WO2019012616A1 - Temperature measurement device, temperature measurement method, and temperature measurement program - Google Patents

Temperature measurement device, temperature measurement method, and temperature measurement program Download PDF

Info

Publication number
WO2019012616A1
WO2019012616A1 PCT/JP2017/025372 JP2017025372W WO2019012616A1 WO 2019012616 A1 WO2019012616 A1 WO 2019012616A1 JP 2017025372 W JP2017025372 W JP 2017025372W WO 2019012616 A1 WO2019012616 A1 WO 2019012616A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
measurement
optical fiber
temperature measurement
unit
Prior art date
Application number
PCT/JP2017/025372
Other languages
French (fr)
Japanese (ja)
Inventor
有岡孝祐
宇野和史
笠嶋丈夫
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2019529365A priority Critical patent/JP6819784B2/en
Priority to PCT/JP2017/025372 priority patent/WO2019012616A1/en
Publication of WO2019012616A1 publication Critical patent/WO2019012616A1/en
Priority to US16/713,059 priority patent/US20200116574A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/324Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres using Raman scattering

Definitions

  • the present invention relates to a temperature measurement device, a temperature measurement method, and a temperature measurement program.
  • a technology has been developed for measuring the temperature distribution in the stretching direction of an optical fiber using backscattered light from the optical fiber when light is incident from the light source to the optical fiber (see, for example, Patent Documents 1 and 2) .
  • liquid density meters are commonly used in rollover monitoring of LNG tanks.
  • the liquid density meter needs to move up and down, the diameter of connection with the tank is large, the availability is low due to fitting, and there is a problem that maintenance is difficult. Therefore, it is conceivable to monitor rollover by detecting the temperature of LNG using an optical fiber.
  • the anti-Stokes light contained in the backscattered light becomes small at cryogenic temperatures, and the S / N may be degraded.
  • the present invention aims to provide a temperature measurement device capable of performing temperature measurement with high accuracy, a temperature measurement method, and a temperature measurement program.
  • the temperature measurement device includes a plurality of optical fibers disposed along a predetermined path, and a temperature distribution in the extension direction of the plurality of optical fibers based on backscattered light from the optical fiber.
  • a temperature measurement unit to measure, and an averaging processing unit that averages the plurality of temperature distributions in the distance direction of the optical fiber based on the correlation of the plurality of temperature distributions measured by the temperature measurement unit along the predetermined path And.
  • Temperature measurement can be performed with high accuracy.
  • (A) is a schematic diagram showing the whole structure of the temperature measurement apparatus which concerns on embodiment
  • (b) is a block diagram for demonstrating the hardware constitutions of a control part. It is a figure showing the component of backscattered light.
  • (A) is a figure which illustrates the relationship between the elapsed time after the light pulse emission by a laser, and the light intensity of a Stokes component and an anti-Stokes component
  • (b) is the temperature computed using the detection result of (a) is there. It is a figure which illustrates the relationship between the light intensity of the Stokes ingredient and the anti-Stokes ingredient to temperature.
  • (A)-(c) is a figure for explaining roll over.
  • (A)-(c) is a figure showing the example which measures the temperature of a LNG tank by an optical fiber.
  • (A) And (b) is a figure which illustrates a protective tube.
  • (A) to (d) are diagrams showing averaging processing. It is a figure which illustrates about reverse filter processing.
  • (A) to (e) are diagrams illustrating an abnormality determination. It is a figure which illustrates a flow chart. It is a figure which illustrates a temperature measurement system.
  • the temperature measurement device 100 includes a measuring device 10, a control unit 20, an optical fiber 30, and the like.
  • the measuring device 10 includes a laser 11, a beam splitter 12, an optical switch 13, a filter 14, a plurality of detectors 15a and 15b, and the like.
  • the control unit 20 includes an instruction unit 21, a temperature measurement unit 22, an averaging processing unit 23, an inverse filter processing unit 24, a determination unit 25, and the like.
  • FIG. 1B is a block diagram for explaining a hardware configuration of the control unit 20.
  • the control unit 20 includes a CPU 101, a RAM 102, a storage device 103, an interface 104, and the like. Each of these devices is connected by a bus or the like.
  • a central processing unit (CPU) 101 is a central processing unit.
  • the CPU 101 includes one or more cores.
  • a random access memory (RAM) 102 is a volatile memory that temporarily stores a program executed by the CPU 101, data processed by the CPU 101, and the like.
  • the storage device 103 is a non-volatile storage device.
  • the storage device 103 for example, a ROM (Read Only Memory), a solid state drive (SSD) such as a flash memory, a hard disk driven by a hard disk drive, or the like can be used.
  • the control unit 20 realizes the instruction unit 21, the temperature measurement unit 22, the averaging processing unit 23, the inverse filter processing unit 24, and the determination unit 25.
  • the instruction unit 21, the temperature measurement unit 22, the averaging processing unit 23, the inverse filter processing unit 24, and the determination unit 25 may be hardware such as a dedicated circuit.
  • the laser 11 is a light source such as a semiconductor laser, and emits laser light of a predetermined wavelength range in accordance with an instruction of the instruction unit 21.
  • the laser 11 emits light pulses (laser pulses) at predetermined time intervals.
  • the beam splitter 12 causes the light pulse emitted from the laser 11 to enter the light switch 13.
  • the optical switch 13 is a switch that switches the emission destination (channel) of the incident light pulse.
  • the optical switch 13 alternately injects light pulses to the first end and the second end of the optical fiber 30 in a fixed cycle according to the instruction of the instruction unit 21.
  • the optical switch 13 injects an optical pulse into one of the first end and the second end of the optical fiber 30 according to the instruction of the instruction unit 21.
  • the optical fiber 30 is disposed along a predetermined path of the temperature measurement target.
  • the light pulse incident on the optical fiber 30 propagates in the optical fiber 30.
  • the light pulse is gradually attenuated and propagates in the optical fiber 30 while generating forward scattered light traveling in the propagation direction and backscattered light (return light) traveling in the feedback direction.
  • the backscattered light passes through the optical switch 13 and enters the beam splitter 12 again.
  • the backscattered light incident on the beam splitter 12 is emitted to the filter 14.
  • the filter 14 is a WDM coupler or the like, and extracts the backscattered light into a long wavelength component (Stokes component described later) and a short wavelength component (anti-Stokes component described later).
  • the detectors 15a and 15b are light receiving elements.
  • the detector 15 a converts the light reception intensity of the short wavelength component of the backscattered light into an electric signal and transmits the electric signal to the temperature measurement unit 22.
  • the detector 15 b converts the light reception intensity of the long wavelength component of the backscattered light into an electric signal and transmits the electric signal to the temperature measurement unit 22.
  • the temperature measurement unit 22 measures the temperature distribution in the stretching direction of the optical fiber 30 using the Stokes component and the anti-Stokes component.
  • the averaging processing unit 23 calculates a correction measurement temperature by performing averaging processing on the measurement temperature distribution measured by the temperature measurement unit 22.
  • the inverse filter processor 24 performs inverse filter processing on the corrected measurement temperature calculated by the averaging processor 23.
  • the determination unit 25 makes a determination regarding an abnormality based on the corrected measurement temperature after the inverse filter processing.
  • FIG. 2 is a diagram showing components of backscattered light.
  • backscattered light is broadly classified into three types. These three types of light are, in order of high light intensity and in the order of close to the incident light wavelength, Rayleigh scattered light used for OTDR (optical pulse tester) etc., Brillouin scattered light used for distortion measurement etc., temperature measurement etc.
  • Raman scattered light used in Raman scattered light is generated by the interference between light and the lattice vibration in the optical fiber 30 which changes with temperature.
  • the constructive interference generates a short wavelength component called an anti-Stokes component
  • the destructive interference generates a long wavelength component called a Stokes component.
  • FIG. 3A shows the elapsed time after light pulse emission by the laser 11 and the Stokes component (long wavelength component) and the anti-Stokes component (short wavelength component) when light is incident from the first end of the optical fiber 30. It is a figure which illustrates a relation with light intensity.
  • the elapsed time corresponds to the propagation distance in the optical fiber 30 (the position in the optical fiber 30).
  • the light intensities of the Stokes and anti-Stokes components both decrease with elapsed time. This is because the light pulse is gradually attenuated and propagates in the optical fiber 30 while generating forward scattered light and back scattered light.
  • the light intensity of the anti-Stokes component becomes stronger at a position where the temperature is high in the optical fiber 30 compared to the Stokes component, and is lower than the Stokes component at a position where the temperature is low. It becomes weaker. Therefore, the temperature of each position in the optical fiber 30 can be detected by detecting both components by the detectors 15a and 15b and utilizing the characteristic difference between both components.
  • the region showing the maximum is a region in which the optical fiber 30 is intentionally heated with a dryer or the like in FIG. 1A.
  • region which shows local minimum is an area
  • the temperature measurement unit 22 measures the temperature from the Stokes component and the anti-Stokes component every elapsed time. Thereby, the temperature of each sampling position in the optical fiber 30 can be measured. That is, the temperature distribution in the extension direction of the optical fiber 30 can be measured. In addition, since the characteristic difference of both components is utilized, even if the light intensity of both components is attenuated according to the distance, the temperature can be measured with high accuracy.
  • FIG. 3 (b) shows the temperature calculated using the detection result of FIG. 3 (a).
  • the horizontal axis in FIG. 3B is the position in the optical fiber 30 calculated based on the elapsed time. As illustrated in FIG. 3B, the temperature at each position in the optical fiber 30 can be measured by detecting the Stokes component and the Anti-Stokes component.
  • the Stokes component and the anti-Stokes component are inter-level transitions of optical phonons.
  • the Stokes component is a component generated by the transition from the ground state to the excited state.
  • the anti-Stokes component is a component generated by the transition from the excited state to the ground state. At low temperatures, the intensity of the anti-Stokes component is low because there are less phonons in the excited state.
  • FIG. 4 is a diagram illustrating the relationship between the Stokes component and the light intensity of the anti-Stokes component with respect to temperature.
  • the light intensity of the anti-Stokes component is significantly reduced relative to the light intensity of the Stokes component. Therefore, in a low temperature region such as below freezing, the temperature error becomes large due to the definition of the shot noise and the relationship between the temperature and the Stokes component and the Anti-Stokes, along with the significant decrease in the light intensity of the Anti-Stokes component.
  • the LNG tank 40 stores LNG.
  • the LNG tank 40 may receive LNG from a plurality of ships.
  • the LNG is multilayered in the LNG tank 40 due to the density difference based on the component difference of the LNG.
  • the LNG in the LNG tank 40 is double-layered.
  • the lower layer is a high-density LNG component.
  • the upper layer is a low density LNG component.
  • the optical fiber 30 is extended downward from the top of the LNG tank 40, passes through the upper layer, and is folded at the lower part of the lower layer (for example, the bottom of the LNG tank 40). And extend to the top of the LNG tank 40.
  • a relatively low temperature is measured at a portion where the optical fiber 30 contacts the upper layer
  • a relatively high temperature is measured at a portion where the optical fiber 30 contacts the lower layer.
  • the temperature measurement device 100 since the LNG component is stored at a cryogenic temperature, as described above, measurement of temperature with an optical fiber results in a large measurement error. For example, as illustrated in FIG. 6C, noise at the measurement temperature may increase. Therefore, the temperature measurement device 100 according to the present embodiment has a configuration for improving the accuracy of the temperature measurement.
