WO2019009014A1 - Fixed type constant velocity universal joint - Google Patents

Fixed type constant velocity universal joint Download PDF

Info

Publication number
WO2019009014A1
WO2019009014A1 PCT/JP2018/022121 JP2018022121W WO2019009014A1 WO 2019009014 A1 WO2019009014 A1 WO 2019009014A1 JP 2018022121 W JP2018022121 W JP 2018022121W WO 2019009014 A1 WO2019009014 A1 WO 2019009014A1
Authority
WO
WIPO (PCT)
Prior art keywords
track
track groove
center line
joint member
center
Prior art date
Application number
PCT/JP2018/022121
Other languages
French (fr)
Japanese (ja)
Inventor
雅司 船橋
輝明 藤尾
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2019009014A1 publication Critical patent/WO2019009014A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D3/2233Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts where the track is made up of two curves with a point of inflexion in between, i.e. S-track joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D3/224Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts the groove centre-lines in each coupling part lying on a sphere

Definitions

  • the present invention relates to a fixed type constant velocity universal joint.
  • a constant velocity universal joint that constitutes a power transmission system of an automobile or various industrial machines connects two shafts on the drive side and the driven side in a torque transmittable manner, and transmits rotational torque at a constant speed even when the two axes operate at an operating angle. can do.
  • Constant velocity universal joints are roughly classified into fixed type constant velocity universal joints that allow only angular displacement, and sliding constant velocity universal joints that allow both angular displacement and axial displacement, for example, from an automobile engine
  • sliding constant velocity universal joints are used on the differential side (inboard side)
  • fixed constant velocity universal joints are used on the driving wheel side (outboard side) Ru.
  • a Zeppa type constant velocity universal joint and an undercut free type constant velocity universal joint are known as fixed type constant velocity universal joints.
  • Patent Document 1 In order to achieve higher load capacity than the fixed type constant velocity universal joint described above, there has been proposed a fixed type constant velocity universal joint in which two pairs of adjacent track grooves are formed on planes parallel to each other ( Patent Document 1).
  • the present invention has an object to provide a lightweight and compact fixed type constant velocity universal joint capable of securing a large load capacity even in a normal angle range.
  • the present inventors arranged track grooves in a radial plane and three pairs of first track grooves arranged in a plane parallel to the radial plane.
  • the present invention has been made based on the idea of comprising three second track grooves and arranging the first track groove and the second track groove opposite in the diameter direction.
  • the present invention provides an outer joint member in which a plurality of track grooves extending in the longitudinal direction are formed on the spherical inner peripheral surface, and has an axially spaced opening side and back side.
  • An inner joint member in which a plurality of track grooves extending in the longitudinal direction are formed on the spherical outer peripheral surface so as to face the track grooves of the outer joint member; a torque transmitting ball incorporated between the opposing track grooves;
  • the track groove 7 of the outer joint member is The track center line of the first track grooves 7A, 7B is composed of three pairs of first track grooves 7A, 7B arranged at equal intervals in the circumferential direction and three second track grooves 7C.
  • X a, X B is, Radial plane A track groove plane B extending in parallel with the symmetry a and distance to containing the axis N-N of the hand, is disposed on B ', the track center line X C of the second track groove. 7C, It is disposed on the radial plane A and at a position diametrically opposed to the pair of first track grooves 7A, 7B, and the track center line X A , X of the first track grooves 7A, 7B. B has an offset has been arcuate portion in the axial direction of the outer joint member center of curvature with respect to the projection center O ', the track center line X C of the second track groove.
  • the center of curvature joint A plane P having an arc-shaped portion offset in the axial direction of the outer joint member with respect to a center O and including the joint center O at a working angle of 0 ° and orthogonal to an axis N-N of the joint;
  • Trajectory centerlines X A , X B of the first track grooves 7A, 7B and The intersections C A , C B and C C of the second track groove 7C with the track center line X C are disposed on one circle D in the plane P, and the track groove of the inner joint member
  • the track center line Y of 9 is characterized in that it is formed in mirror symmetry with the track center line X of the track groove 7 which is a pair of the outer joint members with the plane P as a reference.
  • the offset of the center of curvature of the arc-shaped portion is provided toward the back side of the outer joint member. Thereby, the strength of the outer joint member at the high operating angle can be further improved.
  • the first track groove 7A above, 7B track center line X A, X B and the center of curvature of the raceway center line X C of the second track groove 7C is radially offset with respect to the axis N-N of the joint Is preferred. Thereby, the track groove depth at the high operation angle can be adjusted.
  • the track center lines X Ab , X Bb and X Cb of the above-mentioned high operating angle track grooves 7Ab, 7Bb and 7Cb are the track center lines X A and X B of the first track grooves 7A and 7B and the second track groove 7C. It is preferred that the arcuate portion of the track center line X C is a circular arc shape that is curved to the opposite side. Thereby, the track groove shape suitable for achieving a high operating angle can be formed.
  • the strength of the cage is increased by increasing the width of the pillars of the cage by having a pocket for accommodating the two torque transfer balls incorporated in each pair of first track grooves 7A, 7B. It can be improved.
  • FIG. 3 is a longitudinal cross-sectional view of the fixed type constant velocity universal joint according to the first embodiment of the present invention taken along the line A1-N in FIG. 2. It is what rotated 180 degree
  • FIG. 2 is an exploded perspective view of the outer joint member, the cage, the ball and the inner joint member of FIG. 1a. It is explanatory drawing which shows the contact state of the track groove and ball
  • FIG. 3 is a longitudinal cross-sectional view of the fixed type constant velocity universal joint according to a second embodiment of the present invention taken along line A1-N in FIG.
  • FIG. 5 is a longitudinal cross-sectional view of the fixed type constant velocity universal joint according to the third embodiment of the present invention taken along the line A1-N in FIG.
  • the fixed-type constant velocity universal joint which concerns on the 3rd Embodiment of this invention is shown, and the longitudinal cross-sectional view along the B1-N 'line of FIG. 2 is rotated 180 degrees clockwise.
  • FIG. 5 is a longitudinal cross-sectional view of the fixed type constant velocity universal joint according to the fourth embodiment of the present invention taken along the line A1-N in FIG.
  • FIG. 6 is a longitudinal cross-sectional view of the fixed type constant velocity universal joint according to the fifth embodiment of the present invention taken along the line A1-N in FIG.
  • the fixed-type constant velocity universal joint which concerns on the 5th Embodiment of this invention is shown, and the longitudinal cross-sectional view along the B1-N 'line of FIG. 2 is rotated 180 degrees clockwise.
  • FIG. 7 is a longitudinal cross-sectional view of the fixed type constant velocity universal joint according to the sixth embodiment of the present invention taken along the line A1-N in FIG.
  • the fixed-type constant velocity universal joint which concerns on the 6th Embodiment of this invention is shown, and the longitudinal cross-sectional view along the B1-N 'line of FIG. 2 is rotated 180 degrees clockwise.
  • FIG. 1a is a longitudinal sectional view taken along the line A1-N of FIG. 2
  • FIG. 1b is a longitudinal sectional view taken along the line B1-N 'of FIG. 2 is a right side view of FIG. 1a
  • FIG. 3 is an exploded perspective view of an outer joint member, a cage, a ball and an inner joint member as viewed from the upper right side of FIG. 1b
  • FIG. 4 is an explanatory view showing a contact state of the track groove of the inner joint member and the ball.
  • the fixed type constant velocity universal joint 1 mainly includes an outer joint member 2, an inner joint member 3, a torque transmitting ball (also simply referred to as a ball) 4 and a retainer 5.
  • three pairs of first track grooves 7A1, 7B1, 7A2, 7B2, 7A3, 7B3 and three second track grooves 7C1, 7C2 are formed on the spherical inner peripheral surface 6 of the outer joint member 2.
  • 7C3 in total, nine track grooves are formed in the longitudinal direction.
  • the spherical outer peripheral surface 8 of the inner joint member 3 includes three pairs of first track grooves 9A1, 9B1, 9A2, which face the first track grooves 7A1, 7B1, 7A2, 7B2, 7A3, 7B3 of the outer joint member 2, A total of nine track grooves 9 in the longitudinal direction, 9B2, 9A3, 9B3 and three second track grooves 9C1, 9C2, 9C3 facing the second track grooves 7C1, 7C2, 7C3 of the outer joint member 2 It is formed.
  • Nine balls 4 for transmitting torque are incorporated between the track groove 7 of the outer joint member 2 and the track groove 9 of the inner joint member 3 one by one.
  • first track grooves 7A1, 7B1, 7A2, 7A2, 7B2, 7A3 and 7B3 of the outer joint member 2 and the second track grooves 7C1, 7C2 and 7C3 are collectively referred to as symbols.
  • first track grooves 9A1, 9B1, 9A2, 9B2, 9A3, 9B3 and the second track grooves 9C1, 9C2, 9C3 of the inner joint member 3 are collectively referred to using 7, reference numeral 9 is used.
  • a cage 5 for holding the ball 4 is disposed between the spherical inner peripheral surface 6 of the outer joint member 2 and the spherical outer peripheral surface 8 of the inner joint member 3.
  • the ball 4 is accommodated in the pocket 5 a of the retainer 5.
  • the spherical outer peripheral surface 12 of the cage 5 slidably fits on the spherical inner peripheral surface 6 of the outer joint member 2, and the spherical inner peripheral surface 13 of the cage 5 slides on the spherical outer peripheral surface 8 of the inner joint member 3 It fits freely and is guided.
  • the three pairs of first track grooves 7A, 7B of the outer joint member 2 are a first pair of track grooves 7A1, 7B1, a second pair of track grooves 7A2, 7B2 and a third pair. It comprises a pair of track grooves 7A3 and 7B3.
  • the three pairs of first track grooves 9A, 9B of the inner joint member 3 are the first pair of track grooves 9A1, 9B1, the second pair of track grooves 9A2, 9B2 and the third pair of track grooves. It consists of 9A3 and 9B3.
  • the first track grooves 7A and 7B of the outer joint member 3 will be described.
  • the first pair of track grooves 7A1, 7B1 is spaced apart on either side of the radial plane A1 including the joint axis N-N (see FIG. 1a) They are arranged and formed symmetrically with respect to the radial plane A1. That is, the track center line X A (see FIG.
  • the track groove plane B1 and the track groove plane B′1 are symmetrical to each other with respect to the radial plane A1.
  • the second pair of track grooves 7A2 and 7B2 includes the joint axis N-N and is spaced on either side of the radial plane A2, which is at an angle of 120 ° clockwise with respect to the radial plane A1. , And are formed symmetrically with respect to the radial plane A2.
  • the track center line X A (not shown) of the second pair of track grooves 7A2 is disposed on the track groove plane B2 extending parallel to the radial plane A2 at a distance, and the track center line X B of the track groove 7B2
  • the (not shown) is disposed on the track groove plane B′2 extending in parallel with a space on the side opposite to the track groove plane B2 with respect to the radial plane A2.
  • the track groove plane B2 and the track groove plane B′2 are also symmetrical with respect to the radial plane A2.
  • the third pair of track grooves 7A3, 7B3 includes the joint axis N-N and is spaced apart on either side of a radial plane A3 that forms an angle of 240 ° clockwise with respect to the radial plane A1. , And are formed symmetrically with respect to the radial plane A3.
  • the track center line X A (not shown) of the third pair of track grooves 7A3 is disposed on the track groove plane B3 extending parallel to the radial plane A3 at a distance, and the track center line X B of the track groove 7B3. (Not shown) are disposed on a track groove plane B'3 extending in parallel with a gap on the side opposite to the track groove plane B3 with respect to the radial plane A3.
  • the track groove plane B3 and the track groove plane B'3 are also symmetrical with respect to the radial plane A3.
  • the axial shape of the first track grooves 7A, 7B of the outer joint member 2 will be described based on FIG. 1b.
  • the first track groove 7A1 is composed of an arc-shaped reference track groove 7A1a and a high operating angle track groove 7A1b.
  • Raceway center line X Aa of the reference track groove portion 7A1a is offset (offset amount f1) in the axial direction toward the inner side of the outer joint member 2 relative to the projection center O ', and radially offset (offset amount f2 Is formed in an arc shape having a center of curvature O1.
  • the track groove depth can be adjusted at high operating angles.
  • the projection center O ' means a point where the joint center O located on the NN line is horizontally projected on the N'-N' line. Therefore, the axial positions of the joint of the projection center O ′ and the joint center O are the same.
  • the relationship between the projection center O 'and the joint center O is the same as for the first track grooves 9A and 9B of the inner joint member 3.
  • the track center line X Aa of the reference track groove portion 7A1a means an arcuate portion where the first track groove 7A in the claims, the track center line X A of 7B, is X B has.
  • the track center line X Ab of the high operating angle track groove portion 7A1 b is axially offset (offset amount f3) toward the opening side of the outer joint member 2 with respect to the projection center O 'and offset in the radial direction (offset) It is formed in the shape of a circular arc having the curvature center O2 which is the amount f4).
  • the track center line X Ab of the high operating angle track groove 7A1 b and the track center line X Aa of the reference track groove 7 A1 a are connected smoothly on a straight line passing through the center of curvature O1 and the middle O2 of curvature although not shown. . This connection point is located on the opening side of the outer joint member 2 with respect to the projection center O ′.
  • the first track groove 7A1 is a high operating angle track groove portion 7A1b the outer joint member 2 having a raceway center line X Ab whose shape is different from that of the raceway center line X Aa of the reference track groove portion 7A1a forming the arcuate portion
  • the track center line X Ab of high operating angle track groove portion 7A1b, the arcuate portion of the track center line X Aa of the reference track groove portion 7A1a an arcuate shape that is curved to the opposite side.
  • the track groove shape suitable for high operation can be formed.
  • the ball 4 located on the bisector plane is located in the high operating angle track groove 7A1 b.
  • the working angle when the ball 4 is shifted from the reference track groove 7A1a to the high working angle track groove 7A1b is preferably set to about 10 ° to 15 ° which exceeds the normal angle range.
  • the second track groove 7C of the outer joint member 2 will be described.
  • the second track groove 7C is composed of three track grooves 7C1, 7C2, and 7C3.
  • the track center line X C (see FIG. 1a) of the second track groove 7C1 (see FIG. 1a) is disposed on the radial plane A1 including the joint axis NN, and the track center line X of the first track groove 7A1, 7B1. They are disposed at positions diametrically opposed to a pair of A 1 and X B (X B is not shown).
  • the track center line X C (not shown) of the second track groove 7C2 includes the joint axis N-N, and is disposed on the radial plane A2 that forms an angle of 120 ° clockwise with respect to the radial plane A1.
  • the first track grooves 7A2 and 7B2 are disposed at positions diametrically opposite to a pair of track center lines X A and X B (not shown).
  • the track center line X C (not shown) of the second track groove 7C3 includes the joint axis N-N, and is disposed on the radial plane A3 that forms an angle of 240 ° clockwise with respect to the radial plane A1.
  • the first track grooves 7A3 and 7B3 are disposed at positions diametrically opposite to a pair of track center lines X A and X B (not shown) of the first track grooves 7A3 and 7B3.
  • the axial shape of the second track groove 7C will be described based on FIG. 1a.
  • the illustrated second track grooves 7C1 will be described.
  • the second track groove 7C1 is also composed of a circular reference track groove 7C1a and a high operating angle track groove 7C1b.
  • the track center line X Ca of the reference track groove 7C1a is axially offset (offset amount f5) toward the back side of the outer joint member 2 with respect to the joint center O, and offset in the radial direction (offset amount f6) It is formed in an arc shape having a center of curvature O5.
  • Raceway center line X Cb high operating angle track groove portion 7C1b is axially offset toward the opening side of the outer joint member 2 relative to the joint center O (the offset amount f7), and radially offset (offset amount f8) It is formed in the shape of a circular arc having the curvature center O6.
  • the second track groove 7C1 is high operating angle track groove 7C1b the outer joint member 2 having a raceway center line X Cb whose shape is different from that of the raceway center line X Ca reference track groove portion 7C1a forming the arcuate portion
  • the track center line X Cb high operating angle track groove portion 7C1b, the arcuate portion of the track center line X Ca reference track groove portion 7C1a an arcuate shape that is curved to the opposite side.
  • the track groove shape suitable for high operation can be formed.
  • the ball 4 located on the bisector plane is located in the high operating angle track groove 7C1b.
  • the operating angle when the ball 4 in the second track groove 7C1 transitions from the reference track groove 7C1a to the high operating angle track groove 7C1b is the same as the transition operating angle of the first track groove 7A1b.
  • the said transfer operation angle is the same also in the inner side coupling member 3 mentioned later.
  • the first track grooves 9A and 9B of the inner joint member 3 will be described.
  • the first pair of track grooves 9A1 and 9B1 is a radial plane A1 including the joint axis N-N. Are spaced apart from each other and are formed symmetrically with respect to the radial plane A1. That is, the track center line Y A (see FIG.
  • the track groove plane B1 and the track groove plane B'1 are symmetrical to each other with respect to the radial plane A1.
  • the second pair of track grooves 9A2, 9B2 includes the joint axis N-N and is spaced on either side of a radial plane A2 that is at an angle of 120 ° clockwise with respect to the radial plane A1. , And are formed symmetrically with respect to the radial plane A2.
  • the track center line Y A (not shown) of the second pair of track grooves 9A2 is disposed on the track groove plane B2 extending parallel to the radial plane A2 at a distance, and the track center line Y B of the track groove 9B2
  • the (not shown) is disposed on the track groove plane B′2 extending in parallel with a space on the side opposite to the track groove plane B2 with respect to the radial plane A2.
  • the track groove plane B2 and the track groove plane B′2 are symmetrical to each other with respect to the radial plane A2.
  • the third pair of track grooves 9A3, 9B3 includes the joint axis N-N and is spaced apart on either side of a radial plane A3 which is at an angle of 240 ° clockwise with respect to the radial plane A1. , And are formed symmetrically with respect to the radial plane A3.
  • the track center line Y A (not shown) of the third pair of track grooves 9A3 is disposed on the track groove plane B3 extending parallel to the radial plane A3 at a distance, and the track center line Y B of the track groove 9B3. (Not shown) are disposed on a track groove plane B'3 extending in parallel with a gap on the side opposite to the track groove plane B3 with respect to the radial plane A3.
  • the track groove plane B3 and the track groove plane B'3 are mutually symmetrical with respect to the radial plane A3.
  • the axial shape of the first track grooves 9A, 9B of the inner joint member 3 will be described based on FIG. 1b.
  • the first track groove 9A1 is composed of an arc-shaped reference track groove 9A1a and a high operating angle track groove 9A1b.
  • Raceway center line Y Aa of the reference track groove portion 9A1a is offset (offset amount f1) in the axial direction toward the opening side of the outer joint member 2 relative to the projection center O ', and radially offset (offset amount f2 Is formed in an arc shape having a center of curvature O3.
  • the track center line Y Ab of the high operating angle track groove portion 9A1 b is axially offset (offset amount f3) toward the back side of the outer joint member 2 with respect to the projection center O 'and offset in the radial direction (offset) It is formed in the shape of a circular arc having the curvature center O4 which is the amount f4).
  • the first track groove 9A1 is a high operating angle track groove portion 9A1b the outer joint member 2 having a raceway center line Y Ab whose shape is different from that of the raceway center line Y Aa of the reference track groove portion 9A1a forming the arcuate portion
  • the track center line Y Ab of high operating angle track groove portion 9A1b, the arcuate portion of the track center line Y Aa of the reference track groove portion 9A1a an arcuate shape that is curved to the opposite side.
  • the second track groove 9C of the inner joint member 2 will be described.
  • the second track groove 9C is composed of three track grooves 9C1, 9C2 and 9C3.
  • the track center line Y C of the second track groove 9C1 (see FIG. 1a) is disposed on the radial plane A1 including the joint axis NN, and the track center line Y of the first track groove 9A1 and 9B1. It is disposed at a position diametrically opposite to a pair of A 1 and Y B (Y B is not shown).
  • the track center line Y C (not shown) of the second track groove 9C2 includes the joint axis N-N, and is disposed on the radial plane A2 that forms an angle of 120 ° clockwise with respect to the radial plane A1.
  • the first track grooves 9A2 and 9B2 are disposed at positions diametrically opposite to a pair of track center lines Y A and Y B (not shown) of the first track grooves 9A2 and 9B2.
  • the track center line Y C (not shown) of the second track groove 9C3 includes the joint axis N-N, and is disposed on the radial plane A3 that forms an angle of 240 ° clockwise with respect to the radial plane A1.
  • the first track grooves 9A3 and 9B3 are disposed at positions diametrically opposed to a pair of track center lines Y A and Y B (not shown) of the first track grooves 9A3 and 9B3.
  • the axial shape of the second track groove 9C of the inner joint member 3 will be described based on FIG. 1a. Similar to the case of the outer joint member 2 described above, the illustrated second track groove 9C1 of the second track groove 9C will be described. Similar to the first track groove 9A1, the second track groove 9C1 is also composed of an arc-shaped reference track groove 9C1a and a high operating angle track groove 9C1b. Raceway center line Y Ca of the reference track groove portion 9C1a is offset (offset amount f5) in the axial direction toward the opening side of the outer joint member 2 relative to the joint center O, and radially offset (offset amount f6) It is formed in a circular arc shape having a center of curvature O7.
  • Raceway center line Y Cb high operating angle track groove portion 9C1b is offset axially toward the inner side of the outer joint member 2 relative to the joint center O (the offset amount f7), and radially offset (offset amount f8) It is formed in a circular arc shape having the curvature center O8.
  • the second track groove 9C1 is high operating angle track groove 9C1b the outer joint member 2 having a raceway center line Y Cb whose shape is different from that of the raceway center line Y Ca of the reference track groove portion 9C1a forming the arcuate portion
  • the track center line Y Cb high operating angle track groove portion 9C1b, the arcuate portion of the track center line Y Ca of the reference track groove portion 9C1a an arcuate shape that is curved to the opposite side.
  • specific track grooves 7A1, 7C1, 9A1, and 9C1 have been described as an example in order to make the alignment with the drawing accurate, but the contents are the same as in the other track grooves. That is, among the three pairs of first track grooves 7A1, 7B1, 7A2, 7B2, 7A3, 7B3 of the outer joint member 2, the first track grooves 7A1, 7A2, 7A3 have the same shape as each other, and the first track grooves The grooves 7B1, 7B2, 7B3 have the same shape.
  • the first track grooves 7A1 and 7B1 are symmetrical with respect to the radial plane A1, and the first track grooves 7A2 and 7B2 are symmetrical with respect to the radial plane A2 and are relative to the radial plane A3.
  • the first track grooves 7A3 and 7B3 are symmetrical. Therefore, except for the relationship that the first track grooves 7A1, 7A2, 7A3 and the first track grooves 7B1, 7B2, 7B3 are symmetrical with respect to the radial plane A1, A2, A3, each track groove is
  • the shapes of 7A and 7B are the same.
  • the second track grooves 7C1, 7C2, 7C3 have the same shape.
  • the reference numeral X is used for the track groove of the inner joint member 3
  • the orbital centerline Y A , Y B , Y C , Y Aa , Y Ab , Y Ca , and Y Cb are collectively referred to, the symbol Y is used.
  • offset amounts f1 to f8 indicating the positions of the centers of curvature of the track center line X of the track groove 7 of the outer joint member 2 and the track center line Y of the track groove 9 of the inner joint member 3 described above.
  • the offset amounts mean that the dimensions are equal to one another. The same applies to the following embodiments.
  • the track center line Y of the track groove 9 of the inner joint member 3 includes the joint center O at the operating angle of 0 °.
  • a plane P (see FIGS. 1a and 1b) orthogonal to the axis N-N of the optical axis, it is formed in mirror symmetry with the track center line X of the track groove 7 as a pair of outer joint members 2.
  • FIG. 3 shows the ball 4 housed in the pocket 5 a of the holder 5.
  • retainer 5 can be made to increase, and intensity
  • the balls 4 assembled in the second track grooves 7C and 9C are accommodated one by one in the pocket 5a2.
  • the reason why the circumferential interval between the track center lines X A , X B , Y A and Y B of the first track grooves 7 A, 7 B, 9 A and 9 B to be paired can be set small will be described.
  • the track groove planes B1 and B′1 are formed parallel to the radial plane A1
  • the planes B2 and B′2 are formed parallel to the radial plane A2
  • the track groove planes B3 and B′3 It is formed parallel to the radial plane A3. That is, the first track groove 7A, 7B, 9A, 9B of the track center line X A, X B, Y A , Y B is a radial plane A1 or radial plane A2, are formed parallel to the radial plane A3 ing. For this reason, the thickness reduction of the rib portion 3a (see FIG.
  • FIG. 4 shows the contact state between the track groove 9 of the inner joint member 3 and the ball 4 in the state where the operating angle is 0 °.
  • the first track groove 9A, 9B and the ball 4 contact with the track groove plane B, B 'at a contact angle ⁇ , and the second track groove 9C and the ball 4 contact angle with the radial plane A Contact with ⁇ .
  • the points of intersection of the lines X A and X B and the track center line X C of the second track groove 7 C are C A and C B and C C shown in FIG.
  • Each of the intersections C A , C B and C C is disposed on one circle D in the plane P. In other words, as shown in FIG.
  • a plane P including the joint center O at an operating angle of 0 ° in the present specification and claims and orthogonal to the axis N-N of the joint, and an orbital center line X A of the first track grooves 7A and 7B , X B and the intersections C A , C B and C C of the second track groove 7 C with the track center line X C are arranged on one circle D in the plane P, the above concept Used in the sense that
  • the ball 4 on one side of the paired track grooves 9A1 and 9B1 transmits most of the torque.
  • a torque transfer direction vector f ′ generated in the ball 4 ′ on the track groove plane B′1 The contact direction vector b 'of the ball 4' and the track groove 9B1 intersects at a large angle, that is, near a straight line.
  • the torque transfer direction vector f generated on the ball 4 on the track groove plane B1 and the contact direction vector b of the track groove 9A1 intersect at a small angle, that is, in a bent state.
  • the ball 4 'of the track groove 9B1 transmits most of the torque between the pair of track grooves 9A1 and 9B1, and the ball 4 of the track groove 9A1 can hardly transmit the torque.
  • the ball 4 'on one side of the three pairs of first track grooves 9A, 9B (three half of six) transmits most of the torque, and the ball 4 on the other side has most of the torque I can not communicate. This state is the same as when the torque is applied in the opposite direction to the white arrow.
  • all of the three balls 4 ′ ′ transmit torque with respect to the second track grooves 9C.
  • the second track grooves 9C and the balls 4 “Is in contact with the radial plane A at a contact angle ⁇ .
  • the torque transfer direction vector f "generated on the ball 4" on the radial plane A1 and the contact direction vector b "of the ball 4" and the track groove 9C1 intersect at a large angle.
  • the other track grooves 9C2 and 9C3 are in the same state. Therefore, when torque is applied by rotating the inner joint member 3 in the direction of the white arrow, all three balls 4 ′ ′ of the track groove 9C can transmit torque. Further, the reverse of the white arrow. The same applies when torque is applied in the direction.
  • the contact state between the track groove 7 and the ball 4 of the outer joint member 2 and the torque load characteristic are not illustrated, but the same as the contact state between the track groove 9 and the ball 4 of the inner joint member 2 described above and the torque load characteristic. It is.
  • the track grooves 7, 9 include three pairs of first track grooves 7A, 9A, 7B, 9B and three second track grooves 7C, 9C, so always, three balls 4 (or 4 ') of the first track grooves 7A, 9A, 7B, 9B and three balls 4 of the second track grooves 7C, 9C.
  • the torque is transmitted by a total of six balls, and the torque is shared more evenly by arranging nine balls 4, 4 ', 4' 'on the same circumference on the plane P as described above. The load capacity and durability can be ensured even in the normal angle range.
  • the second track groove 7C, 9C raceway center line Xc of, Y C is the first track groove 7A, 7B, 9A, raceway center line X A of 9B, X B, Y A, a pair of Y B
  • the track load in the high operating angle range is suppressed, and the ball at the open end of the track groove 7 of the outer joint member 2 at an ultra-high operating angle exceeding 50 ° 4 is smooth, and is suitable as a fixed type constant velocity universal joint for an ultra-high operating angle.
  • FIGS. 5a and 5b The cross section of the fixed type constant velocity universal joint of this embodiment is substantially the same as FIG. 2 of the first embodiment, so FIG. 2 is used mutatis mutandis.
  • FIG. 5a is a longitudinal sectional view taken along the line A1-N of FIG. 2
  • FIG. 5b is a 180.degree. Clockwise rotation of the longitudinal sectional view taken along the line B1-N 'of FIG.
  • the fixed type constant velocity universal joint 1 of this embodiment is the position of the curvature center of the track center line of the reference track groove portion of the track grooves 7 and 9 of the outer joint member 2 and the inner joint member 3 with respect to the first embodiment. Is different.
  • the center of curvature of the track center line of the reference track groove portion is located on the joint axis NN and the N'-N 'line, and there is no radial offset.
  • the other configurations are the same as those of the first embodiment, and therefore, portions having similar functions are denoted by the same reference numerals.
  • the contents described in the first embodiment are applied mutatis mutandis, and the different points will be described. The same applies to the following embodiments.
  • the raceway center line X Aa of the reference track groove portion 7A1a of the first track groove 7A1 of the outer joint member 2 with respect to 'the projection center O on the line'N'-N having a center of curvature O1 1 that is offset (offset amount f1 1) toward the inner side of the outer joint member 2.
  • Raceway center line Y Aa of the reference track groove portion 9A1a of the first track groove 9A1 of the inner joint member 3, N'-N 'line in the projection center O' toward the opening side of the outer joint member 2 relative to the offset ( The offset amount f1 1 ) has a curvature center O3 1 .
  • the curvature centers O1 1 and O3 1 are not provided with any radial offset.
  • the track center line X Ca of the reference track groove portion 7C1a of the second track groove 7C1 of the outer joint member 2 is at the joint center O with respect to the joint center O on the joint axis NN. having a center of curvature O5 1 that is offset (offset amount f5 1) toward the rear side.
  • the track center line Y Ca of the reference track groove portion 9C1a of the second track groove 9C1 of the inner joint member 3 is offset toward the opening side of the outer joint member 2 with respect to the joint center O on the joint axis NN
  • the offset amount f5 1 ) has a curvature center O 7 1 .
  • the curvature centers O5 1 and O7 1 also have no radial offset.
  • FIGS. 6a and 6b A fixed type constant velocity universal joint according to a third embodiment of the present invention will be described based on FIGS. 6a and 6b.
  • the raceway center line X Aa of the reference track groove portion 7A1a of the first track groove 7A1 of the outer joint member 2 with respect to 'the projection center O on the line'N'-N It is formed in an arc shape having an offset (offset amount f1 2) has been the center of curvature O1 2 toward the inner side of the outer joint member 2.
  • Raceway center line Y Aa of the reference track groove portion 9A1a of the first track groove 9A1 of the inner joint member 3, N'-N 'line in the projection center O' toward the opening side of the outer joint member 2 relative to the offset ( is formed in an arc shape having an offset amount f1 2) has been the center of curvature O3 2. Center of curvature O1 2, O3 2 is not provided any radial offset.
  • the track center line X Ab of the high working angle track groove portion 7A1b of the first track groove 7A1 of the outer joint member 2 is inclined at an angle ⁇ so as to approach the N'-N 'line toward the opening side of the outer joint member 2
  • the track center line Y Ab of the high working angle track groove portion 9A1b of the first track groove 9A1 of the inner joint member 3 which is formed in an inclined linear shape is a N'-N 'line toward the back side of the outer joint member 2 Are formed in a straight line inclined at an inclination angle ⁇ .
  • the inclination angle ⁇ becomes about 10 ° to 15 ° beyond the normal angle range as described above when the ball 4 is shifted from the reference track groove portions 7A1a and 9A1a to the high operation angle track groove portions 7A1b and 9A1b. Is set as.
  • the inclination angle ⁇ is the same in the second track grooves 7C1 and 9C1 described later.
  • the track center line X Ca of the reference track groove portion 7C1a of the second track groove 7C1 of the outer joint member 2 is on the joint line O with respect to the joint center O on the joint axis NN. It is formed in an arc shape having an offset (offset amount f5 2) has been the center of curvature O5 2 toward the rear side.
  • the track center line Y Ca of the reference track groove portion 9C1a of the second track groove 9C1 of the inner joint member 3 is offset toward the opening side of the outer joint member 2 with respect to the joint center O on the joint axis NN It is formed in the shape of a circular arc having the curvature center O72 2 with the offset amount f5 2 ). Center of curvature O5 2, O7 2 also radial offset is not provided.
  • the track center line X Cb of the high working angle track groove portion 7C1b of the second track groove 7C1 of the outer joint member 2 is inclined at an angle ⁇ so as to approach the joint axis N-N toward the opening side of the outer joint member 2 is formed on the inclined straight raceway center line Y Cb high operating angle track groove portion 9C1b of the second track groove 9C1 of the inner joint member 3, the joint toward the rear side of the outer joint member 2 axis N-N Are formed in a straight line inclined at an inclination angle ⁇ .
  • a fixed type constant velocity universal joint according to a fourth embodiment of the present invention will be described based on FIGS. 7a and 7b.
  • the fixed type constant velocity universal joint 1 of this embodiment differs from the first embodiment in that the high operating angle track groove is not provided in the track grooves 7 and 9 of the outer joint member 2 and the inner joint member 3. .
  • Raceway center line Y Aa of the reference track groove portion 9A1a of the first track groove 9A1 of the inner joint member 3 is offset toward the opening side of the outer joint member 2 relative to the projection center O '(the offset amount f1 3), It is formed in an arc shape having a curvature center O3 3 offset in the radial direction (offset amount f2 3 ). And, the track center lines X Aa and Y Aa of the reference track groove portions 7A1a and 9A1a are formed in a uniform arc shape over the entire axial direction of the track grooves 7A1 and 9A1.
  • the track center line X Ca of the reference track groove portion 7C1a of the second track groove 7C1 of the outer joint member 2 is offset toward the back side of the outer joint member 2 with respect to the joint center O the amount f5 3) is, and is formed in the offset (f6 3) is arcuate with a curvature center O5 3 in the radial direction.
  • the track center line Y Ca of the reference track groove 9C1a of the second track groove 9C1 of the inner joint member 3 is offset (offset amount f5 3 ) toward the opening side of the outer joint member 2 with respect to the joint center O It is formed in an arc shape having a center of curvature O7 3 that is offset (offset amount f6 3) in the direction.
  • the track centerlines X Ca and Y Ca of the reference track groove portions 7C1a and 9C1a are formed in a uniform arc shape over the entire axial direction of the track grooves 7C1 and 9C1.
  • a fixed type constant velocity universal joint according to a fifth embodiment of the present invention will be described based on FIGS. 8a and 8b.
  • the center of curvature of the track center line of the reference track groove portion of the track grooves 7 and 9 of the outer joint member 2 and the inner joint member 3 is different from the fourth embodiment. It differs in that it is located on the joint axis N-N and N'-N 'line and there is no radial offset. As shown in FIG.
  • raceway center line X Aa of the reference track groove portion 7A1a of the first track groove 7A1 of the outer joint member 2, with respect to 'the projection center O on the line'N'-N toward the inner side of the outer joint member 2 are formed in an arc shape having a center of curvature O1 4 that is offset (offset amount f1 4).
  • the track center line X Ca of the reference track groove portion 7C1a of the second track groove 7C1 of the outer joint member 2 is on the joint line O with respect to the joint center O on the joint axis NN. It is formed in an arc shape having a center of curvature O5 4 offset (offset amount f5 4 ) toward the back side.
  • the track center line Y Ca of the reference track groove portion 9C1a of the second track groove 9C1 of the inner joint member 3 is offset toward the opening side of the outer joint member 2 with respect to the joint center O on the joint axis NN It is formed in an arc shape having a center of curvature O.sub.7 4 with the offset amount f.sub.5 4 ).
  • a fixed type constant velocity universal joint according to a sixth embodiment of the present invention will be described based on FIGS. 9a and 9b.
  • the center of curvature of the track center line of the reference track groove portion of the track grooves 7 and 9 of the outer joint member 2 and the inner joint member 3 is different from the fourth embodiment. They differ in that they are offset radially downward to the joint axis NN and N'-N 'lines.
  • Raceway center line Y Aa of the reference track groove portion 9A1a of the first track groove 9A1 of the inner joint member 3 is offset toward the opening side of the outer joint member 2 relative to the projection center O '(the offset amount f1 5), It is formed in an arc shape having a curvature center O 3 5 offset (offset amount f 2 5 ) radially downward with respect to the N′-N ′ line.
  • the track center line X Ca of the reference track groove portion 7C1a of the second track groove 7C1 of the outer joint member 2 is offset toward the back side of the outer joint member 2 with respect to the joint center O the amount f5 5) is, and is formed in an arc shape having a center of curvature O5 5 that is offset (offset amount f6 5) radially lower side with respect to the axis N-N of the joint.
  • the track center line Y Ca of the reference track groove 9C1a of the second track groove 9C1 of the inner joint member 3 is offset (offset amount f5 5 ) toward the opening side of the outer joint member 2 with respect to the joint center O It is formed in an arc shape having a center of curvature O7 5 that is offset (offset amount f6 5) radially lower side with respect to the axis N-N.
  • the track grooves 7, 9 include three pairs of first track grooves 7A, 9A, 7B, 9B and three second track Since the grooves 7C and 9C are formed, three balls 4 (or 4 ') of the first track grooves 7A, 9A, 7B and 9B and three of the second track grooves 7C and 9C are always used. Torque is transmitted by a total of six balls 4 ′ ′ of the ball, and torque is shared more evenly by arranging nine balls 4, 4 ′, 4 ′ ′ on the same circumference on the plane P The load capacity and durability can be ensured even in the normal angle range.
  • the second track groove 7C, 9C raceway center line Xc of, Y C is the first track groove 7A, 7B, 9A, raceway center line X A of 9B, X B, Y A, a pair of Y B
  • the track load in the high operating angle range is suppressed, and the ball at the open end of the track groove 7 of the outer joint member 2 at an ultra-high operating angle exceeding 50 ° 4 is smooth, and is suitable as a fixed type constant velocity universal joint for an ultra-high operating angle.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bearings For Parts Moving Linearly (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

A fixed type constant velocity universal joint comprising an inner joint member and an outer joint member formed from a plurality of track grooves, torque transmission balls incorporated between opposing track grooves, and a cage which holds the torque transmission balls, wherein: outer joint member track grooves (7) are configured from three pairs of first track grooves (7A, 7B) positioned equidistantly in the circumferential direction and three second track grooves (7C); trajectory center lines (XA, XB) of the first track grooves (7A, 7B) and trajectory center lines (XC) of the second track grooves (7C) are designed in order to satisfy predetermined conditions; and with a plane (P) as the reference, trajectory center lines (Y) of inner joint member track grooves (9) are formed in mirror symmetry with trajectory center lines (X) of the pairs of track grooves (7) of the outer joint member.

