WO2019013276A1 - Electroconductive material - Google Patents

Electroconductive material Download PDF

Info

Publication number
WO2019013276A1
WO2019013276A1 PCT/JP2018/026300 JP2018026300W WO2019013276A1 WO 2019013276 A1 WO2019013276 A1 WO 2019013276A1 JP 2018026300 W JP2018026300 W JP 2018026300W WO 2019013276 A1 WO2019013276 A1 WO 2019013276A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
sulfated cellulose
polythiophene
sulfated
conductivity
Prior art date
Application number
PCT/JP2018/026300
Other languages
French (fr)
Japanese (ja)
Inventor
真希 堀川
永岡 昭二
智洋 城崎
直哉 龍
博隆 伊原
誠 高藤
田中 裕之
椋太 角
Original Assignee
熊本県
国立大学法人 熊本大学
中越パルプ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 熊本県, 国立大学法人 熊本大学, 中越パルプ工業株式会社 filed Critical 熊本県
Priority to JP2019529777A priority Critical patent/JP6929943B2/en
Publication of WO2019013276A1 publication Critical patent/WO2019013276A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers

Definitions

  • the present invention relates to a conductive material having excellent conductivity and a method for producing the same, and in particular to a conductive material having excellent coating properties and a method for producing a conductive material.
  • Conductive polymers are used as conductive materials for antistatic films, capacitors, transistors and the like because of their transparency and high conductivity. Moreover, since the conductive polymer has excellent processability, its application fields are diverse.
  • a polythiophene-based conductive polymer is known to be an excellent material because it has the highest conductivity and good light transmittance when used as a thin film.
  • a polythiophene-based conductive polymer dispersed in a solvent such as poly (3,4-ethylenedioxy) thiophene (hereinafter sometimes referred to as PEDOT) and polystyrenesulfonic acid as a dopant (hereinafter referred to as PSS)
  • PSS polystyrenesulfonic acid as a dopant
  • EDOT 3,4-ethylenedioxythiophene
  • PEDOT / PSS has been actively studied for its application to a transparent electrode as a substitute for ITO because of its high conductivity, but the conductivity is inferior to that of ITO, and it has been desired to improve the conductivity.
  • Patent Document 1 discloses an example in which a mixed alcohol and a silane coupling agent are mixed to improve the conductive performance.
  • the mixed alcohol consists of a low viscosity solvent and a high viscosity alcohol, and therefore, a step of mixing these is necessary, and 100 parts by weight of PEDOT / PSS aqueous solution is required. It is necessary to add up to 300 parts by weight of the mixed alcohol.
  • An object of the present invention is to provide a conductive material which can be formed into a film by a simple method and has excellent conductivity.
  • the present inventors have intensively studied in view of such circumstances, and as a result, they are obtained by complexing sulfated cellulose crystals with polythiophene having a repeating unit (hereinafter sometimes referred to simply as "polythiophene"). It has been found that the composite is excellent in film forming property and conductivity and can be suitably used as a conductive material.
  • polythiophene having a repeating unit
  • It is a conductive material comprising polythiophene, obtained from fibrous cellulose having a fiber width of 3 nm to 1,500 nm, as shown in Chemical formula 1, using sulfated cellulose crystals as a dopant.
  • R 1 to R 6 each independently represent a hydrogen atom, a sulfonic acid group or an alkylsulfonic acid group having 1 to 6 carbon atoms, and at least one represents an sulfonic acid group or an alkylsulfonic acid having 1 to 6 carbon atoms Represents a group
  • the conductive material of the present invention has excellent conductivity, and is useful as an electrode material or wiring material in a photoelectric conversion device such as a solar cell or an organic EL.
  • the conductive material of the present invention has excellent film forming properties, and can be formed by a simple method without mixing a large amount of components such as a binder, so that the conductivity used for electrodes, wiring, etc. It becomes possible to make the component in an easy way.
  • a complex of polythiophene and an anionic polysaccharide is obtained in the form of a dispersion, so high conductivity can be achieved by a simple method of coating the dispersion to form a film. It is possible to produce a conductive member of
  • FIG. 1 is a conceptual view of an example of the defibration processing apparatus.
  • FIG. 2 is a view showing an electron micrograph of Example 1.
  • FIG. 3 shows an electron micrograph of Example 2.
  • FIG. 4 shows an electron micrograph of Example 3.
  • FIG. 5 is a view showing an electron micrograph of Comparative Example 1.
  • FIG. 6 is a view showing an electron micrograph of Comparative Example 4.
  • the conductive material of the present invention is a complex of a sulfated cellulose crystal represented by the chemical formula (1) and a polythiophene having a repeating unit represented by the chemical formula (3) described below (hereinafter referred to as “polythiophene / sulfated cellulose crystal Complex (sometimes referred to as "complex").
  • polythiophene / sulfated cellulose crystal Complex sometimes referred to as "complex”
  • the sulfated cellulose crystal to be used in the present invention refers to a fibrous cellulose having a fiber width of 3 to 1500 nm (hereinafter sometimes referred to as cellulose nanofiber), a sulfonic acid group or an alkylsulfonic acid group having 1 to 6 carbon atoms. Is introduced.
  • fibrous cellulose examples include fibrous fibers derived from polysaccharides including natural plants such as wood fibers such as softwoods and hardwoods, bamboo fibers, sugar fibers, seed hair fibers, leaf fibers, etc. Examples thereof include cellulose contained in seaweed and the like, and cellulose in which acetic acid bacteria produce sugar as a raw material, and these fibrous celluloses may be used singly or in combination of two or more. In addition, it is preferable to use a pulp having an ⁇ -cellulose content of 60% to 99% by mass as the polysaccharide.
  • the ⁇ -cellulose content is preferably 60% or more.
  • the ⁇ -cellulose content is preferably 60% or more.
  • the device shown in FIG. 1 is of the liquid circulation type, with the tank (FIG. 1: 109), the plunger (FIG. 1: 110), the two opposing nozzles (FIG. 1: 108 a, 108 b), optionally with heat.
  • An exchanger (Fig. 1:11) is provided, and fine particles dispersed in water are introduced into two nozzles and jetted from the opposing nozzles (Fig. 1: 108a, 108b) under high pressure to cause an opposite collision in water. Then, it is cooled by the heat exchanger 111 and returned to the tank 109.
  • the number of repetitions of the circulation cycle of the tank 109 ⁇ the plunger 110 ⁇ the chamber 107 ⁇ the heat exchanger 111 is taken as the number of processing (pass).
  • this method only water is used in addition to the natural cellulose fiber, and since the nano-refining is performed by cleaving only the interaction between the fibers, there is no structural change of the cellulose molecule, and the polymerization degree accompanying the cleaving decreases. It is possible to obtain fibrous cellulose with minimized conditions.
  • the fiber width and / or fiber length of the fibrous cellulose specified in the present invention can be appropriately increased or decreased by changing the number of times of the treatment. For example, the fiber width of fibrous cellulose can be reduced by increasing the number of treatments. On the other hand, for example, the fiber width of fibrous cellulose can be increased by reducing the number of treatments.
  • the fibrous cellulose obtained as described above has the structural formula represented by the following chemical formula 1 without the structural change of the cellulose molecule because the nano-refining is performed by breaking only the interaction between natural cellulose fibers. .
  • the fibrous cellulose used in the present invention has six hydroxyl groups in the cellobiose unit in Chemical formula 1.
  • the treatment after being once subjected to a collision treatment is cooled to, for example, 4 to 20 ° C. or 5 to 15 ° C., as necessary. It is also good.
  • equipment for cooling can be incorporated into the oncoming collision treatment apparatus.
  • the average fiber width, average fiber length, transmittance, viscosity of the obtained fibrous cellulose can be obtained by adjusting such treatment conditions (treatment pressure, treatment frequency, other nozzle diameter, treatment temperature, etc.) Also, the intrinsic viscosity number etc. can be adjusted.
  • the fibrous cellulose in the present invention preferably has a fiber width in the range of 3 nm to 1,500 nm.
  • Many fibers with a fiber width of less than 3 nm do not exist as crystalline fibers and are in a completely dissolved state on the molecule, and when the sulfate group described later is introduced, the crystallinity decreases. And the orientation of EDOT is disturbed, and the conductivity is not improved.
  • the fiber width exceeds 1500 nm, uniform introduction of sulfuric acid groups can not be performed, and it is also difficult to prepare as a uniform sheet-like film, and conductivity is not improved.
  • the fiber length of the fibrous cellulose is preferably 200 to 10,000 nm, and more preferably 500 to 2,000 nm.
  • the fiber length is 200 nm or less, when the sulfate group is introduced, the crystallinity is immediately reduced, the orientation of EDOT during polymerization is disturbed, and the conductivity of PEDOT is not improved.
  • the fiber length is 10000 nm or more, it is likely to be ball-like and difficult to be present as a long fiber, uniform introduction of sulfate group can not be performed, and conductivity is not improved.
  • the measurement of the fiber width and fiber length by electron microscope observation of fibrous cellulose is performed as follows.
  • An aqueous suspension of fibrous cellulose having a concentration of 0.001 to 0.01% by mass is prepared, and the suspension is cast on a hydrophilized carbon film-coated grid to prepare a sample for TEM observation.
  • an SEM image of the surface cast on glass may be observed.
  • the observation with an electron microscope image is performed by adjusting the magnification according to the width of the fiber to be constructed.
  • a sulfuric acid group into fibrous cellulose for example, chlorosulfonic acid, sulfamic acid, halogenosulfonic acid or the like may be reacted with fibrous cellulose, and the fibrous cellulose has an alkylsulfonic acid group having 1 to 6 carbon atoms.
  • H for example, halogenated alkyl sulfonic acid having 1 to 6 carbon atoms may be reacted with fibrous cellulose.
  • cellulose type I crystallinity of formula 1 of sulfated cellulose crystals decreases with the passage of reaction time. More specifically, the crystalline state changes from cellulose nanofiber to cellulose nanocrystal and finally becomes amorphous.
  • the term “cellulose nanofibers” means fibers having a fiber width of about 3 to 1,500 nm, a fiber length of about 200 to 10,000 nm, and a crystallinity in the range of about 60 to 70.
  • the cellulose nanocrystal-like refers to those having a fiber width of about 1 to 10 nm, a fiber length of about 100 to 300 nm, and a crystallinity of about 40 to 59.
  • the amorphous state means that the fiber width is about 1 to 10 nm, the fiber length is about 100 to 300 nm, and the degree of crystallinity is less than 40.
  • reaction conditions such as raw material pretreatment for introducing a sulfuric acid group into fibrous cellulose, reaction time, reaction temperature and the like will be described in detail.
  • the dispersion containing the fibrous cellulose as a raw material dispersed therein is irradiated with ultrasonic waves of 0.3 to 100 Wh, preferably 0.6 to 50 Wh of electric power, It is better to improve the dispersibility. If the ultrasonic wave is 0.3 Wh or less, the reaction efficiency is not improved while the fibrous cellulose remains aggregated. In addition, when the irradiation is performed with a power amount larger than 100 Wh, the structure of the fibrous cellulose is broken, the crystallinity can not be maintained, and the conductivity of the finally obtained conductive material is lowered.
  • the reaction time and reaction temperature in the production of sulfated cellulose microcrystals are 30 seconds to 6 seconds at 0 ° C. or more and less than 10 ° C. in order to prevent aggregation of fibrous cellulose and uniformly react with hydroxyl groups on fibrous cellulose. It is good to carry out the reaction within the time range.
  • the polythiophene used in the present invention has a repeating unit represented by the formula (3).
  • R 1 and R 2 each independently represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or an alkoxy group having 1 to 8 carbon atoms, or R 1 and R 2 are linked, It represents a C1-C8 dioxyalkylene group, an aromatic ring or a 3- to 7-membered alicyclic ring.
  • the alkyl group having 1 to 8 carbon atoms may be linear or branched.
  • the alkyl group having 1 to 8 carbon atoms is preferably an alkyl group having 1 to 6 carbon atoms.
  • the alkoxy group having 1 to 8 carbon atoms may be linear or branched.
  • the alkoxy group having 1 to 8 carbon atoms is preferably an alkoxy group having 1 to 6 carbon atoms.
  • the carbon number of the dioxyalkylene group is preferably 1 to 6 carbon atoms, more preferably 2 To 4 can be mentioned.
  • the alicyclic ring is preferably a 4- to 7-membered ring, more preferably a 5- to 6-membered ring. There is a ring.
  • the number of the repeating units represented by the formula (3) for forming polythiophene is not particularly limited, and may be, for example, about 2 to 50.
  • the monomer compound constituting the repeating unit represented by the formula (3) is preferably an alkyl group having 1 to 8 carbon atoms and / or a carbon number independently preferably at the 3rd and 4th positions of the thiophene skeleton.
  • Preferred specific examples of the monomer compound constituting the repeating unit represented by formula (3) include, for example, 3,4-dihexylthiophene, 3,4-diethylthiophene, 3,4-dipropylthiophene, and the like. 3,4-Dimethoxythiophene, 3,4-diethoxythiophene, 3,4-dipropoxythiophene, 3,4-dibutoxythiophene, 3,4-methylenedioxythiophene, 3,4-ethylenedioxythiophene, 3, 4-propylenedioxythiophene and the like can be mentioned. Among these, 3,4-ethylenedioxythiophene is preferable.
  • the polythiophene / sulfated cellulose crystal complex is produced by oxidative polymerization of the thiophene represented by the chemical formula (4) in the presence of sulfated cellulose crystals, a solvent and an oxidizing agent.
  • R 1 and R 2 are as defined above.
  • polythiophene / sulfated cellulose crystal complex is obtained by polymerizing thiophene by adding thiophene represented by the formula (4) and an oxidizing agent to a solution in which sulfated cellulose crystals are previously dissolved in a solvent. It is obtained in the state of a dispersed solution.
  • the binding mode of the polythiophene and sulfated cellulose crystal complex is not desired to be interpreted in a limited manner, but the polythiophene and sulfated cellulose produced by the polymerization reaction It is considered that the complex of the crystal anion is in the doped state.
  • thiophene represented by Chemical formula (4) preferably, an alkyl group having 1 to 8 carbon atoms and / or an alkoxy group having 1 to 8 carbon atoms are independently substituted at the 3rd and 4th positions of the thiophene skeleton.
  • Preferred specific examples of the thiophene represented by the formula (4) are, for example, 3,4-dihexylthiophene, 3,4-diethylthiophene, 3,4-dipropylthiophene, 3,4-dimethoxythiophene, 4-diethoxythiophene, 3,4-dipropoxythiophene, 3,4-dibutoxythiophene, 3,4-methylenedioxythiophene, 3,4-ethylenedioxythiophene, 3,4-propylenedioxythiophene, etc. It can be mentioned. Among these, 3,4-ethylenedioxythiophene is preferable.
  • the cellulose I-type crystallinity of the sulfated cellulose crystal represented by formula I is preferably in the range of 40 to 53%. If the cellulose type I crystallinity is greater than 53%, the conductivity is not improved because the absolute amount of the sulfate group as the dopant is small.
  • the degree of crystallinity of cellulose I is less than 40%, the molecular chain of cellulose is disrupted, and the orientation of thiophene at the time of polymerization is disrupted, the crystal lattice of polythiophene is disrupted, and the conduction path is obstructed. It is because it causes a decrease in sex. Therefore, in view of the amount as a dopant and the crystallinity of cellulose, it is considered that a cellulose I-type crystallinity of 40 to 53% is a preferable range.
  • the ratio of polythiophene to sulfated cellulose crystal is not particularly limited, but the higher the ratio of polythiophene, the higher the conductivity, but the lower the dispersibility, so these tend to decrease. In consideration of the above, it is appropriately set according to the type of polythiophene and sulfated cellulose. Specifically, the weight ratio of polythiophene to sulfated cellulose crystals may be 1: 0.5 to 1: 8, preferably 1: 1 to 1: 4, and more preferably 1: 1. By satisfying such a mass ratio, it is possible to improve the dispersibility in the solvent while providing more excellent conductivity.
  • the ratio of polythiophene and sulfated cellulose crystals described above can be satisfied.
  • the range may be set appropriately. Specifically, per 100 parts by mass of the anionic polysaccharide, 12.5 to 400 parts by mass, preferably 25 to 200 parts by mass of thiophene represented by Chemical Formula (4) can be mentioned.
  • the oxidizing agent used for producing the polythiophene / sulfated cellulose crystal complex is not particularly limited as long as the thiophene represented by Chemical Formula (4) can be oxidatively polymerized, but, for example, peroxodisulfuric acid, peroxo Sodium disulfate, potassium peroxodisulfate, ammonium peroxodisulfate, inorganic ferric oxide, organic ferric oxide, hydrogen peroxide, potassium permanganate, potassium dichromate, alkali perborate, iron sulfate ( III), iron chloride (III) and the like.
  • peroxodisulfuric acid sodium peroxodisulfate, potassium peroxodisulfate, ammonium peroxodisulfate, iron (III) sulfate and iron (III) chloride.
  • peroxodisulfuric acid sodium peroxodisulfate, potassium peroxodisulfate, ammonium peroxodisulfate, iron (III) sulfate and iron (III) chloride.
  • oxidizing agents may be used singly or in combination of two or more.
  • the amount of the oxidizing agent used is not particularly limited, but, for example, 0.1 to 5 equivalents, preferably 0, per mole of thiophene represented by Formula (4). 3 to 2 equivalents can be mentioned.
  • any solvent can be used as long as it can dissolve the sulfated cellulose crystal complex and can carry out the polymerization reaction of thiophene.
  • an aqueous solvent is mentioned.
  • water Preferably water.
  • the amount of the solvent used is not particularly limited, but for example, 1000 to 50000 ml, preferably 3000 to 30000 ml, per mole of thiophene represented by Chemical formula (4). It can be mentioned.
  • the reaction time and reaction temperature in the production of the polythiophene / sulfated cellulose crystal complex are appropriately set according to the type of thiophene and sulfated cellulose crystals used as the raw material compound, the type of oxidizing agent, etc. C., preferably 10 to 80.degree. C., for 1 to 96 hours, preferably 5 to 48 hours.
  • a dispersion solution of polythiophene / sulfated cellulose crystal complex is obtained.
  • the polythiophene / sulfated cellulose crystal complex thus obtained is produced in the state of a dispersion obtained after the reaction, or after separation and purification of the polythiophene / sulfated cellulose crystal complex, if necessary, before producing a conductive film.
  • the polythiophene / sulfated cellulose crystal complex Since the polythiophene / sulfated cellulose crystal complex has excellent conductivity and film forming properties, it can be used as a conductive film by forming a film on a substrate.
  • a conductive film using a polythiophene / sulfated cellulose crystal composite is dried after a dispersion containing the polythiophene / sulfated cellulose crystal composite is applied over the entire surface of the substrate or in a predetermined shape. Manufactured by removing the solvent.
  • hydroxyl group such as ethanol, methanol, ethylene glycol etc., halogen group, sulfone group, carbonyl group, amino group, imino group, carboxyl group, sulfide group, disulfide group, sulfonyl group, amide group and
  • the compound having at least one polar group selected from the group consisting of nitrile groups is added to the solvent, it is possible to improve the conductivity of the conductive film.
  • the amount of the compound having a polar group to be added as an additive is not particularly limited as long as it does not affect the dispersion of the polythiophene / sulfated cellulose crystal complex.
  • the method for applying a dispersion containing a polythiophene / sulfated cellulose crystal complex to a substrate is not particularly limited, and, for example, a spray coating method, a spin coating method, a blade coating method, a dip coating method, a cast method, a roll coating method Methods by coating such as bar coating method and die coating method; Wet processes such as methods by patterning such as printing and inkjet. Among these, spin coating and casting are preferably mentioned.
  • the drying method is not particularly limited, and examples thereof include heat drying, freeze drying, reduced pressure drying, hot air drying, supercritical drying and the like.
  • the drying temperature is appropriately set depending on the drying method, and examples thereof include 50 ° C. to 250 ° C., preferably 60 ° C. to 150 ° C. By setting the drying temperature to 250 ° C. or less, the decrease in the conductivity of the polythiophene / sulfated cellulose crystal complex during drying can be effectively suppressed.
  • plastic examples include polyester, polyethylene, polypropylene, polystyrene, polyimide, polyamide, polyethylene terephthalate, polyethylene naphthalate, epoxy resin, chlorine resin, silicon resin, and blends of these.
  • a conductive film obtained by forming a film of a polythiophene / sulfated cellulose crystal complex, and a substrate provided with the conductive film are an antistatic film, wiring of an electronic device represented by an organic EL, a solar cell, an electrode material, etc. Used as a conductive member of Moreover, it can be used as various sensors which can sense humidity.
  • the sample solid content of 0.15 g is dissolved in 30 mL of a 0.5 M copper ethylenediamine solution, and the temperature is measured at 25 ° C. using a Cannon Fence kinematic viscosity tube, and then the flow time is measured to measure the viscosity. went. From the measurement results, the limiting viscosity number was calculated according to JIS P 8215: limiting viscosity number measurement method.
  • Example 1 The softwood pulp was used as a raw material, and was processed by the ACC method to obtain 1 wt% of a cellulose nanofiber dispersion. Subsequently, measurement of the limiting viscosity number was performed three times, and the average value was 480 ml / g (therefore, the cellulose nanofiber dispersion used in this example is NB-B). Next, 2.00 g of cellulose nanofibers were added to 200 ml of N, N-dimethylformamide (DMF), and the mixture was stirred at room temperature for 14 hours or more.
  • DMF N, N-dimethylformamide
  • the precipitate was dissolved in water and dialyzed, and then recovered in the form of an aqueous solution, and the degree of substitution of sulfate groups and the degree of crystallization of cellulose sulfate crystals were measured.
  • an electron micrograph of cellulose sulfate crystal was taken, and the result is shown in FIG.
  • the fiber width of cellulose nanofibers measured using an electron microscope was 3 to 1180 nm.
  • An aqueous dispersion of sulfated cellulose crystals was prepared to 50% by weight of 0.2 wt%, and concentrated hydrochloric acid was added to make it acidic. Then, after adding 0.10 g of EDOT, internal ultrasound was applied for 5 minutes to disperse EDOT. Next, 0.19 g of potassium peroxodisulfate as a polymerization initiator and 0.5 ml of a 1.4 mg / ml aqueous solution of iron (III) sulfate n hydrate were added. The mixture was stirred at room temperature for 24 hours and dialyzed with dialysis membrane for 72 hours or more.
  • Example 2 Measurement of degree of substitution and degree of crystallization of sulfuric acid group, conductivity of PEDOT / sulfated cellulose crystal complex is the same as in Example 1 except that the reaction is started with the start of dropwise addition of chlorosulfonic acid as 60 minutes. The measurement and the measurement of the surface roughness of the conductive film of PEDOT / sulfated cellulose crystal complex were performed. In addition, an electron micrograph of cellulose sulfate crystal was taken, and the result is shown in FIG.
  • Example 3 Measurement of degree of substitution of sulfate group and degree of crystallinity, PEDOT / sulfated cellulose crystal complex, in the same manner as in Example 1, except that the reaction was initiated for 120 minutes (2 hours) with the start of dropwise addition of chlorosulfonic acid as the reaction initiation.
  • the conductivity of the sample and the surface roughness of the conductive film of the PEDOT / sulfated cellulose crystal composite were measured.
  • the electron micrograph of the sulfated cellulose crystal was taken, and the result is shown in FIG.
  • Example 4 Measurement of the degree of substitution and crystallinity of the sulfate group in the same manner as in Example 1 except that the reaction was initiated with the dropwise addition of chlorosulfonic acid for 180 minutes (3 hours), PEDOT / sulfated cellulose crystal complex The conductivity of the sample and the surface roughness of the conductive film of the PEDOT / sulfated cellulose crystal composite were measured.
  • Example 5 Measurement of degree of substitution of sulfate group and degree of crystallinity, PEDOT / sulfated cellulose crystal composite in the same manner as in Example 1 except that the addition of chlorosulfonic acid was 270 minutes (four and a half hours) with the start of the reaction as the reaction start The measurement of the conductivity of the body and the measurement of the surface roughness of the conductive film of PEDOT / sulfated cellulose crystal complex were performed.
  • the precipitate was dissolved in water and dialyzed with a dialysis membrane (Spectra / Por 3). After dialysis for 72 hours or more, it was recovered by lyophilization. Then, measurement of the degree of substitution and crystallinity of the sulfate group, and measurement of the conductivity of the PEDOT / sulfated cellulose crystal complex were performed.
  • Comparative Example 5 despite the introduction of the same amount of sulfuric acid groups as in Examples 4 and 5, the introduction of sulfuric acid groups also occurs in the amorphous part of the pulp, and the average crystallinity of the whole cellulose is obtained. And the conductivity did not improve.
  • the sulfated celluloses of Comparative Examples 6 to 8 were both inferior in surface roughness and conductivity.
  • the conductive material using nanocrystalline sulfated cellulose crystals as a dopant was excellent in conductivity, improved in coating property, and was able to produce a more stable film.
  • Example 7 (PEDOT / sulfated cellulose composite made from NB-C) (Example 7)
  • the softwood pulp was used as a raw material, and was processed by the ACC method to obtain 1 wt% of a cellulose nanofiber dispersion.
  • measurement of the limiting viscosity number was performed three times, and the average value was 370 ml / g (thus, the cellulose nanofiber dispersion used in this example is NB-C).
  • measurement of the degree of substitution and crystallinity of the sulfate group, PEDOT / sulfated cellulose in the same manner as in Example 1, except that this was used as the raw material and 30 minutes was set as the reaction initiation of chlorosulfonic acid as the reaction initiation.
  • the conductivity of the crystalline complex was measured.
  • Example 8 Measurement of the degree of substitution and crystallinity of the sulfate group, the conductivity of the PEDOT / sulfated cellulose crystal complex, in the same manner as in Example 2, except that the cellulose nanofiber dispersion obtained in Example 7 was used as the raw material The measurement of
  • Example 9 Measurement of degree of substitution of sulfate group and degree of crystallinity, conductivity of PEDOT / sulfated cellulose crystal composite, in the same manner as in Example 4, except that the cellulose nanofiber dispersion obtained in Example 7 was used as a raw material The measurement of
  • PEDOT / sulfated cellulose composite made from bamboo pulp (Example 10) Measurement of degree of substitution of sulfate group and degree of crystallinity, conductivity of PEDOT / sulfated cellulose crystal composite, in the same manner as in Example 3, except that bamboo pulp was used as the raw material (hereinafter sometimes referred to as BB). The measurement of
  • Example 11 In the same manner as in Comparative Example 4 except that bamboo pulp was used as a raw material, measurement of the degree of substitution and crystallinity of the sulfate group, and measurement of the conductivity of the PEDOT / sulfated cellulose crystal complex were performed.
  • the PEDOT / sulfated cellulose dispersion (0.6 wt%) prepared in Examples 2 to 5 and Comparative Example 3 was drop-cast 300 ⁇ L onto a glass substrate (50 mm ⁇ 50 mm) and heated at 120 ° C. for 30 minutes. The surface resistance was measured (initial). Then, using the PEDOT / sulfated cellulose of Example 2 to Example 5 and Comparative Example 3 stored for 2 years in the dark at room temperature, specimens were prepared under the same conditions as the preparation conditions, and surface resistance values were measured ( 2Y). The surface resistance value was measured by connecting a 4-point probe to a resistivity meter (loresta-GP MCP-T610) and pressing the membrane against the 4-point probe.
  • Example 12 Surface resistance and conductivity when using a compound having a polar group
  • Example 12 When preparing a PEDOT / sulfated cellulose crystal complex aqueous dispersion, using water as a solvent and preparing a solid content (PEDOT / sulfated cellulose crystal complex) to 0.30 wt%, the procedure of Example 1 is repeated. The surface resistance was measured in the same manner.
  • Example 13 When preparing a PEDOT / sulfated cellulose crystal complex dispersion, a solid content (PEDOT / sulfated cellulose crystal complex) is prepared by using a solvent adjusted to have a weight ratio of water to ethanol of 1: 1. The surface resistance value, the conductivity and the film thickness were measured in the same manner as in Example 1 except that the concentration was adjusted to 0.30 wt%.
  • Example 14 In preparing a PEDOT / sulfated cellulose crystal complex dispersion, water is used as a solvent, solid content (PEDOT / sulfated cellulose crystal complex) is prepared to be 0.30 wt%, and ethylene glycol is further added as an additive. The surface resistance value, the conductivity, and the film thickness were measured in the same manner as in Example 1 except that 3 wt% of the solid content was added.
  • Example 12 The measurement results in Example 12 to Example 14 are shown in Table 6.
  • Example 12 From the results of Example 12, when the solvent was only water and the solid concentration was 0.3%, the solid concentration was low, so that the surface resistance value could not be measured. On the other hand, from the results of Example 13 and Example 14, even when the solid concentration is 0.3%, when ethanol is used as the dispersion solvent, or when ethylene glycol is used as the additive, Since each surface resistance value could be measured, it can be said that the conductivity of the PEDOT / sulfated cellulose crystal complex was able to be improved by using these.
  • a cast film of PEDOT / sulfated cellulose is produced on a glass substrate using the PEDOT / sulfated cellulose crystal composite dispersion obtained in Example 5 and Example 11, and humidity is maintained using a constant humidity chamber.
  • the surface resistance value decreases to about 1/2 by setting the humidity to 27% to 80%. From this, by energizing the PEDOT / sulfated cellulose crystal complex, the humidity can be detected, and furthermore, it can be used as a humidity sensor.

Abstract

[Problem] The present invention primarily addresses the problem of providing an electroconductive material having excellent electrical conductivity and whereby a film can be formed by a simple method. [Solution] The electroconductive material according to the present invention, obtained by conjugating a polythiophene having repeating units represented by formula 3 using sulfated cellulose crystals obtained from fibrous cellulose having a fiber width in a range of 3 nm to 1500 nm and represented by formula 1 as a dopant, has excellent film forming properties and electrical conductivity, and is suitable for use as an electroconductive material.