  • FIG. 7A is a view exemplifying a protective tube 50 for protecting the optical fiber 30 to be in contact with the LNG component stored in the LNG tank 40.
  • the protective tube 50 is, for example, a metal helical tube.
  • FIG. 7 (b) is an enlarged view of a spiral portion of the protective tube 50.
  • the protective tube 50 has air permeability and liquid permeability without shielding the optical fiber 30 from LNG.
  • the protective tube 50 may have, for example, a length of several tens of meters. Therefore, since the protective tube 50 can be wound up by configuring it as a helical tube, installation and recovery to the LNG tank 40 are easy. Therefore, replacement of the optical fiber 30 is easy. Moreover, it is preferable that the protective tube 50 has a weight like a weir so that it is not flowed by the flow of LNG. In addition, it is preferable to use what coated the polyimide etc. which do not carry out brittle fracture even at cryogenic temperature as the optical fiber 30.
  • the protective pipe 50 is extended downward from the top of the LNG tank 40, passes through the upper layer, is folded at the lower part of the lower layer (for example, the bottom of the LNG tank 40), and passes through the upper layer. And extend it to the top of the LNG tank 40.
  • the optical fiber 30 extends a plurality of times from one end of the protective tube 50 to the other end. This means that a plurality of optical fibers are disposed in the protective tube 50.
  • the measurement temperature at each position of the optical fiber 30 has a temperature distribution as illustrated in FIG. 8 (b). That is, the measured temperature becomes high outside the LNG tank 40 (outside temperature). In the gas portion above the upper layer in the LNG tank 40, the measurement temperature rapidly lowers to a substantially constant temperature (for example, about ⁇ 100 ° C.). This is because the temperature in the LNG tank 40 is kept substantially constant at a cryogenic temperature. In the upper layer, the measurement temperature is rapidly lowered to a substantially constant temperature (eg, about -160 ° C.). The measurement temperature slightly increases at the boundary between the upper layer and the lower layer, and becomes substantially constant at the lower layer. The measurement temperature slightly lowers at the boundary between the lower layer and the upper layer, and becomes substantially constant at the upper layer. In the gas portion, the measurement temperature rapidly rises and becomes a substantially constant temperature. Outside the LNG tank 40, the measured temperature rises rapidly. Since the optical fiber 30 extends the protective tube 50 a plurality of times, this cycle of measured temperature is repeated.
  • a substantially constant temperature for example
  • the measured temperatures obtained by the optical fibers 30 provided along the same protective tube 50 should have the same temperature distribution. Therefore, multiple measured temperature distributions at a certain protection tube position should have high correlation. On the other hand, when the correlation is low, it is assumed that there is no temperature distribution and the correlation is low due to the influence of noise or the like.
  • the correlation coefficient R 12 (x) of each of the measurement temperature distributions T 1 and T 2 in a sample range of ⁇ L (m) centering on a certain protective pipe position x (position in the height direction) is, for example, It can be asked as in 1).
  • T bar (a bar attached to the top of T) is an average value of the measurement temperature T in the sample range of ⁇ L.
  • I represents each position from -L to + L.
  • the measured temperature distribution T 1 and measure the temperature distribution T 2 will be similar.
  • the correlation coefficient R 12 (x) has a large value. Therefore, if the correlation coefficient is large, the accuracy of the measured temperature at position x will be high. Therefore, if the correlation coefficient exceeds a certain threshold value, the averaging processing unit 23 outputs the average value of the measured temperatures at the position x as the temperature at the position x. In this case, it is possible to output the measured temperature obtained with high accuracy.
  • the averaging unit 23 calculates the average value of the average temperatures in the range of ⁇ L centered on the position x in each of the measurement temperature distributions T 1 and T 2 as the position x Output as temperature at In this case, since the measurement temperature is averaged in the range of ⁇ L, the influence of noise can be suppressed. For example, as the correlation coefficient decreases, the range used for averaging in the measurement temperature distribution may be widely adopted. If L is too short, the averaging effect will be small, and if too long, the high frequency component of the temperature distribution will be lost.
  • the degree of averaging may be determined based on the correlation coefficient.
  • the range of averaging may be determined by the sum ⁇ R of correlation coefficients generated from a plurality of measured temperature distributions. If RR ⁇ 0, an average temperature in the range of ⁇ L centering on the position x is output, and if RR> 0, an average temperature in the range of ⁇ ⁇ L ⁇ f ( ⁇ R) ⁇ is output.
  • the averaging unit 23 outputs the corrected temperature distribution corrected by the averaging process of each position in the height direction of the protective tube 50. Thereby, the temperature distribution in the height direction of the protective tube 50 is output.
  • the dotted line in FIG. 8C exemplifies the corrected temperature distribution after the averaging process.
  • the inverse filter processing unit 24 performs inverse filter processing on the corrected temperature distribution output by the averaging processing unit 23 in order to improve responsiveness.
  • the measurement temperature T can be expressed as a matrix expression as in the following equation (2), assuming that the optical fiber temperature measurement is a linear system.
  • T ' represents an actual temperature distribution
  • [H] represents a transfer function.
  • the transfer function is determined from the impulse response in optical fiber temperature measurement. Since the inverse filter of the transfer function can be expressed as [H] ⁇ 1 , the following equation (3) is obtained.
  • the inverse filtering unit 24 performs inverse filtering on the measured temperature distribution output from the averaging unit 23 to calculate a corrected temperature distribution.
  • the inverse filter processing unit 24 may perform low pass filter processing before performing the inverse filter processing.
  • the solid line in FIG. 8C exemplifies the measured temperature after low-pass filter processing.
  • FIG. 10A illustrates the upper layer temperature T top and the lower layer temperature T bottom .
  • the upper layer temperature T top is lower than the lower layer temperature T bottom .
  • the difference between the density D top of the upper layer and the density D bottom of the lower layer decreases, and rollover occurs. Therefore, occurrence of rollover can be detected in advance by detecting the difference between the upper layer temperature T top and the lower layer temperature T bottom .
  • FIG. 10B illustrates the upper layer temperature T top and the lower layer temperature T bottom in the case where the inflow of external heat is smaller than the evaporation cooling (case 1).
  • FIG. 10C illustrates the density D top of the upper layer and the density D bottom of the lower layer in case 1.
  • the difference between the upper layer temperature T top and the lower layer temperature T bottom gradually decreases with the passage of time. Therefore, it is preferable to output a warning about rollover when T bottom ⁇ T top ⁇ threshold T th1 .
  • FIG. 10D illustrates the upper layer temperature T top and the lower layer temperature T bottom in the case where the inflow of external heat is larger than the evaporation cooling (case 2).
  • FIG. 10E illustrates the density D top of the upper layer and the density D bottom of the lower layer in case 1.
  • case 2 the difference between the upper layer temperature T top and the lower layer temperature T bottom gradually increases with time, and the difference disappears rapidly.
  • the lower layer temperature Tbottom gradually increases with the passage of time. Therefore, it is preferable to output a warning about rollover when T bottom ⁇ T top > Threshold T th2 and T bottom > Threshold T th3 .
  • FIG. 11 is a diagram illustrating a flowchart representing the above process.
  • the temperature measurement unit 22 periodically measures the temperature of each sampling position of the optical fiber 30 at a predetermined cycle (step S1).
  • the averaging unit 23 calculates the correlation coefficient of the measured temperature distribution at each position x in the depth direction of the LNG tank 40 (step S2).
  • the correlation coefficient is calculated, for example, by the above equation (1).
  • the averaging processing unit 23 performs averaging processing based on the correlation coefficient calculated in step S2 (step S3).
  • the inverse filter processing unit 24 performs low-pass filter processing on the corrected temperature distribution obtained in step S3 (step S4). Thereby, the influence of noise can be suppressed.
  • the inverse filter processing unit 24 performs inverse filter processing on the corrected temperature distribution obtained in step S4 (step S5).
  • the inverse filter processing unit 24 outputs the temperature distribution obtained by the inverse filter processing as a temperature distribution in the height direction of the LNG tank 40 (step S6).
  • step S6 The temperature distribution output at step S6 is stored in the RAM 102, the storage device 103, etc. (step S7).
  • the determination unit 25 determines whether the relationship between the upper layer temperature and the lower layer temperature satisfies the predetermined condition described with reference to FIGS. 10 (a) to 10 (e) (step S8). If it is determined “Yes” in step S8, the determination unit 25 outputs a warning regarding rollover (step S9). When it is determined as "No” in step S8, the determination unit 25 determines how many hours later the condition of step S8 is satisfied from the tendency of the past, and outputs the result (step S10). After the execution of step S9 and step S10, the flowchart ends.
  • the plurality of temperature distributions are averaged based on the correlation of the plurality of temperature distributions measured using the backscattered light from the plurality of optical fibers disposed in the protective tube 50. . Thereby, temperature measurement can be performed with high accuracy.
  • a plurality of optical fibers are provided in the protective tube 50 by extending the single optical fiber 30 into the protective tube 50 a plurality of times, but the invention is not limited thereto.
  • a plurality of separated optical fibers may be disposed in the protective tube 50, and the temperature of each position in the protective tube 50 may be measured using the respective optical fibers.
  • FIG. 12 is a diagram illustrating a temperature measurement system.
  • the temperature measurement system has a configuration in which the measuring device 10 is connected to the cloud 302 through a telecommunication line 301 such as the Internet.
  • the cloud 302 includes the CPU 101, the RAM 102, the storage device 103, the interface 104, and the like of FIG. 1B, and realizes a function as the control unit 20.
  • measurement results measured in a foreign LNG tank are received by the cloud 302 installed in Japan, and the temperature distribution is measured.
  • a server connected via an intranet or the like may be used instead of the cloud 302, a server connected via an intranet or the like may be used.
  • the optical fiber 30 is an example of a plurality of optical fibers arranged along a predetermined path.
  • the temperature measurement unit 22 is an example of a temperature measurement unit that measures the temperature distribution in the extending direction of the plurality of optical fibers based on the backscattered light from the optical fiber.
  • the averaging processing unit 23 averages the plurality of temperature distributions in the distance direction of the optical fiber based on the correlation of the plurality of temperature distributions measured by the temperature measuring unit along the predetermined path. It is an example.
  • the inverse filtering unit 24 is an example of an inverse filtering unit that applies an inverse filter of the transfer function of temperature measurement by the temperature measurement unit to the corrected temperature distribution corrected by the averaging by the averaging unit. .
  • the determination unit 25 is an example of a determination unit that acquires the corrected measurement temperature for each of the upper layer and the lower layer, and performs a determination regarding an abnormality of the liquefied natural gas according to a difference between the acquired corrected measurement temperatures. is there.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

This temperature measurement device is provided with: a plurality of optical fibers that are arranged along a prescribed path; a temperature measurement unit that measures the temperature distributions in the extending direction of the optical fibers on the basis of back-scattered light from the optical fibers; and an averaging unit that averages the temperature distributions in the distance direction of the optical fibers on the basis of a correlation among the temperature distributions measured on the prescribed path by the temperature measurement unit.