Description

固定式等速自在継手Fixed type constant velocity universal joint
 この発明は、固定式等速自在継手に関する。 The present invention relates to a fixed type constant velocity universal joint.
 自動車や各種産業機械の動力伝達系を構成する等速自在継手は、駆動側と従動側の二軸をトルク伝達可能に連結すると共に、前記二軸が作動角をとっても等速で回転トルクを伝達することができる。等速自在継手は、角度変位のみを許容する固定式等速自在継手と、角度変位および軸方向変位の両方を許容する摺動式等速自在継手とに大別され、例えば、自動車のエンジンから駆動車輪に動力を伝達するドライブシャフトにおいては、デフ側(インボード側)に摺動式等速自在継手が使用され、駆動車輪側(アウトボード側)には固定式等速自在継手が使用される。 A constant velocity universal joint that constitutes a power transmission system of an automobile or various industrial machines connects two shafts on the drive side and the driven side in a torque transmittable manner, and transmits rotational torque at a constant speed even when the two axes operate at an operating angle. can do. Constant velocity universal joints are roughly classified into fixed type constant velocity universal joints that allow only angular displacement, and sliding constant velocity universal joints that allow both angular displacement and axial displacement, for example, from an automobile engine For drive shafts that transmit power to the drive wheels, sliding constant velocity universal joints are used on the differential side (inboard side), and fixed constant velocity universal joints are used on the driving wheel side (outboard side) Ru.
 固定式等速自在継手として、ツェッパ型等速自在継手やアンダーカットフリー型等速自在継手が知られている。近年、軽量・コンパクトを兼ね備えた8個ボールタイプのツェッパ型等速自在継手もあり、目的に応じて様々な固定式等速自在継手を使い分けている。 A Zeppa type constant velocity universal joint and an undercut free type constant velocity universal joint are known as fixed type constant velocity universal joints. In recent years, there are eight ball type Zeppa type constant velocity universal joints that combine light weight and compact, and various fixed type constant velocity universal joints are used properly depending on the purpose.
 前述した固定式等速自在継手よりも高負荷容量化を図るべく、隣り合った対になる2つトラック溝が互いに平行な平面上に形成された固定式等速自在継手が提案されている(特許文献1)。 In order to achieve higher load capacity than the fixed type constant velocity universal joint described above, there has been proposed a fixed type constant velocity universal joint in which two pairs of adjacent track grooves are formed on planes parallel to each other ( Patent Document 1).
特許第4969758号公報Patent No. 4996758
 固定式等速自在継手の軽量、コンパクト化を図るためには、各構成部品の強度確保、その中でも特に、内側継手部材、保持器の強度確保が必要である。ツェッパ型等速自在継手やアンダーカットフリー型等速自在継手では、組立ての際、ボールをトラック溝に挿入するために使用領域以上に角度(組込み角)をとり、その角度でボールと保持器のポケット間で干渉しないように保持器のポケットの周方向長さを設定する必要がある。コンパクト化しても保持器のポケットの周方向長さは変わらないため、保持器の柱部が細くなり、保持器の強度確保が困難となる。 In order to reduce the weight and size of the fixed type constant velocity universal joint, it is necessary to ensure the strength of each component, and in particular, to ensure the strength of the inner joint member and the cage. In the Zeppa type constant velocity universal joint and the undercut free type constant velocity universal joint, when assembling, take an angle (embedding angle) over the use area to insert the ball into the track groove, and the angle between the ball and the cage It is necessary to set the circumferential length of the pocket of the cage so as not to interfere between the pockets. Even if it is compacted, the circumferential length of the pocket of the cage does not change, so the pillar portion of the cage becomes thin and it becomes difficult to secure the strength of the cage.
 さらに、軽量、コンパクト化を図るためには、ボールのピッチ円直径PCDを小さくする必要があるが、ボールとトラック溝との接触面圧が増加してしまう。ボールとトラック溝との接触面圧を一定以下に抑える手段として、ボール径を大きくすること、ボールの個数を増やすことが考えられる。しかし、ボール径を大きくする手段を適用すると、内側継手部材の球面端部が細くなり、内側継手部材の強度確保が困難となる。また、ボールの個数を増やす手段を適用すると、保持器のポケットの個数が増えるため保持器の柱部が細くなり、保持器の強度確保がさらに困難となる。 Furthermore, in order to achieve light weight and compactness, it is necessary to reduce the pitch circle diameter PCD of the ball, but the contact surface pressure between the ball and the track groove increases. As means for keeping the contact surface pressure between the ball and the track groove below a certain level, it is conceivable to increase the ball diameter and to increase the number of balls. However, when means for increasing the ball diameter is applied, the spherical end of the inner joint member becomes thinner, making it difficult to secure the strength of the inner joint member. In addition, when means for increasing the number of balls is applied, the number of pockets in the cage increases, so that the pillars of the cage become thinner, which makes it more difficult to secure the strength of the cage.
 その解決手段として、特許文献1の等速自在継手では、対になった隣り合う2つのトラック溝を互いに平行な平面上に形成することによって、隣り合う2個のボールを保持器の1つのポケットに配置することで保持器の柱部を太くでき、内側継手部材の球状外周面の端部の肉厚を確保することにより、強度の向上を図っている。 As a solution, in the constant velocity universal joint of Patent Document 1, two adjacent balls are made into one pocket of the cage by forming two pairs of adjacent track grooves on a plane parallel to each other. By arranging in the above, the pillar portion of the cage can be made thicker, and by securing the thickness of the end of the spherical outer peripheral surface of the inner joint member, the strength is improved.
 しかし、特許文献1の等速自在継手のような対になった隣り合う2つのトラック溝を互いに平行な平面上に形成する形状では、常用角度域で、対になった片側のボール(ボール個数の半分)でしかトルクを伝達できないため、ボールとトラック溝との接触面圧が大きくなり、耐久性が低下する。この問題に着目したのが本発明である。 However, in the shape of forming two pairs of adjacent track grooves on a plane parallel to each other as in the constant velocity universal joint of Patent Document 1, the balls (the number of balls on one side are paired in the common angle range) Since the torque can be transmitted only in half of the above, the contact surface pressure between the ball and the track groove increases and the durability decreases. The present invention focuses on this problem.
 上記のような問題に鑑み、本発明は、常用角度域においても大きな負荷容量を確保できる軽量・コンパクトな固定式等速自在継手を提供することを目的とする。 In view of the problems as described above, the present invention has an object to provide a lightweight and compact fixed type constant velocity universal joint capable of securing a large load capacity even in a normal angle range.
 本発明者らは、上記の目的を達成するために種々検討した結果、トラック溝を半径方向平面に平行な平面上に配置した3対の第1のトラック溝と、半径方向平面上に配置した3本の第2のトラック溝とから構成し、第1のトラック溝と第2のトラック溝を直径方向に対向して配置するという着想により、本発明に至った。 As a result of various investigations to achieve the above object, the present inventors arranged track grooves in a radial plane and three pairs of first track grooves arranged in a plane parallel to the radial plane. The present invention has been made based on the idea of comprising three second track grooves and arranging the first track groove and the second track groove opposite in the diameter direction.
 前述の目的を達成するための技術的手段として、本発明は、球状内周面に長手方向に延びる複数のトラック溝が形成され、軸方向に離間する開口側と奥側を有する外側継手部材と、球状外周面に長手方向に延びる複数のトラック溝が前記外側継手部材のトラック溝に対向して形成された内側継手部材と、対向する各トラック溝間に組込まれたトルク伝達ボールと、このトルク伝達ボールを保持し、前記外側継手部材の球状外周面と前記内側継手部材の球状外周面に案内される保持器とからなる固定式等速自在継手において、前記外側継手部材のトラック溝7は、円周方向に等間隔で配置された3対の第1のトラック溝7A、7Bと、3本の第2のトラック溝7Cとから構成され、前記第1のトラック溝7A、7Bの軌道中心線XA、XBは、継手の軸線N-Nを含む半径方向平面Aに対して対称でかつ間隔をもって平行に延びるトラック溝平面B、B’上に配置され、前記第2のトラック溝7Cの軌道中心線XCは、前記半径方向平面A上で、かつ前記第1のトラック溝7A、7Bの対に対して直径方向に対向する位置に配置され、前記第1のトラック溝7A、7Bの軌道中心線XA、XBは、曲率中心が投影中心O’に対して前記外側継手部材の軸方向にオフセットされた円弧状部分を有し、前記第2のトラック溝7Cの軌道中心線XCは、曲率中心が継手中心Oに対して前記外側継手部材の軸方向にオフセットされた円弧状部分を有し、作動角0°の状態で前記継手中心Oを含み前記継手の軸線N-Nに直交する平面Pと、前記第1のトラック溝7A、7Bの軌道中心線XA、XBおよび前記第2のトラック溝7Cの軌道中心線XCとの各交点CA、CB、CCが、前記平面Pにおける一つの円D上に配置されており、前記内側継手部材のトラック溝9の軌道中心線Yは、前記平面Pを基準として、前記外側継手部材の対となるトラック溝7の軌道中心線Xと鏡像対称に形成されていることを特徴とする。 As technical means for achieving the above-mentioned object, the present invention provides an outer joint member in which a plurality of track grooves extending in the longitudinal direction are formed on the spherical inner peripheral surface, and has an axially spaced opening side and back side. An inner joint member in which a plurality of track grooves extending in the longitudinal direction are formed on the spherical outer peripheral surface so as to face the track grooves of the outer joint member; a torque transmitting ball incorporated between the opposing track grooves; In the fixed type constant velocity universal joint including the transmission ball and holding the spherical outer peripheral surface of the outer joint member and the cage guided to the spherical outer peripheral surface of the inner joint member, the track groove 7 of the outer joint member is The track center line of the first track grooves 7A, 7B is composed of three pairs of first track grooves 7A, 7B arranged at equal intervals in the circumferential direction and three second track grooves 7C. X a, X B is, Radial plane A track groove plane B extending in parallel with the symmetry a and distance to containing the axis N-N of the hand, is disposed on B ', the track center line X C of the second track groove. 7C, It is disposed on the radial plane A and at a position diametrically opposed to the pair of first track grooves 7A, 7B, and the track center line X A , X of the first track grooves 7A, 7B. B has an offset has been arcuate portion in the axial direction of the outer joint member center of curvature with respect to the projection center O ', the track center line X C of the second track groove. 7C, the center of curvature joint A plane P having an arc-shaped portion offset in the axial direction of the outer joint member with respect to a center O and including the joint center O at a working angle of 0 ° and orthogonal to an axis N-N of the joint; Trajectory centerlines X A , X B of the first track grooves 7A, 7B and The intersections C A , C B and C C of the second track groove 7C with the track center line X C are disposed on one circle D in the plane P, and the track groove of the inner joint member The track center line Y of 9 is characterized in that it is formed in mirror symmetry with the track center line X of the track groove 7 which is a pair of the outer joint members with the plane P as a reference.
 上記の構成により、常用角度域においても大きな負荷容量を確保できる軽量・コンパクトな固定式等速自在継手を実現することができる。 According to the above-mentioned configuration, it is possible to realize a lightweight and compact fixed type constant velocity universal joint capable of securing a large load capacity even in a normal angle range.
 上記の投影中心O’に対する第1のトラック溝7A、7Bの軌道中心線XA、XBの円弧状部分の曲率中心のオフセットおよび継手中心Oに対する第2のトラック溝7Cの軌道中心線XCの円弧状部分の曲率中心のオフセットは、いずれも、外側継手部材の奥側に向かって設けられていることが望ましい。これにより、高作動角時の外側継手部材の強度を一層向上させることができる。 The first track groove 7A to the above projection center O ', the track center line X A of 7B, X raceway center line X C of the second track groove 7C to the offset and the joint center O of the center of curvature of the arcuate portion of the B Desirably, the offset of the center of curvature of the arc-shaped portion is provided toward the back side of the outer joint member. Thereby, the strength of the outer joint member at the high operating angle can be further improved.
 上記の第1のトラック溝7A、7Bの軌道中心線XA、XBおよび第2のトラック溝7Cの軌道中心線XCの曲率中心が、継手の軸線N-Nに対して半径方向にオフセットされていることが好ましい。これにより、高作動角時のトラック溝深さを調整することができる。 The first track groove 7A above, 7B track center line X A, X B and the center of curvature of the raceway center line X C of the second track groove 7C is radially offset with respect to the axis N-N of the joint Is preferred. Thereby, the track groove depth at the high operation angle can be adjusted.
 上記の第1のトラック溝7A、7Bおよび第2のトラック溝7Cが、前記軌道中心線XA、XB、XCの円弧状部分とは異なる形状の軌道中心線を有する高作動角トラック溝部7Ab、7Bb、7Cbを外側継手部材の開口側に有することが好ましい。これにより、高作動化に適したトラック溝形状を形成することができる。 A high operating angle track groove portion in which the first track grooves 7A and 7B and the second track grooves 7C have a track center line having a shape different from the arc-shaped portions of the track center lines X A , X B and X C It is preferable to have 7Ab, 7Bb, 7Cb on the open side of the outer joint member. Thereby, the track groove shape suitable for high operation can be formed.
 上記の高作動角トラック溝部7Ab、7Bb、7Cbの軌道中心線XAb、XBb、XCbが、第1のトラック溝7A、7Bの軌道中心線XA、XBおよび第2のトラック溝7Cの軌道中心線XCの円弧状部分とは反対側に湾曲する円弧形状であることが好ましい。これにより、高作動角化に適したトラック溝形状を形成することができる。 The track center lines X Ab , X Bb and X Cb of the above-mentioned high operating angle track grooves 7Ab, 7Bb and 7Cb are the track center lines X A and X B of the first track grooves 7A and 7B and the second track groove 7C. it is preferred that the arcuate portion of the track center line X C is a circular arc shape that is curved to the opposite side. Thereby, the track groove shape suitable for achieving a high operating angle can be formed.
 上記の保持器が、各対の第1のトラック溝7A、7Bに組込まれた2個のトルク伝達ボールを収容するポケットを有することにより、保持器の柱部の幅を増加させて、強度を向上させることができる。 The strength of the cage is increased by increasing the width of the pillars of the cage by having a pocket for accommodating the two torque transfer balls incorporated in each pair of first track grooves 7A, 7B. It can be improved.
 本発明によれば、常用角度域においても大きな負荷容量を確保できる軽量・コンパクトな固定式等速自在継手を実現することができる。 According to the present invention, it is possible to realize a lightweight and compact fixed type constant velocity universal joint capable of securing a large load capacity even in a normal angle range.
本発明の第1の実施形態に係る固定式等速自在継手を示し、図2のA1-N線に沿った縦断面図である。FIG. 3 is a longitudinal cross-sectional view of the fixed type constant velocity universal joint according to the first embodiment of the present invention taken along the line A1-N in FIG. 図2のB1-N’線に沿った縦断面図を時計方向に180°回転させたものである。2. It is what rotated 180 degree | times clockwise the longitudinal cross-sectional view along the B1-N 'line | wire of FIG. 図1aの右側面図である。It is a right view of FIG. 1 a. 図1aの外側継手部材、保持器、ボールおよび内側継手部材の分解斜視図である。FIG. 2 is an exploded perspective view of the outer joint member, the cage, the ball and the inner joint member of FIG. 1a. 内側継手部材のトラック溝とボールとの接触状態を示す説明図である。It is explanatory drawing which shows the contact state of the track groove and ball | bowl of an inner joint member. 本発明の第2の実施形態に係る固定式等速自在継手を示し、図2のA1-N線に沿った縦断面図である。FIG. 3 is a longitudinal cross-sectional view of the fixed type constant velocity universal joint according to a second embodiment of the present invention taken along line A1-N in FIG. 本発明の第2の実施形態に係る固定式等速自在継手を示し、図2のB1-N’線に沿った縦断面図を時計方向に180°回転させたものである。The fixed-type constant velocity universal joint which concerns on the 2nd Embodiment of this invention is shown, and the longitudinal cross-sectional view which followed the B1-N 'line | wire of FIG. 2 is rotated 180 degrees clockwise. 本発明の第3の実施形態に係る固定式等速自在継手を示し、図2のA1-N線に沿った縦断面図である。FIG. 5 is a longitudinal cross-sectional view of the fixed type constant velocity universal joint according to the third embodiment of the present invention taken along the line A1-N in FIG. 本発明の第3の実施形態に係る固定式等速自在継手を示し、図2のB1-N’線に沿った縦断面図を時計方向に180°回転させたものである。The fixed-type constant velocity universal joint which concerns on the 3rd Embodiment of this invention is shown, and the longitudinal cross-sectional view along the B1-N 'line of FIG. 2 is rotated 180 degrees clockwise. 本発明の第4の実施形態に係る固定式等速自在継手を示し、図2のA1-N線に沿った縦断面図である。FIG. 5 is a longitudinal cross-sectional view of the fixed type constant velocity universal joint according to the fourth embodiment of the present invention taken along the line A1-N in FIG. 本発明の第4の実施形態に係る固定式等速自在継手を示し、図2のB1-N’線に沿った縦断面図を時計方向に180°回転させたものである。The fixed-type constant velocity universal joint which concerns on the 4th Embodiment of this invention is shown, and the longitudinal cross-sectional view which followed the B1-N 'line | wire of FIG. 2 is rotated 180 degrees clockwise. 本発明の第5の実施形態に係る固定式等速自在継手を示し、図2のA1-N線に沿った縦断面図である。FIG. 6 is a longitudinal cross-sectional view of the fixed type constant velocity universal joint according to the fifth embodiment of the present invention taken along the line A1-N in FIG. 本発明の第5の実施形態に係る固定式等速自在継手を示し、図2のB1-N’線に沿った縦断面図を時計方向に180°回転させたものである。The fixed-type constant velocity universal joint which concerns on the 5th Embodiment of this invention is shown, and the longitudinal cross-sectional view along the B1-N 'line of FIG. 2 is rotated 180 degrees clockwise. 本発明の第6の実施形態に係る固定式等速自在継手を示し、図2のA1-N線に沿った縦断面図である。FIG. 7 is a longitudinal cross-sectional view of the fixed type constant velocity universal joint according to the sixth embodiment of the present invention taken along the line A1-N in FIG. 本発明の第6の実施形態に係る固定式等速自在継手を示し、図2のB1-N’線に沿った縦断面図を時計方向に180°回転させたものである。The fixed-type constant velocity universal joint which concerns on the 6th Embodiment of this invention is shown, and the longitudinal cross-sectional view along the B1-N 'line of FIG. 2 is rotated 180 degrees clockwise.
