber coupler 211, and the second output end of the optical switch 9 is connected to the second end of the fourth fiber coupler 212.
  • An input end; a first output end of the second fiber coupler 202 is coupled to the first input end of the third fiber coupler 211, and a second output end of the second fiber coupler 202 is coupled to the first output end of the fourth fiber coupler 212
  • the output end of the third fiber coupler 211 is connected to the first photodetector 601, and the first photodetector 601 is sequentially connected through the first band pass filter 701, the first low noise amplifier 801 and the second band pass filter 702.
  • the pass filter 712 is connected to the signal input end of the mixer 11, the output end of the frequency synthesizer 10 is connected to the local oscillation input end of the mixer 11, and the output end of the mixer 11 is connected to the dual channel data through the low pass filter 12.
  • the second channel of the acquisition and processing module 13 is coupled to the computer 14 at the output of the dual channel data acquisition and processing module 13.
  • the laser light emitted by the laser 1 is split into two paths by the first fiber coupler 201, wherein one laser is modulated into a light pulse by the acousto-optic modulator 3, and the other laser is connected to the second fiber coupler 202.
  • the optical pulse is connected to the first port of the fiber circulator 4, and the second port of the fiber circulator 4 outputs a light pulse, and the light pulse is injected into the fiber under test through the optical interface 5.
  • the backscattered light of the optical pulse in the fiber under test enters the second port of the fiber circulator 4 through the optical interface 5, and then enters the optical switch 9 through the third port of the fiber circulator 4;
  • the second fiber coupler 202 splits the laser light input therein into two paths, one of which is connected to the third fiber coupler 211 and the other of which is input to the fourth fiber coupler 212.
  • the third fiber coupler 211 coheres the accessed laser light and the backscattered light to generate a first intermediate frequency signal, and outputs the first intermediate frequency signal to the first photodetector 601; the first photodetector 601 converts the first intermediate frequency signal
  • the first radio frequency signal is sequentially filtered, amplified, and filtered by the first band pass filter 701, the first low noise amplifier 801, and the second band pass filter 702 to obtain a Rayleigh scattering signal.
  • the Rayleigh scatter signal is coupled to the first channel of the dual channel data acquisition and processing module 13.
  • the fourth fiber coupler 212 coheres the accessed laser and the backscattered light to generate a second intermediate frequency signal, and outputs the second intermediate frequency signal to the second photodetector 602; the second photodetector 602 converts the second intermediate frequency signal
  • the second RF signal is sequentially filtered, amplified, and filtered by the third band pass filter 711, the second low noise amplifier 802, and the fourth band pass filter 712 to obtain a Brillouin scattering signal.
  • the Brillouin scattering signal is input to the signal input end of the mixer; the local oscillation signal outputted by the frequency synthesizer 10 is connected to the local oscillation input terminal of the mixer 11, and the mixer 11 combines the Brillouin scattering signal and the local oscillation.
  • the signal is mixed to obtain a baseband signal, and the baseband signal is filtered by the low pass filter 12 and then connected to the second channel of the dual channel data acquisition and processing module 13.
  • the dual channel data acquisition and processing module 13 extracts the power information of the Rayleigh scatter signal collected by the first channel, obtains the attenuation information of the fiber under test according to the power information of the Rayleigh scatter signal, and performs Fourier transform on the extracted power information. Obtaining vibration information of the fiber under test; at the same time, the dual channel data acquisition and processing module 13 extracts the time domain, frequency domain and power information of the Brillouin scattering signal collected by the second channel, and simultaneously corresponds to the Brillouin corresponding to each position of the tested fiber. The frequency is fitted to obtain the center frequency of the Brillouin spectrum.
  • the dual channel data acquisition and processing module 13 outputs the attenuation information of the fiber under test, the vibration information, and the center frequency of the Brillouin spectrum to the computer 14, which controls the data acquisition and processing module 13 and displays the attenuation of the fiber under test.
  • Information, vibration information, temperature information, and strain information are examples of the components of the fiber under test.
  • the dual channel data acquisition and processing module 13 sends a control command laser 1 for controlling the output frequency of the laser 1;
  • the dual channel data acquisition and processing module 13 generates electrical pulses that drive the acousto-optic modulator 3 to modulate the laser light into pulses of light.
  • the multifunctional distributed optical fiber sensing device provided by the embodiment of the invention supports different measurement modes such as selecting a Rayleigh scattering signal measurement mode and a Brillouin scattering signal measurement mode.
  • the following two measurement modes are respectively described:
  • the computer 14 communicates with the dual channel data acquisition and processing module 13 and sends a command through the dual channel data acquisition and processing module 13 to cause the output of the optical switch 9 to be connected to the other input end of the third fiber coupler 211; the third fiber coupler The output end of 211 is connected to the first photodetector 601;
  • the laser light and the backscattered light input thereto are coherent, and the generated first intermediate frequency signal is converted into a first RF signal by the first photodetector 601 and output to the first band pass filter 701.
  • a radio frequency signal is transmitted to the first channel of the dual channel data acquisition and processing module 13 via the first band pass filter 701, the first low noise amplifier 801 and the second band pass filter 702;
  • the dual-channel data acquisition and processing module 13 analyzes and processes the Rayleigh scatter signal collected by the first channel to obtain attenuation information of the fiber under test, vibration frequency information along the line, temperature information, and strain information, as follows:
  • the Rayleigh scattering signal collected by the first channel of the dual channel data acquisition and processing module 13 is digitally down-converted and digitally low-pass filtered, and then the positions along the measured optical fiber are extracted.
  • the power information of the Rayleigh scattering signal is shown in Figure 2;