Description

温度測定装置、温度測定方法および温度測定プログラムTemperature measuring device, temperature measuring method and temperature measuring program
 本件は、温度測定装置、温度測定方法および温度測定プログラムに関する。 The present invention relates to a temperature measurement device, a temperature measurement method, and a temperature measurement program.
 光源から光ファイバに光を入射した際に当該光ファイバからの後方散乱光を用いて、光ファイバの延伸方向の温度分布を測定する技術が開発されている(例えば、特許文献1,2参照)。 A technology has been developed for measuring the temperature distribution in the stretching direction of an optical fiber using backscattered light from the optical fiber when light is incident from the light source to the optical fiber (see, for example, Patent Documents 1 and 2) .
特開平7-218354号公報Unexamined-Japanese-Patent No. 7-218354 特開2014-167399号公報JP, 2014-167399, A
 例えば、LNGタンクのロールオーバー監視においては、液密度計が一般的に使用されている。しかしながら、液密度計は上下動が必要であり、タンクとの接続径も大きく、はめ殺しのため可用性が低く、メンテナンスしにくいという問題がある。そこで、光ファイバを用いてLNGの温度を検出することでロールオーバーを監視することが考えられる。しかしながら、極低温において後方散乱光に含まれるアンチストークス光が小さくなり、S/Nが悪くなるおそれがある。 For example, liquid density meters are commonly used in rollover monitoring of LNG tanks. However, the liquid density meter needs to move up and down, the diameter of connection with the tank is large, the availability is low due to fitting, and there is a problem that maintenance is difficult. Therefore, it is conceivable to monitor rollover by detecting the temperature of LNG using an optical fiber. However, the anti-Stokes light contained in the backscattered light becomes small at cryogenic temperatures, and the S / N may be degraded.
 1つの側面では、本件は、高精度に温度測定を行うことができる温度測定装置、温度測定方法および温度測定プログラムを提供することを目的とする。 In one aspect, the present invention aims to provide a temperature measurement device capable of performing temperature measurement with high accuracy, a temperature measurement method, and a temperature measurement program.
 1つの態様では、温度測定装置は、所定の経路に沿って配置された複数本の光ファイバと、前記光ファイバからの後方散乱光に基づいて前記複数本の光ファイバの延伸方向の温度分布を測定する温度測定部と、前記所定の経路において前記温度測定部が測定した複数の温度分布の相関に基づいて、前記光ファイバの距離方向における前記複数の温度分布を平均化する平均化処理部と、を備える。 In one aspect, the temperature measurement device includes a plurality of optical fibers disposed along a predetermined path, and a temperature distribution in the extension direction of the plurality of optical fibers based on backscattered light from the optical fiber. A temperature measurement unit to measure, and an averaging processing unit that averages the plurality of temperature distributions in the distance direction of the optical fiber based on the correlation of the plurality of temperature distributions measured by the temperature measurement unit along the predetermined path And.
 高精度に温度測定を行うことができる。 Temperature measurement can be performed with high accuracy.
(a)は実施形態に係る温度測定装置の全体構成を表す概略図であり、(b)は制御部のハードウェア構成を説明するためのブロック図である。(A) is a schematic diagram showing the whole structure of the temperature measurement apparatus which concerns on embodiment, (b) is a block diagram for demonstrating the hardware constitutions of a control part. 後方散乱光の成分を表す図である。It is a figure showing the component of backscattered light. (a)はレーザによる光パルス発光後の経過時間とストークス成分およびアンチストークス成分の光強度との関係を例示する図であり、(b)は(a)の検出結果を用いて算出した温度である。(A) is a figure which illustrates the relationship between the elapsed time after the light pulse emission by a laser, and the light intensity of a Stokes component and an anti-Stokes component, (b) is the temperature computed using the detection result of (a) is there. 温度に対するストークス成分およびアンチストークス成分の光強度との関係を例示する図である。It is a figure which illustrates the relationship between the light intensity of the Stokes ingredient and the anti-Stokes ingredient to temperature. (a)~(c)はロールオーバーについて説明するための図である。(A)-(c) is a figure for explaining roll over. (a)~(c)は光ファイバによってLNGタンクの温度測定する例を表す図である。(A)-(c) is a figure showing the example which measures the temperature of a LNG tank by an optical fiber. (a)および(b)は保護管を例示する図である。(A) And (b) is a figure which illustrates a protective tube. (a)~(d)は平均化処理を表す図である。(A) to (d) are diagrams showing averaging processing. 逆フィルタ処理について例示する図である。It is a figure which illustrates about reverse filter processing. (a)~(e)は異常判定を例示する図である。(A) to (e) are diagrams illustrating an abnormality determination. フローチャートを例示する図である。It is a figure which illustrates a flow chart. 温度測定システムを例示する図である。It is a figure which illustrates a temperature measurement system.
 以下、図面を参照しつつ、実施形態について説明する。 Hereinafter, embodiments will be described with reference to the drawings.
(実施形態)
 図1(a)は、実施形態に係る温度測定装置100の全体構成を表す概略図である。図1(a)で例示するように、温度測定装置100は、測定機10、制御部20、光ファイバ30などを備える。測定機10は、レーザ11、ビームスプリッタ12、光スイッチ13、フィルタ14、複数の検出器15a,15bなどを備える。制御部20は、指示部21、温度測定部22、平均化処理部23、逆フィルタ処理部24、判定部25などを備える。
(Embodiment)
Fig.1 (a) is schematic which represents the whole structure of the temperature measurement apparatus 100 which concerns on embodiment. As illustrated in FIG. 1A, the temperature measurement device 100 includes a measuring device 10, a control unit 20, an optical fiber 30, and the like. The measuring device 10 includes a laser 11, a beam splitter 12, an optical switch 13, a filter 14, a plurality of detectors 15a and 15b, and the like. The control unit 20 includes an instruction unit 21, a temperature measurement unit 22, an averaging processing unit 23, an inverse filter processing unit 24, a determination unit 25, and the like.
 図1(b)は、制御部20のハードウェア構成を説明するためのブロック図である。図1(b)で例示するように、制御部20は、CPU101、RAM102、記憶装置103、インタフェース104などを備える。これらの各機器は、バスなどによって接続されている。CPU(Central Processing Unit)101は、中央演算処理装置である。CPU101は、1以上のコアを含む。RAM(Random Access Memory)102は、CPU101が実行するプログラム、CPU101が処理するデータなどを一時的に記憶する揮発性メモリである。記憶装置103は、不揮発性記憶装置である。記憶装置103として、例えば、ROM(Read Only Memory)、フラッシュメモリなどのソリッド・ステート・ドライブ(SSD)、ハードディスクドライブに駆動されるハードディスクなどを用いることができる。CPU101が記憶装置103に記憶されている温度測定プログラムを実行することによって、制御部20に指示部21、温度測定部22、平均化処理部23、逆フィルタ処理部24および判定部25が実現される。なお、指示部21、温度測定部22、平均化処理部23、逆フィルタ処理部24および判定部25は、専用の回路などのハードウェアであってもよい。 FIG. 1B is a block diagram for explaining a hardware configuration of the control unit 20. As illustrated in FIG. 1B, the control unit 20 includes a CPU 101, a RAM 102, a storage device 103, an interface 104, and the like. Each of these devices is connected by a bus or the like. A central processing unit (CPU) 101 is a central processing unit. The CPU 101 includes one or more cores. A random access memory (RAM) 102 is a volatile memory that temporarily stores a program executed by the CPU 101, data processed by the CPU 101, and the like. The storage device 103 is a non-volatile storage device. As the storage device 103, for example, a ROM (Read Only Memory), a solid state drive (SSD) such as a flash memory, a hard disk driven by a hard disk drive, or the like can be used. When the CPU 101 executes the temperature measurement program stored in the storage device 103, the control unit 20 realizes the instruction unit 21, the temperature measurement unit 22, the averaging processing unit 23, the inverse filter processing unit 24, and the determination unit 25. Ru. The instruction unit 21, the temperature measurement unit 22, the averaging processing unit 23, the inverse filter processing unit 24, and the determination unit 25 may be hardware such as a dedicated circuit.
 レーザ11は、半導体レーザなどの光源であり、指示部21の指示に従って所定の波長範囲のレーザ光を出射する。本実施形態においては、レーザ11は、所定の時間間隔で光パルス(レーザパルス)を出射する。ビームスプリッタ12は、レーザ11が出射した光パルスを光スイッチ13に入射する。光スイッチ13は、入射された光パルスの出射先(チャネル)を切り替えるスイッチである。ダブルエンド方式では、光スイッチ13は、指示部21の指示に従って、光ファイバ30の第1端および第2端に一定周期で交互に光パルスを入射する。シングルエンド方式では、光スイッチ13は、指示部21の指示に従って、光ファイバ30の第1端または第2端のいずれか一方に光パルスを入射する。光ファイバ30は、温度測定対象の所定の経路に沿って配置されている。 The laser 11 is a light source such as a semiconductor laser, and emits laser light of a predetermined wavelength range in accordance with an instruction of the instruction unit 21. In the present embodiment, the laser 11 emits light pulses (laser pulses) at predetermined time intervals. The beam splitter 12 causes the light pulse emitted from the laser 11 to enter the light switch 13. The optical switch 13 is a switch that switches the emission destination (channel) of the incident light pulse. In the double-end system, the optical switch 13 alternately injects light pulses to the first end and the second end of the optical fiber 30 in a fixed cycle according to the instruction of the instruction unit 21. In the single-end system, the optical switch 13 injects an optical pulse into one of the first end and the second end of the optical fiber 30 according to the instruction of the instruction unit 21. The optical fiber 30 is disposed along a predetermined path of the temperature measurement target.
 光ファイバ30に入射した光パルスは、光ファイバ30を伝搬する。光パルスは、伝搬方向に進行する前方散乱光および帰還方向に進行する後方散乱光(戻り光)を生成しながら徐々に減衰して光ファイバ30内を伝搬する。後方散乱光は、光スイッチ13を通過してビームスプリッタ12に再度入射する。ビームスプリッタ12に入射した後方散乱光は、フィルタ14に対して出射される。フィルタ14は、WDMカプラなどであり、後方散乱光を長波長成分(後述するストークス成分)と短波長成分(後述するアンチストークス成分)とを抽出する。検出器15a,15bは、受光素子である。検出器15aは、後方散乱光の短波長成分の受光強度を電気信号に変換して温度測定部22に送信する。検出器15bは、後方散乱光の長波長成分の受光強度を電気信号に変換して温度測定部22に送信する。温度測定部22は、ストークス成分およびアンチストークス成分を用いて、光ファイバ30の延伸方向の温度分布を測定する。平均化処理部23は、温度測定部22によって測定された測定温度分布に対して平均化処理を行うことで、補正測定温度を算出する。逆フィルタ処理部24は、平均化処理部23が算出した補正測定温度に対して逆フィルタ処理を行う。判定部25は、逆フィルタ処理後の補正測定温度に基づいて、異常に係る判定を行う。 The light pulse incident on the optical fiber 30 propagates in the optical fiber 30. The light pulse is gradually attenuated and propagates in the optical fiber 30 while generating forward scattered light traveling in the propagation direction and backscattered light (return light) traveling in the feedback direction. The backscattered light passes through the optical switch 13 and enters the beam splitter 12 again. The backscattered light incident on the beam splitter 12 is emitted to the filter 14. The filter 14 is a WDM coupler or the like, and extracts the backscattered light into a long wavelength component (Stokes component described later) and a short wavelength component (anti-Stokes component described later). The detectors 15a and 15b are light receiving elements. The detector 15 a converts the light reception intensity of the short wavelength component of the backscattered light into an electric signal and transmits the electric signal to the temperature measurement unit 22. The detector 15 b converts the light reception intensity of the long wavelength component of the backscattered light into an electric signal and transmits the electric signal to the temperature measurement unit 22. The temperature measurement unit 22 measures the temperature distribution in the stretching direction of the optical fiber 30 using the Stokes component and the anti-Stokes component. The averaging processing unit 23 calculates a correction measurement temperature by performing averaging processing on the measurement temperature distribution measured by the temperature measurement unit 22. The inverse filter processor 24 performs inverse filter processing on the corrected measurement temperature calculated by the averaging processor 23. The determination unit 25 makes a determination regarding an abnormality based on the corrected measurement temperature after the inverse filter processing.
