WO2019012917A1 - Composite material - Google Patents

Composite material Download PDF

Info

Publication number
WO2019012917A1
WO2019012917A1 PCT/JP2018/023016 JP2018023016W WO2019012917A1 WO 2019012917 A1 WO2019012917 A1 WO 2019012917A1 JP 2018023016 W JP2018023016 W JP 2018023016W WO 2019012917 A1 WO2019012917 A1 WO 2019012917A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
surface modifier
material according
inorganic
group
Prior art date
Application number
PCT/JP2018/023016
Other languages
French (fr)
Japanese (ja)
Inventor
慎一 堤
近藤 憲司
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2018566463A priority Critical patent/JPWO2019012917A1/en
Publication of WO2019012917A1 publication Critical patent/WO2019012917A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • H01F1/113Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles in a bonding agent

Definitions

  • the present invention relates to a composite material in which an inorganic material and a polymer material are combined, and more particularly to a composite material of an inorganic material and a polymer material which has been surface-modified by a surface modifier.
  • a composite material containing an inorganic material and a polymer material can change the types of the inorganic material and the polymer material to form a conductive material, an EMC (electromagnetic compatibility) material, a recording material, a magnetic material, a sliding material, and a seal. It is applied in various fields because it can be used as a wide variety of functional materials such as stop materials, damping materials, dental materials, heat insulation materials, heat conductive materials, buoyancy materials and the like.
  • conductive materials such as carbon black and metal powders, magnetic materials such as ferrite powders and Nd-Fe-B magnetic powders, thermally conductive materials such as alumina, and sliding materials such as graphite And molybdenum sulfide are used as inorganic materials.
  • thermoplastic resin such as polybutylene terephthalate (PBT), polyamide (PA), polyphenylene sulfide (PPS), liquid crystal polymer (LCP), or the like in consideration of thermal characteristics, mechanical characteristics, shape, construction method, etc.
  • PBT polybutylene terephthalate
  • PA polyamide
  • PPS polyphenylene sulfide
  • LCP liquid crystal polymer
  • the epoxy resin of a thermosetting resin, a phenol resin, etc. are selected suitably.
  • high packing, high dispersion, or high fluidization of inorganic materials is performed to achieve high functionality.
  • the conductivity can be improved by increasing the loading of the conductive carbon black.
  • a surface modifier or the like can be added to the inorganic material powder to achieve high filling, high dispersion, or high fluidization of the inorganic material powder in the composite material.
  • Kauri-Butanol number a Solubility Grade developed by the National Gallery of Art Research Project, as a numerical indicator of the solubility of each material that can be used to select surface modifiers in composite materials
  • the wax number expressed as the amount of solvent that can be added to the benzene / beeswax solution while maintaining the solution state, Hildebrand's solubility parameter, Hansen solubility parameter, etc. may be mentioned. Among the most widely applied are the Hildebrand solubility parameter and the Hansen solubility parameter.
  • the Hildebrand solubility parameter only considers van der Waals forces and can only be applied to nonpolar molecules.
  • the Hansen solubility parameter is applicable to polar molecules because it takes into consideration not only van der Waals force but also hydrogen bonding force and polarity force, and the application range is wide.
  • the Hansen solubility parameter is mainly applied to the determination of the compatibility between two different substances such as solvents, solvents and resins, and resins and resins.
  • Patent Document 1 when separating a flame retardant from a thermoplastic resin composition containing a flame retardant, the resin composition is brought into contact with a solvent having a hydrogen bonding term ⁇ H of a Hansen solubility parameter of 6.0 or more. . Thereby, the flame retardant is actively dissolved in the solvent.
  • a highly water-absorbent resin is constituted using a base resin in powder form polymerized with one or more internal crosslinking agents selected from the group consisting of poly (meth) acrylates of polyols.
  • the base resin is a substance in which ⁇ p satisfies ⁇ p ⁇ 12 (J / cm 3 ) 1/2, which is defined by the Hansen solubility parameter, ⁇ H is 4 ⁇ H ⁇ 6 (J / cm 3 ) 1 / 2 satisfy the substance, and [delta] tot is ⁇ tot> 31 (J / cm 3) be surface crosslinked with one or more selected from the group consisting of materials satisfying 1/2 is shown.
  • one aspect of the present invention is a composite material comprising a polymer material and a surface-modified inorganic powder which is a reaction product of an inorganic material and a surface modifier,
  • the surface modifier has a surface modification portion Q and a reaction portion R with an inorganic material
  • the surface-modified inorganic powder includes the inorganic material and the surface-modified portion Q that covers the surface of the inorganic material,
  • the surface modifying portion Q has a property of being compatible with the polymer material to be compatible.
  • each difference ⁇ d SQ - ⁇ d a and ⁇ h a, ⁇ p SQ - ⁇ p a, ⁇ h SQ - ⁇ h a are both within the scope of ⁇ 3 (J / cm 3) 1/2, a composite material.
  • the compound for bonded magnets which used the polyamide resin for the polymer material it is a graph which shows the relation between HSP distance Ra of the surface modification part to polyamide resin, and the viscosity of a compound.
  • the compound for bonded magnets which used LCP resin for polymer material it is a graph which shows the relation between HSP distance Ra of the surface modification part to LCP resin, and the viscosity of a compound.
  • a composite material according to an embodiment of the present invention is a composite material including a polymer material and a surface-modified inorganic powder which is a reaction product of an inorganic material and a surface modifier.
  • the surface modifier has a surface modification portion Q and a reaction portion R with the inorganic material
  • the surface modified inorganic powder is a surface modification that covers the inorganic material and the surface of the inorganic material.
  • Q is, when the surface modifier reacts with the inorganic material, the surface modification unit Q is supported on the inorganic material via a predetermined bonding site corresponding to the surface modifier.
  • the surface modified portion Q has a property of being compatible with the polymer material to be compatible.
  • the contribution of the surface modification unit Q to the Hansen solubility parameter ⁇ d S , ⁇ p S , ⁇ h S of the surface modifier ⁇ d SQ , ⁇ p SQ , ⁇ h SQ and the Hansen solubility parameter ⁇ d A , ⁇ p A of the polymer material each difference ⁇ d SQ - ⁇ d a and ⁇ d a, ⁇ p SQ - ⁇ p a, the .delta.h SQ - [Delta] H a, both, within a range of ⁇ 3 (J / cm 3) 1/2.
  • HSP parameter The Hansen Solubility Parameter (hereinafter referred to as “HSP parameter” as appropriate) is an index representing the solubility (removal property) between materials, and the solubility is a London dispersion force term ( ⁇ d), a dipole It is represented by a three-dimensional vector of the force term ( ⁇ p) and the hydrogen bond force term ( ⁇ h).
  • ⁇ d London dispersion force term
  • ⁇ p force term
  • ⁇ h hydrogen bond force term
  • the London dispersion force is an attraction caused by the charge bias in the molecule at a minute time, and is equal to the van der Waals force in nonpolar molecules.
  • the solubility due to the London dispersion power is ⁇ d.
  • the inter-dipole force is an attractive force acting between dipoles of a molecule having a dipole moment (polar molecule), and the solubility due to the inter-dipole force is ⁇ p.
  • the hydrogen bonding force is a strong intermolecular force generated by a hydrogen atom which is covalently bonded to an electronegativity large atom and a positive hydrogen atom attracts another negative atom to an equilibrium distance close to the radius of the anion. .
  • the solubility due to the hydrogen bonding strength is ⁇ h.
  • the HSP parameter of the polymer material used together with the inorganic material is measured, and the surface modifier having the surface modification portion in which the HSP parameter is close to the parameter is reacted with the inorganic material.
  • the surface of the inorganic material can be modified to obtain a surface-modified inorganic powder.
  • the surface-modified inorganic powder thus obtained is improved in the compatibility with the polymer material, and the functionalization of the composite material such as high packing, high dispersion, or high fluidization is possible. Become.
  • the HSPiP program (Hansen Solubility Parameters in Practice, [May 10, 2017 search using the Hansen ball method, ], Internet URL: http://www.hansen-solubility.com/HSPiP/), is known.
  • the solubility of the target material is confirmed by dissolution experiments for a plurality of solvents whose Hansen solubility parameters are known.
  • the Hansen solubility parameter of the solvent used for the dissolution experiment is plotted in a three-dimensional space of ( ⁇ d, ⁇ p, ⁇ h).
  • the smallest sphere surrounding the group of Hansen solubility parameters of the solvent in which the material dissolves is determined. And let the central coordinates of the smallest sphere be the Hansen solubility parameter of the material of interest.
  • the HSP parameters ( ⁇ d S , ⁇ p S , ⁇ h S ) of the surface modifier are not used as they are, but surface modification Among the HSP parameters of the agent, contributions ( ⁇ d SQ , ⁇ p SQ , ⁇ h SQ ) by the surface modification unit Q are derived, and the compatibility with the polymer material is evaluated.
  • the contribution of HSP parameters by the moieties that react and bind to the inorganic material of the surface modifier need not be considered. Also, it is not necessary to consider the HSP parameters of the inorganic material.
  • the inorganic material and the polymer material after the surface modification can be obtained. It is possible to enhance the compatibility of As a result, high loading, high dispersion, high fluidization, and the like of a composite material including an auxiliary material such as a surface modifier in addition to the inorganic material and the polymer material can be achieved.
  • the surface modification unit As a method of determining the contribution ( ⁇ d SQ , ⁇ p SQ , ⁇ h SQ ) of the HSP parameter by the surface modification unit, there is a method of calculating the Hansen solubility parameter of the surface modifier using a molecular group contribution method.
  • the molecular group contribution method divides the chemical structure of the target material into molecular groups such as, for example, -CH 3 , -CH 2- , -COOH, -OH, etc., and the London dispersion force, interdipolar force, and the like by each molecular group It is a method of calculating the Hansen solubility parameter of the whole chemical structure by calculating and summing the energy and force of hydrogen bonding force.
  • the HSP parameter ⁇ d S of the entire surface modifier is a weighted average with a weight proportional to the molecular weight for the contribution ⁇ d SR by the reaction part R and the contribution ⁇ d SQ by the surface modification unit Q.
  • ( ⁇ d SQ , ⁇ p SQ , ⁇ h SQ ) sets the molecular group constituting the surface modification unit Q to k and the molecular weight of the surface modification unit Q to V Q , Fd k , fp k, the Eh k, respectively, the molar attraction constants due to dispersion force term due to molecular groups k, the molar attraction constants due to dipole-dipole forces, as a hydrogen bonding energy can be derived by equation 2 below.
  • the inorganic material and the polymer material used in the composite material are naturally determined from the specification of the desired composite material. . Therefore, a surface modifying agent of an inorganic material suitable for making the inorganic material and the polymer material compatible with each other is specified.
  • the surface modifier has a reactive portion R that binds to the inorganic material, and a surface modified portion Q that is compatible with the polymer material.
  • the surface modifier in which the HSP parameters ( ⁇ d SQ , ⁇ p SQ , ⁇ h SQ ) of the surface modification unit Q are closer to the values of the HSP parameters ( ⁇ d A , ⁇ p A , ⁇ h A ) of the polymer material By using the compound, the compatibility between the surface-modified inorganic powder and the polymer material can be enhanced, and high filling, high dispersion, high fluidization, and the like of the composite material can be achieved.
  • the HSP parameters ( ⁇ d M , ⁇ p M , ⁇ h M ) of the inorganic material before surface modification are set to the HSP parameters of the polymer material.
  • HSP parameters ( ⁇ d S , ⁇ p S , ⁇ h S ) of the entire surface modifier including the reactive moiety R with the inorganic material It was compared to the HSP parameters ( ⁇ d A , ⁇ p A , ⁇ h A ).
  • the HSP parameters ( ⁇ d S , ⁇ p S , ⁇ h S ) of the whole surface modifier include the contribution from the reactive portion R which does not interact with the polymer material. Therefore, in consideration of the HSP parameters of the entire surface modifier, even if the surface modifier having a small HSP distance Ra from the polymer material is selected, only the surface modified portion Q excluding the reactive part R is considered. HSP parameters ( ⁇ d SQ , ⁇ p SQ , ⁇ h SQ ) move away from the HSP parameters of the polymer material.
  • ⁇ d SQ is in the range of 14 ⁇ ⁇ d SQ ⁇ 20
  • ⁇ p SQ is in the range of 6.5 ⁇ ⁇ p SQ ⁇ 12.5
  • ⁇ h SQ is 9
  • a surface modifier within the range of 1 ⁇ ⁇ h SQ ⁇ 15.1 may be used.
  • the compatibility between the inorganic material and the polymer material having an amide bond is improved, the composite material can be highly filled, highly dispersed, or fluidized, and the composite material can be highly functional.
  • Ru More preferably, in addition to the above conditions, the use of a surface modifier having an Ra of 3.7 or less, which is represented by the formula 1, realizes a composite material with significantly low viscosity and excellent fluidity. it can.
  • the specific chemical structure of the surface modifying agent including the surface modifying portion Q which satisfies the above conditions and is suitable for the polymer material having an amide bond is, for example, represented by the following chemical formulas (1) to (11) Structures are listed. However, in the chemical formulas (1) to (11), R indicates a reactive moiety that bonds to the inorganic material. The part except R corresponds to the surface modification part Q. The specific structure of the R portion will be described later.
  • the surface modifier represented by the following chemical formula (4) further has a carboxyl group (—COOH) in the surface modification unit Q.
  • the surface modifiers represented by the following chemical formulas (5) and (6) each further have an amino group (—NH 2 ) in the surface modification unit Q.
  • the surface modifiers represented by the following chemical formulas (7) and (8) each further have a thiol group (—SH) in the surface modification unit Q.
  • the surface modifier represented by the following chemical formula (9) further has a carboxyl group (—COOH) in the surface modification unit Q.
  • the surface modifier represented by the following chemical formula (10) further has a thiol group (-SH) in the surface modification unit Q.
  • the surface modifier represented by the following chemical formula (11) further has an amino group (—NH 2 ) in the surface modification unit Q.
  • ⁇ d SQ is in the range of 14.4 ⁇ ⁇ d SQ ⁇ 20.4, and ⁇ p SQ is 14 ⁇ ⁇ p SQ ⁇ 20.
  • the surface modifier may be used in which ⁇ h SQ is in the range of 16.1 ⁇ ⁇ h SQ ⁇ 22.1.
  • ⁇ h SQ is in the range of 16.1 ⁇ ⁇ h SQ ⁇ 22.1.
  • Chemical formulas (12) and (13) are examples having a fluorine group as a halogen group in the surface modification unit Q.
  • the halogen group is not limited to a fluorine group, and may be a chlorine group, a bromine group or an iodine group.
  • Chemical formula (12) is an example which has an amino group (—NH 2 ) in the surface modification unit Q.
  • Chemical formula (13) is an example having a carboxyl group (—COOH) in the surface modification unit Q.
  • Chemical formulas (14) and (15) are examples having an amino group (—NH 2 ) in the surface modification unit Q.
  • Chemical formula (14) is an example having a nitrile group (—C ⁇ N) in the surface modification unit Q.
  • Chemical formula (15) is an example which has a halogen group (fluorine group) in the surface modification part Q.
  • Chemical formulas (1) to (15) are examples, and the structure of the surface modification unit Q may be any of an aromatic compound, an aliphatic compound and an alicyclic compound.
  • the functional group of the surface modifying unit Q is exemplified by a phenolic or alcoholic hydroxyl group, a carboxyl group, an amino group, a thiol group, a halogen group, and a nitrile group, but is not limited thereto. Also, these functional groups can not be introduced only to the specific compounds exemplified in the chemical formulas (1) to (15). Any chemical structure can be adopted as long as ⁇ d SQ , ⁇ p SQ and ⁇ h SQ satisfy the above conditions and can be stably synthesized.
  • a silane coupling agent As a surface modifier, a silane coupling agent, a titanate coupling agent, or phosphonic acid is mentioned, for example.
  • Ti is tetravalent
  • the surface modification unit Q has three functional groups (Q 1 , Q 2 , Q 3 and It consists of In this case, Q 1, Q 2, and considering all the contributions of the Hansen solubility parameters by Q 3, Q 1, Q 2, and the contribution by the entire surface modification portion Q comprising Q 3 ( ⁇ d SQ, ⁇ p SQ , ⁇ h SQ ) such that ⁇ d SQ ⁇ d A , ⁇ p SQ ⁇ p A and ⁇ h SQ ⁇ h A satisfy the above conditions.
  • the surface modification unit Q is composed of two functional groups (referred to as Q 1 and Q 2 ) each bound to Ti, but in this case as well, Q 1 and Assuming that the contribution of the Hansen solubility parameter by the entire surface modification portion Q including Q 2 is ( ⁇ d SQ , ⁇ p SQ , ⁇ h SQ ), ⁇ d SQ - ⁇ d A , ⁇ p SQ - ⁇ p A , ⁇ h SQ - ⁇ h A are the above conditions To meet
  • the alkoxy group may react with the inorganic material to form a bonding site between the inorganic material and the surface modifying portion.
  • an alkoxy group (methoxy group) present in the reaction portion reacts with the inorganic material, and a silanol group generated by hydrolysis. Reacts with the hydroxyl group present on the surface of the inorganic material M, and the bonding of the Si—O—M bonds the inorganic material and the surface modified portion Q.
  • three silanol groups can be generated. Of these three silanol groups, all may be reacted with the inorganic material, but one or two silanol groups may be dehydrated and condensed with the silanol groups of another adjacent surface modifier. Thereby, the bond between the inorganic material and the surface modified portion Q is strengthened.
  • the alkoxy group (isopropoxy group) present in the reaction portion reacts with the inorganic material M to bond Ti—O—M.
  • the inorganic material and the surface modification portion Q are bonded.
  • organic phosphonic acid Q-PO (OH) 2
  • Q-PO (OH) 2 organic phosphonic acid
  • Q-PO (OH) 2 organic phosphonic acid
  • Q is a surface-modified portion, which corresponds to the portion excluding the R portion in the examples of the chemical formulas (1) to (15).
  • the above chemical formulas (1) to The structure shown in (15) can be used.
  • the phosphonic acid has two hydroxyl groups in the reactive portion R with the inorganic material.
  • one of the two hydroxyl groups of the phosphonic acid reacts with the hydroxyl group of the inorganic material M, and a dehydration reaction forms a bond of POM, forming a bonding site between the inorganic material and the surface modification portion Be done.
  • the other hydroxyl group of phosphonic acid can supply protons to regenerate the hydroxyl group on the surface of the inorganic material M.
  • the regenerated hydroxyl group can be bound to another hydroxyl group of phosphonic acid by dehydration reaction.
  • an inorganic material surface-modified to a high density is obtained by chain reaction.
  • the inorganic material is preferably a magnetic material. More preferably, the magnetic material is at least one selected from the group consisting of Nd-Fe-B based magnetic powder, Sm-Fe-N based magnetic powder, Sm-Co based magnetic powder, and ferrite based magnetic powder. Including. With this configuration, high packing, high dispersion, and high fluidity of the magnetic powder can be realized, a resin magnet with high magnetic force can be realized, and a magnetic powder suitable for a compound for a bonded magnet can be provided.
  • FIG. 1 is a schematic view showing the structure of a bonded magnet compound as a composite material configured using a surface-modified inorganic powder and a polymer material according to an embodiment of the present invention.
  • the bonded magnet compound (composite material) 5 includes a surface-modified inorganic powder 4 and a polymer material (resin) 2.
  • the surface modified inorganic powder 4 includes a rare earth magnetic powder (inorganic material) 1 and a surface modified portion 3.
  • the surface modified portion 3 covering the rare earth magnetic powder 1 is formed as a result of the reaction between the rare earth magnetic powder 1 and the surface modifier.
  • the material constituting the rare earth magnetic powder 1 is not particularly limited.
  • Nd-Fe-B magnetic powder, Sm-Co magnetic powder, Sm-Fe-N magnetic powder, or a mixture of these magnetic powders is adopted.
  • Nd--Fe--B magnetic powder, Sm--Fe--N magnetic powder, and a mixture of these magnetic powders it is more preferable to use Nd--Fe--B magnetic powder, Sm--Fe--N magnetic powder, and a mixture of these magnetic powders.
  • the heat resistance of the magnetic powder can be further enhanced by covering the rare earth magnetic powder in advance with the heat resistant film.
  • the heat resistant film is not particularly limited, but is preferably an inorganic phosphoric acid compound.
  • the content of the rare earth magnetic powder 1 is preferably adjusted to be in the range of 66 to 83% by volume or in the range of 92 to 98% by mass with respect to the total amount of the rare earth bonded magnet.
  • the content of the rare earth magnetic powder is preferably adjusted so that the density of the rare earth bonded magnet is in the range of 5.4 Mg / m 3 to 6.5 Mg / m 3 .
  • the content of magnetic powder is increased by mixing magnetic powder having a large average particle diameter and magnetic powder having a small average particle diameter, and filling gaps between magnetic particles having a large average particle diameter with magnetic powder having a small average particle diameter. Techniques are commonly used. Naturally, in the present invention, it is possible to mix and use a magnetic powder having a large average particle size and a magnetic powder having a small average particle size.
  • the rare earth magnetic powder 1 include isotropic Nd-Fe-B magnetic powder (trade name: MQP-7-8, MQP-8-5, MQP-10-8.5HD, manufactured by Magnequench Co., Ltd.) MQP-11-8, MQP-13-9, MQP-14-9, MQP-14-12, MQP-14-13, MQP-15-7, MQP-15-9HD, MQP-16-7, MQP- 16-9 HD, MQP-B, MQP-B +, or MQP-S-11-9) can be used.
  • the average particle size is, for example, 90 ⁇ m.
  • These magnetic powders can be used by applying a phosphate coating for preventing oxidation beforehand.
  • the polymeric material 2 can use a polyamide-type resin suitably as a polymeric material which has an amide bond.
  • a polyamide-type resin suitably as a polymeric material which has an amide bond.
  • "Unitika nylon 6 grade A1012" manufactured by Unitika Co., Ltd. can be used.
  • the common name of this resin is polyamide 6 resin.
  • polyamide 11 resin, polyamide 12 resin, polyamide 46 resin, polyamide 66 resin, polyamide 610 resin, polyamide 612 resin, polyamide 1010 resin, polyamide 1012 resin, polyamide 6 T resin, polyamide 9 T Resin, polyamide 10T resin, or a mixture of several of these materials can be used.
  • the shape of the polyamide resin is not particularly limited.
  • a powder, a bead, a pellet, or a mixture of these aspects may be employed.
  • polyamide 6 resin is suitable for applications that require relatively high flowability and melting point, and high heat resistance.
  • the molecular weight of the polyamide resin is preferably low as long as the desired strength is obtained. Moreover, you may employ
  • LCP resin liquid crystal polymer
  • UENO LCP A8100 brand name "UENO LCP A8100” by Ueno Pharmaceutical Co., Ltd. is mentioned, it is not limited to this, and if it is resin of the characteristic equivalent to the above-mentioned LCP resin (liquid crystal polymer), It is available.
  • the surface modifier takes into consideration the HSP parameters of the polymer material, and the HSP parameter of the surface modification unit 3 has the above-mentioned relationship
  • the polymer material 2 is a polyamide resin
  • the polymer material 2 is an LCP resin, for example, a surface modifier having a chemical structure represented by the above chemical formulas (12) to (15) can be suitably used.
  • Bonded magnet compounds are surface modified with additives such as lubricants, antioxidants, heavy metal deactivators, plasticizers, and modifiers, as appropriate, in order to eliminate defects in the manufacturing process and the like. It can be included separately from the agent.
  • additives such as lubricants, antioxidants, heavy metal deactivators, plasticizers, and modifiers, as appropriate, in order to eliminate defects in the manufacturing process and the like. It can be included separately from the agent.
  • ethylenediamine-stearic acid-sebacic acid polycondensates can be used as additives to reduce the viscosity of the compound and to improve the flowability.
  • trade name “Light Amide WH-215” manufactured by Kyoeisha Chemical Co., Ltd. can be used.
  • the method of manufacturing the magnet compound and the bonded magnet of the present embodiment includes, for example, the following steps.
  • the coated rare earth magnetic powder is separated from the organic solvent using a centrifuge.
  • the separated rare earth magnetic powder is washed again with an organic solvent and dried under reduced pressure to obtain a rare earth magnetic powder 1 (surface modified inorganic powder 4) whose surface is covered with the surface modifying portion 3.
  • a compound magnet compound 5 is produced.
  • the shape of the bonded magnet compound 5 is not particularly limited. For example, powder, beads, pellets, or a mixture of these shapes may be employed.
  • the bonded magnet compound 5 is processed into a predetermined shape using an injection molding machine, a transfer molding machine or the like to produce a bonded magnet.
  • the bonded magnet compound 5 is heated, pressurized and melted by the injection molding machine.
  • the melt of the bonded magnet compound 5 is injected into the inside of a molding die placed on an injection molding machine, and is thus filled into the inside of the molding die.
  • the bonded magnet compound 5 filled inside the molding die is solidified by cooling, and the bonded magnet is completed.
  • the bonded magnet in this state is not magnetized and is not magnetized.
  • the non-magnetized bond magnet is magnetized by the magnetizing device as it is or after being incorporated into the mounted product.
  • the evaluation of the manufactured cylindrical bonded magnet can evaluate a density using the Archimedes method. Moreover, magnetic characteristics can be evaluated using VSM (Vibrating Sample Magnetometer: vibrating sample type magnetometer).
  • FT-IR Fullier Transform Infrared Spectroscopy: Fourier transform infrared spectroscopy
  • FD-MS Field Desorption Mass Spectroscopy: field desorption mass spectrometry
  • GPC gel permeation chromatography
  • GC-MS gas chromatography mass
  • NMR Nuclear Magnetic Resonance: nuclear magnetic resonance
  • Examples 1 to 11 According to the above-described method of preparing a rare earth magnetic powder, “MQP-14-12” manufactured by Magnequeze Co., Ltd. as an inorganic material (rare earth magnetic powder) is treated with a surface modifier, and a polyamide 6 resin as a polymer material (UNITICA CORPORATION) Product "UNITICA nylon 6 grade A1012", “Keieiisha Chemical Co., Ltd. light amaide WH-215" as an additive, mixing and kneading with a predetermined compounding ratio, and processing the kneaded material into a pellet shape with a pelletizer etc. , The compound for a bonded magnet was obtained. The blending ratio of the inorganic material, the polymer material, the additive, and the surface modifier was 94.25: 5: 0.5: 0.25 in mass ratio, respectively. The kneading temperature was 250 ° C.
  • the structures represented by the above chemical formulas (1) to (11) were synthesized and used as the surface modifiers in Examples 1 to 11, respectively.
  • a structure of R part either the trimethoxysilane group shown to Chemical formula (16), the triethoxysilane group shown to Chemical formula (17), or a phosphonic acid was selected suitably.
  • index of fluidity was measured about the produced compound for bonded magnets using the capillary rheometer.
  • the viscosity of the bonded magnet compound at 300 ° C. was measured.
  • the HSP parameters of the polymeric material were measured according to the HSPiP program described above. Specifically, when dissolution experiments were performed on a solvent in which 33 types of HSP parameters are known, 5 types were dissolved at normal temperature, and the other 28 types were not dissolved. The 33 solvents subjected to dissolution experiments are shown below, including the dissolution / non-dissolution results.
  • Dissolved solvent p-chlorophenol, trifluoroacetic acid, hexafluoroisopropanol, 2,2,2-trifluoroethanol, 2-fluoroethanol
  • Solvents that did not dissolve Acetic acid, acetone, acetonitrile, aniline, benzyl alcohol, bromobenzene, 1-bromonaphthalene, ⁇ -butyrolactone (GBL), 1-chlorobutane, chloroform, p-chlorotoluene, o-dichlorobenzene, dimethyl sulfoxide (DMSO), 1,4-dioxane, ethanol, ethanolamine, fluorobenzene, formamide, methanol, N-methylformamide, 1-methylimidazole, octane, quinoline, 1,1,2,2-tetrabromoethane, tetrahydrofuran ( THF), toluene, 1,1,2-trichloroethane, 4- (trifluoromethyl) acetophenone
  • the HSP parameter of the polymeric material (polyamide 6) is obtained by obtaining a Hansen sphere in which the dissolving solvent is inside the sphere, the non-dissolving solvent is outside the sphere, and the radius is the smallest.
  • Example 1 A rare earth magnetic powder was produced in the same manner as in Example 1 except that the surface treatment with a surface modifier was not performed. Specifically, in Example 1, the surface modifying agent is not added, and the blending ratio of the inorganic material, the polymer material, and the additive is 94.25: 5.25: 0. The mixture of 5 was kneaded to obtain a bonded magnet compound.
  • the particle size when inorganic material powder is dispersed in a plurality of organic solvents whose HSP parameters are known is measured based on dynamic light scattering method, and the difference in particle size between solvents due to difference in aggregation and dispersion
  • the wettability of the inorganic material was determined, and the HSP parameters ( ⁇ d M , ⁇ p M , ⁇ h M ) of the inorganic material (rare earth magnetic powder) were measured.
  • the solvent having an average particle size within 2 times the average particle size of the inorganic material powder was evaluated as having good wettability.
  • Inorganic is obtained by including a solvent judged to have good wettability on the inside of the sphere, a solvent not judged to have good wettability is on the outside of the sphere, and the radius is minimized.
  • Comparative Example 2 A rare earth magnetic powder was produced in the same manner as in Example 1 except that a material represented by the following chemical formula (29) was used as a surface modifier.
  • a rare earth magnetic powder was produced in the same manner as in Example 1 except that a material represented by the following chemical formula (30) was used as a surface modifier.
  • the portion of trimethoxysilane group (-Si (OCH 3 ) 3 ) is the reactive portion R with the surface of the inorganic material, and the portion other than this is the surface modified portion Q .
  • the contribution ( ⁇ d SQ , ⁇ p SQ , ⁇ h SQ ) by the surface modification portion of the HSP parameter is a molecular group contribution Calculated according to the method, ⁇ d SQ - ⁇ d A , ⁇ p SQ - ⁇ p A and ⁇ h SQ - ⁇ h A were derived.
  • Table 1 shows differences in HSP parameters between the surface modified portion and the polymer material in Examples 1 to 11 and Comparative Examples 1 to 3, ⁇ d SQ- ⁇ d A , ⁇ p SQ- ⁇ p A , and ⁇ h The value of SQ- ⁇ h A is shown.
  • the unit of HSP parameter is (J / cm 3 ) 1/2 .
  • the HSP parameters ( ⁇ d M , ⁇ p M ) of the inorganic material are substituted for the HSP parameters ( ⁇ d SQ , ⁇ p SQ , ⁇ h SQ ) of the surface modified portion. , ⁇ h M ) were used.
  • a surface-modified inorganic powder 4 was produced using LCP resin instead of the polyamide resin of Examples 1 to 11 as a polymer material, and a bonded magnet compound 5 was produced and evaluated.
  • Examples 12 to 15 LCP resin (Ueno Pharmaceutical Co., Ltd.) as the polymer material 2 is treated with a surface modifier as an inorganic material (rare earth magnetic powder 1) according to the method of preparing the rare earth magnetic powder described above, “MQP-14-12” manufactured by Magneque "UENO LCP A8100” made by Co., Ltd. and "Light Amide WH-215" made by Kyoeisha Chemical Co., Ltd. as an additive, mixing and kneading at a predetermined blending ratio, and processing the kneaded material into pellets with a pelletizer etc. , And Bond magnet compound 5 were obtained.
  • the blending ratio of the inorganic material, the polymer material, the additive, and the surface modifier was 94.25: 5: 0.5: 0.25 in mass ratio, respectively.
  • the kneading temperature was 250 ° C.
  • the structures represented by the above chemical formulas (12) to (15) were synthesized and used as the surface modifier in Examples 12 to 15, respectively.
  • a structure of R part either the trimethoxysilane group shown to Chemical formula (16), the triethoxysilane group shown to Chemical formula (17), or a phosphonic acid was selected suitably.
  • index of fluidity was measured about the produced compound for bonded magnets using the capillary rheometer.
  • the viscosity of the bonded magnet compound at 300 ° C. was measured.
  • the HSP parameters of the polymeric material were measured. Since the LCP resin is not soluble in most solvents, the contact angles when various solvents were dropped on the LCP resin plate were measured to evaluate the wettability with the solvent.
  • 2 types of 11 types of solvents were dissolved at normal temperature, and the other 9 types were not dissolved.
  • the 11 solvents subjected to dissolution experiments are shown below, including the dissolution / non-dissolution results.
  • Solvents which did not dissolve: Nitrobenzene, 1-bromonaphthalene, benzyl benzoate, quinoline, ⁇ -butyrolactone (GBL), N-methylaniline, dimethyl sulfoxide (DMSO), ethylene glycol, formaldehyde
  • the HSP parameter of the polymer material (LCP resin) is obtained by obtaining a Hansen sphere in which the solvent to be dissolved is inside the sphere, the undissolved solvent is outside the sphere, and the radius is the smallest.
  • Example 4 A rare earth magnetic powder was produced in the same manner as in Example 12 except that the surface modification was not performed by the surface modifier. Specifically, in Example 12, the surface modifying agent was not added, and the blending ratio of the inorganic material, the polymer material, and the additive was 94.25: 5.25: 0 in mass ratio, respectively. The mixture of 5 was kneaded to obtain a bonded magnet compound.
  • Comparative Example 5 A rare earth magnetic powder was produced in the same manner as in Example 12, except that a material represented by the following chemical formula (31) was used as a surface modifier.
  • Comparative Example 6 A rare earth magnetic powder was produced in the same manner as in Example 12, except that a material represented by the following chemical formula (32) was used as a surface modifier.
  • the portion of trimethoxysilane group (-Si (OCH 3 ) 3 ) is the reactive portion R with the surface of the inorganic material, and the portion other than this is the surface modified portion Q .
  • the contribution ( ⁇ d SQ , ⁇ p SQ , ⁇ h SQ ) by the surface modification portion of the HSP parameter Calculated according to the contribution method, ⁇ d SQ - ⁇ d A , ⁇ p SQ - ⁇ p A and ⁇ h SQ - ⁇ h A were derived.
  • Table 2 shows differences in HSP parameters between the surface modified portion and the polymer material in Examples 12 to 15 and Comparative Examples 4 to 6, ⁇ d SQ- ⁇ d A , ⁇ p SQ- ⁇ p A , and ⁇ h The value of SQ- ⁇ h A is shown. However, in Comparative Example 4, since no surface modifier is used, HSP parameters ( ⁇ d M , ⁇ p M ) of the inorganic material are substituted for the HSP parameters ( ⁇ d SQ , ⁇ p SQ , ⁇ h SQ ) of the surface modified portion. , ⁇ h M ) were used.
  • Table 3 shows the results of measuring the viscosity of the bonded magnet compound for Examples 1 to 11 and Comparative Examples 1 to 3. As shown in Table 3, it can be seen that the bonded magnet compounds of Examples 1 to 11 have significantly reduced viscosity compared to Comparative Examples 1 to 3, and exhibit good flowability.
  • Table 4 shows the results of measuring the viscosity of the bonded magnet compound for Examples 12 to 15 and Comparative Examples 4 to 6. As shown in Table 4, it can be seen that the bonded magnet compounds of Examples 12 to 15 have significantly reduced viscosity compared to Comparative Examples 4 to 6, and exhibit good flowability.
  • HSP distance Ra between the surface modification part Q and the polymer material is shown together with the measurement result of the viscosity.
  • HSP distance Ra in Tables 3 and 4 HSP parameters due to the surface modification portion Q ( ⁇ d SQ, ⁇ p SQ, ⁇ h SQ) and is regarded as HSP parameters of the surface modifier, a polymeric material
  • HSP distance Ra between them is calculated based on Formula 1.
  • FIG. 2 is a graph of the results of Table 3.
  • FIG. 3 is a graph of the results of Table 4. It can be seen from FIGS. 2 and 3 that there is a substantially linear relationship between the HSP distance Ra and the viscosity. This is a proof that it is effective to evaluate the compatibility with the polymer material based on the contribution ( ⁇ d SQ , ⁇ p SQ , ⁇ h SQ ) of the HSP parameter to the surface modification portion.
  • the composite material according to the present invention has various functions such as conductive materials, EMC materials, recording materials, magnetic materials, sliding materials, sealing materials, damping materials, dental materials, heat insulating materials, heat conductive materials, buoyancy materials, etc. It can be used as a material.