  • the dual channel data acquisition and processing module 13 issues a control command to change the output frequency of the laser 1 and records the frequency information, and then the dual channel data acquisition and processing module 13 collects and extracts The power information of the Rayleigh scattering signal at each position along the optical fiber corresponding to the output frequency of the laser 1; the dual channel data acquisition and processing module 13 sends a control command to the laser 1 to change the output frequency of the laser 1 at a certain frequency step, and extracts The power information of the Rayleigh scattering signal at each position along the fiber corresponding to the output frequency of the laser 1 finally obtains a three-dimensional Rayleigh scattering spectrum with respect to the Rayleigh scattering frequency, power, and position along the fiber, as shown in FIG. 5; The three-dimensional Rayleigh scattering spectrum obtained by the second measurement is correlated, and the Rayleigh dispersion RF shift is obtained. The Rayleigh frequency shift coefficient is combined with the Rayleigh frequency shift coefficient to obtain the temperature information and strain information along the measured fiber.
  • the computer 14 is in communication with the dual channel data acquisition and processing module 13 and transmits control commands via the dual channel data acquisition and processing module 13 to cause the output of the optical switch 9 to be coupled to the other input of the fourth fiber coupler 212; fourth fiber coupling The output of the device 212 is connected to the second photodetector 602;
  • the laser light and the backscattered light input thereto are coherent, and the generated second intermediate frequency signal is converted into a second RF signal output by the second photodetector 602; the second RF signal is passed through the third band pass.
  • the filter 711, the second low noise amplifier 802 and the fourth band pass filter 712 are then connected to the signal input end of the mixer 11;
  • the local oscillating signal outputted by the frequency synthesizer 10 is connected to the local oscillating input terminal of the mixer 11, and the mixer 11 mixes the Brillouin scatter signal and the local oscillating signal to obtain a baseband signal, and the baseband signal passes through the low pass filter. After filtering 12, the second channel of the dual channel data acquisition and processing module 13 is accessed.
  • the dual channel data acquisition and processing module 13 sends a control command to control the frequency synthesizer 10 to generate local oscillation signals of different frequencies, scan the frequency points in the Brillouin scattering spectrum point by point, and then convert the signals through the mixer 11 and the low pass filter 12.
  • the baseband signal is acquired by the second channel of the dual channel data acquisition and processing module 13 to obtain a three-dimensional Brillouin scattering spectrum about Brillouin scattering frequency, power and position along the fiber, as shown in FIG. 6;
  • the algorithm obtains the center frequency of the fiber along the line and its corresponding Brillouin spectrum. As shown in Fig. 7, the temperature information and the strain information along the fiber under test are obtained by making the difference between the two measurements.
  • the temperature information and strain information obtained by the Rayleigh scattering signal measurement mode and the Brillouin scattering signal measurement mode in the dual channel data acquisition and processing module 13 are combined with The temperature coefficient, Rayleigh strain coefficient, Brillouin temperature coefficient and Brillouin strain coefficient are used to solve specific temperature information and strain information.
  • the multifunctional distributed optical fiber sensing device provided by the embodiment of the present invention is provided with a laser 1, a first fiber coupler 201, a second fiber coupler 202, a third fiber coupler 211, a fourth fiber coupler 212, and acousto-optic modulation.
  • the optical fiber circulator 4 the optical interface 5, the first photodetector 601, the second photodetector 602, the first band pass filter 701, the second band pass filter 702, the third band pass filter 711, Fourth band pass filter 712, first low noise amplifier 801, second low noise amplifier 802, optical switch 9, frequency synthesizer 10, mixer 11, low pass filter 12, dual channel data acquisition and processing module 13
  • the computer 14 adopts direct switching control of the sensing optical signal and the dual-channel data acquisition and processing module to correspondingly process the Rayleigh scattering signal and the Brillouin scattering signal, thereby finally achieving attenuation, vibration and temperature of the measured optical fiber. And multi-function monitoring and display of strain information.
  • the technical solution provided by the embodiment of the present invention fully considers different extraction and processing modes of the Rayleigh scattering signal and the Brillouin scattering signal in the optical fiber to be tested, and uses the optical switch to flexibly switch the measurement mode, and adopts corresponding algorithms and supporting methods.
  • the hardware realizes simultaneous measurement of attenuation, vibration, temperature and strain of the fiber under test;
  • the embodiment of the present invention combines Rayleigh scattering temperature measurement/strain measurement with Brillouin scattering temperature measurement/strain measurement technology, and utilizes Rayleigh temperature, strain coefficient and Brillouin temperature, strain coefficient and temperature/strain data. Obtaining specific temperature information and strain information, thereby overcoming the cross-sensitivity problem of temperature/strain of Rayleigh scattering and Brillouin scattering; compared with the prior art, the embodiment of the invention simulates the signal change, separation technology and dual channel The combination of digital signal processing technology, high signal extraction and processing efficiency, better usability, and convenient commercial development of the device.
  • the direct switching control of the sensing optical signal and the dual-channel data acquisition and processing module respectively perform corresponding processing on the Rayleigh scattering signal and the Brillouin scattering signal, and finally implement the measured Multi-function monitoring and display of fiber attenuation, vibration, temperature and strain information;
  • the second aspect uses optical switches to flexibly switch measurement modes, and achieves attenuation, vibration, temperature and strain of the fiber under test through corresponding algorithms and supporting hardware.
  • the third aspect combines Rayleigh scattering temperature/measuring strain with Brillouin scattering temperature/measuring strain technology, and uses Rayleigh temperature, strain coefficient and Brillouin temperature, strain coefficient and temperature/strain data to obtain specific The temperature information and strain information overcome the cross-sensitive problem of temperature/strain of Rayleigh scattering and Brillouin scattering, and realize accurate demodulation of temperature and strain information of the fiber under test.
  • the fourth aspect simulates and separates the signal. Technology combined with dual-channel digital signal processing technology for high signal extraction and processing efficiency and better usability It facilitates the commercial development of the device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)

