WO2019014884A1 - System and method for securing an outer race of a bearing to a bedplate of a wind turbine - Google Patents

System and method for securing an outer race of a bearing to a bedplate of a wind turbine Download PDF

Info

Publication number
WO2019014884A1
WO2019014884A1 PCT/CN2017/093632 CN2017093632W WO2019014884A1 WO 2019014884 A1 WO2019014884 A1 WO 2019014884A1 CN 2017093632 W CN2017093632 W CN 2017093632W WO 2019014884 A1 WO2019014884 A1 WO 2019014884A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
bedplate
main shaft
cover
flexible member
Prior art date
Application number
PCT/CN2017/093632
Other languages
French (fr)
Inventor
Bo Fu
William Francis Gevers
Original Assignee
General Electric Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Company filed Critical General Electric Company
Priority to PCT/CN2017/093632 priority Critical patent/WO2019014884A1/en
Publication of WO2019014884A1 publication Critical patent/WO2019014884A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/067Fixing them in a housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/60Assembly methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/50Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/24Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
    • F16C19/26Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/31Wind motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present subject matter relates generally to wind turbines, and more particularly to systems and methods for securing an outer race of a bearing to bedplate of a wind turbine.
  • Windpower is considered one of the cleanest, most environmentally friendly energy sources presently available, and wind turbines have gained increased attention in this regard.
  • a modern wind turbine typically includes a tower, a generator, a gearbox, a nacelle, and one or more rotor blades.
  • the nacelle includes a rotor assembly coupled to the gearbox and to the generator.
  • the rotor assembly and the gearbox are mounted on a bedplate member support frame located within the nacelle. More specifically, in many wind turbines, the gearbox is mounted to the bedplate member via one or more torque supports or arms.
  • the one or more rotor blades capture kinetic energy of wind using known airfoil principles.
  • the rotor blades transmit the kinetic energy in the form of rotational energy so as to turn a shaft coupling the rotor blades to a gearbox, or ifa gearbox is not used, directly to the generator.
  • the generator then converts the mechanical energy to electrical energy that may be deployed to a utility grid.
  • the majority of commercially available wind turbines utilize multi-stage geared drivetrains to connect the turbine blades to electrical generators.
  • the wind turns the rotor blades, which spin a low speed shaft, i.e. the main shaft.
  • the main shaft is coupled to an input shaft of the gearbox, which has a higher speed output shaft connected to the generator.
  • the geared drivetrain aims to increase the velocity of the mechanical motion.
  • the gearbox and the generator are typically supported by one or more bearings and mounted to the bedplate via one or more torque arms or supports.
  • Such bearings typically include an inner race, an outer race, and a plurality of roller elements arranged therebetween.
  • the outer race is typically stationary, whereas the inner race can rotates to provide rotation of the main shaft. Accordingly, the outer race needs to be firmly clamped axially within the bedplate. As such, the bearings are typically held in place via a cover that is mounted to the bedplate.
  • the present disclosure is directed to a main shaft assembly of a wind turbine.
  • the main shaft assembly includes a main shaft secured to a bedplate of the wind turbine. Further, the main shaft assembly includes a bearing seated within the bedplate. The bearing is held in place via a cover that is secured to a mounting surface of the bedplate. Moreover, the bearing includes an inner race, an outer race, and a plurality of roller elements arranged therebetween. In addition, the bearing engages the main shaft so as to provide rotation thereof.
  • the main shaft assembly further includes at least one flexible member arrangedbetween the outer race of the bearing and the cover. As such, when the flexible member is compressed, a gap between the mounting surface of the bedplate and the cover is reduced or closed.
  • the flexible member (s) is compressed by torqueing one or more fasteners extending through the cover and the mounting surface of the bedplate.
  • the flexible member (s) may be one or more springs.
  • a force from the compressed spring (s) to a predetermined working height is configured to prevent the outer race from rotating.
  • the inner race of the bearing is configured to rotate so as to provide rotation of the main shaft.
  • the springs (s) may include one or more wave springs. More particularly, the wave spring (s) may be constructed of metal, e.g. such as carbon steel. Further, in several embodiments, a plurality of wave springs may be stacked together.
  • the bearing may correspond to a cylindrical roller bearing.
  • the present disclosure is directed to a drivetrain assembly of a wind turbine.
  • the drivetrain assembly includes a main shaft secured to a bedplate of the wind turbine, a gearbox rotatably coupled to a downwind end of the main shaft, a generator rotatably coupled to the gearbox via a generator shaft, a first bearing seated within the bedplate at an upwind location, and a second bearing seated within the bedplate at a downwind location.
  • the first bearing is held in place via a first cover that is secured to a first mounting surface of the bedplate.
  • the first bearing includes an inner race, an outer race, and a plurality of roller elements arranged therebetween.
  • the second bearing is held in place via a second cover that is secured to a second mounting surface of the bedplate.
  • the second bearing also includes an inner race, an outer race, and a plurality of roller elements arranged therebetween.
  • the first and second bearings engage the main shaft so as to provide rotation thereof.
  • the drivetrain assembly also includes at least one flexible member arranged between the outer race of the second bearing and the second cover. As such, when the flexible member (s) is compressed, a gap between the second mounting surface of the bedplate and the cover is closed or reduced. It should be understood that the drivetrain assembly may further include any of the additional features as described herein.
  • the present disclosure is directed to a method for securing an outer race of a bearing within a bedplate of a wind turbine.