Description

導電性材料Conductive material
 本発明は、優れた導電性を有する導電性材料、及びその製造方法に関し、特に優れた塗膜性も備えた導電性材料及び導電性材料の製造方法に関する。 The present invention relates to a conductive material having excellent conductivity and a method for producing the same, and in particular to a conductive material having excellent coating properties and a method for producing a conductive material.
 現在、導電性高分子として、ポリチオフェン、ポリアニリン、ポリピロールなどの材料が知られている。導電性高分子はその透明性と導電性の高さから、帯電防止フィルム、コンデンサ又はトランジスタ等の導電材料として使用されている。また、導電性高分子は優れた加工性を有することから、その応用分野は、多岐に渡っている。 At present, materials such as polythiophene, polyaniline and polypyrrole are known as conductive polymers. Conductive polymers are used as conductive materials for antistatic films, capacitors, transistors and the like because of their transparency and high conductivity. Moreover, since the conductive polymer has excellent processability, its application fields are diverse.
 導電性高分子の中でポリチオフェン系の導電性高分子は最も導電性が高く、また、薄膜として使用した場合の光透過性が良好であるため、優れた材料であることが知られている。ポリチオフェン系の導電性高分子で溶媒に分散したものとしてはポリ(3,4-エチレンジオキシ)チオフェン(以下、PEDOTと記すことがある)とドーパントとしてポリスチレンスルホン酸(以下、PSSと記すことがある)を用いた混合物の水分散液が知られている。3,4-エチレンジオキシチオフェン(EDOT)は、水への溶解度が非常に低いため、水への溶解性が高いPSSを組み合わせることで水へ分散させている。 Among conductive polymers, a polythiophene-based conductive polymer is known to be an excellent material because it has the highest conductivity and good light transmittance when used as a thin film. A polythiophene-based conductive polymer dispersed in a solvent such as poly (3,4-ethylenedioxy) thiophene (hereinafter sometimes referred to as PEDOT) and polystyrenesulfonic acid as a dopant (hereinafter referred to as PSS) There are known aqueous dispersions of mixtures in which there are used. Since 3,4-ethylenedioxythiophene (EDOT) has very low solubility in water, it is dispersed in water by combining PSS, which has high solubility in water.
 PEDOT/PSSは導電性の高さからITO代替として透明電極への応用が盛んに検討されているが、ITOと比べて導電性が劣っており、導電性を向上させることが望まれていた。 PEDOT / PSS has been actively studied for its application to a transparent electrode as a substitute for ITO because of its high conductivity, but the conductivity is inferior to that of ITO, and it has been desired to improve the conductivity.
 これまでに、PEDOT/PSSの導電性を向上させる改良技術についても幾つか報告されている。例えば、特許文献1では、混合アルコール及びシランカップリング剤とを混合して、導電性能を向上させている例が開示されている。しかしながら、特許文献1の技術では、前記混合アルコールは低粘性溶媒と高粘性アルコールとからなることが必須であるため、これらを混合する工程が必要である上、PEDOT/PSS水溶液100重量部に対して前記混合アルコールを最大300重量部も添加する必要がある。 Heretofore, some improved techniques for improving the conductivity of PEDOT / PSS have also been reported. For example, Patent Document 1 discloses an example in which a mixed alcohol and a silane coupling agent are mixed to improve the conductive performance. However, in the technique of Patent Document 1, it is essential that the mixed alcohol consists of a low viscosity solvent and a high viscosity alcohol, and therefore, a step of mixing these is necessary, and 100 parts by weight of PEDOT / PSS aqueous solution is required. It is necessary to add up to 300 parts by weight of the mixed alcohol.
 このように従来の導電性材料では、導電性が低い、バインダー等の成分を多量に混合する必要がある等の欠点があり、商業的に実用化する上で障壁があった。 As described above, conventional conductive materials have disadvantages such as low conductivity and the need to mix a large amount of components such as a binder, etc., and there are barriers to commercialization.
特開2015-180708号公報JP, 2015-180708, A
 本発明の目的は、簡易な手法で製膜可能で、しかも優れた導電性を有する導電性材料を提供するものである。 An object of the present invention is to provide a conductive material which can be formed into a film by a simple method and has excellent conductivity.
 本発明者らは、かかる事情を鑑み鋭意研究を重ねた結果、繰り返し単位を有するポリチオフェン(以下、単に「ポリチオフェン」と表記することもある)と硫酸化セルロース結晶を複合化することにより得られた複合体は、製膜性及び導電性に優れており、導電性材料として好適に使用できることを見出した。本発明は、かかる知見に基づいて更に検討を重ねることにより完成したものである。 The present inventors have intensively studied in view of such circumstances, and as a result, they are obtained by complexing sulfated cellulose crystals with polythiophene having a repeating unit (hereinafter sometimes referred to simply as "polythiophene"). It has been found that the composite is excellent in film forming property and conductivity and can be suitably used as a conductive material. The present invention has been completed by further studies based on such findings.
 即ち、本発明は、下記に掲げる態様の発明を提供する。
 繊維幅が3nm~1500nmの繊維状セルロースから得られた、化1に示される、硫酸化セルロース結晶をドーパントとして用いた、ポリチオフェンからなる導電性材料である。
That is, the present invention provides the invention of the aspects listed below.
It is a conductive material comprising polythiophene, obtained from fibrous cellulose having a fiber width of 3 nm to 1,500 nm, as shown in Chemical formula 1, using sulfated cellulose crystals as a dopant.
Figure JPOXMLDOC01-appb-C000002
(R1~R6はそれぞれ独立に水素原子、スルホン酸基または炭素鎖数1~6のアルキルスルホン酸基を表し、かつ少なくとも1つはスルホン酸基または炭素鎖数1~6のアルキルスルホン酸基を表す。)
Figure JPOXMLDOC01-appb-C000002
(R 1 to R 6 each independently represent a hydrogen atom, a sulfonic acid group or an alkylsulfonic acid group having 1 to 6 carbon atoms, and at least one represents an sulfonic acid group or an alkylsulfonic acid having 1 to 6 carbon atoms Represents a group)
 本発明の導電性材料は、優れた導電性を備えており、太陽電池や有機EL等の光電変換デバイスにおける電極材料や配線材料として有用である。また、本発明の導電性材料は、優れた製膜性を備えており、バインダー等の成分を多量に混合せずとも簡易な手法で製膜できるので、電極や配線等に使用される導電性部材を容易な方法で作製することが可能になる。 The conductive material of the present invention has excellent conductivity, and is useful as an electrode material or wiring material in a photoelectric conversion device such as a solar cell or an organic EL. In addition, the conductive material of the present invention has excellent film forming properties, and can be formed by a simple method without mixing a large amount of components such as a binder, so that the conductivity used for electrodes, wiring, etc. It becomes possible to make the component in an easy way.
 また、本発明の製造方法によれば、ポリチオフェンとアニオン性多糖類の複合体が分散体の状態で得られるので、当該分散体を塗膜して製膜するという簡単な方法で、高導電性の導電性部材を作製することが可能になる。 In addition, according to the production method of the present invention, a complex of polythiophene and an anionic polysaccharide is obtained in the form of a dispersion, so high conductivity can be achieved by a simple method of coating the dispersion to form a film. It is possible to produce a conductive member of
図1は、解繊処理装置の一例の概念図である。FIG. 1 is a conceptual view of an example of the defibration processing apparatus. 図2は、実施例1の電子顕微鏡写真を示す図である。FIG. 2 is a view showing an electron micrograph of Example 1. 図3は、実施例2の電子顕微鏡写真を示す図である。FIG. 3 shows an electron micrograph of Example 2. 図4は、実施例3の電子顕微鏡写真を示す図である。FIG. 4 shows an electron micrograph of Example 3. 図5は、比較例1の電子顕微鏡写真を示す図である。FIG. 5 is a view showing an electron micrograph of Comparative Example 1. 図6は、比較例4の電子顕微鏡写真を示す図である。FIG. 6 is a view showing an electron micrograph of Comparative Example 4.
 本発明の導電性材料は、化(1)で表される硫酸化セルロース結晶と後述する化(3)で表される繰り返し単位を有するポリチオフェンとの複合体(以下、「ポリチオフェン/硫酸化セルロース結晶複合体」と表記することもある)からなることを特徴とする。以下、本発明の導電性材料について詳述する。 The conductive material of the present invention is a complex of a sulfated cellulose crystal represented by the chemical formula (1) and a polythiophene having a repeating unit represented by the chemical formula (3) described below (hereinafter referred to as “polythiophene / sulfated cellulose crystal Complex (sometimes referred to as "complex"). Hereinafter, the conductive material of the present invention will be described in detail.
<硫酸化セルロース結晶>
 本発明で用いられる硫酸化セルロース結晶とは、繊維幅が3~1500nmの繊維状セルロース(以下、セルロースナノファイバーということもある。)にスルホン酸基又は炭素鎖数1~6のアルキルスルホン酸基を導入してなるものである。
<Sulfated cellulose crystal>
The sulfated cellulose crystal to be used in the present invention refers to a fibrous cellulose having a fiber width of 3 to 1500 nm (hereinafter sometimes referred to as cellulose nanofiber), a sulfonic acid group or an alkylsulfonic acid group having 1 to 6 carbon atoms. Is introduced.
 硫酸化セルロース結晶において、前記スルホン酸基が導入される繊維幅3~1500nmの繊維状セルロースの製造方法等について、以下、詳細に説明する。 Hereinafter, a method of producing fibrous cellulose having a fiber width of 3 to 1,500 nm and the like in which the sulfonic acid group is introduced in the sulfated cellulose crystal will be described in detail.
 繊維状セルロースとしては例えば、針葉樹及び広葉樹等の木材繊維、竹繊維、サトウキビ繊維、種子毛繊維、葉繊維等の天然の植物を含む多糖由来の繊維状セルロース、さらには海洋性生物であるホヤや海藻などに含まれるセルロース、加えて酢酸菌が糖を原料として生産するセルロース等が挙げられ、これら繊維状セルロースは一種を単独で又は二種以上を混合して用いてもよい。また多糖としてはα-セルロース含有率60%~99質量%のパルプを用いるのが好ましい。α-セルロース含有率60質量%未満の純度の場合はセルロースの持つ高強度・耐熱性・高剛性・高耐熱撃性・高酸素バリア性などの特性を十分に引き出せないほか、着色による品質の劣化や熱によるガスの発生などの問題を生じる。従って、α-セルロース含有率は60%以上であることが好ましい。一方、99質量%以上のものを用いた場合、繊維同士が水素結合により強く結びついているため、繊維をナノレベルに解繊することが困難になる。 Examples of fibrous cellulose include fibrous fibers derived from polysaccharides including natural plants such as wood fibers such as softwoods and hardwoods, bamboo fibers, sugar fibers, seed hair fibers, leaf fibers, etc. Examples thereof include cellulose contained in seaweed and the like, and cellulose in which acetic acid bacteria produce sugar as a raw material, and these fibrous celluloses may be used singly or in combination of two or more. In addition, it is preferable to use a pulp having an α-cellulose content of 60% to 99% by mass as the polysaccharide. When the purity is less than 60% by mass of α-cellulose, the properties of cellulose such as high strength, heat resistance, high rigidity, high heat shock resistance, high oxygen barrier property can not be sufficiently obtained, and the quality is deteriorated by coloring. Cause problems such as the generation of gas due to heat and heat. Therefore, the α-cellulose content is preferably 60% or more. On the other hand, when one having 99% by mass or more is used, it is difficult to disentangle the fibers to the nano level because the fibers are strongly bonded to each other by hydrogen bonds.
 多糖を高圧水流にて解繊して繊維状セルロースとする手法としては、特開2005-270891に記載された水中対向衝突法(以下、ACC法ということもある)がある。これは、水に懸濁した天然セルロース繊維をチャンバー(図4:107)内で相対する二つのノズル(図1:108a,108b)に導入し、これらのノズルから一点に向かって噴射、衝突させる手法である。この手法によれば、天然微結晶セルロース繊維(例えば、フナセル)の懸濁水を対向衝突させ、その表面をナノフィブリル化させて引き剥がし、キャリアーである水との親和性を向上させることによって、最終的には溶解に近い状態に至らせることが可能となる。図1に示される装置は液体循環型となっており、タンク(図1:109)、プランジャ(図1:110)、対向する二つのノズル(図1:108a,108b)、必要に応じて熱交換器(図1:111)を備え、水中に分散させた微粒子を二つのノズルに導入し高圧下で合い対するノズル(図1:108a,108b)から噴射して水中で対向衝突させる。次いで、熱交換器111によって冷却し、タンク109に戻す。このタンク109→プランジャ110→チャンバー107→熱交換器111の循環サイクルの反復数を処理回数(パス)とする。この手法では天然セルロース繊維の他には水しか使用せず、繊維間の相互作用のみを解裂させることによってナノ微細化を行うためセルロース分子の構造変化がなく、解裂に伴う重合度低下を最小限にした状態で繊維状セルロースを得ることが可能となる。また、本願発明に規定する繊維状セルロースの繊維幅及び/又は繊維長は、前記処理回数を変化させることによって、適宜増加ないし減少させることが可能である。例えば、前記処理回数を増加させることにより、繊維状セルロースの繊維幅を減少させることができる。他方、例えば、前記処理回数を少なくすることにより、繊維状セルロースの繊維幅を増加させることができる。 As a method of disintegrating a polysaccharide in a high pressure water stream to obtain fibrous cellulose, there is a counter-collision in water method (hereinafter also referred to as ACC method) described in JP-A-2005-270891. This introduces natural cellulose fibers suspended in water into two opposing nozzles (Fig. 1: 108a, 108b) in a chamber (Fig. 4: 107), and jets and collides from these nozzles toward one point It is a method. According to this method, the suspension water of natural microcrystalline cellulose fiber (for example, Funacel) is made to collide, the surface is nanofibrillated and peeled off, and the final affinity is improved by improving the affinity with water as a carrier. In fact, it is possible to achieve a state close to dissolution. The device shown in FIG. 1 is of the liquid circulation type, with the tank (FIG. 1: 109), the plunger (FIG. 1: 110), the two opposing nozzles (FIG. 1: 108 a, 108 b), optionally with heat. An exchanger (Fig. 1:11) is provided, and fine particles dispersed in water are introduced into two nozzles and jetted from the opposing nozzles (Fig. 1: 108a, 108b) under high pressure to cause an opposite collision in water. Then, it is cooled by the heat exchanger 111 and returned to the tank 109. The number of repetitions of the circulation cycle of the tank 109 → the plunger 110 → the chamber 107 → the heat exchanger 111 is taken as the number of processing (pass). In this method, only water is used in addition to the natural cellulose fiber, and since the nano-refining is performed by cleaving only the interaction between the fibers, there is no structural change of the cellulose molecule, and the polymerization degree accompanying the cleaving decreases. It is possible to obtain fibrous cellulose with minimized conditions. In addition, the fiber width and / or fiber length of the fibrous cellulose specified in the present invention can be appropriately increased or decreased by changing the number of times of the treatment. For example, the fiber width of fibrous cellulose can be reduced by increasing the number of treatments. On the other hand, for example, the fiber width of fibrous cellulose can be increased by reducing the number of treatments.
 以上のようにして得る繊維状セルロースは、天然セルロース繊維間の相互作用のみを解裂させることによってナノ微細化を行うためセルロース分子の構造変化がなく、以下の化学式1に表わされる構造式を有する。換言すると、本願発明で用いる繊維状セルロースは、化学式1中のセロビオースユニット内に水酸基6個を有する。 The fibrous cellulose obtained as described above has the structural formula represented by the following chemical formula 1 without the structural change of the cellulose molecule because the nano-refining is performed by breaking only the interaction between natural cellulose fibers. . In other words, the fibrous cellulose used in the present invention has six hydroxyl groups in the cellobiose unit in Chemical formula 1.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 対向衝突処理は、回数を重ねるに従い、処理物の温度が上昇するので、一度衝突処理された後の処理物は、必要に応じ、例えば、4~20℃、又は5~15℃に冷却してもよい。また、対向衝突処理装置に、冷却のための設備を組み込むこともできる。 As the temperature of the treatment increases as the number of times in the on-coming collision treatment increases, the treatment after being once subjected to a collision treatment is cooled to, for example, 4 to 20 ° C. or 5 to 15 ° C., as necessary. It is also good. In addition, equipment for cooling can be incorporated into the oncoming collision treatment apparatus.