Abstract

一种多功能分布式光纤传感装置,包括激光器(1)、第一光纤耦合器(201)、第二光纤耦合器(202)、第三光纤耦合器(211)、第四光纤耦合器(212)、声光调制器(3)、光纤环形器(4)、光接口(5)、第一光电探测器(601)、第二光电探测器(602)、第一带通滤波器(701)、第二带通滤波器(702)、第三带通滤波器(711)、第四带通滤波器(712)、第一低噪声放大器(801)、第二低噪声放大器(802)、光开关(9)、频率合成器(10)、混频器(11)、低通滤波器(12)、双通道数据采集与处理模块(13)以及计算机(14)。

Description

一种多功能分布式光纤传感装置
相关申请的交叉引用
本申请基于申请号为201710596323.5、申请日为2017年7月20日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本发明涉及光传感技术领域,具体涉及一种多功能分布式光纤传感装置。
背景技术
由于光纤可兼作通信和传感的介质,所以它的无源、抗电磁干扰、耐腐蚀、耐高温等特点决定了它在全球能源互联网发展中具有巨大潜力。成熟的光纤传感技术和设备已经在电力行业有一定的应用,如拉曼光时域反射仪用于变压器温度监测、布里渊光时域反射仪用于海底电缆温度/应力监测、布里渊光时域分析仪用于输电线路覆冰监测、光纤光栅在开关柜温度监测中的应用等,而在智能变电站建设中全光纤电压互感器和电流互感器也已成为推进变电站智能化的必要设备。特别是在特高压电网中,单条输电线路的距离可达数千公里,长距离的线路难免受到各种各样自然因素的影响,一些极端的因素可能对输电线路安全造成重大影响,如雷击、覆冰、风偏、闪络等,因此需要相应的监测手段实时感知输电线路状态,及时预警或汇报危害性的事件。这客观上要求光纤传感器应具备多功能传感的能力以适应电力典型场景的应用需求。当前制约光纤传感及量测控制技术的主要因素在于传感***的总体性能无法满足电网监测实际对多参量、广域 化传感的需求。目前商用的光纤传感装置感知的物理参量比较单一,无法做到对温度、应力、舞动、振动、线路故障等状态参量的综合感知和分析,无法满足电力***对多种状态参量感知的需求。
发明内容
本发明实施例期望提供一种多功能分布式光纤传感装置,采用传感光信号的直接切换控制和双通道数据采集与处理模块有针对性地对瑞利散射信号和布里渊散射信号进行相应处理,最终实现对被测光纤的衰减、振动、温度和应变信息的多功能监测和显示。
为了实现上述发明目的,本发明实施例采取如下技术方案:
本发明提供一种多功能分布式光纤传感装置,包括激光器(1)、第一光纤耦合器(201)、第二光纤耦合器(202)、第三光纤耦合器(211)、第四光纤耦合器(212)、声光调制器(3)、光纤环形器(4)、光接口(5)、第一光电探测器(601)、第二光电探测器(602)、第一带通滤波器(701)、第二带通滤波器(702)、第三带通滤波器(711)、第四带通滤波器(712)、第一低噪声放大器(801)、第二低噪声放大器(802)、光开关(9)、频率合成器(10)、混频器(11)、低通滤波器(12)、双通道数据采集与处理模块(13)以及计算机(14);
所述激光器(1)的输出端连接所述第一光纤耦合器(201)的输入端,所述第一光纤耦合器(201)的第一输出端连接所述声光调制器(3)的输入端,所述第一光纤耦合器(201)的第二输出端连接所述第二光纤耦合器(202)的输入端;所述声光调制器(3)的输出端接入所述光纤环形器(4)的第一端口,所述光纤环形器(4)的第二端口通过所述光接口(5)连接被测光纤,所述光纤环形器(4)的第三端口连接所述光开关(9)的输入端,所述光开关(9)的第一输出端连接所述第三光纤耦合器(211)的第二输入端,所述光开关(9)的第二输出端连接所述第四光纤耦合器(212) 的第二输入端;所述第二光纤耦合器(202)的第一输出端连接所述第三光纤耦合器(211)的第一输入端,所述第二光纤耦合器(202)的第二输出端连接第四光纤耦合器(212)的第一输出端;所述第三光纤耦合器(211)的输出端连接所述第一光电探测器(601),所述第一光电探测器(601)依次通过所述第一带通滤波器(701)、第一低噪声放大器(801)和第二带通滤波器(702)接入所述双通道数据采集与处理模块(13)的第一通道;所述第四光纤耦合器(212)的输出端连接所述第二光电探测器(602),所述第二光电探测器(602)依次通过所述第三带通滤波器(711)、第二低噪声放大器(802)和第四带通滤波器(712)接入所述混频器(11)的信号输入端,所述频率合成器(10)的输出端连接所述混频器(11)的本地振荡输入端,所述混频器(11)的输出端通过所述低通滤波器(12)连接所述双通道数据采集与处理模块(13)的第二通道,所述双通道数据采集与处理模块(13)的输出端连接所述计算机(14)。
在一实施例中,所述激光器(1)发出的激光经所述第一光纤耦合器(201)分成两路,其中一路激光经所述声光调制器(3)调制成光脉冲,另一路激光接入所述第二光纤耦合器(202)。
在一实施例中,所述光脉冲接入所述光纤环形器(4)的第一端口,所述光纤环形器(4)的第二端口输出光脉冲,所述光脉冲经所述光接口(5)注入被测光纤。
在一实施例中,所述光脉冲在被测光纤中的背向散射光经所述光接口(5)进入所述光纤环形器(4)的第二端口,再经过所述光纤环形器(4)的第三端口接入所述光开关(9);
所述第二光纤耦合器(202)将输入其中的激光分成两路,其中一路激光接入所述第三光纤耦合器(211),另一路激光输入所述第四光纤耦合器(212)。
在一实施例中,所述第三光纤耦合器(211)使接入的激光和背向散射光相干产生第一中频信号,并将所述第一中频信号输出给所述第一光电探测器(601);所述第一光电探测器(601)将第一中频信号转换为第一射频信号,所述第一射频信号依次通过所述第一带通滤波器(701)、第一低噪声放大器(801)和第二带通滤波器(702)进行一次滤波、放大、二次滤波后得到瑞利散射信号,所述瑞利散射信号接入所述双通道数据采集与处理模块(13)的第一通道。
在一实施例中,所述第四光纤耦合器(212)使接入的激光和背向散射光相干产生第二中频信号,并将所述第二中频信号输出给所述第二光电探测器(602);所述第二光电探测器(602)将第二中频信号转换为第二射频信号,所述第二射频信号依次通过所述第三带通滤波器(711)、第二低噪声放大器(802)和第四带通滤波器(712)进行一次滤波、放大、二次滤波后得到布里渊散射信号,所述布里渊散射信号接入所述混频器的信号输入端;所述频率合成器(10)输出的本地振荡信号接入所述混频器(11)的本地振荡输入端,所述混频器(11)将布里渊散射信号和本地振荡信号进行混频,得到基带信号,所述基带信号通过所述低通滤波器(12)滤波后,接入所述双通道数据采集与处理模块(13)的第二通道。
在一实施例中,所述双通道数据采集与处理模块(13)提取第一通道采集的瑞利散射信号的功率信息,根据瑞利散射信号的功率信息得到被测光纤的衰减信息,并对提取的功率信息进行傅里叶变换,得到被测光纤的振动信息;同时所述双通道数据采集与处理模块(13)提取第二通道采集的布里渊散射信号的时域、频域和功率信息,同时对被测光纤各位置对应的布里渊频点进行拟合,得到布里渊频谱的中心频率。