  • the method includes removing a portion of a first cover flange of a cover of the bearing to create a space between the first cover flange and an outer race of the bearing.
  • the method also includes inserting at least one flexible member in the space between the first cover flange and the outer race where the portion of the first cover flange has been removed.
  • the method includes compressing the flexible member (s) so as to close a gap between a second cover flange and a mounting surface of the bedplate, wherein closing the gap secures the outer race of the bearing to the bedplate.
  • the method may further include any of the additional step and/or features as described herein.
  • the step of compressing the flexible member (s) so as to close the gap between the second cover flange and the mounting surface of the bedplate may include torqueing a plurality of fasteners extending through the second cover flange and the mounting surface of the bedplate such that the first cover flange compresses the flexible member (s) .
  • FIG. 1 illustrates a perspective view of one embodiment of a wind turbine according to the present disclosure
  • FIG. 2 illustrates a perspective view of a simplified, internal view of one embodiment of a nacelle of a wind turbine according to the present disclosure, particularly illustrating a drivetrain assembly having a single main bearing unit;
  • FIG. 3 illustrates a cross-sectional view of one embodiment of certain drivetrain components of a wind turbine according to the present disclosure, particularly illustrating a drivetrain assembly having a dual main bearing unit;
  • FIG. 4 illustrates a detailed cross-sectional view of a portion of the drivetrain assembly of the wind turbine, particularly illustrating a gap between a cover of a bearing and a mounting surface of the bedplate;
  • FIG. 5 illustrates a detailed cross-sectional view of a portion of the drivetrain assembly of the wind turbine, particularly illustrating a flexible member arranged between the cover and the outer race of the bearing according to the present disclosure
  • FIG. 6 illustrates a detailed cross-sectional view of the flexible member arranged between the cover and the outer race of the bearing according to the present disclosure.
  • FIG. 7 illustrates a flow diagram of one embodiment of a method for securing an outer race of a bearing within a bedplate of a wind turbine according to the present disclosure.
  • the present disclosure is directed to a main shaft assembly of a wind turbine.
  • the main shaft assembly includes a main shaft secured to a bedplate of the wind turbine. Further, the main shaft assembly includes a bearing seated within the bedplate. The bearing is held in place via a cover that is secured to a mounting surface of the bedplate. Moreover, the bearing includes an inner race, an outer race, and a plurality of roller elements arranged therebetween. In addition, the bearing engages the main shaft so as to provide rotation thereof.
  • the main shaft assembly further includes at least one flexible member arranged between the outer race of the bearing and the cover. As such, when the flexible member (s) is compressed (e.g. via torqueing bolts extending through the cover and the mounting surface of the bedplate) , a gap between the mounting surface of the bedplate and the cover is reduced or closed.
  • the present disclosure provides many advantages not present in the prior art. For example, by utilizing the deformation of the flexible member when the bolts are torqued, the cover fully contacts the mounting surface of the bedplate and maintains the clamping force to the outer race of the bearing. As such, the gap between the cover flange and the mounting surface of the bedplate is reduced or eliminated. Further, the system and method of the present disclosure prevents the outer race of the bearing from spinning radially in bearing bore. In addition, the system and method of the present disclosure prevents the bolts from bending.
  • FIG. 1 illustrates a perspective view of one embodiment of a wind turbine 10 according to the present disclosure.
  • the wind turbine 10 generally includes a tower 12 extending from a support surface 14, a nacelle 16 mounted on the tower 12, and a rotor 18 coupled to the nacelle 16.
  • the rotor 18 includes a rotatable hub 20 and at least one rotor blade 22 coupled to and extending outwardly from the hub 20.
  • the rotor 18 includes three rotor blades 22.
  • the rotor 18 may include more or less than three rotor blades 22.
  • Each rotor blade 22 may be spaced about the hub 20 to facilitate rotating the rotor 18 to enable kinetic energy to be transferred from the wind into usable mechanical energy, and subsequently, electrical energy.
  • the hub 20 may be rotatably coupled to an electric generator 24 (FIG. 2) positioned within the nacelle 16 to permit electrical energy to be produced.
  • the wind turbine 10 may also include a wind turbine controller 26 centralized within the nacelle 16. However, in other embodiments, the controller 26 may be located within any other component of the wind turbine 10 or at a location outside the wind turbine 10. Further, the controller 26 may be communicatively coupled to any number of the components of the wind turbine 10 in order to control the components. As such, the controller 26 may include a computer or other suitable processing unit. Thus, in several embodiments, the controller 26 may include suitable computer-readable instructions that, when implemented, configure the controller 26 to perform various different functions, such as receiving, transmitting and/or executing wind turbine control signals.
  • FIGS. 2-5 various views of the drivetrain assembly of a wind turbine, such as the wind turbine 10 of FIG. 1, are illustrated.
  • FIG. 2 illustrates a simplified, internal view of one embodiment of the nacelle 16 of the wind turbine 10 shown in FIG. 1, particularly illustrating certain drivetrain components of a drivetrain assembly having a single main bearing unit.
  • FIG. 3 illustrates a cross-sectional view of one embodiment of several drivetrain components of a dual-bearing drivetrain assembly of the wind turbine 10 according to the present disclosure.
  • FIG. 4 illustrates a detailed cross-sectional view of a portion of the drivetrain assembly of the wind turbine 10, particularly illustrating a gap 70 between a cover 68 of a bearing 58 and a mounting surface of the bedplate 48.
  • FIG. 1 illustrates a simplified, internal view of one embodiment of the nacelle 16 of the wind turbine 10 shown in FIG. 1, particularly illustrating certain drivetrain components of a drivetrain assembly having a single main bearing unit.
  • FIG. 3 illustrates a cross-sectional view