 対向衝突処理は、このような処理条件(処理圧力、処理回数、その他ノズル径、処理温度等)を調節することにより、得られる繊維状セルロースの平均繊維幅、平均繊維長さ、透過率、粘度並びに極限粘度数等を調節できる。 In the opposite collision treatment, the average fiber width, average fiber length, transmittance, viscosity of the obtained fibrous cellulose can be obtained by adjusting such treatment conditions (treatment pressure, treatment frequency, other nozzle diameter, treatment temperature, etc.) Also, the intrinsic viscosity number etc. can be adjusted.
 本発明における繊維状セルロースはその繊維幅が3nm~1500nmの範囲にあるものが好適である。繊維幅が3nm未満のものは結晶性の繊維として存在せずに完全に分子上に溶解した状態となっているものが多く、さらに、後述する硫酸基を導入した際に、結晶性が低下し、EDOTの配向が乱れ、導電性が向上しない。また、繊維幅が1500nmを超えると、硫酸基の均一な導入ができず、均一なシート状の膜として調製することも困難であり、導電性が向上しないためである。 The fibrous cellulose in the present invention preferably has a fiber width in the range of 3 nm to 1,500 nm. Many fibers with a fiber width of less than 3 nm do not exist as crystalline fibers and are in a completely dissolved state on the molecule, and when the sulfate group described later is introduced, the crystallinity decreases. And the orientation of EDOT is disturbed, and the conductivity is not improved. Moreover, when the fiber width exceeds 1500 nm, uniform introduction of sulfuric acid groups can not be performed, and it is also difficult to prepare as a uniform sheet-like film, and conductivity is not improved.
 また、前記繊維状セルロースの繊維長は、200~10000nm、好ましくは、500~2000nmが好適である。繊維長が200nm以下になると、硫酸基を導入した際に、結晶性がすぐに低下し、重合時のEDOTの配向が乱れ、PEDOTの導電性が向上しない。繊維長が10000nm以上になると繭玉状によれやすく長い繊維として存在しにくく、硫酸基の均一な導入ができず、導電性が向上しない。 The fiber length of the fibrous cellulose is preferably 200 to 10,000 nm, and more preferably 500 to 2,000 nm. When the fiber length is 200 nm or less, when the sulfate group is introduced, the crystallinity is immediately reduced, the orientation of EDOT during polymerization is disturbed, and the conductivity of PEDOT is not improved. When the fiber length is 10000 nm or more, it is likely to be ball-like and difficult to be present as a long fiber, uniform introduction of sulfate group can not be performed, and conductivity is not improved.
 ここで、繊維状セルロースの電子顕微鏡観察による繊維幅及び繊維長の測定は、以下のようにして行う。濃度0.001~0.01質量%の繊維状セルロースの水系懸濁液を調製し、前記懸濁液を親水化処理したカーボン膜被覆グリッド上にキャストしてTEM観察用試料とする。幅広の繊維を含む場合には、ガラス上にキャストした表面のSEM像を観察してもよい。構成する繊維の幅に応じて倍率を調節することによって電子顕微鏡画像による観察を行う。 Here, the measurement of the fiber width and fiber length by electron microscope observation of fibrous cellulose is performed as follows. An aqueous suspension of fibrous cellulose having a concentration of 0.001 to 0.01% by mass is prepared, and the suspension is cast on a hydrophilized carbon film-coated grid to prepare a sample for TEM observation. In the case of containing wide fibers, an SEM image of the surface cast on glass may be observed. The observation with an electron microscope image is performed by adjusting the magnification according to the width of the fiber to be constructed.
 繊維状セルロースに硫酸基を導入するには、例えばクロロスルホン酸、スルファミン酸、ハロゲノスルホン酸等を繊維状セルロースと反応させればよく、また繊維状セルロースに炭素数1~6のアルキルスルホン酸基を導入するには、例えば炭素数1~6のハロゲン化アルキルスルホン酸等を繊維状セルロースと反応させればよい。かかる反応において、硫酸化セルロース結晶の式1で示されるセルロースI型結晶度は、反応時間の経過に伴い低下する。より具体的には、その結晶状態は、セルロースナノファイバー状からセルロースナノクリスタル状へ変化し、最終的にはアモルファス状となる。これは、以下のように説明される。繊維状セルロースの水酸基に導入される硫酸基が増加すると、硫酸基による静電反発力が増加することになる。その静電反発力の増加に伴い、繊維状セルロースが徐々に解繊され、その繊維幅及びその繊維長が徐々に短くなることによるものである。したがって、前述したように、硫酸基の導入による結晶化度の低下を考慮し、繊維状セルロースの繊維幅、繊維長を選定する必要がある。 In order to introduce a sulfuric acid group into fibrous cellulose, for example, chlorosulfonic acid, sulfamic acid, halogenosulfonic acid or the like may be reacted with fibrous cellulose, and the fibrous cellulose has an alkylsulfonic acid group having 1 to 6 carbon atoms. In order to introduce H, for example, halogenated alkyl sulfonic acid having 1 to 6 carbon atoms may be reacted with fibrous cellulose. In such a reaction, cellulose type I crystallinity of formula 1 of sulfated cellulose crystals decreases with the passage of reaction time. More specifically, the crystalline state changes from cellulose nanofiber to cellulose nanocrystal and finally becomes amorphous. This is described as follows. When the number of sulfate groups introduced into the hydroxyl groups of fibrous cellulose increases, the electrostatic repulsion by the sulfate groups increases. This is because the fibrous cellulose is gradually disintegrated as the electrostatic repulsion increases, and the fiber width and the fiber length gradually decrease. Therefore, as described above, it is necessary to select the fiber width and the fiber length of the fibrous cellulose in consideration of the decrease in the crystallinity degree due to the introduction of the sulfuric acid group.
なお、本発明において、セルロースナノファイバー状とは、繊維幅が約3~1500nm、繊維長が約200~10000nmであって、結晶化度が約60~70の範囲内にあるものをいう。また、セルロースナノクリスタル状とは、その繊維幅が約1~10nm、繊維長が約100~300nmであって、結晶化度が約40~59の範囲内にあるものをいう。さらに、アモルファス状とは、その繊維幅が約1~10nm、繊維長が約100~300nmであって、結晶化度が40より小さい値であるものをいう。 In the present invention, the term “cellulose nanofibers” means fibers having a fiber width of about 3 to 1,500 nm, a fiber length of about 200 to 10,000 nm, and a crystallinity in the range of about 60 to 70. In addition, the cellulose nanocrystal-like refers to those having a fiber width of about 1 to 10 nm, a fiber length of about 100 to 300 nm, and a crystallinity of about 40 to 59. Further, the amorphous state means that the fiber width is about 1 to 10 nm, the fiber length is about 100 to 300 nm, and the degree of crystallinity is less than 40.
 以下、繊維状セルロースに硫酸基を導入するための原料前処理、反応時間、反応温度等の反応条件について詳細に説明する。 Hereinafter, reaction conditions such as raw material pretreatment for introducing a sulfuric acid group into fibrous cellulose, reaction time, reaction temperature and the like will be described in detail.
 原料前処理として、凍結乾燥を施すとよい。原料となる繊維状セルロースは水分散液であるため、溶媒置換による方法では脱水量が不十分となり、反応効率が向上しないからである。 It is good to freeze-dry as a raw material pretreatment. Since fibrous cellulose as a raw material is an aqueous dispersion, the amount of dehydration is insufficient in the method of solvent substitution, and the reaction efficiency is not improved.
 また、スルホン酸基を導入する前に、原料である繊維状セルロースを分散させた分散液に超音波を0.3~100Wh、好ましくは、0.6~50Whの電力量を照射することによって、分散性を向上させるとよい。超音波が0.3Wh以下であると、繊維状セルロースが凝集したままで、反応効率が向上しない。また、100Whより大きな電力量で照射すると繊維状セルロースの構造が破壊され、結晶性が維持できなくなり、最終的に得られた導電性材料の導電性が低下してしまうからである。 In addition, before introducing the sulfonic acid group, the dispersion containing the fibrous cellulose as a raw material dispersed therein is irradiated with ultrasonic waves of 0.3 to 100 Wh, preferably 0.6 to 50 Wh of electric power, It is better to improve the dispersibility. If the ultrasonic wave is 0.3 Wh or less, the reaction efficiency is not improved while the fibrous cellulose remains aggregated. In addition, when the irradiation is performed with a power amount larger than 100 Wh, the structure of the fibrous cellulose is broken, the crystallinity can not be maintained, and the conductivity of the finally obtained conductive material is lowered.
 硫酸化セルロース微結晶の製造における反応時間及び反応温度については、繊維状セルロースの凝集を防ぎ、繊維状セルロース上の水酸基と均一に反応させるために、0℃以上10℃未満において、30秒~6時間の範囲で反応を行わせるとよい。 The reaction time and reaction temperature in the production of sulfated cellulose microcrystals are 30 seconds to 6 seconds at 0 ° C. or more and less than 10 ° C. in order to prevent aggregation of fibrous cellulose and uniformly react with hydroxyl groups on fibrous cellulose. It is good to carry out the reaction within the time range.
<ポリチオフェン>
 本発明で用いられるポリチオフェンは、化(3)で表される繰り返し単位を有している。
<Polythiophene>
The polythiophene used in the present invention has a repeating unit represented by the formula (3).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 化(3)中、R1及びR2は、それぞれ独立に水素原子、炭素数1~8のアルキル基、炭素数1~8のアルコキシ基を表すか、R1とR2は連結して、炭素数1~8のジオキシアルキレン基、芳香環又は3~7員環の脂環式環を表す。 In the formula (3), R 1 and R 2 each independently represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or an alkoxy group having 1 to 8 carbon atoms, or R 1 and R 2 are linked, It represents a C1-C8 dioxyalkylene group, an aromatic ring or a 3- to 7-membered alicyclic ring.
 前記炭素数1~8のアルキル基としては、直鎖状又は分岐状のいずれであってもよい。前記炭素数1~8のアルキル基として、好ましくは炭素数1~6のアルキル基が挙げられる。 The alkyl group having 1 to 8 carbon atoms may be linear or branched. The alkyl group having 1 to 8 carbon atoms is preferably an alkyl group having 1 to 6 carbon atoms.
 また、前記炭素数1~8のアルコキシ基としては、直鎖状又は分岐状のいずれであってもよい。前記炭素数1~8のアルコキシ基として、好ましくは炭素数1~6のアルコキシ基が挙げられる。 The alkoxy group having 1 to 8 carbon atoms may be linear or branched. The alkoxy group having 1 to 8 carbon atoms is preferably an alkoxy group having 1 to 6 carbon atoms.
 また、R1とR2が連結して炭素数1~8のジオキシアルキレン基を形成している場合、当該ジオキシアルキレン基の炭素数として、好ましくは炭素数1~6、更に好ましくは2~4が挙げられる。 When R 1 and R 2 are linked to form a dioxyalkylene group having 1 to 8 carbon atoms, the carbon number of the dioxyalkylene group is preferably 1 to 6 carbon atoms, more preferably 2 To 4 can be mentioned.
 また、R1とR2が連結して3~7員環の脂環式環を形成している場合、当該脂環式環として、好ましくは4~7員環、更に好ましくは5~6員環が挙げられる。 When R 1 and R 2 are combined to form a 3- to 7-membered alicyclic ring, the alicyclic ring is preferably a 4- to 7-membered ring, more preferably a 5- to 6-membered ring. There is a ring.
 ポリチオフェンを形成する化(3)で表される繰り返し単位の数については、特に制限されないが、例えば、2~50程度が挙げられる。 The number of the repeating units represented by the formula (3) for forming polythiophene is not particularly limited, and may be, for example, about 2 to 50.
 化(3)で表される繰り返し単位を構成する単量体化合物としては、好ましくは、チオフェン骨格の3位及び4位に、それぞれ独立に、炭素数1~8のアルキル基及び/又は炭素数1~8のアルコキシ基が置換した化合物;チオフェン骨格の3位と4位に炭素数1~8のジオキシアルキレン基が形成された3,4-ジ置換チオフェンが挙げられる。より具体的には、3,4-ジアルキルチオフェン、3,4-ジアルコキシチオフェン、3,4-アルキレンジオキシチオフェン等が挙げられる。これらの中でも、3,4-アルキレンジオキシチオフェンが好ましい。 The monomer compound constituting the repeating unit represented by the formula (3) is preferably an alkyl group having 1 to 8 carbon atoms and / or a carbon number independently preferably at the 3rd and 4th positions of the thiophene skeleton. Compounds in which 1 to 8 alkoxy groups are substituted; and 3,4-disubstituted thiophenes in which a dioxyalkylene group having 1 to 8 carbon atoms is formed at the 3- and 4-positions of the thiophene skeleton. More specifically, 3,4-dialkylthiophene, 3,4-dialkoxythiophene, 3,4-alkylenedioxythiophene and the like can be mentioned. Among these, 3,4-alkylene dioxythiophene is preferable.
 化(3)で表される繰り返し単位を構成する単量体化合物の好適な具体例としては、例えば、3,4-ジヘキシルチオフェン、3,4-ジエチルチオフェン、3,4-ジプロピルチオフェン、3,4-ジメトキシチオフェン、3,4-ジエトキシチオフェン、3,4-ジプロポキシチオフェン、3,4-ジブトキシチオフェン、3,4-メチレンジオキシチオフェン、3,4-エチレンジオキシチオフェン、3,4-プロピレンジオキシチオフェン等が挙げられる。これらの中でも、3,4-エチレンジオキシチオフェンが好ましい。 Preferred specific examples of the monomer compound constituting the repeating unit represented by formula (3) include, for example, 3,4-dihexylthiophene, 3,4-diethylthiophene, 3,4-dipropylthiophene, and the like. 3,4-Dimethoxythiophene, 3,4-diethoxythiophene, 3,4-dipropoxythiophene, 3,4-dibutoxythiophene, 3,4-methylenedioxythiophene, 3,4-ethylenedioxythiophene, 3, 4-propylenedioxythiophene and the like can be mentioned. Among these, 3,4-ethylenedioxythiophene is preferable.
<ポリチオフェン/硫酸化セルロース結晶複合体>
 ポリチオフェン/硫酸化セルロース結晶複合体は、硫酸化セルロース結晶、溶媒及び酸化剤の存在下で、下化(4)で表されるチオフェンを酸化重合することにより製造される。
<Polythiophene / Sulfated Cellulose Crystal Complex>
The polythiophene / sulfated cellulose crystal complex is produced by oxidative polymerization of the thiophene represented by the chemical formula (4) in the presence of sulfated cellulose crystals, a solvent and an oxidizing agent.
Figure JPOXMLDOC01-appb-C000005
  化(4)中、R1及びR2は、前記と同じである。
Figure JPOXMLDOC01-appb-C000005
In the formula (4), R 1 and R 2 are as defined above.
 具体的には、予め硫酸化セルロース結晶を溶媒に溶解させた溶液に、化(4)で表されるチオフェンと酸化剤を加えてチオフェンを重合させることにより、ポリチオフェン/硫酸化セルロース結晶複合体が分散溶液の状態で得られる。斯して得られるポリチオフェン/硫酸化セルロース結晶複合体において、ポリチオフェンと硫酸化セルロース結晶複合体の結合様式については、限定的な解釈を望むものではないが、重合反応により生成したポリチオフェンと硫酸化セルロース結晶のアニオンがドープした状態で複合化されていると考えられる。 Specifically, polythiophene / sulfated cellulose crystal complex is obtained by polymerizing thiophene by adding thiophene represented by the formula (4) and an oxidizing agent to a solution in which sulfated cellulose crystals are previously dissolved in a solvent. It is obtained in the state of a dispersed solution. In the polythiophene / sulfated cellulose crystal complex thus obtained, the binding mode of the polythiophene and sulfated cellulose crystal complex is not desired to be interpreted in a limited manner, but the polythiophene and sulfated cellulose produced by the polymerization reaction It is considered that the complex of the crystal anion is in the doped state.
 化(4)で表されるチオフェンとしては、好ましくは、チオフェン骨格の3位及び4位に、それぞれ独立に、炭素数1~8のアルキル基及び/又は炭素数1~8のアルコキシ基が置換したチオフェン;チオフェン骨格の3位と4位に炭素数1~8のジオキシアルキレン基が形成された3,4-ジ置換チオフェンが挙げられる。より具体的には、3,4-ジアルキルチオフェン、3,4-ジアルコキシチオフェン、3,4-アルキレンジオキシチオフェン等が挙げられる。これらの中でも、3,4-アルキレンジオキシチオフェンが好ましい。 As the thiophene represented by Chemical formula (4), preferably, an alkyl group having 1 to 8 carbon atoms and / or an alkoxy group having 1 to 8 carbon atoms are independently substituted at the 3rd and 4th positions of the thiophene skeleton. And 3,4-disubstituted thiophenes in which a dioxyalkylene group having 1 to 8 carbon atoms is formed at the 3- and 4-positions of the thiophene skeleton. More specifically, 3,4-dialkylthiophene, 3,4-dialkoxythiophene, 3,4-alkylenedioxythiophene and the like can be mentioned. Among these, 3,4-alkylene dioxythiophene is preferable.