 本発明の第1の実施形態に係る固定式等速自在継手を図1~図4に基づいて説明する。図1aは、図2のA1-N線に沿った縦断面図で、図1bは、図2のB1-N’線に沿った縦断面図を時計方向に180°回転させたものである。図2は、図1aの右側面図で、図3は、図1bの右側上方から見た外側継手部材、保持器、ボールおよび内側継手部材の分解斜視図である。図4は、内側継手部材のトラック溝とボールとの接触状態を示す説明図である。 A fixed type constant velocity universal joint according to a first embodiment of the present invention will be described based on FIGS. 1 to 4. FIG. 1a is a longitudinal sectional view taken along the line A1-N of FIG. 2, and FIG. 1b is a longitudinal sectional view taken along the line B1-N 'of FIG. 2 is a right side view of FIG. 1a, and FIG. 3 is an exploded perspective view of an outer joint member, a cage, a ball and an inner joint member as viewed from the upper right side of FIG. 1b. FIG. 4 is an explanatory view showing a contact state of the track groove of the inner joint member and the ball.
 図1a~図2に示すように、本実施形態の固定式等速自在継手1は、外側継手部材2、内側継手部材3、トルク伝達ボール(単に、ボールともいう)4および保持器5を主な構成とする。図2に示すように、外側継手部材2の球状内周面6には3対の第1のトラック溝7A1、7B1、7A2、7B2、7A3、7B3と3本の第2のトラック溝7C1、7C2、7C3の計9本のトラック溝が長手方向に形成されている。内側継手部材3の球状外周面8には、外側継手部材2の第1のトラック溝7A1、7B1、7A2、7B2、7A3、7B3と対向する3対の第1のトラック溝9A1、9B1、9A2、9B2、9A3、9B3と、外側継手部材2の第2のトラック溝7C1、7C2、7C3と対向する3本の第2のトラック溝9C1、9C2、9C3の計9本のトラック溝9が長手方向に形成されている。外側継手部材2のトラック溝7と内側継手部材3のトラック溝9との間にトルクを伝達する9個のボール4が1個ずつ組み込まれている。 As shown in FIGS. 1 a to 2, the fixed type constant velocity universal joint 1 according to this embodiment mainly includes an outer joint member 2, an inner joint member 3, a torque transmitting ball (also simply referred to as a ball) 4 and a retainer 5. Configuration. As shown in FIG. 2, three pairs of first track grooves 7A1, 7B1, 7A2, 7B2, 7A3, 7B3 and three second track grooves 7C1, 7C2 are formed on the spherical inner peripheral surface 6 of the outer joint member 2. , 7C3 in total, nine track grooves are formed in the longitudinal direction. The spherical outer peripheral surface 8 of the inner joint member 3 includes three pairs of first track grooves 9A1, 9B1, 9A2, which face the first track grooves 7A1, 7B1, 7A2, 7B2, 7A3, 7B3 of the outer joint member 2, A total of nine track grooves 9 in the longitudinal direction, 9B2, 9A3, 9B3 and three second track grooves 9C1, 9C2, 9C3 facing the second track grooves 7C1, 7C2, 7C3 of the outer joint member 2 It is formed. Nine balls 4 for transmitting torque are incorporated between the track groove 7 of the outer joint member 2 and the track groove 9 of the inner joint member 3 one by one.
 ここで、本明細書および請求の範囲において、外側継手部材2の第1のトラック溝7A1、7B1、7A2、7B2、7A3、7B3と第2のトラック溝7C1、7C2、7C3を総称する場合は符号7を用い、内側継手部材3の第1のトラック溝9A1、9B1、9A2、9B2、9A3、9B3と第2のトラック溝9C1、9C2、9C3を総称する場合は符号9を用いる。また、外側継手部材2の第1のトラック溝7A1、7A2、7A3および7B1、7B2、7B3のそれぞれを総称する場合は、符号7A、7Bを用い、第2のトラック溝7C1、7C2、7C3を総称する場合は、符号7Cを用いる。内側継手部材3の場合も同じ要領とする。 Here, in the present specification and claims, the first track grooves 7A1, 7B1, 7A2, 7A2, 7B2, 7A3 and 7B3 of the outer joint member 2 and the second track grooves 7C1, 7C2 and 7C3 are collectively referred to as symbols. In the case where the first track grooves 9A1, 9B1, 9A2, 9B2, 9A3, 9B3 and the second track grooves 9C1, 9C2, 9C3 of the inner joint member 3 are collectively referred to using 7, reference numeral 9 is used. When the first track grooves 7A1, 7A2, 7A3 and 7B1, 7B2, 7B3 of the outer joint member 2 are generically referred to, the reference numerals 7A, 7B are used to generically refer to the second track grooves 7C1, 7C2, 7C3. In the case of using the code 7C. The same procedure applies to the inner joint member 3 as well.
 図1a、図1bに示すように、外側継手部材2の球状内周面6と内側継手部材3の球状外周面8の間に、ボール4を保持する保持器5が配置されている。ボール4は保持器5のポケット5aに収容されている。保持器5の球状外周面12は外側継手部材2の球状内周面6に摺動自在に嵌合し、保持器5の球状内周面13は内側継手部材3の球状外周面8に摺動自在に嵌合し、案内される。 As shown in FIGS. 1 a and 1 b, a cage 5 for holding the ball 4 is disposed between the spherical inner peripheral surface 6 of the outer joint member 2 and the spherical outer peripheral surface 8 of the inner joint member 3. The ball 4 is accommodated in the pocket 5 a of the retainer 5. The spherical outer peripheral surface 12 of the cage 5 slidably fits on the spherical inner peripheral surface 6 of the outer joint member 2, and the spherical inner peripheral surface 13 of the cage 5 slides on the spherical outer peripheral surface 8 of the inner joint member 3 It fits freely and is guided.
 図2に示すように、外側継手部材2の3対の第1のトラック溝7A、7Bは、第1の対のトラック溝7A1、7B1、第2の対のトラック溝7A2、7B2および第3の対のトラック溝7A3、7B3とから構成されている。同様に、内側継手部材3の3対の第1のトラック溝9A、9Bは、第1の対のトラック溝9A1、9B1、第2の対のトラック溝9A2、9B2および第3の対のトラック溝9A3、9B3とから構成されている。 As shown in FIG. 2, the three pairs of first track grooves 7A, 7B of the outer joint member 2 are a first pair of track grooves 7A1, 7B1, a second pair of track grooves 7A2, 7B2 and a third pair. It comprises a pair of track grooves 7A3 and 7B3. Similarly, the three pairs of first track grooves 9A, 9B of the inner joint member 3 are the first pair of track grooves 9A1, 9B1, the second pair of track grooves 9A2, 9B2 and the third pair of track grooves. It consists of 9A3 and 9B3.
 外側継手部材3の第1のトラック溝7A、7Bについて説明する。3対の第1のトラック溝7A、7Bのうち、第1の対のトラック溝7A1、7B1は、継手の軸線N-N(図1a参照)を含む半径方向平面A1の両側に間隔をおいて配置され、半径方向平面A1を基準にして互いに対称に形成されている。すなわち、第1の対のトラック溝7A1の軌道中心線XA(図1b参照)は、半径方向平面A1に対して間隔をもって平行に延びるトラック溝平面B1上に配置され、トラック溝7B1の軌道中心線XB(図示省略)は、半径方向平面A1に対してトラック溝平面B1とは反対側において間隔をもって平行に延びるトラック溝平面B’1上に配置されている。トラック溝平面B1とトラック溝平面B’1は、半径方向平面A1を基準にして互いに対称となっている。 The first track grooves 7A and 7B of the outer joint member 3 will be described. Of the three pairs of first track grooves 7A, 7B, the first pair of track grooves 7A1, 7B1 is spaced apart on either side of the radial plane A1 including the joint axis N-N (see FIG. 1a) They are arranged and formed symmetrically with respect to the radial plane A1. That is, the track center line X A (see FIG. 1b) of the first pair of track grooves 7A1 is disposed on the track groove plane B1 extending parallel to the radial plane A1 with an interval, and the track center of the track groove 7B1 The line X B (not shown) is disposed on the track groove plane B ′ 1 extending parallel to the radial plane A 1 on the opposite side of the track groove plane B 1 with a gap. The track groove plane B1 and the track groove plane B′1 are symmetrical to each other with respect to the radial plane A1.
 第2の対のトラック溝7A2、7B2は、継手の軸線N-Nを含み、半径方向平面A1に対して時計方向に120°の角度をなす半径方向平面A2の両側に間隔をおいて配置され、半径方向平面A2を基準にして互いに対称に形成されている。第2の対のトラック溝7A2の軌道中心線XA(図示省略)は、半径方向平面A2に対して間隔をもって平行に延びるトラック溝平面B2上に配置され、トラック溝7B2の軌道中心線XB(図示省略)は、半径方向平面A2に対してトラック溝平面B2とは反対側において間隔をもって平行に延びるトラック溝平面B’2上に配置されている。トラック溝平面B2とトラック溝平面B’2も、半径方向平面A2に対して対称となっている。 The second pair of track grooves 7A2 and 7B2 includes the joint axis N-N and is spaced on either side of the radial plane A2, which is at an angle of 120 ° clockwise with respect to the radial plane A1. , And are formed symmetrically with respect to the radial plane A2. The track center line X A (not shown) of the second pair of track grooves 7A2 is disposed on the track groove plane B2 extending parallel to the radial plane A2 at a distance, and the track center line X B of the track groove 7B2 The (not shown) is disposed on the track groove plane B′2 extending in parallel with a space on the side opposite to the track groove plane B2 with respect to the radial plane A2. The track groove plane B2 and the track groove plane B′2 are also symmetrical with respect to the radial plane A2.
 第3の対のトラック溝7A3、7B3は、継手の軸線N-Nを含み、半径方向平面A1に対して時計方向に240°の角度をなす半径方向平面A3の両側に間隔をおいて配置され、半径方向平面A3を基準にして互いに対称に形成されている。第3の対のトラック溝7A3の軌道中心線XA(図示省略)は、半径方向平面A3に対して間隔をもって平行に延びるトラック溝平面B3上に配置され、トラック溝7B3の軌道中心線XB(図示省略)は、半径方向平面A3に対してトラック溝平面B3とは反対側において間隔をもって平行に延びるトラック溝平面B’3上に配置されている。トラック溝平面B3とトラック溝平面B’3も、半径方向平面A3に対して対称となっている。 The third pair of track grooves 7A3, 7B3 includes the joint axis N-N and is spaced apart on either side of a radial plane A3 that forms an angle of 240 ° clockwise with respect to the radial plane A1. , And are formed symmetrically with respect to the radial plane A3. The track center line X A (not shown) of the third pair of track grooves 7A3 is disposed on the track groove plane B3 extending parallel to the radial plane A3 at a distance, and the track center line X B of the track groove 7B3. (Not shown) are disposed on a track groove plane B'3 extending in parallel with a gap on the side opposite to the track groove plane B3 with respect to the radial plane A3. The track groove plane B3 and the track groove plane B'3 are also symmetrical with respect to the radial plane A3.
 外側継手部材2の第1のトラック溝7A、7Bの軸方向の形状を図1bに基づいて説明する。ここでは、第1のトラック溝7A、7Bのうち、図示された第1のトラック溝7A1について説明する。第1のトラック溝7A1は、円弧状の基準トラック溝部7A1aと高作動角トラック溝部7A1bとから構成されている。基準トラック溝部7A1aの軌道中心線XAaは、投影中心O’に対して外側継手部材2の奥側に向かって軸方向にオフセット(オフセット量f1)され、かつ、半径方向にオフセット(オフセット量f2)された曲率中心O1を有する円弧状に形成されている。半径方向のオフセットを設けることにより、高作動角時のトラック溝深さを調整することができる。ここで、投影中心O’は、N-N線上に位置する継手中心OをN’-N’線上に水平方向に投影した点を意味する。したがって、投影中心O’と継手中心Oの継手の軸方向の位置は同じである。投影中心O’と継手中心Oとの関係は、内側継手部材3の第1のトラック溝9A、9Bについても同様である。また、基準トラック溝部7A1aの軌道中心線XAaは、請求の範囲における第1のトラック溝7A、7Bの軌道中心線XA、XBが有する円弧状部分を意味する。 The axial shape of the first track grooves 7A, 7B of the outer joint member 2 will be described based on FIG. 1b. Here, among the first track grooves 7A and 7B, the illustrated first track groove 7A1 will be described. The first track groove 7A1 is composed of an arc-shaped reference track groove 7A1a and a high operating angle track groove 7A1b. Raceway center line X Aa of the reference track groove portion 7A1a is offset (offset amount f1) in the axial direction toward the inner side of the outer joint member 2 relative to the projection center O ', and radially offset (offset amount f2 Is formed in an arc shape having a center of curvature O1. By providing a radial offset, the track groove depth can be adjusted at high operating angles. Here, the projection center O 'means a point where the joint center O located on the NN line is horizontally projected on the N'-N' line. Therefore, the axial positions of the joint of the projection center O ′ and the joint center O are the same. The relationship between the projection center O 'and the joint center O is the same as for the first track grooves 9A and 9B of the inner joint member 3. Also, the track center line X Aa of the reference track groove portion 7A1a means an arcuate portion where the first track groove 7A in the claims, the track center line X A of 7B, is X B has.
 高作動角トラック溝部7A1bの軌道中心線XAbは、投影中心O’に対して外側継手部材2の開口側に向かって軸方向にオフセット(オフセット量f3)され、かつ、半径方向にオフセット(オフセット量f4)された曲率中心O2を有する円弧状に形成されている。高作動角トラック溝部7A1bの軌道中心線XAbと基準トラック溝部7A1aの軌道中心線XAaとは、図示は省略するが、曲率中心O1と曲率中O2を通る直線上で滑らかに接続されている。この接続点は、投影中心O’に対して外側継手部材2の開口側に位置する。このように、第1のトラック溝7A1は、円弧状部分をなす基準トラック溝部7A1aの軌道中心線XAaとは異なる形状の軌道中心線XAbを有する高作動角トラック溝部7A1bを外側継手部材2の開口側に有する。具体的には、高作動角トラック溝部7A1bの軌道中心線XAbは、基準トラック溝部7A1aの軌道中心線XAaの円弧状部分とは反対側に湾曲する円弧形状である。これにより、高作動化に適したトラック溝形状を形成することができる。 The track center line X Ab of the high operating angle track groove portion 7A1 b is axially offset (offset amount f3) toward the opening side of the outer joint member 2 with respect to the projection center O 'and offset in the radial direction (offset) It is formed in the shape of a circular arc having the curvature center O2 which is the amount f4). The track center line X Ab of the high operating angle track groove 7A1 b and the track center line X Aa of the reference track groove 7 A1 a are connected smoothly on a straight line passing through the center of curvature O1 and the middle O2 of curvature although not shown. . This connection point is located on the opening side of the outer joint member 2 with respect to the projection center O ′. Thus, the first track groove 7A1 is a high operating angle track groove portion 7A1b the outer joint member 2 having a raceway center line X Ab whose shape is different from that of the raceway center line X Aa of the reference track groove portion 7A1a forming the arcuate portion On the open side of the Specifically, the track center line X Ab of high operating angle track groove portion 7A1b, the arcuate portion of the track center line X Aa of the reference track groove portion 7A1a an arcuate shape that is curved to the opposite side. Thereby, the track groove shape suitable for high operation can be formed.
 継手が高作動角を取ると、二等分平面上にあるボール4が高作動角トラック溝部7A1bに位置する。ボール4が基準トラック溝部7A1aから高作動角トラック溝部7A1bに移行するときの作動角は、常用角度域を超える10°~15°程度に設定することが好ましい。 When the joint takes a high operating angle, the ball 4 located on the bisector plane is located in the high operating angle track groove 7A1 b. The working angle when the ball 4 is shifted from the reference track groove 7A1a to the high working angle track groove 7A1b is preferably set to about 10 ° to 15 ° which exceeds the normal angle range.
 外側継手部材2の第2のトラック溝7Cについて説明する。図2に示すように、第2のトラック溝7Cは、3本のトラック溝7C1、7C2、7C3から構成されている。第2のトラック溝7C1の軌道中心線XC(図1a参照)は、継手の軸線N-Nを含む半径方向平面A1上に配置され、かつ第1のトラック溝7A1、7B1の軌道中心線XA、XB(XBは図示省略)の対に対して直径方向に対向する位置に配置されている。 The second track groove 7C of the outer joint member 2 will be described. As shown in FIG. 2, the second track groove 7C is composed of three track grooves 7C1, 7C2, and 7C3. The track center line X C (see FIG. 1a) of the second track groove 7C1 (see FIG. 1a) is disposed on the radial plane A1 including the joint axis NN, and the track center line X of the first track groove 7A1, 7B1. They are disposed at positions diametrically opposed to a pair of A 1 and X B (X B is not shown).
 第2のトラック溝7C2の軌道中心線XC(図示省略)は、継手の軸線N-Nを含み、半径方向平面A1に対して時計方向に120°の角度をなす半径方向平面A2上に配置され、かつ第1のトラック溝7A2、7B2の軌道中心線XA、XB(図示省略)の対に対して直径方向に対向する位置に配置されている。 The track center line X C (not shown) of the second track groove 7C2 includes the joint axis N-N, and is disposed on the radial plane A2 that forms an angle of 120 ° clockwise with respect to the radial plane A1. The first track grooves 7A2 and 7B2 are disposed at positions diametrically opposite to a pair of track center lines X A and X B (not shown).
 第2のトラック溝7C3の軌道中心線XC(図示省略)は、継手の軸線N-Nを含み、半径方向平面A1に対して時計方向に240°の角度をなす半径方向平面A3上に配置され、かつ第1のトラック溝7A3、7B3の軌道中心線XA、XB(図示省略)の対に対して直径方向に対向する位置に配置されている。 The track center line X C (not shown) of the second track groove 7C3 includes the joint axis N-N, and is disposed on the radial plane A3 that forms an angle of 240 ° clockwise with respect to the radial plane A1. The first track grooves 7A3 and 7B3 are disposed at positions diametrically opposite to a pair of track center lines X A and X B (not shown) of the first track grooves 7A3 and 7B3.
 第2のトラック溝7Cの軸方向の形状を図1aに基づいて説明する。ここでは、第2のトラック溝7Cのうち、図示された第2のトラック溝7C1について説明する。第1のトラック溝7A1と同様に、第2のトラック溝7C1も、円弧状の基準トラック溝部7C1aと高作動角トラック溝部7C1bとから構成されている。基準トラック溝部7C1aの軌道中心線XCaは、継手中心Oに対して外側継手部材2の奥側に向かって軸方向にオフセット(オフセット量f5)され、かつ、半径方向にオフセット(オフセット量f6)された曲率中心O5を有する円弧状に形成されている。 The axial shape of the second track groove 7C will be described based on FIG. 1a. Here, among the second track grooves 7C, the illustrated second track grooves 7C1 will be described. Similar to the first track groove 7A1, the second track groove 7C1 is also composed of a circular reference track groove 7C1a and a high operating angle track groove 7C1b. The track center line X Ca of the reference track groove 7C1a is axially offset (offset amount f5) toward the back side of the outer joint member 2 with respect to the joint center O, and offset in the radial direction (offset amount f6) It is formed in an arc shape having a center of curvature O5.
 高作動角トラック溝部7C1bの軌道中心線XCbは、継手中心Oに対して外側継手部材2の開口側に向かって軸方向にオフセット(オフセット量f7)され、かつ、半径方向にオフセット(オフセット量f8)された曲率中心O6を有する円弧状に形成されている。高作動角トラック溝部7C1bの軌道中心線XCbと基準トラック溝部7C1aの軌道中心線XCaとは、図示は省略するが、曲率中心O5と曲率中心O6を通る直線上で滑らかに接続されている。この接続点は、継手中心Oに対して外側継手部材2の開口側に位置する。このように、第2のトラック溝7C1は、円弧状部分をなす基準トラック溝部7C1aの軌道中心線XCaとは異なる形状の軌道中心線XCbを有する高作動角トラック溝部7C1bを外側継手部材2の開口側に有する。具体的には、高作動角トラック溝部7C1bの軌道中心線XCbは、基準トラック溝部7C1aの軌道中心線XCaの円弧状部分とは反対側に湾曲する円弧形状である。これにより、高作動化に適したトラック溝形状を形成することができる。 Raceway center line X Cb high operating angle track groove portion 7C1b is axially offset toward the opening side of the outer joint member 2 relative to the joint center O (the offset amount f7), and radially offset (offset amount f8) It is formed in the shape of a circular arc having the curvature center O6. The track center line X Ca high operating angle track groove track center line X Cb of 7C1b the reference track groove portion 7C1a, not shown, it is smoothly connected by a straight line passing through the center of curvature O5 and the curvature center O6 . This connection point is located on the opening side of the outer joint member 2 with respect to the joint center O. Thus, the second track groove 7C1 is high operating angle track groove 7C1b the outer joint member 2 having a raceway center line X Cb whose shape is different from that of the raceway center line X Ca reference track groove portion 7C1a forming the arcuate portion On the open side of the Specifically, the track center line X Cb high operating angle track groove portion 7C1b, the arcuate portion of the track center line X Ca reference track groove portion 7C1a an arcuate shape that is curved to the opposite side. Thereby, the track groove shape suitable for high operation can be formed.