  • the generator 24 may be coupled to the rotor 18 for producing electrical power from the rotational energy generated by the rotor 18.
  • the rotor 18 may include a main shaft 34 rotatable via a main bearing 54 coupled to the hub 20 for rotation therewith.
  • the main shaft 34 may, in turn, be rotatably coupled to a gearbox output shaft 36 of the generator 24 through a gearbox 30. More specifically, as shown in FIGS.
  • the main shaft 34 is typically supported by one or more bearings 54, 58.
  • the main bearing 54 generally corresponds to a tapered roller bearing having an inner race 56, an outer race 55, and a plurality of roller elements 57 arranged therebetween.
  • the main bearing 54 may be any suitable bearing in addition to tapered roller bearings, including for example, a spherical roller bearing, a cylindrical roller bearing, a ball bearing, or any other suitable bearing.
  • the second bearing 58 generally corresponds to a cylindrical roller bearing having an inner race 62, an outer race 60, and a plurality of cylindrical roller elements 66 arranged therebetween.
  • the bearings 54, 58 may be held in place via first and second bearing covers 60, 68 that are mounted at the upwind and downwind ends of the shaft 34, respectively.
  • the covers 60, 68 may include one or more cover flanges.
  • the second cover 68 includes, at least, a first cover flange 74 and a second cover flange 75.
  • one or more seal rings 59, 63 may be configuredbetween the covers 60, 68 and the bearings 54, 58.
  • the seal ring 59 may correspond to a labyrinth seal that prevents leakage of bearing fluids.
  • the bearings 54, 58 may be mounted to the bedplate member 48 of the nacelle 16 via one or more torque supports 50.
  • the gearbox 30 may include a gearbox housing 38 that is connected to the bedplate 48 by one or more torque arms 50.
  • the main shaft 34 provides a low speed, high torque input to the gearbox 30 in response to rotation of the rotor blades 22 and the hub 20.
  • the gearbox 30 thus converts the low speed, high torque input to a high speed, low torque output to drive the gearbox output shaft 36 and, thus, the generator 24.
  • FIG. 4 a partial cross-sectional view of a portion of the drivetrain assembly of the wind turbine 10, particularly illustrating a gap 70 between the second cover flange 75 of the cover 68 and the mounting surface 49 of the bedplate 48, is illustrated.
  • this gap 70 exists due to machining tolerances and needs to be closed or at least reduced to effectively hold the outer race 62 of the bearing 58 in place.
  • fasteners or bolts 76 are used for clamping the second cover flange 75 to the bedplate 48 to close the gap 70.
  • fasteners or bolts 76 are used for clamping the second cover flange 75 to the bedplate 48 to close the gap 70.
  • bolts 76 may become damaged due extreme and/or fatigue loads acting thereon.
  • the working life of the bolts 76 under such loads is significantly reduced and can cause bolt failure.
  • FIGS. 5 and 6 various views of the main shaft assembly according to the present disclosure are illustrated, particularly illustrating at least one flexible member 72 arranged between the outer race 62 of the bearing 58 and the second cover flange 74 of the cover 68 so as to reduce or eliminate the gap 70 between the second cover flange 75 and the mounting surface 49 of the bedplate 48. More specifically, when the flexible member (s) 72 is compressed, the gap 70 is reduced or closed. For example, in one embodiment, the flexible member (s) 72 is compressed by torqueing the bolts 76 extending through the cover 68 and the mounting surface 49 of the bedplate 48.
  • a portion of the first cover flange 74 of the cover 68 may need to be removed.
  • a portion of the first cover flange 74 of the cover 68 may be removed via machining (e.g. via cutting or grinding) to create a space for the flexible member (s) 72.
  • the flexible member (s) 72 is configured to compress and expand between a free height and a working height. As such, the working height can be calculated to be within the preserved axial gap between the first cover flange 74 of the cover 68 and the outer race 64 of the bearing 58.
  • the flexible member (s) 72 may be one or more springs. More specifically, as shown, the spring (s) may include one or more wave springs.
  • a wave spring generally refers to a spring made up of a pre-hardened flat wire. During the manufacturing process, waves are added to give it a spring effect. As such, the number of turns and waves can be easily adjusted to accommodate stronger force or meet specific requirements.
  • the wave spring (s) may be constructed of metal, e.g. such as carbon steel. Further, in several embodiments, the wave spring (s) may be constructed of multiple layers (i.e. a plurality of springs stacked on top of each other) .
  • a force from the compressed spring (s) to a predetermined working height is configured to prevent the outer race 62 of the bearing 58 from rotating, whereas the inner race 64 of the bearing 58 is configured to rotate so as to provide rotation of the main shaft 34.
  • the method 100 includes removing a portion of the first cover flange 74 of the cover 68 of the bearing 58 to create a space between the first cover flange 74 and the outer race 62 of the bearing 58.
  • the method 100 includes inserting one or more flexible members 72 in the space between the first cover flange 74 and the outer race 62, i.e. where the portion of the first cover flange 64 has been removed.
  • the method 100 includes compressing the flexible member (s) 72 so as to close the gap 70 between the second cover flange 75 and the mounting surface 49 of the bedplate 48. As such, closing the gap 70 also secures or clamps the outer race 62 of the bearing 68 to or within the bedplate 48.
  • the step of compressing the flexible member (s) 72 so as to close the gap 70 between the second cover flange 75 and the mounting surface 49 of the bedplate 48 may include torqueing a plurality of fasteners 76 extending through the second cover flange 75 and the mounting surface 49 of the bedplate 48 such that the first cover flange 74 compresses the flexible member (s) 72.
  • Reference Character Component 10 Wind Turbine 12 Tower 14 Support Surface 16 Nacelle 18 Rotor 20 Rotatable Hub 22 Rotor Blades 24 Generator 26 Controller 30 Gearbox 34 Main Shaft 36 Gearbox Output Shaft 38 Gearbox Housing 48 Bedplate 49 Mounting Surface 50 Torque Arm 54 Main Bearing 55 Outer Race 56 Inner Race 57 Roller Elements 58 Second Bearing 59 Seal Ring/Labyrinth Seal 60 Cover 62 Outer Race 63 Seal Ring/Labyrinth Seal 64 Inner Race 66 Roller Elements 68 Cover 70 Gap 72 Flexible Member 74 First Cover Flange 75 Second Cover Flange 76 Bolts 100 Method 102 Method Step 104 Method Step 106 Method Step 106 Method Step