Abstract

A composite material comprising a polymeric material and a surface-modifying inorganic powder that is a reaction product of an inorganic material with a surface modifier, wherein the surface modifier has a surface modifying moiety Q and a reaction moiety R which can react with the inorganic material, and the surface-modifying inorganic powder has the inorganic material and the surface-modifying moiety Q that coats the surface of the inorganic material. Each of the differences between the contributions δdSQ, δpSQ and δhSQ of the surface modifying moiety at the Hansen solubility parameters δdS, δpS and δhS of the surface modifier and the Hansen solubility parameters δdA, δpA and δhA of the polymeric material, i.e.,δdSQ-δdA, δpSQ-δpA and δhSQ-δhA, is adjusted to a value falling within the range of ±3 (J/cm3)1/2.

Description

複合材料Composite material
 本発明は、無機材料と高分子材料とを組み合わせた複合材料に関し、特に、表面改質剤によって表面改質がされた無機材料と高分子材料との複合材料に関する。 The present invention relates to a composite material in which an inorganic material and a polymer material are combined, and more particularly to a composite material of an inorganic material and a polymer material which has been surface-modified by a surface modifier.
 無機材料と高分子材料とを含む複合材料は、無機材料および高分子材料の種類を変えることで、導電性材料、EMC(電磁両立性)材料、記録材料、磁性材料、摺動性材料、封止材料、制振材料、歯科材料、断熱材料、熱伝導性材料、浮力材料等、多種多様な機能材料としての利用が可能であることから、様々な分野で応用されている。 A composite material containing an inorganic material and a polymer material can change the types of the inorganic material and the polymer material to form a conductive material, an EMC (electromagnetic compatibility) material, a recording material, a magnetic material, a sliding material, and a seal. It is applied in various fields because it can be used as a wide variety of functional materials such as stop materials, damping materials, dental materials, heat insulation materials, heat conductive materials, buoyancy materials and the like.
 例えば、導電性材料には、カーボンブラック、金属粉末など、磁性材料には、フェライト粉末、Nd-Fe-B系磁性粉末など、熱伝導性材料には、アルミナ、摺動性材料には、黒鉛、硫化モリブデンなどが、無機材料として使用されている。 For example, conductive materials such as carbon black and metal powders, magnetic materials such as ferrite powders and Nd-Fe-B magnetic powders, thermally conductive materials such as alumina, and sliding materials such as graphite And molybdenum sulfide are used as inorganic materials.
 高分子材料としては、熱特性、機械特性、形状、工法などを考慮し、熱可塑性樹脂のポリブチレンテレフタレート(PBT)、ポリアミド(PA)、ポリフェニレンサルファイド(PPS)、液晶ポリマー(LCP)など、或いは、熱硬化性樹脂のエポキシ樹脂、フェノール樹脂などが、適宜選択される。 As the polymer material, a thermoplastic resin such as polybutylene terephthalate (PBT), polyamide (PA), polyphenylene sulfide (PPS), liquid crystal polymer (LCP), or the like in consideration of thermal characteristics, mechanical characteristics, shape, construction method, etc. The epoxy resin of a thermosetting resin, a phenol resin, etc. are selected suitably.
 これら複合材料では、高機能化のため、無機材料の高充填化、高分散化、或いは高流動化が実施される。例えば導電性材料ならば、導電性を有するカーボンブラックを高充填化することで導電性を向上させることができる。また、例えば表面改質剤などを無機材料粉末に添加し、複合材料における無機材料粉末の高充填化、高分散化、或いは高流動化を行うことができる。 In these composite materials, high packing, high dispersion, or high fluidization of inorganic materials is performed to achieve high functionality. For example, in the case of a conductive material, the conductivity can be improved by increasing the loading of the conductive carbon black. In addition, for example, a surface modifier or the like can be added to the inorganic material powder to achieve high filling, high dispersion, or high fluidization of the inorganic material powder in the composite material.
 したがって、複合材料の高機能化には、有効な表面改質剤を選択することが重要なポイントとなる。 Therefore, it is important to select an effective surface modifier for functionalization of the composite material.
 複合材料における表面改質剤を選択するために利用可能な、各材料の溶解性を数値化した指標としては、Kauri-Butanol数、National Gallery of Art Research Projectにより開発された溶解度等級(Solubility Grade)、溶解状態を維持しながらベンゼン/蜜蝋溶液に加えることのできる溶媒の量として表したワックス数、ヒルデブランドの溶解度パラメータ、ハンセン溶解度パラメータなどが挙げられる。なかでも、最も広く適用されているものはヒルデブランド溶解度パラメータ、及び、ハンセン溶解度パラメータである。 Kauri-Butanol number, a Solubility Grade developed by the National Gallery of Art Research Project, as a numerical indicator of the solubility of each material that can be used to select surface modifiers in composite materials The wax number expressed as the amount of solvent that can be added to the benzene / beeswax solution while maintaining the solution state, Hildebrand's solubility parameter, Hansen solubility parameter, etc. may be mentioned. Among the most widely applied are the Hildebrand solubility parameter and the Hansen solubility parameter.
 ヒルデブランド溶解度パラメータは、ファンデルワールス力のみを考慮しており無極性の分子にしか適用できない。一方で、ハンセン溶解度パラメータは、ファンデルワールス力に加えて、水素結合力および極性力も考慮していることから、極性分子にも適用可能であり、応用範囲が広い。ハンセン溶解度パラメータは、主に溶剤同士、溶剤と樹脂、樹脂と樹脂等の2つの異なる物質同士の相溶性の判断に適用されている。 The Hildebrand solubility parameter only considers van der Waals forces and can only be applied to nonpolar molecules. On the other hand, the Hansen solubility parameter is applicable to polar molecules because it takes into consideration not only van der Waals force but also hydrogen bonding force and polarity force, and the application range is wide. The Hansen solubility parameter is mainly applied to the determination of the compatibility between two different substances such as solvents, solvents and resins, and resins and resins.
 例えば、特許文献1では、難燃剤を含む熱可塑性樹脂組成物から難燃剤を分離するに際して、当該樹脂組成物を、ハンセン溶解度パラメータの水素結合項δHが6.0以上の溶媒と接触させている。これにより、難燃剤を積極的に溶媒に溶解させている。 For example, in Patent Document 1, when separating a flame retardant from a thermoplastic resin composition containing a flame retardant, the resin composition is brought into contact with a solvent having a hydrogen bonding term δH of a Hansen solubility parameter of 6.0 or more. . Thereby, the flame retardant is actively dissolved in the solvent.
 また、特許文献2では、酸性基を含み少なくとも一部が中和された水溶性エチレン系不飽和単量体を、炭素数2乃至20のポリオールのジ(メタ)アクリレート、および炭素数2乃至20のポリオールのポリ(メタ)アクリレートからなる群より選択される1種以上の内部架橋剤で重合させた粉末形態のベース樹脂を用いて、高吸水性樹脂を構成している。さらに、当該ベース樹脂を、ハンセン溶解度パラメータによって定義されるδpがδp<12(J/cm31/2を満たす物質、δHが4<δH<6(J/cm31/2を満たす物質、およびδtotがδtot>31(J/cm31/2を満たす物質からなる群より選択される1種以上で表面架橋させることが示されている。 Further, in Patent Document 2, a water-soluble ethylenically unsaturated monomer which contains an acidic group and is at least partially neutralized, a di (meth) acrylate of a polyol having 2 to 20 carbon atoms, and a carbon number of 2 to 20 A highly water-absorbent resin is constituted using a base resin in powder form polymerized with one or more internal crosslinking agents selected from the group consisting of poly (meth) acrylates of polyols. Furthermore, the base resin is a substance in which δ p satisfies δ p <12 (J / cm 3 ) 1/2, which is defined by the Hansen solubility parameter, δ H is 4 <δ H <6 (J / cm 3 ) 1 / 2 satisfy the substance, and [delta] tot is δ tot> 31 (J / cm 3) be surface crosslinked with one or more selected from the group consisting of materials satisfying 1/2 is shown.
特開2002-37914号公報Japanese Patent Application Laid-Open No. 2002-37914 特表2016-516877号公報Japanese Patent Publication No. 2016-516877
 上述の通り、無機材料と高分子材料とを含む複合材料の高機能化のため、無機材料粉末の高充填化、高分散化、或いは高流動化を行う場合、無機材料と高分子材料の相溶性を高める必要がある。 As described above, when high packing, high dispersion, or high fluidity of inorganic material powder is performed to enhance the functionality of a composite material including an inorganic material and a polymeric material, the phase of the inorganic material and the polymeric material There is a need to increase the solubility.
 無機材料と高分子材料との相溶性を高めるためには、表面改質がされた無機材料と、高分子材料との相溶性が優れたものとなるように、表面改質剤を選択する必要がある。しかし、表面改質された無機材料の溶解性を予測および評価する指針は現在まで見出されていない。このため、最適な表面改質剤を選択するにあっては、実験等を繰り返して、多数種の試作品を評価することを要し、好適と思われる表面改質剤を一つ見出すだけでも、多大な開発時間と産業的コストとを伴うものであった。 In order to enhance the compatibility between the inorganic material and the polymer material, it is necessary to select a surface modifier so that the compatibility between the surface-modified inorganic material and the polymer material is excellent. There is. However, no guidance has been found so far to predict and evaluate the solubility of surface-modified inorganic materials. For this reason, in selecting an optimal surface modifier, it is necessary to repeat experiments and the like to evaluate a large number of prototypes, and even if only one surface modifier that seems to be suitable is found , With a great deal of development time and industrial costs.
 特許文献2では、吸水性高分子と表面架橋剤の相溶性の評価のために、ハンセン溶解度パラメータを利用している。しかしながら、この方法では表面改質された無機粉末と高分子材料の相溶性の評価は困難である。 In patent document 2, a Hansen solubility parameter is utilized for evaluation of the compatibility of a water absorbing polymer and a surface crosslinking agent. However, in this method, it is difficult to evaluate the compatibility between the surface-modified inorganic powder and the polymer material.
 以上の通り、無機材料と高分子材料に加え、表面改質剤などの副材料を含む複合材料の高機能化を図るための指針は何ら存在せず、新たな技術思想が望まれる状況であった。 As mentioned above, in addition to inorganic materials and polymer materials, there are no guidelines for enhancing the functionality of composite materials including auxiliary materials such as surface modifiers, and a new technological concept is desired. The
 上記に鑑み、本発明の一側面は、高分子材料と、無機材料と表面改質剤との反応生成物である表面改質無機粉末と、を含む複合材料であって、
 前記表面改質剤は、表面改質部Qと、無機材料との反応部分Rと、を有し、
 前記表面改質無機粉末は、前記無機材料と、前記無機材料の表面を被覆する前記表面改質部Qと、を有し、
 前記表面改質部Qは、被相溶対象である前記高分子材料に対して相溶する性質を有し、
 前記表面改質剤のハンセン溶解度パラメータδdS、δpS、δhSにおける前記表面改質部Qによる寄与δdSQ、δpSQ、δhSQと、前記高分子材料のハンセン溶解度パラメータδdA、δpA、δhAとのそれぞれの差δdSQ-δdA、δpSQ-δpA、δhSQ-δhAが、いずれも、±3(J/cm31/2の範囲内にある、複合材料に関する。
In view of the above, one aspect of the present invention is a composite material comprising a polymer material and a surface-modified inorganic powder which is a reaction product of an inorganic material and a surface modifier,
The surface modifier has a surface modification portion Q and a reaction portion R with an inorganic material,
The surface-modified inorganic powder includes the inorganic material and the surface-modified portion Q that covers the surface of the inorganic material,
The surface modifying portion Q has a property of being compatible with the polymer material to be compatible.
Contribution of the surface modification unit Q to the Hansen solubility parameter δd S , δp S , δh S of the surface modifier δd SQ , δp SQ , δh SQ and the Hansen solubility parameter δd A , δp A of the polymer material each difference δd SQ -δd a and δh a, δp SQ -δp a, δh SQ -δh a are both within the scope of ± 3 (J / cm 3) 1/2, a composite material.
 本発明によれば、高分子材料と無機材料とを含む複合材料の高機能化が可能になる。 According to the present invention, it is possible to enhance the functionality of a composite material including a polymer material and an inorganic material.
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。 While the novel features of the present invention are set forth in the appended claims, the present invention, both in terms of construction and content, together with other objects and features of the present invention, will It will be well understood.
本発明の一実施形態に係る表面改質無機粉末を用いたボンド磁石用コンパウンドの構造を示す模式図である。It is a schematic diagram which shows the structure of the compound for bonded magnets using the surface modification inorganic powder which concerns on one Embodiment of this invention. ポリアミド樹脂を高分子材料に用いたボンド磁石用コンパウンドにおいて、ポリアミド樹脂に対する表面改質部のHSP距離Raとコンパウンドの粘度との関係を示すグラフである。In the compound for bonded magnets which used the polyamide resin for the polymer material, it is a graph which shows the relation between HSP distance Ra of the surface modification part to polyamide resin, and the viscosity of a compound. LCP樹脂を高分子材料に用いたボンド磁石用コンパウンドにおいて、LCP樹脂に対する表面改質部のHSP距離Raとコンパウンドの粘度との関係を示すグラフである。In the compound for bonded magnets which used LCP resin for polymer material, it is a graph which shows the relation between HSP distance Ra of the surface modification part to LCP resin, and the viscosity of a compound.
 以下において、本発明の実施形態を詳細に説明する。しかしながら、本発明は、以下の実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments.
 本発明の実施形態に係る複合材料は、高分子材料と、無機材料と表面改質剤との反応生成物である表面改質無機粉末と、を含む複合材料である。ここで、表面改質剤は、表面改質部Qと、無機材料との反応部分Rと、を有し、表面改質無機粉末は、無機材料と、無機材料の表面を被覆する表面改質部Qと、を有する。すなわち、表面改質部Qは、表面改質剤が無機材料と反応することにより、表面改質剤に応じた所定の結合部位を介して、無機材料に担持される。表面改質部Qは、被相溶対象である高分子材料に対して相溶する性質を有する。 A composite material according to an embodiment of the present invention is a composite material including a polymer material and a surface-modified inorganic powder which is a reaction product of an inorganic material and a surface modifier. Here, the surface modifier has a surface modification portion Q and a reaction portion R with the inorganic material, and the surface modified inorganic powder is a surface modification that covers the inorganic material and the surface of the inorganic material. And Q. That is, when the surface modifier reacts with the inorganic material, the surface modification unit Q is supported on the inorganic material via a predetermined bonding site corresponding to the surface modifier. The surface modified portion Q has a property of being compatible with the polymer material to be compatible.
 このとき、表面改質剤のハンセン溶解度パラメータδdS、δpS、δhSにおける表面改質部Qによる寄与δdSQ、δpSQ、δhSQと、高分子材料のハンセン溶解度パラメータδdA、δpA、δdAとのそれぞれの差δdSQ-δdA、δpSQ-δpA、δhSQ-δhAを、いずれも、±3(J/cm31/2の範囲内とする。即ち、
|δdSQ-δdA|≦3(J/cm31/2
|δpSQ-δpA|≦3(J/cm31/2、及び、
|δhSQ-δhA|≦3(J/cm31/2
を充足する表面改質剤を用いて無機材料の表面を改質し、表面改質無機粉末を得る。
At this time, the contribution of the surface modification unit Q to the Hansen solubility parameter δd S , δp S , δh S of the surface modifier δd SQ , δp SQ , δh SQ and the Hansen solubility parameter δd A , δp A of the polymer material each difference δd SQ -δd a and δd a, δp SQ -δp a, the .delta.h SQ - [Delta] H a, both, within a range of ± 3 (J / cm 3) 1/2. That is,
| Δd SQ -δd A | ≦ 3 (J / cm 3 ) 1/2 ,
| Δp SQ −δp A | ≦ 3 (J / cm 3 ) 1/2 , and
| Δh SQ −δh A | ≦ 3 (J / cm 3 ) 1/2 ,
The surface of the inorganic material is modified with a surface modifier that satisfies the condition (1) to obtain a surface-modified inorganic powder.
 ハンセン溶解度パラメータ(Hansen Solubility Parameter)(以下において、適宜「HSPパラメータ」と称する)は、材料同士の溶解性(ヌレ性)を表す指標であり、溶解性をロンドン分散力項(δd)、双極子間力項(δp)、水素結合力項(δh)の三次元ベクトルで表したものである。各材料に対して、溶解性を(δd、δp、δh)の三次元空間における位置座標で表したとき、当該三次元空間における材料間の距離(HSP距離)が近いほど、相溶性が高いとする。 The Hansen Solubility Parameter (hereinafter referred to as “HSP parameter” as appropriate) is an index representing the solubility (removal property) between materials, and the solubility is a London dispersion force term (δd), a dipole It is represented by a three-dimensional vector of the force term (δp) and the hydrogen bond force term (δh). For each material, when solubility is expressed by positional coordinates in (3d, 3d) space, (3d), the closer the distance (HSP distance) between the materials in the 3d space, the higher the compatibility. Do.
 ここで、ロンドン分散力は、微小時間における分子中の電荷の偏りにより生じる引力であり、無極性分子ではファンデルワールス力に等しい。ロンドン分散力に起因した溶解性がδdである。双極子間力は、双極子モーメントを持った分子(極性分子)の双極子間に作用する引力であり、双極子間力に起因した溶解性がδpである。水素結合力は、電気陰性度が大きな原子と共有結合して陽性を帯びた水素原子が、別の陰性な原子を陰イオンの半径に近い平衡距離にまで引き付けることによって生じる強い分子間力である。水素結合力に起因した溶解性がδhである。 Here, the London dispersion force is an attraction caused by the charge bias in the molecule at a minute time, and is equal to the van der Waals force in nonpolar molecules. The solubility due to the London dispersion power is δd. The inter-dipole force is an attractive force acting between dipoles of a molecule having a dipole moment (polar molecule), and the solubility due to the inter-dipole force is δp. The hydrogen bonding force is a strong intermolecular force generated by a hydrogen atom which is covalently bonded to an electronegativity large atom and a positive hydrogen atom attracts another negative atom to an equilibrium distance close to the radius of the anion. . The solubility due to the hydrogen bonding strength is δh.