 化(4)で表されるチオフェンの好適な具体例としては、例えば、3,4-ジヘキシルチオフェン、3,4-ジエチルチオフェン、3,4-ジプロピルチオフェン、3,4-ジメトキシチオフェン、3,4-ジエトキシチオフェン、3,4-ジプロポキシチオフェン、3,4-ジブトキシチオフェン、3,4-メチレンジオキシチオフェン、3,4-エチレンジオキシチオフェン、3,4-プロピレンジオキシチオフェン等が挙げられる。これらの中でも、3,4-エチレンジオキシチオフェンが好ましい。 Preferred specific examples of the thiophene represented by the formula (4) are, for example, 3,4-dihexylthiophene, 3,4-diethylthiophene, 3,4-dipropylthiophene, 3,4-dimethoxythiophene, 4-diethoxythiophene, 3,4-dipropoxythiophene, 3,4-dibutoxythiophene, 3,4-methylenedioxythiophene, 3,4-ethylenedioxythiophene, 3,4-propylenedioxythiophene, etc. It can be mentioned. Among these, 3,4-ethylenedioxythiophene is preferable.
 ポリチオフェン/硫酸化セルロース結晶複合体において、硫酸化セルロース結晶の式Iで示されるセルロースI型結晶化度は、40~53%の範囲内にあることが好ましい。セルロースI型結晶化度が53%より大きいと、ドーパントとしての硫酸基の絶対量が少ないため、導電性が向上しない。また、セルロースI型結晶化度が40%より小さくなると、セルロースの分子鎖が乱れ、それに伴い、重合時のチオフェンの配向が乱れて、ポリチオフェンの結晶格子を乱し、伝導パスの障害となり、導電性の低下を引き起こすからである。したがって、ドーパントとしての量とセルロースの結晶性を鑑みた場合、セルロースI型結晶化度が40~53%が好適な範囲であると考えられる。 In the polythiophene / sulfated cellulose crystal complex, the cellulose I-type crystallinity of the sulfated cellulose crystal represented by formula I is preferably in the range of 40 to 53%. If the cellulose type I crystallinity is greater than 53%, the conductivity is not improved because the absolute amount of the sulfate group as the dopant is small. When the degree of crystallinity of cellulose I is less than 40%, the molecular chain of cellulose is disrupted, and the orientation of thiophene at the time of polymerization is disrupted, the crystal lattice of polythiophene is disrupted, and the conduction path is obstructed. It is because it causes a decrease in sex. Therefore, in view of the amount as a dopant and the crystallinity of cellulose, it is considered that a cellulose I-type crystallinity of 40 to 53% is a preferable range.
ポリチオフェン/硫酸化セルロース結晶複合体において、ポリチオフェンと硫酸化セルロース結晶の比率は、特に制限されないが、ポリチオフェンの比率が高い程、導電性は高くなるが、分散性が低下する傾向を示すため、これらを勘案した上でポリチオフェンや硫酸化セルロースの種類等に応じて適宜設定される。具体的には、ポリチオフェンと硫酸化セルロース結晶の質量比として、1:0.5~1:8、好ましくは1:1~1:4が挙げられ、より好ましくは、1:1とするとよい。このような質量比を充足することにより、より優れた導電性を備えさせつつ、溶媒中での分散性を良好にできる。 In the polythiophene / sulfated cellulose crystal complex, the ratio of polythiophene to sulfated cellulose crystal is not particularly limited, but the higher the ratio of polythiophene, the higher the conductivity, but the lower the dispersibility, so these tend to decrease. In consideration of the above, it is appropriately set according to the type of polythiophene and sulfated cellulose. Specifically, the weight ratio of polythiophene to sulfated cellulose crystals may be 1: 0.5 to 1: 8, preferably 1: 1 to 1: 4, and more preferably 1: 1. By satisfying such a mass ratio, it is possible to improve the dispersibility in the solvent while providing more excellent conductivity.
 ポリチオフェン/硫酸化セルロース複合体の製造において、原料化合物として使用される化(4)で表されるチオフェンと硫酸化セルロース結晶の使用量については、前述するポリチオフェンと硫酸化セルロース結晶の比率を充足できる範囲に適宜設定すればよい。具体的には、アニオン性多糖類100質量部当たり、化(4)で表されるチオフェンが12.5~400質量部、好ましくは25~200質量部が挙げられる。 With respect to the amounts of thiophene and sulfated cellulose crystals represented by the chemical formula (4) used as a raw material compound in the production of polythiophene / sulfated cellulose composite, the ratio of polythiophene and sulfated cellulose crystals described above can be satisfied. The range may be set appropriately. Specifically, per 100 parts by mass of the anionic polysaccharide, 12.5 to 400 parts by mass, preferably 25 to 200 parts by mass of thiophene represented by Chemical Formula (4) can be mentioned.
 ポリチオフェン/硫酸化セルロース結晶複合体の製造に使用される酸化剤としては、化(4)で表されるチオフェンを酸化重合可能であることを限度として特に制限されないが、例えば、ペルオキソ二硫酸、ペルオキソ二硫酸ナトリウム、ペルオキソ二硫酸カリウム、ペルオキソ二硫酸アンモニウム、無機酸化第二鉄塩、有機酸化第二鉄塩、過酸化水素、過マンガン酸カリウム、二クロム酸カリウム、過ホウ酸アルカリ塩、硫酸鉄(III)、塩化鉄(III)等が挙げられる。これらの中でも、好ましくは、ペルオキソ二硫酸、ペルオキソ二硫酸ナトリウム、ペルオキソ二硫酸カリウム、ペルオキソ二硫酸アンモニウム、硫酸鉄(III)、塩化鉄(III)が挙げられる。これらの酸化剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。 The oxidizing agent used for producing the polythiophene / sulfated cellulose crystal complex is not particularly limited as long as the thiophene represented by Chemical Formula (4) can be oxidatively polymerized, but, for example, peroxodisulfuric acid, peroxo Sodium disulfate, potassium peroxodisulfate, ammonium peroxodisulfate, inorganic ferric oxide, organic ferric oxide, hydrogen peroxide, potassium permanganate, potassium dichromate, alkali perborate, iron sulfate ( III), iron chloride (III) and the like. Among these, preferred are peroxodisulfuric acid, sodium peroxodisulfate, potassium peroxodisulfate, ammonium peroxodisulfate, iron (III) sulfate and iron (III) chloride. These oxidizing agents may be used singly or in combination of two or more.
 ポリチオフェン/硫酸化セルロース結晶複合体の製造において、酸化剤の使用量については、特に制限されないが、例えば、化(4)で表されるチオフェン1モル当たり、0.1~5当量、好ましくは0.3~2当量が挙げられる。 In the production of the polythiophene / sulfated cellulose crystal complex, the amount of the oxidizing agent used is not particularly limited, but, for example, 0.1 to 5 equivalents, preferably 0, per mole of thiophene represented by Formula (4). 3 to 2 equivalents can be mentioned.
 ポリチオフェン/硫酸化セルロース結晶複合体の製造に使用される溶媒については、硫酸化セルロース結晶複合体を溶解でき、チオフェンの重合反応を行い得るものであればよく、具体的には、水系溶媒が挙げられ、好ましくは水が挙げられる。また、当該溶媒には、メタノール、エタノール等の低級アルコールや、アセトン、アセトニトリル等の極性有機溶媒を水と混合した水系溶媒を用いてもよい。これらの溶媒は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。 As the solvent used for producing the polythiophene / sulfated cellulose crystal complex, any solvent can be used as long as it can dissolve the sulfated cellulose crystal complex and can carry out the polymerization reaction of thiophene. Specifically, an aqueous solvent is mentioned. Preferably water. Further, as the solvent, an aqueous solvent in which a lower alcohol such as methanol or ethanol, or a polar organic solvent such as acetone or acetonitrile is mixed with water may be used. These solvents may be used alone or in combination of two or more.
 ポリチオフェン/硫酸化セルロース結晶複合体の製造において、前記溶媒の使用量については、特に制限されないが、例えば、化(4)で表されるチオフェン1モル当たり、1000~50000ml、好ましくは3000~30000mlが挙げられる。 In the production of the polythiophene / sulfated cellulose crystal complex, the amount of the solvent used is not particularly limited, but for example, 1000 to 50000 ml, preferably 3000 to 30000 ml, per mole of thiophene represented by Chemical formula (4). It can be mentioned.
 ポリチオフェン/硫酸化セルロース結晶複合体の製造における反応時間及び反応温度については、原料化合物として使用するチオフェンや硫酸化セルロース結晶の種類、酸化剤の種類等に応じて適宜設定されるが、例えば、5~90℃、好ましくは10~80℃で、1~96時間、好ましくは5~48時間が挙げられる。 The reaction time and reaction temperature in the production of the polythiophene / sulfated cellulose crystal complex are appropriately set according to the type of thiophene and sulfated cellulose crystals used as the raw material compound, the type of oxidizing agent, etc. C., preferably 10 to 80.degree. C., for 1 to 96 hours, preferably 5 to 48 hours.
 上記のようにして硫酸化セルロース結晶の存在下で化(4)で表されるチオフェンを重合させることにより、ポリチオフェン/硫酸化セルロース結晶複合体の分散溶液が得られる。斯くして得られる、ポリチオフェン/硫酸化セルロース結晶複合体は、反応後に得られる分散液の状態で、又は必要に応じてポリチオフェン/硫酸化セルロース結晶複合体を分離、精製した後に、導電膜の製造に供することができる。 By polymerizing the thiophene represented by Chemical Formula (4) in the presence of sulfated cellulose crystals as described above, a dispersion solution of polythiophene / sulfated cellulose crystal complex is obtained. The polythiophene / sulfated cellulose crystal complex thus obtained is produced in the state of a dispersion obtained after the reaction, or after separation and purification of the polythiophene / sulfated cellulose crystal complex, if necessary, before producing a conductive film. Can be
<ポリチオフェン/硫酸化セルロース結晶複合体を用いた導電膜>
 ポリチオフェン/硫酸化セルロース結晶複合体は、優れた導電性及び製膜性を備えているので、基板上に製膜することにより、導電膜として使用することができる。
<Conductive film using polythiophene / sulfated cellulose crystal complex>
Since the polythiophene / sulfated cellulose crystal complex has excellent conductivity and film forming properties, it can be used as a conductive film by forming a film on a substrate.
 具体的には、ポリチオフェン/硫酸化セルロース結晶複合体を用いた導電膜は、ポリチオフェン/硫酸化セルロース結晶複合体を含む分散液を基板上の全面に又は所定形状になるように塗布した後に、乾燥して溶媒を除去することによって製造される。
 乾燥する前に、添加剤として、エタノール、メタノール、エチレングリコール等のヒドロキシル基、ハロゲン基、スルホン基、カルボニル基、アミノ基、イミノ基、カルボキシル基、スルフィド基、ジスルフィド基、スルホニル基、アミド基及びニトリル基からなる群から選択される少なくとも1種の極性基を有する化合物を溶媒に加えると、導電膜の導電性を向上させることが可能となる。なお、添加剤として加える極性基を有する化合物の量は、ポリチオフェン/硫酸化セルロース結晶複合体の分散に影響を与えなければ、特には制限されない。
Specifically, a conductive film using a polythiophene / sulfated cellulose crystal composite is dried after a dispersion containing the polythiophene / sulfated cellulose crystal composite is applied over the entire surface of the substrate or in a predetermined shape. Manufactured by removing the solvent.
Before drying, as an additive, hydroxyl group such as ethanol, methanol, ethylene glycol etc., halogen group, sulfone group, carbonyl group, amino group, imino group, carboxyl group, sulfide group, disulfide group, sulfonyl group, amide group and When the compound having at least one polar group selected from the group consisting of nitrile groups is added to the solvent, it is possible to improve the conductivity of the conductive film. The amount of the compound having a polar group to be added as an additive is not particularly limited as long as it does not affect the dispersion of the polythiophene / sulfated cellulose crystal complex.
 ポリチオフェン/硫酸化セルロース結晶複合体を含む分散液を基板に塗布する方法については、特に制限されないが、例えば、スプレーコート法、スピンコート法、ブレードコート法、デイップコート法、キャスト法、ロールコート法、バーコート法、ダイコート法等の塗布による方法;印刷やインクジェット等のパターニングによる方法等のウェットプロセスが挙げられる。これらの中でも、好ましくはスピンコート法及びキャスト法が挙げられる。 The method for applying a dispersion containing a polythiophene / sulfated cellulose crystal complex to a substrate is not particularly limited, and, for example, a spray coating method, a spin coating method, a blade coating method, a dip coating method, a cast method, a roll coating method Methods by coating such as bar coating method and die coating method; Wet processes such as methods by patterning such as printing and inkjet. Among these, spin coating and casting are preferably mentioned.
 乾燥方法については、特に制限されないが、例えば、加熱乾燥、凍結乾燥、減圧乾燥、熱風乾燥、超臨界乾燥等が挙げられる。乾燥温度は、乾燥方法に応じて適宜設定されるが、例えば、50℃~250℃、好ましくは60℃~150℃が挙げられる。乾燥温度を250℃以下に設定することにより、乾燥時にポリチオフェン/硫酸化セルロース結晶複合体の導電性が低下するのを効果的に抑制することができる。 The drying method is not particularly limited, and examples thereof include heat drying, freeze drying, reduced pressure drying, hot air drying, supercritical drying and the like. The drying temperature is appropriately set depending on the drying method, and examples thereof include 50 ° C. to 250 ° C., preferably 60 ° C. to 150 ° C. By setting the drying temperature to 250 ° C. or less, the decrease in the conductivity of the polythiophene / sulfated cellulose crystal complex during drying can be effectively suppressed.
 ポリチオフェン/硫酸化セルロース結晶複合体の製膜に使用される基板としては、例えば、ガラス板、プラスチックシート、プラスチックフィルム等が挙げられる。プラスチックとしては、ポリエステル、ポリエチレン、ポリプロピレン、ポリスチレン、ポリイミド、ポリアミド、ポリエチレンテレフタレート、ポリエチレンナフタレート、エポキシ樹脂、塩素系樹脂、シリコン系樹脂、及びこれらをブレンドしたもの等が挙げられる。 As a board | substrate used for film forming of a polythiophene / sulfated cellulose crystal complex, a glass plate, a plastic sheet, a plastic film etc. are mentioned, for example. Examples of the plastic include polyester, polyethylene, polypropylene, polystyrene, polyimide, polyamide, polyethylene terephthalate, polyethylene naphthalate, epoxy resin, chlorine resin, silicon resin, and blends of these.
 ポリチオフェン/硫酸化セルロース結晶複合体を製膜させて得られる導電膜、及び当該導電膜を設けた基材は、帯電防止フィルム、有機ELや太陽電池に代表される電子デバイスの配線や電極材料等の導電性部材として使用される。また、湿度を感知することができる各種センサーとして使用することができる。 A conductive film obtained by forming a film of a polythiophene / sulfated cellulose crystal complex, and a substrate provided with the conductive film are an antistatic film, wiring of an electronic device represented by an organic EL, a solar cell, an electrode material, etc. Used as a conductive member of Moreover, it can be used as various sensors which can sense humidity.
 以下に実施例及び比較例を挙げ、本発明を具体的に説明するが、本発明は、これら実施例によって何ら限定されるものではない。 EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these examples.
 また、実施例及び比較例において、硫酸化セルロース結晶の結晶化度、硫酸基の置換度の測定、ポリチオフェン/硫酸化セルロース結晶複合体の導電性の測定、ポリチオフェン/硫酸化セルロース結晶複合体の導電膜の表面粗さの測定、繊維幅並びに繊維長の測定及び極限粘度数の測定方法は、以下の測定方法により実施した。 In Examples and Comparative Examples, measurement of crystallinity of sulfated cellulose crystal, measurement of substitution of sulfate group, measurement of conductivity of polythiophene / sulfated cellulose crystal composite, conductivity of polythiophene / sulfated cellulose crystal composite The measurement of the surface roughness of the film, the measurement of the fiber width and the fiber length, and the measurement of the limiting viscosity number were carried out by the following measurement methods.
(結晶化度及び硫酸基の測定方法)
 XRD(株式会社リガク:SmartLab-9KW)を使用し、I200:格子面(200面)の回折強度及びIam:アモルファス部の回折強度の測定結果から、以下の式を用いて結晶化度を算出した。
(式) セルロースI型結晶化度(%)=〔(I200-Iam)/I200〕×100
ここで、I200は2θ=22.6°、Iamは2θ=18.5°のX線回折強度を示す。
 また、硫酸セルロース結晶の元素分析の結果により硫酸基の置換度を算出した。
(Measurement method of crystallinity degree and sulfate group)
Using XRD (Rigaku, Inc .: SmartLab-9 KW), I200: From the measurement results of the diffraction intensity of the lattice plane (200 plane) and the diffraction intensity of the Iam: amorphous part, the crystallinity was calculated using the following equation .
(Formula) Cellulose type I crystallinity (%) = [(I 200 -Iam) / I 200 ] × 100