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Wind Motors (AREA)

Abstract

A main shaft assembly of a wind turbine (10) includes a main shaft (34) secured to a bedplate (48) of the wind turbine (10) and a bearing (54, 58) seated within the bedplate(48). The bearing (54, 58) is held in place via a cover (68) that is secured to a mounting surface (49) of the bedplate. Moreover, the bearing (54, 58) includes an inner race (56, 64), an outer race (55, 62), a plurality of roller elements (57, 66) arranged therebetween. In addition, the bearing (54, 58) engages the main shaft (34) so as to provide rotation thereof. The main shaft assembly further includes a flexible member (72) arranged between the outer race of the bearing (54, 58) and the cover (68). As such, when the flexible member is compressed, a gap between the mounting surface of the bedplate (48) and the cover (68) is reduced or closed.

Description

SYSTEM AND METHOD FOR SECURING AN OUTER RACE OF A BEARING TO A BEDPLATE OF A WIND TURBINE FIELD
The present subject matter relates generally to wind turbines, and more particularly to systems and methods for securing an outer race of a bearing to bedplate of a wind turbine.
BACKGROUND
Windpower is considered one of the cleanest, most environmentally friendly energy sources presently available, and wind turbines have gained increased attention in this regard. A modern wind turbine typically includes a tower, a generator, a gearbox, a nacelle, and one or more rotor blades. The nacelle includes a rotor assembly coupled to the gearbox and to the generator. The rotor assembly and the gearbox are mounted on a bedplate member support frame located within the nacelle. More specifically, in many wind turbines, the gearbox is mounted to the bedplate member via one or more torque supports or arms. The one or more rotor blades capture kinetic energy of wind using known airfoil principles. The rotor blades transmit the kinetic energy in the form of rotational energy so as to turn a shaft coupling the rotor blades to a gearbox, or ifa gearbox is not used, directly to the generator. The generator then converts the mechanical energy to electrical energy that may be deployed to a utility grid.
More specifically, the majority of commercially available wind turbines utilize multi-stage geared drivetrains to connect the turbine blades to electrical generators. The wind turns the rotor blades, which spin a low speed shaft, i.e. the main shaft. The main shaft is coupled to an input shaft of the gearbox, which has a higher speed output shaft connected to the generator. Thus, the geared drivetrain aims to increase the velocity of the mechanical motion. Further, the gearbox and the generator are typically supported by one or more bearings and mounted to the bedplate via one or more torque arms or supports.
Such bearings typically include an inner race, an outer race, and a plurality of roller elements arranged therebetween. As such, the outer race is typically stationary,  whereas the inner race can rotates to provide rotation of the main shaft. Accordingly, the outer race needs to be firmly clamped axially within the bedplate. As such, the bearings are typically held in place via a cover that is mounted to the bedplate.
Due to machining tolerances, however, a gap exists between the cover flange and the bedplate mounting surface. Such gap needs to be closed or at least reduced to effectively hold the outer race in place. Thus, conventional systems utilize bolts for clamping the cover flange to the bedplate to close the gap. However, in such systems, there are often not enough bolts to perfectly close the gap and such bolts may become damaged due extreme and/or fatigue loads acting on the bolts. In addition, the working life of bolts under such loads is significantly reduced and can cause bolt failure. To make the gap as small as possible, the bearing housing can be designed with tight tolerances, however, such design is costly.
Thus, the art is continuously seeking new and improved systems and methods for securing an outer race of a bearing to bedplate of a wind turbine.
BRIEF DESCRIPTION
Aspects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.
In one aspect, the present disclosure is directed to a main shaft assembly of a wind turbine. The main shaft assembly includes a main shaft secured to a bedplate of the wind turbine. Further, the main shaft assembly includes a bearing seated within the bedplate. The bearing is held in place via a cover that is secured to a mounting surface of the bedplate. Moreover, the bearing includes an inner race, an outer race, and a plurality of roller elements arranged therebetween. In addition, the bearing engages the main shaft so as to provide rotation thereof. The main shaft assembly further includes at least one flexible member arrangedbetween the outer race of the bearing and the cover. As such, when the flexible member is compressed, a gap between the mounting surface of the bedplate and the cover is reduced or closed.
In one embodiment, the flexible member (s) is compressed by torqueing one or  more fasteners extending through the cover and the mounting surface of the bedplate.
In another embodiment, the flexible member (s) may be one or more springs. In such embodiments, a force from the compressed spring (s) to a predetermined working height is configured to prevent the outer race from rotating. In such embodiments, the inner race of the bearing is configured to rotate so as to provide rotation of the main shaft.
In certain embodiments, the springs (s) may include one or more wave springs. More particularly, the wave spring (s) may be constructed of metal, e.g. such as carbon steel. Further, in several embodiments, a plurality of wave springs may be stacked together.
In additional embodiments, the bearing may correspond to a cylindrical roller bearing.
In another aspect, the present disclosure is directed to a drivetrain assembly of a wind turbine. The drivetrain assembly includes a main shaft secured to a bedplate of the wind turbine, a gearbox rotatably coupled to a downwind end of the main shaft, a generator rotatably coupled to the gearbox via a generator shaft, a first bearing seated within the bedplate at an upwind location, and a second bearing seated within the bedplate at a downwind location. The first bearing is held in place via a first cover that is secured to a first mounting surface of the bedplate. Further, the first bearing includes an inner race, an outer race, and a plurality of roller elements arranged therebetween. Similarly, the second bearing is held in place via a second cover that is secured to a second mounting surface of the bedplate. The second bearing also includes an inner race, an outer race, and a plurality of roller elements arranged therebetween. Moreover, the first and second bearings engage the main shaft so as to provide rotation thereof. The drivetrain assembly also includes at least one flexible member arranged between the outer race of the second bearing and the second cover. As such, when the flexible member (s) is compressed, a gap between the second mounting surface of the bedplate and the cover is closed or reduced. It should be understood that the drivetrain assembly may further include any of the additional features as described herein.
