WO2019008913A1 - アンテナモジュール - Google Patents

アンテナモジュール Download PDF

Info

Publication number
WO2019008913A1
WO2019008913A1 PCT/JP2018/018898 JP2018018898W WO2019008913A1 WO 2019008913 A1 WO2019008913 A1 WO 2019008913A1 JP 2018018898 W JP2018018898 W JP 2018018898W WO 2019008913 A1 WO2019008913 A1 WO 2019008913A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
ground
antenna module
electrode
signal processing
Prior art date
Application number
PCT/JP2018/018898
Other languages
English (en)
French (fr)
Inventor
尾仲 健吾
良樹 山田
敬生 高山
弘嗣 森
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2019008913A1 publication Critical patent/WO2019008913A1/ja
Priority to US16/732,758 priority Critical patent/US11146303B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0478Substantially flat resonant element parallel to ground plane, e.g. patch antenna with means for suppressing spurious modes, e.g. cross polarisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier

Definitions

  • the present invention relates to an antenna module.
  • an antenna module in which a radiation electrode (antenna) and an RF signal processing circuit for feeding a high frequency signal to the radiation electrode through a feed line are integrated (for example, Patent Document 1).
  • a radiation electrode is provided in the one main surface side of a board
  • the above-mentioned conventional antenna module it is required to shorten the feed line from the RF signal processing circuit to the radiation electrode. This is to suppress transmission line loss as much as possible.
  • the deterioration of the cross polarization discrimination (XPD) due to the influence of polarization in the substrate thickness direction generated from the feed line is suppressed.
  • the feed line is shortened by reducing the thickness of the substrate in the antenna module, the radiation electrode and the ground electrode provided on the substrate can be easily approached. As a result, the distance between the end of the radiation electrode and the ground electrode becomes short, and the antenna characteristics (in particular, the bandwidth) deteriorate.
  • the present invention has been made to solve the above-described problems, and provides an antenna module capable of suppressing the influence of polarization in the substrate thickness direction generated by a feed line while maintaining antenna characteristics.
  • An antenna module includes a substrate, an RF signal processing circuit provided on the substrate, a ground electrode provided on the substrate above the RF signal processing circuit, and an upper surface of the ground electrode.
  • the radiation electrode provided on the substrate such that at least a portion thereof overlaps the RF signal processing circuit in a plan view of the substrate, and the radiation electrode and the RF signal processing circuit are provided in an overlapping region where A feed line connecting the radiation electrode and the RF signal processing circuit, wherein the ground electrode has a first ground pattern, the upper side of the first ground pattern, and the first ground pattern in the plan view
  • a second ground pattern provided on the inner side, and at least one group connecting the first ground pattern and the second ground pattern Includes a command conductor, wherein the one or more ground conductors surrounds a portion of the feed line, the second ground pattern has a through hole through which the feed line passes.
  • the ground electrode in the present embodiment Since the distance between the first ground pattern of the ground electrode and the radiation electrode can be increased, the density of the electric lines of force is reduced and the antenna characteristic (bandwidth) is improved. Therefore, since the thickness of the substrate can be reduced (that is, the feed line can be shortened) by the amount that the antenna characteristic is improved, the bias in the substrate thickness direction generated by the feed line can be maintained while maintaining the antenna characteristic in the conventional antenna module. It can suppress the influence of waves.
  • the ground electrode in the conventional antenna module flush with the height of the first ground pattern instead of the height of the second ground pattern of the ground electrode in this aspect.
  • the feed line present on the radiation electrode side is longer than the ground electrode.
  • the polarization in the substrate thickness direction generated by the feed line present on the RF signal processing circuit side rather than the ground electrode is shielded by the ground electrode and has less influence on the radiation electrode, but exists on the radiation electrode side than the ground electrode.
  • the feed line present on the radiation electrode side is shorter than the ground electrode, which is generated by the feed line. It is possible to suppress the influence of polarization in the substrate thickness direction.
  • the fact that the influence of polarization in the substrate thickness direction generated by the feed line can be suppressed while maintaining the antenna characteristics means, in other words, the influence of polarization in the substrate thickness direction generated by the feed line is maintained. It can be said that the effect that the antenna characteristics can be improved can also be achieved.
  • the second ground pattern may be provided only inside the radiation electrode in the plan view.
  • the distance between the ground electrode and the end of the radiation electrode becomes short.