在一实施例中,所述双通道数据采集与处理模块(13)将被测光纤的衰减信息、振动信息以及布里渊频谱的中心频率输出给所述计算机(14), 所述计算机(14)对所述数据采集与处理模块(13)进行控制,并显示被测光纤的衰减信息、振动信息、温度信息和应变信息。
在一实施例中,所述双通道数据采集与处理模块(13)发送控制命令所述激光器(1),用于控制所述激光器(1)的输出频率;
在一实施例中,同时所述双通道数据采集与处理模块(13)产生电脉冲,所述电脉冲驱动所述声光调制器(3)将激光调制成光脉冲。
本发明实施例提供的技术方案具有以下有益效果:
第一方面,本发明实施例提供的多功能分布式光纤传感装置设有激光器、第一光纤耦合器、第二光纤耦合器、第三光纤耦合器、第四光纤耦合器、声光调制器、光纤环形器、光接口、第一光电探测器、第二光电探测器、第一带通滤波器、第二带通滤波器、第三带通滤波器、第四带通滤波器、第一低噪声放大器、第二低噪声放大器、光开关、频率合成器、混频器、低通滤波器、双通道数据采集与处理模块以及计算机,采用传感光信号的直接切换控制和双通道数据采集与处理模块有针对性地对瑞利散射信号和布里渊散射信号进行相应处理,最终实现对被测光纤的衰减、振动、温度和应变信息的多功能监测和显示;
第二方面,本发明实施例提供的技术方案充分考虑到了被测光纤中的瑞利散射信号和布里渊散射信号的不同提取与处理方式,利用光开关灵活切换测量模式,并通过相应的算法及配套硬件实现被测光纤的衰减、振动、温度和应变等的同时测量;
第三方面,本发明实施例提供的技术方案将瑞利散射测温/测应变与布里渊散射测温/测应变技术相融合,利用瑞利温度、应变系数和布里渊温度、应变系数以及温度/应变数据得到具体的温度信息和应变信息,从而克服了瑞利散射和布里渊散射测温度/应变的交叉敏感问题,实现了被测光纤温度和应变信息的精确解调;
第四方面,本发明实施例提供的技术方案将信号的模拟变化、分离技术与双通道数字信号处理技术相结合,信号提取与处理效率高,实用性更好,便于装置的商用化开发。
附图说明
图1是本发明实施例中多功能分布式光纤传感装置结构图;
图2是本发明实施例中瑞利散射信号的功率提取结果示意图;
图3是本发明实施例中用于振动频率测量的瑞利散射信号存放与某具***置对应的数据提取示意图;
图4是本发明实施例中分布式振动频率测量结果示意图;
图5是本发明实施例中逐频点扫描测量瑞利频谱与瑞利频移提取示意图;
图6是本发明实施例中逐频点扫描测量布里渊频谱示意图;
图7是本发明实施例中提取到的布里渊频谱的中心频率示意图;
图中,1-激光器,201-第一光纤耦合器,202-第二光纤耦合器,211-第三光纤耦合器,212-第四光纤耦合器,3-声光调制器,4-光纤环形器,5-光接口,601-第一光电探测器,602-第二光电探测器,701-第一带通滤波器,702-第二带通滤波器,711-第三带通滤波器,712-第四带通滤波器,801第一低噪声放大器,802-第二低噪声放大器,9-光开关,10-频率合成器,11-混频器,12-低通滤波器,13-双通道数据采集与处理模块,14-计算机。
具体实施方式
下面结合附图对本发明作进一步详细说明。
本发明实施例提供一种多功能分布式光纤传感装置,具体结构如图1所示,包括激光器1、第一光纤耦合器201、第二光纤耦合器202、第三光纤耦合器211、第四光纤耦合器212、声光调制器3、光纤环形器4、光接 口5、第一光电探测器601、第二光电探测器602、第一带通滤波器701、第二带通滤波器702、第三带通滤波器711、第四带通滤波器712、第一低噪声放大器801、第二低噪声放大器802、光开关9、频率合成器10、混频器11、低通滤波器12、双通道数据采集与处理模块13以及计算机14。在一种实施方式中,第二光纤耦合器202可采用Y型的3dB耦合器,第三光纤耦合器211和第四光纤耦合器212均可采用X型的3dB耦合器,光开关9选用1×2光路切换类型的开关,声光调制器3对输入激光的频移为200MHz,上述的第一光电探测器601和第二光电探测器602均选用平衡光电探测器,其中的第一带通滤波器701和第二带通滤波器702的中心频率均为200MHz,两者的带宽均为10MHz,第二光电探测器602的带宽大于12GHz,第二低噪声放大器802的增益带宽大于12GHz,第三带通滤波器711和第四带通滤波器712的通带宽度在布里渊电频谱斯托克斯分量中心频率左右各150MHz范围,且低通滤波器12的通带宽度为10MHz。它们之间的连接关系具体如下:
激光器1的输出端连接第一光纤耦合器201的输入端,第一光纤耦合器201的第一输出端连接声光调制器3的输入端,第一光纤耦合器201的第二输出端连接第二光纤耦合器202的输入端;声光调制器3的输出端接入光纤环形器4的第一端口,光纤环形器4的第二端口通过光接口5连接被测光纤,光纤环形器4的第三端口连接光开关9的输入端,光开关9的第一输出端连接第三光纤耦合器211的第二输入端,光开关9的第二输出端连接第四光纤耦合器212的第二输入端;第二光纤耦合器202的第一输出端连接第三光纤耦合器211的第一输入端,第二光纤耦合器202的第二输出端连接第四光纤耦合器212的第一输出端;第三光纤耦合器211的输出端连接第一光电探测器601,第一光电探测器601依次通过第一带通滤波器701、第一低噪声放大器801和第二带通滤波器702接入双通道数据采集 与处理模块13的第一通道;第四光纤耦合器212的输出端连接第二光电探测器602,第二光电探测器602依次通过第三带通滤波器711、第二低噪声放大器802和第四带通滤波器712接入混频器11的信号输入端,频率合成器10的输出端连接混频器11的本地振荡输入端,混频器11的输出端通过低通滤波器12连接双通道数据采集与处理模块13的第二通道,双通道数据采集与处理模块13的输出端连接计算机14。
具体的,激光器1发出的激光经第一光纤耦合器201分成两路,其中一路激光经声光调制器3调制成光脉冲,另一路激光接入第二光纤耦合器202。
光脉冲接入光纤环形器4的第一端口,光纤环形器4的第二端口输出光脉冲,光脉冲经光接口5注入被测光纤。
光脉冲在被测光纤中的背向散射光经光接口5进入光纤环形器4的第二端口,再经过光纤环形器4的第三端口接入光开关9;
第二光纤耦合器202将输入其中的激光分成两路,其中一路激光接入第三光纤耦合器211,另一路激光输入第四光纤耦合器212。
第三光纤耦合器211使接入的激光和背向散射光相干产生第一中频信号,并将第一中频信号输出给第一光电探测器601;第一光电探测器601将第一中频信号转换为第一射频信号,第一射频信号依次通过第一带通滤波器701、第一低噪声放大器801和第二带通滤波器702进行一次滤波、放大、二次滤波后得到瑞利散射信号,瑞利散射信号接入双通道数据采集与处理模块13的第一通道。
第四光纤耦合器212使接入的激光和背向散射光相干产生第二中频信号,并将第二中频信号输出给第二光电探测器602;第二光电探测器602将第二中频信号转换为第二射频信号,第二射频信号依次通过第三带通滤波器711、第二低噪声放大器802和第四带通滤波器712进行一次滤波、放大、 二次滤波后得到布里渊散射信号,布里渊散射信号接入混频器的信号输入端;频率合成器10输出的本地振荡信号接入混频器11的本地振荡输入端,混频器11将布里渊散射信号和本地振荡信号进行混频,得到基带信号,基带信号通过低通滤波器12滤波后,接入双通道数据采集与处理模块13的第二通道。