 材料iのHSPパラメータを(δdi、δpi、δhi)、材料jのHSPパラメータを(δdj、δpj、δhj)としたとき、材料iと材料j間のHSP距離Raは、下記の数式1で表され、Raが小さいほど、材料iと材料jの相溶性が高くなる。
[数式1]
 Ra={4(δdi-δdj2+(δpi-δpj2+(δhi-δhj21/2
Assuming that the HSP parameter of material i is (δd i , δp i , δh i ) and the HSP parameter of material j is (δd j , δp j , δh j ), the HSP distance Ra between material i and material j is The smaller the Ra, the higher the compatibility between the material i and the material j.
[Equation 1]
Ra = {4 (δd i −δd j ) 2 + (δp i −δp j ) 2 + (δh i −δh j ) 2 } 1/2
 したがって、無機材料と一緒に使用する高分子材料のHSPパラメータを測定しておき、そのパラメータに対して、HSPパラメータが近い位置にある表面改質部を有する表面改質剤を無機材料と反応させて無機材料表面を改質し、表面改質無機粉末を得ることができる。このようにして得られた表面改質無機粉末は、高分子材料との相溶性が向上しており、高充填化、高分散化、或いは高流動化など、複合材料の高機能化が可能となる。 Therefore, the HSP parameter of the polymer material used together with the inorganic material is measured, and the surface modifier having the surface modification portion in which the HSP parameter is close to the parameter is reacted with the inorganic material. Thus, the surface of the inorganic material can be modified to obtain a surface-modified inorganic powder. The surface-modified inorganic powder thus obtained is improved in the compatibility with the polymer material, and the functionalization of the composite material such as high packing, high dispersion, or high fluidization is possible. Become.
 なお、対象とする高分子材料のHSPパラメータを測定する方法としては、公開されたプログラムとして、例えば、ハンセン球法を用いたHSPiPプログラム(Hansen Solubility Parameters in Practice、[平成29年5月10日検索]、インターネットURL:http://www.hansen-solubility.com/HSPiP/)、が知られている。この方法では、ハンセン溶解度パラメータが既知の複数の溶剤に対し、対象とする材料の溶解性を溶解実験によって確認する。その後、(δd、δp、δh)の三次元空間において、溶解実験に用いた溶剤のハンセン溶解度パラメータをプロットする。次に、当該材料が溶解しない溶剤のハンセン溶解度パラメータを含まずに、当該材料が溶解する溶剤のハンセン溶解度パラメータの集団を囲む最小球を求める。そして、最小球の中心座標を対象の材料のハンセン溶解度パラメータとする。 In addition, as a method of measuring the HSP parameter of the target polymer material, for example, the HSPiP program (Hansen Solubility Parameters in Practice, [May 10, 2017 search using the Hansen ball method, ], Internet URL: http://www.hansen-solubility.com/HSPiP/), is known. In this method, the solubility of the target material is confirmed by dissolution experiments for a plurality of solvents whose Hansen solubility parameters are known. Then, the Hansen solubility parameter of the solvent used for the dissolution experiment is plotted in a three-dimensional space of (δd, δp, δh). Next, without including the Hansen solubility parameter of the solvent in which the material does not dissolve, the smallest sphere surrounding the group of Hansen solubility parameters of the solvent in which the material dissolves is determined. And let the central coordinates of the smallest sphere be the Hansen solubility parameter of the material of interest.
 HSPパラメータを求める他の実験的方法としては、溶媒中に対象とする材料粉末を分散させたときの粒子径を測定し、粒子径の溶媒ごとの違いからHSPパラメータを算出する方法、及び、溶媒を対象とする材料に滴下させたときの接触角を測定し、接触角の溶媒ごとの違いからHSPパラメータを算出する方法が挙げられる。 As another experimental method for determining the HSP parameter, a method of measuring the particle size when the target material powder is dispersed in a solvent, and calculating the HSP parameter from the difference in particle size between solvents, and the solvent The contact angle when dripping to the target material is measured, and the method of calculating an HSP parameter from the difference for every solvent of a contact angle is mentioned.
 注目すべき点は、表面改質無機粉末と高分子材料の相溶性を評価するに当たって、表面改質剤のHSPパラメータ(δdS、δpS、δhS)をそのまま用いるのではなく、表面改質剤のHSPパラメータのうち、表面改質部Qによる寄与(δdSQ、δpSQ、δhSQ)を導出し、高分子材料との相溶性を評価する点である。表面改質剤の無機材料と反応および結合する部分によるHSPパラメータの寄与については、考慮しなくてよい。また、無機材料のHSPパラメータについても、考慮しなくてよい。 It should be noted that in evaluating the compatibility between the surface-modified inorganic powder and the polymer material, the HSP parameters (δd S , δp S , δh S ) of the surface modifier are not used as they are, but surface modification Among the HSP parameters of the agent, contributions (δd SQ , δp SQ , δh SQ ) by the surface modification unit Q are derived, and the compatibility with the polymer material is evaluated. The contribution of HSP parameters by the moieties that react and bind to the inorganic material of the surface modifier need not be considered. Also, it is not necessary to consider the HSP parameters of the inorganic material.
 このように、高分子材料と実際に相互作用する表面改質部QのHSPパラメータのみを用いて、高分子材料の相溶性を評価することで、表面改質後の無機材料と高分子材料との相溶性を高めることが可能である。結果として、無機材料および高分子材料に加え、さらに表面改質剤などの副材料を含む複合材料の高充填化、高分散化、或いは高流動化等が可能となる。 Thus, by evaluating the compatibility of the polymer material using only the HSP parameters of the surface modification portion Q that actually interacts with the polymer material, the inorganic material and the polymer material after the surface modification can be obtained. It is possible to enhance the compatibility of As a result, high loading, high dispersion, high fluidization, and the like of a composite material including an auxiliary material such as a surface modifier in addition to the inorganic material and the polymer material can be achieved.
 表面改質部によるHSPパラメータの寄与(δdSQ、δpSQ、δhSQ)を求める方法としては、表面改質剤のハンセン溶解度パラメータを、分子グループ寄与法を用いて算出する方法が挙げられる。分子グループ寄与法は、対象材料の化学構造を、例えば-CH3、-CH2-、-COOH、-OHなどの分子グループに分け、それぞれの分子グループによるロンドン分散力、双極子間力、及び、水素結合力のエネルギー及び力を計算し、合計することにより化学構造全体のハンセン溶解度パラメータを算出する方法である。この方法により、表面改質剤のHSPパラメータ(δdS、δpS、δhS)のうち、無機材料との反応部分Rを除いた表面改質部Qを構成する分子グループによる寄与(δdSQ、δpSQ、δhSQ)を、導出することが可能である。(δdSQ、δpSQ、δhSQ)は、表面改質部Qを構成する分子グループのみからなる分子構造を仮想したときの、当該分子構造のHSPパラメータとして求められる。例えば分散項について、表面改質剤全体のHSPパラメータδdSは、反応部分Rによる寄与δdSRおよび表面改質部Qによる寄与δdSQについての、分子量に比例する重みで重み付けされた平均となる。 As a method of determining the contribution (δd SQ , δp SQ , δh SQ ) of the HSP parameter by the surface modification unit, there is a method of calculating the Hansen solubility parameter of the surface modifier using a molecular group contribution method. The molecular group contribution method divides the chemical structure of the target material into molecular groups such as, for example, -CH 3 , -CH 2- , -COOH, -OH, etc., and the London dispersion force, interdipolar force, and the like by each molecular group It is a method of calculating the Hansen solubility parameter of the whole chemical structure by calculating and summing the energy and force of hydrogen bonding force. According to this method, among HSP parameters (δd S , δp S , δh S ) of the surface modifier, contribution by the molecular group constituting the surface modified portion Q excluding the reactive portion R with the inorganic material (δd SQ , It is possible to derive δp SQ , δh SQ ). (Δd SQ , δp SQ , δh SQ ) is obtained as an HSP parameter of the molecular structure assuming that the molecular structure consisting of only the molecular groups constituting the surface modification unit Q is assumed. For example, for the dispersion term, the HSP parameter δd S of the entire surface modifier is a weighted average with a weight proportional to the molecular weight for the contribution δd SR by the reaction part R and the contribution δd SQ by the surface modification unit Q.
 分子グループ寄与法を用いることで、(δdSQ、δpSQ、δhSQ)は、表面改質部Qを構成する分子グループをkとし、表面改質部Qの分子量をVQとし、Fdk、Fpk、Ehkを、それぞれ、分子グループkによる分散力項に起因するモル引力定数、双極子間力に起因するモル引力定数、水素結合エネルギーとして、下記の数式2で導出することができる。
[数式2]
 δdSQ=ΣkFdk/VQ
 δpSQ={Σk(Fpk21/2/VQ
 δhSQ=(ΣkEhk/VQ1/2
By using the molecular group contribution method, (δd SQ , δp SQ , δh SQ ) sets the molecular group constituting the surface modification unit Q to k and the molecular weight of the surface modification unit Q to V Q , Fd k , fp k, the Eh k, respectively, the molar attraction constants due to dispersion force term due to molecular groups k, the molar attraction constants due to dipole-dipole forces, as a hydrogen bonding energy can be derived by equation 2 below.
[Equation 2]
δd SQ = Σ k Fd k / V Q
δp SQ = {Σ k (Fp k ) 2 } 1/2 / V Q
δh SQ = (Σ k Eh k / V Q ) 1/2
 本発明に基づいて、高分子材料と無機材料とを組み合わせた複合材料を設計する場合、まず、所望される複合材料の仕様から、当該複合材料で用いる無機材料及び高分子材料は自ずと決定される。そこで、無機材料と高分子材料を相溶させるために好適な無機材料の表面改質剤を特定する。表面改質剤は、無機材料と結合する反応部分Rと、高分子材料と相溶する表面改質部Qとを有している。高分子材料のHSPパラメータ(δdA、δpA、δhA)の値に対して、表面改質部QのHSPパラメータ(δdSQ、δpSQ、δhSQ)が近い位置にある表面改質剤を用いることによって、表面改質無機粉末と高分子材料の相溶性を高め、複合材料の高充填化、高分散化、高流動化等が可能となる。 When designing a composite material in which a polymer material and an inorganic material are combined according to the present invention, first, the inorganic material and the polymer material used in the composite material are naturally determined from the specification of the desired composite material. . Therefore, a surface modifying agent of an inorganic material suitable for making the inorganic material and the polymer material compatible with each other is specified. The surface modifier has a reactive portion R that binds to the inorganic material, and a surface modified portion Q that is compatible with the polymer material. The surface modifier in which the HSP parameters (δd SQ , δp SQ , δh SQ ) of the surface modification unit Q are closer to the values of the HSP parameters (δd A , δp A , δh A ) of the polymer material By using the compound, the compatibility between the surface-modified inorganic powder and the polymer material can be enhanced, and high filling, high dispersion, high fluidization, and the like of the composite material can be achieved.
 具体的には、|δdSQ-δdA|≦3(J/cm31/2、|δpSQ-δpA|≦3(J/cm31/2、及び、|δhSQ-δhA|≦3(J/cm31/2、の条件を全て満たす表面改質剤を用いることで、表面改質無機粉末と高分子材料の相溶性を高め、複合材料の高充填化、高分散化、高流動化等が可能となり、複合材料の高機能化が達成される。 Specifically, | δd SQ −δd A | ≦ 3 (J / cm 3 ) 1/2 , | δp SQ −δp A | ≦ 3 (J / cm 3 ) 1/2 , and | δh SQ −δh By using a surface modifier that satisfies all the conditions A ≦ 3 (J / cm 3 ) 1/2 , the compatibility between the surface-modified inorganic powder and the polymer material is enhanced, and the composite material is highly filled, It is possible to achieve high dispersion, high fluidization, etc., and high functionalization of the composite material is achieved.
 従来は、表面改質無機粉末と高分子材料の相溶性を評価する場合、表面改質される前の無機材料のHSPパラメータ(δdM、δpM、δhM)を、高分子材料のHSPパラメータ(δdA、δpA、δhA)と比較するか、或いは、無機材料との反応部分Rを含む表面改質剤全体のHSPパラメータ(δdS、δpS、δhS)を、高分子材料のHSPパラメータ(δdA、δpA、δhA)と比較していた。しかしながら、無機材料と高分子材料のHSPパラメータ同士を比較しても、表面改質無機粉末と高分子材料の相溶性の評価は困難である。また、表面改質剤全体のHSPパラメータ(δdS、δpS、δhS)には、高分子材料と相互作用することのない反応部分Rによる寄与が含まれている。このため、表面改質剤全体のHSPパラメータを考慮し、高分子材料からのHSP距離Raが小さい表面改質剤を選択したとしても、反応部分Rを除いた表面改質部Qのみを考慮したHSPパラメータ(δdSQ、δpSQ、δhSQ)は、高分子材料のHSPパラメータから遠ざかってしまう。この結果、上記の|δdSQ-δdA|、|δpSQ-δpA|、|δhSQ-δhA|の少なくとも何れかが3(J/cm31/2を超える結果となり、上記条件を全て満たす表面改質剤の実現は困難であった。 Conventionally, when evaluating the compatibility between the surface-modified inorganic powder and the polymer material, the HSP parameters (δd M , δp M , δh M ) of the inorganic material before surface modification are set to the HSP parameters of the polymer material. In comparison with (δd A , δp A , δh A ), or HSP parameters (δd S , δp S , δh S ) of the entire surface modifier including the reactive moiety R with the inorganic material, It was compared to the HSP parameters (δd A , δp A , δh A ). However, it is difficult to evaluate the compatibility between the surface-modified inorganic powder and the polymer material even by comparing the HSP parameters of the inorganic material and the polymer material. Further, the HSP parameters (δd S , δp S , δh S ) of the whole surface modifier include the contribution from the reactive portion R which does not interact with the polymer material. Therefore, in consideration of the HSP parameters of the entire surface modifier, even if the surface modifier having a small HSP distance Ra from the polymer material is selected, only the surface modified portion Q excluding the reactive part R is considered. HSP parameters (δd SQ , δp SQ , δh SQ ) move away from the HSP parameters of the polymer material. As a result, at least one of the above-mentioned | δd SQ -δd A |, | δp SQ -δp A | and | δh SQ -δh A | exceeds 3 (J / cm 3 ) 1/2 , the above condition It is difficult to realize a surface modifier that satisfies all of the above.
 例えば、高分子材料がアミド結合を有する場合、δdSQが14≦δdSQ≦20の範囲内にあり、δpSQが6.5≦δpSQ≦12.5の範囲内にあり、δhSQが9.1≦δhSQ≦15.1の範囲内にある表面改質剤を用いればよい。これにより、無機材料とアミド結合を有する高分子材料との相溶性が向上し、複合材料の高充填化、高分散化、或いは高流動化等が可能となり、複合材料の高機能化が達成される。より好ましくは、上記の条件に加えて、上記数式1で表されるRaが3.7以下となる表面改質剤を用いることによって、粘度が顕著に低く、流動性に優れた複合材料を実現できる。 For example, when the polymer material has an amide bond, δd SQ is in the range of 14 ≦ δd SQ ≦ 20, δp SQ is in the range of 6.5 ≦ δp SQ ≦ 12.5, and δh SQ is 9 A surface modifier within the range of 1 ≦ δh SQ ≦ 15.1 may be used. As a result, the compatibility between the inorganic material and the polymer material having an amide bond is improved, the composite material can be highly filled, highly dispersed, or fluidized, and the composite material can be highly functional. Ru. More preferably, in addition to the above conditions, the use of a surface modifier having an Ra of 3.7 or less, which is represented by the formula 1, realizes a composite material with significantly low viscosity and excellent fluidity. it can.
 上記の条件を満たし、アミド結合を有する高分子材料に好適な表面改質部Qを含む表面改質剤の具体的な化学構造としては、例えば、以下の化学式(1)~(11)で示される構造が挙げられる。ただし、化学式(1)~(11)において、Rは無機材料と結合する反応部分を指す。Rを除いた部分が表面改質部Qに相当する。なお、R部分の具体的な構造については、後述する。 The specific chemical structure of the surface modifying agent including the surface modifying portion Q which satisfies the above conditions and is suitable for the polymer material having an amide bond is, for example, represented by the following chemical formulas (1) to (11) Structures are listed. However, in the chemical formulas (1) to (11), R indicates a reactive moiety that bonds to the inorganic material. The part except R corresponds to the surface modification part Q. The specific structure of the R portion will be described later.
 例えば、反応部分Rを有し、表面改質部Q内にフェノール性水酸基を有する単環の芳香族化合物を用いる例として、下記の化学式(1)~(3)に示す表面改質剤が挙げられる。
Figure JPOXMLDOC01-appb-C000012
For example, as an example of using a monocyclic aromatic compound having a reactive portion R and having a phenolic hydroxyl group in the surface modification portion Q, surface modifiers represented by the following chemical formulas (1) to (3) may be mentioned. Be
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 また、表面改質部Q内にエチレン基(-CH2CH2-)を有する表面改質剤の例として、下記の化学式(4)~(8)に示す表面改質剤が挙げられる。 Further, as an example of the surface modifier having ethylene group (—CH 2 CH 2 —) in the surface modification unit Q, surface modifiers represented by the following chemical formulas (4) to (8) can be mentioned.
 一例として、下記の化学式(4)に示す表面改質剤は、カルボキシル基(-COOH)を、表面改質部Q内にさらに有する。
Figure JPOXMLDOC01-appb-C000015
As an example, the surface modifier represented by the following chemical formula (4) further has a carboxyl group (—COOH) in the surface modification unit Q.
Figure JPOXMLDOC01-appb-C000015
 一例として、下記の化学式(5)及び(6)に示す表面改質剤は、それぞれ、アミノ基(-NH2)を、表面改質部Q内にさらに有する。
Figure JPOXMLDOC01-appb-C000016
As an example, the surface modifiers represented by the following chemical formulas (5) and (6) each further have an amino group (—NH 2 ) in the surface modification unit Q.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 一例として、下記の化学式(7)及び(8)に示す表面改質剤は、それぞれ、チオール基(-SH)を、表面改質部Q内にさらに有する。
Figure JPOXMLDOC01-appb-C000018
As an example, the surface modifiers represented by the following chemical formulas (7) and (8) each further have a thiol group (—SH) in the surface modification unit Q.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 また、表面改質部Q内にビニレン基(-CH=CH-)を有する表面改質剤の例として、下記の化学式(9)~(11)に示す表面改質剤が挙げられる。 Further, as an example of the surface modifier having a vinylene group (—CH = CH—) in the surface modification part Q, surface modifiers represented by the following chemical formulas (9) to (11) can be mentioned.
 一例として、下記の化学式(9)に示す表面改質剤は、カルボキシル基(-COOH)を、表面改質部Q内にさらに有する。
Figure JPOXMLDOC01-appb-C000020
As one example, the surface modifier represented by the following chemical formula (9) further has a carboxyl group (—COOH) in the surface modification unit Q.