In yet another aspect, the present disclosure is directed to a method for securing an outer race of a bearing within a bedplate of a wind turbine. The method includes removing a  portion of a first cover flange of a cover of the bearing to create a space between the first cover flange and an outer race of the bearing. The method also includes inserting at least one flexible member in the space between the first cover flange and the outer race where the portion of the first cover flange has been removed. Further, the method includes compressing the flexible member (s) so as to close a gap between a second cover flange and a mounting surface of the bedplate, wherein closing the gap secures the outer race of the bearing to the bedplate. It should be understood that the method may further include any of the additional step and/or features as described herein.
In addition, in one embodiment, the step of compressing the flexible member (s) so as to close the gap between the second cover flange and the mounting surface of the bedplate may include torqueing a plurality of fasteners extending through the second cover flange and the mounting surface of the bedplate such that the first cover flange compresses the flexible member (s) .
These and other features, aspects and advantages of the present invention will be further supported and described with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, in which:
FIG. 1 illustrates a perspective view of one embodiment of a wind turbine according to the present disclosure;
FIG. 2 illustrates a perspective view of a simplified, internal view of one embodiment of a nacelle of a wind turbine according to the present disclosure, particularly illustrating a drivetrain assembly having a single main bearing unit;
FIG. 3 illustrates a cross-sectional view of one embodiment of certain drivetrain  components of a wind turbine according to the present disclosure, particularly illustrating a drivetrain assembly having a dual main bearing unit;
FIG. 4 illustrates a detailed cross-sectional view of a portion of the drivetrain assembly of the wind turbine, particularly illustrating a gap between a cover of a bearing and a mounting surface of the bedplate;
FIG. 5 illustrates a detailed cross-sectional view of a portion of the drivetrain assembly of the wind turbine, particularly illustrating a flexible member arranged between the cover and the outer race of the bearing according to the present disclosure;
FIG. 6 illustrates a detailed cross-sectional view of the flexible member arranged between the cover and the outer race of the bearing according to the present disclosure; and
FIG. 7 illustrates a flow diagram of one embodiment of a method for securing an outer race of a bearing within a bedplate of a wind turbine according to the present disclosure.
DETAILED DESCRIPTION
Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
Generally, the present disclosure is directed to a main shaft assembly of a wind turbine. The main shaft assembly includes a main shaft secured to a bedplate of the wind turbine. Further, the main shaft assembly includes a bearing seated within the bedplate. The bearing is held in place via a cover that is secured to a mounting surface of the bedplate. Moreover, the bearing includes an inner race, an outer race, and a plurality of roller elements arranged therebetween. In addition, the bearing engages the main shaft so as to provide  rotation thereof. The main shaft assembly further includes at least one flexible member arranged between the outer race of the bearing and the cover. As such, when the flexible member (s) is compressed (e.g. via torqueing bolts extending through the cover and the mounting surface of the bedplate) , a gap between the mounting surface of the bedplate and the cover is reduced or closed.
Thus, the present disclosure provides many advantages not present in the prior art. For example, by utilizing the deformation of the flexible member when the bolts are torqued, the cover fully contacts the mounting surface of the bedplate and maintains the clamping force to the outer race of the bearing. As such, the gap between the cover flange and the mounting surface of the bedplate is reduced or eliminated. Further, the system and method of the present disclosure prevents the outer race of the bearing from spinning radially in bearing bore. In addition, the system and method of the present disclosure prevents the bolts from bending.
Referring now to the drawings, FIG. 1 illustrates a perspective view of one embodiment of a wind turbine 10 according to the present disclosure. As shown, the wind turbine 10 generally includes a tower 12 extending from a support surface 14, a nacelle 16 mounted on the tower 12, and a rotor 18 coupled to the nacelle 16. The rotor 18 includes a rotatable hub 20 and at least one rotor blade 22 coupled to and extending outwardly from the hub 20. For example, in the illustrated embodiment, the rotor 18 includes three rotor blades 22. However, in an alternative embodiment, the rotor 18 may include more or less than three rotor blades 22. Each rotor blade 22 may be spaced about the hub 20 to facilitate rotating the rotor 18 to enable kinetic energy to be transferred from the wind into usable mechanical energy, and subsequently, electrical energy. For instance, the hub 20 may be rotatably coupled to an electric generator 24 (FIG. 2) positioned within the nacelle 16 to permit electrical energy to be produced.
The wind turbine 10 may also include a wind turbine controller 26 centralized within the nacelle 16. However, in other embodiments, the controller 26 may be located within any other component of the wind turbine 10 or at a location outside the wind turbine 10. Further, the controller 26 may be communicatively coupled to any number of the components of the wind turbine 10 in order to control the components. As such, the  controller 26 may include a computer or other suitable processing unit. Thus, in several embodiments, the controller 26 may include suitable computer-readable instructions that, when implemented, configure the controller 26 to perform various different functions, such as receiving, transmitting and/or executing wind turbine control signals.
Referring now to FIGS. 2-5, various views of the drivetrain assembly of a wind turbine, such as the wind turbine 10 of FIG. 1, are illustrated. FIG. 2 illustrates a simplified, internal view of one embodiment of the nacelle 16 of the wind turbine 10 shown in FIG. 1, particularly illustrating certain drivetrain components of a drivetrain assembly having a single main bearing unit. FIG. 3 illustrates a cross-sectional view of one embodiment of several drivetrain components of a dual-bearing drivetrain assembly of the wind turbine 10 according to the present disclosure. FIG. 4 illustrates a detailed cross-sectional view of a portion of the drivetrain assembly of the wind turbine 10, particularly illustrating a gap 70 between a cover 68 of a bearing 58 and a mounting surface of the bedplate 48. FIG. 5 illustrates a detailed cross-sectional view of a portion of the drivetrain assembly of the wind turbine 10, particularly illustrating a flexible member 72 arranged between the cover 68 and the outer race 62 of the bearing 58, which will be discussed in more detail below. As shown in FIG. 2, the generator 24 may be coupled to the rotor 18 for producing electrical power from the rotational energy generated by the rotor 18. Further, as shown in FIGS. 2 and 3, the rotor 18 may include a main shaft 34 rotatable via a main bearing 54 coupled to the hub 20 for rotation therewith. The main shaft 34 may, in turn, be rotatably coupled to a gearbox output shaft 36 of the generator 24 through a gearbox 30. More specifically, as shown in FIGS. 3 and 4, the main shaft 34 is typically supported by one or  more bearings  54, 58. For example, as shown, an upwind end of the shaft 34 may be supported by a first or main bearing 54 and a downwind end of the shaft 34 may be supported by a second bearing 58. More specifically, as shown, the main bearing 54 generally corresponds to a tapered roller bearing having an inner race 56, an outer race 55, and a plurality of roller elements 57 arranged therebetween. In further embodiments, the main bearing 54 may be any suitable bearing in addition to tapered roller bearings, including for example, a spherical roller bearing, a cylindrical roller bearing, a ball bearing, or any other suitable bearing. In addition, as shown, the second bearing 58 generally corresponds to a cylindrical roller bearing having an inner race 62, an outer race 60, and a plurality of cylindrical roller elements 66 arranged therebetween.