  • the antenna characteristics are difficult to improve. Therefore, the distance between the ground electrode and the end of the radiation electrode can be secured by providing the second ground pattern only on the inner side of the radiation electrode in plan view of the substrate, and antenna characteristics are improved. Therefore, the feed line can be further shortened, and the influence of polarization in the substrate thickness direction generated by the feed line can be further suppressed.
  • the size of the second ground pattern can be extended to the vicinity of the end of the radiation electrode to the extent that the antenna characteristics do not deteriorate in plan view of the substrate. Also, one or more ground conductors are connected to the outer edge of the second ground pattern that has spread to the vicinity of the end of the radiation electrode.
  • the substrate needs a wiring area for providing a wiring for an RF signal processing circuit, but the second ground pattern and one or more of the second ground patterns can be obtained by extending the size of the second ground pattern to the vicinity of the end of the radiation electrode. The area covered with the ground conductor is increased, and the wiring area can be secured in the area while improving the antenna characteristics.
  • the antenna module may include a plurality of the radiation electrodes, and the plurality of radiation electrodes may be arranged in an array on the substrate.
  • an antenna module having an array antenna capable of easily controlling the directivity of the antenna.
  • produced by a feed line can be suppressed, deterioration of XPD can be suppressed.
  • the RF signal processing circuit may be provided in the substrate.
  • the antenna module can be miniaturized (reduced in height).
  • the radiation electrode may be configured of a feed element connected to the feed line and a non-feed element provided above the feed element.
  • the material of the substrate between the feed element and the parasitic element may be different from the material of the substrate between the feed element and the ground electrode.
  • the RF signal processing circuit includes a phase shift circuit that shifts a high frequency signal, an amplifier circuit that amplifies the phase shifted high frequency signal, and the amplified high frequency signal. And a switch element for switching whether or not to feed a signal to the radiation electrode.
  • a multiband / multimode antenna module can be realized.
  • the influence of polarization in the substrate thickness direction generated by the feed line can be suppressed while maintaining the antenna characteristics.
  • FIG. 1A is an external perspective view of an antenna module according to Embodiment 1.
  • FIG. 1B is an external perspective view in which a part of the antenna module according to Embodiment 1 is made transparent.
  • 1C is a cross-sectional view of the antenna module according to Embodiment 1.
  • FIG. FIG. 2 is a cross-sectional view of an antenna module according to a comparative example.
  • FIG. 3 is a diagram showing the antenna characteristic in the first embodiment and the antenna characteristic in the comparative example.
  • FIG. 4 is an external perspective view of the antenna module according to the second embodiment.
  • FIG. 5 is a cross-sectional view of the antenna module according to the second embodiment.
  • FIG. 6 is a cross-sectional view of an antenna module according to a modification of the second embodiment.
  • FIG. 7 is a cross-sectional view of the antenna module according to the third embodiment.
  • FIG. 8 is a circuit diagram of the communication apparatus according to the fourth embodiment.
  • FIG. 9A is an external perspective view of an antenna module according to another embodiment.
  • FIG. 9B is a cross-sectional view of an antenna module according to another embodiment.
  • FIG. 1A is an external perspective view of the antenna module 1 according to the first embodiment.
  • region 60 is made transparent and the edge part is made into the broken line.
  • FIG. 1B is an external perspective view in which a part of the antenna module 1 according to the first embodiment is made transparent. Similarly in FIG. 1B, the antenna area 60 is transparent and the end is broken. Furthermore, in FIG.
  • FIG. 1C is a cross-sectional view of the antenna module 1 according to the first embodiment.
  • FIG. 1C is a cross-sectional view of the antenna module 1 as viewed from the negative direction side of the y-axis when being cut along an xz plane passing through a feed line 50 described later. The same applies to the sectional views to be described later.
  • the positive direction of the z-axis (the direction of the arrow) is also referred to as the top.
  • the antenna module 1 is, for example, a module mounted on a portable terminal or the like, and a high frequency circuit, an antenna, and the like are integrated for the purpose of downsizing. As shown in FIGS. 1A to 1C, the antenna module 1 includes a substrate 10, and a ground electrode 20, a radiation electrode 30, a feed line 50, and an RF signal processing circuit (RFIC) 80 provided on the substrate 10, respectively. Prepare.
