WO2019013200A1 - Wave gear device - Google Patents

Wave gear device Download PDF

Info

Publication number
WO2019013200A1
WO2019013200A1 PCT/JP2018/026017 JP2018026017W WO2019013200A1 WO 2019013200 A1 WO2019013200 A1 WO 2019013200A1 JP 2018026017 W JP2018026017 W JP 2018026017W WO 2019013200 A1 WO2019013200 A1 WO 2019013200A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible
peripheral surface
circumferential surface
external gear
flexible external
Prior art date
Application number
PCT/JP2018/026017
Other languages
French (fr)
Japanese (ja)
Inventor
浩 三木
喬平 羽泉
Original Assignee
日本電産シンポ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産シンポ株式会社 filed Critical 日本電産シンポ株式会社
Priority to CN201880045728.2A priority Critical patent/CN110869645A/en
Publication of WO2019013200A1 publication Critical patent/WO2019013200A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear

Definitions

  • the present invention relates to a wave gear device.
  • Japanese Patent No. 5734102 discloses a wave gear device for decelerating input rotation and transmitting it to the load side.
  • the wave gear device described in the publication comprises a ring-shaped rigid internal gear, a flexible external gear disposed inside the rigid internal gear, and a wave generator fitted inside the flexible external gear.
  • the flexible external gear is radially deflected by the wave generator and partially engages with the internal gear.
  • input rotation is decelerated by relative rotation according to the number-of-tooth difference of both gears.
  • the flexible external gear in Japanese Patent No. 5734102 has a cylindrical portion, and external teeth are provided on the outer peripheral surface portion on the opening side of the first end of the cylindrical portion.
  • a wave generator is fitted in the opening on the first end side of the cylindrical portion of the flexible external gear.
  • the first end of the cylindrical portion is elliptically bent by the wave generator. For this reason, a contact pressure is generated between the first end side of the cylindrical portion of the flexible external gear and the internal gear.
  • the contact pressure causes the wave generator to be stressed radially inward from the flexible external gear. For this reason, load is applied to the wave bearing of the wave generator, and the life of the wave bearing may be shortened.
  • the present invention is a wave gear device, comprising: a non-round cam rotating around a vertically extending central axis; and the non-round cam mounted on the outer peripheral surface of the non-round cam
  • a flexible bearing whose length in the radial direction changes in the circumferential direction according to the rotation of the shaft, and a tubular shape extending in the axial direction, and the lower end in the axial direction is attached to the outer peripheral surface of the flexible bearing
  • a flexible external gear provided with a plurality of external teeth along a circumferential direction at a constant pitch on the outer peripheral surface of the lower end, and disposed radially outward of the flexible external gear
  • An internal gear having internal teeth different in number from the external teeth and having a different number of teeth, and partially meshing with the flexible external gear; and the lower end of the flexible external gear
  • the inner circumferential surface of the flexible bearing contacts at least the axially upper side of the outer circumferential surface of the flexible bearing, and the outer circumferential surface of the flexible bearing and the flexible external
  • FIG. 1 is a cross-sectional view of a wave gear device according to an exemplary embodiment of the present application.
  • FIG. 2 is a cross-sectional view taken along line II-II of FIG.
  • FIG. 3 is an enlarged view of the contact portion between the flexible external gear and the internal gear.
  • FIG. 4 is an enlarged view of the contact portion between the flexible external gear and the internal gear.
  • FIG. 5 is an enlarged view of the contact portion between the flexible external gear and the internal gear.
  • FIG. 6 is a cross-sectional view of another example of the wave gear device.
  • axial direction a direction parallel to the central axis of the wave gear device
  • radial direction a direction orthogonal to the central axis of the wave gear device
  • arc centered on the central axis of the wave gear device The direction is referred to as "circumferential direction", respectively.
  • shape and the positional relationship of each part will be described with the axial direction as the vertical direction and the rotational output part side up with respect to the rotational input part.
  • the “parallel direction” also includes a substantially parallel direction.
  • the “orthogonal direction” also includes a substantially orthogonal direction.
  • FIG. 1 is a cross-sectional view of a wave gear drive 100 in accordance with an exemplary embodiment of the present application.
  • FIG. 2 is a cross-sectional view taken along line II-II of FIG.
  • the wave gear device 100 includes a wave generator 4 that rotates about a central axis 9.
  • the wave generator 4 has a non-round cam 41 and a flexible bearing 42.
  • the flexible bearing 42 is a flexible ball bearing.
  • the flexible bearing 42 is disposed radially outward of the non-round cam 41 and mounted on the outer peripheral surface of the non-round cam 41. When mounted on the non-round cam 41, the flexible bearing 42 bends in an elliptical shape along the outer peripheral surface of the non-round cam 41 as viewed from the axial direction.
  • the wave gear device 100 includes an internal gear 3.
  • the internal gear 3 has a cylindrical shape surrounding the central axis 9 and is a perfect circle when viewed from the axial direction.
  • the internal gear 3 is disposed radially outward of the flexible bearing 42. Further, the internal gear 3 is non-rotatably fixed to, for example, a cover (not shown) of the wave gear device 100 or the like.
  • a plurality of internal teeth 31 are provided on the inner peripheral surface of the internal gear 3 along the circumferential direction at a constant pitch.
  • the wave gear device 100 includes a flexible external gear 5.
  • the flexible external gear 5 is a cylindrical member which surrounds the central axis 9 and extends in the axial direction.
  • the axially lower end 50 of the flexible external gear 5 is disposed between the flexible bearing 42 and the internal gear 3.
  • the inner circumferential surface of the lower end portion 50 is in contact with the outer circumferential surface of the flexible bearing 42.
  • a plurality of external teeth 501 having a number of teeth different from the plurality of internal teeth 31 of the internal gear 3 are provided on the outer circumferential surface of the lower end portion 50 along the circumferential direction at a constant pitch.
  • the lower end 50 of the flexible external gear 5 is mounted on a flexible bearing 42.
  • the flexible bearing 42 bends in an elliptical manner as described above. For this reason, the lower end 50 of the flexible external gear 5 mounted on the flexible bearing 42 also bends in an elliptical shape.
  • the short axis of the elliptically bent lower end 50 is shorter than the inner diameter of the perfect circular internal gear 3. Further, the major axis of the lower end 50 is substantially the same as the inner diameter of the internal gear 3. Accordingly, the external teeth 501 of the flexible external gear 5 and the internal teeth 31 of the internal gear 3 mesh with each other at the major axis portion of the lower end portion 50.
  • the wave gear device 100 includes an output shaft that is rotatable about the central axis 9 and connected to a load.
  • the upper axial end of the flexible external gear 5 is fixed to the output shaft.
  • the flexible external gear 5 rotates at a rotation speed smaller than that of the non-circular cam 41. That is, the output shaft that rotates with the flexible external gear 5 also rotates at a rotation speed smaller than that of the non-circular cam 41. In this manner, the rotation input from the motor (not shown) to the non-round cam 41 is decelerated and output to the load via the output shaft.
  • FIG. 3 is an enlarged view of the contact portion between the flexible external gear 5 and the internal gear 3.
  • the inner peripheral surface of the lower end portion 50 of the flexible external gear 5 has an axis from the first inner peripheral surface 51 parallel to the axial direction and the first inner peripheral surface 51 in the state of the component alone to which no external force is applied. It has a second inner circumferential surface 52 located on the lower side in the direction and gradually expanding outward in the radial direction from the first inner circumferential surface 51.