In addition, as shown, the  bearings  54, 58 may be held in place via first and second bearing covers 60, 68 that are mounted at the upwind and downwind ends of the shaft 34, respectively. Further, as shown particularly in FIGS. 4 and 5, the  covers  60, 68 may include one or more cover flanges. For example, as shown, the second cover 68 includes, at least, a first cover flange 74 and a second cover flange 75. In addition, as shown, one or more seal rings 59, 63 may be configuredbetween the  covers  60, 68 and the  bearings  54, 58. For example, in certain embodiments, the seal ring 59 may correspond to a labyrinth seal that prevents leakage of bearing fluids. Further, as shown, the  bearings  54, 58 may be mounted to the bedplate member 48 of the nacelle 16 via one or more torque supports 50.
Referring back to FIG. 2, the gearbox 30 may include a gearbox housing 38 that is connected to the bedplate 48 by one or more torque arms 50. As is generally understood, the main shaft 34 provides a low speed, high torque input to the gearbox 30 in response to rotation of the rotor blades 22 and the hub 20. Thus, the gearbox 30 thus converts the low speed, high torque input to a high speed, low torque output to drive the gearbox output shaft 36 and, thus, the generator 24.
Referring particularly to FIG. 4, a partial cross-sectional view of a portion of the drivetrain assembly of the wind turbine 10, particularly illustrating a gap 70 between the second cover flange 75 of the cover 68 and the mounting surface 49 of the bedplate 48, is illustrated. As mentioned, this gap 70 exists due to machining tolerances and needs to be closed or at least reduced to effectively hold the outer race 62 of the bearing 58 in place. Thus, as shown, fasteners or bolts 76 are used for clamping the second cover flange 75 to the bedplate 48 to close the gap 70. However, in such systems, there are often not enough bolts 76 to completely close the gap 70. In addition, such bolts 76 may become damaged due extreme and/or fatigue loads acting thereon. In addition, the working life of the bolts 76 under such loads is significantly reduced and can cause bolt failure.
Accordingly, as shown in FIGS. 5 and 6, various views of the main shaft assembly according to the present disclosure are illustrated, particularly illustrating at least one flexible member 72 arranged between the outer race 62 of the bearing 58 and the second cover flange 74 of the cover 68 so as to reduce or eliminate the gap 70 between the second cover flange 75 and the mounting surface 49 of the bedplate 48. More specifically, when the flexible  member (s) 72 is compressed, the gap 70 is reduced or closed. For example, in one embodiment, the flexible member (s) 72 is compressed by torqueing the bolts 76 extending through the cover 68 and the mounting surface 49 of the bedplate 48.
To install the flexible member (s) 72, a portion of the first cover flange 74 of the cover 68 may need to be removed. Thus, in one embodiment, a portion of the first cover flange 74 of the cover 68 may be removed via machining (e.g. via cutting or grinding) to create a space for the flexible member (s) 72. Once installed, the flexible member (s) 72 is configured to compress and expand between a free height and a working height. As such, the working height can be calculated to be within the preserved axial gap between the first cover flange 74 of the cover 68 and the outer race 64 of the bearing 58.
As shown particularly in FIG. 6, the flexible member (s) 72 may be one or more springs. More specifically, as shown, the spring (s) may include one or more wave springs. As used herein, a wave spring generally refers to a spring made up of a pre-hardened flat wire. During the manufacturing process, waves are added to give it a spring effect. As such, the number of turns and waves can be easily adjusted to accommodate stronger force or meet specific requirements. In addition, the wave spring (s) may be constructed of metal, e.g. such as carbon steel. Further, in several embodiments, the wave spring (s) may be constructed of multiple layers (i.e. a plurality of springs stacked on top of each other) . In such embodiments, a force from the compressed spring (s) to a predetermined working height is configured to prevent the outer race 62 of the bearing 58 from rotating, whereas the inner race 64 of the bearing 58 is configured to rotate so as to provide rotation of the main shaft 34.
Referring now to FIG. 7, a flow diagram of one embodiment of a method 100 for securing the outer race 62 of the bearing 58 within the bedplate 48 of the wind turbine 10 is illustrated. As shown at 102, the method 100 includes removing a portion of the first cover flange 74 of the cover 68 of the bearing 58 to create a space between the first cover flange 74 and the outer race 62 of the bearing 58. As shown at 104, the method 100 includes inserting one or more flexible members 72 in the space between the first cover flange 74 and the outer race 62, i.e. where the portion of the first cover flange 64 has been removed. As shown at 106, the method 100 includes compressing the flexible member (s) 72 so as to close the gap 70 between the second cover flange 75 and the mounting surface 49 of the bedplate 48. As  such, closing the gap 70 also secures or clamps the outer race 62 of the bearing 68 to or within the bedplate 48.
In addition, in one embodiment, the step of compressing the flexible member (s) 72 so as to close the gap 70 between the second cover flange 75 and the mounting surface 49 of the bedplate 48 may include torqueing a plurality of fasteners 76 extending through the second cover flange 75 and the mounting surface 49 of the bedplate 48 such that the first cover flange 74 compresses the flexible member (s) 72.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems andperforming any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
Reference Character Component
10 Wind Turbine
12 Tower
14 Support Surface
16 Nacelle
18 Rotor
20 Rotatable Hub
22 Rotor Blades
24 Generator
26 Controller
30 Gearbox
34 Main Shaft
36 Gearbox Output Shaft
38 Gearbox Housing
48 Bedplate
49 Mounting Surface
50 Torque Arm
54 Main Bearing
55 Outer Race
56 Inner Race
57 Roller Elements
58 Second Bearing
59 Seal Ring/Labyrinth Seal
60 Cover
62 Outer Race
63 Seal Ring/Labyrinth Seal
64 Inner Race
66 Roller Elements
68 Cover
70 Gap
72 Flexible Member
74 First Cover Flange
75 Second Cover Flange
76 Bolts
   