  • RFIC RF signal processing circuit
  • the substrate 10 is, for example, a dielectric substrate, and the radiation electrode 30 is provided on one main surface of the substrate 10, and the RF signal processing circuit 80 is provided on the other main surface to integrate them.
  • the substrate 10 has a structure in which a dielectric material is filled between the radiation electrode 30 and the ground electrode 20.
  • the region is also referred to as an antenna region 60.
  • antenna field 60 is made transparent and shown.
  • the region between the ground electrode 20 and the RF signal processing circuit 80 is also referred to as a wiring region 70 because it is a region in which a wiring for the RF signal processing circuit is provided.
  • the substrate 10 may be, for example, a low temperature co-fired ceramic (LTCC) substrate, a printed circuit board, or the like.
  • LTCC low temperature co-fired ceramic
  • the RF signal processing circuit 80 is a circuit that processes a high frequency signal transmitted and received by the radiation electrode 30.
  • the RF signal processing circuit 80 is connected to the radiation electrode 30 via the feed line 50.
  • the RF signal processing circuit 80 is configured, for example, in one package.
  • the ground electrode 20 is provided on the substrate 10 above the RF signal processing circuit 80.
  • the ground electrode 20 is provided on the substrate 10 so as to face the radiation electrode 30 in the direction perpendicular to the main surface of the substrate 10, and is set to a ground potential.
  • the radiation electrode 30 is, for example, a patch antenna, and is provided on the substrate 10 so that at least a part thereof overlaps the RF signal processing circuit 80 in plan view of the substrate 10 above the ground electrode 20.
  • a region where the radiation electrode 30 and the RF signal processing circuit 80 overlap is shown as an overlapping region 40 in plan view of the substrate 10 which is a viewpoint from which the substrate 10 is viewed from the plus direction of z axis (from above).
  • the radiation electrode 30 is a conductor pattern formed on the substrate 10 so as to be substantially parallel to the main surface of the substrate 10, and a high frequency signal is fed from the RF signal processing circuit 80 via the feed line 50.
  • the radiation electrode 30 is also a radiation element that radiates a radio wave (a high frequency signal propagating in space) corresponding to a high frequency signal transmitted to and from the RF signal processing circuit 80, and is also a reception element that receives the radio wave.
  • the radiation electrode 30 has, for example, a rectangular shape in a plan view of the substrate 10, but may have a circular shape, a polygonal shape, or the like.
  • the radiation electrode 30 and the ground electrode 20 are made of, for example, a metal film containing Al, Cu, Au, Ag, or an alloy thereof as a main component.
  • the ground electrode 20 includes a first ground pattern 23, a second ground pattern 21 provided above the first ground pattern 23 and inside the first ground pattern 23 in a plan view of the substrate 10, and a first ground pattern. And one or more ground conductors connecting the second ground pattern 21 to the second ground pattern 21.
  • the first ground pattern 23 and the second ground pattern 21 are conductor patterns formed on the substrate 10 so as to be substantially parallel to the main surface of the substrate 10.
  • the one or more ground conductors are, for example, the peripheral wall 22 (one ground conductor).
  • the circumferential wall 22 connects the first ground pattern 23 and the outer edge of the second ground pattern 21.
  • the peripheral wall 22 is provided to surround a part of the feed line 50 and extends in a direction substantially parallel to the direction in which the feed line 50 extends.
  • the second ground pattern 21 has a through hole 24 through which the feed line 50 passes, and is substantially orthogonal to the direction in which the feed line 50 extends.
  • the second ground pattern 21 is provided at least inside the radiation electrode 30 in a plan view of the substrate 10. In the present embodiment, the second ground pattern 21 is provided only inside the radiation electrode 30 in the plan view. Since the peripheral wall 22 is connected to the outer edge of the second ground pattern 21, the peripheral wall 22 is also provided only inside the radiation electrode 30 in the plan view.
  • the first ground pattern 23 has substantially the same size as the main surface of the substrate 10, and includes the radiation electrode 30 inside in the plan view. That is, the first ground pattern 23 is provided so as to protrude from the radiation electrode 30 in the plan view.
  • the first ground pattern 23 has a through hole 25 through which the feed line 50 passes, and is substantially orthogonal to the direction in which the feed line 50 extends.
  • the distance h1 between the radiation electrode 30 and the first ground pattern 23 outside the radiation electrode 30 in the plan view of the substrate 10 is the inside of the radiation electrode 30 in the plan view.