 図2は、後方散乱光の成分を表す図である。図2で例示するように、後方散乱光は、大きく3種類に分類される。これら3種類の光は、光強度の高い順かつ入射光波長に近い順に、OTDR(光パルス試験器)などに使用されるレイリー散乱光、歪測定などに使用されるブリルアン散乱光、温度測定などに使用されるラマン散乱光である。ラマン散乱光は、温度に応じて変化する光ファイバ30内の格子振動と光との干渉で生成される。強めあう干渉によりアンチストークス成分と呼ばれる短波長成分が生成され、弱めあう干渉によりストークス成分とよばれる長波長成分が生成される。 FIG. 2 is a diagram showing components of backscattered light. As illustrated in FIG. 2, backscattered light is broadly classified into three types. These three types of light are, in order of high light intensity and in the order of close to the incident light wavelength, Rayleigh scattered light used for OTDR (optical pulse tester) etc., Brillouin scattered light used for distortion measurement etc., temperature measurement etc. Raman scattered light used in Raman scattered light is generated by the interference between light and the lattice vibration in the optical fiber 30 which changes with temperature. The constructive interference generates a short wavelength component called an anti-Stokes component, and the destructive interference generates a long wavelength component called a Stokes component.
 図3(a)は、光ファイバ30の第1端から光入射した場合において、レーザ11による光パルス発光後の経過時間と、ストークス成分(長波長成分)およびアンチストークス成分(短波長成分)の光強度との関係を例示する図である。経過時間は、光ファイバ30における伝搬距離(光ファイバ30における位置)に対応している。図3(a)で例示するように、ストークス成分およびアンチストークス成分の光強度は、両方とも経過時間とともに低減する。これは、光パルスが前方散乱光および後方散乱光を生成しながら徐々に減衰して光ファイバ30内を伝搬することに起因する。 FIG. 3A shows the elapsed time after light pulse emission by the laser 11 and the Stokes component (long wavelength component) and the anti-Stokes component (short wavelength component) when light is incident from the first end of the optical fiber 30. It is a figure which illustrates a relation with light intensity. The elapsed time corresponds to the propagation distance in the optical fiber 30 (the position in the optical fiber 30). As illustrated in FIG. 3 (a), the light intensities of the Stokes and anti-Stokes components both decrease with elapsed time. This is because the light pulse is gradually attenuated and propagates in the optical fiber 30 while generating forward scattered light and back scattered light.
 図3(a)で例示するように、アンチストークス成分の光強度は光ファイバ30において高温になる位置では、ストークス成分と比較してより強くなり、低温になる位置では、ストークス成分と比較してより弱くなる。したがって、両成分を検出器15a,15bで検出し、両成分の特性差を利用することによって、光ファイバ30内の各位置の温度を検出することができる。なお、図3(a)において、極大を示す領域は、図1(a)においてドライヤなどで光ファイバ30を意図的に加熱した領域である。また、極小を示す領域は、図1(a)において冷水などで光ファイバ30を意図的に冷却した領域である。 As illustrated in FIG. 3A, the light intensity of the anti-Stokes component becomes stronger at a position where the temperature is high in the optical fiber 30 compared to the Stokes component, and is lower than the Stokes component at a position where the temperature is low. It becomes weaker. Therefore, the temperature of each position in the optical fiber 30 can be detected by detecting both components by the detectors 15a and 15b and utilizing the characteristic difference between both components. In FIG. 3A, the region showing the maximum is a region in which the optical fiber 30 is intentionally heated with a dryer or the like in FIG. 1A. Moreover, the area | region which shows local minimum is an area | region which intentionally cooled the optical fiber 30 with cold water etc. in FIG. 1 (a).
 本実施形態においては、温度測定部22は、経過時間ごとにストークス成分とアンチストークス成分とから温度を測定する。それにより、光ファイバ30内における各サンプリング位置の温度を測定することができる。すなわち、光ファイバ30の延伸方向における温度分布を測定することができる。なお、両成分の特性差を利用することから、距離に応じて両成分の光強度が減衰しても、高精度で温度を測定することができる。図3(b)は、図3(a)の検出結果を用いて算出した温度である。図3(b)の横軸は、経過時間を基に算出した光ファイバ30内の位置である。図3(b)で例示するように、ストークス成分およびアンチストークス成分を検出することによって、光ファイバ30内の各位置の温度を測定することができる。 In the present embodiment, the temperature measurement unit 22 measures the temperature from the Stokes component and the anti-Stokes component every elapsed time. Thereby, the temperature of each sampling position in the optical fiber 30 can be measured. That is, the temperature distribution in the extension direction of the optical fiber 30 can be measured. In addition, since the characteristic difference of both components is utilized, even if the light intensity of both components is attenuated according to the distance, the temperature can be measured with high accuracy. FIG. 3 (b) shows the temperature calculated using the detection result of FIG. 3 (a). The horizontal axis in FIG. 3B is the position in the optical fiber 30 calculated based on the elapsed time. As illustrated in FIG. 3B, the temperature at each position in the optical fiber 30 can be measured by detecting the Stokes component and the Anti-Stokes component.
 ところで、ストークス成分およびアンチストークス成分は、光学フォノンの準位間遷移である。ストークス成分は、基底状態から励起状態への遷移によって生成される成分である。アンチストークス成分は、励起状態から基底状態への遷移によって生成される成分である。温度が低い状態では、励起状態のフォノンが少ないため、アンチストークス成分の強度は低くなる。 By the way, the Stokes component and the anti-Stokes component are inter-level transitions of optical phonons. The Stokes component is a component generated by the transition from the ground state to the excited state. The anti-Stokes component is a component generated by the transition from the excited state to the ground state. At low temperatures, the intensity of the anti-Stokes component is low because there are less phonons in the excited state.
 図4は、温度に対するストークス成分およびアンチストークス成分の光強度との関係を例示する図である。図4で例示するように、氷点下などの低温域においては、アンチストークス成分の光強度は、ストークス成分の光強度に対して、大幅に低下してしまう。したがって、氷点下などの低温域においては、アンチストークス成分の光強度の大幅な低下に伴い、ショット雑音の定義と、温度とストークス成分およびアンチストークスとの関係から温度誤差が大きくなってしまう。 FIG. 4 is a diagram illustrating the relationship between the Stokes component and the light intensity of the anti-Stokes component with respect to temperature. As illustrated in FIG. 4, in a low temperature region such as below freezing, the light intensity of the anti-Stokes component is significantly reduced relative to the light intensity of the Stokes component. Therefore, in a low temperature region such as below freezing, the temperature error becomes large due to the definition of the shot noise and the relationship between the temperature and the Stokes component and the Anti-Stokes, along with the significant decrease in the light intensity of the Anti-Stokes component.
 しかしながら、LNG(液化天然ガス)タンクなどの施設においては、極低温を測定する技術が望まれている。ここで、一例として、LNGタンクにおけるロールオーバーについて説明する。図5(a)で例示するように、LNGタンク40には、LNGが貯蔵されている。LNGタンク40には、複数の船からLNGが受け入れられることがある。この場合、成分が異なるLNGが受け入れられるため、LNGタンク40内において、LNGの成分差に基づく密度差に起因して、LNGが多層状化する。図5(a)の例では、LNGタンク40内のLNGが2層化している。図5(b)で例示するように、下層は、密度の高いLNG成分である。上層は、密度の低いLNG成分である。 However, in facilities such as LNG (liquefied natural gas) tanks, a technique for measuring cryogenic temperatures is desired. Here, as an example, rollover in an LNG tank will be described. As illustrated in FIG. 5A, the LNG tank 40 stores LNG. The LNG tank 40 may receive LNG from a plurality of ships. In this case, since the LNG having different components is received, the LNG is multilayered in the LNG tank 40 due to the density difference based on the component difference of the LNG. In the example of FIG. 5 (a), the LNG in the LNG tank 40 is double-layered. As illustrated in FIG. 5 (b), the lower layer is a high-density LNG component. The upper layer is a low density LNG component.
 この状態で、図5(a)で例示するように、LNGタンク40に熱が入ると、各層において対流(二重対流)が生じる。二重対流が生じると、上層と下層との境界を介して、各成分と熱が少しずつ移動する。それにより、上層の密度と下層の密度とが次第に近づく。また、上層からのボイルオフガス(BOG)の発生によっても、上層の密度と下層の密度とが次第に近づく。上層の密度と下層の密度との差が小さくなると、上層と下層とが混合され、急激な対流が生じる(ロールオーバー)。2層化されていた状態では、上層のLNG成分の存在によって、下層のLNG成分からのボイルオフガスの発生は抑圧されている。しかしながら、図5(c)で例示するように、ロールオーバー時には、下層のLNG成分が上層へ移動するため、それまで抑圧されていた大量のボイルオフガスが発生し、タンクの圧力を異常に上昇させる。なお、図5(c)において、縦軸は、ボイルオフガス量を示す。 In this state, as shown in FIG. 5A, when heat is introduced into the LNG tank 40, convection (double convection) occurs in each layer. When double convection occurs, each component and heat move little by little through the boundary between the upper and lower layers. Thereby, the density of the upper layer and the density of the lower layer gradually approach. Also, the density of the upper layer and the density of the lower layer gradually approach due to the generation of boil off gas (BOG) from the upper layer. When the difference between the density of the upper layer and the density of the lower layer decreases, the upper layer and the lower layer are mixed, and rapid convection occurs (rollover). In the two-layered state, the generation of boil-off gas from the lower layer LNG component is suppressed by the presence of the upper layer LNG component. However, as illustrated in FIG. 5C, at the time of rollover, since the lower layer LNG component moves to the upper layer, a large amount of boil-off gas that has been suppressed until then is generated, and the pressure in the tank is abnormally increased. . In addition, in FIG.5 (c), a vertical axis | shaft shows boil off gas amount.
 ロールオーバーが発生する場合、事前にLNGタンク40内に温度変化が現れる。この温度変化を検出できれば、ロールオーバーの発生を抑制することができる。しかしながら、多層状化したLNG成分の上下層での温度差は、数℃程度である。また、時間的な温度変化も僅かである。したがって、ロールオーバーを光ファイバ温度測定で監視する場合、多層状化したLNG成分のそれぞれの層の温度を高精度に測定することが要求される。 When rollover occurs, a temperature change appears in the LNG tank 40 in advance. If this temperature change can be detected, the occurrence of rollover can be suppressed. However, the temperature difference between the upper and lower layers of the multilayered LNG component is about several degrees Celsius. In addition, temporal temperature change is also slight. Therefore, when rollover is monitored by optical fiber temperature measurement, it is required to measure the temperature of each layer of the multilayered LNG component with high accuracy.
 例えば、図6(a)で例示するように、光ファイバ30をLNGタンク40の上部から下方へと延ばし、上層を通過して下層の低部(例えばLNGタンク40の底)で折り返し、さらに上層を通過してLNGタンク40の上部へと延ばす。これにより、光ファイバ30が上層と接触する箇所では相対的に低い温度が測定され、光ファイバ30が下層と接触する箇所では相対的に高い温度が測定される。 For example, as illustrated in FIG. 6A, the optical fiber 30 is extended downward from the top of the LNG tank 40, passes through the upper layer, and is folded at the lower part of the lower layer (for example, the bottom of the LNG tank 40). And extend to the top of the LNG tank 40. Thereby, a relatively low temperature is measured at a portion where the optical fiber 30 contacts the upper layer, and a relatively high temperature is measured at a portion where the optical fiber 30 contacts the lower layer.
 光ファイバ温度測定においては、光パルス幅の積算値がその光ファイバ位置の光強度として取得するため、急峻な実温度分布に対しては、図6(b)で例示するように、ローパスフィルタを施したような温度分布が測定温度として得られる。そのため光ファイバの長手方向で急峻に温度が変わるLNGと空気との界面では温度精度が低くなってしまう。そこで応答性を向上させる逆フィルタを施すことで、界面付近の温度精度を向上することが考えられる。しかしながらノイズにも適用されてしまうため、逆フィルタを用いる場合には高い温度精度が求められる。 In optical fiber temperature measurement, since the integrated value of the light pulse width is acquired as the light intensity at the position of the optical fiber, for a steep actual temperature distribution, a low pass filter is used as illustrated in FIG. The temperature distribution as applied is obtained as the measurement temperature. Therefore, the temperature accuracy becomes low at the interface between the LNG and the air where the temperature changes sharply in the longitudinal direction of the optical fiber. Therefore, it is conceivable to improve the temperature accuracy in the vicinity of the interface by applying an inverse filter for improving the response. However, since this method is also applied to noise, high temperature accuracy is required when using an inverse filter.