100 Method
102 Method Step
104 Method Step
106 Method Step

Claims (20)

  1. A main shaft assembly of a wind turbine, the main shaft assembly comprising:
    a main shaft secured to a bedplate of the wind turbine;
    a bearing seated within the bedplate, the bearing held in place via a cover that is secured to a mounting surface of the bedplate, the bearing comprising an inner race, an outer race, and a plurality of roller elements arranged therebetween, the bearing engaging the main shaft so as to provide rotation thereof,
    at least one flexible member arranged between the outer race of the bearing and the cover, wherein, when the at least one flexible member is compressed, a gap between the mounting surface of the bedplate and the cover is closed.
  2. The main shaft assembly of claim 1, wherein the at least one flexible member is compressed by torqueing one or more fasteners extending through the cover and the mounting surface of the bedplate.
  3. The main shaft assembly of claim 1, wherein the at least one flexible member comprises one or more springs.
  4. The main shaft assembly of claim 3, wherein a force from the one or more springs when compressed to a predetermined working height prevents the outer race from rotating.
  5. The main shaft assembly of claim 4, wherein the inner race of the bearing rotates so as to provide rotation of the main shaft.
  6. The main shaft assembly of claim 3, wherein the one or more springs comprises one or more wave springs.
  7. The main shaft assembly of claim 6, wherein the one or more wave springs is constructed of metal.
  8. The main shaft assembly of claim 6, wherein the one or more wave springs  comprise a plurality of layers of wave springs.
  9. The main shaft assembly of claim 1, wherein the bearing comprises a cylindrical roller bearing.
  10. A drivetrain assembly of a wind turbine, the drivetrain assembly comprising:
    a main shaft secured to a bedplate of the wind turbine;
    a gearbox rotatably coupled to a downwind end of the main shaft;
    a generator rotatably coupled to the gearbox via a generator shaft;
    a first bearing seated within the bedplate at an upwind location, the first bearing held in place via a first cover that is secured to a first mounting surface of the bedplate, the first bearing comprising an inner race, an outer race, and a plurality of roller elements arranged therebetween;
    a second bearing seated within the bedplate at a downwind location, the second bearing held in place via a second cover that is secured to a second mounting surface of the bedplate, the secondbearing comprising an inner race, an outer race, and a plurality of roller elements arranged therebetween, the first and second bearings engaging the main shaft so as to provide rotation thereof; and,
    at least one flexible member arranged between the outer race of the second bearing and the second cover, wherein, when the flexible member is compressed, a gap between the second mounting surface of the bedplate and the cover is closed.
  11. The drivetrain assembly of claim 10, wherein the at least one flexible member is compressed by torqueing one or more fasteners extending through the second cover and the second mounting surface of the bedplate.
  12. The drivetrain assembly of claim 10, wherein the at least one flexible member comprises one or more springs.
  13. The drivetrain assembly of claim 12, wherein a force from the one or more  springs when compressed to a predetermined working height prevents the outer race from rotating, and wherein the inner race of the bearing engages the main shaft so as to provide rotation thereof.
  14. The drivetrain assembly of claim 12, wherein the one or more springs comprises one or more wave springs.
  15. The drivetrain assembly of claim 12, wherein the one or more wave springs is constructed of metal.
  16. The drivetrain assembly of claim 10, wherein the second bearing comprises a cylindrical roller bearing.
  17. The drivetrain assembly of claim 10, wherein the first bearing comprises a tapered roller bearing, and wherein the second bearing comprises a cylindrical roller bearing.
  18. A method for securing an outer race of a bearing within a bedplate of a wind turbine, the method comprising:
    removing a portion of a first cover flange of a cover of the bearing to create a space between the first cover flange and an outer race of the bearing;
    inserting at least one flexible member in the space between the first cover flange and the outer race where the portion of the first cover flange has been removed; and,
    compressing the at least one flexible member so as to close a gap between a second cover flange and a mounting surface of the bedplate, wherein closing the gap secures the outer race of the bearing to the bedplate.
  19. The method of claim 18, wherein the at least one flexible member comprises one or more wave springs.
  20. The method of claim 18, wherein compressing the at least one flexible member so as to close the gap between the second cover flange and the mounting surface of the bedplate further comprises torqueing a plurality of fasteners extending through the second cover flange and the mounting surface of the bedplate such that the first cover flange  compresses the at least one flexible member.
PCT/CN2017/093632 2017-07-20 2017-07-20 System and method for securing an outer race of a bearing to a bedplate of a wind turbine WO2019014884A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/093632 WO2019014884A1 (en) 2017-07-20 2017-07-20 System and method for securing an outer race of a bearing to a bedplate of a wind turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/093632 WO2019014884A1 (en) 2017-07-20 2017-07-20 System and method for securing an outer race of a bearing to a bedplate of a wind turbine