双通道数据采集与处理模块13提取第一通道采集的瑞利散射信号的功率信息,根据瑞利散射信号的功率信息得到被测光纤的衰减信息,并对提取的功率信息进行傅里叶变换,得到被测光纤的振动信息;同时双通道数据采集与处理模块13提取第二通道采集的布里渊散射信号的时域、频域和功率信息,同时对被测光纤各位置对应的布里渊频点进行拟合,得到布里渊频谱的中心频率。
双通道数据采集与处理模块13将被测光纤的衰减信息、振动信息以及布里渊频谱的中心频率输出给计算机14,计算机14对数据采集与处理模块13进行控制,并显示被测光纤的衰减信息、振动信息、温度信息和应变信息。
双通道数据采集与处理模块13发送控制命令激光器1,用于控制激光器1的输出频率;
同时双通道数据采集与处理模块13产生电脉冲,电脉冲驱动声光调制器3将激光调制成光脉冲。
本发明实施例提供的多功能分布式光纤传感装置支持选择瑞利散射信号测量模式和布里渊散射信号测量模式等不同的测量模式,以下对两种测量模式分别进行说明:
(1)在计算机14的软件界面上选择瑞利散射信号测量模式时,具体过程如下:
计算机14与双通道数据采集与处理模块13通信,并通过双通道数据 采集与处理模块13发送命令使光开关9的输出接入第三光纤耦合器211的另一输入端;第三光纤耦合器211的输出端连接第一光电探测器601;
在第三光纤耦合器211中,输入其中的激光和背向散射光相干,产生的第一中频信号经第一光电探测器601转换成第一射频信号输出给第一带通滤波器701,第一射频信号经第一带通滤波器701、第一低噪声放大器801和第二带通滤波器702后接入双通道数据采集与处理模块13的第一通道;
双通道数据采集与处理模块13对第一通道采集到的瑞利散射信号进行分析和处理得到被测光纤的衰减信息、沿线振动频率信息、温度信息和应变信息,具体如下:
1)获取被测光纤的衰减信息:双通道数据采集与处理模块13的第一通道采集到的瑞利散射信号经数字下变频、数字低通滤波后,提取出被测光纤的沿线各位置处的瑞利散射信号的功率信息,如图2所示;
2)获取被测光纤沿线的振动信息:双通道数据采集与处理模块13对第一通道采集到的数据进行各个位置点的振动频率提取时,如图3所示,先保存200条关于光纤沿线各个位置与散射功率的数据,再对光纤沿线各个位置对应的200个功率值进行快速傅里叶变换,得到对应光纤沿线各个位置的振动信息,如图4所示;
3)获取被测光纤的沿线温度信息和应变信息:双通道数据采集与处理模块13发出控制命令改变激光器1的输出频率,并记录频率信息,接着双通道数据采集与处理模块13采集并提取出对应激光器1的输出频率的光纤沿线各位置处的瑞利散射信号的功率信息;双通道数据采集与处理模块13发送控制命令给激光器1按一定频率步进改变激光器1的输出频率,并提取出对应激光器1的输出频率的光纤沿线各位置处的瑞利散射信号的功率信息,最终获得关于瑞利散射频率、功率和光纤沿线位置的三维瑞利散射谱,如图5所示;通过对两次测量得到的三维瑞利散射谱求相关运算,得 到瑞利散射频移量,并结合瑞利频移系数得出被测光纤沿线的温度信息和应变信息。
(2)在计算机14的软件界面上选择布里渊散射信号测量模式时,具体过程如下:
计算机14与双通道数据采集与处理模块13通信,并通过双通道数据采集与处理模块13发送控制命令使光开关9的输出接入第四光纤耦合器212的另一输入端;第四光纤耦合器212的输出端连接第二光电探测器602;
在第四光纤耦合器212中,输入其中的激光和背向散射光相干,产生的第二中频信号经第二光电探测器602转换成第二射频信号输出;第二射频信号经第三带通滤波器711、第二低噪声放大器802和第四带通滤波器712后接入混频器11的信号输入端;
频率合成器10输出的本地振荡信号接入混频器11的本地振荡输入端,混频器11将布里渊散射信号和本地振荡信号进行混频,得到基带信号,基带信号通过低通滤波器12滤波后,接入双通道数据采集与处理模块13的第二通道。
双通道数据采集与处理模块13发送控制命令控制频率合成器10产生不同频率的本地振荡信号,逐点扫描布里渊散射谱中的频点,接着经混频器11和低通滤波器12转换成基带信号,并由双通道数据采集与处理模块13的第二通道采集得到关于布里渊散射频率、功率和光纤沿线位置的三维布里渊散射谱,如图6所示;通过数据拟合算法,得到光纤沿线位置及其对应的布里渊谱的中心频率,如图7所示,通过将两次测量的结果作差,得到被测光纤沿线的温度信息和应变信息。
根据上述多功能分布式光纤传感装置支持的不同测量模式,双通道数据采集与处理模块13中根据瑞利散射信号测量模式和布里渊散射信号测量模式下得到的温度信息和应变信息,结合瑞利温度系数、瑞利应变系数、 布里渊温度系数和布里渊应变系数,求解出具体的温度信息和应变信息。
本发明实施例提供的多功能分布式光纤传感装置设有激光器1、第一光纤耦合器201、第二光纤耦合器202、第三光纤耦合器211、第四光纤耦合器212、声光调制器3、光纤环形器4、光接口5、第一光电探测器601、第二光电探测器602、第一带通滤波器701、第二带通滤波器702、第三带通滤波器711、第四带通滤波器712、第一低噪声放大器801、第二低噪声放大器802、光开关9、频率合成器10、混频器11、低通滤波器12、双通道数据采集与处理模块13以及计算机14,采用传感光信号的直接切换控制和双通道数据采集与处理模块有针对性地对瑞利散射信号和布里渊散射信号进行相应处理,最终实现对被测光纤的衰减、振动、温度和应变信息的多功能监测和显示。本发明实施例采用上述技术手段的优点如下:
一方面,本发明实施例提供的技术方案充分考虑到了被测光纤中的瑞利散射信号和布里渊散射信号的不同提取与处理方式,利用光开关灵活切换测量模式,并通过相应的算法及配套硬件实现被测光纤的衰减、振动、温度和应变等的同时测量;
另一方面,本发明实施例将瑞利散射测温/测应变与布里渊散射测温/测应变技术相融合,利用瑞利温度、应变系数和布里渊温度、应变系数以及温度/应变数据得到具体的温度信息和应变信息,从而克服了瑞利散射和布里渊散射测温度/应变的交叉敏感问题;与现有技术相比,本发明实施例将信号的模拟变化、分离技术与双通道数字信号处理技术相结合,信号提取与处理效率高,实用性更好,便于装置的商用化开发。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,所属领域的普通技术人员参照上述实施例依然可以对本发明的具体实施方式进行修改或者等同替换,这些未脱离本发明精神和范围的任何修改或者等同替换,均在申请待批的本发明的权利要求保护范围之内。
工业实用性
本发明实施例的技术方案第一方面,采用传感光信号的直接切换控制和双通道数据采集与处理模块有针对性地对瑞利散射信号和布里渊散射信号进行相应处理,最终实现对被测光纤的衰减、振动、温度和应变信息的多功能监测和显示;第二方面利用光开关灵活切换测量模式,并通过相应的算法及配套硬件实现被测光纤的衰减、振动、温度和应变等的同时测量;第三方面将瑞利散射测温/测应变与布里渊散射测温/测应变技术相融合,利用瑞利温度、应变系数和布里渊温度、应变系数以及温度/应变数据得到具体的温度信息和应变信息,从而克服了瑞利散射和布里渊散射测温度/应变的交叉敏感问题,实现了被测光纤温度和应变信息的精确解调;第四方面将信号的模拟变化、分离技术与双通道数字信号处理技术相结合,信号提取与处理效率高,实用性更好,便于装置的商用化开发。