 継手が高作動角を取ると、二等分平面上にあるボール4が高作動角トラック溝部7C1bに位置する。第2のトラック溝7C1におけるボール4が基準トラック溝部7C1aから高作動角トラック溝部7C1bに移行するときの作動角は、第1のトラック溝7A1bの移行作動角と同じである。また、前記移行作動角は、後述する内側継手部材3においても同じである。 When the joint takes a high operating angle, the ball 4 located on the bisector plane is located in the high operating angle track groove 7C1b. The operating angle when the ball 4 in the second track groove 7C1 transitions from the reference track groove 7C1a to the high operating angle track groove 7C1b is the same as the transition operating angle of the first track groove 7A1b. Moreover, the said transfer operation angle is the same also in the inner side coupling member 3 mentioned later.
 次に、内側継手部材3の第1のトラック溝9A、9Bについて説明する。図2に示すように、内側継手部材3の3対の第1のトラック溝9A、9Bのうち、第1の対のトラック溝9A1、9B1は、継手の軸線N-Nを含む半径方向平面A1の両側に間隔をおいて配置され、半径方向平面A1を基準にして互いに対称に形成されている。すなわち、第1の対のトラック溝9A1の軌道中心線YA(図1b参照)は、半径方向平面A1に対して間隔をもって平行に延びるトラック溝平面B1上に配置され、トラック溝9B1の軌道中心線YB(図示省略)は、半径方向平面A1に対してトラック溝平面B1とは反対側において間隔をもって平行に延びるトラック溝平面B’1上に配置されている。前述したように、トラック溝平面B1とトラック溝平面B’1は、半径方向平面A1を基準にして互いに対称となっている。 Next, the first track grooves 9A and 9B of the inner joint member 3 will be described. As shown in FIG. 2, of the three pairs of first track grooves 9A and 9B of the inner joint member 3, the first pair of track grooves 9A1 and 9B1 is a radial plane A1 including the joint axis N-N. Are spaced apart from each other and are formed symmetrically with respect to the radial plane A1. That is, the track center line Y A (see FIG. 1b) of the first pair of track grooves 9A1 is disposed on the track groove plane B1 extending parallel to the radial plane A1 with an interval, and the track center of the track groove 9B1 The line Y B (not shown) is disposed on a track groove plane B ′ 1 extending parallel to the radial plane A 1 on the side opposite to the track groove plane B 1 with a gap. As described above, the track groove plane B1 and the track groove plane B'1 are symmetrical to each other with respect to the radial plane A1.
 第2の対のトラック溝9A2、9B2は、継手の軸線N-Nを含み、半径方向平面A1に対して時計方向に120°の角度をなす半径方向平面A2の両側に間隔をおいて配置され、半径方向平面A2を基準にして互いに対称に形成されている。第2の対のトラック溝9A2の軌道中心線YA(図示省略)は、半径方向平面A2に対して間隔をもって平行に延びるトラック溝平面B2上に配置され、トラック溝9B2の軌道中心線YB(図示省略)は、半径方向平面A2に対してトラック溝平面B2とは反対側において間隔をもって平行に延びるトラック溝平面B’2上に配置されている。前述したように、トラック溝平面B2とトラック溝平面B’2は、半径方向平面A2を基準にして互いに対称となっている。 The second pair of track grooves 9A2, 9B2 includes the joint axis N-N and is spaced on either side of a radial plane A2 that is at an angle of 120 ° clockwise with respect to the radial plane A1. , And are formed symmetrically with respect to the radial plane A2. The track center line Y A (not shown) of the second pair of track grooves 9A2 is disposed on the track groove plane B2 extending parallel to the radial plane A2 at a distance, and the track center line Y B of the track groove 9B2 The (not shown) is disposed on the track groove plane B′2 extending in parallel with a space on the side opposite to the track groove plane B2 with respect to the radial plane A2. As described above, the track groove plane B2 and the track groove plane B′2 are symmetrical to each other with respect to the radial plane A2.
 第3の対のトラック溝9A3、9B3は、継手の軸線N-Nを含み、半径方向平面A1に対して時計方向に240°の角度をなす半径方向平面A3の両側に間隔をおいて配置され、半径方向平面A3を基準にして互いに対称に形成されている。第3の対のトラック溝9A3の軌道中心線YA(図示省略)は、半径方向平面A3に対して間隔をもって平行に延びるトラック溝平面B3上に配置され、トラック溝9B3の軌道中心線YB(図示省略)は、半径方向平面A3に対してトラック溝平面B3とは反対側において間隔をもって平行に延びるトラック溝平面B’3上に配置されている。前述したように、トラック溝平面B3とトラック溝平面B’3は、半径方向平面A3を基準にして互いに対称となっている。 The third pair of track grooves 9A3, 9B3 includes the joint axis N-N and is spaced apart on either side of a radial plane A3 which is at an angle of 240 ° clockwise with respect to the radial plane A1. , And are formed symmetrically with respect to the radial plane A3. The track center line Y A (not shown) of the third pair of track grooves 9A3 is disposed on the track groove plane B3 extending parallel to the radial plane A3 at a distance, and the track center line Y B of the track groove 9B3. (Not shown) are disposed on a track groove plane B'3 extending in parallel with a gap on the side opposite to the track groove plane B3 with respect to the radial plane A3. As described above, the track groove plane B3 and the track groove plane B'3 are mutually symmetrical with respect to the radial plane A3.
 内側継手部材3の第1のトラック溝9A、9Bの軸方向の形状を図1bに基づいて説明する。ここでは、第1のトラック溝9A、9Bのうち、図示された第1のトラック溝9A1について説明する。第1のトラック溝9A1は、円弧状の基準トラック溝部9A1aと高作動角トラック溝部9A1bとから構成されている。基準トラック溝部9A1aの軌道中心線YAaは、投影中心O’に対して外側継手部材2の開口側に向かって軸方向にオフセット(オフセット量f1)され、かつ、半径方向にオフセット(オフセット量f2)された曲率中心O3を有する円弧状に形成されている。 The axial shape of the first track grooves 9A, 9B of the inner joint member 3 will be described based on FIG. 1b. Here, among the first track grooves 9A and 9B, the illustrated first track groove 9A1 will be described. The first track groove 9A1 is composed of an arc-shaped reference track groove 9A1a and a high operating angle track groove 9A1b. Raceway center line Y Aa of the reference track groove portion 9A1a is offset (offset amount f1) in the axial direction toward the opening side of the outer joint member 2 relative to the projection center O ', and radially offset (offset amount f2 Is formed in an arc shape having a center of curvature O3.
 高作動角トラック溝部9A1bの軌道中心線YAbは、投影中心O’に対して外側継手部材2の奥側に向かって軸方向にオフセット(オフセット量f3)され、かつ、半径方向にオフセット(オフセット量f4)された曲率中心O4を有する円弧状に形成されている。高作動角トラック溝部9A1bの軌道中心線YAbと基準トラック溝部9A1aの軌道中心線YAaとは、図示は省略するが、曲率中心O3と曲率中心O4を通る直線上で滑らかに接続されている。この接続点は、投影中心O’に対して外側継手部材2の奥側に位置する。このように、第1のトラック溝9A1は、円弧状部分をなす基準トラック溝部9A1aの軌道中心線YAaとは異なる形状の軌道中心線YAbを有する高作動角トラック溝部9A1bを外側継手部材2の奥側に有する。具体的には、高作動角トラック溝部9A1bの軌道中心線YAbは、基準トラック溝部9A1aの軌道中心線YAaの円弧状部分とは反対側に湾曲する円弧形状である。継手が高作動角を取ると、二等分平面上にあるボール4が高作動角トラック溝部9A1bに位置する。 The track center line Y Ab of the high operating angle track groove portion 9A1 b is axially offset (offset amount f3) toward the back side of the outer joint member 2 with respect to the projection center O 'and offset in the radial direction (offset) It is formed in the shape of a circular arc having the curvature center O4 which is the amount f4). The raceway center line Y Aa of high operating raceway center line of the angle track groove portions 9A1b Y Ab and the reference track groove portion 9A1a, not shown, it is smoothly connected by a straight line passing through the center of curvature O3 and the curvature center O4 . This connection point is located on the back side of the outer joint member 2 with respect to the projection center O ′. Thus, the first track groove 9A1 is a high operating angle track groove portion 9A1b the outer joint member 2 having a raceway center line Y Ab whose shape is different from that of the raceway center line Y Aa of the reference track groove portion 9A1a forming the arcuate portion On the far side of the Specifically, the track center line Y Ab of high operating angle track groove portion 9A1b, the arcuate portion of the track center line Y Aa of the reference track groove portion 9A1a an arcuate shape that is curved to the opposite side. When the joint takes a high operating angle, the ball 4 located on the bisector plane is located in the high operating angle track groove 9A1 b.
 内側継手部材2の第2のトラック溝9Cについて説明する。図2に示すように、第2のトラック溝9Cは、3本のトラック溝9C1、9C2、9C3から構成されている。第2のトラック溝9C1の軌道中心線YC(図1a参照)は、継手の軸線N-Nを含む半径方向平面A1上に配置され、かつ第1のトラック溝9A1、9B1の軌道中心線YA、YB(YBは図示省略)の対に対して直径方向に対向する位置に配置されている。 The second track groove 9C of the inner joint member 2 will be described. As shown in FIG. 2, the second track groove 9C is composed of three track grooves 9C1, 9C2 and 9C3. The track center line Y C of the second track groove 9C1 (see FIG. 1a) is disposed on the radial plane A1 including the joint axis NN, and the track center line Y of the first track groove 9A1 and 9B1. It is disposed at a position diametrically opposite to a pair of A 1 and Y B (Y B is not shown).
 第2のトラック溝9C2の軌道中心線YC(図示省略)は、継手の軸線N-Nを含み、半径方向平面A1に対して時計方向に120°の角度をなす半径方向平面A2上に配置され、かつ第1のトラック溝9A2、9B2の軌道中心線YA、YB(図示省略)の対に対して直径方向に対向する位置に配置されている。 The track center line Y C (not shown) of the second track groove 9C2 includes the joint axis N-N, and is disposed on the radial plane A2 that forms an angle of 120 ° clockwise with respect to the radial plane A1. The first track grooves 9A2 and 9B2 are disposed at positions diametrically opposite to a pair of track center lines Y A and Y B (not shown) of the first track grooves 9A2 and 9B2.
 第2のトラック溝9C3の軌道中心線YC(図示省略)は、継手の軸線N-Nを含み、半径方向平面A1に対して時計方向に240°の角度をなす半径方向平面A3上に配置され、かつ第1のトラック溝9A3、9B3の軌道中心線YA、YB(図示省略)の対に対して直径方向に対向する位置に配置されている。 The track center line Y C (not shown) of the second track groove 9C3 includes the joint axis N-N, and is disposed on the radial plane A3 that forms an angle of 240 ° clockwise with respect to the radial plane A1. The first track grooves 9A3 and 9B3 are disposed at positions diametrically opposed to a pair of track center lines Y A and Y B (not shown) of the first track grooves 9A3 and 9B3.
 内側継手部材3の第2のトラック溝9Cの軸方向の形状を図1aに基づいて説明する。前述した外側継手部材2の場合と同様、第2のトラック溝9Cのうち、図示された第2のトラック溝9C1について説明する。第1のトラック溝9A1と同様に、第2のトラック溝9C1も、円弧状の基準トラック溝部9C1aと高作動角トラック溝部9C1bとから構成されている。基準トラック溝部9C1aの軌道中心線YCaは、継手中心Oに対して外側継手部材2の開口側に向かって軸方向にオフセット(オフセット量f5)され、かつ、半径方向にオフセット(オフセット量f6)された曲率中心O7を有する円弧状に形成されている。 The axial shape of the second track groove 9C of the inner joint member 3 will be described based on FIG. 1a. Similar to the case of the outer joint member 2 described above, the illustrated second track groove 9C1 of the second track groove 9C will be described. Similar to the first track groove 9A1, the second track groove 9C1 is also composed of an arc-shaped reference track groove 9C1a and a high operating angle track groove 9C1b. Raceway center line Y Ca of the reference track groove portion 9C1a is offset (offset amount f5) in the axial direction toward the opening side of the outer joint member 2 relative to the joint center O, and radially offset (offset amount f6) It is formed in a circular arc shape having a center of curvature O7.
 高作動角トラック溝部9C1bの軌道中心線YCbは、継手中心Oに対して外側継手部材2の奥側に向かって軸方向にオフセット(オフセット量f7)され、かつ、半径方向にオフセット(オフセット量f8)された曲率中心O8を有する円弧状に形成されている。高作動角トラック溝部9C1bの軌道中心線YCbと基準トラック溝部9C1aの軌道中心線YCaとは、図示は省略するが、曲率中心O7と曲率中心O8を通る直線上で滑らかに接続されている。この接続点は、継手中心Oに対して外側継手部材2の奥側に位置する。このように、第2のトラック溝9C1は、円弧状部分をなす基準トラック溝部9C1aの軌道中心線YCaとは異なる形状の軌道中心線YCbを有する高作動角トラック溝部9C1bを外側継手部材2の奥側に有する。具体的には、高作動角トラック溝部9C1bの軌道中心線YCbは、基準トラック溝部9C1aの軌道中心線YCaの円弧状部分とは反対側に湾曲する円弧形状である。継手が高作動角を取ると、二等分平面上にあるボール4が高作動角トラック溝部9C1bに位置する。 Raceway center line Y Cb high operating angle track groove portion 9C1b is offset axially toward the inner side of the outer joint member 2 relative to the joint center O (the offset amount f7), and radially offset (offset amount f8) It is formed in a circular arc shape having the curvature center O8. The raceway center line Y Ca of high operating raceway center line of the angle track groove portions 9C1b Y Cb and the reference track groove portion 9C1a, not shown, it is smoothly connected by a straight line passing through the center of curvature O7 and the curvature center O8 . This connection point is located on the back side of the outer joint member 2 with respect to the joint center O. Thus, the second track groove 9C1 is high operating angle track groove 9C1b the outer joint member 2 having a raceway center line Y Cb whose shape is different from that of the raceway center line Y Ca of the reference track groove portion 9C1a forming the arcuate portion On the far side of the Specifically, the track center line Y Cb high operating angle track groove portion 9C1b, the arcuate portion of the track center line Y Ca of the reference track groove portion 9C1a an arcuate shape that is curved to the opposite side. When the joint takes a high operating angle, the ball 4 located on the bisecting plane is positioned in the high operating angle track groove 9C1b.
 外側継手部材2の第1のトラック溝7A、7B、第2のトラック溝7Cおよび内側継手部材3の第1のトラック溝9A、9B、第2のトラック溝9Cの各トラック溝の軸方向の形状ついての説明において、図面との整合性を正確にするため、特定のトラック溝7A1、7C1、9A1、9C1を例に説明したが、その内容は、他のトラック溝においても同様である。すなわち、外側継手部材2の3対の第1のトラック溝7A1、7B1、7A2、7B2、7A3、7B3のうち、第1のトラック溝7A1、7A2、7A3は互いに同一形状であり、第1のトラック溝7B1、7B2、7B3は互いに同一形状である。そして、半径方向平面A1を基準にして第1のトラック溝7A1、7B1が対称であり、半径方向平面A2を基準にして第1のトラック溝7A2、7B2が対称であり、半径方向平面A3を基準にして第1のトラック溝7A3、7B3が対称である。したがって、第1のトラック溝7A1、7A2、7A3と第1のトラック溝7B1、7B2、7B3とは、半径方向平面A1、A2、A3を基準にして対称であるという関係を除けば、各トラック溝7A、7Bの形状は同一形状である。もちろん、第2のトラック溝7C1、7C2、7C3は同一形状である。このため、上述した特定のトラック溝7A1、7C1、9A1、9C1についての説明内容は、外側継手部材2、内側継手部材3の他のトラック溝においても同様に適用することができる。また、以降の実施形態においても同様とする。 Axial shapes of the first track grooves 7A, 7B, the second track grooves 7C of the outer joint member 2 and the first track grooves 9A, 9B of the inner joint member 3 and the second track grooves 9C In the description of the above, specific track grooves 7A1, 7C1, 9A1, and 9C1 have been described as an example in order to make the alignment with the drawing accurate, but the contents are the same as in the other track grooves. That is, among the three pairs of first track grooves 7A1, 7B1, 7A2, 7B2, 7A3, 7B3 of the outer joint member 2, the first track grooves 7A1, 7A2, 7A3 have the same shape as each other, and the first track grooves The grooves 7B1, 7B2, 7B3 have the same shape. The first track grooves 7A1 and 7B1 are symmetrical with respect to the radial plane A1, and the first track grooves 7A2 and 7B2 are symmetrical with respect to the radial plane A2 and are relative to the radial plane A3. The first track grooves 7A3 and 7B3 are symmetrical. Therefore, except for the relationship that the first track grooves 7A1, 7A2, 7A3 and the first track grooves 7B1, 7B2, 7B3 are symmetrical with respect to the radial plane A1, A2, A3, each track groove is The shapes of 7A and 7B are the same. Of course, the second track grooves 7C1, 7C2, 7C3 have the same shape. For this reason, the contents described above for the specific track grooves 7A1, 7C1, 9A1, and 9C1 can be applied to the other track grooves of the outer joint member 2 and the inner joint member 3 in the same manner. Further, the same applies to the following embodiments.
 外側継手部材2のトラック溝7の軌道中心線XA、XB、XC、XAa、XAb、XCa、XCbを総称する場合は、符号Xを用い、内側継手部材3のトラック溝9の軌道中心線YA、YB、YC、YAa、YAb、YCa、YCbを総称する場合は、符号Yを用いる。 When collectively referring to the track center line X A , X B , X C , X Aa , X Ab , X Ca , and X Cb of the track groove 7 of the outer joint member 2, the reference numeral X is used for the track groove of the inner joint member 3 When the orbital centerline Y A , Y B , Y C , Y Aa , Y Ab , Y Ca , and Y Cb are collectively referred to, the symbol Y is used.
 以上説明した外側継手部材2のトラック溝7の軌道中心線Xと内側継手部材3のトラック溝9の軌道中心線Yの各曲率中心の位置を示すオフセット量f1~f8について、同じ符号を付したオフセット量は、互いに等しい寸法であることを意味する。以降の実施形態においても同様とする。 The same reference numerals are given to the offset amounts f1 to f8 indicating the positions of the centers of curvature of the track center line X of the track groove 7 of the outer joint member 2 and the track center line Y of the track groove 9 of the inner joint member 3 described above. The offset amounts mean that the dimensions are equal to one another. The same applies to the following embodiments.
 外側継手部材2と内側継手部材3の各トラック溝の形態について以上に説明したが、内側継手部材3のトラック溝9の軌道中心線Yは、作動角0°の状態で継手中心Oを含み継手の軸線N-Nに直交する平面P(図1a、図1b参照)を基準として、外側継手部材2の対となるトラック溝7の軌道中心線Xと鏡像対称に形成されている. Although the track grooves of the outer joint member 2 and the inner joint member 3 have been described above, the track center line Y of the track groove 9 of the inner joint member 3 includes the joint center O at the operating angle of 0 °. With respect to a plane P (see FIGS. 1a and 1b) orthogonal to the axis N-N of the optical axis, it is formed in mirror symmetry with the track center line X of the track groove 7 as a pair of outer joint members 2.