Publications (1)

Publication Number Publication Date
WO2019014884A1 true WO2019014884A1 (en) 2019-01-24

Family

ID=65016273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093632 WO2019014884A1 (en) 2017-07-20 2017-07-20 System and method for securing an outer race of a bearing to a bedplate of a wind turbine

Country Status (1)

Country Link
WO (1) WO2019014884A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060278465A1 (en) * 2003-12-18 2006-12-14 Zf Lenksysteme Gmbh Steering system
US20090015020A1 (en) * 2007-07-10 2009-01-15 Siemens Aktiengesellschaft Wind turbine, method for mounting a wind turbine and method for adjusting an air gap between a rotor and a stator of a generator of a wind turbine
CN103438089A (en) * 2013-08-09 2013-12-11 常州亚美柯机械设备有限公司 Device for regulating axial clearance of crankshaft of single cylinder diesel
CN105827049A (en) * 2015-01-26 2016-08-03 神钢建机株式会社 Electric motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060278465A1 (en) * 2003-12-18 2006-12-14 Zf Lenksysteme Gmbh Steering system
US20090015020A1 (en) * 2007-07-10 2009-01-15 Siemens Aktiengesellschaft Wind turbine, method for mounting a wind turbine and method for adjusting an air gap between a rotor and a stator of a generator of a wind turbine
CN103438089A (en) * 2013-08-09 2013-12-11 常州亚美柯机械设备有限公司 Device for regulating axial clearance of crankshaft of single cylinder diesel
CN105827049A (en) * 2015-01-26 2016-08-03 神钢建机株式会社 Electric motor

Similar Documents

Publication Publication Date Title
US9856966B2 (en) Drivetrain assembly for a wind turbine
US10443572B2 (en) System and method for removing or installing a main shaft of a wind turbine
EP3428449B1 (en) Drivetrain for a wind turbine and method for positioning a main bearing of said drivetrain
US11725633B2 (en) Pitch bearing for a wind turbine
US20110243754A1 (en) Pillow Block for Bed Plate of Wind Turbine
EP3530939B1 (en) Replacement methods for radial seals of wind turbine main bearings
US10145363B2 (en) Method for performing up-tower maintenance on a gearbox bearing of a wind turbine
US10502193B2 (en) Repair method for a gearbox assembly of a wind turbine
EP3742010A1 (en) System and method for assembling a slewing ring bearing with a predetermined preload
EP3655647B1 (en) Drivetrain assembly for a wind turbine
US10502195B2 (en) Clamping apparatus for securing a main bearing of a wind turbine during an installation and/or repair procedure
WO2019014884A1 (en) System and method for securing an outer race of a bearing to a bedplate of a wind turbine
US10935003B2 (en) Lubrication system for a main bearing of a wind turbine
US10533532B2 (en) Fastener retention assembly for a wind turbine rotor
CN113757045B (en) Large double-fed wind turbine generator system with integrated bearing seat
WO2016145564A1 (en) Sealing system for a gearbox of a wind turbine
WO2019212557A1 (en) Pitch bearing for a wind turbine
US11519392B2 (en) Roller pitch bearings
CN216111132U (en) Main shaft assembly supporting device on large double-fed wind turbine generator
US9200619B2 (en) Wind turbine yaw or pitch bearing utilizing a threaded bearing surface
EP3364023B1 (en) System and method for removing or installing a main shaft of a wind turbine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17918280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17918280

Country of ref document: EP

Kind code of ref document: A1