 また、LNG成分は極低温で貯蔵されているため、上述したように、光ファイバで温度測定すると、測定誤差が大きくなってしまう。例えば、図6(c)で例示するように、測定温度におけるノイズが大きくなるおそれがある。そこで、本実施形態に係る温度測定装置100は、温度測定の精度を向上させる構成を有している。 Further, since the LNG component is stored at a cryogenic temperature, as described above, measurement of temperature with an optical fiber results in a large measurement error. For example, as illustrated in FIG. 6C, noise at the measurement temperature may increase. Therefore, the temperature measurement device 100 according to the present embodiment has a configuration for improving the accuracy of the temperature measurement.
 図7(a)は、LNGタンク40内に貯蔵されているLNG成分に接触させる光ファイバ30を保護するための保護管50を例示する図である。図7(a)で例示するように、保護管50は、例えば、金属の螺旋管である。図7(b)は、保護管50の螺旋部の拡大図である。LNGタンク40内においては、ミキシングや流入、払い出しによってLNGに流れが生じている。そこで、保護管50は、LNGから光ファイバ30を遮蔽せずに、通気性および通液性を有している。 FIG. 7A is a view exemplifying a protective tube 50 for protecting the optical fiber 30 to be in contact with the LNG component stored in the LNG tank 40. As illustrated in FIG. 7 (a), the protective tube 50 is, for example, a metal helical tube. FIG. 7 (b) is an enlarged view of a spiral portion of the protective tube 50. In the LNG tank 40, a flow is generated in the LNG by mixing, inflow and discharge. Therefore, the protective tube 50 has air permeability and liquid permeability without shielding the optical fiber 30 from LNG.
 保護管50は、例えば、数十メートルの長さを有することもある。したがって、保護管50を螺旋管で構成することで巻き取ることができるため、LNGタンク40への設置および回収が容易である。したがって、光ファイバ30の交換が容易である。また、保護管50は、LNGの流れによって流されないように、錨のような重りを有していることが好ましい。なお、光ファイバ30として、極低温でも脆性破壊しないポリイミド等を被覆したものを用いることが好ましい。 The protective tube 50 may have, for example, a length of several tens of meters. Therefore, since the protective tube 50 can be wound up by configuring it as a helical tube, installation and recovery to the LNG tank 40 are easy. Therefore, replacement of the optical fiber 30 is easy. Moreover, it is preferable that the protective tube 50 has a weight like a weir so that it is not flowed by the flow of LNG. In addition, it is preferable to use what coated the polyimide etc. which do not carry out brittle fracture even at cryogenic temperature as the optical fiber 30.
 図8(a)で例示するように、保護管50をLNGタンク40の上部から下方へと延ばし、上層を通過して下層の低部(例えばLNGタンク40の底)で折り返し、さらに上層を通過してLNGタンク40の上部へと延ばす。光ファイバ30は、保護管50の一端から他端まで、複数回にわたって延びている。これは、複数本の光ファイバが保護管50内に配置されることを意味する。 As illustrated in FIG. 8A, the protective pipe 50 is extended downward from the top of the LNG tank 40, passes through the upper layer, is folded at the lower part of the lower layer (for example, the bottom of the LNG tank 40), and passes through the upper layer. And extend it to the top of the LNG tank 40. The optical fiber 30 extends a plurality of times from one end of the protective tube 50 to the other end. This means that a plurality of optical fibers are disposed in the protective tube 50.
 それにより、光ファイバ30の各位置における測定温度は、図8(b)で例示するような温度分布を有するようになる。すなわち、LNGタンク40の外では、測定温度が高くなる(外気温)。LNGタンク40内において上層よりも上部の気体部において、急激に測定温度が低くなり、略一定温度となる(例えば、-100℃程度)。これは、LNGタンク40内の温度が極低温で略一定に保たれているからである。上層では、急激に測定温度が低くなり、略一定温度となる(例えば、-160℃程度)。上層と下層との境界で測定温度が若干ながら高くなり、下層で略一定温度となる。下層と上層との境界で測定温度が若干ながら低くなり、上層で略一定温度となる。気体部では、急激に測定温度が高くなり、略一定温度となる。LNGタンク40の外では、測定温度が急激に高くなる。光ファイバ30が保護管50を複数回にわたって延びていることから、この測定温度のサイクルが繰り返されることになる。 As a result, the measurement temperature at each position of the optical fiber 30 has a temperature distribution as illustrated in FIG. 8 (b). That is, the measured temperature becomes high outside the LNG tank 40 (outside temperature). In the gas portion above the upper layer in the LNG tank 40, the measurement temperature rapidly lowers to a substantially constant temperature (for example, about −100 ° C.). This is because the temperature in the LNG tank 40 is kept substantially constant at a cryogenic temperature. In the upper layer, the measurement temperature is rapidly lowered to a substantially constant temperature (eg, about -160 ° C.). The measurement temperature slightly increases at the boundary between the upper layer and the lower layer, and becomes substantially constant at the lower layer. The measurement temperature slightly lowers at the boundary between the lower layer and the upper layer, and becomes substantially constant at the upper layer. In the gas portion, the measurement temperature rapidly rises and becomes a substantially constant temperature. Outside the LNG tank 40, the measured temperature rises rapidly. Since the optical fiber 30 extends the protective tube 50 a plurality of times, this cycle of measured temperature is repeated.
 同一の保護管50に沿って設けられた光ファイバ30によって得られる測定温度は、同じ温度分布を有するはずである。したがって、ある保護管位置における複数の測定温度分布は高い相関を持つはずである。一方で、相関が低い場合は、温度分布がなくノイズの影響等で相関が低くなっていると想定される。 The measured temperatures obtained by the optical fibers 30 provided along the same protective tube 50 should have the same temperature distribution. Therefore, multiple measured temperature distributions at a certain protection tube position should have high correlation. On the other hand, when the correlation is low, it is assumed that there is no temperature distribution and the correlation is low due to the influence of noise or the like.
 ある保護管位置x(高さ方向の位置)を中心とした±L(m)のサンプル範囲における各測定温度分布T,Tの相関係数R12(x)は、例えば、下記式(1)のように求めることができる。下記式(1)において、「Tバー」(Tの上部にバーを付したもの)は、測定温度Tの±Lのサンプル範囲における平均値である。「i」は、-Lから+Lまでの各位置を表す。
Figure JPOXMLDOC01-appb-M000001
The correlation coefficient R 12 (x) of each of the measurement temperature distributions T 1 and T 2 in a sample range of ± L (m) centering on a certain protective pipe position x (position in the height direction) is, for example, It can be asked as in 1). In the following formula (1), “T bar” (a bar attached to the top of T) is an average value of the measurement temperature T in the sample range of ± L. "I" represents each position from -L to + L.
Figure JPOXMLDOC01-appb-M000001
 測定温度分布Tおよび測定温度分布Tの両方において温度信号に対するノイズ成分が少なければ、測定温度分布Tと測定温度分布Tとが類似することになる。この場合、相関係数R12(x)は大きな値となる。したがって、相関係数が大きければ、位置xにおける測定温度の精度は高いことになる。そこで、平均化処理部23は、相関係数がある閾値を超えれば、位置xにおける各測定温度の平均値を、位置xにおける温度として出力する。この場合、高い精度で得られた測定温度を出力することができる。 The less noise component with respect to the temperature signal in both the measured temperature distribution T 1 and measure the temperature distribution T 2, the measured temperature distribution T 1 and measure the temperature distribution T 2 will be similar. In this case, the correlation coefficient R 12 (x) has a large value. Therefore, if the correlation coefficient is large, the accuracy of the measured temperature at position x will be high. Therefore, if the correlation coefficient exceeds a certain threshold value, the averaging processing unit 23 outputs the average value of the measured temperatures at the position x as the temperature at the position x. In this case, it is possible to output the measured temperature obtained with high accuracy.
 一方、測定温度分布Tおよび測定温度分布Tの少なくともいずれかにおいて温度信号に対するノイズが大きければ、測定温度分布Tと測定温度分布Tとの類似度が低下する。この場合、相関係数R12(x)は小さな値となる。したがって、相関係数が小さければ、位置xにおける測定温度の精度は低いことになる。そこで、平均化処理部23は、相関係数が閾値以下である場合、各測定温度分布T,Tにおいて、位置xを中心とした±Lの範囲の平均温度の平均値を、位置xにおける温度として出力する。この場合、±Lの範囲で測定温度が平均化されるため、ノイズの影響を抑制することができる。例えば、相関係数が小さくなるほど、測定温度分布において平均化に用いる範囲を広く採用してもよい。Lは短すぎると平均化の効果が小さく、長すぎると温度分布の高周波成分が失われてしまうため、光パルスの幅程度とすることが好ましい。 On the other hand, if the noise is greater for the measured temperature distribution T 1 and the temperature signal in at least one of the measured temperature distribution T 2, the similarity between the measured temperature distribution T 1 and measure the temperature distribution T 2 is reduced. In this case, the correlation coefficient R 12 (x) has a small value. Thus, the smaller the correlation coefficient, the lower the accuracy of the measured temperature at position x. Therefore, when the correlation coefficient is equal to or less than the threshold, the averaging unit 23 calculates the average value of the average temperatures in the range of ± L centered on the position x in each of the measurement temperature distributions T 1 and T 2 as the position x Output as temperature at In this case, since the measurement temperature is averaged in the range of ± L, the influence of noise can be suppressed. For example, as the correlation coefficient decreases, the range used for averaging in the measurement temperature distribution may be widely adopted. If L is too short, the averaging effect will be small, and if too long, the high frequency component of the temperature distribution will be lost.
 または、相関係数に基づいて、平均化の度合を決定してもよい。例えば、複数の測定温度分布から作られる相関係数の和ΣRによって平均化の範囲を決めてもよい。ΣR<0ならば位置xを中心とした±Lの範囲の平均温度を出力し、ΣR>0ならば±{L-f(ΣR)}の範囲の平均温度を出力する。 Alternatively, the degree of averaging may be determined based on the correlation coefficient. For example, the range of averaging may be determined by the sum 相関 R of correlation coefficients generated from a plurality of measured temperature distributions. If RR <0, an average temperature in the range of ± L centering on the position x is output, and if RR> 0, an average temperature in the range of ± {L−f (} R)} is output.
 平均化処理部23は、保護管50の高さ方向における各位置の平均化処理によって補正された補正温度分布を出力する。それにより、保護管50の高さ方向における温度分布が出力される。図8(c)の点線が、平均化処理後の補正温度分布を例示する。 The averaging unit 23 outputs the corrected temperature distribution corrected by the averaging process of each position in the height direction of the protective tube 50. Thereby, the temperature distribution in the height direction of the protective tube 50 is output. The dotted line in FIG. 8C exemplifies the corrected temperature distribution after the averaging process.
 逆フィルタ処理部24は、平均化処理部23によって出力された補正温度分布に対して、応答性を向上させるための逆フィルタ処理を施す。測定温度Tは、光ファイバ温度測定を線形システムであると仮定すると、行列表現で下記式(2)のように表すことができる。下記式(2)において、T´は実温度分布を表し、[H]は伝達関数を表す。伝達関数は光ファイバ温度測定におけるインパルス応答から求められる。伝達関数の逆フィルタは[H]-1と表すことができるため、下記式(3)が得られる。逆フィルタ処理部24は、図9で例示するように、平均化処理部23が出力した測定温度分布に逆フィルタ処理を施すことで、補正温度分布を算出する。図8(c)の破線および図8(d)の実線が、逆フィルタ処理後の補正温度分布を例示する。それにより、実温度分布に近い温度分布を得ることができる。なお、逆フィルタ処理部24は、逆フィルタ処理を施す前に、ローパスフィルタ処理を行ってもよい。図8(c)の実線が、ローパスフィルタ処理後の測定温度を例示する。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