Claims (10)

  1. 一种多功能分布式光纤传感装置,包括激光器(1)、第一光纤耦合器(201)、第二光纤耦合器(202)、第三光纤耦合器(211)、第四光纤耦合器(212)、声光调制器(3)、光纤环形器(4)、光接口(5)、第一光电探测器(601)、第二光电探测器(602)、第一带通滤波器(701)、第二带通滤波器(702)、第三带通滤波器(711)、第四带通滤波器(712)、第一低噪声放大器(801)、第二低噪声放大器(802)、光开关(9)、频率合成器(10)、混频器(11)、低通滤波器(12)、双通道数据采集与处理模块(13)以及计算机(14);
    所述激光器(1)的输出端连接所述第一光纤耦合器(201)的输入端,所述第一光纤耦合器(201)的第一输出端连接所述声光调制器(3)的输入端,所述第一光纤耦合器(201)的第二输出端连接所述第二光纤耦合器(202)的输入端;所述声光调制器(3)的输出端接入所述光纤环形器(4)的第一端口,所述光纤环形器(4)的第二端口通过所述光接口(5)连接被测光纤,所述光纤环形器(4)的第三端口连接所述光开关(9)的输入端,所述光开关(9)的第一输出端连接所述第三光纤耦合器(211)的第二输入端,所述光开关(9)的第二输出端连接所述第四光纤耦合器(212)的第二输入端;所述第二光纤耦合器(202)的第一输出端连接所述第三光纤耦合器(211)的第一输入端,所述第二光纤耦合器(202)的第二输出端连接第四光纤耦合器(212)的第一输出端;所述第三光纤耦合器(211)的输出端连接所述第一光电探测器(601),所述第一光电探测器(601)依次通过所述第一带通滤波器(701)、第一低噪声放大器(801)和第二带通滤波器(702)接入所述双通道数据采集与处理模块(13)的第一通道;所述第四光纤耦合器(212)的输出端连接所述第二光电探测器(602),所述第二光电探测器(602)依次通过所述第三带通滤波器(711)、第二低噪声 放大器(802)和第四带通滤波器(712)接入所述混频器(11)的信号输入端,所述频率合成器(10)的输出端连接所述混频器(11)的本地振荡输入端,所述混频器(11)的输出端通过所述低通滤波器(12)连接所述双通道数据采集与处理模块(13)的第二通道,所述双通道数据采集与处理模块(13)的输出端连接所述计算机(14)。
  2. 根据权利要求1所述的多功能分布式光纤传感装置,其中,所述激光器(1)发出的激光经所述第一光纤耦合器(201)分成两路,其中一路激光经所述声光调制器(3)调制成光脉冲,另一路激光接入所述第二光纤耦合器(202)。
  3. 根据权利要求2所述的多功能分布式光纤传感装置,其中,所述光脉冲接入所述光纤环形器(4)的第一端口,所述光纤环形器(4)的第二端口输出光脉冲,所述光脉冲经所述光接口(5)注入被测光纤。
  4. 根据权利要求3所述的多功能分布式光纤传感装置,其中,所述光脉冲在被测光纤中的背向散射光经所述光接口(5)进入所述光纤环形器(4)的第二端口,再经过所述光纤环形器(4)的第三端口接入所述光开关(9);
  5. 根据权利要求4所述的多功能分布式光纤传感装置,其中,所述第二光纤耦合器(202)将输入其中的激光分成两路,其中一路激光接入所述第三光纤耦合器(211),另一路激光输入所述第四光纤耦合器(212)。
  6. 根据权利要求5所述的多功能分布式光纤传感装置,其中,所述第三光纤耦合器(211)使接入的激光和背向散射光相干产生第一中频信号,并将所述第一中频信号输出给所述第一光电探测器(601);所述第一光电探测器(601)将第一中频信号转换为第一射频信号,所述第一射频信号依次通过所述第一带通滤波器(701)、第一低噪声放大器(801)和第二带通滤波器(702)进行一次滤波、放大、二次滤波后得到瑞利散射信号,所述瑞利散射信号接入所述双通道数据采集与处理模块(13)的第一通道。
  7. 根据权利要求6所述的多功能分布式光纤传感装置,其中,所述第四光纤耦合器(212)使接入的激光和背向散射光相干产生第二中频信号,并将所述第二中频信号输出给所述第二光电探测器(602);所述第二光电探测器(602)将第二中频信号转换为第二射频信号,所述第二射频信号依次通过所述第三带通滤波器(711)、第二低噪声放大器(802)和第四带通滤波器(712)进行一次滤波、放大、二次滤波后得到布里渊散射信号,所述布里渊散射信号接入所述混频器的信号输入端;所述频率合成器(10)输出的本地振荡信号接入所述混频器(11)的本地振荡输入端,所述混频器(11)将布里渊散射信号和本地振荡信号进行混频,得到基带信号,所述基带信号通过所述低通滤波器(12)滤波后,接入所述双通道数据采集与处理模块(13)的第二通道。
  8. 根据权利要求7所述的多功能分布式光纤传感装置,其中,所述双通道数据采集与处理模块(13)提取第一通道采集的瑞利散射信号的功率信息,根据瑞利散射信号的功率信息得到被测光纤的衰减信息,并对提取的功率信息进行傅里叶变换,得到被测光纤的振动信息;同时所述双通道数据采集与处理模块(13)提取第二通道采集的布里渊散射信号的时域、频域和功率信息,同时对被测光纤各位置对应的布里渊频点进行拟合,得到布里渊频谱的中心频率。
  9. 根据权利要求8所述的多功能分布式光纤传感装置,其中,所述双通道数据采集与处理模块(13)将被测光纤的衰减信息、振动信息以及布里渊频谱的中心频率输出给所述计算机(14),所述计算机(14)对所述数据采集与处理模块(13)进行控制,并显示被测光纤的衰减信息、振动信息、温度信息和应变信息。
  10. 根据权利要求1所述的多功能分布式光纤传感装置,其中,所述双通道数据采集与处理模块(13)发送控制命令所述激光器(1),用于控制 所述激光器(1)的输出频率;
    同时所述双通道数据采集与处理模块(13)产生电脉冲,所述电脉冲驱动所述声光调制器(3)将激光调制成光脉冲。
PCT/CN2018/091659 2017-07-20 2018-06-15 一种多功能分布式光纤传感装置 WO2019015426A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710596323.5 2017-07-20
CN201710596323.5A CN107421570B (zh) 2017-07-20 2017-07-20 一种多功能分布式光纤传感装置