  • the outer peripheral surface of the flexible bearing 42 is parallel to the axial direction.
  • the first inner circumferential surface 51 of the lower end 50 of the flexible external gear 5 is in contact with the outer circumferential surface of the flexible bearing 42.
  • a space 55 is provided.
  • the space 55 is an example of the “stress buffer” in the present application.
  • the flexible external gear 5 is cylindrical, and the lower end 50 is elliptically bent by the wave generator 4. For this reason, the cylindrical flexible external gear 5 has a shape in which the diameter gradually widens from the upper side to the lower side in the axial direction in the major axis portion. Along with this, the outer peripheral surface of the flexible bearing 42 also has a shape expanding in the radial direction from the upper side to the lower side in the axial direction. For this reason, the contact pressure of the flexible external gear 5 and the internal gear 3 increases as it becomes axially lower.
  • the first inner circumferential surface 51 of the lower end 50 and the outer circumferential surface of the flexible bearing 42 are in contact at an axially upper portion than the height of the ball center point of the flexible bearing 42 which is a ball bearing. . That is, the space 55 is provided axially below the height of the ball center point of the flexible bearing 42 which is a ball bearing. Therefore, the space 55 is provided at a portion where the contact pressure on the lower side in the axial direction is large. For this reason, the stress directed radially inward from the internal gear 3 via the lower end 50 of the flexible external gear 5 is less likely to be transmitted to the flexible bearing 42. Thereby, the load applied to the flexible bearing 42 is reduced, and damage to the flexible bearing 42 due to the load can be suppressed.
  • Embodiment 2 The second embodiment will be described below.
  • the second embodiment is different from the first embodiment in the configuration for providing the space 55 which is an example of the “stress buffer” of the present application.
  • FIG. 4 is an enlarged view of a contact portion between the flexible external gear 5 and the internal gear 3.
  • the inner circumferential surface of the lower end 50 of the flexible external gear 5 is axially parallel to the component alone when no external force is applied.
  • the outer peripheral surface of the flexible bearing 42 is located axially lower than the first outer peripheral surface 421 parallel to the axial direction and the first outer peripheral surface 421 in the state of the component alone in which no external force is applied, and the first outer peripheral surface 421 And a second outer circumferential surface 422 that gradually expands inward in the radial direction.
  • the first outer circumferential surface 421 of the flexible bearing 42 is in contact with the outer circumferential surface of the flexible external gear 5.
  • the second outer peripheral surface 422 of the flexible bearing 42 gradually expands inward in the radial direction from the first outer peripheral surface 421, the second outer peripheral surface 422 and the lower end portion 50 of the flexible external gear 5 are A space 55 is provided between the inner circumferential surface and the inner circumferential surface as in the first embodiment.
  • the stress directed radially inward from the internal gear 3 via the lower end 50 of the flexible external gear 5 is less likely to be transmitted to the flexible bearing 42.
  • the load applied to the flexible bearing 42 is reduced, and damage to the flexible bearing 42 due to the load can be suppressed.
  • Embodiment 3 The third embodiment will be described below.
  • the third embodiment is different from the first and second embodiments in the configuration for providing the space 55 which is an example of the “stress buffer” of the present application.
  • the inner circumferential surface of the lower end 50 of the flexible external gear 5 is axially parallel.
  • the outer peripheral surface of the flexible bearing 42 is located axially above the first outer peripheral surface 423 and the first outer peripheral surface 423 parallel to the axial direction in the state of the component alone in which no external force is applied, from the first outer peripheral surface 423 And a second outer circumferential surface 424 which gradually expands inward in the radial direction.
  • the cylindrical flexible external gear 5 has a shape in which the diameter gradually widens from the upper side to the lower side in the axial direction in the major axis portion. Therefore, the inner circumferential surface of the flexible external gear 5 is inclined with respect to the axial direction.
  • the second outer circumferential surface 424 of the flexible bearing 42 is also inclined with respect to the axial direction.
  • the inner peripheral surface of the flexible external gear 5 is in contact with the second outer peripheral surface 424 of the flexible bearing 42.
  • the first outer peripheral surface 423 of the flexible bearing 42 is parallel to the axial direction, and the inner peripheral surface of the flexible external gear 5 is inclined with respect to the axial direction. Therefore, a space 55 is provided between the first outer circumferential surface 423 and the inner circumferential surface of the lower end portion 50 of the flexible external gear 5 as in the first embodiment.
  • the stress directed radially inward from the internal gear 3 via the lower end 50 of the flexible external gear 5 is less likely to be transmitted to the flexible bearing 42.
  • the load applied to the flexible bearing 42 is reduced, and damage to the flexible bearing 42 due to the load can be suppressed.
  • FIG. 6 is a cross-sectional view of another example of the wave gear device 100A.
  • the axial upper end of the flexible external gear 5A included in the wave gear device 100A is expanded radially outward.
  • the output shaft connected to the load can be disposed more radially outward than in the case of FIG.
  • the space 55 may be provided at least between the lower end of the outer peripheral surface of the flexible bearing 42 and the first inner peripheral surface 51 of the lower end 50, and the axial length of the space 55
  • the size is not particularly limited. Further, the radial length of the space 55 is not particularly limited. Stress from the internal gear 3 via the flexible external gear 5 may not be transmitted by the space 55 to the flexible bearing 42.
  • the “stress buffer” of the present application is a space, but any member that can buffer stress may be used, for example, an elastic member or the like. Further, another member that buffers stress may be interposed in the space 55.
  • the shape of the detail of the wave gear device 100 may be different from the shape shown in each drawing of the present application. Further, each element appearing in the above embodiment or modification may be combined appropriately as long as no contradiction occurs.
  • the present application is applicable to a wave gear device.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Retarders (AREA)

Abstract

This wave gear device is provided with: a noncircular cam which rotates about a vertically extending center axis; a flexible bearing which is mounted on the outer peripheral surface of the noncircular cam and of which the radial length changes in the circumferential direction with rotation of the noncircular cam; a flexible external gear which has a cylindrical shape extending in the axial direction, is mounted at the axially bottom end on the outer peripheral surface of the flexible bearing and which, on the outer peripheral surface of the bottom end, comprises outer teeth provided at a fixed pitch along the circumferential direction; and an internal gear which is arranged radially outside of the flexible external gear, has inner teeth different from the outer teeth, and which meshes partially with the flexible external gear. The inner peripheral surface of the bottom end of the flexible external gear is at least in contact with the outer peripheral surface of the axially upper side of the flexible bearing. A space is provided on the lower side in the axial direction from the position of contact between the outer peripheral surface of the flexible bearing and the inner peripheral surface on the lower end of the flexible external gear.