 図1bの右側上方から見た本実施形態の固定式等速自在継手1の外側継手部材2、保持器5、ボール4および内側継手部材3の分解斜視図を図3に示す。図3は、ボール4が保持器5のポケット5a内に収容された状態で図示している。 An exploded perspective view of the outer joint member 2, the cage 5, the ball 4 and the inner joint member 3 of the fixed type constant velocity universal joint 1 according to this embodiment as viewed from the upper right of FIG. 1b is shown in FIG. FIG. 3 shows the ball 4 housed in the pocket 5 a of the holder 5.
 対になる第1のトラック溝7A、7B、9A、9Bの軌道中心線XA、XB、YA、YB(図示省略)間の周方向間隔が小さく設定されているので、図3に示すように、保持器5のポケット5a1の周方向長さを抑制しつつ、対になる第1のトラック溝7A、7B、9A、9Bに組込まれた2個のボール4を1つのポケット5a1に収容することができる。これにより、保持器5の柱部5bの幅を増加させて、強度を向上させることができる。第2のトラック溝7C、9Cに組込まれるボール4は1個ずつポケット5a2に収容される。 The first track groove 7A paired, 7B, 9A, raceway center line X A of 9B, X B, Y A, since the circumferential distance between Y B (not shown) is set small, in FIG. 3 As shown, while suppressing the circumferential length of the pocket 5a1 of the cage 5, the two balls 4 incorporated in the pair of first track grooves 7A, 7B, 9A, 9B into one pocket 5a1. It can be housed. Thereby, the width | variety of the pillar part 5b of the holder | retainer 5 can be made to increase, and intensity | strength can be improved. The balls 4 assembled in the second track grooves 7C and 9C are accommodated one by one in the pocket 5a2.
 ここで、対になる第1のトラック溝7A、7B、9A、9Bの軌道中心線XA、XB、YA、YB間の周方向間隔を小さく設定できる理由を説明する。前述したように、外側継手部材2および内側継手部材3の第1のトラック溝7A、7B、9A、9Bの軌道中心線XA、XB、YA、YBは、トラック溝平面B1、B’1、B2、B’2、B3、B’3上に配置されている。前述したように、トラック溝平面B1、B’1は半径方向平面A1に平行に形成され、平面B2、B’2は半径方向平面A2に平行に形成され、トラック溝平面B3、B’3は半径方向平面A3に平行に形成されている。すなわち、第1のトラック溝7A、7B、9A、9Bの軌道中心線XA、XB、YA、YBは、半径方向平面A1あるいは半径方向平面A2、半径方向平面A3に平行に形成されている。このため、高角時の強度確保に特に関係する内側継手部材3の端部のトラック溝9A、9B間のリブ部3a(図2参照)の肉厚減少が生じなく、かつ、トラック溝9と内周孔(中間シャフトとの連結孔)との最小肉厚が増加する。このため、対になる第1のトラック溝7A、7B、9A、9Bの軌道中心線XA、XB、YA、YB間の周方向間隔を小さく設定することができる。 Here, the reason why the circumferential interval between the track center lines X A , X B , Y A and Y B of the first track grooves 7 A, 7 B, 9 A and 9 B to be paired can be set small will be described. As described above, the first track groove 7A of the outer joint member 2 and the inner joint member 3, 7B, 9A, 9B of the track center line X A, X B, Y A , Y B , the track groove plane B1, B It is disposed on '1, B2, B'2, B3, B'3. As described above, the track groove planes B1 and B′1 are formed parallel to the radial plane A1, the planes B2 and B′2 are formed parallel to the radial plane A2, and the track groove planes B3 and B′3 It is formed parallel to the radial plane A3. That is, the first track groove 7A, 7B, 9A, 9B of the track center line X A, X B, Y A , Y B is a radial plane A1 or radial plane A2, are formed parallel to the radial plane A3 ing. For this reason, the thickness reduction of the rib portion 3a (see FIG. 2) between the track grooves 9A and 9B at the end of the inner joint member 3 which is particularly related to securing the strength at high angle does not occur. The minimum wall thickness with the circumferential hole (the connecting hole with the intermediate shaft) is increased. For this reason, the circumferential direction interval between the track centerlines X A , X B , Y A , Y B of the first track grooves 7 A, 7 B, 9 A, 9 B to be paired can be set small.
 本実施形態の固定式等速自在継手1のトルク負荷特性を図4に基づいて説明する。図4は、作動角が0°の状態の状態における内側継手部材3のトラック溝9とボール4との接触状態を示す。第1のトラック溝9A、9Bとボール4は、トラック溝平面B、B’に対して接触角αをもって接触し、第2のトラック溝9Cとボール4は、半径方向平面Aに対して接触角αをもって接触している。 The torque load characteristic of the fixed type constant velocity universal joint 1 of the present embodiment will be described based on FIG. 4. FIG. 4 shows the contact state between the track groove 9 of the inner joint member 3 and the ball 4 in the state where the operating angle is 0 °. The first track groove 9A, 9B and the ball 4 contact with the track groove plane B, B 'at a contact angle α, and the second track groove 9C and the ball 4 contact angle with the radial plane A Contact with α.
 作動角0°の状態で継手中心Oを含み前記継手の軸線N-Nに直交する平面P(図1a、図1b参照)と、外側継手部材2の第1のトラック溝7A、7Bの軌道中心線XA、XBおよび第2のトラック溝7Cの軌道中心線XCとの各交点は、図4に示すCA、CB、CCとなる。各交点CA、CB、CCは、平面Pにおける一つの円D上に配置されている。換言すると、図4に示すように、トルクを伝達する9個のボール4、4’、4”が平面Pにおける同一円周上に配置されることになり、各ボールにより均等にトルクを分担させることができる。ただし、実際の製品では、ボール4、4’、4”と外側継手部材2のトラック溝7A、7B、7Cおよび内側継手部材3のトラック溝9A、9B、9Cとの間に僅かな隙間が存在する。ここで、本明細書および請求の範囲における作動角0°の状態で継手中心Oを含み継手の軸線N-Nに直交する平面Pと、第1のトラック溝7A、7Bの軌道中心線XA、XBおよび第2のトラック溝7Cの軌道中心線XCとの各交点CA、CB、CCが、平面Pにおける一つの円D上に配置されているという構成は、上記の概念を含む意味で用いる。 A plane P including the joint center O at a working angle of 0 ° and orthogonal to the axis N-N of the joint (see FIGS. 1a and 1b), and the track centers of the first track grooves 7A and 7B of the outer joint member 2 The points of intersection of the lines X A and X B and the track center line X C of the second track groove 7 C are C A and C B and C C shown in FIG. Each of the intersections C A , C B and C C is disposed on one circle D in the plane P. In other words, as shown in FIG. 4, nine balls 4, 4 ′, 4 ′ ′ transmitting torque are disposed on the same circumference on plane P, and torque is shared equally by each ball However, in an actual product, it is slightly between the balls 4, 4 ', 4 "and the track grooves 7A, 7B, 7C of the outer joint member 2 and the track grooves 9A, 9B, 9C of the inner joint member 3. Gap exists. Here, a plane P including the joint center O at an operating angle of 0 ° in the present specification and claims and orthogonal to the axis N-N of the joint, and an orbital center line X A of the first track grooves 7A and 7B , X B and the intersections C A , C B and C C of the second track groove 7 C with the track center line X C are arranged on one circle D in the plane P, the above concept Used in the sense that
 第1のトラック溝9A1、9B1では、対になるトラック溝9A1、9B1のうちの片側のボール4がほとんどのトルクを伝達する。具体的には、トラック溝9B1では、内側継手部材3を白抜き矢印の方向に回転させトルクを負荷した場合、トラック溝平面B’1上のボール4’に発生するトルク伝達方向ベクトルf’とボール4’とトラック溝9B1の接触方向ベクトルb’は大きな角度、すなわち直線に近い状態で交わる。これに対して、トラック溝平面B1上のボール4に発生するトルク伝達方向ベクトルfとトラック溝9A1の接触方向ベクトルbは小さな角度、すなわち屈曲した状態で交わる。そのため、対のトラック溝9A1、9B1のうち、トラック溝9B1のボール4’がほとんどのトルクを伝達し、トラック溝9A1のボール4は、ほとんどトルク伝達できないことになる。この状態は、第2の対のトラック溝9A2、9B2、第3の対のトラック溝9A3、9B3も同様である。このように、3対の第1のトラック溝9A、9Bのうちの片側のボール4’(6個の半分の3個)がほとんどのトルクを伝達し、残りの片側のボール4はほとんどトルクを伝達できない。この状態は、白抜き矢印とは逆方向にトルクを負荷した場合も同様である。すなわち、トルク伝達する4、4’が変わり、対のトラック溝9A1、9B1のうち、トラック溝9A1のボール4がほとんどのトルクを伝達し、トラック溝9B1のボール4’は、ほとんどトルク伝達できないことになる。 In the first track grooves 9A1 and 9B1, the ball 4 on one side of the paired track grooves 9A1 and 9B1 transmits most of the torque. Specifically, in the track groove 9B1, when torque is applied by rotating the inner joint member 3 in the direction of the white arrow, a torque transfer direction vector f ′ generated in the ball 4 ′ on the track groove plane B′1 The contact direction vector b 'of the ball 4' and the track groove 9B1 intersects at a large angle, that is, near a straight line. On the other hand, the torque transfer direction vector f generated on the ball 4 on the track groove plane B1 and the contact direction vector b of the track groove 9A1 intersect at a small angle, that is, in a bent state. Therefore, the ball 4 'of the track groove 9B1 transmits most of the torque between the pair of track grooves 9A1 and 9B1, and the ball 4 of the track groove 9A1 can hardly transmit the torque. The same applies to the second pair of track grooves 9A2 and 9B2 and the third pair of track grooves 9A3 and 9B3. In this way, the ball 4 'on one side of the three pairs of first track grooves 9A, 9B (three half of six) transmits most of the torque, and the ball 4 on the other side has most of the torque I can not communicate. This state is the same as when the torque is applied in the opposite direction to the white arrow. That is, the torque transmitting 4 and 4 'changes, and the ball 4 of the track groove 9A1 transmits most of the torque of the pair of track grooves 9A1 and 9B1, and the ball 4' of the track groove 9B1 can hardly transmit torque. become.
 上記の第1のトラック溝9A、9Bに対して、第2のトラック溝9Cは、3個のボール4”のすべてがトルクを伝達する。具体的には、第2のトラック溝9Cとボール4”は、半径方向平面Aに対して接触角αをもって接触している。半径方向平面A1上のボール4”に発生するトルク伝達方向ベクトルf”とボール4”とトラック溝9C1の接触方向ベクトルb”は大きな角度で交わる。そして、図示は省略するが、他のトラック溝9C2、9C3も同様の状態になる。そのため、内側継手部材3を白抜き矢印の方向に回転させトルクを負荷した場合、トラック溝9Cの3個のボール4”のすべてがトルクを伝達することができる。また、白抜き矢印とは逆方向にトルクを負荷した場合も同様である。 With respect to the first track grooves 9A and 9B described above, all of the three balls 4 ′ ′ transmit torque with respect to the second track grooves 9C. Specifically, the second track grooves 9C and the balls 4 “Is in contact with the radial plane A at a contact angle α. The torque transfer direction vector f "generated on the ball 4" on the radial plane A1 and the contact direction vector b "of the ball 4" and the track groove 9C1 intersect at a large angle. Although not shown, the other track grooves 9C2 and 9C3 are in the same state. Therefore, when torque is applied by rotating the inner joint member 3 in the direction of the white arrow, all three balls 4 ′ ′ of the track groove 9C can transmit torque. Further, the reverse of the white arrow. The same applies when torque is applied in the direction.
 外側継手部材2のトラック溝7とボール4との接触状態、トルク負荷特性については図示を省略するが、上述した内側継手部材2のトラック溝9とボール4との接触状態、トルク負荷特性と同様である。 The contact state between the track groove 7 and the ball 4 of the outer joint member 2 and the torque load characteristic are not illustrated, but the same as the contact state between the track groove 9 and the ball 4 of the inner joint member 2 described above and the torque load characteristic. It is.
 このように、本実施形態の固定式等速自在継手1は、トラック溝7、9が、3対の第1のトラック溝7A、9A、7B、9Bと3本の第2のトラック溝7C、9Cから構成されているので、常に、第1のトラック溝7A、9A、7B、9Bのうちの3個のボール4(又は4’)と第2のトラック溝7C、9Cの3個のボール4”の計6個のボールでトルクを伝達し、前述したように、9個のボール4、4’、4”を平面Pにおいて同一円周上に配置することで、より均等にトルクを分担させることができ、常用角度域においても負荷容量、耐久性を確保することができる。 As described above, in the fixed type constant velocity universal joint 1 according to the present embodiment, the track grooves 7, 9 include three pairs of first track grooves 7A, 9A, 7B, 9B and three second track grooves 7C, 9C, so always, three balls 4 (or 4 ') of the first track grooves 7A, 9A, 7B, 9B and three balls 4 of the second track grooves 7C, 9C. The torque is transmitted by a total of six balls, and the torque is shared more evenly by arranging nine balls 4, 4 ', 4' 'on the same circumference on the plane P as described above. The load capacity and durability can be ensured even in the normal angle range.
 また、第2のトラック溝7C、9Cの軌道中心線Xc、YCが、第1のトラック溝7A、7B、9A、9Bの軌道中心線XA、XB、YA、YBの対に対して直径方向に対向する位置に配置されているので、高作動角域におけるトラック荷重が抑制され、50°を超える超高作動角において、外側継手部材2のトラック溝7の開口端部におけるボール4の出入りが滑らかであり、超高作動角用の固定式等速自在継手として好適である。 The second track groove 7C, 9C raceway center line Xc of, Y C is the first track groove 7A, 7B, 9A, raceway center line X A of 9B, X B, Y A, a pair of Y B As opposed to the diametrically opposed position, the track load in the high operating angle range is suppressed, and the ball at the open end of the track groove 7 of the outer joint member 2 at an ultra-high operating angle exceeding 50 ° 4 is smooth, and is suitable as a fixed type constant velocity universal joint for an ultra-high operating angle.
 次に、本発明の第2の実施形態に係る固定式等速自在継手を図5a、図5bに基づいて説明する。本実施形態の固定式等速自在継手の横断面は、第1の実施形態の図2とほぼ同じであるので図2を準用する。以降の実施形態に係る固定式等速自在継手についても同様とする。図5aは、図2のA1-N線に沿った縦断面図で、図5bは、図2のB1-N’線に沿った縦断面図を時計方向に180°回転させたものである。 Next, a fixed type constant velocity universal joint according to a second embodiment of the present invention will be described based on FIGS. 5a and 5b. The cross section of the fixed type constant velocity universal joint of this embodiment is substantially the same as FIG. 2 of the first embodiment, so FIG. 2 is used mutatis mutandis. The same applies to the fixed type constant velocity universal joint according to the following embodiments. 5a is a longitudinal sectional view taken along the line A1-N of FIG. 2, and FIG. 5b is a 180.degree. Clockwise rotation of the longitudinal sectional view taken along the line B1-N 'of FIG.
 本実施形態の固定式等速自在継手1は、第1の実施形態に対して、外側継手部材2、内側継手部材3のトラック溝7、9の基準トラック溝部の軌道中心線の曲率中心の位置が異なる。本実施形態では基準トラック溝部の軌道中心線の曲率中心は、継手の軸線N-N上およびN’-N’線上に位置し、半径方向のオフセットはない。その他の構成は、第1の実施形態の同様であるので、同様の機能を有する部位には同一の符号を付す。第1の実施形態ついて説明した内容を準用し、異なる点を説明する。以降の実施形態についても同様とする。 The fixed type constant velocity universal joint 1 of this embodiment is the position of the curvature center of the track center line of the reference track groove portion of the track grooves 7 and 9 of the outer joint member 2 and the inner joint member 3 with respect to the first embodiment. Is different. In the present embodiment, the center of curvature of the track center line of the reference track groove portion is located on the joint axis NN and the N'-N 'line, and there is no radial offset. The other configurations are the same as those of the first embodiment, and therefore, portions having similar functions are denoted by the same reference numerals. The contents described in the first embodiment are applied mutatis mutandis, and the different points will be described. The same applies to the following embodiments.
 図5bに示すように、本実施形態では、外側継手部材2の第1のトラック溝7A1の基準トラック溝部7A1aの軌道中心線XAaは、N’-N’線上で投影中心O’に対して外側継手部材2の奥側に向かってオフセット(オフセット量f11)された曲率中心O11を有する。内側継手部材3の第1のトラック溝9A1の基準トラック溝部9A1aの軌道中心線YAaは、N’-N’線上で投影中心O’に対して外側継手部材2の開口側に向かってオフセット(オフセット量f11)された曲率中心O31を有する。曲率中心O11、O31はいずれも半径方向のオフセットは設けられていない。 As shown in Figure 5b, in this embodiment, the raceway center line X Aa of the reference track groove portion 7A1a of the first track groove 7A1 of the outer joint member 2, with respect to 'the projection center O on the line'N'-N having a center of curvature O1 1 that is offset (offset amount f1 1) toward the inner side of the outer joint member 2. Raceway center line Y Aa of the reference track groove portion 9A1a of the first track groove 9A1 of the inner joint member 3, N'-N 'line in the projection center O' toward the opening side of the outer joint member 2 relative to the offset ( The offset amount f1 1 ) has a curvature center O3 1 . The curvature centers O1 1 and O3 1 are not provided with any radial offset.
 図5aに示すように、外側継手部材2の第2のトラック溝7C1の基準トラック溝部7C1aの軌道中心線XCaは、継手の軸線N-N上で継手中心Oに対して外側継手部材2の奥側に向かってオフセット(オフセット量f51)された曲率中心O51を有する。内側継手部材3の第2のトラック溝9C1の基準トラック溝部9C1aの軌道中心線YCaは、継手の軸線N-N上で継手中心Oに対して外側継手部材2の開口側に向かってオフセット(オフセット量f51)された曲率中心O71を有する。曲率中心O51、O71も半径方向のオフセットは設けられていない。 As shown in FIG. 5a, the track center line X Ca of the reference track groove portion 7C1a of the second track groove 7C1 of the outer joint member 2 is at the joint center O with respect to the joint center O on the joint axis NN. having a center of curvature O5 1 that is offset (offset amount f5 1) toward the rear side. The track center line Y Ca of the reference track groove portion 9C1a of the second track groove 9C1 of the inner joint member 3 is offset toward the opening side of the outer joint member 2 with respect to the joint center O on the joint axis NN The offset amount f5 1 ) has a curvature center O 7 1 . The curvature centers O5 1 and O7 1 also have no radial offset.
 本発明の第3の実施形態に係る固定式等速自在継手を図6a、図6bに基づいて説明する。図6bに示すように、本実施形態では、外側継手部材2の第1のトラック溝7A1の基準トラック溝部7A1aの軌道中心線XAaは、N’-N’線上で投影中心O’に対して外側継手部材2の奥側に向かってオフセット(オフセット量f12)された曲率中心O12を有する円弧状に形成されている。内側継手部材3の第1のトラック溝9A1の基準トラック溝部9A1aの軌道中心線YAaは、N’-N’線上で投影中心O’に対して外側継手部材2の開口側に向かってオフセット(オフセット量f12)された曲率中心O32を有する円弧状に形成されている。曲率中心O12、O32はいずれも半径方向のオフセットは設けられていない。 A fixed type constant velocity universal joint according to a third embodiment of the present invention will be described based on FIGS. 6a and 6b. As shown in Figure 6b, in this embodiment, the raceway center line X Aa of the reference track groove portion 7A1a of the first track groove 7A1 of the outer joint member 2, with respect to 'the projection center O on the line'N'-N It is formed in an arc shape having an offset (offset amount f1 2) has been the center of curvature O1 2 toward the inner side of the outer joint member 2. Raceway center line Y Aa of the reference track groove portion 9A1a of the first track groove 9A1 of the inner joint member 3, N'-N 'line in the projection center O' toward the opening side of the outer joint member 2 relative to the offset ( is formed in an arc shape having an offset amount f1 2) has been the center of curvature O3 2. Center of curvature O1 2, O3 2 is not provided any radial offset.