Figure JPOXMLDOC01-appb-C000020
 一例として、下記の化学式(10)に示す表面改質剤は、チオール基(-SH)を、表面改質部Q内にさらに有する。
Figure JPOXMLDOC01-appb-C000021
As one example, the surface modifier represented by the following chemical formula (10) further has a thiol group (-SH) in the surface modification unit Q.
Figure JPOXMLDOC01-appb-C000021
 一例として、下記の化学式(11)に示す表面改質剤は、アミノ基(-NH2)を、表面改質部Q内にさらに有する。
Figure JPOXMLDOC01-appb-C000022
As one example, the surface modifier represented by the following chemical formula (11) further has an amino group (—NH 2 ) in the surface modification unit Q.
Figure JPOXMLDOC01-appb-C000022
 また、高分子材料が溶融状態で液晶性を示す有機材料の場合には、δdSQが、14.4≦δdSQ≦20.4の範囲内にあり、δpSQが、14≦δpSQ≦20の範囲内にあり、δhSQが、16.1≦δhSQ≦22.1の範囲内にある表面改質剤を用いればよい。これにより、無機材料と有機液晶材料との相溶性が向上し、複合材料の高充填化、高分散化、或いは高流動化等が可能となり、複合材料の高機能化が達成される。より好ましくは、上記の条件に加えて、上記数式1で表されるRaが2.6以下となる表面改質剤を用いることによって、粘度が顕著に低く、流動性に優れた複合材料を実現できる。 When the polymer material is an organic material exhibiting liquid crystallinity in the molten state, δd SQ is in the range of 14.4 ≦ δd SQ ≦ 20.4, and δp SQ is 14 ≦ δp SQ ≦ 20. The surface modifier may be used in which δh SQ is in the range of 16.1 ≦ δh SQ ≦ 22.1. As a result, the compatibility between the inorganic material and the organic liquid crystal material is improved, and high filling, high dispersion, high fluidization, etc. of the composite material become possible, and high functionalization of the composite material is achieved. More preferably, in addition to the above conditions, by using a surface modifier having an Ra represented by the above-mentioned formula 1 of 2.6 or less, a composite material with remarkably low viscosity and excellent fluidity is realized. it can.
 高分子材料が溶融状態で液晶性を示す材料の場合に特に好適な表面改質部を含む表面改質剤の具体的な化学構造の例としては、以下の化学式(12)~(15)で示される構造が挙げられる。化学式(12)~(15)において、Rは無機材料と結合する反応部分を指す。Rを除いた部分が表面改質部Qに相当する。R部分の具体的な構造については、後述する。 Specific examples of the chemical structure of the surface modifier including the surface modification portion which is particularly suitable when the polymer material is liquid crystalline in the molten state are represented by the following chemical formulas (12) to (15) The structure shown is mentioned. In the chemical formulas (12) to (15), R indicates a reactive moiety that binds to the inorganic material. The part except R corresponds to the surface modification part Q. The specific structure of the R portion will be described later.
 例えば、表面改質部Q内にフェノール性水酸基を有する単環の芳香族化合物を用いる例として、下記の化学式(12)及び(13)に示す表面改質剤が挙げられる。
Figure JPOXMLDOC01-appb-C000023
For example, as an example of using a single-ring aromatic compound having a phenolic hydroxyl group in the surface modification unit Q, surface modifiers represented by the following chemical formulas (12) and (13) can be mentioned.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 化学式(12)及び(13)は、ハロゲン基としてのフッ素基を、表面改質部Q内に有する例である。ハロゲン基は、フッ素基に限られるものではなく、塩素基、臭素基、又は、ヨウ素基であってもよい。
 化学式(12)は、アミノ基(-NH2)を、表面改質部Q内に有する例である。
 化学式(13)は、カルボキシル基(-COOH)を、表面改質部Q内に有する例である。
Chemical formulas (12) and (13) are examples having a fluorine group as a halogen group in the surface modification unit Q. The halogen group is not limited to a fluorine group, and may be a chlorine group, a bromine group or an iodine group.
Chemical formula (12) is an example which has an amino group (—NH 2 ) in the surface modification unit Q.
Chemical formula (13) is an example having a carboxyl group (—COOH) in the surface modification unit Q.
 また、表面改質部Q内にアルコール性の水酸基を有する単環の芳香族化合物の例としては、下記の化学式(14)及び(15)に示す表面改質剤が挙げられる。
Figure JPOXMLDOC01-appb-C000025
Moreover, as an example of the monocyclic aromatic compound which has alcoholic hydroxyl group in the surface modification part Q, the surface modifier shown to following Chemical formula (14) and (15) is mentioned.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 化学式(14)及び(15)は、アミノ基(-NH2)を、表面改質部Q内に有する例である。
 化学式(14)は、ニトリル基(-C≡N)を、表面改質部Q内に有する例である。
 化学式(15)は、ハロゲン基(フッ素基)を、表面改質部Q内に有する例である。
Chemical formulas (14) and (15) are examples having an amino group (—NH 2 ) in the surface modification unit Q.
Chemical formula (14) is an example having a nitrile group (—C≡N) in the surface modification unit Q.
Chemical formula (15) is an example which has a halogen group (fluorine group) in the surface modification part Q.
 化学式(1)~(15)は例示であり、表面改質部Qの構造としては、芳香族化合物、脂肪族化合物および脂環式化合物の何れであってもよい。表面改質部Qが具備する官能基としては、フェノール性またはアルコール性の水酸基、カルボキシル基、アミノ基、チオール基、ハロゲン基、及びニトリル基を例示したが、これらに限られるものではない。また、これらの官能基は、化学式(1)~(15)に例示した特定の化合物に限って導入が可能なわけではない。δdSQ、δpSQ、δhSQが上記条件を満し、安定に合成可能なものである限り、任意の化学構造を採用できる。 Chemical formulas (1) to (15) are examples, and the structure of the surface modification unit Q may be any of an aromatic compound, an aliphatic compound and an alicyclic compound. The functional group of the surface modifying unit Q is exemplified by a phenolic or alcoholic hydroxyl group, a carboxyl group, an amino group, a thiol group, a halogen group, and a nitrile group, but is not limited thereto. Also, these functional groups can not be introduced only to the specific compounds exemplified in the chemical formulas (1) to (15). Any chemical structure can be adopted as long as δd SQ , δp SQ and δh SQ satisfy the above conditions and can be stably synthesized.
 表面改質剤としては、例えば、シラン系カップリング剤、チタネート系カップリング剤、又は、ホスホン酸が挙げられる。 As a surface modifier, a silane coupling agent, a titanate coupling agent, or phosphonic acid is mentioned, for example.
 表面改質剤としてシラン系カップリング剤を用いる場合、無機材料との反応部分(R部)を含む表面改質剤の具体的な化学構造としては、例えば、以下の化学式(16)~(25)の化学式で示される構造が挙げられる。化学式(16)~(25)において、Qは表面改質部であり、化学式(1)~(15)の例においてR部を除いた部分に相当する。Qの構造としては、上記化学式(1)~(15)中に示した構造を用いることができる。 When a silane coupling agent is used as the surface modifier, specific chemical structures of the surface modifier including the reaction part (R part) with the inorganic material are, for example, the following chemical formulas (16) to (25) And a structure represented by the chemical formula of In the chemical formulas (16) to (25), Q is a surface-modified part, which corresponds to the part excluding the R part in the examples of the chemical formulas (1) to (15). As the structure of Q, the structures shown in the above chemical formulas (1) to (15) can be used.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 表面改質剤としてチタネート系カップリング剤を用いる場合、無機材料との反応部分(R部)を含む表面改質剤の具体的な化学構造としては、例えば、以下の化学式(26)~(28)で示される構造が挙げられる。化学式(26)~(28)において、Qは表面改質部であり、化学式(1)~(15)の例においてR部を除いた部分に相当する。Qの構造としては、上記化学式(1)~(15)中に示した構造を用いることができる。 When a titanate coupling agent is used as the surface modifier, specific chemical structures of the surface modifier including the reaction part (R part) with the inorganic material are, for example, the following chemical formulas (26) to (28) The structure shown by) is mentioned. In the chemical formulas (26) to (28), Q is a surface-modified part, which corresponds to the part excluding the R part in the examples of the chemical formulas (1) to (15). As the structure of Q, the structures shown in the above chemical formulas (1) to (15) can be used.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 化学式(26)~(28)において、Tiは4価であり、化学式(26)では、表面改質部Qは、夫々がTiと結合する3つの官能基(Q1、Q2、Q3とする)からなる。この場合、Q1、Q2、及びQ3によるハンセン溶解度パラメータの全ての寄与を考慮し、Q1、Q2、及びQ3を含む表面改質部Q全体による寄与を(δdSQ、δpSQ、δhSQ)として、δdSQ-δdA、δpSQ-δpA、δhSQ-δhAが上記の条件を満たすようにする。化学式(27)及び(28)では、表面改質部Qは、夫々がTiと結合する2つの官能基(Q1、Q2とする)からなるが、この場合も、同様に、Q1及びQ2を含む表面改質部Q全体によるハンセン溶解度パラメータの寄与を(δdSQ、δpSQ、δhSQ)として、δdSQ-δdA、δpSQ-δpA、δhSQ-δhAが上記の条件を満たすようにする。 In the chemical formulas (26) to (28), Ti is tetravalent, and in the chemical formula (26), the surface modification unit Q has three functional groups (Q 1 , Q 2 , Q 3 and It consists of In this case, Q 1, Q 2, and considering all the contributions of the Hansen solubility parameters by Q 3, Q 1, Q 2, and the contribution by the entire surface modification portion Q comprising Q 3 (δd SQ, δp SQ , Δh SQ ) such that δd SQ −δd A , δp SQ −δp A and δh SQ −δh A satisfy the above conditions. In the chemical formulas (27) and (28), the surface modification unit Q is composed of two functional groups (referred to as Q 1 and Q 2 ) each bound to Ti, but in this case as well, Q 1 and Assuming that the contribution of the Hansen solubility parameter by the entire surface modification portion Q including Q 2 is (δd SQ , δp SQ , δh SQ ), δd SQ -δd A , δp SQ -δp A , δh SQ -δh A are the above conditions To meet
 表面改質剤の反応部分Rがアルコキシ基を有する場合、アルコキシ基が無機材料と反応して、無機材料と表面改質部との結合部位が形成され得る。 When the reactive moiety R of the surface modifier has an alkoxy group, the alkoxy group may react with the inorganic material to form a bonding site between the inorganic material and the surface modifying portion.
 表面改質剤として、例えば化学式(16)に示す構造のシラン系カップリング剤を用いる場合、反応部分に存在するアルコキシ基(メトキシ基)が無機材料と反応し、加水分解により生成されたシラノール基が無機材料Mの表面に存在する水酸基と反応して、Si-O-Mの結合により、無機材料と表面改質部Qが結合する。化学式(16)の構造の場合、3つのシラノール基が生成され得る。これら3つのシラノール基のうち、全てが無機材料と反応し得るが、1つ又は2つのシラノール基は、隣接する別の表面改質剤のシラノール基と脱水縮合することができる。これにより、無機材料と表面改質部Qとの結合が強固になる。 When using, for example, a silane coupling agent having a structure represented by the chemical formula (16) as the surface modifier, an alkoxy group (methoxy group) present in the reaction portion reacts with the inorganic material, and a silanol group generated by hydrolysis. Reacts with the hydroxyl group present on the surface of the inorganic material M, and the bonding of the Si—O—M bonds the inorganic material and the surface modified portion Q. In the case of the structure of formula (16), three silanol groups can be generated. Of these three silanol groups, all may be reacted with the inorganic material, but one or two silanol groups may be dehydrated and condensed with the silanol groups of another adjacent surface modifier. Thereby, the bond between the inorganic material and the surface modified portion Q is strengthened.
 同様に、例えば化学式(26)に示す構造のチタネート系カップリング剤を用いる場合、反応部分に存在するアルコキシ基(イソプロポキシ基)が無機材料Mと反応し、Ti-O-Mの結合により、無機材料と表面改質部Qが結合する。 Similarly, when using, for example, a titanate coupling agent having a structure represented by the chemical formula (26), the alkoxy group (isopropoxy group) present in the reaction portion reacts with the inorganic material M to bond Ti—O—M. The inorganic material and the surface modification portion Q are bonded.
 また、表面改質剤として有機ホスホン酸(Q-PO(OH)2)を用いることもできる。Qは表面改質部であり、化学式(1)~化学式(15)の例においてR部を除いた部分に相当する。Qの構造としては、上記化学式(16)~(25)に示したシラン系カップリング剤、上記化学式(26)~(28)に示したチタネート系カップリング剤と同様、上記化学式(1)~(15)中に示した構造を用いることができる。 In addition, organic phosphonic acid (Q-PO (OH) 2 ) can also be used as a surface modifier. Q is a surface-modified portion, which corresponds to the portion excluding the R portion in the examples of the chemical formulas (1) to (15). As the structure of Q, similar to the silane coupling agents shown in the above chemical formulas (16) to (25) and the titanate coupling agents shown in the above chemical formulas (26) to (28), the above chemical formulas (1) to The structure shown in (15) can be used.
 上記の有機ホスホン酸を表面改質剤として用いる場合、ホスホン酸は無機材料との反応部分Rに2つの水酸基を有している。この場合、ホスホン酸の2つの水酸基のうち一方が無機材料Mの水酸基と反応し、脱水反応によって、P-O-Mの結合が生成され、無機材料と表面改質部との結合部位が形成される。さらに、ホスホン酸の他方の水酸基がプロトンを供給して、無機材料Mの表面に水酸基を再生することができる。再生された水酸基は別のホスホン酸の水酸基と脱水反応により結合できる。このようにして、連鎖反応によって高密度に表面改質された無機材料が得られる。 When the above organic phosphonic acid is used as a surface modifier, the phosphonic acid has two hydroxyl groups in the reactive portion R with the inorganic material. In this case, one of the two hydroxyl groups of the phosphonic acid reacts with the hydroxyl group of the inorganic material M, and a dehydration reaction forms a bond of POM, forming a bonding site between the inorganic material and the surface modification portion Be done. Furthermore, the other hydroxyl group of phosphonic acid can supply protons to regenerate the hydroxyl group on the surface of the inorganic material M. The regenerated hydroxyl group can be bound to another hydroxyl group of phosphonic acid by dehydration reaction. Thus, an inorganic material surface-modified to a high density is obtained by chain reaction.
 本発明の一実施形態において、無機材料は、好ましくは磁性材料である。より好ましくは、磁性材料が、Nd-Fe-B系磁性粉末、Sm-Fe-N系磁性粉末、Sm-Co系磁性粉末、及び、フェライト系磁性粉末からなる群より選択される少なくとも1種を含む。この構成により、磁性粉末の高充填化、高分散化、高流動化が可能となり、高磁力の樹脂磁石を実現でき、ボンド磁石用コンパウンドに最適な磁性粉末を提供することができる。 In one embodiment of the present invention, the inorganic material is preferably a magnetic material. More preferably, the magnetic material is at least one selected from the group consisting of Nd-Fe-B based magnetic powder, Sm-Fe-N based magnetic powder, Sm-Co based magnetic powder, and ferrite based magnetic powder. Including. With this configuration, high packing, high dispersion, and high fluidity of the magnetic powder can be realized, a resin magnet with high magnetic force can be realized, and a magnetic powder suitable for a compound for a bonded magnet can be provided.
 以下に、本発明の一実施形態に係る複合材料について、ボンド磁石用コンパウンド及びボンド磁石に用いる場合を例にとって説明する。図1は、本発明の一実施形態に係る表面改質無機粉末と高分子材料を用いて構成された複合材料としてのボンド磁石用コンパウンドの構造を示す模式図である。 Hereinafter, a composite material according to an embodiment of the present invention will be described by taking as an example a case where it is used for a bonded magnet compound and a bonded magnet. FIG. 1 is a schematic view showing the structure of a bonded magnet compound as a composite material configured using a surface-modified inorganic powder and a polymer material according to an embodiment of the present invention.
 図1に示すように、ボンド磁石用コンパウンド(複合材料)5は、表面改質無機粉末4と、高分子材料(樹脂)2と、を含む。表面改質無機粉末4は、希土類磁性粉末(無機材料)1と表面改質部3を含む。希土類磁性粉末1を被覆する表面改質部3は、希土類磁性粉末1と表面改質剤との反応の結果、形成される。 As shown in FIG. 1, the bonded magnet compound (composite material) 5 includes a surface-modified inorganic powder 4 and a polymer material (resin) 2. The surface modified inorganic powder 4 includes a rare earth magnetic powder (inorganic material) 1 and a surface modified portion 3. The surface modified portion 3 covering the rare earth magnetic powder 1 is formed as a result of the reaction between the rare earth magnetic powder 1 and the surface modifier.
 希土類磁性粉末1を構成する材料については、特に限定されないが、例えば、Nd-Fe-B磁性粉末、Sm-Co磁性粉末、Sm-Fe-N磁性粉末又はこれらの磁性粉末の混合物を採用することができる。上記磁性粉末の中でも、Nd-Fe-B磁性粉末、Sm-Fe-N磁性粉末、及びこれらの磁性粉末の混合物の採用がより好ましい。 The material constituting the rare earth magnetic powder 1 is not particularly limited. For example, Nd-Fe-B magnetic powder, Sm-Co magnetic powder, Sm-Fe-N magnetic powder, or a mixture of these magnetic powders is adopted. Can. Among the above magnetic powders, it is more preferable to use Nd--Fe--B magnetic powder, Sm--Fe--N magnetic powder, and a mixture of these magnetic powders.
 また、耐熱性被膜で予め希土類磁性粉末を被覆しておくことで、磁性粉末の耐熱性を更に高めることができる。耐熱性被膜は、特に限定されないが、無機燐酸系化合物であることが好ましい。 Further, the heat resistance of the magnetic powder can be further enhanced by covering the rare earth magnetic powder in advance with the heat resistant film. The heat resistant film is not particularly limited, but is preferably an inorganic phosphoric acid compound.
 希土類磁性粉末1の含有量は、希土類ボンド磁石の全体量に対して66~83体積%の範囲、又は、92~98質量%の範囲となるように調整されることが好ましい。希土類ボンド磁石の密度が5.4Mg/m3~6.5Mg/m3の範囲となるように、希土類磁性粉末の含有量が調整されることが好ましい。希土類磁性粉末1の含有量を体積比で66%以上または質量比で92%以上とすることで、高い磁気特性が得られる。また、希土類磁性粉末1の含有量を体積比で83%以下または質量比で98%以下とすることで、ボンド磁石用コンパウンドの流動性の低下を抑制でき、ボンド磁石への成形加工が困難化するのを抑制できる。 The content of the rare earth magnetic powder 1 is preferably adjusted to be in the range of 66 to 83% by volume or in the range of 92 to 98% by mass with respect to the total amount of the rare earth bonded magnet. The content of the rare earth magnetic powder is preferably adjusted so that the density of the rare earth bonded magnet is in the range of 5.4 Mg / m 3 to 6.5 Mg / m 3 . By setting the content of the rare earth magnetic powder 1 to 66% or more by volume ratio or 92% or more by mass ratio, high magnetic properties can be obtained. In addition, by setting the content of the rare earth magnetic powder 1 to 83% or less by volume ratio or 98% or less by mass ratio, it is possible to suppress a decrease in fluidity of the bond magnet compound, and molding to a bond magnet becomes difficult You can suppress it.