  • the feed line 50 is a conductor via provided in the overlapping region 40 and electrically connecting the radiation electrode 30 and the RF signal processing circuit 80. Feeding line 50 penetrates through holes 24 and 25 so as not to contact ground electrode 20 provided between radiation electrode 30 and RF signal processing circuit 80, and radiation electrode 30 and RF signal processing circuit 80 Connected.
  • the feed line 50 is provided in the overlapping region 40 where the radiation electrode 30 and the RF signal processing circuit 80 overlap, so that the feed line 50 can be formed in the vertical direction of the first ground pattern of the substrate 10. It can be shortened. As a result, the transmission line loss generated by the feed line 50 is reduced, and the antenna gain can be improved.
  • FIG. 2 is a cross-sectional view of an antenna module 1a according to a comparative example.
  • the ground electrode 20a does not have the second ground pattern 21 and the peripheral wall 22 and is flush with the height of the second ground pattern 21 in the antenna module 1, It differs from the antenna module 1.
  • the height of the antenna region 60a on the substrate 10a is constant, and the distance between the end of the radiation electrode 30 and the ground electrode 20a Is the distance h2.
  • the wiring area 70 a is larger than the wiring area 70 because the ground electrode 20 a is flush with the height of the second ground pattern 21 in the antenna module 1.
  • the other points are the same as those of the antenna module 1 and thus the description thereof is omitted.
  • FIG. 3 is a diagram showing the antenna characteristic in the first embodiment and the antenna characteristic in the comparative example.
  • the distance h1 between the end of radiation electrode 30 and ground electrode 20 in the first embodiment is longer than the distance h2 between the end of radiation electrode 30 and ground electrode 20a in the comparative example.
  • the antenna characteristic is improved in the first embodiment than in the comparative example.
  • the bandwidth in which the voltage standing wave ratio (VSWR) is 2 or less is broadened as the antenna characteristic.
  • the bandwidth at a VSWR of 2 (return loss is 9.542 dB) is 1.622 GHz in the comparative example, it is 2.121 GHz in the first embodiment, and the bandwidth is 0. It spreads at .499 GHz.
  • the thickness of the substrate 10 can be reduced (that is, the feed line 50 can be shortened) by the amount that the antenna characteristic is improved. Therefore, the occurrence of the feed line 50 occurs while maintaining the antenna characteristic of the antenna module 1a according to the comparative example. It is possible to suppress the influence of polarization in the substrate thickness direction.
  • the whole area of the wiring area 70a in the comparative example is not necessary as the size of the area where the wiring for the RF signal processing circuit 80 is provided, a part of the wiring area 70a is The antenna area 60 is allocated.
  • the ground electrode 20 a in the comparative example flush with the height of the first ground pattern 23 instead of the height of the second ground pattern 21 of the ground electrode 20 in the first embodiment.
  • the feed line 51 present closer to the radiation electrode 30 than the ground electrode 20 a is become longer.
  • the polarization in the substrate thickness direction generated by the feed line 52 present on the RF signal processing circuit 80 side of the ground electrode 20a is shielded by the ground electrode 20a and has less influence on the radiation electrode 30, but the polarization is smaller than the ground electrode 20a.
  • the influence of polarization in the substrate thickness direction generated by the feed line 50 on the radiation electrode 30 also increases. Therefore, by increasing the portion of the feed line 50 covered by the ground electrode 20 by the peripheral wall 22 and the second ground pattern 21, the feed line 51 present closer to the radiation electrode 30 than the ground electrode 20 becomes shorter. The influence of the polarization in the substrate thickness direction generated by the line 50 can be suppressed.
  • the distance between the RF signal processing circuit 80 and the ground electrode 20 is shorter than that of the comparative example, the heat radiation effect of the heat generated by the RF signal processing circuit 80 is improved.
  • the ground electrode 20 has the peripheral wall 22 provided substantially in parallel with the feed line 50, the radiation loss can be reduced and the antenna gain can be improved.
  • the substrate 10 is unlikely to warp, and the coplanarity of the substrate 10 can be improved.
  • the second ground pattern 21 is provided only inside the radiation electrode 30 in a plan view of the substrate 10.