Description

波動歯車装置Wave gear device
 本発明は、波動歯車装置に関する。 The present invention relates to a wave gear device.
 特許第5734102号公報には、入力回転を減速して負荷側に伝達する波動歯車装置が開示されている。当該公報に記載の波動歯車装置は、円環状の剛性内歯車と、剛性内歯車の内側に配置された可撓性外歯車と、可撓性外歯車の内側に嵌められた波動発生器とを備えている。可撓性外歯車は、波動発生器によって径方向にたわみが発生し、内歯車と部分的に噛み合う。そして、両歯車の歯数差に応じた相対回転により、入力回転を減速させている。
特許第5734102号公報
Japanese Patent No. 5734102 discloses a wave gear device for decelerating input rotation and transmitting it to the load side. The wave gear device described in the publication comprises a ring-shaped rigid internal gear, a flexible external gear disposed inside the rigid internal gear, and a wave generator fitted inside the flexible external gear. Have. The flexible external gear is radially deflected by the wave generator and partially engages with the internal gear. And input rotation is decelerated by relative rotation according to the number-of-tooth difference of both gears.
Patent No. 5734102
 特許第5734102号公報の可撓性外歯車は円筒部を有し、円筒部の第1端の開口側の外周面部分に外歯が設けられている。可撓性外歯車の円筒部の第1端側の開口には波動発生器が嵌められている。波動発生器によって、円筒部の第1端側は楕円状に撓められる。このため、可撓性外歯車の円筒部の第1端側と、内歯車との間には、接触圧が生じる。この接触圧により、波動発生器には、可撓性外歯車から、径方向内側に向かう応力がかかる。このため、波動発生器のウエーブベアリングに負荷がかかり、ウエーブベアリングの寿命が短くなるおそれがある。 The flexible external gear in Japanese Patent No. 5734102 has a cylindrical portion, and external teeth are provided on the outer peripheral surface portion on the opening side of the first end of the cylindrical portion. A wave generator is fitted in the opening on the first end side of the cylindrical portion of the flexible external gear. The first end of the cylindrical portion is elliptically bent by the wave generator. For this reason, a contact pressure is generated between the first end side of the cylindrical portion of the flexible external gear and the internal gear. The contact pressure causes the wave generator to be stressed radially inward from the flexible external gear. For this reason, load is applied to the wave bearing of the wave generator, and the life of the wave bearing may be shortened.
 このような問題を鑑みて、本発明の目的は、軸受にかかる負荷を軽減する波動歯車装置を提供することである。 In view of such problems, it is an object of the present invention to provide a wave gear device which reduces the load on the bearing.
 上記課題を解決するため、本発明は波動歯車装置であって、 上下に延びる中心軸を中心に回転する非真円カムと、前記非真円カムの外周面に装着され、前記非真円カムの回転に応じて、径方向の長さが周方向に変化する可撓軸受と、軸方向に延びる筒状であって、軸方向の下側端部が前記可撓軸受の外周面に装着され、前記下側端部の外周面に、一定のピッチで複数の外歯が周方向に沿って設けられた可撓性外歯歯車と、前記可撓性外歯歯車の径方向外側に配置され、前記複数の外歯と異なる歯数の内歯を有し、前記可撓性外歯歯車と部分的に噛み合う内歯歯車と、を備え、前記可撓性外歯歯車の前記下側端部の内周面は、少なくとも、前記可撓軸受の外周面における軸方向上側で接し、前記可撓軸受の外周面と、前記可撓性外歯歯車の前記下側端部の内周面との間、かつ、接触位置よりも軸方向下側に設けられた応力緩衝部、をさらに備える。 In order to solve the above problems, the present invention is a wave gear device, comprising: a non-round cam rotating around a vertically extending central axis; and the non-round cam mounted on the outer peripheral surface of the non-round cam A flexible bearing whose length in the radial direction changes in the circumferential direction according to the rotation of the shaft, and a tubular shape extending in the axial direction, and the lower end in the axial direction is attached to the outer peripheral surface of the flexible bearing A flexible external gear provided with a plurality of external teeth along a circumferential direction at a constant pitch on the outer peripheral surface of the lower end, and disposed radially outward of the flexible external gear An internal gear having internal teeth different in number from the external teeth and having a different number of teeth, and partially meshing with the flexible external gear; and the lower end of the flexible external gear The inner circumferential surface of the flexible bearing contacts at least the axially upper side of the outer circumferential surface of the flexible bearing, and the outer circumferential surface of the flexible bearing and the flexible external gear Between the inner peripheral surface of the serial lower end, and further comprising a stress buffer, which is provided in the axial direction lower side of the contact position.
 本発明によれば、可撓性外歯歯車は、非真円カムの回転によって、径方向の長さが周方向に変化する。そして、可撓性外歯歯車と、内歯歯車とは部分的に噛み合う。可撓性外歯歯車と、内歯歯車との噛み合い位置には、接触圧が生じる。この接触圧により、可撓軸受には、径方向内側への応力がかかる。このとき、応力緩衝部により、可撓性外歯歯車から可撓軸受へ、応力が伝わり難くなる。その結果、可撓軸受へかかる負荷が軽減され、負荷による可撓軸受の損傷を抑制できる。 According to the present invention, in the flexible external gear, the radial length changes in the circumferential direction due to the rotation of the non-round cam. The flexible external gear and the internal gear partially mesh with each other. A contact pressure is generated at the meshing position of the flexible external gear and the internal gear. The contact pressure exerts a radially inward stress on the flexible bearing. At this time, the stress buffer portion makes it difficult to transmit stress from the flexible external gear to the flexible bearing. As a result, the load applied to the flexible bearing is reduced, and damage to the flexible bearing due to the load can be suppressed.
図1は、本願の例示的な実施形態に係る波動歯車装置の断面図である。FIG. 1 is a cross-sectional view of a wave gear device according to an exemplary embodiment of the present application. 図2は、図1のII-II線における断面図である。FIG. 2 is a cross-sectional view taken along line II-II of FIG. 図3は、可撓性外歯歯車と、内歯歯車との接触部分の拡大図である。FIG. 3 is an enlarged view of the contact portion between the flexible external gear and the internal gear. 図4は、可撓性外歯歯車と、内歯歯車との接触部分の拡大図である。FIG. 4 is an enlarged view of the contact portion between the flexible external gear and the internal gear. 図5は、可撓性外歯歯車と、内歯歯車との接触部分の拡大図である。FIG. 5 is an enlarged view of the contact portion between the flexible external gear and the internal gear. 図6は、別の例の波動歯車装置の断面図である。FIG. 6 is a cross-sectional view of another example of the wave gear device.
 以下、本願の例示的な実施形態について、図面を参照しながら説明する。なお、本願では、波動歯車装置の中心軸と平行な方向を「軸方向」、波動歯車装置の中心軸に直交する方向を「径方向」、波動歯車装置の中心軸を中心とする円弧に沿う方向を「周方向」、とそれぞれ称する。また、本願では、軸方向を上下方向とし、回転入力部に対して回転出力部側を上として、各部の形状や位置関係を説明する。ただし、この上下方向の定義により、本願に係る波動歯車装置の使用時の向きを限定する意図はない。 Hereinafter, exemplary embodiments of the present application will be described with reference to the drawings. In the present application, a direction parallel to the central axis of the wave gear device is referred to as “axial direction”, a direction orthogonal to the central axis of the wave gear device as “radial direction”, and an arc centered on the central axis of the wave gear device The direction is referred to as "circumferential direction", respectively. Further, in the present application, the shape and the positional relationship of each part will be described with the axial direction as the vertical direction and the rotational output part side up with respect to the rotational input part. However, there is no intention to limit the direction in use of the wave gear device according to the present application based on the definition in the vertical direction.