 希土類ボンド磁石等では、磁気特性を向上させるために、ボンド磁石に含まれる磁性粉末の含有量を高める各種の工夫が採用されている。例えば、平均粒径の大きい磁性粉末と平均粒径の小さい磁性粉末を混合し、平均粒径の大きい磁性粉末の隙間を平均粒径の小さい磁性粉末で埋めることにより、磁性粉末の含有量を高める手法が一般的に用いられている。当然ながら、本発明でも、平均粒径の大きい磁性粉末と平均粒径の小さい磁性粉末を混合して用いることが可能である。 In rare earth bonded magnets and the like, in order to improve the magnetic properties, various devices for increasing the content of magnetic powder contained in the bonded magnet are employed. For example, the content of magnetic powder is increased by mixing magnetic powder having a large average particle diameter and magnetic powder having a small average particle diameter, and filling gaps between magnetic particles having a large average particle diameter with magnetic powder having a small average particle diameter. Techniques are commonly used. Naturally, in the present invention, it is possible to mix and use a magnetic powder having a large average particle size and a magnetic powder having a small average particle size.
 希土類磁性粉末1の具体例としては、マグネクエンチ社製の等方性Nd-Fe-B系磁性粉末(商品名:MQP-7-8、MQP-8-5、MQP-10-8.5HD、MQP-11-8、MQP-13-9、MQP-14-9、MQP-14-12、MQP-14-13、MQP-15-7、MQP-15-9HD、MQP-16-7、MQP-16-9HD、MQP-B、MQP-B+、MQP-S-11-9のいずれか)を用いることができる。平均粒径は、例えば90μmである。これらの磁性粉末は、予め酸化防止の為の燐酸塩被膜を施して用いることができる。 Specific examples of the rare earth magnetic powder 1 include isotropic Nd-Fe-B magnetic powder (trade name: MQP-7-8, MQP-8-5, MQP-10-8.5HD, manufactured by Magnequench Co., Ltd.) MQP-11-8, MQP-13-9, MQP-14-9, MQP-14-12, MQP-14-13, MQP-15-7, MQP-15-9HD, MQP-16-7, MQP- 16-9 HD, MQP-B, MQP-B +, or MQP-S-11-9) can be used. The average particle size is, for example, 90 μm. These magnetic powders can be used by applying a phosphate coating for preventing oxidation beforehand.
 高分子材料2は、アミド結合を有する高分子材料として、ポリアミド系樹脂を好適に用いることができる。具体的には、ユニチカ株式会社製の「ユニチカナイロン6 グレードA1012」を用いることができる。なお、この樹脂の一般的な呼称名は、ポリアミド6樹脂である。本実施形態においては、ポリアミド6樹脂のほか、ポリアミド11樹脂、ポリアミド12樹脂、ポリアミド46樹脂、ポリアミド66樹脂、ポリアミド610樹脂、ポリアミド612樹脂、ポリアミド1010樹脂、ポリアミド1012樹脂、ポリアミド6T樹脂、ポリアミド9T樹脂、ポリアミド10T樹脂、又は、これら各物質のうち数種からなる混合物を利用可能である。 The polymeric material 2 can use a polyamide-type resin suitably as a polymeric material which has an amide bond. Specifically, "Unitika nylon 6 grade A1012" manufactured by Unitika Co., Ltd. can be used. The common name of this resin is polyamide 6 resin. In this embodiment, in addition to polyamide 6 resin, polyamide 11 resin, polyamide 12 resin, polyamide 46 resin, polyamide 66 resin, polyamide 610 resin, polyamide 612 resin, polyamide 1010 resin, polyamide 1012 resin, polyamide 6 T resin, polyamide 9 T Resin, polyamide 10T resin, or a mixture of several of these materials can be used.
 また、ポリアミド系樹脂の形状については、特に限定されない。例えば、粉末状、ビーズ状、ペレット状、あるいはこれらの態様の混合物を採用してもよい。 Further, the shape of the polyamide resin is not particularly limited. For example, a powder, a bead, a pellet, or a mixture of these aspects may be employed.
 上記ポリアミド系樹脂の中でも、ポリアミド6樹脂を用いることが特に好ましい。ポリアミド6樹脂は、比較的流動性及び融点が高く、高い耐熱性が求められる用途に好適である。 Among the above-mentioned polyamide resins, it is particularly preferable to use a polyamide 6 resin. Polyamide 6 resin is suitable for applications that require relatively high flowability and melting point, and high heat resistance.
 ポリアミド樹脂の分子量は、所望の強度が得られる限りにおいて、低いほうが好ましい。また、分子量の異なるポリアミド樹脂を混合したものを採用しても良い。 The molecular weight of the polyamide resin is preferably low as long as the desired strength is obtained. Moreover, you may employ | adopt what mixed the polyamide resin from which molecular weight differs.
 あるいは、高分子材料2としては、溶融状態で液晶性を示す高分子材料を用いてもよい。具体的には、所謂LCP樹脂(液晶ポリマー)を用いることができる。LCP樹脂の例として、上野製薬株式会社製の商品名「UENO LCP A8100」が挙げられるが、これに限られるものではなく、上記のLCP樹脂(液晶ポリマー)と同等の特性の樹脂であれば、利用可能である。 Alternatively, as the polymer material 2, a polymer material exhibiting liquid crystallinity in a molten state may be used. Specifically, a so-called LCP resin (liquid crystal polymer) can be used. As an example of LCP resin, although the brand name "UENO LCP A8100" by Ueno Pharmaceutical Co., Ltd. is mentioned, it is not limited to this, and if it is resin of the characteristic equivalent to the above-mentioned LCP resin (liquid crystal polymer), It is available.
 表面改質剤は、高分子材料のHSPパラメータを考慮し、表面改質部3のHSPパラメータが上述の関係式|δdSQ-δdA|≦3(J/cm31/2、|δpSQ-δpA|≦3(J/cm31/2、及び、|δhSQ-δhA|≦3(J/cm31/2、の条件を全て満たすものが選択される。高分子材料2がポリアミド樹脂の場合、例えば、上記化学式(1)~(11)に示す化学構造を有する表面改質剤を好適に利用可能である。また、高分子材料2がLCP樹脂の場合、例えば、上記化学式(12)~(15)に示す化学構造を有する表面改質剤を好適に利用可能である。 The surface modifier takes into consideration the HSP parameters of the polymer material, and the HSP parameter of the surface modification unit 3 has the above-mentioned relationship | δd SQ −δd A | ≦ 3 (J / cm 3 ) 1/2 , | δp Those satisfying all the conditions of SQ- δp A | ≦ 3 (J / cm 3 ) 1/2 and | δh SQ −δh A | ≦ 3 (J / cm 3 ) 1/2 are selected. When the polymer material 2 is a polyamide resin, for example, a surface modifier having a chemical structure represented by the above chemical formulas (1) to (11) can be suitably used. When the polymer material 2 is an LCP resin, for example, a surface modifier having a chemical structure represented by the above chemical formulas (12) to (15) can be suitably used.
 ボンド磁石用コンパウンドは、製造工程等における不具合解消を図ることを意図して、適宜に滑剤、酸化防止剤、重金属不活性化剤、可塑剤、及び、変性剤等の添加剤を、表面改質剤とは別に、含むことが可能である。例えば、コンパウンドの粘度を低下させ、流動性を高めるための添加剤として、エチレンジアミン-ステアリン酸-セバシン酸重縮合物を利用することができる。具体例に、共栄社化学株式会社製の商品名「ライトアマイド WH-215」を用いることができる。 Bonded magnet compounds are surface modified with additives such as lubricants, antioxidants, heavy metal deactivators, plasticizers, and modifiers, as appropriate, in order to eliminate defects in the manufacturing process and the like. It can be included separately from the agent. For example, ethylenediamine-stearic acid-sebacic acid polycondensates can be used as additives to reduce the viscosity of the compound and to improve the flowability. As a specific example, trade name “Light Amide WH-215” manufactured by Kyoeisha Chemical Co., Ltd. can be used.
 本実施形態の磁石コンパウンド及びボンド磁石の製造方法は、例えば、以下の工程を含む。 The method of manufacturing the magnet compound and the bonded magnet of the present embodiment includes, for example, the following steps.
 (表面改質された希土類磁性粉末の作製)
 まず、トルエン等の有機溶媒と希土類磁性粉末1をビーカー等に入れ攪拌する。さらに、予め有機溶媒中に表面改質剤を混合、溶解させた溶液を添加し、さらに攪拌する。このようにして、希土類磁性粉末1の表面を表面改質剤と反応させ、希土類磁性粉末1の表面を表面改質部3で被覆する。
(Preparation of surface modified rare earth magnetic powder)
First, an organic solvent such as toluene and the rare earth magnetic powder 1 are put into a beaker or the like and stirred. Further, a solution in which the surface modifier is mixed and dissolved in an organic solvent is added in advance and the mixture is further stirred. In this manner, the surface of the rare earth magnetic powder 1 is reacted with the surface modifier, and the surface of the rare earth magnetic powder 1 is covered with the surface modification portion 3.
 その後、遠心分離機を用いて、被覆処理された希土類磁性粉末を有機溶媒から分離する。分離した希土類磁性粉末を再び有機溶媒で洗浄後、減圧乾燥させ、その表面が表面改質部3で被覆された希土類磁性粉末1(表面改質無機粉末4)を得る。 Thereafter, the coated rare earth magnetic powder is separated from the organic solvent using a centrifuge. The separated rare earth magnetic powder is washed again with an organic solvent and dried under reduced pressure to obtain a rare earth magnetic powder 1 (surface modified inorganic powder 4) whose surface is covered with the surface modifying portion 3.
 (ボンド磁石用コンパウンドの製造)
 表面が表面改質部3で被覆された希土類磁性粉末1(表面改質無機粉末4)、高分子材料(樹脂)2、及び、その他添加剤の混合物を、高温に加熱した混練押出機またはニーダー等に投入し、混練する。混練物をペレタイザ等で加工することで、ボンド磁石用コンパウンド5を作製する。ボンド磁石用コンパウンド5の形状については、特に限定されない。例えば、粉末状、ビーズ状、ペレット状、あるいはこれらの形状の混合物を採用してもよい。
(Manufacture of compound for bonded magnet)
Kneading extruder or kneader in which a mixture of rare earth magnetic powder 1 (surface modified inorganic powder 4), polymer material (resin) 2 and other additives coated on the surface with the surface modification unit 3 is heated to a high temperature Place in, etc. and knead. By processing the kneaded material with a pelletizer or the like, a compound magnet compound 5 is produced. The shape of the bonded magnet compound 5 is not particularly limited. For example, powder, beads, pellets, or a mixture of these shapes may be employed.
 (ボンド磁石の製造)
 上述のボンド磁石用コンパウンド5を、射出成形機またはトランスファー成形機等を用いて所定の形状に加工し、ボンド磁石を作製する。
(Manufacturing of bond magnet)
The bonded magnet compound 5 is processed into a predetermined shape using an injection molding machine, a transfer molding machine or the like to produce a bonded magnet.
 射出成形機によって、ボンド磁石用コンパウンド5は加熱および加圧され溶融する。ボンド磁石用コンパウンド5の溶融体は、射出成形機に載置された成形金型の内部へ射出されることで、当該金型の内部に充填される。成形金型の内部に充填されたボンド磁石用コンパウンド5が冷却により固化して、ボンド磁石は完成する。なお、この状態のボンド磁石は、着磁されておらず、磁化していない。無着磁のボンド磁石は、単品のまま、または、搭載製品へ組み込まれた後に、着磁装置にて磁化される。 The bonded magnet compound 5 is heated, pressurized and melted by the injection molding machine. The melt of the bonded magnet compound 5 is injected into the inside of a molding die placed on an injection molding machine, and is thus filled into the inside of the molding die. The bonded magnet compound 5 filled inside the molding die is solidified by cooling, and the bonded magnet is completed. The bonded magnet in this state is not magnetized and is not magnetized. The non-magnetized bond magnet is magnetized by the magnetizing device as it is or after being incorporated into the mounted product.
 作製した円柱状のボンド磁石の評価は、アルキメデス法を用いて、密度を評価することができる。また、VSM(Vibrating Sample Magnetometer:振動試料型磁力計)を用いて、磁気特性を評価することができる。 The evaluation of the manufactured cylindrical bonded magnet can evaluate a density using the Archimedes method. Moreover, magnetic characteristics can be evaluated using VSM (Vibrating Sample Magnetometer: vibrating sample type magnetometer).
 なお、FT-IR(Fourier Transform Infrared Spectroscopy:フーリエ変換赤外分光)、FD-MS(Field Desorption Mass Spectroscopy:電界脱離質量分析法)、GPC(ゲル浸透クロマトグラフィー)、GC-MS(ガスクロマトグラフ質量分析)、NMR(Nuclear Magnetic Resonance:核磁気共鳴)等を利用した分析により、ボンド磁石用コンパウンドに表面改質部(表面改質剤)が含まれていることや、ボンド磁石に表面改質部(表面改質剤)が残存していることを確認可能である。 In addition, FT-IR (Fourier Transform Infrared Spectroscopy: Fourier transform infrared spectroscopy), FD-MS (Field Desorption Mass Spectroscopy: field desorption mass spectrometry), GPC (gel permeation chromatography), GC-MS (gas chromatography mass) Analysis), NMR (Nuclear Magnetic Resonance: nuclear magnetic resonance) analysis, etc., that the compound for the bonded magnet contains a surface modification part (surface modifier), and the surface modification part for the bonded magnet It can be confirmed that the (surface modifier) remains.
 次に、本発明の実施形態について実施例に基づいて更に説明する。 Next, embodiments of the present invention will be further described based on examples.
《実施例1~11》
 上述の希土類磁性粉末の作製方法に従い、無機材料(希土類磁性粉末)としてマグネクエンチ社製「MQP-14-12」を表面改質剤により処理し、高分子材料としてのポリアミド6樹脂(ユニチカ株式会社製「ユニチカナイロン6 グレードA1012」)、添加剤として共栄社化学株式会社製「ライトアマイド WH-215」を加えて所定の配合比で混合および混練し、混練物をペレタイザ等でペレット状に加工して、ボンド磁石用コンパウンドを得た。無機材料、高分子材料、添加剤、及び表面改質剤の配合割合は、夫々、質量比で94.25:5:0.5:0.25とした。また、混練温度は250℃とした。
Examples 1 to 11
According to the above-described method of preparing a rare earth magnetic powder, “MQP-14-12” manufactured by Magnequeze Co., Ltd. as an inorganic material (rare earth magnetic powder) is treated with a surface modifier, and a polyamide 6 resin as a polymer material (UNITICA CORPORATION) Product "UNITICA nylon 6 grade A1012", "Keieiisha Chemical Co., Ltd. light amaide WH-215" as an additive, mixing and kneading with a predetermined compounding ratio, and processing the kneaded material into a pellet shape with a pelletizer etc. , The compound for a bonded magnet was obtained. The blending ratio of the inorganic material, the polymer material, the additive, and the surface modifier was 94.25: 5: 0.5: 0.25 in mass ratio, respectively. The kneading temperature was 250 ° C.
 表面改質剤としては、上記の化学式(1)~(11)に示す構造を合成し、夫々、実施例1~11における表面改質剤とした。R部の構造としては、化学式(16)に示すトリメトキシシラン基、化学式(17)に示すトリエトキシシラン基、又はホスホン酸の何れかを、適宜選択した。 As the surface modifier, the structures represented by the above chemical formulas (1) to (11) were synthesized and used as the surface modifiers in Examples 1 to 11, respectively. As a structure of R part, either the trimethoxysilane group shown to Chemical formula (16), the triethoxysilane group shown to Chemical formula (17), or a phosphonic acid was selected suitably.
 作製したボンド磁石用コンパウンドについて、キャピラリレオメーターを用い、流動性の指標である粘度を測定した。300℃におけるボンド磁石用コンパウンドの粘度を測定した。 The viscosity which is a parameter | index of fluidity was measured about the produced compound for bonded magnets using the capillary rheometer. The viscosity of the bonded magnet compound at 300 ° C. was measured.
 また、高分子材料のHSPパラメータを、上述のHSPiPプログラムに従って測定した。具体的には、33種のHSPパラメータが既知の溶媒に対して溶解実験を行ったところ、5種が常温において溶解し、他の28種は溶解しなかった。溶解実験を行った33種の溶媒を、溶解/非溶解の結果を含め、下記に示す。 Also, the HSP parameters of the polymeric material were measured according to the HSPiP program described above. Specifically, when dissolution experiments were performed on a solvent in which 33 types of HSP parameters are known, 5 types were dissolved at normal temperature, and the other 28 types were not dissolved. The 33 solvents subjected to dissolution experiments are shown below, including the dissolution / non-dissolution results.
 溶解した溶媒:p-クロロフェノール、トリフルオロ酢酸、ヘキサフルオロイソプロパノール、2,2,2-トリフルオロエタノール、2-フルオロエタノール Dissolved solvent: p-chlorophenol, trifluoroacetic acid, hexafluoroisopropanol, 2,2,2-trifluoroethanol, 2-fluoroethanol
 溶解しなかった溶媒:酢酸、アセトン、アセトニトリル、アニリン、ベンジルアルコール、ブロモベンゼン、1-ブロモナフタレン、γ-ブチロラクトン(GBL)、1-クロロブタン、クロロホルム、p-クロロトルエン、o-ジクロロベンゼン、ジメチルスルホキシド(DMSO)、1,4-ジオキサン、エタノール、エタノールアミン、フルオロベンゼン、ホルムアミド、メタノール、N-メチルホルムアミド、1-メチルイミダゾール、オクタン、キノリン、1,1,2,2-テトラブロモエタン、テトラヒドロフラン(THF)、トルエン、1,1,2-トリクロロエタン、4-(トリフルオロメチル)アセトフェノン Solvents that did not dissolve: Acetic acid, acetone, acetonitrile, aniline, benzyl alcohol, bromobenzene, 1-bromonaphthalene, γ-butyrolactone (GBL), 1-chlorobutane, chloroform, p-chlorotoluene, o-dichlorobenzene, dimethyl sulfoxide (DMSO), 1,4-dioxane, ethanol, ethanolamine, fluorobenzene, formamide, methanol, N-methylformamide, 1-methylimidazole, octane, quinoline, 1,1,2,2-tetrabromoethane, tetrahydrofuran ( THF), toluene, 1,1,2-trichloroethane, 4- (trifluoromethyl) acetophenone
 この結果から、溶解する溶媒を球の内側に含み、溶解しない溶媒が球の外側にあって、且つ、その半径が最小となるハンセン球を求めることで、高分子材料(ポリアミド6)のHSPパラメータ(δdA、δpA、δdA)は、夫々、δdA=17、δpA=9.5、δhA=12.1と導出された。 From this result, the HSP parameter of the polymeric material (polyamide 6) is obtained by obtaining a Hansen sphere in which the dissolving solvent is inside the sphere, the non-dissolving solvent is outside the sphere, and the radius is the smallest. (Δd A , δp A , δd A ) were derived as δd A = 17, δp A = 9.5, and δh A = 12.1, respectively.
 また、化学式(1)~(11)に示す、実施例1~11で夫々用いる表面改質剤について、HSPパラメータの表面改質部による寄与(δdSQ、δpSQ、δhSQ)を、分子グループ寄与法により計算し、δdSQ-δdA、δpSQ-δpA、及び、δhSQ-δhAを導出した。導出の結果を表1に示す。 Further, with respect to the surface modifiers shown in chemical formulas (1) to (11) and used in Examples 1 to 11, respectively, the contribution (δd SQ , δp SQ , δh SQ ) by the surface modification portion of the HSP parameter Calculated according to the contribution method, δd SQ -δd A , δp SQ -δp A and δh SQ -δh A were derived. The results of the derivation are shown in Table 1.
《比較例1》
 表面改質剤による表面処理を行わないことを除いて、実施例1と同様の方法で希土類磁性粉末を作製した。具体的には、実施例1において、表面改質剤を添加せず、無機材料、高分子材料、及び、添加剤の配合割合を、夫々、質量比で94.25:5.25:0.5とした混合物を混練し、ボンド磁石用コンパウンドを得た。
Comparative Example 1
A rare earth magnetic powder was produced in the same manner as in Example 1 except that the surface treatment with a surface modifier was not performed. Specifically, in Example 1, the surface modifying agent is not added, and the blending ratio of the inorganic material, the polymer material, and the additive is 94.25: 5.25: 0. The mixture of 5 was kneaded to obtain a bonded magnet compound.