  • the second ground pattern 21 having a short distance to the radiation electrode 30 extends to the outside of the radiation electrode 30 in plan view of the substrate 10, the distance between the ground electrode 20 and the end of the radiation electrode 30 becomes short, which makes it difficult to improve the antenna characteristics. Therefore, by providing the second ground pattern 21 only inside the radiation electrode 30 in plan view of the substrate 10, the distance h2 between the ground electrode 20 and the end of the radiation electrode 30 can be secured, and antenna characteristics are improved. . Therefore, the feed line 50 can be further shortened, and the influence of polarization in the substrate thickness direction generated by the feed line 50 can be further suppressed.
  • the size of the second ground pattern 21 can be extended to the vicinity of the end of the radiation electrode 30 to the extent that the antenna characteristics do not deteriorate in plan view of the substrate 10.
  • the substrate 10 needs the wiring area 70 for providing the wiring for the RF signal processing circuit 80, but the size of the second ground pattern 21 is in the vicinity of the end of the radiation electrode 30 in the plan view.
  • the wiring area 70 can be secured in the area while improving the antenna characteristics.
  • the antenna module 1 according to the first embodiment includes one radiation electrode 30.
  • the present invention includes an array in which a plurality of radiation electrodes 30 are provided and the plurality of radiation electrodes 30 are arrayed on a substrate. It may be applied to an antenna module having an antenna.
  • the antenna module having an array antenna capable of easily controlling the directivity of the antenna, the deterioration of the XPD can be suppressed by suppressing the influence of polarization in the substrate thickness direction generated by the feed line 50.
  • the antenna module according to the second embodiment will be described below with reference to FIGS. 4 and 5.
  • FIG. 4 is an external perspective view of the antenna module 2 according to the second embodiment.
  • FIG. 5 is a cross-sectional view of the antenna module 2 according to the second embodiment.
  • FIG. 5 is a VV sectional view of the antenna module 2 in FIG.
  • the antenna module 2 includes a plurality of radiation electrodes 30, and the plurality of radiation electrodes 30 are arranged in an array on the substrate 100.
  • 16 radiation electrodes 30 arranged in a two-dimensional form of 4 ⁇ 4 constitute an array antenna.
  • the number and the arrangement of the radiation electrodes 30 constituting the array antenna are not limited to this.
  • a plurality of radiation electrodes 30 may be arranged in a one-dimensional manner.
  • the plurality of radiation electrodes 30 may not be arranged linearly in the row direction or the column direction, and may be arranged, for example, in a zigzag manner.
  • the ground electrode 200 has a second ground pattern 21 and a peripheral wall 22 corresponding to each of a plurality of radiation electrodes 30, and is generated by a feed line 50 connected to each of the radiation electrodes 30.
  • the influence of polarization in the thickness direction of the substrate is suppressed. Thereby, it is possible to suppress polarization in a direction parallel to the first ground pattern of the substrate 100 generated by polarization in the thickness direction of the substrate (horizontal direction in the plane of FIG. 5, front depth direction). Can be suppressed.
  • one radiation electrode 30 may be fed from two feeding points provided at mutually different positions in the radiation electrode 30. Thus, radio waves in two different polarization directions can be emitted.
  • one RF signal processing circuit 80 feeds a high frequency signal to four radiation electrodes 30 (for example, four radiation electrodes 30 arranged in a two-dimensional 2 ⁇ 2 manner). Therefore, for example, eight feed lines 50 for feeding four radiation electrodes 30 are connected to one RF signal processing circuit 80.
  • the antenna module 2 having the array antenna capable of easily controlling the directivity of the antenna can be provided, and the polarization in the substrate thickness direction generated by the feed line 50 can be suppressed in the array antenna. Therefore, the deterioration of the XPD can be suppressed.
  • the RF signal processing circuit 80 is provided on the other main surface of the substrate 100, but may be provided inside the substrate 100. This will be described with reference to FIG.
  • FIG. 6 is a cross-sectional view of an antenna module 3 according to a modification of the second embodiment.
  • the RF signal processing circuit 80 is provided in the substrate 100.
  • the wiring area for providing the wiring for the RF signal processing circuit 80 can be secured in the area covered by the second ground pattern 21 and the peripheral wall 22, the RF signal processing circuit 80 is provided inside the substrate 100. be able to. Thereby, the antenna module 3 can be miniaturized (reduced in height).
  • the radiation electrode 30 is shown by one pattern conductor, but the radiation electrode 30 feeds the feed element 31 connected to the feed line 50 and the feed element 31 above.