 また、本願において「平行な方向」とは、略平行な方向も含む。また、本願において「直交する方向」とは、略直交する方向も含む。 Further, in the present application, the “parallel direction” also includes a substantially parallel direction. Further, in the present application, the “orthogonal direction” also includes a substantially orthogonal direction.
 <1.実施形態1>
 <1.1.波動歯車装置の構成>
 図1は、本願の例示的な実施形態に係る波動歯車装置100の断面図である。図2は、図1のII-II線における断面図である。
<1. Embodiment 1>
<1.1. Configuration of wave gear device>
FIG. 1 is a cross-sectional view of a wave gear drive 100 in accordance with an exemplary embodiment of the present application. FIG. 2 is a cross-sectional view taken along line II-II of FIG.
 波動歯車装置100は、中心軸9を中心に回転する波動発生器4を備えている。波動発生器4は、非真円カム41と、可撓軸受42とを有している。 The wave gear device 100 includes a wave generator 4 that rotates about a central axis 9. The wave generator 4 has a non-round cam 41 and a flexible bearing 42.
 非真円カム41には、不図示の回転入力部が接続される。回転入力部は、例えば電動機から回転力が伝達されて、中心軸9を中心に周方向に回転する。非真円カム41は、回転入力部から回転が伝達され、回転入力部と共に、中心軸9を中心に回転する。非真円カム41は、軸方向から視て楕円形である。 A rotation input unit (not shown) is connected to the non-round cam 41. A rotational force is transmitted from, for example, an electric motor, and the rotation input unit rotates in the circumferential direction about the central axis 9. The non-round cam 41 receives rotation from the rotation input unit, and rotates around the central axis 9 together with the rotation input unit. The non-perfect circular cam 41 is elliptical as viewed from the axial direction.
 可撓軸受42は、可撓性を有するボールベアリングである。可撓軸受42は、非真円カム41の径方向外側に配置され、非真円カム41の外周面に装着されている。非真円カム41に装着されると、可撓軸受42は、軸方向から視て、非真円カム41の外周面に沿った楕円形に撓む。 The flexible bearing 42 is a flexible ball bearing. The flexible bearing 42 is disposed radially outward of the non-round cam 41 and mounted on the outer peripheral surface of the non-round cam 41. When mounted on the non-round cam 41, the flexible bearing 42 bends in an elliptical shape along the outer peripheral surface of the non-round cam 41 as viewed from the axial direction.
 波動歯車装置100は内歯歯車3を備えている。内歯歯車3は、中心軸9を囲む円筒状であって、軸方向から視て、真円形である。内歯歯車3は、可撓軸受42の径方向外側に配置されている。また、内歯歯車3は、例えば、波動歯車装置100の不図示のカバーなどに、回転不可に固定されている。内歯歯車3の内周面には、複数の内歯31が、一定のピッチで周方向に沿って設けられている。 The wave gear device 100 includes an internal gear 3. The internal gear 3 has a cylindrical shape surrounding the central axis 9 and is a perfect circle when viewed from the axial direction. The internal gear 3 is disposed radially outward of the flexible bearing 42. Further, the internal gear 3 is non-rotatably fixed to, for example, a cover (not shown) of the wave gear device 100 or the like. A plurality of internal teeth 31 are provided on the inner peripheral surface of the internal gear 3 along the circumferential direction at a constant pitch.
 波動歯車装置100は可撓性外歯歯車5を備えている。可撓性外歯歯車5は、中心軸9を囲み、軸方向に延びる筒状部材である。可撓性外歯歯車5の軸方向の下側端部50は、可撓軸受42と、内歯歯車3との間に配置されている。下側端部50の内周面は、可撓軸受42の外周面と接している。下側端部50の外周面には、内歯歯車3の複数の内歯31と異なる歯数の複数の外歯501が、一定のピッチで周方向に沿って設けられている。 The wave gear device 100 includes a flexible external gear 5. The flexible external gear 5 is a cylindrical member which surrounds the central axis 9 and extends in the axial direction. The axially lower end 50 of the flexible external gear 5 is disposed between the flexible bearing 42 and the internal gear 3. The inner circumferential surface of the lower end portion 50 is in contact with the outer circumferential surface of the flexible bearing 42. A plurality of external teeth 501 having a number of teeth different from the plurality of internal teeth 31 of the internal gear 3 are provided on the outer circumferential surface of the lower end portion 50 along the circumferential direction at a constant pitch.
 可撓性外歯歯車5の下側端部50は、可撓軸受42に装着されている。可撓軸受42は、前記のように、楕円形に撓む。このため、可撓軸受42に装着された可撓性外歯歯車5の下側端部50も、楕円形に撓む。楕円形に撓んだ下側端部50の短軸は、真円形の内歯歯車3の内径よりも短い。また、下側端部50の長軸は、内歯歯車3の内径と略同じである。したがって、下側端部50の長軸部分において、可撓性外歯歯車5の外歯501と、内歯歯車3の内歯31とが噛み合っている。 The lower end 50 of the flexible external gear 5 is mounted on a flexible bearing 42. The flexible bearing 42 bends in an elliptical manner as described above. For this reason, the lower end 50 of the flexible external gear 5 mounted on the flexible bearing 42 also bends in an elliptical shape. The short axis of the elliptically bent lower end 50 is shorter than the inner diameter of the perfect circular internal gear 3. Further, the major axis of the lower end 50 is substantially the same as the inner diameter of the internal gear 3. Accordingly, the external teeth 501 of the flexible external gear 5 and the internal teeth 31 of the internal gear 3 mesh with each other at the major axis portion of the lower end portion 50.
 非真円カム41が回転すると、可撓性外歯歯車5の径方向の長さが周方向に変位する。これにより、可撓性外歯歯車5と、内歯歯車3との噛み合わせ位置が周方向に移動する。また、内歯歯車3は回転不可に固定されている。その結果、歯数が異なる可撓性外歯歯車5と内歯歯車3とが相対回転するとき、可撓性外歯歯車5は、非真円カム41より小さい回転数で回転する。 When the non-perfect circular cam 41 rotates, the radial length of the flexible external gear 5 is displaced in the circumferential direction. Thereby, the meshing position of the flexible external gear 5 and the internal gear 3 moves in the circumferential direction. Further, the internal gear 3 is non-rotatably fixed. As a result, when the flexible external gear 5 and the internal gear 3 having different numbers of teeth rotate relative to each other, the flexible external gear 5 rotates at a smaller rotational speed than the non-circular cam 41.
 可撓性外歯歯車5の軸方向の上側端部は、径方向内側に向かって拡がっている。図示しないが、波動歯車装置100は、中心軸9を中心に回転可能で、負荷に接続される出力軸を備えている。可撓性外歯歯車5の軸方向の上側端部は、出力軸に固定される。これにより、可撓性外歯歯車5が、中心軸9を中心に回転すると、出力軸も回転する。そして、負荷へ回転が伝達される。前記のように、可撓性外歯歯車5は、非真円カム41より小さい回転数で回転する。つまり、可撓性外歯歯車5と共に回転する出力軸も、非真円カム41より小さい回転数で回転する。このように、不図示の電動機から非真円カム41へ入力された回転は、減速されて、出力軸を介して負荷へ出力される。 The upper axial end of the flexible external gear 5 extends radially inward. Although not shown, the wave gear device 100 includes an output shaft that is rotatable about the central axis 9 and connected to a load. The upper axial end of the flexible external gear 5 is fixed to the output shaft. Thereby, when the flexible external gear 5 rotates around the central axis 9, the output shaft also rotates. Then, the rotation is transmitted to the load. As described above, the flexible external gear 5 rotates at a rotation speed smaller than that of the non-circular cam 41. That is, the output shaft that rotates with the flexible external gear 5 also rotates at a rotation speed smaller than that of the non-circular cam 41. In this manner, the rotation input from the motor (not shown) to the non-round cam 41 is decelerated and output to the load via the output shaft.