 また、HSPパラメータが既知の複数の有機溶剤中に無機材料粉末を分散させたときの粒子径を動的光散乱法に基づき測定し、凝集および分散の違いからくる粒子径の溶媒ごとの違いから、無機材料の濡れ性を判定し、無機材料(希土類磁性粉末)のHSPパラメータ(δdM、δpM、δhM)を測定した。具体的に、平均粒子径が無機材料粉末の平均粒子径の2倍以内であった溶媒を濡れ性が良いと評価した。濡れ性が良いと判定された溶媒を球の内側に含み、濡れ性がよいと判定されなかった溶媒が球の外側にあって、且つ、その半径が最小となるハンセン球を求めることで、無機材料(希土類磁性粉末)のHSPパラメータ(δdM、δpM、δhM)は、それぞれ、δdM=16.8、δpM=7.7、δhM=2.2と導出された。 In addition, the particle size when inorganic material powder is dispersed in a plurality of organic solvents whose HSP parameters are known is measured based on dynamic light scattering method, and the difference in particle size between solvents due to difference in aggregation and dispersion The wettability of the inorganic material was determined, and the HSP parameters (δd M , δp M , δh M ) of the inorganic material (rare earth magnetic powder) were measured. Specifically, the solvent having an average particle size within 2 times the average particle size of the inorganic material powder was evaluated as having good wettability. Inorganic is obtained by including a solvent judged to have good wettability on the inside of the sphere, a solvent not judged to have good wettability is on the outside of the sphere, and the radius is minimized. The HSP parameters (δd M , δp M , δh M ) of the material (rare earth magnetic powder) were derived as δd M = 16.8, δp M = 7.7, and δh M = 2.2, respectively.
《比較例2》
 表面改質剤として、下記の化学式(29)で表される材料を用いたことを除き、実施例1と同様の方法で希土類磁性粉末を作製した。
Figure JPOXMLDOC01-appb-C000040
Comparative Example 2
A rare earth magnetic powder was produced in the same manner as in Example 1 except that a material represented by the following chemical formula (29) was used as a surface modifier.
Figure JPOXMLDOC01-appb-C000040
 表面改質剤として、下記の化学式(30)で表される材料を用いたことを除き、実施例1と同様の方法で希土類磁性粉末を作製した。
Figure JPOXMLDOC01-appb-C000041
A rare earth magnetic powder was produced in the same manner as in Example 1 except that a material represented by the following chemical formula (30) was used as a surface modifier.
Figure JPOXMLDOC01-appb-C000041
 化学式(29)及び(30)において、トリメトキシシラン基(-Si(OCH33)の部分が無機材料表面との反応部分Rであり、これを除いた部分が表面改質部Qである。実施例1~11と同様に、化学式(29)及び(30)で表される表面改質剤について、HSPパラメータの表面改質部による寄与(δdSQ、δpSQ、δhSQ)を分子グループ寄与法により計算し、δdSQ-δdA、δpSQ-δpA、及び、δhSQ-δhAを導出した。 In chemical formulas (29) and (30), the portion of trimethoxysilane group (-Si (OCH 3 ) 3 ) is the reactive portion R with the surface of the inorganic material, and the portion other than this is the surface modified portion Q . In the same manner as in Examples 1 to 11, with respect to the surface modifiers represented by the chemical formulas (29) and (30), the contribution (δd SQ , δp SQ , δh SQ ) by the surface modification portion of the HSP parameter is a molecular group contribution Calculated according to the method, δd SQ -δd A , δp SQ -δp A and δh SQ -δh A were derived.
 表1に、実施例1~11、及び、比較例1~3における、表面改質部と高分子材料との間のHSPパラメータの差δdSQ-δdA、δpSQ-δpA、及び、δhSQ-δhAの値を示す。なお、HSPパラメータの単位は(J/cm31/2である。これは以降に示す表においても同様である。また、比較例1では、表面改質剤を使用していないので、表面改質部のHSPパラメータ(δdSQ、δpSQ、δhSQ)に代えて、無機材料のHSPパラメータ(δdM、δpM、δhM)を用いた。表1から分かるように、実施例1~11では、|δdSQ-δdA|≦3(J/cm31/2、|δpSQ-δpA|≦3(J/cm31/2、及び、|δhSQ-δhA|≦3(J/cm31/2、の条件を全て満たすが、比較例1~3では、上記条件を全て満たしてはいない。 Table 1 shows differences in HSP parameters between the surface modified portion and the polymer material in Examples 1 to 11 and Comparative Examples 1 to 3, δd SQ- δd A , δp SQ- δp A , and δh The value of SQ- δh A is shown. The unit of HSP parameter is (J / cm 3 ) 1/2 . The same is true for the tables shown below. Further, in Comparative Example 1, since no surface modifier is used, the HSP parameters (δd M , δp M ) of the inorganic material are substituted for the HSP parameters (δd SQ , δp SQ , δh SQ ) of the surface modified portion. , Δh M ) were used. As can be seen from Table 1, in Examples 1 to 11, | δd SQ −δd A | ≦ 3 (J / cm 3 ) 1/2 , | δp SQ −δp A | ≦ 3 (J / cm 3 ) 1 / All the conditions of 2 and | δh SQ −δh A | ≦ 3 (J / cm 3 ) 1/2 are satisfied, but in Comparative Examples 1 to 3, all the above conditions are not satisfied.
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
 また、高分子材料として、実施例1~11のポリアミド樹脂に代えてLCP樹脂を用いた表面改質無機粉末4を作製し、ボンド磁石用コンパウンド5を作製し、評価した。 Also, a surface-modified inorganic powder 4 was produced using LCP resin instead of the polyamide resin of Examples 1 to 11 as a polymer material, and a bonded magnet compound 5 was produced and evaluated.
《実施例12~15》
 上述した希土類磁性粉末の作製方法に従い、無機材料(希土類磁性粉末1)としてマグネクエンチ社製「MQP-14-12」を表面改質剤により処理し、高分子材料2としてのLCP樹脂(上野製薬株式会社製「UENO LCP A8100」)、添加剤として共栄社化学株式会社製「ライトアマイド WH-215」を加えて所定の配合比で混合および混練し、混練物をペレタイザ等でペレット状に加工して、ボンド磁石用コンパウンド5を得た。無機材料、高分子材料、添加剤、及び表面改質剤の配合割合は、夫々、質量比で94.25:5:0.5:0.25とした。また、混練温度は250℃とした。
Examples 12 to 15
LCP resin (Ueno Pharmaceutical Co., Ltd.) as the polymer material 2 is treated with a surface modifier as an inorganic material (rare earth magnetic powder 1) according to the method of preparing the rare earth magnetic powder described above, “MQP-14-12” manufactured by Magneque "UENO LCP A8100" made by Co., Ltd. and "Light Amide WH-215" made by Kyoeisha Chemical Co., Ltd. as an additive, mixing and kneading at a predetermined blending ratio, and processing the kneaded material into pellets with a pelletizer etc. , And Bond magnet compound 5 were obtained. The blending ratio of the inorganic material, the polymer material, the additive, and the surface modifier was 94.25: 5: 0.5: 0.25 in mass ratio, respectively. The kneading temperature was 250 ° C.
 表面改質剤としては、上記化学式(12)~(15)に示す構造を合成し、夫々、実施例12~15における表面改質剤とした。R部の構造としては、化学式(16)に示すトリメトキシシラン基、化学式(17)に示すトリエトキシシラン基、又はホスホン酸の何れかを、適宜選択した。 As the surface modifier, the structures represented by the above chemical formulas (12) to (15) were synthesized and used as the surface modifier in Examples 12 to 15, respectively. As a structure of R part, either the trimethoxysilane group shown to Chemical formula (16), the triethoxysilane group shown to Chemical formula (17), or a phosphonic acid was selected suitably.
 作製したボンド磁石用コンパウンドについて、キャピラリレオメーターを用い、流動性の指標である粘度を測定した。300℃におけるボンド磁石用コンパウンドの粘度を測定した。 The viscosity which is a parameter | index of fluidity was measured about the produced compound for bonded magnets using the capillary rheometer. The viscosity of the bonded magnet compound at 300 ° C. was measured.
 また、高分子材料のHSPパラメータを測定した。LCP樹脂はほとんどの溶剤に溶解しないため、LCP樹脂板に各種溶剤を滴下させたときの接触角を測定し、溶剤との濡れ性を評価した。滴下した溶媒の高さをh、幅を2rとして、tanθ=h/rの関係から接触角θを求め、接触角8°以下の溶媒を可溶と評価し、接触角が8°を超える溶媒を不溶と評価した。結果、11種類の溶媒のうち、2種が常温において溶解し、他の9種は溶解しなかった。溶解実験を行った11種の溶媒を、溶解/非溶解の結果を含め、下記に示す。 Also, the HSP parameters of the polymeric material were measured. Since the LCP resin is not soluble in most solvents, the contact angles when various solvents were dropped on the LCP resin plate were measured to evaluate the wettability with the solvent. The contact angle θ is determined from the relationship of tan θ = h / r, where h is the height of the dropped solvent and 2r is the width, and the solvent having a contact angle of 8 ° or less is evaluated as soluble. Was evaluated as insoluble. As a result, 2 types of 11 types of solvents were dissolved at normal temperature, and the other 9 types were not dissolved. The 11 solvents subjected to dissolution experiments are shown below, including the dissolution / non-dissolution results.
 溶解した溶媒: 1-メチルナフタレン、アニリン Dissolved solvent: 1-methyl naphthalene, aniline
 溶解しなかった溶媒: ニトロベンゼン、1-ブロモナフタレン、ベンジルベンゾエート、キノリン、γ-ブチロラクトン(GBL)、N-メチルアニリン、ジメチルスルホキシド(DMSO)、エチレングリコール、ホルムアルデヒド Solvents which did not dissolve: Nitrobenzene, 1-bromonaphthalene, benzyl benzoate, quinoline, γ-butyrolactone (GBL), N-methylaniline, dimethyl sulfoxide (DMSO), ethylene glycol, formaldehyde
 この結果から、溶解する溶媒を球の内側に含み、溶解しない溶媒が球の外側にあって、且つ、その半径が最小となるハンセン球を求めることで、高分子材料(LCP樹脂)のHSPパラメータ(δdA、δpA、δhA)は、夫々、δdA=17.4、δpA=17、δhA=19.1と導出された。 From this result, the HSP parameter of the polymer material (LCP resin) is obtained by obtaining a Hansen sphere in which the solvent to be dissolved is inside the sphere, the undissolved solvent is outside the sphere, and the radius is the smallest. (Δd A , δp A , δh A ) were derived as δd A = 17.4, δp A = 17 and δh A = 19.1, respectively.
 また、化学式(12)~(15)に示す、実施例12~15で夫々用いる表面改質剤について、HSPパラメータの表面改質部による寄与(δdSQ、δpSQ、δhSQ)を、分子グループ寄与法により計算し、δdSQ-δdA、δpSQ-δpA、及び、δhSQ-δhAを導出したところ、表2に示す結果を得た。 Further, with respect to the surface modifiers shown in chemical formulas (12) to (15) and used in Examples 12 to 15, respectively, the contribution (δd SQ , δp SQ , δh SQ ) by the surface modification portion of the HSP parameter The results shown in Table 2 were obtained when δd SQ -δd A , δp SQ -δp A , and δh SQ -δh A were calculated by the contribution method.
《比較例4》
 表面改質剤により表面処理を行わないことを除いて、実施例12と同様の方法で希土類磁性粉末を作製した。具体的には、実施例12において、表面改質剤を添加せず、無機材料、高分子材料、及び、添加剤の配合割合を、夫々、質量比で94.25:5.25:0.5とした混合物を混練し、ボンド磁石用コンパウンドを得た。
Comparative Example 4
A rare earth magnetic powder was produced in the same manner as in Example 12 except that the surface modification was not performed by the surface modifier. Specifically, in Example 12, the surface modifying agent was not added, and the blending ratio of the inorganic material, the polymer material, and the additive was 94.25: 5.25: 0 in mass ratio, respectively. The mixture of 5 was kneaded to obtain a bonded magnet compound.
《比較例5》
 表面改質剤として、下記の化学式(31)で表される材料を用いたことを除き、実施例12と同様の方法で希土類磁性粉末を作製した。
Figure JPOXMLDOC01-appb-C000043
Comparative Example 5
A rare earth magnetic powder was produced in the same manner as in Example 12, except that a material represented by the following chemical formula (31) was used as a surface modifier.
Figure JPOXMLDOC01-appb-C000043
《比較例6》
 表面改質剤として、下記の化学式(32)で表される材料を用いたことを除き、実施例12と同様の方法で希土類磁性粉末を作製した。
Figure JPOXMLDOC01-appb-C000044
Comparative Example 6
A rare earth magnetic powder was produced in the same manner as in Example 12, except that a material represented by the following chemical formula (32) was used as a surface modifier.
Figure JPOXMLDOC01-appb-C000044
 化学式(31)及び(32)において、トリメトキシシラン基(-Si(OCH33)の部分が無機材料表面との反応部分Rであり、これを除いた部分が表面改質部Qである。実施例12~15と同様に、化学式(31)及び(32)で表される表面改質剤について、HSPパラメータの表面改質部による寄与(δdSQ、δpSQ、δhSQ)を、分子グループ寄与法により計算し、δdSQ-δdA、δpSQ-δpA、及び、δhSQ-δhAを導出した。 In the chemical formulas (31) and (32), the portion of trimethoxysilane group (-Si (OCH 3 ) 3 ) is the reactive portion R with the surface of the inorganic material, and the portion other than this is the surface modified portion Q . In the same manner as in Examples 12 to 15, with respect to the surface modifiers represented by the chemical formulas (31) and (32), the contribution (δd SQ , δp SQ , δh SQ ) by the surface modification portion of the HSP parameter Calculated according to the contribution method, δd SQ -δd A , δp SQ -δp A and δh SQ -δh A were derived.
 表2に、実施例12~15、及び、比較例4~6における、表面改質部と高分子材料との間のHSPパラメータの差δdSQ-δdA、δpSQ-δpA、及び、δhSQ-δhAの値を示す。ただし、比較例4では、表面改質剤を使用していないので、表面改質部のHSPパラメータ(δdSQ、δpSQ、δhSQ)に代えて、無機材料のHSPパラメータ(δdM、δpM、δhM)を用いた。表2から分かるように、実施例12~15では、|δdSQ-δdA|≦3(J/cm31/2、|δpSQ-δpA|≦3(J/cm31/2、及び、|δhSQ-δhA|≦3(J/cm31/2、の条件を全て満たすが、比較例4~6では、上記条件を全て満たしてはいない。 Table 2 shows differences in HSP parameters between the surface modified portion and the polymer material in Examples 12 to 15 and Comparative Examples 4 to 6, δd SQ- δd A , δp SQ- δp A , and δh The value of SQ- δh A is shown. However, in Comparative Example 4, since no surface modifier is used, HSP parameters (δd M , δp M ) of the inorganic material are substituted for the HSP parameters (δd SQ , δp SQ , δh SQ ) of the surface modified portion. , Δh M ) were used. As can be seen from Table 2, in Examples 12 to 15, | δd SQ −δd A | ≦ 3 (J / cm 3 ) 1/2 , | δp SQ −δp A | ≦ 3 (J / cm 3 ) 1 / All the conditions of 2 and | δh SQ −δh A | ≦ 3 (J / cm 3 ) 1/2 are satisfied, but in Comparative Examples 4 to 6, all the above conditions are not satisfied.
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
 表3に、実施例1~11、及び、比較例1~3について、ボンド磁石用コンパウンドの粘度を測定した結果を示す。表3に示すように、実施例1~11のボンド磁石用コンパウンドは、比較例1~3と比べて、粘度が顕著に低下し、良好な流動性を示すことが分かる。 Table 3 shows the results of measuring the viscosity of the bonded magnet compound for Examples 1 to 11 and Comparative Examples 1 to 3. As shown in Table 3, it can be seen that the bonded magnet compounds of Examples 1 to 11 have significantly reduced viscosity compared to Comparative Examples 1 to 3, and exhibit good flowability.
 表4に、実施例12~15、及び、比較例4~6について、ボンド磁石用コンパウンドの粘度を測定した結果を示す。表4に示すように、実施例12~15のボンド磁石用コンパウンドは、比較例4~6と比べて、粘度が顕著に低下し、良好な流動性を示すことが分かる。 Table 4 shows the results of measuring the viscosity of the bonded magnet compound for Examples 12 to 15 and Comparative Examples 4 to 6. As shown in Table 4, it can be seen that the bonded magnet compounds of Examples 12 to 15 have significantly reduced viscosity compared to Comparative Examples 4 to 6, and exhibit good flowability.
 また、表3及び表4には、表面改質部Qと高分子材料間のHSP距離Raの値が、粘度の測定結果と併せて示されている。ここで、表3及び表4におけるHSP距離Raは、表面改質部Qに起因するHSPパラメータ(δdSQ、δpSQ、δhSQ)を、表面改質剤のHSPパラメータとみなして、高分子材料との間のHSP距離Raを、数式1に基づき計算したものである。 Moreover, in Table 3 and Table 4, the value of HSP distance Ra between the surface modification part Q and the polymer material is shown together with the measurement result of the viscosity. Here, the HSP distance Ra in Tables 3 and 4, HSP parameters due to the surface modification portion Q (δd SQ, δp SQ, δh SQ) and is regarded as HSP parameters of the surface modifier, a polymeric material And the HSP distance Ra between them is calculated based on Formula 1.
 表3及び表4ともに、HSP距離Raが小さいほど、粘度が低下する結果となっており、HSP距離Raの減少と粘度の低下との間に、何らかの正の相関があることが示唆される。 In both Tables 3 and 4, the smaller the HSP distance Ra, the lower the viscosity, which suggests that there is some positive correlation between the decrease in HSP distance Ra and the decrease in viscosity.
 図2は、表3の結果をグラフにしたものである。同様に、図3は、表4の結果をグラフにしたものである。図2および図3から、HSP距離Raと粘度との間には、略線形の関係があることが分かる。これは、HSPパラメータの表面改質部による寄与(δdSQ、δpSQ、δhSQ)に基づいて高分子材料との相溶性を評価することが有効であることの証左といえる。 FIG. 2 is a graph of the results of Table 3. Similarly, FIG. 3 is a graph of the results of Table 4. It can be seen from FIGS. 2 and 3 that there is a substantially linear relationship between the HSP distance Ra and the viscosity. This is a proof that it is effective to evaluate the compatibility with the polymer material based on the contribution (δd SQ , δp SQ , δh SQ ) of the HSP parameter to the surface modification portion.
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000047
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。 While the present invention has been described in terms of the presently preferred embodiments, such disclosure should not be construed as limiting. Various modifications and alterations will no doubt become apparent to those skilled in the art to which the present invention pertains upon reading the foregoing disclosure. Therefore, the appended claims should be construed to include all variations and modifications without departing from the true spirit and scope of the present invention.
 本発明に係る複合材料は、導電材料、EMC材料、記録材料、磁性材料、摺動材料、封止材料、制振材料、歯科材料、断熱材料、熱伝導材料、浮力材料等、多種多様な機能材料としての利用が可能である。 The composite material according to the present invention has various functions such as conductive materials, EMC materials, recording materials, magnetic materials, sliding materials, sealing materials, damping materials, dental materials, heat insulating materials, heat conductive materials, buoyancy materials, etc. It can be used as a material.
 1:希土類磁性粉末(無機材料)、2:高分子材料、3:表面改質部、4:表面改質無機粉末、5:ボンド磁石用コンパウンド(複合材料) 1: Rare earth magnetic powder (inorganic material) 2: Polymer material 3: Surface modified portion 4: Surface modified inorganic powder 5: Compound for bonded magnet (composite material)