  • the element 31 may be separated from the element 31 and may be configured of a non-feed element 32 not connected to the feed line 50.
  • FIG. 7 is a cross-sectional view of the antenna module 3 according to the third embodiment.
  • the non-feed element 32 is provided above the feed element 31 so as to be separated from the feed element 31, so that the non-feed element 32 functions as a waveguide to enhance the directivity of the antenna. Can.
  • the directivity of the antenna can be controlled.
  • the material of the substrate 100 between the feeding element 31 and the non-feeding element 32 and the material of the substrate 100 between the feeding element 31 and the ground electrode 200 are different.
  • the thermal expansion coefficients of the feed element 31 and the parasitic element 32 can be made different from those of the feed element 31 and the ground electrode 200. Therefore, the warpage of the substrate 100 is alleviated, and the coplanarity of the substrate 100 can be improved.
  • Embodiment 4 The antenna module described in the above embodiment can be applied to a communication device.
  • the communication apparatus 6 to which the antenna module 2 is applied to the second embodiment will be described below.
  • FIG. 8 is a circuit diagram of the communication device 6 according to the fourth embodiment.
  • the communication device 6 shown in FIG. 8 includes an antenna module 2 and a baseband signal processing circuit (BBIC) 5.
  • BBIC baseband signal processing circuit
  • the communication device 6 up-converts the signal transmitted from the baseband signal processing circuit 5 to the antenna module 2 into a high frequency signal and radiates it from the plurality of radiation electrodes 30 (array antenna) and also receives the high frequency signal received by the array antenna.
  • the signal is down-converted and processed by the baseband signal processing circuit 5.
  • the RF signal processing circuit 80 includes switches 81A to 81D, 83A to 83D and 87, power amplifiers 82AT to 82DT, low noise amplifiers 82AR to 82DR, attenuators 84A to 84D, phase shifters 85A to 85D, and signal synthesis. And a demultiplexer 88, a mixer 88, and an amplification circuit 89.
  • the switches 81A to 81D and 83A to 83D are switch circuits that switch transmission and reception in each signal path.
  • the signal transmitted from the baseband signal processing circuit 5 is amplified by the amplification circuit 89 and up-converted by the mixer 88.
  • the up-converted high-frequency signal is split into four by the signal combining / splitting device 86, passes through the four transmission paths, and is fed to the different radiation electrodes 30, respectively. At this time, it is possible to adjust the directivity of the array antenna by individually adjusting the phase shift of the phase shifters 85A to 85D arranged in each signal path.
  • the high frequency signals received by the radiation electrodes 30 are respectively multiplexed by the signal synthesis / demultiplexer 86 via four different reception paths, downconverted by the mixer 88, and amplified by the amplifier circuit 89.
  • the signal is transmitted to the baseband signal processing circuit 5.
  • the RF signal processing circuit 80 is formed, for example, as an integrated circuit component of one chip including the above circuit configuration.
  • the RF signal processing circuit 80 includes the switches 81A to 81D, 83A to 83D and 87, power amplifiers 82AT to 82DT, low noise amplifiers 82AR to 82DR, attenuators 84A to 84D, phase shifters 85A to 85D, and signal combining described above. It is not necessary to provide any of the demultiplexer / splitter 86, the mixer 88, and the amplification circuit 89. Also, the RF signal processing circuit 80 may have only one of the transmission path and the reception path.
  • the antenna module 2 according to the present embodiment is applied not only to transmitting and receiving high frequency signals in a single frequency band, but also to a system transmitting and receiving high frequency signals in a plurality of frequency bands (multi band). . Therefore, as shown in FIG. 5, in the antenna module 2 according to the present embodiment, two or more systems of the circuit configuration of the RF signal processing circuit 80 are arranged, and the circuit configuration thereof can be switched by a switch It has become.
  • one or more ground conductors in the ground electrodes 20 and 200 are the peripheral wall 22, but the configuration is not limited to one wall as the peripheral wall 22. This will be described with reference to FIGS. 9A and 9B.
  • FIG. 9A is an external perspective view of an antenna module 5 according to another embodiment.
  • the antenna region 60 is transparent and its end is a broken line.
  • FIG. 9A shows an enlarged view of the periphery of a ground electrode 201 described later (a portion surrounded by a broken line thicker than a broken line indicating the end portion).