Publications (1)

Publication Number Publication Date
WO2019015426A1 true WO2019015426A1 (zh) 2019-01-24

Family

ID=60430051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091659 WO2019015426A1 (zh) 2017-07-20 2018-06-15 一种多功能分布式光纤传感装置

Country Status (2)

Country Link
CN (1) CN107421570B (zh)
WO (1) WO2019015426A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109959404A (zh) * 2019-03-27 2019-07-02 中山水木光华电子信息科技有限公司 一种差分光纤光栅识别***
EP3812711A3 (en) * 2019-10-24 2021-08-11 Palo Alto Research Center Incorporated Fiber optic sensing system for grid-based assets
CN113483880A (zh) * 2021-08-17 2021-10-08 广东电网有限责任公司 基于少模光纤的振动传感***
CN113532808A (zh) * 2021-07-06 2021-10-22 南京法艾博光电科技有限公司 一种基于振动敏感型光纤传感技术的多通道监测方法及***
CN113624363A (zh) * 2021-08-02 2021-11-09 太原理工大学 一种光纤温度监测装置
CN114047495A (zh) * 2021-10-11 2022-02-15 中国人民解放军95980部队 基于光电振荡技术的分布式雷达***
CN114323248A (zh) * 2021-12-31 2022-04-12 郑州信大先进技术研究院 一种四通道地埋光缆分布式光纤振动传感预警方法及***
CN114440141A (zh) * 2020-10-30 2022-05-06 中国石油天然气股份有限公司 管道泄漏检测方法及***
CN115021820A (zh) * 2022-06-06 2022-09-06 中邮科通信技术股份有限公司 一种支持多频段同时传输的5g光纤拉远***及方法
CN115585801A (zh) * 2022-09-07 2023-01-10 浙江航天润博测控技术有限公司 一种分段光路互易的分布式高精度光纤陀螺仪及方法
US11585692B2 (en) 2019-10-24 2023-02-21 Palo Alto Research Center Incorporated Fiber optic sensing system for grid-based assets
CN116186642A (zh) * 2023-04-27 2023-05-30 山东汇英信息科技有限公司 一种基于多维特征融合的分布式光纤传感事件预警方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107421570B (zh) * 2017-07-20 2020-05-08 全球能源互联网研究院 一种多功能分布式光纤传感装置
CN108827354A (zh) * 2018-04-24 2018-11-16 国家电网公司 多参量分布式光纤传感装置
RU2695098C1 (ru) * 2018-12-19 2019-07-19 федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)" (МГТУ им. Н.Э. Баумана) Волоконно-оптическое устройство регистрации вибрационных воздействий с разделением контролируемых участков
CN109708742B (zh) * 2018-12-27 2021-06-04 广东电网有限责任公司佛山供电局 基于特征提取的分布式光纤振动传感***及其控制方法
RU2730887C1 (ru) * 2019-12-19 2020-08-26 Константин Викторович Степанов Волоконно-оптическое устройство регистрации вибрационных воздействий с восстановлением фазы с уменьшением влияния нестабильностей регистрирующего интерферометра
CN113540932B (zh) * 2021-07-15 2023-08-01 中国科学院半导体研究所 扫频宽带信号生成***及扫频宽带信号生成方法
CN116298382A (zh) * 2023-05-17 2023-06-23 山东省科学院海洋仪器仪表研究所 一种全光纤光子计数相干多普勒海洋流场测速***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101334364B1 (ko) * 2012-12-20 2013-12-05 한국광해관리공단 광섬유 센서를 이용한 온도와 변형율의 동시 측정이 가능한 지반 모니터링 시스템
CN103900623A (zh) * 2014-04-16 2014-07-02 武汉理工光科股份有限公司 基于双声光调制器的光时域反射仪及其共模抑制方法
CN204330014U (zh) * 2014-12-11 2015-05-13 威海北洋光电信息技术股份公司 基于布里渊的长距离双参量监测装置
CN105721048A (zh) * 2016-02-19 2016-06-29 南京晓庄学院 一种复合型光纤通信线路故障监测方法及***
CN105716638A (zh) * 2016-02-24 2016-06-29 南京大学 一种基于光开关产生互补光的新型cotdr探测装置及实现方法
CN106289337A (zh) * 2016-08-17 2017-01-04 重庆大学 多参数分布式光纤传感***
CN107421570A (zh) * 2017-07-20 2017-12-01 全球能源互联网研究院 一种多功能分布式光纤传感装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2571148B1 (fr) * 1984-09-28 1987-01-02 Electricite De France Detecteur de faisceau lumineux a photodiode a circuit de reglage du point de fonctionnement
CN102168953B (zh) * 2011-01-12 2012-04-25 南京大学 一种基于相干外差检测的全分布式光纤应变及振动传感器
CN202204524U (zh) * 2011-08-30 2012-04-25 杭州布里特威光电技术有限公司 一种布里渊和拉曼同时检测的分布式光纤传感装置
CN103674084B (zh) * 2013-12-16 2016-05-25 华北电力大学(保定) 一种分布式温度与应变同时测量方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101334364B1 (ko) * 2012-12-20 2013-12-05 한국광해관리공단 광섬유 센서를 이용한 온도와 변형율의 동시 측정이 가능한 지반 모니터링 시스템
CN103900623A (zh) * 2014-04-16 2014-07-02 武汉理工光科股份有限公司 基于双声光调制器的光时域反射仪及其共模抑制方法
CN204330014U (zh) * 2014-12-11 2015-05-13 威海北洋光电信息技术股份公司 基于布里渊的长距离双参量监测装置
CN105721048A (zh) * 2016-02-19 2016-06-29 南京晓庄学院 一种复合型光纤通信线路故障监测方法及***
CN105716638A (zh) * 2016-02-24 2016-06-29 南京大学 一种基于光开关产生互补光的新型cotdr探测装置及实现方法
CN106289337A (zh) * 2016-08-17 2017-01-04 重庆大学 多参数分布式光纤传感***
CN107421570A (zh) * 2017-07-20 2017-12-01 全球能源互联网研究院 一种多功能分布式光纤传感装置