Claims (25)

  1.  高分子材料と、無機材料と表面改質剤との反応生成物である表面改質無機粉末と、を含む複合材料であって、
     前記表面改質剤は、表面改質部Qと、無機材料との反応部分Rと、を有し、
     前記表面改質無機粉末は、前記無機材料と、前記無機材料の表面を被覆する前記表面改質部Qと、を有し、
     前記表面改質部Qは、被相溶対象である前記高分子材料に対して相溶する性質を有し、
     前記表面改質剤のハンセン溶解度パラメータδdS、δpS、δhSにおける前記表面改質部Qによる寄与δdSQ、δpSQ、δhSQと、前記高分子材料のハンセン溶解度パラメータδdA、δpA、δhAとのそれぞれの差δdSQ-δdA、δpSQ-δpA、δhSQ-δhAが、いずれも、±3(J/cm31/2の範囲内にある、複合材料。
    A composite material comprising: a polymeric material; and a surface-modified inorganic powder which is a reaction product of an inorganic material and a surface modifier,
    The surface modifier has a surface modification portion Q and a reaction portion R with an inorganic material,
    The surface-modified inorganic powder includes the inorganic material and the surface-modified portion Q that covers the surface of the inorganic material,
    The surface modifying portion Q has a property of being compatible with the polymer material to be compatible.
    Contribution of the surface modification unit Q to the Hansen solubility parameter δd S , δp S , δh S of the surface modifier δd SQ , δp SQ , δh SQ and the Hansen solubility parameter δd A , δp A of the polymer material A composite material in which each difference δd SQ −δd A , δp SQ −δp A and δh SQ −δh A with δh A is in the range of ± 3 (J / cm 3 ) 1/2 .
  2.  前記高分子材料は、アミド結合を有し、
     前記δdSQが、14≦δdSQ≦20の範囲内にあり、
     前記δpSQが、6.5≦δpSQ≦12.5の範囲内にあり、
     前記δhSQが、9.1≦δhSQ≦15.1の範囲内にある、請求項1に記載の複合材料。
    The polymeric material has an amide bond,
    The δd SQ is in the range of 14 ≦ δd SQ ≦ 20,
    The δp SQ is in the range of 6.5 ≦ δp SQ ≦ 12.5,
    The composite material according to claim 1, wherein the δh SQ is in the range of 9.1 ≦ δh SQ 1 15.1.
  3.  前記表面改質剤が、前記反応部分Rと、フェノール性水酸基とを有する単環の芳香族化合物である、請求項2に記載の複合材料。 The composite material according to claim 2, wherein the surface modifier is a monocyclic aromatic compound having the reactive moiety R and a phenolic hydroxyl group.
  4.  前記表面改質剤が下記の化学式(1):
    Figure JPOXMLDOC01-appb-C000001
    で表される、請求項3に記載の複合材料。
    The surface modifier may have the following chemical formula (1):
    Figure JPOXMLDOC01-appb-C000001
    The composite material according to claim 3, represented by
  5.  前記表面改質剤が下記の化学式(2):
    Figure JPOXMLDOC01-appb-C000002
    で表される、請求項3に記載の複合材料。
    The surface modifier may have the following chemical formula (2):
    Figure JPOXMLDOC01-appb-C000002
    The composite material according to claim 3, represented by
  6.  前記表面改質剤が下記の化学式(3):
    Figure JPOXMLDOC01-appb-C000003
    で表される、請求項3に記載の複合材料。
    The surface modifier may have the following chemical formula (3):
    Figure JPOXMLDOC01-appb-C000003
    The composite material according to claim 3, represented by
  7.  前記表面改質部Qが、エチレン基を有する、請求項2に記載の複合材料。 The composite material according to claim 2, wherein the surface modification unit Q has an ethylene group.
  8.  前記表面改質部Qが、ビニレン基を有する、請求項2に記載の複合材料。 The composite material according to claim 2, wherein the surface modification unit Q has a vinylene group.
  9.  前記表面改質部Qが、カルボキシル基を有する、請求項7又は8に記載の複合材料。 The composite material according to claim 7, wherein the surface modification unit Q has a carboxyl group.
  10.  前記表面改質部Qが、アミノ基を有する、請求項7又は8に記載の複合材料。 The composite material according to claim 7, wherein the surface modification unit Q has an amino group.
  11.  前記表面改質部Qが、チオール基を有する、請求項7又は8に記載の複合材料。 The composite material according to claim 7, wherein the surface modification unit Q has a thiol group.
  12.  前記表面改質剤が下記の化学式(4):
    Figure JPOXMLDOC01-appb-C000004
    で表される、請求項7に記載の複合材料。
    The surface modifier may have the following chemical formula (4):
    Figure JPOXMLDOC01-appb-C000004
    The composite material according to claim 7, represented by
  13.  前記表面改質剤が下記の化学式(5):
    Figure JPOXMLDOC01-appb-C000005
    で表される、請求項7に記載の複合材料。
    The surface modifier may have the following chemical formula (5):
    Figure JPOXMLDOC01-appb-C000005
    The composite material according to claim 7, represented by
  14.  前記表面改質剤が下記の化学式(6):
    Figure JPOXMLDOC01-appb-C000006
    で表される、請求項7に記載の複合材料。
    The surface modifier may have the following chemical formula (6):
    Figure JPOXMLDOC01-appb-C000006
    The composite material according to claim 7, represented by
  15.  前記表面改質剤が下記の化学式(7):
    Figure JPOXMLDOC01-appb-C000007
    で表される、請求項7に記載の複合材料。
    The surface modifier may have the following chemical formula (7):
    Figure JPOXMLDOC01-appb-C000007
    The composite material according to claim 7, represented by
  16.  前記表面改質剤が下記の化学式(8):
    Figure JPOXMLDOC01-appb-C000008
    で表される、請求項7に記載の複合材料。
    The surface modifier may have the following chemical formula (8):
    Figure JPOXMLDOC01-appb-C000008
    The composite material according to claim 7, represented by
  17.  前記表面改質剤が下記の化学式(9):
    Figure JPOXMLDOC01-appb-C000009
    で表される、請求項8に記載の複合材料。
    The surface modifier may have the following chemical formula (9):
    Figure JPOXMLDOC01-appb-C000009
    The composite material according to claim 8, represented by
  18.  前記表面改質剤が下記の化学式(10):
    Figure JPOXMLDOC01-appb-C000010
    で表される、請求項8に記載の複合材料。
    The surface modifier may have the following chemical formula (10):
    Figure JPOXMLDOC01-appb-C000010
    The composite material according to claim 8, represented by
  19.  前記表面改質剤が下記の化学式(11):
    Figure JPOXMLDOC01-appb-C000011
    で表される、請求項8に記載の複合材料。
    The surface modifier may have the following chemical formula (11):
    Figure JPOXMLDOC01-appb-C000011
    The composite material according to claim 8, represented by
  20.  前記反応部分Rがアルコキシ基を有し、
     前記アルコキシ基が前記無機材料と反応して、前記無機材料と前記表面改質部Qとの結合部位が形成されている、請求項1~3、7および8の何れか1項に記載の複合材料。
    The reactive moiety R has an alkoxy group,
    The composite according to any one of claims 1 to 3, 7 and 8, wherein the alkoxy group is reacted with the inorganic material to form a binding site between the inorganic material and the surface modified portion Q. material.
  21.  前記表面改質剤が、シラン系カップリング剤、又は、チタネート系カップリング剤を含む、請求項1~3、7および8の何れか1項に記載の複合材料。 The composite material according to any one of claims 1 to 3, 7 and 8, wherein the surface modifier comprises a silane coupling agent or a titanate coupling agent.
  22.  前記表面改質剤が、前記反応部分Rに水酸基を有する有機ホスホン酸を含み、
     前記有機ホスホン酸中の前記水酸基が前記無機材料と反応して、前記無機材料と前記表面改質部との結合部位が形成されている、請求項1~3、7および8の何れか1項に記載の複合材料。
    The surface modifier includes an organic phosphonic acid having a hydroxyl group at the reaction site R,
    9. The method according to claim 1, wherein the hydroxyl group in the organic phosphonic acid reacts with the inorganic material to form a bonding site between the inorganic material and the surface modified portion. Composite material described in.
  23.  前記δdSQ、前記δpSQ、及び前記δhSQは、それぞれ、分子グループ寄与法によって計算された前記表面改質剤のハンセン溶解度パラメータδdS、δpS、δhSのうち、前記表面改質部Qを構成する分子グループによる寄与を導出することによって求められる、請求項1~3、7および8の何れか1項に記載の複合材料。 The .delta.d SQ, the .delta.p SQ, and the .delta.h SQ, respectively, Hansen parameters .delta.d S of the surface modifier is calculated by the molecular group contribution method, .delta.p S, among .delta.h S, wherein the surface modification portion Q The composite material according to any one of claims 1 to 3, 7 and 8, which is obtained by deriving a contribution by a molecular group constituting the
  24.  前記無機材料が、磁性材料である、請求項1~3、7および8の何れか1項に記載の複合材料。 The composite material according to any one of claims 1 to 3, 7 and 8, wherein the inorganic material is a magnetic material.
  25.  前記磁性材料が、Nd-Fe-B系磁性粉末、Sm-Fe-N系磁性粉末、Sm-Co系磁性粉末、及び、フェライト系磁性粉末からなる群より選択される少なくとも1種を含む、請求項24に記載の複合材料。 The magnetic material comprises at least one selected from the group consisting of Nd-Fe-B based magnetic powder, Sm-Fe-N based magnetic powder, Sm-Co based magnetic powder, and ferrite based magnetic powder. A composite material according to item 24.
PCT/JP2018/023016 2017-07-14 2018-06-15 Composite material WO2019012917A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018566463A JPWO2019012917A1 (en) 2017-07-14 2018-06-15 Composite material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-138453 2017-07-14
JP2017138453 2017-07-14