The inverse filter processing unit 24 performs inverse filter processing on the corrected temperature distribution output by the averaging processing unit 23 in order to improve responsiveness. The measurement temperature T can be expressed as a matrix expression as in the following equation (2), assuming that the optical fiber temperature measurement is a linear system. In the following formula (2), T 'represents an actual temperature distribution, and [H] represents a transfer function. The transfer function is determined from the impulse response in optical fiber temperature measurement. Since the inverse filter of the transfer function can be expressed as [H] −1 , the following equation (3) is obtained. As illustrated in FIG. 9, the inverse filtering unit 24 performs inverse filtering on the measured temperature distribution output from the averaging unit 23 to calculate a corrected temperature distribution. The broken line in FIG. 8 (c) and the solid line in FIG. 8 (d) illustrate the corrected temperature distribution after inverse filtering. Thereby, a temperature distribution close to the actual temperature distribution can be obtained. The inverse filter processing unit 24 may perform low pass filter processing before performing the inverse filter processing. The solid line in FIG. 8C exemplifies the measured temperature after low-pass filter processing.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 次に、判定部25は、補正温度分布を基に、LNGタンク40に異常が生じていないか判定する。図10(a)は、上層温度Ttopおよび下層温度Tbottomを例示する図である。図10(a)で例示するように、上層温度Ttopは、下層温度Tbottomよりも低い温度となっている。それにより、上層温度Ttopと下層温度Tbottomとの間には、所定の差異がある。この差異が小さくなると、上層の密度Dtopと下層の密度Dbottomとの差が小さくなり、ロールオーバーが発生することになる。したがって、上層温度Ttopと下層温度Tbottomとの差異を検出することで、ロールオーバーの発生を事前に検出することができる。 Next, the determination unit 25 determines whether or not an abnormality occurs in the LNG tank 40 based on the corrected temperature distribution. FIG. 10A illustrates the upper layer temperature T top and the lower layer temperature T bottom . As illustrated in FIG. 10A, the upper layer temperature T top is lower than the lower layer temperature T bottom . Thereby, there is a predetermined difference between the upper layer temperature T top and the lower layer temperature T bottom . As this difference decreases, the difference between the density D top of the upper layer and the density D bottom of the lower layer decreases, and rollover occurs. Therefore, occurrence of rollover can be detected in advance by detecting the difference between the upper layer temperature T top and the lower layer temperature T bottom .
 図10(b)は、外部の熱の流入が蒸発による冷却よりも小さい場合(case1)における上層温度Ttopおよび下層温度Tbottomを例示する図である。図10(c)は、case1における上層の密度Dtopおよび下層の密度Dbottomを例示する図である。case1では、上層温度Ttopと下層温度Tbottomとの差異が時間の経過とともに徐々に小さくなっている。したがって、Tbottom-Ttop<閾値Tth1となる場合に、ロールオーバーに関する警告を出力することが好ましい。 FIG. 10B illustrates the upper layer temperature T top and the lower layer temperature T bottom in the case where the inflow of external heat is smaller than the evaporation cooling (case 1). FIG. 10C illustrates the density D top of the upper layer and the density D bottom of the lower layer in case 1. In case 1, the difference between the upper layer temperature T top and the lower layer temperature T bottom gradually decreases with the passage of time. Therefore, it is preferable to output a warning about rollover when T bottom −T top <threshold T th1 .
 図10(d)は、外部の熱の流入が蒸発による冷却よりも大きい場合(case2)における上層温度Ttopおよび下層温度Tbottomを例示する図である。図10(e)は、case1における上層の密度Dtopおよび下層の密度Dbottomを例示する図である。case2では、上層温度Ttopと下層温度Tbottomとの差異が時間の経過とともに徐々に大きくなり、急激に差異がなくなっている。また、下層温度Tbottomが時間の経過とともに徐々に大きくなっている。したがって、Tbottom-Ttop>閾値Tth2かつTbottom>閾値Tth3となる場合に、ロールオーバーに関する警告を出力することが好ましい。 FIG. 10D illustrates the upper layer temperature T top and the lower layer temperature T bottom in the case where the inflow of external heat is larger than the evaporation cooling (case 2). FIG. 10E illustrates the density D top of the upper layer and the density D bottom of the lower layer in case 1. In case 2, the difference between the upper layer temperature T top and the lower layer temperature T bottom gradually increases with time, and the difference disappears rapidly. In addition, the lower layer temperature Tbottom gradually increases with the passage of time. Therefore, it is preferable to output a warning about rollover when T bottom −T top > Threshold T th2 and T bottom > Threshold T th3 .
 図11は、以上の処理を表すフローチャートを例示する図である。以下、図11のフローチャートに沿って、各部の処理の流れを説明する。まず、温度測定部22は、所定の周期で定期的に光ファイバ30の各サンプリング位置の温度を測定する(ステップS1)。次に、平均化処理部23は、LNGタンク40の深さ方向の各位置xにおける測定温度分布の相関係数を算出する(ステップS2)。相関係数は、例えば、上記式(1)によって算出される。次に、平均化処理部23は、ステップS2で算出された相関係数に基づいて、平均化処理を行う(ステップS3)。 FIG. 11 is a diagram illustrating a flowchart representing the above process. Hereinafter, the flow of processing of each part will be described along the flowchart of FIG. First, the temperature measurement unit 22 periodically measures the temperature of each sampling position of the optical fiber 30 at a predetermined cycle (step S1). Next, the averaging unit 23 calculates the correlation coefficient of the measured temperature distribution at each position x in the depth direction of the LNG tank 40 (step S2). The correlation coefficient is calculated, for example, by the above equation (1). Next, the averaging processing unit 23 performs averaging processing based on the correlation coefficient calculated in step S2 (step S3).
 次に、逆フィルタ処理部24は、ステップS3で得られた補正温度分布に対して、ローパスフィルタ処理を行う(ステップS4)。それにより、ノイズの影響を抑制することができる。次に、逆フィルタ処理部24は、ステップS4で得られた補正温度分布に対して、逆フィルタ処理を行う(ステップS5)。次に、逆フィルタ処理部24は、逆フィルタ処理によって得られた温度分布を、LNGタンク40の高さ方向の温度分布として出力する(ステップS6)。 Next, the inverse filter processing unit 24 performs low-pass filter processing on the corrected temperature distribution obtained in step S3 (step S4). Thereby, the influence of noise can be suppressed. Next, the inverse filter processing unit 24 performs inverse filter processing on the corrected temperature distribution obtained in step S4 (step S5). Next, the inverse filter processing unit 24 outputs the temperature distribution obtained by the inverse filter processing as a temperature distribution in the height direction of the LNG tank 40 (step S6).
 ステップS6で出力された温度分布は、RAM102や記憶装置103などに記憶される(ステップS7)。次に、判定部25は、上層温度と下層温度との関係が図10(a)~図10(e)で説明した所定の条件を満たすか否かを判定する(ステップS8)。ステップS8で「Yes」と判定された場合、判定部25は、ロールオーバーに関する警告を出力する(ステップS9)。ステップS8で「No」と判定された場合、判定部25は、過去の傾向から、あと何時間後にステップS8の条件を満たすか判断し、その結果を出力する(ステップS10)。ステップS9およびステップS10の実行後、フローチャートが終了する。 The temperature distribution output at step S6 is stored in the RAM 102, the storage device 103, etc. (step S7). Next, the determination unit 25 determines whether the relationship between the upper layer temperature and the lower layer temperature satisfies the predetermined condition described with reference to FIGS. 10 (a) to 10 (e) (step S8). If it is determined "Yes" in step S8, the determination unit 25 outputs a warning regarding rollover (step S9). When it is determined as "No" in step S8, the determination unit 25 determines how many hours later the condition of step S8 is satisfied from the tendency of the past, and outputs the result (step S10). After the execution of step S9 and step S10, the flowchart ends.
 本実施形態によれば、保護管50に配置された複数本の光ファイバからの後方散乱光を用いて測定された複数の温度分布の相関に基づいて、当該複数の温度分布を平均化している。それにより、高精度に温度測定を行うことができる。 According to the present embodiment, the plurality of temperature distributions are averaged based on the correlation of the plurality of temperature distributions measured using the backscattered light from the plurality of optical fibers disposed in the protective tube 50. . Thereby, temperature measurement can be performed with high accuracy.
 なお、本実施形態においては、1本の光ファイバ30を複数回にわたって保護管50内に延ばすことで、複数本の光ファイバを保護管50内に設けたが、それに限られない。例えば、複数本の切り離された光ファイバをそれぞれ保護管50内に配置し、それぞれの光ファイバを用いて、保護管50内の各位置の温度を測定してもよい。 In the present embodiment, a plurality of optical fibers are provided in the protective tube 50 by extending the single optical fiber 30 into the protective tube 50 a plurality of times, but the invention is not limited thereto. For example, a plurality of separated optical fibers may be disposed in the protective tube 50, and the temperature of each position in the protective tube 50 may be measured using the respective optical fibers.
(他の例)
 図12は、温度測定システムを例示する図である。図12で例示するように、温度測定システムは、測定機10が、インターネットなどの電気通信回線301を通じてクラウド302と接続された構成を有する。クラウド302は、図1(b)のCPU101、RAM102、記憶装置103、インタフェース104などを備え、制御部20としての機能を実現する。このような温度測定システムでは、例えば、外国のLNGタンクで測定された測定結果が、日本に設置されているクラウド302で受信され、温度分布が測定される。なお、クラウド302の代わりに、イントラネットなどを介して接続されたサーバを用いてもよい。
(Other example)
FIG. 12 is a diagram illustrating a temperature measurement system. As illustrated in FIG. 12, the temperature measurement system has a configuration in which the measuring device 10 is connected to the cloud 302 through a telecommunication line 301 such as the Internet. The cloud 302 includes the CPU 101, the RAM 102, the storage device 103, the interface 104, and the like of FIG. 1B, and realizes a function as the control unit 20. In such a temperature measurement system, for example, measurement results measured in a foreign LNG tank are received by the cloud 302 installed in Japan, and the temperature distribution is measured. Note that instead of the cloud 302, a server connected via an intranet or the like may be used.
 上記各例において、光ファイバ30が、所定の経路に沿って配置された複数本の光ファイバの一例である。温度測定部22が、前記光ファイバからの後方散乱光に基づいて前記複数本の光ファイバの延伸方向の温度分布を測定する温度測定部の一例である。平均化処理部23が、前記所定の経路において前記温度測定部が測定した複数の温度分布の相関に基づいて、前記光ファイバの距離方向における前記複数の温度分布を平均化する平均化処理部の一例である。逆フィルタ処理部24が、前記平均化処理部による平均化によって補正された補正温度分布に対して、前記温度測定部による温度測定の伝達関数の逆フィルタを適用する逆フィルタ処理部の一例である。判定部25が、前記上層および前記下層のそれぞれに対して、前記補正測定温度を取得し、取得した各補正測定温度の差異に応じて前記液化天然ガスの異常に関する判定を行う判定部の一例である。 In each of the above examples, the optical fiber 30 is an example of a plurality of optical fibers arranged along a predetermined path. The temperature measurement unit 22 is an example of a temperature measurement unit that measures the temperature distribution in the extending direction of the plurality of optical fibers based on the backscattered light from the optical fiber. The averaging processing unit 23 averages the plurality of temperature distributions in the distance direction of the optical fiber based on the correlation of the plurality of temperature distributions measured by the temperature measuring unit along the predetermined path. It is an example. The inverse filtering unit 24 is an example of an inverse filtering unit that applies an inverse filter of the transfer function of temperature measurement by the temperature measurement unit to the corrected temperature distribution corrected by the averaging by the averaging unit. . The determination unit 25 is an example of a determination unit that acquires the corrected measurement temperature for each of the upper layer and the lower layer, and performs a determination regarding an abnormality of the liquefied natural gas according to a difference between the acquired corrected measurement temperatures. is there.
 以上、本発明の実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 As mentioned above, although the embodiment of the present invention has been described in detail, the present invention is not limited to the specific embodiment, and various modifications and changes may be made within the scope of the present invention described in the claims. Is possible.
 10 測定機
 11 レーザ
 12 ビームスプリッタ
 13 光スイッチ
 14 フィルタ
 15a,15b 検出器
 20 制御部
 21 指示部
 22 温度測定部
 23 平均化処理部
 24 逆フィルタ処理部
 25 判定部
 30 光ファイバ
 40 LNGタンク
 50 保護管
 100 温度測定装置
DESCRIPTION OF SYMBOLS 10 measuring machine 11 laser 12 beam splitter 13 optical switch 14 filter 15a, 15b detector 20 control part 21 instruction | indication part 22 temperature measurement part 23 averaging processing part 24 reverse filter processing part 25 determination part 30 optical fiber 40 LNG tank 50 protective tube 100 temperature measuring device