 外側継手部材2の第1のトラック溝7A1の高作動角トラック溝部7A1bの軌道中心線XAbは、外側継手部材2の開口側に向かってN’-N’線に近づくように傾斜角βで傾斜した直線状に形成され、内側継手部材3の第1のトラック溝9A1の高作動角トラック溝部9A1bの軌道中心線YAbは、外側継手部材2の奥側に向かってN’-N’線に近づくように傾斜角βで傾斜した直線状に形成されている。傾斜角βは、ボール4が基準トラック溝部7A1a、9A1aから高作動角トラック溝部7A1b、9A1bに移行するときの作動角が、前述したように、常用角度域を超える10°~15°程度になるように設定されている。傾斜角βは、後述する第2のトラック溝7C1、9C1でも同じである。 The track center line X Ab of the high working angle track groove portion 7A1b of the first track groove 7A1 of the outer joint member 2 is inclined at an angle β so as to approach the N'-N 'line toward the opening side of the outer joint member 2 The track center line Y Ab of the high working angle track groove portion 9A1b of the first track groove 9A1 of the inner joint member 3 which is formed in an inclined linear shape is a N'-N 'line toward the back side of the outer joint member 2 Are formed in a straight line inclined at an inclination angle β. As described above, the inclination angle β becomes about 10 ° to 15 ° beyond the normal angle range as described above when the ball 4 is shifted from the reference track groove portions 7A1a and 9A1a to the high operation angle track groove portions 7A1b and 9A1b. Is set as. The inclination angle β is the same in the second track grooves 7C1 and 9C1 described later.
 図6aに示すように、外側継手部材2の第2のトラック溝7C1の基準トラック溝部7C1aの軌道中心線XCaは、継手の軸線N-N上で継手中心Oに対して外側継手部材2の奥側に向かってオフセット(オフセット量f52)された曲率中心O52を有する円弧状に形成されている。内側継手部材3の第2のトラック溝9C1の基準トラック溝部9C1aの軌道中心線YCaは、継手の軸線N-N上で継手中心Oに対して外側継手部材2の開口側に向かってオフセット(オフセット量f52)された曲率中心O72を有する円弧状に形成されている。曲率中心O52、O72も半径方向のオフセットは設けられていない。 As shown in FIG. 6a, the track center line X Ca of the reference track groove portion 7C1a of the second track groove 7C1 of the outer joint member 2 is on the joint line O with respect to the joint center O on the joint axis NN. It is formed in an arc shape having an offset (offset amount f5 2) has been the center of curvature O5 2 toward the rear side. The track center line Y Ca of the reference track groove portion 9C1a of the second track groove 9C1 of the inner joint member 3 is offset toward the opening side of the outer joint member 2 with respect to the joint center O on the joint axis NN It is formed in the shape of a circular arc having the curvature center O72 2 with the offset amount f5 2 ). Center of curvature O5 2, O7 2 also radial offset is not provided.
 外側継手部材2の第2のトラック溝7C1の高作動角トラック溝部7C1bの軌道中心線XCbは、外側継手部材2の開口側に向かって継手の軸線N-Nに近づくように傾斜角βで傾斜した直線状に形成され、内側継手部材3の第2のトラック溝9C1の高作動角トラック溝部9C1bの軌道中心線YCbは、外側継手部材2の奥側に向かって継手の軸線N-Nに近づくように傾斜角βで傾斜した直線状に形成されている。 The track center line X Cb of the high working angle track groove portion 7C1b of the second track groove 7C1 of the outer joint member 2 is inclined at an angle β so as to approach the joint axis N-N toward the opening side of the outer joint member 2 is formed on the inclined straight raceway center line Y Cb high operating angle track groove portion 9C1b of the second track groove 9C1 of the inner joint member 3, the joint toward the rear side of the outer joint member 2 axis N-N Are formed in a straight line inclined at an inclination angle β.
 本発明の第4の実施形態に係る固定式等速自在継手を図7a、図7bに基づいて説明する。本実施形態の固定式等速自在継手1は、第1の実施形態に対して、外側継手部材2、内側継手部材3のトラック溝7、9に高作動角トラック溝部を設けていない点が異なる。図7bに示すように、本実施形態では、外側継手部材2の第1のトラック溝7A1の基準トラック溝部7A1aの軌道中心線XAaは、投影中心O’に対して外側継手部材2の奥側に向かってオフセット(オフセット量f13)され、半径方向にオフセット(オフセット量f23)された曲率中心O13を有する円弧状に形成されている。内側継手部材3の第1のトラック溝9A1の基準トラック溝部9A1aの軌道中心線YAaは、投影中心O’に対して外側継手部材2の開口側に向かってオフセット(オフセット量f13)され、半径方向にオフセット(オフセット量f23)された曲率中心O33を有する円弧状に形成されている。そして、基準トラック溝部7A1a、9A1aの軌道中心線XAa、YAaは、トラック溝7A1、9A1の軸方向全域にわたって一様な円弧形状で形成されている。 A fixed type constant velocity universal joint according to a fourth embodiment of the present invention will be described based on FIGS. 7a and 7b. The fixed type constant velocity universal joint 1 of this embodiment differs from the first embodiment in that the high operating angle track groove is not provided in the track grooves 7 and 9 of the outer joint member 2 and the inner joint member 3. . As shown in Figure 7b, in this embodiment, the raceway center line X Aa of the reference track groove portion 7A1a of the first track groove 7A1 of the outer joint member 2, the inner side of the outer joint member 2 relative to the projection center O ' towards the offset (offset amount f1 3), it is radially formed in an arc shape having a center of curvature O1 3 that is offset (offset amount f2 3). Raceway center line Y Aa of the reference track groove portion 9A1a of the first track groove 9A1 of the inner joint member 3 is offset toward the opening side of the outer joint member 2 relative to the projection center O '(the offset amount f1 3), It is formed in an arc shape having a curvature center O3 3 offset in the radial direction (offset amount f2 3 ). And, the track center lines X Aa and Y Aa of the reference track groove portions 7A1a and 9A1a are formed in a uniform arc shape over the entire axial direction of the track grooves 7A1 and 9A1.
 図7aに示すように、外側継手部材2の第2のトラック溝7C1の基準トラック溝部7C1aの軌道中心線XCaは、継手中心Oに対して外側継手部材2の奥側に向かってオフセット(オフセット量f53)され、半径方向にオフセット(f63)された曲率中心O53を有する円弧状に形成されている。内側継手部材3の第2のトラック溝9C1の基準トラック溝部9C1aの軌道中心線YCaは、継手中心Oに対して外側継手部材2の開口側に向かってオフセット(オフセット量f53)され、半径方向にオフセット(オフセット量f63)された曲率中心O73を有する円弧状に形成されている。そして、基準トラック溝部7C1a、9C1aの軌道中心線XCa、YCaは、トラック溝7C1、9C1の軸方向全域にわたって一様な円弧形状で形成されている。 As shown in FIG. 7a, the track center line X Ca of the reference track groove portion 7C1a of the second track groove 7C1 of the outer joint member 2 is offset toward the back side of the outer joint member 2 with respect to the joint center O the amount f5 3) is, and is formed in the offset (f6 3) is arcuate with a curvature center O5 3 in the radial direction. The track center line Y Ca of the reference track groove 9C1a of the second track groove 9C1 of the inner joint member 3 is offset (offset amount f5 3 ) toward the opening side of the outer joint member 2 with respect to the joint center O It is formed in an arc shape having a center of curvature O7 3 that is offset (offset amount f6 3) in the direction. The track centerlines X Ca and Y Ca of the reference track groove portions 7C1a and 9C1a are formed in a uniform arc shape over the entire axial direction of the track grooves 7C1 and 9C1.
 本発明の第5の実施形態に係る固定式等速自在継手を図8a、図8bに基づいて説明する。本実施形態の固定式等速自在継手1は、第4の実施形態に対して、外側継手部材2、内側継手部材3のトラック溝7、9の基準トラック溝部の軌道中心線の曲率中心が、継手の軸線N-N上およびN’-N’線上に位置し、半径方向のオフセットはない点が異なる。図8bに示すように、本実施形態では、外側継手部材2の第1のトラック溝7A1の基準トラック溝部7A1aの軌道中心線XAaは、N’-N’線上で投影中心O’に対して外側継手部材2の奥側に向かってオフセット(オフセット量f14)された曲率中心O14を有する円弧状に形成されている。内側継手部材3の第1のトラック溝9A1の基準トラック溝部9A1aの軌道中心線YAaは、N’-N’線上で投影中心O’に対して外側継手部材2の開口側に向かってオフセット(オフセット量f14)された曲率中心O34を有する円弧状に形成されている。 A fixed type constant velocity universal joint according to a fifth embodiment of the present invention will be described based on FIGS. 8a and 8b. In the fixed type constant velocity universal joint 1 of the present embodiment, the center of curvature of the track center line of the reference track groove portion of the track grooves 7 and 9 of the outer joint member 2 and the inner joint member 3 is different from the fourth embodiment. It differs in that it is located on the joint axis N-N and N'-N 'line and there is no radial offset. As shown in FIG. 8b, in this embodiment, the raceway center line X Aa of the reference track groove portion 7A1a of the first track groove 7A1 of the outer joint member 2, with respect to 'the projection center O on the line'N'-N toward the inner side of the outer joint member 2 are formed in an arc shape having a center of curvature O1 4 that is offset (offset amount f1 4). Raceway center line Y Aa of the reference track groove portion 9A1a of the first track groove 9A1 of the inner joint member 3, N'-N 'line in the projection center O' toward the opening side of the outer joint member 2 relative to the offset ( It is formed in the shape of a circular arc having the curvature center O3 4 with the offset amount f1 4 ).
 図8aに示すように、外側継手部材2の第2のトラック溝7C1の基準トラック溝部7C1aの軌道中心線XCaは、継手の軸線N-N上で継手中心Oに対して外側継手部材2の奥側に向かってオフセット(オフセット量f54)された曲率中心O54を有する円弧状に形成されている。内側継手部材3の第2のトラック溝9C1の基準トラック溝部9C1aの軌道中心線YCaは、継手の軸線N-N上で継手中心Oに対して外側継手部材2の開口側に向かってオフセット(オフセット量f54)された曲率中心O74を有する円弧状に形成されている。 As shown in FIG. 8a, the track center line X Ca of the reference track groove portion 7C1a of the second track groove 7C1 of the outer joint member 2 is on the joint line O with respect to the joint center O on the joint axis NN. It is formed in an arc shape having a center of curvature O5 4 offset (offset amount f5 4 ) toward the back side. The track center line Y Ca of the reference track groove portion 9C1a of the second track groove 9C1 of the inner joint member 3 is offset toward the opening side of the outer joint member 2 with respect to the joint center O on the joint axis NN It is formed in an arc shape having a center of curvature O.sub.7 4 with the offset amount f.sub.5 4 ).
 本発明の第6の実施形態に係る固定式等速自在継手を図9a、図9bに基づいて説明する。本実施形態の固定式等速自在継手1は、第4の実施形態に対して、外側継手部材2、内側継手部材3のトラック溝7、9の基準トラック溝部の軌道中心線の曲率中心が、継手の軸線N-NおよびN’-N’線に対して半径方向下側にオフセットされた点が異なる。図9bに示すように、本実施形態では、外側継手部材2の第1のトラック溝7A1の基準トラック溝部7A1aの軌道中心線XAaは、投影中心O’に対して外側継手部材2の奥側に向かってオフセット(オフセット量f15)され、N’-N’線に対して半径方向下側にオフセット(オフセット量f25)された曲率中心O15を有する円弧状に形成されている。内側継手部材3の第1のトラック溝9A1の基準トラック溝部9A1aの軌道中心線YAaは、投影中心O’に対して外側継手部材2の開口側に向かってオフセット(オフセット量f15)され、N’-N’線に対して半径方向下側にオフセット(オフセット量f25)された曲率中心O35を有する円弧状に形成されている。 A fixed type constant velocity universal joint according to a sixth embodiment of the present invention will be described based on FIGS. 9a and 9b. In the fixed type constant velocity universal joint 1 of the present embodiment, the center of curvature of the track center line of the reference track groove portion of the track grooves 7 and 9 of the outer joint member 2 and the inner joint member 3 is different from the fourth embodiment. They differ in that they are offset radially downward to the joint axis NN and N'-N 'lines. As shown in Figure 9b, in this embodiment, the raceway center line X Aa of the reference track groove portion 7A1a of the first track groove 7A1 of the outer joint member 2, the inner side of the outer joint member 2 relative to the projection center O ' towards the offset (offset amount f1 5), it is formed in an arc shape having a center of curvature O1 5 that is offset (offset amount f2 5) radially lower side with respect N'-N 'line. Raceway center line Y Aa of the reference track groove portion 9A1a of the first track groove 9A1 of the inner joint member 3 is offset toward the opening side of the outer joint member 2 relative to the projection center O '(the offset amount f1 5), It is formed in an arc shape having a curvature center O 3 5 offset (offset amount f 2 5 ) radially downward with respect to the N′-N ′ line.
 図9aに示すように、外側継手部材2の第2のトラック溝7C1の基準トラック溝部7C1aの軌道中心線XCaは、継手中心Oに対して外側継手部材2の奥側に向かってオフセット(オフセット量f55)され、継手の軸線N-Nに対して半径方向下側にオフセット(オフセット量f65)された曲率中心O55を有する円弧状に形成されている。内側継手部材3の第2のトラック溝9C1の基準トラック溝部9C1aの軌道中心線YCaは、継手中心Oに対して外側継手部材2の開口側に向かってオフセット(オフセット量f55)され、継手の軸線N-Nに対して半径方向下側にオフセット(オフセット量f65)された曲率中心O75を有する円弧状に形成されている。 As shown in FIG. 9a, the track center line X Ca of the reference track groove portion 7C1a of the second track groove 7C1 of the outer joint member 2 is offset toward the back side of the outer joint member 2 with respect to the joint center O the amount f5 5) is, and is formed in an arc shape having a center of curvature O5 5 that is offset (offset amount f6 5) radially lower side with respect to the axis N-N of the joint. The track center line Y Ca of the reference track groove 9C1a of the second track groove 9C1 of the inner joint member 3 is offset (offset amount f5 5 ) toward the opening side of the outer joint member 2 with respect to the joint center O It is formed in an arc shape having a center of curvature O7 5 that is offset (offset amount f6 5) radially lower side with respect to the axis N-N.
 以上説明した各実施形態に係る固定式等速自在継手1は、要約すると、トラック溝7、9が、3対の第1のトラック溝7A、9A、7B、9Bと3本の第2のトラック溝7C、9Cから構成されているので、常に、第1のトラック溝7A、9A、7B、9Bのうちの3個のボール4(又は4’)と第2のトラック溝7C、9Cの3個のボール4”の計6個のボールでトルクを伝達し、9個のボール4、4’、4”を平面Pにおいて同一円周上に配置することで、より均等にトルクを分担させることができ、常用角度域においても負荷容量、耐久性を確保することができる。また、第2のトラック溝7C、9Cの軌道中心線Xc、YCが、第1のトラック溝7A、7B、9A、9Bの軌道中心線XA、XB、YA、YBの対に対して直径方向に対向する位置に配置されているので、高作動角域におけるトラック荷重が抑制され、50°を超える超高作動角において、外側継手部材2のトラック溝7の開口端部におけるボール4の出入りが滑らかであり、超高作動角用の固定式等速自在継手として好適である。 The fixed type constant velocity universal joint 1 according to each of the embodiments described above can be summarized as follows: the track grooves 7, 9 include three pairs of first track grooves 7A, 9A, 7B, 9B and three second track Since the grooves 7C and 9C are formed, three balls 4 (or 4 ') of the first track grooves 7A, 9A, 7B and 9B and three of the second track grooves 7C and 9C are always used. Torque is transmitted by a total of six balls 4 ′ ′ of the ball, and torque is shared more evenly by arranging nine balls 4, 4 ′, 4 ′ ′ on the same circumference on the plane P The load capacity and durability can be ensured even in the normal angle range. The second track groove 7C, 9C raceway center line Xc of, Y C is the first track groove 7A, 7B, 9A, raceway center line X A of 9B, X B, Y A, a pair of Y B As opposed to the diametrically opposed position, the track load in the high operating angle range is suppressed, and the ball at the open end of the track groove 7 of the outer joint member 2 at an ultra-high operating angle exceeding 50 ° 4 is smooth, and is suitable as a fixed type constant velocity universal joint for an ultra-high operating angle.
 本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々の形態で実施し得ることは勿論のことであり、本発明の範囲は、請求の範囲によって示され、さらに請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。 It goes without saying that the present invention is not limited to the embodiment described above, and can be practiced in various forms without departing from the scope of the present invention, and the scope of the present invention And the meaning of equivalents described in the claims, and all changes within the range.
1     固定式等速自在継手
2     外側継手部材
3     内側継手部材
4     トルク伝達ボール
5     保持器
5a    ポケット
6     球状内周面
7     トラック溝
7A    第1のトラック溝
7Aa   基準トラック溝部
7Ab   高作動角トラック溝部
7B    第1のトラック溝
7Ba   基準トラック溝部
7Bb   高作動角トラック溝部
7C    第2のトラック溝
7Ca   基準トラック溝部
7Cb   高作動角トラック溝部
8     球状外周面
9     トラック溝
9A    第1のトラック溝
9Aa   基準トラック溝部
9Ab   高作動角トラック溝部
9B    第1のトラック溝
9Ba   基準トラック溝部
9Bb   高作動角トラック溝部
9C    第2のトラック溝
9Ca   基準トラック溝部
9Cb   高作動角トラック溝部
12    球状外周面
13    球状内周面
A     半径方向平面
B     トラック溝平面
A     交点
B     交点
C     交点
D     円
N     継手の軸線
O     継手中心
O’    投影中心
P     平面
X     軌道中心線
A     軌道中心線
Aa    軌道中心線
Ab    軌道中心線
B     軌道中心線
Ba    軌道中心線
Bb    軌道中心線
C     軌道中心線
Ca    軌道中心線
Cb    軌道中心線
Y     軌道中心線
A     軌道中心線
Aa    軌道中心線
Ab    軌道中心線
B     軌道中心線
Ba    軌道中心線
Bb    軌道中心線
C     軌道中心線
Ca    軌道中心線
Cb    軌道中心線
Reference Signs List 1 fixed type constant velocity universal joint 2 outer joint member 3 inner joint member 4 torque transmission ball 5 cage 5a pocket 6 spherical inner circumferential surface 7 track groove 7A first track groove 7Aa reference track groove portion 7Ab high operating angle track groove portion 7B 1 track groove 7Ba reference track groove 7Bb high operating angle track groove 7C second track groove 7Ca reference track groove 7Cb high operation angle track groove 8 spherical outer peripheral surface 9 track groove 9A first track groove 9Aa reference track groove 9Ab high operation Square track groove 9B First track groove 9Ba Reference track groove 9Bb High operating angle Track groove 9C Second track groove 9Ca Reference track groove 9Cb High operation angle Track groove 12 12 Spherical outer peripheral surface 13 Spherical inner peripheral surface A Radial plane Track groove plane C A intersection C B intersection C C intersection D circle N axis O joint center O 'projection center P plane X raceway center line X A raceway center line X Aa raceway center line X Ab raceway center line X B raceway center of the joint line X Ba raceway center line X Bb raceway center line X C raceway center line X Ca raceway center line X Cb raceway center line Y raceway center line Y A raceway center line Y Aa raceway center line Y Ab raceway center line Y B raceway center line Y Ba orbit center line Y Bb orbit center line Y C orbit center line Y Ca orbit center line Y Cb orbit center line