Publications (1)

Publication Number Publication Date
WO2019012917A1 true WO2019012917A1 (en) 2019-01-17

Family

ID=65001264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023016 WO2019012917A1 (en) 2017-07-14 2018-06-15 Composite material

Country Status (2)

Country Link
JP (1) JPWO2019012917A1 (en)
WO (1) WO2019012917A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111029073A (en) * 2019-12-27 2020-04-17 成都银河磁体股份有限公司 High-resistance magnetic powder, bonded magnet and preparation method thereof
WO2021172522A1 (en) * 2020-02-28 2021-09-02 学校法人 関西大学 Method for producing dispersion and method for producing ceramic fired body
WO2021172521A1 (en) * 2020-02-28 2021-09-02 学校法人 関西大学 Dispersion production method and ceramic sintered body production method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06107916A (en) * 1992-09-25 1994-04-19 Toray Ind Inc Polyester composition and film comprising the same
JPH1070022A (en) * 1996-06-03 1998-03-10 Minnesota Mining & Mfg Co <3M> Surface modification of magnetic particle pigment
JP2000044583A (en) * 1998-05-27 2000-02-15 Nippon Unicar Co Ltd Composition containing siloxane
JP2001250706A (en) * 2000-03-06 2001-09-14 Dainippon Ink & Chem Inc Rare earth bonded magnet composite material and its manufacturing method
JP2002008911A (en) * 2000-06-22 2002-01-11 Nichia Chem Ind Ltd Surface treating method of rare earth-iron-nitrogen magnetic powder, and plastic magnet formed of the same
JP2004292235A (en) * 2003-03-26 2004-10-21 Sekisui Chem Co Ltd Phyllosilicate, hardenable composition, sealing material, and adhesive
JP2008127253A (en) * 2006-11-22 2008-06-05 Sumitomo Osaka Cement Co Ltd Surface-treated inorganic oxide particle, method for producing the same, dispersion liquid of the same and resin composition
JP2009518510A (en) * 2005-12-05 2009-05-07 スリーエム イノベイティブ プロパティズ カンパニー Flame retardant polymer composition
JP2013514429A (en) * 2009-12-17 2013-04-25 スリーエム イノベイティブ プロパティズ カンパニー Nano-calcite composite with high magnesium surface concentration
WO2015019588A1 (en) * 2013-08-07 2015-02-12 パナソニックIpマネジメント株式会社 Bonded magnet and motor
JP2017046409A (en) * 2015-08-25 2017-03-02 パナソニックIpマネジメント株式会社 Electric motor element, method for manufacturing electric motor element, electric motor element, and apparatus

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06107916A (en) * 1992-09-25 1994-04-19 Toray Ind Inc Polyester composition and film comprising the same
JPH1070022A (en) * 1996-06-03 1998-03-10 Minnesota Mining & Mfg Co <3M> Surface modification of magnetic particle pigment
JP2000044583A (en) * 1998-05-27 2000-02-15 Nippon Unicar Co Ltd Composition containing siloxane
JP2001250706A (en) * 2000-03-06 2001-09-14 Dainippon Ink & Chem Inc Rare earth bonded magnet composite material and its manufacturing method
JP2002008911A (en) * 2000-06-22 2002-01-11 Nichia Chem Ind Ltd Surface treating method of rare earth-iron-nitrogen magnetic powder, and plastic magnet formed of the same
JP2004292235A (en) * 2003-03-26 2004-10-21 Sekisui Chem Co Ltd Phyllosilicate, hardenable composition, sealing material, and adhesive
JP2009518510A (en) * 2005-12-05 2009-05-07 スリーエム イノベイティブ プロパティズ カンパニー Flame retardant polymer composition
JP2008127253A (en) * 2006-11-22 2008-06-05 Sumitomo Osaka Cement Co Ltd Surface-treated inorganic oxide particle, method for producing the same, dispersion liquid of the same and resin composition
JP2013514429A (en) * 2009-12-17 2013-04-25 スリーエム イノベイティブ プロパティズ カンパニー Nano-calcite composite with high magnesium surface concentration
WO2015019588A1 (en) * 2013-08-07 2015-02-12 パナソニックIpマネジメント株式会社 Bonded magnet and motor
JP2017046409A (en) * 2015-08-25 2017-03-02 パナソニックIpマネジメント株式会社 Electric motor element, method for manufacturing electric motor element, electric motor element, and apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111029073A (en) * 2019-12-27 2020-04-17 成都银河磁体股份有限公司 High-resistance magnetic powder, bonded magnet and preparation method thereof
WO2021172522A1 (en) * 2020-02-28 2021-09-02 学校法人 関西大学 Method for producing dispersion and method for producing ceramic fired body
WO2021172521A1 (en) * 2020-02-28 2021-09-02 学校法人 関西大学 Dispersion production method and ceramic sintered body production method
JP2021133671A (en) * 2020-02-28 2021-09-13 学校法人 関西大学 Method for producing dispersion body and method for producing ceramic fired body
JP2021134136A (en) * 2020-02-28 2021-09-13 学校法人 関西大学 Method for producing dispersion element, and method for producing ceramic fired body
CN115298005A (en) * 2020-02-28 2022-11-04 学校法人关西大学 Method for producing dispersion, method for producing ceramic sintered body
JP7176699B2 (en) 2020-02-28 2022-11-22 学校法人 関西大学 Method for producing dispersion, method for producing fired ceramics
JP7264351B2 (en) 2020-02-28 2023-04-25 学校法人 関西大学 Method for producing dispersion, method for producing fired ceramics
EP4112259A4 (en) * 2020-02-28 2023-10-11 The School Corporation Kansai University Dispersion production method and ceramic sintered body production method
EP4112258A4 (en) * 2020-02-28 2023-10-11 The School Corporation Kansai University Method for producing dispersion and method for producing ceramic fired body

Also Published As

Publication number Publication date
JPWO2019012917A1 (en) 2020-05-07

Similar Documents

Publication Publication Date Title
WO2019012917A1 (en) Composite material
Liu et al. Conjugated polymers developed from alkynes
Ramesan et al. Silver‐doped zinc oxide as a nanofiller for development of poly (vinyl alcohol)/poly (vinyl pyrrolidone) blend nanocomposites
CN102775755B (en) Polyaryl ether nitrile (PEN) and carbonyl iron powder (Fe(CO)5) composite magnetic material and preparation method thereof
US11056257B2 (en) Magnetic compound and antenna
Zabihi Preparation and characterization of toughened composites of epoxy/poly (3, 4-ethylenedioxythiophene) nanotube: Thermal, mechanical and electrical properties
Basavaraja et al. Electrical conductivity studies on water‐soluble polypyrrole–graphene oxide composites
Qian et al. Efficient thermal properties enhancement to hyperbranched aromatic polyamide grafted aluminum nitride in epoxy composites
Xu et al. Preparation, morphology, and properties of conducting polyaniline‐grafted multiwalled carbon nanotubes/epoxy composites
JP2020205455A (en) Method of producing bonded magnet and compound for bonded magnet
CN110050037A (en) Resin combination, the manufacturing method of resin combination, the manufacturing method of resin combination formed body and resin combination formed body
Rouhi et al. Novel conductive magnetic nanocomposite based on poly (indole-co-thiophene) as a hemoglobin diagnostic biosensor: Synthesis, characterization and physical properties
Sawada et al. Low molecular weight aromatic compounds possessing a nonflammable characteristic in fluoroalkyl end‐capped acrylic acid oligomer/silica nanocomposite matrices after calcination at 800° C under atmospheric conditions
JP2019019214A (en) Surface modifier
JP2019019212A (en) Surface modified inorganic powder
WO2021014837A1 (en) Additive for bonded magnet and method for manufacturing compound for bonded magnet
CN1199204C (en) High weathing magnet powder prepn. method and products therefrom
Karsten et al. A new access to polypyrrole‐based functionalized magnetic core‐shell nanoparticles
JP2019019213A (en) Composite material
JP2019021754A (en) Surface modified inorganic powder
JP2003318014A (en) Dust core powder, high-strength dust core, and method of manufacturing the same
JP2005260016A (en) Composition for fiber reinforced resin bond type magnet, and resin bond type magnet using the same
Mathad et al. Studies on highly conducting Polypyrrole/Fe3O4 nanocomposites
JP6862725B2 (en) Rare earth magnet powder, rare earth bond magnets, motor elements and motors
Chen et al. Novel phthalocyanine crystals as a conductive filler in crosslinked epoxy materials: Fractal particle networks and low percolation thresholds

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018566463

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18831763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18831763

Country of ref document: EP

Kind code of ref document: A1