Claims (11)

  1.  所定の経路に沿って配置された複数本の光ファイバと、
     前記光ファイバからの後方散乱光に基づいて前記複数本の光ファイバの延伸方向の温度分布を測定する温度測定部と、
     前記所定の経路において前記温度測定部が測定した複数の温度分布の相関に基づいて、前記光ファイバの距離方向における前記複数の温度分布を平均化する平均化処理部と、を備えることを特徴とする温度測定装置。
    A plurality of optical fibers disposed along a predetermined path;
    A temperature measurement unit that measures the temperature distribution in the extending direction of the plurality of optical fibers based on the backscattered light from the optical fiber;
    And Averaging processing unit for averaging the plurality of temperature distributions in the distance direction of the optical fiber based on the correlation of the plurality of temperature distributions measured by the temperature measuring unit along the predetermined path. Temperature measuring device.
  2.  前記平均化処理部は、前記複数の温度分布の相関に基づいて、前記光ファイバの距離方向における前記複数の温度分布を平均化する範囲または度合いを決定し、決定された前記範囲または前記度合いに基づいて、前記複数の温度分布を平均化することを特徴とする請求項1記載の温度測定装置。 The averaging processing unit determines the range or degree of averaging the plurality of temperature distributions in the distance direction of the optical fiber based on the correlation of the plurality of temperature distributions, and determines the determined range or degree The temperature measurement device according to claim 1, wherein the plurality of temperature distributions are averaged based on the plurality of temperature distributions.
  3.  前記平均化処理部による平均化によって補正された補正温度分布に対して、前記温度測定部による温度測定の伝達関数の逆フィルタを適用する逆フィルタ処理部を備えることを特徴とする請求項1または2に記載の温度測定装置。 2. The apparatus according to claim 1, further comprising: an inverse filtering unit that applies an inverse filter of a transfer function of temperature measurement by the temperature measurement unit to the corrected temperature distribution corrected by the averaging by the averaging unit. The temperature measurement device according to 2.
  4.  前記所定の経路に沿って設けられた金属螺旋管を備え、
     前記複数本の光ファイバは、前記金属螺旋管内を距離方向に延びるように配置されていることを特徴とする請求項1~3のいずれか一項に記載の温度測定装置。
    A metal spiral tube provided along the predetermined path;
    The temperature measurement device according to any one of claims 1 to 3, wherein the plurality of optical fibers are arranged to extend in the distance direction in the metal spiral tube.
  5.  前記所定の経路は、液化天然ガス内を通るように設けられていることを特徴とする請求項1~4のいずれか一項に記載の温度測定装置。 The temperature measuring device according to any one of claims 1 to 4, wherein the predetermined path is provided to pass through liquefied natural gas.
  6.  前記液化天然ガスは、密度の差異により上層と下層とを成し、
     前記所定の経路は、前記上層および前記下層をまたぐように設けられていることを特徴とする請求項5記載の温度測定装置。
    The liquefied natural gas forms an upper layer and a lower layer due to the difference in density,
    The temperature measuring device according to claim 5, wherein the predetermined path is provided to straddle the upper layer and the lower layer.
  7.  前記上層および前記下層のそれぞれに対して、前記補正測定温度を取得し、取得した各補正測定温度の差異に応じて前記液化天然ガスの異常に関する判定を行う判定部を備えることを特徴とする請求項6記載の温度測定装置。 The apparatus is provided with a determination unit that acquires the corrected measurement temperature for each of the upper layer and the lower layer, and performs a determination regarding an abnormality of the liquefied natural gas according to a difference between the acquired corrected measurement temperatures. The temperature measurement device according to Item 6.
  8.  前記判定部は、前記下層の補正測定温度から前記上層の補正測定温度を差し引いた値が第1閾値未満であるか、前記下層の補正測定温度から前記上層の補正測定温度を差し引いた値が第2閾値を上回りかつ前記下層の補正測定温度が第3閾値を上回る場合に、異常に係る情報を出力することを特徴とする請求項7記載の温度測定装置。 The determination unit determines whether a value obtained by subtracting the correction measurement temperature of the upper layer from the correction measurement temperature of the lower layer is less than a first threshold or a value obtained by subtracting the correction measurement temperature of the upper layer from the correction measurement temperature of the lower layer. 8. The temperature measurement device according to claim 7, further comprising: outputting information relating to an abnormality when the temperature exceeds the second threshold and the correction measurement temperature of the lower layer exceeds the third threshold.
  9.  前記光ファイバは、ポリイミドで被覆されていることを特徴とする請求項1~8のいずれか一項に記載の温度測定装置。 The temperature measuring device according to any one of claims 1 to 8, wherein the optical fiber is coated with polyimide.
  10.  所定の経路に沿って配置された複数本の光ファイバからの後方散乱光に基づいて、前記複数本の光ファイバの延伸方向の温度分布を温度測定部が測定し、
     前記所定の経路において前記温度測定部が測定した複数の温度分布の相関に基づいて、前記光ファイバの距離方向における前記複数の温度分布を平均化処理部が平均化する、ことを特徴とする温度測定方法。
    The temperature measurement unit measures the temperature distribution in the extension direction of the plurality of optical fibers based on the backscattered light from the plurality of optical fibers disposed along a predetermined path,
    The averaging processing unit averages the plurality of temperature distributions in the distance direction of the optical fiber based on the correlation of the plurality of temperature distributions measured by the temperature measuring unit along the predetermined path. Measuring method.
  11.  コンピュータに、
     所定の経路に沿って配置された複数本の光ファイバからの後方散乱光に基づいて前記複数本の光ファイバの延伸方向の温度分布を測定する処理と、
     前記所定の経路において前記温度分布を測定する処理によって測定された複数の温度分布の相関に基づいて、前記光ファイバの距離方向における前記複数の温度分布を平均化する処理と、を実行させることを特徴とする温度測定プログラム。
    On the computer
    A process of measuring the temperature distribution in the extending direction of the plurality of optical fibers based on the backscattered light from the plurality of optical fibers disposed along a predetermined path;
    Performing a process of averaging the plurality of temperature distributions in the distance direction of the optical fiber based on the correlation of the plurality of temperature distributions measured by the process of measuring the temperature distribution in the predetermined path Characteristic temperature measurement program.
PCT/JP2017/025372 2017-07-12 2017-07-12 Temperature measurement device, temperature measurement method, and temperature measurement program WO2019012616A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019529365A JP6819784B2 (en) 2017-07-12 2017-07-12 Temperature measuring device, temperature measuring method and temperature measuring program
PCT/JP2017/025372 WO2019012616A1 (en) 2017-07-12 2017-07-12 Temperature measurement device, temperature measurement method, and temperature measurement program
US16/713,059 US20200116574A1 (en) 2017-07-12 2019-12-13 Temperature measurement apparatus, temperature measurement method, and non-transitory computer-readable storage medium for storing temperature measurement program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/025372 WO2019012616A1 (en) 2017-07-12 2017-07-12 Temperature measurement device, temperature measurement method, and temperature measurement program