Claims (6)

  1.  球状内周面に長手方向に延びる複数のトラック溝が形成され、軸方向に離間する開口側と奥側を有する外側継手部材と、球状外周面に長手方向に延びる複数のトラック溝が前記外側継手部材のトラック溝に対向して形成された内側継手部材と、対向する各トラック溝間に組込まれたトルク伝達ボールと、このトルク伝達ボールを保持し、前記外側継手部材の球状外周面と前記内側継手部材の球状外周面に案内される保持器とからなる固定式等速自在継手において、
     前記外側継手部材のトラック溝(7)は、円周方向に等間隔で配置された3対の第1のトラック溝(7A)、(7B)と、3本の第2のトラック溝(7C)とから構成され、
     前記第1のトラック溝(7A)、(7B)の軌道中心線(XA)、(XB)は、継手の軸線(N-N)を含む半径方向平面(A)に対して対称でかつ間隔をもって平行に延びるトラック溝平面(B)、(B’)上に配置され、
     前記第2のトラック溝(7C)の軌道中心線(XC)は、前記半径方向平面(A)上で、かつ前記第1のトラック溝(7A)、(7B)の対に対して直径方向に対向する位置に配置され、
     前記第1のトラック溝(7A)、(7B)の軌道中心線(XA)、(XB)は、曲率中心が投影中心(O’)に対して前記外側継手部材の軸方向にオフセットされた円弧状部分を有し、
     前記第2のトラック溝(7C)の軌道中心線(XC)は、曲率中心が継手中心(O)に対して前記外側継手部材の軸方向にオフセットされた円弧状部分を有し、
     作動角0°の状態で前記継手中心(O)を含み前記継手の軸線(N-N)に直交する平面(P)と、前記第1のトラック溝(7A)、(7B)の軌道中心線(XA)、(XB)および前記第2のトラック溝(7C)の軌道中心線(XC)との各交点(CA、CB、CC)が、前記平面(P)における一つの円(D)上に配置されており、
     前記内側継手部材のトラック溝(9)の軌道中心線(Y)は、前記平面(P)を基準として、前記外側継手部材の対となるトラック溝(7)の軌道中心線(X)と鏡像対称に形成されていることを特徴とする固定式等速自在継手。
    A plurality of track grooves extending in the longitudinal direction are formed on the spherical inner peripheral surface, and an outer joint member having an opening side and a back side separated in the axial direction, and a plurality of track grooves extending in the longitudinal direction on the spherical outer peripheral surface An inner joint member formed opposite to the track grooves of the members, a torque transmitting ball incorporated between the opposing track grooves, and the torque transmitting ball are held, and the spherical outer peripheral surface of the outer joint member and the inner side In a fixed type constant velocity universal joint including a cage guided to a spherical outer peripheral surface of a joint member,
    The track grooves (7) of the outer joint member have three pairs of first track grooves (7A), (7B) and three second track grooves (7C) arranged at equal intervals in the circumferential direction. And consists of
    The orbital center lines (X A ) and (X B ) of the first track grooves (7A) and (7B) are symmetrical with respect to a radial plane (A) including the joint axis (N-N) and Arranged on track groove planes (B), (B ') which run parallel and spaced apart,
    The second track groove track center line (7C) (X C), the on radial plane (A), and the first track groove (7A), the diameter direction relative to the pair of (7B) Placed at the opposite position of the
    The first track groove (7A), raceway center line of (7B) (X A), (X B) is the center of curvature is offset in the axial direction of the outer joint member with respect to the projection center (O ') Have an arc-shaped portion,
    The second track groove track center line (7C) (X C), the center of curvature has an offset has been arcuate portion in the axial direction of the outer joint member relative to the joint center (O),
    A plane (P) including the joint center (O) at an operating angle of 0 ° and orthogonal to the axis (N-N) of the joint, and an orbital center line of the first track groove (7A), (7B) Each intersection (C A , C B , C C ) of (X A ), (X B ) and the second track groove (7 C) with the orbital center line (X C ) is one in the plane (P) Are arranged on one circle (D),
    The track center line (Y) of the track groove (9) of the inner joint member is a mirror image of the track center line (X) of the track groove (7) which is the pair of the outer joint member with respect to the plane (P). A fixed type constant velocity universal joint characterized by being formed symmetrically.
  2.  前記投影中心(O’)に対する前記第1のトラック溝(7A)、(7B)の軌道中心線(XA)、(XB)の前記円弧状部分の曲率中心の前記オフセットおよび前記継手中心(O)に対する前記第2のトラック溝(7C)の軌道中心線(XC)の円弧状部分の曲率中心の前記オフセットは、いずれも、前記外側継手部材の奥側に向かって設けられていることを特徴とする請求項1に記載の固定式等速自在継手。 The track center line (X A ) of the first track grooves (7A) and (7 B) with respect to the projection center (O ′), the offset of the curvature center of the arc-like portion of (X B ) and the joint center ( The offsets of the centers of curvature of the arc-shaped portions of the track center line (X C ) of the second track groove (7C) with respect to O) are all provided toward the back side of the outer joint member The fixed type constant velocity universal joint according to claim 1, characterized in that
  3.  前記第1のトラック溝(7A)、(7B)の軌道中心線(XA)、(XB)および前記第2のトラック溝(7C)の軌道中心線(XC)の曲率中心は、前記継手の軸線(N-N)に対して半径方向にオフセットされていることを特徴とする請求項1又は請求項2に記載の固定式等速自在継手。 The first track groove (7A), the center of curvature of the raceway center line of (7B) (X A), (X B) and the second track groove (7C) of the track center line (X C), the The fixed type constant velocity universal joint according to claim 1 or 2, which is radially offset with respect to an axis (N-N) of the joint.
  4.  前記第1のトラック溝(7A)、(7B)および前記第2のトラック溝(7C)は、前記軌道中心線(XA)、(XB)、(XC)の円弧状部分とは異なる形状の軌道中心線を有する高作動角トラック溝部(7Ab)、(7Bb)、(7Cb)を前記外側継手部材の開口側に有することを特徴とする請求項1~3のいずれか一項に記載の固定式等速自在継手。 The first track groove (7A), (7B) and the second track groove (7C), said raceway center line (X A), different from the arcuate portion of the (X B), (X C ) 4. A high operating angle track groove (7Ab), (7Bb), (7Cb) having a shape track center line on the opening side of the outer joint member according to any one of claims 1 to 3. Fixed type constant velocity universal joint.
  5.  前記高作動角トラック溝部(7Ab)、(7Bb)、(7Cb)の軌道中心線(XAb)、(XBb)、(XCb)は、前記第1のトラック溝(7A)、(7B)の軌道中心線(XA)、(XB)および前記第2のトラック溝(7C)の軌道中心線(XC)の円弧状部分とは反対側に湾曲する円弧形状であることを特徴とする請求項4に記載の固定式等速自在継手。 The track centerline (X Ab ), (X Bb ), (X Cb ) of the high operating angle track groove portion (7Ab), (7Bb), (7Cb) is the first track groove (7A), (7B) It is characterized in that it has an arc shape curved to the opposite side to the arc-like portion of the track center line (X A ), (X B ) and the track center line (X C ) of the second track groove (7C) The fixed constant velocity universal joint according to claim 4.
  6.  前記保持器は、前記各対の第1のトラック溝(7A)、(7B)に組込まれた2個のトルク伝達ボールを収容するポケットを有することを特徴とする請求項1~5のいずれか一項に記載の固定式等速自在継手。 A cage according to any of the preceding claims, characterized in that the cage has a pocket for receiving two torque transmitting balls incorporated in the first track groove (7A), (7B) of each pair. The fixed type constant velocity universal joint according to one item.
PCT/JP2018/022121 2017-07-03 2018-06-08 Fixed type constant velocity universal joint WO2019009014A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-130228 2017-07-03
JP2017130228A JP6890485B2 (en) 2017-07-03 2017-07-03 Fixed constant velocity universal joint