Here, I 200 indicates an X-ray diffraction intensity of 2θ = 22.6 °, and Iam indicates 2θ = 18.5 °.
In addition, the degree of substitution of sulfate group was calculated from the result of elemental analysis of cellulose sulfate crystals.
(ポリチオフェン/硫酸化セルロース結晶複合体の導電性の測定方法)
 スライドグラスに下処理を行った後、ポリチオフェン/硫酸化セルロース結晶複合体溶液を用いてスピンコート法により導電膜を作製した。
 次いで、作製した導電膜について表面抵抗値を測定した。具体的には、表面抵抗値は、抵抗率計(loresta-GP MCP-T610)に4探針プローブを接続して、膜を4探針プローブに押し当てることによって測定し、導電性(S/cm)の算出を行った。
(Method of measuring conductivity of polythiophene / sulfated cellulose crystal complex)
After the slide glass was subjected to pretreatment, a conductive film was produced by spin coating using a polythiophene / sulfated cellulose crystal complex solution.
Subsequently, the surface resistance value was measured about the produced electrically conductive film. Specifically, the surface resistance value is measured by connecting a 4-point probe to a resistivity meter (loresta-GP MCP-T610) and pressing the film against the 4-point probe, and conductivity (S / cm) was calculated.
(ポリチオフェン/硫酸化セルロース結晶複合体の表面粗さの測定方法)
 表面形状測定装置(Veeco社製 型式:Dektak150)を使用して表面粗さ及び膜厚を測定した。
(Method of measuring surface roughness of polythiophene / sulfated cellulose crystal complex)
The surface roughness and the film thickness were measured using a surface shape measuring apparatus (manufactured by Veeco, model: Dektak 150).
(繊維幅、繊維長の測定方法)
 電界放出型走査型電子顕微鏡(株式会社日立ハイテクノロジーズ 型番SU8000)を使用して撮影した電子顕微鏡写真により算出した。
(Method of measuring fiber width and fiber length)
It was calculated from an electron micrograph taken using a field emission scanning electron microscope (Hitachi High-Technologies Corporation, Model No. SU8000).
(極限粘度数の測定方法)
 試料固形分0.15gを30mLの0.5M銅エチレンジアミン溶液になるように溶解させ、キャノンフェンスケ動粘度管を用いて、25℃で保温した後に、流下時間を測定する事で粘度の測定を行った。測定結果から、JIS P 8215:極限粘度数測定法に従って極限粘度数を算出した。
(Method of measuring the limiting viscosity number)
The sample solid content of 0.15 g is dissolved in 30 mL of a 0.5 M copper ethylenediamine solution, and the temperature is measured at 25 ° C. using a Cannon Fence kinematic viscosity tube, and then the flow time is measured to measure the viscosity. went. From the measurement results, the limiting viscosity number was calculated according to JIS P 8215: limiting viscosity number measurement method.
(ACC法によるセルロースナノファイバーの作成及び極限粘度数の測定)
 針葉樹パルプ及び竹パルプを原料とし、処理回数を変え、解繊度合いの異なるセルロースナノファイバー水分散液1wt%を得た。
次いで、セルロースナノファイバー水分散液の極限粘度数(ml/g)を測定した。その結果、極限粘度数の値が、450より大きく570以下の範囲であるものを「NB-B」とし、360以上450以下の範囲であるものを「NB-C」とした。ここで、極限粘度数の値の大小は、小さい値から大きい値となるに従って、セルロースの重合度がより高くなるものであることを意味する。
(Preparation of cellulose nanofibers by ACC method and measurement of limiting viscosity number)
Softwood pulp and bamboo pulp were used as raw materials, and the number of treatments was changed to obtain 1 wt% of cellulose nanofiber aqueous dispersion having different degree of disaggregation.
Then, the limiting viscosity number (ml / g) of the cellulose nanofiber aqueous dispersion was measured. As a result, those having an intrinsic viscosity value in the range of more than 450 and 570 or less are defined as "NB-B", and those having a range of 360 or more and 450 or less are referred to as "NB-C". Here, the magnitude of the value of the limiting viscosity number means that the degree of polymerization of cellulose becomes higher as the value becomes smaller.
(実施例1)
 針葉樹パルプを原料とし、ACC法において処理を行い、セルロースナノファイバー分散液1wt%を得た。次いで、極限粘度数の測定を3回行ったところ、その平均値は、480ml/gであった(したがって、本実施例で用いたセルロースナノファイバー分散液はNB-Bである)。次いで、セルロースナノファイバー2.00gをN,N-ジメチルホルムアミド(DMF)200mlに加え、室温にて14時間以上かき混ぜた。その後、水浴の温度を10℃にし、内部超音波2min照射後、窒素通気下にて、クロロスルホン酸3.6mlを徐々に滴下し、混合した。クロロスルホン酸の滴下開始を反応開始として、50分混合した。次いで、反応液15mlを酢酸ナトリウムの飽和エタノール溶液150mlに注ぎ、再沈殿させ、沈殿物を酢酸ナトリウムの飽和エタノール溶液で一回洗浄し、エタノールで上澄み液が中性となるまで洗浄した。沈殿物を水に溶解し、透析を行った後、水溶液の状態で回収し、硫酸基の置換度及び硫酸セルロース結晶の結晶化度の測定を行った。また、硫酸セルロース結晶の電子顕微鏡写真を撮影した、結果を図2に示す。さらに、電子顕微鏡を用いて計測したセルロースナノファイバーの繊維幅は、3~1180nmであった。
Example 1
The softwood pulp was used as a raw material, and was processed by the ACC method to obtain 1 wt% of a cellulose nanofiber dispersion. Subsequently, measurement of the limiting viscosity number was performed three times, and the average value was 480 ml / g (therefore, the cellulose nanofiber dispersion used in this example is NB-B). Next, 2.00 g of cellulose nanofibers were added to 200 ml of N, N-dimethylformamide (DMF), and the mixture was stirred at room temperature for 14 hours or more. Thereafter, the temperature of the water bath was raised to 10 ° C., and after irradiation with internal ultrasonic waves for 2 min, 3.6 ml of chlorosulfonic acid was gradually dropped and mixed under nitrogen aeration. The mixture was mixed for 50 minutes with the start of dropwise addition of chlorosulfonic acid as the reaction start. Then, 15 ml of the reaction solution was poured into 150 ml of a saturated ethanol solution of sodium acetate to reprecipitate, and the precipitate was washed once with a saturated ethanol solution of sodium acetate and washed with ethanol until the supernatant became neutral. The precipitate was dissolved in water and dialyzed, and then recovered in the form of an aqueous solution, and the degree of substitution of sulfate groups and the degree of crystallization of cellulose sulfate crystals were measured. In addition, an electron micrograph of cellulose sulfate crystal was taken, and the result is shown in FIG. Furthermore, the fiber width of cellulose nanofibers measured using an electron microscope was 3 to 1180 nm.
 硫酸化セルロース結晶の水分散液を0.2wt%50mlに調製し、濃塩酸を加えて酸性にした。次いで、EDOT0.10gを加えた後、内部超音波を5分間照射し、EDOTを分散させた。次いで、重合開始剤のペルオキソ二硫酸カリウム0.19g、1.4mg/mlの硫酸鉄(III)・n水和物水溶液を0.5ml加えた。室温で24時間かき混ぜ、透析膜で72時間以上透析を行った。溶媒には水を用い、エバポレータにより乾固させた後、水に再分散することにより固形分を0.60wt%に調製し、PEDOT/硫酸化セルロース結晶複合体水分散液を得た。
 次いで、PEDOT/硫酸化セルロース結晶複合体の導電性の測定及びPEDOT/硫酸化セルロース結晶複合体の導電膜の表面粗さの測定を行った。
An aqueous dispersion of sulfated cellulose crystals was prepared to 50% by weight of 0.2 wt%, and concentrated hydrochloric acid was added to make it acidic. Then, after adding 0.10 g of EDOT, internal ultrasound was applied for 5 minutes to disperse EDOT. Next, 0.19 g of potassium peroxodisulfate as a polymerization initiator and 0.5 ml of a 1.4 mg / ml aqueous solution of iron (III) sulfate n hydrate were added. The mixture was stirred at room temperature for 24 hours and dialyzed with dialysis membrane for 72 hours or more. Water was used as a solvent, and the liquid was made to dryness by an evaporator, and then redispersed in water to adjust the solid content to 0.60 wt% to obtain a PEDOT / sulfated cellulose crystal complex aqueous dispersion.
Next, measurement of the conductivity of the PEDOT / sulfated cellulose crystal composite and measurement of the surface roughness of the conductive film of the PEDOT / sulfated cellulose crystal composite were performed.
(実施例2)
 クロロスルホン酸の滴下開始を反応開始として、60分とした以外は、実施例1と同様にして、硫酸基の置換度及び結晶化度の測定、PEDOT/硫酸化セルロース結晶複合体の導電性の測定及びPEDOT/硫酸化セルロース結晶複合体の導電膜の表面粗さの測定を行った。また、硫酸セルロース結晶の電子顕微鏡写真を撮影した、結果を図3に示す。
(Example 2)
Measurement of degree of substitution and degree of crystallization of sulfuric acid group, conductivity of PEDOT / sulfated cellulose crystal complex is the same as in Example 1 except that the reaction is started with the start of dropwise addition of chlorosulfonic acid as 60 minutes. The measurement and the measurement of the surface roughness of the conductive film of PEDOT / sulfated cellulose crystal complex were performed. In addition, an electron micrograph of cellulose sulfate crystal was taken, and the result is shown in FIG.
(実施例3)
 クロロスルホン酸の滴下開始を反応開始として、120分(2時間)とした以外は、実施例1と同様にして、硫酸基の置換度及び結晶化度の測定、PEDOT/硫酸化セルロース結晶複合体の導電性の測定及びPEDOT/硫酸化セルロース結晶複合体の導電膜の表面粗さの測定を行った。また、硫酸化セルロース結晶の電子顕微鏡写真を撮影した、結果を図4に示す。
(Example 3)
Measurement of degree of substitution of sulfate group and degree of crystallinity, PEDOT / sulfated cellulose crystal complex, in the same manner as in Example 1, except that the reaction was initiated for 120 minutes (2 hours) with the start of dropwise addition of chlorosulfonic acid as the reaction initiation. The conductivity of the sample and the surface roughness of the conductive film of the PEDOT / sulfated cellulose crystal composite were measured. Moreover, the electron micrograph of the sulfated cellulose crystal was taken, and the result is shown in FIG.
(実施例4)
 クロロスルホン酸の滴下開始を反応開始として、180分(3時間)とした以外は、実施例1と同様にして、硫酸基の置換度及び結晶化度の測定、PEDOT/硫酸化セルロース結晶複合体の導電性の測定及びPEDOT/硫酸化セルロース結晶複合体の導電膜の表面粗さの測定を行った。
(Example 4)
Measurement of the degree of substitution and crystallinity of the sulfate group in the same manner as in Example 1 except that the reaction was initiated with the dropwise addition of chlorosulfonic acid for 180 minutes (3 hours), PEDOT / sulfated cellulose crystal complex The conductivity of the sample and the surface roughness of the conductive film of the PEDOT / sulfated cellulose crystal composite were measured.
(実施例5)
 クロロスルホン酸の滴下開始を反応開始として、270分(4時間半)とした以外は、実施例1と同様にして、硫酸基の置換度及び結晶化度の測定、PEDOT/硫酸化セルロース結晶複合体の導電性の測定及びPEDOT/硫酸化セルロース結晶複合体の導電膜の表面粗さの測定を行った。
(Example 5)
Measurement of degree of substitution of sulfate group and degree of crystallinity, PEDOT / sulfated cellulose crystal composite in the same manner as in Example 1 except that the addition of chlorosulfonic acid was 270 minutes (four and a half hours) with the start of the reaction as the reaction start The measurement of the conductivity of the body and the measurement of the surface roughness of the conductive film of PEDOT / sulfated cellulose crystal complex were performed.
(比較例1)
 クロロスルホン酸の滴下開始を反応開始として、10分とした以外は、実施例1と同様にして、硫酸基の置換度及び結晶化度の測定、PEDOT/硫酸化セルロース結晶複合体の導電性の測定及びPEDOT/硫酸化セルロース結晶複合体の導電膜の表面粗さの測定を行った。また、硫酸セルロース結晶の電子顕微鏡写真を撮影した、結果を図5に示す。
(Comparative example 1)
Measurement of degree of substitution and degree of crystallization of sulfuric acid group, conductivity of PEDOT / sulfated cellulose crystal complex is the same as in Example 1, except that the reaction is initiated with the dropwise addition of chlorosulfonic acid as 10 minutes. The measurement and the measurement of the surface roughness of the conductive film of PEDOT / sulfated cellulose crystal complex were performed. In addition, an electron micrograph of cellulose sulfate crystal was taken, and the result is shown in FIG.
(比較例2)
 クロロスルホン酸の滴下開始を反応開始として、20分とした以外は、実施例1と同様にして、硫酸基の置換度及び結晶化度の測定、PEDOT/硫酸化セルロース結晶複合体の導電性の測定及びPEDOT/硫酸化セルロース結晶複合体の導電膜の表面粗さの測定を行った。
(Comparative example 2)
Measurement of degree of substitution and degree of crystallization of sulfuric acid group, conductivity of PEDOT / sulfated cellulose crystal complex is the same as in Example 1 except that the reaction is initiated with the addition of chlorosulfonic acid as the reaction initiation for 20 minutes. The measurement and the measurement of the surface roughness of the conductive film of PEDOT / sulfated cellulose crystal complex were performed.
(比較例3)
 クロロスルホン酸の滴下開始を反応開始として、300分(5時間)とした以外は、実施例1と同様にして、硫酸基の置換度及び結晶化度の測定、PEDOT/硫酸化セルロース結晶複合体の導電性の測定及びPEDOT/硫酸化セルロース結晶複合体の導電膜の表面粗さの測定を行った。
(Comparative example 3)
Measurement of degree of substitution of sulfate group and degree of crystallinity, PEDOT / sulfated cellulose crystal complex in the same manner as in Example 1 except that the reaction was initiated for 300 minutes (5 hours) with the start of dropwise addition of chlorosulfonic acid as the reaction initiation. The conductivity of the sample and the surface roughness of the conductive film of the PEDOT / sulfated cellulose crystal composite were measured.
(比較例4)
 クロロスルホン酸の滴下開始を反応開始として、360分(6時間)とした以外は、実施例1と同様にして、硫酸基の置換度及び結晶化度の測定、PEDOT/硫酸化セルロース結晶複合体の導電性の測定及びPEDOT/硫酸化セルロース結晶複合体の導電膜の表面粗さの測定を行った。また、硫酸セルロース結晶の電子顕微鏡写真を撮影した、結果を図6に示す。
(Comparative example 4)
Measurement of the degree of substitution and crystallinity of the sulfate group in the same manner as in Example 1 except that the reaction was initiated with the addition of chlorosulfonic acid for 360 minutes (6 hours), PEDOT / sulfated cellulose crystal complex The conductivity of the sample and the surface roughness of the conductive film of the PEDOT / sulfated cellulose crystal composite were measured. In addition, an electron micrograph of cellulose sulfate crystal was taken, and the result is shown in FIG.
(比較例5)
セルロース15.0 g をN,N-ジメチルホルムアミド(DMF)750 ml中でを室温で14時間以上かき混ぜた。その後,水浴の温度を50 ℃に昇温し,クロロスルホン酸13.90 mlを30分間かけ徐々にと加えた後,5時間かき混ぜた。反応終了後,反応液を酢酸ナトリウムの飽和エタノール溶液3000 mlに注ぎ再沈殿させ,沈殿物を酢酸ナトリウムの飽和エタノール溶液で3回洗浄し,エタノールで上澄み液が中性となるまで洗浄した。その後、沈殿物を水に溶解し,透析膜(Spectra/Por 3)で透析を行った。72時間以上透析した後,凍結乾燥を行って回収した。次いで、硫酸基の置換度及び結晶化度の測定、PEDOT/硫酸化セルロース結晶複合体の導電性の測定を行った。
(Comparative example 5)
15.0 g of cellulose was stirred in 750 ml of N, N-dimethylformamide (DMF) at room temperature for 14 hours more. Thereafter, the temperature of the water bath was raised to 50 ° C., 13.90 ml of chlorosulfonic acid was gradually added over 30 minutes, and the mixture was stirred for 5 hours. After completion of the reaction, the reaction solution was poured into 3000 ml of a saturated ethanol solution of sodium acetate for reprecipitation, and the precipitate was washed three times with a saturated ethanol solution of sodium acetate, and washed with ethanol until the supernatant became neutral. Thereafter, the precipitate was dissolved in water and dialyzed with a dialysis membrane (Spectra / Por 3). After dialysis for 72 hours or more, it was recovered by lyophilization. Then, measurement of the degree of substitution and crystallinity of the sulfate group, and measurement of the conductivity of the PEDOT / sulfated cellulose crystal complex were performed.