  • FIG. 9B is a cross-sectional view of an antenna module 5 according to another embodiment.
  • the configuration of the antenna module 5 is the same as the configuration of the antenna module 1 except that the ground electrode 20 in the antenna module 1 is replaced with the ground electrode 201 and the like, and therefore the description of the same points as the antenna module 1 is omitted.
  • one or more ground conductors in the ground electrode 201 may be a plurality of via conductors (ground conductors) 22a arranged so as to surround the feed line 50.
  • the plurality of via conductors 22 a are provided so as to surround a part of the feed line 50 (feed line 52), and extend in a direction substantially parallel to the direction in which the feed line 50 extends.
  • the ground electrode 201 can shield the polarization in the substrate thickness direction generated by the feed line 50.
  • the pitch when each of the plurality of via conductors 22a is arranged is, for example, equal to or less than 1 ⁇ 4 of the in-substrate wavelength ⁇ g of the high frequency signal fed by the feed line 50.
  • the wiring region 70 may also be covered by the via conductor 71 as shown in FIGS. 9A and 9B.
  • the RF signal processing circuit 80 is provided on the other main surface of the substrate 10, but may be provided inside the substrate 10.
  • the second ground pattern 21 is provided only on the inner side of the radiation electrode 30 in plan view of the substrate 10 (100), but is also provided on the outer side of the radiation electrode 30 It is also good. That is, the second ground pattern 21 may be provided so as to protrude from the radiation electrode 30 in the plan view. As a result, it is possible to secure more areas in which wiring for the RF signal processing circuit 80 can be provided.
  • the antenna module according to the above embodiment can be applied to a Massive MIMO system.
  • One of the promising wireless transmission technologies in 5G (5th generation mobile communication system) is the combination of a phantom cell and a Massive MIMO system.
  • a phantom cell is a network configuration that separates a control signal for ensuring communication stability between a macrocell in a low frequency band and a small cell in a high frequency band, and a data signal to be subjected to high-speed data communication.
  • An antenna apparatus of Massive MIMO is provided in each phantom cell.
  • the Massive MIMO system is a technique for improving transmission quality in a millimeter wave band or the like, and controls the directivity of the antenna by controlling the signal transmitted from each radiation electrode 30.
  • Massive MIMO systems use multiple radiation electrodes 30, sharp directional beams can be generated.
  • radio waves can be blown to a certain distance even in a high frequency band, and interference between cells can be reduced to improve frequency utilization efficiency.
  • the present invention can be widely used in communication devices such as millimeter wave band mobile communication systems and Massive MIMO systems as antenna modules capable of suppressing the influence of polarization in the substrate thickness direction generated by feed lines.