 <1.2.可撓性外歯歯車5と、内歯歯車3との接触圧について>
 可撓性外歯歯車5と、内歯歯車3との噛み合い位置では、可撓性外歯歯車と、内歯歯車3との噛み合い部分に接触圧が生じる。しかしながら、この波動歯車装置100は、可撓性外歯歯車5と、内歯歯車3との間の接触圧が、可撓軸受42に伝達し難い構成となっている。
<1.2. Contact pressure between flexible external gear 5 and internal gear 3>
At the meshing position of the flexible external gear 5 and the internal gear 3, a contact pressure is generated at the meshing portion of the flexible external gear and the internal gear 3. However, in the wave gear device 100, the contact pressure between the flexible external gear 5 and the internal gear 3 is difficult to be transmitted to the flexible bearing 42.
 図3は、可撓性外歯歯車5と、内歯歯車3との接触部分の拡大図である。 FIG. 3 is an enlarged view of the contact portion between the flexible external gear 5 and the internal gear 3.
 可撓性外歯歯車5の下側端部50の内周面は、外力が加わっていない部品単体の状態において軸方向に平行な第1内周面51と、第1内周面51より軸方向下側に位置し、第1内周面51から徐々に径方向外側に拡がる第2内周面52とを有している。可撓軸受42の外周面は、軸方向に平行である。可撓性外歯歯車5の下側端部50の第1内周面51は、可撓軸受42の外周面に接触している。下側端部50の第2内周面52は、第1内周面51から徐々に径方向外側に拡がっているため、第2内周面52と、可撓軸受42の外周面との間に、空間55が設けられる。空間55は、本願の「応力緩衝部」の一例である。 The inner peripheral surface of the lower end portion 50 of the flexible external gear 5 has an axis from the first inner peripheral surface 51 parallel to the axial direction and the first inner peripheral surface 51 in the state of the component alone to which no external force is applied. It has a second inner circumferential surface 52 located on the lower side in the direction and gradually expanding outward in the radial direction from the first inner circumferential surface 51. The outer peripheral surface of the flexible bearing 42 is parallel to the axial direction. The first inner circumferential surface 51 of the lower end 50 of the flexible external gear 5 is in contact with the outer circumferential surface of the flexible bearing 42. Since the second inner circumferential surface 52 of the lower end portion 50 gradually spreads radially outward from the first inner circumferential surface 51, the space between the second inner circumferential surface 52 and the outer circumferential surface of the flexible bearing 42 , A space 55 is provided. The space 55 is an example of the “stress buffer” in the present application.
 可撓性外歯歯車5は円筒状であって、下側端部50が波動発生器4により楕円形に撓められる。このため、筒状の可撓性外歯歯車5は、長軸部分において、軸方向上側から下側にむかって、徐々に径が拡がる形状となる。これに伴い、可撓軸受42の外周面も、軸方向上側から下側に向かって、径方向に拡がる形状となる。このため、軸方向の下側になるにつれて、可撓性外歯歯車5と内歯歯車3との接触圧は大きい。 The flexible external gear 5 is cylindrical, and the lower end 50 is elliptically bent by the wave generator 4. For this reason, the cylindrical flexible external gear 5 has a shape in which the diameter gradually widens from the upper side to the lower side in the axial direction in the major axis portion. Along with this, the outer peripheral surface of the flexible bearing 42 also has a shape expanding in the radial direction from the upper side to the lower side in the axial direction. For this reason, the contact pressure of the flexible external gear 5 and the internal gear 3 increases as it becomes axially lower.
 下側端部50の第1内周面51と、可撓軸受42の外周面とは、ボールベアリングである可撓軸受42のボール中心点の高さよりも、軸方向上側部分で接触している。つまり、空間55は、ボールベアリングである可撓軸受42のボール中心点の高さよりも、軸方向下側に設けられている。したがって、空間55は、軸方向下側の接触圧が大きい部分に設けられている。このため、内歯歯車3から、可撓性外歯歯車5の下側端部50を介して、径方向内側に向かう応力は、可撓軸受42へ伝わり難くなる。これにより、可撓軸受42にかかる負荷が軽減され、負荷による可撓軸受42の損傷を抑制できる。 The first inner circumferential surface 51 of the lower end 50 and the outer circumferential surface of the flexible bearing 42 are in contact at an axially upper portion than the height of the ball center point of the flexible bearing 42 which is a ball bearing. . That is, the space 55 is provided axially below the height of the ball center point of the flexible bearing 42 which is a ball bearing. Therefore, the space 55 is provided at a portion where the contact pressure on the lower side in the axial direction is large. For this reason, the stress directed radially inward from the internal gear 3 via the lower end 50 of the flexible external gear 5 is less likely to be transmitted to the flexible bearing 42. Thereby, the load applied to the flexible bearing 42 is reduced, and damage to the flexible bearing 42 due to the load can be suppressed.
 <2.実施形態2>
 以下に実施形態2について説明する。実施形態2は、本願の「応力緩衝部」の一例である空間55を設けるための構成が、実施形態1と相違する。
<2. Embodiment 2>
The second embodiment will be described below. The second embodiment is different from the first embodiment in the configuration for providing the space 55 which is an example of the “stress buffer” of the present application.
 図4は、可撓性外歯歯車5と、内歯歯車3との接触部分の拡大図である。 FIG. 4 is an enlarged view of a contact portion between the flexible external gear 5 and the internal gear 3.
 可撓性外歯歯車5の下側端部50の内周面は、外力が加わっていない部品単体の状態において軸方向に平行である。可撓軸受42の外周面は、外力が加わっていない部品単体の状態において軸方向に平行な第1外周面421と、第1外周面421より軸方向下側に位置し、第1外周面421から徐々に径方向内側に拡がる第2外周面422とを有している。可撓軸受42の第1外周面421は、可撓性外歯歯車5の外周面に接触している。可撓軸受42の第2外周面422は、第1外周面421から徐々に径方向内側に拡がっているため、第2外周面422と、可撓性外歯歯車5の下側端部50の内周面との間に、実施形態1と同様に、空間55が設けられる。 The inner circumferential surface of the lower end 50 of the flexible external gear 5 is axially parallel to the component alone when no external force is applied. The outer peripheral surface of the flexible bearing 42 is located axially lower than the first outer peripheral surface 421 parallel to the axial direction and the first outer peripheral surface 421 in the state of the component alone in which no external force is applied, and the first outer peripheral surface 421 And a second outer circumferential surface 422 that gradually expands inward in the radial direction. The first outer circumferential surface 421 of the flexible bearing 42 is in contact with the outer circumferential surface of the flexible external gear 5. Since the second outer peripheral surface 422 of the flexible bearing 42 gradually expands inward in the radial direction from the first outer peripheral surface 421, the second outer peripheral surface 422 and the lower end portion 50 of the flexible external gear 5 are A space 55 is provided between the inner circumferential surface and the inner circumferential surface as in the first embodiment.