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/713,059 Continuation US20200116574A1 (en) 2017-07-12 2019-12-13 Temperature measurement apparatus, temperature measurement method, and non-transitory computer-readable storage medium for storing temperature measurement program

Publications (1)

Publication Number Publication Date
WO2019012616A1 true WO2019012616A1 (en) 2019-01-17

Family

ID=65002349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025372 WO2019012616A1 (en) 2017-07-12 2017-07-12 Temperature measurement device, temperature measurement method, and temperature measurement program

Country Status (3)

Country Link
US (1) US20200116574A1 (en)
JP (1) JP6819784B2 (en)
WO (1) WO2019012616A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112595436A (en) * 2021-03-01 2021-04-02 武汉华瑞光联科技有限公司 Free space type distributed optical fiber Raman temperature sensor
JPWO2021181501A1 (en) * 2020-03-10 2021-09-16
JP2021183862A (en) * 2020-05-22 2021-12-02 鹿島建設株式会社 Heater facility for underground tank

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63138225A (en) * 1986-11-29 1988-06-10 Furukawa Electric Co Ltd:The Monitoring method for temperature of liquefied gas tank
JPH1164044A (en) * 1997-08-22 1999-03-05 Hitachi Cable Ltd System for measuring distribution of physical quantity
JP2009080050A (en) * 2007-09-26 2009-04-16 Nippon Telegr & Teleph Corp <Ntt> Optical fiber measuring method, optical fiber measuring system, and optical fiber measuring device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63138225A (en) * 1986-11-29 1988-06-10 Furukawa Electric Co Ltd:The Monitoring method for temperature of liquefied gas tank
JPH1164044A (en) * 1997-08-22 1999-03-05 Hitachi Cable Ltd System for measuring distribution of physical quantity
JP2009080050A (en) * 2007-09-26 2009-04-16 Nippon Telegr & Teleph Corp <Ntt> Optical fiber measuring method, optical fiber measuring system, and optical fiber measuring device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021181501A1 (en) * 2020-03-10 2021-09-16
WO2021181501A1 (en) * 2020-03-10 2021-09-16 富士通株式会社 Optical fiber device, temperature measurement system, and optical fiber device manufacturing system
JP7364960B2 (en) 2020-03-10 2023-10-19 富士通株式会社 Fiber optic device, temperature measurement system, and method for manufacturing fiber optic device
JP2021183862A (en) * 2020-05-22 2021-12-02 鹿島建設株式会社 Heater facility for underground tank
JP7413148B2 (en) 2020-05-22 2024-01-15 鹿島建設株式会社 Heater equipment for underground tanks
CN112595436A (en) * 2021-03-01 2021-04-02 武汉华瑞光联科技有限公司 Free space type distributed optical fiber Raman temperature sensor

Also Published As

Publication number Publication date
US20200116574A1 (en) 2020-04-16
JP6819784B2 (en) 2021-01-27
JPWO2019012616A1 (en) 2020-03-19

Similar Documents

Publication Publication Date Title
US9816878B2 (en) Temperature measurement system and abnormality detection method
US20200116574A1 (en) Temperature measurement apparatus, temperature measurement method, and non-transitory computer-readable storage medium for storing temperature measurement program
AU2015394726B2 (en) Temperature measurement device, temperature measurement method, and temperature measurement program
US9528860B2 (en) Abnormality detection system and abnormality detection method
JP6483806B2 (en) Pipeline integrity monitoring using fiber optics
JP5867618B2 (en) Anomaly detection system and anomaly detection method
AU2019202787B2 (en) Temperature measurement device, temperature measurement method, and temperature measurement program
US10088342B2 (en) Abnormality detection system and abnormality detection method
JP2015522816A (en) Device for detecting the level of liquid contained in a container
US10031043B2 (en) Method and apparatus for detecting a structural fault in a structure using a brillouin gain spectrum obtained at a point along a sensing optical fiber
AU2015394728B2 (en) Temperature measurement device, temperature measurement method, and temperature measurement program
JP2011179916A (en) Leakage monitor device
JP2017072388A (en) Temperature measurement device, temperature measurement method, and temperature measurement program
JP6257539B2 (en) Optical fiber water level measuring device and water level measuring method
JPH0443934A (en) Leak detecting device
Barinov et al. Fiber optic temperature monitoring system of power cable lines
JP7115565B2 (en) Temperature measurement structure and temperature measurement system
Aljaroudi et al. Formulation and analysis of the probability of detection and false detection for subsea leak detection systems
JP7364960B2 (en) Fiber optic device, temperature measurement system, and method for manufacturing fiber optic device
KR101744304B1 (en) Apparatus and method of measurement based on optical fiber sensor
JP6688961B2 (en) Heat generation detection device, heat generation detection method, heat generation detection program, and heat generation detection system
CN117651849A (en) Power cable buried state analysis using load temperature correlation analysis
JPH049627A (en) Method for detecting abnormal low temperature and abnormal low temperature detector utilizing the same
Murugeasn et al. Detection of defect in ACSR cable using Raman distributed temperature sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17917884

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019529365

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17917884

Country of ref document: EP

Kind code of ref document: A1