(比較例6)
針葉樹由来のパルプを使用したこと及びクロロスルホン酸の滴下開始を反応開始として、20分とした以外は、実施例1と同様にして、硫酸基の置換度及び結晶化度の測定、PEDOT/硫酸化セルロース結晶複合体の導電性の測定及びPEDOT/硫酸化セルロース結晶複合体の導電膜の表面粗さの測定を行った。さらに、電子顕微鏡を用いて計測したパルプの繊維幅は、約60μmであった。
(Comparative example 6)
Measurement of the degree of substitution and crystallinity of the sulfuric acid group in the same manner as in Example 1 except that pulp derived from softwood was used and the addition of chlorosulfonic acid was 20 minutes as the reaction start, PEDOT / sulfuric acid The conductivity of the hydrogenated cellulose crystal composite and the surface roughness of the conductive film of the PEDOT / sulfated cellulose crystal composite were measured. Furthermore, the fiber width of the pulp measured using an electron microscope was about 60 μm.
(比較例7)
 針葉樹由来のパルプを使用したこと及びクロロスルホン酸の滴下開始を反応開始として、30分とした以外は、実施例1と同様にして、硫酸基の置換度及び結晶化度の測定、PEDOT/硫酸化セルロース結晶複合体の導電性の測定及びPEDOT/硫酸化セルロース結晶複合体の導電膜の表面粗さの測定を行った。
(Comparative example 7)
Measurement of the degree of substitution and crystallinity of the sulfuric acid group in the same manner as in Example 1 except that pulp derived from softwood was used and the addition of chlorosulfonic acid was 30 minutes as the reaction start, PEDOT / sulfuric acid The conductivity of the hydrogenated cellulose crystal composite and the surface roughness of the conductive film of the PEDOT / sulfated cellulose crystal composite were measured.
(比較例8)
 針葉樹由来のパルプを使用したこと及びクロロスルホン酸の滴下開始を反応開始として、60分とした以外は、実施例1と同様にして、硫酸基の置換度及び結晶化度の測定、PEDOT/硫酸化セルロース結晶複合体の導電性の測定及びPEDOT/硫酸化セルロース結晶複合体の導電膜の表面粗さの測定を行った。
(Comparative example 8)
Measurement of the degree of substitution and crystallinity of the sulfuric acid group in the same manner as in Example 1 except that pulp derived from softwood was used and the start of dropwise addition of chlorosulfonic acid was 60 minutes, and PEDOT / sulfuric acid The conductivity of the hydrogenated cellulose crystal composite and the surface roughness of the conductive film of the PEDOT / sulfated cellulose crystal composite were measured.
 実施例1~実施例5における各測定結果を表1に示し、比較例1~比較例4における各測定結果を表2に示し、比較例5~8における各測定結果を表3に示す。 The measurement results in Examples 1 to 5 are shown in Table 1, the measurement results in Comparative Examples 1 to 4 are shown in Table 2, and the measurement results in Comparative Examples 5 to 8 are shown in Table 3.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
(結果の考察)
 表1及び表2の結果より結晶化度40~53%の範囲にある硫酸化セルロース結晶をナノクリスタル状と(図2~図4)、結晶化度53%以上の硫酸化セルロース結晶をナノファイバー状と(図5)、結晶化度40%以下の硫酸化セルロース結晶をアモルファス状と(図6)、パルプ由来の硫酸化セルロースをミクロフィブリル状とすると、ナノクリスタル状の硫酸化セルロース結晶を使用した実施例1~実施例5については、表面粗さの値が小さく(約 7~14 nm)導電性も優れた値を示した。 一方、ナノファイバー状の硫酸化セルロースを用いた比較例1、2は、表面粗さの値が大きいものであった。また、アモルファス状の硫酸化セルロースを用いた比較例3、4は、表面粗さが小さいものの、導電性が低いものとなった。
(Discussion of the result)
According to the results in Table 1 and Table 2, sulfated cellulose crystals having a crystallinity in the range of 40 to 53% as nanocrystals (Figs. 2 to 4) and nanofibers of sulfated cellulose crystals having a crystallinity of 53% or more And (Figure 5), sulfated cellulose crystals with a degree of crystallinity of 40% or less are amorphous (Figure 6), and pulp-derived sulfated cellulose is microfibrillated, nanocrystalline sulfated cellulose crystals are used. In Examples 1 to 5, the surface roughness was small (about 7 to 14 nm) and the conductivity was also excellent. On the other hand, in Comparative Examples 1 and 2 in which nanofibrous sulfated cellulose was used, the value of surface roughness was large. Moreover, although the surface roughness was small, although the comparative examples 3 and 4 which used amorphous-like sulfated cellulose became a thing with low electroconductivity.
比較例5においては、実施例4及び5と同量の硫酸基を導入したにも関わらず、パルプ中の非晶質部分にも、硫酸基の導入が生じ、セルロース全体の平均的な結晶性が低くなり、導電性は向上しなかった。また、比較例6~8の硫酸化セルロースは、表面粗さ、導電性ともに劣るものであった。 In Comparative Example 5, despite the introduction of the same amount of sulfuric acid groups as in Examples 4 and 5, the introduction of sulfuric acid groups also occurs in the amorphous part of the pulp, and the average crystallinity of the whole cellulose is obtained. And the conductivity did not improve. The sulfated celluloses of Comparative Examples 6 to 8 were both inferior in surface roughness and conductivity.
以上より、ドーパントとして、ナノクリスタル状の硫酸化セルロース結晶を使用した導電性材料は、導電性に優れ、塗膜性が向上し、より安定したフィルムを作製すること可能であった。 From the above, the conductive material using nanocrystalline sulfated cellulose crystals as a dopant was excellent in conductivity, improved in coating property, and was able to produce a more stable film.
(NB-Cを原料としたPEDOT/硫酸化セルロース複合体)
(実施例7)
 針葉樹パルプを原料とし、ACC法において処理を行い、セルロースナノファイバー分散液1wt%を得た。次いで、極限粘度数の測定を3回行ったところ、その平均値は、370ml/gであった(したがって、本実施例で用いたセルロースナノファイバー分散液はNB-Cである)。次いで、これを原料とし、クロロスルホン酸の滴下開始を反応開始として、30分とした以外は、実施例1と同様にして、硫酸基の置換度及び結晶化度の測定、PEDOT/硫酸化セルロース結晶複合体の導電性の測定を行った。
(PEDOT / sulfated cellulose composite made from NB-C)
(Example 7)
The softwood pulp was used as a raw material, and was processed by the ACC method to obtain 1 wt% of a cellulose nanofiber dispersion. Next, measurement of the limiting viscosity number was performed three times, and the average value was 370 ml / g (thus, the cellulose nanofiber dispersion used in this example is NB-C). Next, measurement of the degree of substitution and crystallinity of the sulfate group, PEDOT / sulfated cellulose, in the same manner as in Example 1, except that this was used as the raw material and 30 minutes was set as the reaction initiation of chlorosulfonic acid as the reaction initiation. The conductivity of the crystalline complex was measured.
(実施例8)
 実施例7で得られたセルロースナノファイバー分散液を原料とした以外は、実施例2と同様にして、硫酸基の置換度及び結晶化度の測定、PEDOT/硫酸化セルロース結晶複合体の導電性の測定を行った。
(Example 8)
Measurement of the degree of substitution and crystallinity of the sulfate group, the conductivity of the PEDOT / sulfated cellulose crystal complex, in the same manner as in Example 2, except that the cellulose nanofiber dispersion obtained in Example 7 was used as the raw material The measurement of
(実施例9)
 実施例7で得られたセルロースナノファイバー分散液を原料とした以外は、実施例4と同様にして、硫酸基の置換度及び結晶化度の測定、PEDOT/硫酸化セルロース結晶複合体の導電性の測定を行った。
(Example 9)
Measurement of degree of substitution of sulfate group and degree of crystallinity, conductivity of PEDOT / sulfated cellulose crystal composite, in the same manner as in Example 4, except that the cellulose nanofiber dispersion obtained in Example 7 was used as a raw material The measurement of
(竹パルプを原料としたPEDOT/硫酸化セルロース複合体)
(実施例10)
 竹パルプを原料とした(以下、BBということもある。)以外は、実施例3と同様にして、硫酸基の置換度及び結晶化度の測定、PEDOT/硫酸化セルロース結晶複合体の導電性の測定を行った。
(PEDOT / sulfated cellulose composite made from bamboo pulp)
(Example 10)
Measurement of degree of substitution of sulfate group and degree of crystallinity, conductivity of PEDOT / sulfated cellulose crystal composite, in the same manner as in Example 3, except that bamboo pulp was used as the raw material (hereinafter sometimes referred to as BB). The measurement of
(実施例11)
 竹パルプを原料とした以外は、比較例4と同様にして、硫酸基の置換度及び結晶化度の測定、PEDOT/硫酸化セルロース結晶複合体の導電性の測定を行った。
(Example 11)
In the same manner as in Comparative Example 4 except that bamboo pulp was used as a raw material, measurement of the degree of substitution and crystallinity of the sulfate group, and measurement of the conductivity of the PEDOT / sulfated cellulose crystal complex were performed.
(比較例9)
 PEDOT/PSSについて実施例1と同様に調製して導電性の測定を行った。
(Comparative example 9)
The conductivity was measured by preparing PEDOT / PSS in the same manner as in Example 1.
 実施例7~実施例11及び比較例9における各測定結果を表4に示す。 The measurement results in Examples 7 to 11 and Comparative Example 9 are shown in Table 4.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
表4の結果から、NB-B(実施例1~実施例5)及びNB-C(実施例7~実施例9)はPEDOT/PSSよりも共に高い導電性が得られるといえる。
また、NB-B(実施例1~実施例5)及びNB-C(実施例7~実施例9)は、BBよりも共に高い導電性が得られるといえる。
From the results in Table 4, it can be said that NB-B (Examples 1 to 5) and NB-C (Examples 7 to 9) can obtain higher conductivity than PEDOT / PSS.
Further, it can be said that NB-B (Examples 1 to 5) and NB-C (Examples 7 to 9) can obtain higher conductivity than BB.
(PEDOT/硫酸化セルロースの安定性評価)
 実施例2~実施例5及び比較例3において作成した PEDOT/硫酸化セルロース分散液(0.6 wt%)をガラス基板状(50mm×50mm)に 300 μLドロップキャストし ,120 ℃で 30分間加熱したのち表面抵抗値を測定した(イニシャル)。
 次いで、常温暗所において2年間保管した実施例2~実施例5及び比較例3におけるPEDOT/硫酸化セルロースを用いて前記作成条件と同条件にて検体を作製し、表面抵抗値を測定した(2Y)。
 表面抵抗値は、抵抗率計(loresta-GP MCP-T610)に4探針プローブを接続して、膜を4探針プローブに押し当てることによって測定した。
(Stability evaluation of PEDOT / sulfated cellulose)
The PEDOT / sulfated cellulose dispersion (0.6 wt%) prepared in Examples 2 to 5 and Comparative Example 3 was drop-cast 300 μL onto a glass substrate (50 mm × 50 mm) and heated at 120 ° C. for 30 minutes. The surface resistance was measured (initial).
Then, using the PEDOT / sulfated cellulose of Example 2 to Example 5 and Comparative Example 3 stored for 2 years in the dark at room temperature, specimens were prepared under the same conditions as the preparation conditions, and surface resistance values were measured ( 2Y).
The surface resistance value was measured by connecting a 4-point probe to a resistivity meter (loresta-GP MCP-T610) and pressing the membrane against the 4-point probe.
実施例2~実施例5及び比較例3における表面抵抗値の測定結果を表5に示す。 The measurement results of the surface resistance value in Examples 2 to 5 and Comparative Example 3 are shown in Table 5.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
表5の結果より抵抗値が著しく低下したサンプルはなかった。このことより、本発明に係るPEDOT/硫酸化セルロースは、時間経過とともに導電性能は低下せず、安定性に優れたものであるといえる。 From the results of Table 5, there was no sample in which the resistance value significantly decreased. From this, it can be said that the PEDOT / sulfated cellulose according to the present invention is excellent in stability without deterioration of the conductive performance over time.
(極性基を有する化合物を用いた場合の表面抵抗値及び導電率)
(実施例12)
 PEDOT/硫酸化セルロース結晶複合体水分散液を調製する際に、水を溶媒とし、固形分(PEDOT/硫酸化セルロース結晶複合体)を0.30wt%に調製したこと以外は、実施例1と同様にして、表面抵抗値を測定した。
(Surface resistance and conductivity when using a compound having a polar group)
(Example 12)
When preparing a PEDOT / sulfated cellulose crystal complex aqueous dispersion, using water as a solvent and preparing a solid content (PEDOT / sulfated cellulose crystal complex) to 0.30 wt%, the procedure of Example 1 is repeated. The surface resistance was measured in the same manner.
(実施例13)
PEDOT/硫酸化セルロース結晶複合体分散液を調製する際に、水とエタノールの重量比が1:1となるように調整したものを溶媒とし、固形分(PEDOT/硫酸化セルロース結晶複合体)を0.30wt%に調製したこと以外は、実施例1と同様にして、表面抵抗値、導電率及び膜厚を測定した。
(Example 13)
When preparing a PEDOT / sulfated cellulose crystal complex dispersion, a solid content (PEDOT / sulfated cellulose crystal complex) is prepared by using a solvent adjusted to have a weight ratio of water to ethanol of 1: 1. The surface resistance value, the conductivity and the film thickness were measured in the same manner as in Example 1 except that the concentration was adjusted to 0.30 wt%.
(実施例14)
PEDOT/硫酸化セルロース結晶複合体分散液を調製する際に、水を溶媒とし、固形分(PEDOT/硫酸化セルロース結晶複合体)を0.30wt%に調製し、さらに、添加物としてエチレングリコールを前記固形分に対して3wt%添加したこと以外は、実施例1と同様にして、表面抵抗値、導電率及び膜厚を測定した。
(Example 14)
In preparing a PEDOT / sulfated cellulose crystal complex dispersion, water is used as a solvent, solid content (PEDOT / sulfated cellulose crystal complex) is prepared to be 0.30 wt%, and ethylene glycol is further added as an additive. The surface resistance value, the conductivity, and the film thickness were measured in the same manner as in Example 1 except that 3 wt% of the solid content was added.
実施例12~実施例14における測定結果を表6に示す。 The measurement results in Example 12 to Example 14 are shown in Table 6.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
実施例12の結果から、溶媒を水のみとし、固形分濃度0.3%とした場合は固形分濃度が低いため、表面抵抗値を測定することができなかった。
一方、実施例13及び実施例14の結果から、固形分濃度0.3%とした場合であっても、分散溶媒としてエタノールを使用した場合又は、添加剤としてエチレングリコールを使用した場合には、それぞれの表面抵抗値を測定することができたことから、これらを使用することによって、PEDOT/硫酸化セルロース結晶複合体の導電性を向上させることができたといえる。
From the results of Example 12, when the solvent was only water and the solid concentration was 0.3%, the solid concentration was low, so that the surface resistance value could not be measured.
On the other hand, from the results of Example 13 and Example 14, even when the solid concentration is 0.3%, when ethanol is used as the dispersion solvent, or when ethylene glycol is used as the additive, Since each surface resistance value could be measured, it can be said that the conductivity of the PEDOT / sulfated cellulose crystal complex was able to be improved by using these.
実施例5及び実施例11において得られたPEDOT/硫酸化セルロース結晶複合体分散液を用いて、ガラス基板上に、PEDOT/硫酸化セルロースのキャスト膜を作製して、恒湿庫を用いて湿度を27%から80%に2時間をかけて変化させて、それぞれの湿度における表面抵抗値の測定を行った。
測定結果を表7に示す。
A cast film of PEDOT / sulfated cellulose is produced on a glass substrate using the PEDOT / sulfated cellulose crystal composite dispersion obtained in Example 5 and Example 11, and humidity is maintained using a constant humidity chamber. Was changed from 27% to 80% over 2 hours, and measurement of surface resistivity at each humidity was performed.
The measurement results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
表7の結果によると、湿度を27%から80%とすることによりそれぞれ表面抵抗値は約1/2まで減少することが分かる。
これから、PEDOT/硫酸化セルロース結晶複合体へ通電することにより、湿度を検知することができ、さらには、湿度センサーとして使用することが可能となる。
According to the results in Table 7, it can be seen that the surface resistance value decreases to about 1/2 by setting the humidity to 27% to 80%.
From this, by energizing the PEDOT / sulfated cellulose crystal complex, the humidity can be detected, and furthermore, it can be used as a humidity sensor.