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109959404A (zh) * 2019-03-27 2019-07-02 中山水木光华电子信息科技有限公司 一种差分光纤光栅识别***
US11585692B2 (en) 2019-10-24 2023-02-21 Palo Alto Research Center Incorporated Fiber optic sensing system for grid-based assets
EP3812711A3 (en) * 2019-10-24 2021-08-11 Palo Alto Research Center Incorporated Fiber optic sensing system for grid-based assets
US11719559B2 (en) 2019-10-24 2023-08-08 Palo Alto Research Center Incorporated Fiber optic sensing system for grid-based assets
CN114440141B (zh) * 2020-10-30 2023-09-26 中国石油天然气股份有限公司 管道泄漏检测方法及***
CN114440141A (zh) * 2020-10-30 2022-05-06 中国石油天然气股份有限公司 管道泄漏检测方法及***
CN113532808B (zh) * 2021-07-06 2023-11-24 南京法艾博光电科技有限公司 一种基于振动敏感型光纤传感技术的多通道监测方法及***
CN113532808A (zh) * 2021-07-06 2021-10-22 南京法艾博光电科技有限公司 一种基于振动敏感型光纤传感技术的多通道监测方法及***
CN113624363A (zh) * 2021-08-02 2021-11-09 太原理工大学 一种光纤温度监测装置
CN113624363B (zh) * 2021-08-02 2024-05-03 太原理工大学 一种光纤温度监测装置
CN113483880A (zh) * 2021-08-17 2021-10-08 广东电网有限责任公司 基于少模光纤的振动传感***
CN114047495A (zh) * 2021-10-11 2022-02-15 中国人民解放军95980部队 基于光电振荡技术的分布式雷达***
CN114323248A (zh) * 2021-12-31 2022-04-12 郑州信大先进技术研究院 一种四通道地埋光缆分布式光纤振动传感预警方法及***
CN115021820A (zh) * 2022-06-06 2022-09-06 中邮科通信技术股份有限公司 一种支持多频段同时传输的5g光纤拉远***及方法
CN115021820B (zh) * 2022-06-06 2024-02-20 中邮科通信技术股份有限公司 一种支持多频段同时传输的5g光纤拉远***及方法
CN115585801A (zh) * 2022-09-07 2023-01-10 浙江航天润博测控技术有限公司 一种分段光路互易的分布式高精度光纤陀螺仪及方法
CN115585801B (zh) * 2022-09-07 2024-02-06 浙江航天润博测控技术有限公司 一种分段光路互易的分布式高精度光纤陀螺仪及方法
CN116186642A (zh) * 2023-04-27 2023-05-30 山东汇英信息科技有限公司 一种基于多维特征融合的分布式光纤传感事件预警方法
CN116186642B (zh) * 2023-04-27 2023-09-08 山东汇英光电科技有限公司 一种基于多维特征融合的分布式光纤传感事件预警方法

Also Published As

Publication number Publication date
CN107421570A (zh) 2017-12-01
CN107421570B (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
WO2019015426A1 (zh) 一种多功能分布式光纤传感装置
CN107560644B (zh) 一种基于信号复用感知与解调的分布式光纤传感装置
CN113405577B (zh) 一种测量方法及测量装置
WO2021057025A1 (zh) 一种基于混频的光电探测器频响测量方法及装置
CN105651492A (zh) 一种基于电光调制器和可调射频源的激光线宽测量***及方法
Xie et al. STFT based on bandwidth-scaled microwave photonics
WO2015010581A1 (zh) 一种基于探测频率编码的相干光时域反射仪
CN110220470A (zh) 基于瑞利散射的单端混沌布里渊动态应变测量装置及方法
CN107860461B (zh) 基于位相光时域反射计及光纤双脉冲差分式微扰探测器
CN107588873B (zh) 一种具有电磁环境监测功能的光纤传感装置
CN105222881B (zh) 一种基于外差法的多通道光纤环声发射探测***
CN110212976B (zh) 一种基于人工神经网络的光信噪比监测方法
CN113938189B (zh) 一种马赫-曾德尔调制器频率响应测试装置及方法
Zuo et al. Short-time Fourier transform based on stimulated Brillouin scattering
CN105716638A (zh) 一种基于光开关产生互补光的新型cotdr探测装置及实现方法
CN111412947A (zh) 一种全分布式opgw光缆覆冰在线监测装置及控制方法
CN110702988B (zh) 基于傅里叶域锁模光电振荡器的注入式频谱侦测***
CN105021901A (zh) 高压电场测量***及其测量方法
CN110375960A (zh) 一种基于超连续谱光源otdr的装置及方法
CN111121873A (zh) 一种分布式光纤传感装置
CN105353210A (zh) 一种高灵敏大带宽光子微波频率测量装置及方法
CN114235016A (zh) 基于注入锁定高阶边带输出的动态botda传感方法及***
CN204128693U (zh) 一种宽带调频脉冲激光波形测试装置
JP2016095193A (ja) 光パルス試験装置及び光パルス試験方法
CN111473952B (zh) 光纤传感装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18835177

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18835177

Country of ref document: EP

Kind code of ref document: A1