 これにより、実施形態1と同様に、内歯歯車3から、可撓性外歯歯車5の下側端部50を介して、径方向内側に向かう応力は、可撓軸受42へ伝わり難くなる。これにより、可撓軸受42にかかる負荷が軽減され、負荷による可撓軸受42の損傷を抑制できる。 As a result, as in the first embodiment, the stress directed radially inward from the internal gear 3 via the lower end 50 of the flexible external gear 5 is less likely to be transmitted to the flexible bearing 42. Thereby, the load applied to the flexible bearing 42 is reduced, and damage to the flexible bearing 42 due to the load can be suppressed.
 <3.実施形態3>
 以下に実施形態3について説明する。実施形態3は、本願の「応力緩衝部」の一例である空間55を設けるための構成が、実施形態1、2と相違する。
<3. Embodiment 3>
The third embodiment will be described below. The third embodiment is different from the first and second embodiments in the configuration for providing the space 55 which is an example of the “stress buffer” of the present application.
 図5は、可撓性外歯歯車5と、内歯歯車3との接触部分の拡大図である。 FIG. 5 is an enlarged view of a contact portion between the flexible external gear 5 and the internal gear 3.
 可撓性外歯歯車5の下側端部50の内周面は、軸方向に平行である。可撓軸受42の外周面は、外力が加わっていない部品単体の状態において軸方向に平行な第1外周面423と、第1外周面423より軸方向上側に位置し、第1外周面423から徐々に径方向内側に拡がる第2外周面424とを有している。 The inner circumferential surface of the lower end 50 of the flexible external gear 5 is axially parallel. The outer peripheral surface of the flexible bearing 42 is located axially above the first outer peripheral surface 423 and the first outer peripheral surface 423 parallel to the axial direction in the state of the component alone in which no external force is applied, from the first outer peripheral surface 423 And a second outer circumferential surface 424 which gradually expands inward in the radial direction.
 実施形態1で説明したように、筒状の可撓性外歯歯車5は、長軸部分において、軸方向上側から下側にむかって、徐々に径が拡がる形状となる。このため、可撓性外歯歯車5の内周面は、軸方向に対して傾斜している。また、可撓軸受42の第2外周面424も、軸方向に対して傾斜している。そして、可撓性外歯歯車5の内周面は、可撓軸受42の第2外周面424に接触している。可撓軸受42の第1外周面423は、軸方向に平行であり、可撓性外歯歯車5の内周面は、軸方向に対して傾斜している。したがって、第1外周面423と、可撓性外歯歯車5の下側端部50の内周面との間に、実施形態1と同様に、空間55が設けられる。 As described in the first embodiment, the cylindrical flexible external gear 5 has a shape in which the diameter gradually widens from the upper side to the lower side in the axial direction in the major axis portion. Therefore, the inner circumferential surface of the flexible external gear 5 is inclined with respect to the axial direction. The second outer circumferential surface 424 of the flexible bearing 42 is also inclined with respect to the axial direction. The inner peripheral surface of the flexible external gear 5 is in contact with the second outer peripheral surface 424 of the flexible bearing 42. The first outer peripheral surface 423 of the flexible bearing 42 is parallel to the axial direction, and the inner peripheral surface of the flexible external gear 5 is inclined with respect to the axial direction. Therefore, a space 55 is provided between the first outer circumferential surface 423 and the inner circumferential surface of the lower end portion 50 of the flexible external gear 5 as in the first embodiment.
 これにより、実施形態1と同様に、内歯歯車3から、可撓性外歯歯車5の下側端部50を介して、径方向内側に向かう応力は、可撓軸受42へ伝わり難くなる。これにより、可撓軸受42にかかる負荷が軽減され、負荷による可撓軸受42の損傷を抑制できる。 As a result, as in the first embodiment, the stress directed radially inward from the internal gear 3 via the lower end 50 of the flexible external gear 5 is less likely to be transmitted to the flexible bearing 42. Thereby, the load applied to the flexible bearing 42 is reduced, and damage to the flexible bearing 42 due to the load can be suppressed.
 <4.変形例>
 以上、本発明の例示的な実施形態について説明したが、本発明は上記の実施形態には限定されない。
<4. Modified example>
Although the exemplary embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments.
 図6は、別の例の波動歯車装置100Aの断面図である。波動歯車装置100Aが備える可撓性外歯歯車5Aの軸方向の上側端部は、径方向外側に向かって拡がっている。この構成の場合、負荷に接続される出力軸を、図1の場合よりも径方向外側に、配置させることができる。 FIG. 6 is a cross-sectional view of another example of the wave gear device 100A. The axial upper end of the flexible external gear 5A included in the wave gear device 100A is expanded radially outward. In this configuration, the output shaft connected to the load can be disposed more radially outward than in the case of FIG.
 空間55は、少なくとも、可撓軸受42の外周面の下側端部と、下側端部50の第1内周面51との間に設けられていればよく、空間55の軸方向の長さは特に限定されない。また、空間55の径方向の長さは、特に限定されない。内歯歯車3から、可撓性外歯歯車5を介した応力が、空間55によって、可撓軸受42に伝達されなければよい。 The space 55 may be provided at least between the lower end of the outer peripheral surface of the flexible bearing 42 and the first inner peripheral surface 51 of the lower end 50, and the axial length of the space 55 The size is not particularly limited. Further, the radial length of the space 55 is not particularly limited. Stress from the internal gear 3 via the flexible external gear 5 may not be transmitted by the space 55 to the flexible bearing 42.
 また、上記の実施形態では、本願の「応力緩衝部」は空間としているが、応力を緩衝できる部材であればよく、例えば、弾性部材などであってもよい。また、空間55に、応力を緩衝する別の部材が介在していてもよい。 Further, in the above embodiment, the “stress buffer” of the present application is a space, but any member that can buffer stress may be used, for example, an elastic member or the like. Further, another member that buffers stress may be interposed in the space 55.
 また、波動歯車装置100の細部の形状については、本願の各図に示された形状と、相違していてもよい。また、上記の実施形態または変形例に登場した各要素を、矛盾が生じない範囲で、適宜に組み合わせてもよい。 Further, the shape of the detail of the wave gear device 100 may be different from the shape shown in each drawing of the present application. Further, each element appearing in the above embodiment or modification may be combined appropriately as long as no contradiction occurs.
 本出願は、2017年7月14日に出願された日本特許出願である特願2017-137607号に基づく優先権を主張し、当該日本特許出願に記載されたすべての記載内容を援用する。 This application claims priority based on Japanese Patent Application No. 2017-137607, which is a Japanese patent application filed on Jul. 14, 2017, and incorporates the entire contents described in the Japanese patent application.
 本願は、波動歯車装置に利用できる。 The present application is applicable to a wave gear device.
3    :内歯歯車
4    :波動発生器
5、5A :可撓性外歯歯車
9    :中心軸
31   :内歯
41   :非真円カム
42   :可撓軸受
50   :下側端部
51   :第1内周面
52   :第2内周面
55   :空間
100  :波動歯車装置
100A :波動歯車装置
421  :第1外周面
422  :第2外周面
423  :第1外周面
424  :第2外周面
501  :外歯
3: Internal gear 4: Wave generator 5, 5A: Flexible external gear 9: Central shaft 31: Internal gear 41: Non-round cam 42: Flexible bearing 50: Lower end 51: First internal Surface 52: second inner surface 55: space 100: wave gear device 100A: wave gear device 421: first outer surface 422: second outer surface 423: first outer surface 424: second outer surface 501: external teeth