Claims (2)

  1. 繊維幅が3nm~1500nmの繊維状セルロースから得られた、化1に示される、硫酸化セルロース結晶をドーパントとして用いた、ポリチオフェンからなる導電性材料。
    化1
    Figure JPOXMLDOC01-appb-I000001
    R1~R6はそれぞれ独立に水素原子、スルホン酸基または炭素鎖数1~6のアルキルスルホン酸基を表し、かつ少なくとも1つはスルホン酸基または炭素鎖数1~6のアルキルスルホン酸基を表す。
    A conductive material comprising polythiophene, which is obtained from fibrous cellulose having a fiber width of 3 nm to 1,500 nm, and which comprises sulfated cellulose crystals as a dopant, as shown in Chemical Formula 1.
    Chemical 1
    Figure JPOXMLDOC01-appb-I000001
    R 1 to R 6 each independently represent a hydrogen atom, a sulfonic acid group or an alkylsulfonic acid group having 1 to 6 carbon atoms, and at least one of them represents a sulfonic acid group or an alkylsulfonic acid group having 1 to 6 carbon atoms Represents
  2.  請求項1記載の硫酸化セルロース結晶の式1で示されるセルロースI型結晶化度が40%~53%である請求項1記載のポリチオフェンからなる導電性材料。
    [式1]
    セルロースI型結晶化度(%)=〔(I200-Iam)/I200〕×100 (1)
    200は2θ=22.6°、Iamは2θ=18.5°のX線回折強度を示す。
    A conductive material comprising polythiophene according to claim 1, wherein the cellulose I-type crystallinity of the sulfated cellulose crystal according to claim 1 is 40% to 53%.
    [Equation 1]
    Cellulose type I crystallinity (%) = [(I 200 -Iam) / I 200 ] × 100 (1)
    I 200 shows an X-ray diffraction intensity of 2θ = 22.6 ° and Iam of 2θ = 18.5 °.
PCT/JP2018/026300 2017-07-12 2018-07-12 Electroconductive material WO2019013276A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019529777A JP6929943B2 (en) 2017-07-12 2018-07-12 Conductive material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017136028 2017-07-12
JP2017-136028 2017-07-12