Publications (1)

Publication Number Publication Date
WO2019009014A1 true WO2019009014A1 (en) 2019-01-10

Family

ID=64950007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022121 WO2019009014A1 (en) 2017-07-03 2018-06-08 Fixed type constant velocity universal joint

Country Status (2)

Country Link
JP (1) JP6890485B2 (en)
WO (1) WO2019009014A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111609046A (en) * 2020-05-21 2020-09-01 杭州通绿机械有限公司 Universal joint for transmission mechanism under large-angle common working condition and structural design method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11303882A (en) * 1998-04-15 1999-11-02 Nippon Seiko Kk Constant speed joint
JP2004332815A (en) * 2003-05-07 2004-11-25 Ntn Corp Fixed type constant speed universal joint
JP2008519207A (en) * 2004-11-02 2008-06-05 ゲー カー エヌ ドライブライン インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Counter track joint with track turning point
JP2012017809A (en) * 2010-07-08 2012-01-26 Ntn Corp Fixed-type constant velocity universal joint

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4383450B2 (en) * 2003-08-22 2009-12-16 ゲー カー エヌ ドライブライン ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Constant velocity joint with less radial movement of ball

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11303882A (en) * 1998-04-15 1999-11-02 Nippon Seiko Kk Constant speed joint
JP2004332815A (en) * 2003-05-07 2004-11-25 Ntn Corp Fixed type constant speed universal joint
JP2008519207A (en) * 2004-11-02 2008-06-05 ゲー カー エヌ ドライブライン インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Counter track joint with track turning point
JP2012017809A (en) * 2010-07-08 2012-01-26 Ntn Corp Fixed-type constant velocity universal joint

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111609046A (en) * 2020-05-21 2020-09-01 杭州通绿机械有限公司 Universal joint for transmission mechanism under large-angle common working condition and structural design method thereof

Also Published As

Publication number Publication date
JP6890485B2 (en) 2021-06-18
JP2019011855A (en) 2019-01-24

Similar Documents

Publication Publication Date Title
JP5912419B2 (en) Fixed constant velocity universal joint
US7951009B2 (en) Fixed constant-velocity universal joint
WO2012165096A1 (en) Fixed constant velocity universal joint
JP5840463B2 (en) Fixed constant velocity universal joint
EP3067582B1 (en) Stationary constant velocity universal joint
WO2019009014A1 (en) Fixed type constant velocity universal joint
JP6832629B2 (en) Fixed constant velocity universal joint
JP5885997B2 (en) Fixed constant velocity universal joint
JP5882050B2 (en) Fixed constant velocity universal joint
JP2008190589A (en) Fixed type constant velocity universal joint
EP3951201A1 (en) Fixed type constant velocity universal joint
JP5885998B2 (en) Fixed constant velocity universal joint
US11047425B2 (en) Stationary constant-velocity universal joint
JP6173675B2 (en) Fixed constant velocity universal joint
JP2008196591A (en) Fixed type constant velocity universal joint and its manufacturing method
JP6099942B2 (en) Fixed constant velocity universal joint
WO2020203218A1 (en) Fixed constant-velocity adjustable joint
US20130331193A1 (en) Constant Velocity Universal Joint
JP2008261390A (en) Fixed constant velocity universal joint
JP2009121667A (en) Sliding type constant velocity universal joint
JP4901530B2 (en) Constant velocity universal joint
JP2007139064A (en) Sliding type uniform motion universal joint
CN113775664A (en) Ball cage type constant velocity universal joint
WO2019003765A1 (en) Fixed-type constant-velocity universal joint
JP2008175362A (en) Stationary constant velocity universal joint

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18828009

Country of ref document: EP

Kind code of ref document: A1