Claims (8)

  1.  上下に延びる中心軸を中心に回転する非真円カムと、
     前記非真円カムの外周面に装着され、前記非真円カムの回転に応じて、径方向の長さが周方向に変化する可撓軸受と、
     軸方向に延びる筒状であって、軸方向の下側端部が前記可撓軸受の外周面に装着され、前記下側端部の外周面に、一定のピッチで複数の外歯が周方向に沿って設けられた可撓性外歯歯車と、
     前記可撓性外歯歯車の径方向外側に配置され、前記複数の外歯と異なる歯数の内歯を有し、前記可撓性外歯歯車と部分的に噛み合う内歯歯車と、
    を備え、
     前記可撓性外歯歯車の前記下側端部の内周面は、少なくとも、前記可撓軸受の外周面における軸方向上側で接し、
     前記可撓軸受の外周面と、前記可撓性外歯歯車の前記下側端部の内周面との間、かつ、接触位置よりも軸方向下側に設けられた応力緩衝部、
    をさらに備える、
     波動歯車装置。
    A non-round cam which rotates around a central axis extending up and down;
    A flexible bearing mounted on the outer peripheral surface of the non-perfect circular cam, and whose radial length changes in the circumferential direction according to the rotation of the non-perfect circular cam;
    An axially extending cylindrical shape, the lower end in the axial direction is mounted on the outer peripheral surface of the flexible bearing, and on the outer peripheral surface of the lower end, a plurality of outer teeth are circumferentially spaced at a constant pitch Flexible external gear, provided along with
    An internal gear disposed radially outside the flexible external gear, having internal teeth different in number from the plurality of external teeth, and partially meshing with the flexible external gear;
    Equipped with
    The inner peripheral surface of the lower end of the flexible external gear is in contact with at least the axial upper side of the outer peripheral surface of the flexible bearing,
    A stress buffer provided between the outer peripheral surface of the flexible bearing and the inner peripheral surface of the lower end of the flexible external gear and axially lower than the contact position;
    Further comprising
    Wave gear device.
  2.  請求項1に記載の波動歯車装置であって、
     前記応力緩衝部は空間である、
     波動歯車装置。
    A wave gear device according to claim 1, wherein
    The stress buffer is a space,
    Wave gear device.
  3.  請求項1または請求項2に記載の波動歯車装置であって、
     前記可撓軸受は、ボールベアリングであって、
     前記応力緩衝部は、
      前記ボールベアリングのボール中心よりも軸方向の下側に設けられている、
     波動歯車装置。
    The wave gear device according to claim 1 or 2, wherein
    The flexible bearing is a ball bearing,
    The stress buffer unit is
    The ball bearing is provided axially below the ball center of the ball bearing,
    Wave gear device.
  4.  請求項1から請求項3までのいずれか一つに記載の波動歯車装置であって、
     前記可撓性外歯歯車の前記下側端部の内周面は、
      軸方向に平行な第1内周面と、
      前記第1内周面より軸方向下側に位置し、前記第1内周面から徐々に径方向外側に拡がる第2内周面と、
    を有し、
     前記可撓軸受の外周面は、少なくとも、軸方向の上側部分で、軸方向に平行であり、
     前記可撓性外歯歯車の前記第1内周面と、軸方向に平行な前記可撓軸受の外周面とが、接触している、
     波動歯車装置。
    A wave gear device according to any one of claims 1 to 3, wherein
    The inner circumferential surface of the lower end of the flexible external gear is:
    A first inner circumferential surface parallel to the axial direction,
    A second inner circumferential surface located axially lower than the first inner circumferential surface and gradually expanding radially outward from the first inner circumferential surface;
    Have
    The outer circumferential surface of the flexible bearing is axially parallel to at least the upper axial portion,
    The first inner circumferential surface of the flexible external gear and the outer circumferential surface of the flexible bearing parallel to the axial direction are in contact with each other.
    Wave gear device.
  5.  請求項1から請求項3までのいずれか一つに記載の波動歯車装置であって、
     前記可撓軸受の外周面は、
      軸方向に平行な第1外周面と、
      前記第1外周面より軸方向下側に位置し、前記第1外周面から徐々に径方向内側に拡がる第2外周面と、
    を有し、
     前記可撓性外歯歯車の内周面は、少なくとも、軸方向の上側部分で、軸方向に平行であり、
     前記可撓軸受の前記第1外周面と、軸方向に平行な前記可撓性外歯歯車の内周面とが、接触している、
     波動歯車装置。
    A wave gear device according to any one of claims 1 to 3, wherein
    The outer peripheral surface of the flexible bearing is
    A first outer circumferential surface parallel to the axial direction,
    A second outer circumferential surface located axially lower than the first outer circumferential surface and gradually expanding radially inward from the first outer circumferential surface;
    Have
    The inner circumferential surface of the flexible external gear is axially parallel to at least the upper axial portion,
    The first outer peripheral surface of the flexible bearing is in contact with an inner peripheral surface of the flexible external gear parallel to the axial direction;
    Wave gear device.
  6.  請求項1から請求項3までのいずれか一つに記載の波動歯車装置であって、
     前記可撓軸受の外周面は、
      軸方向に平行な第1外周面と、
      前記第1外周面より軸方向上側に位置し、前記第1外周面から徐々に径方向内側に拡がる第2外周面と、
    を有し、
     前記可撓性外歯歯車の内周面は、軸方向に平行であり、
     前記可撓軸受の前記第2外周面と、前記可撓性外歯歯車の内周面とが、接触している、
     波動歯車装置。
    A wave gear device according to any one of claims 1 to 3, wherein
    The outer peripheral surface of the flexible bearing is
    A first outer circumferential surface parallel to the axial direction,
    A second outer circumferential surface located axially above the first outer circumferential surface and gradually expanding radially inward from the first outer circumferential surface;
    Have
    The inner circumferential surface of the flexible external gear is parallel to the axial direction,
    The second outer peripheral surface of the flexible bearing is in contact with the inner peripheral surface of the flexible external gear.
    Wave gear device.
  7.  請求項1から請求項6までのいずれか一つに記載の波動歯車装置であって、
     前記可撓性外歯歯車の軸方向上側端部は、径方向内側に拡がっている、
     波動歯車装置。
    A wave gear device according to any one of claims 1 to 6, wherein
    The axially upper end portion of the flexible external gear is expanded radially inward.
    Wave gear device.
  8.  請求項1から請求項6までのいずれか一つに記載の波動歯車装置であって、
     前記可撓性外歯歯車の軸方向上側端部は、径方向外側に拡がっている、
     波動歯車装置。
    A wave gear device according to any one of claims 1 to 6, wherein
    The axially upper end of the flexible external gear is extended radially outward.
    Wave gear device.
PCT/JP2018/026017 2017-07-14 2018-07-10 Wave gear device WO2019013200A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880045728.2A CN110869645A (en) 2017-07-14 2018-07-10 Wave gear device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-137607 2017-07-14
JP2017137607A JP2019019861A (en) 2017-07-14 2017-07-14 Wave gear device