Publications (1)

Publication Number Publication Date
WO2019013276A1 true WO2019013276A1 (en) 2019-01-17

Family

ID=65002570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026300 WO2019013276A1 (en) 2017-07-12 2018-07-12 Electroconductive material

Country Status (2)

Country Link
JP (1) JP6929943B2 (en)
WO (1) WO2019013276A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020023692A (en) * 2018-08-01 2020-02-13 財團法人工業技術研究院Industrial Technology Research Institute Conductive polymer composite material and capacitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012158736A (en) * 2011-02-01 2012-08-23 Samsung Electro-Mechanics Co Ltd Conductive polymer composition, and method for producing the same
JP2012236983A (en) * 2011-04-28 2012-12-06 Nagoya Univ Electroconductive composition
JP2014095032A (en) * 2012-11-09 2014-05-22 Kumamoto Prefecture Conductive polymer composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012158736A (en) * 2011-02-01 2012-08-23 Samsung Electro-Mechanics Co Ltd Conductive polymer composition, and method for producing the same
JP2012236983A (en) * 2011-04-28 2012-12-06 Nagoya Univ Electroconductive composition
JP2014095032A (en) * 2012-11-09 2014-05-22 Kumamoto Prefecture Conductive polymer composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020023692A (en) * 2018-08-01 2020-02-13 財團法人工業技術研究院Industrial Technology Research Institute Conductive polymer composite material and capacitor

Also Published As

Publication number Publication date
JPWO2019013276A1 (en) 2020-04-30
JP6929943B2 (en) 2021-09-01

Similar Documents

Publication Publication Date Title
Hoeng et al. Use of nanocellulose in printed electronics: a review
EP2551857B1 (en) Conductive film and manufacturing method thereof
Gao et al. Cellulose nanofibers/reduced graphene oxide flexible transparent conductive paper
Qi et al. Highly conductive calcium ion-reinforced MXene/sodium alginate aerogel meshes by direct ink writing for electromagnetic interference shielding and Joule heating
Feng et al. Novel PEDOT dispersion by in-situ polymerization based on sulfated nanocellulose
Zhang et al. A nanocellulose polypyrrole composite based on tunicate cellulose
Hanif et al. Development of a vapor phase polymerization method using a wet-on-wet process to coat polypyrrole on never-dried nanocellulose crystals for fabrication of compression strain sensor
Zhang et al. Flexible polyaniline-coated poplar fiber composite membranes with effective electromagnetic shielding performance
Karpuraranjith et al. Twist fibrous structure of CS–SnO 2–PANI ternary hybrid composite for electrochemical capacitance performance
Hussin et al. Synthesis of water-soluble polyaniline by using different types of cellulose derivatives
Kim et al. Development of cellulose-based conductive fabrics with electrical conductivity and flexibility
CN111710472A (en) Carbon nano tube transparent conductive film and preparation method thereof
JP6929943B2 (en) Conductive material
Wu et al. Electrochemical synthesis of poly (3-thiophene acetic acid) nanowires with water-soluble macromolecule templates
Zhang et al. Rubber-like and biodegradable poly (vinyl alcohol) composites with triple networks for high-efficiency solvent barrier
Zhao et al. Ionic liquid induced supramolecular self-assembly of poly (3, 4-ethylenedioxythiophene)/poly (4-styrenesulfonate) thin films with enhanced conductivity and tunable nanoporosity
CN113845751B (en) Epoxy resin-based electromagnetic shielding composite material and preparation method and application thereof
Al-Dulaimi et al. Preparation of colloidal properties and water dispersible conductive polypyrrole nanocomposite of nanocrystalline cellulose
Liu et al. Properties and characterization of electrically conductive nanocellulose-based composite films
Ye et al. Fabrication of bacterial cellulose-based ATO-PPy nanocomposites as flexible conductive materials
JP6172492B2 (en) Conductive polymer composition
Luo et al. A new strategy to improve the dielectric properties of cellulose nanocrystals (CNCs): Surface modification of small molecules
US11459427B1 (en) Synthesis of polyaniline or derivatives thereof
Vergara-Juárez et al. Preparation of composites based in poly (3-hexylthiophene) and freeze-dried cellulose nanocrystals by a simple method, and their characterization
JP7378066B2 (en) Heat ray absorbing material and its manufacturing method, heat ray absorbing film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18831155

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019529777

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18831155

Country of ref document: EP

Kind code of ref document: A1