Publications (1)

Publication Number Publication Date
WO2019013200A1 true WO2019013200A1 (en) 2019-01-17

Family

ID=65002482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026017 WO2019013200A1 (en) 2017-07-14 2018-07-10 Wave gear device

Country Status (4)

Country Link
JP (1) JP2019019861A (en)
CN (1) CN110869645A (en)
TW (1) TWI679359B (en)
WO (1) WO2019013200A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112178155A (en) * 2019-07-01 2021-01-05 日本电产新宝株式会社 Flexible externally toothed gear and wave gear device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111539079B (en) * 2020-04-20 2022-11-22 上海机器人产业技术研究院有限公司 Simulation method for special bearing in speed reducer for robot

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0211954U (en) * 1988-07-05 1990-01-25

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02119547U (en) * 1989-03-15 1990-09-26
JP2003176857A (en) * 2001-12-11 2003-06-27 Teijin Seiki Co Ltd Flex spline for meshing type gear and meshing type gear provided with flex spline
JP5467019B2 (en) * 2010-09-07 2014-04-09 住友重機械工業株式会社 Bending gear system
JP2013057397A (en) * 2011-08-15 2013-03-28 Canon Inc Wave gear speed reducer
WO2014203295A1 (en) * 2013-06-20 2014-12-24 株式会社ハーモニック・ドライブ・システムズ Bearing holder, bearing mechanism, and strain wave gearing device
JP2015209931A (en) * 2014-04-28 2015-11-24 キヤノン株式会社 Undulation gear device and robot arm

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0211954U (en) * 1988-07-05 1990-01-25

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112178155A (en) * 2019-07-01 2021-01-05 日本电产新宝株式会社 Flexible externally toothed gear and wave gear device

Also Published As

Publication number Publication date
CN110869645A (en) 2020-03-06
TWI679359B (en) 2019-12-11
TW201908621A (en) 2019-03-01
JP2019019861A (en) 2019-02-07

Similar Documents

Publication Publication Date Title
JP5064300B2 (en) Wave gear type linear motion mechanism
JP6067112B2 (en) Hollow wave gear device
KR101458016B1 (en) Wave gear device and flexible externally toothed gear
US9709151B2 (en) Wave generator and strain wave gearing
US20180335116A1 (en) Geared transmission unit
WO2019013200A1 (en) Wave gear device
JP2019027519A (en) Wave gear device
WO2017022062A1 (en) Strain wave gearing device
JP6758795B2 (en) Strain wave gearing
JP2016211706A (en) Speed reducer and robot
KR102440561B1 (en) hollow wave gear device
WO2019013190A1 (en) Wave gear device
JP2014092208A (en) Wave gear device, and transmission ratio variable device
JP6599682B2 (en) Planetary gear set
JP2010014215A (en) Wave motion gear device
JP5494383B2 (en) Wave gear device
KR20210153237A (en) Flex spline with vibration damping function caused by elastic deformation and Harmonic drive having the flex spline
CN110799772B (en) Drive device
JP7467046B2 (en) Gearing
JP2017089804A (en) Wave gear device with traction drive mechanism
JP2020085184A (en) Coupling device and driving device
CN110869644A (en) Speed reducer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18831694

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18831694

Country of ref document: EP

Kind code of ref document: A1