  • Baseband Signal Processing Circuit 6 Communication device 10, 10a, 100 Substrate 20, 20a, 200, 201 Ground electrode 21 Second ground pattern 22 Peripheral wall (ground conductor) 22a Via conductor (ground conductor) 23 first ground pattern 24, 25 through hole 30 radiation electrode 31 feeding element 32 parasitic element 40 overlapping area 50, 51, 52 feeding line 60, 60a antenna area 70, 70a wiring area 71 via conductor 80 RF signal processing circuit (RFIC ) 81A, 81B, 81C, 81D, 83A, 83B, 83D, 87 switches 82AR, 82BR, 82CR, 82DR low noise amplifiers 82AT, 82BT, 82CT, 82DT power amplifiers 84A, 84B, 84C, 84D attenuators 85A, 85B, 85C , 85D phase shifter 86 signal combiner / splitter 88 mixer 89 amplifier circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

アンテナモジュール(1)は、基板(10)と、基板(10)に設けられたRF信号処理回路(80)と、RF信号処理回路(80)の上方において、基板(10)に設けられたグランド電極(20)と、グランド電極(20)の上方において、基板(10)に設けられた放射電極(30)と、放射電極(30)とRF信号処理回路(80)とが重なる重複領域(40)に設けられ、放射電極(30)とRF信号処理回路(80)とを接続する給電ライン(50)と、を備え、グランド電極(20)は、第1グランドパターン(23)と、第2グランドパターン(21)と、第1グランドパターン(23)と第2グランドパターン(21)とを接続する周壁(22)と、を有し、周壁(22)は、給電ライン(50)の一部を囲み、第2グランドパターン(21)は、給電ライン(50)が貫通する貫通孔(24)を有する。

Description

アンテナモジュール
 本発明は、アンテナモジュールに関する。
 近年、携帯端末等の小型化が要求されている。これに対応すべく、放射電極(アンテナ)と、放射電極に給電ラインを介して高周波信号を給電するRF信号処理回路とを一体化したアンテナモジュールが開示されている(例えば、特許文献1)。当該アンテナモジュールでは、放射電極が基板の一方主面側に設けられ、RF信号処理回路が基板の他方主面側に設けられることで、これらが一体化されている。
国際公開第2016/063759号
 ところで、上記従来のアンテナモジュールにおいて、RF信号処理回路から放射電極への給電ラインを短くすることが要求されている。これは、伝送線路ロスをできるだけ抑えるためである。また、放射電極をアレイ状に配列したアレイアンテナにおいて、給電ラインから発生する基板厚み方向の偏波の影響による交差偏波認識度(XPD:Cross Polarization Discrimination)の劣化を抑制するためである。一方で、アンテナモジュールにおける基板の厚みを薄くすることで給電ラインを短くした場合、放射電極と基板に設けられたグランド電極とが接近しやすくなる。これにより、放射電極の端部とグランド電極との距離が短くなり、アンテナ特性(特に帯域幅)が劣化してしまう。
 本発明は、上記課題を解決するためになされたものであり、アンテナ特性を維持したまま、給電ラインにより発生する基板厚み方向の偏波の影響を抑制できるアンテナモジュールを提供する。
 本発明の一態様に係るアンテナモジュールは、基板と、前記基板に設けられたRF信号処理回路と、前記RF信号処理回路の上方において、前記基板に設けられたグランド電極と、前記グランド電極の上方において、前記基板の平面視で少なくとも一部が前記RF信号処理回路と重なるように前記基板に設けられた放射電極と、前記放射電極と前記RF信号処理回路とが重なる重複領域に設けられ、前記放射電極と前記RF信号処理回路とを接続する給電ラインと、を備え、前記グランド電極は、第1グランドパターンと、前記第1グランドパターンの上方、かつ、前記平面視において前記第1グランドパターンの内側に設けられた第2グランドパターンと、前記第1グランドパターンと前記第2グランドパターンとを接続する1以上のグランド導体と、を有し、前記1以上のグランド導体は、前記給電ラインの一部を囲み、前記第2グランドパターンは、前記給電ラインが貫通する貫通孔を有する。
 これによれば、本態様におけるグランド電極と、本態様のグランド電極の第2グランドパターンの高さで面一となっているような従来のグランド電極とを比較すると、本態様におけるグランド電極では、グランド電極の第1グランドパターンと放射電極との距離が長くなり得るため、電気力線の密度が減少しアンテナ特性(帯域幅)が向上する。よって、アンテナ特性が向上する分、基板の厚みを薄くすることができる(つまり給電ラインを短くできる)ため、従来のアンテナモジュールにおけるアンテナ特性を維持したまま、給電ラインにより発生する基板厚み方向の偏波の影響を抑制できる。
 このとき、従来のアンテナモジュールにおけるグランド電極を、本態様におけるグランド電極の第2グランドパターンの高さではなく、第1グランドパターンの高さで面一とすることが考えられる。しかし、この場合には、給電ラインの一部を1以上のグランド導体と第2グランドパターンとで覆っているグランド電極と比較すると、グランド電極よりも放射電極側に存在する給電ラインが長くなる。グランド電極よりもRF信号処理回路側に存在する給電ラインにより発生する基板厚み方向の偏波は、グランド電極によって遮蔽され、放射電極への影響が少ないが、グランド電極よりも放射電極側に存在する給電ラインが長くなった場合には、給電ラインにより発生する基板厚み方向の偏波による放射電極への影響も大きくなってしまう。したがって、給電ラインのうち、1以上のグランド導体と第2グランドパターンとによってグランド電極に覆われる部分が増えることで、グランド電極よりも放射電極側に存在する給電ラインが短くなり、給電ラインにより発生する基板厚み方向の偏波の影響を抑制できる。
 なお、アンテナ特性を維持したまま、給電ラインにより発生する基板厚み方向の偏波の影響を抑制できるということは、言い換えると、給電ラインにより発生する基板厚み方向の偏波の影響を維持したまま、アンテナ特性を向上できるという効果も奏することができると言える。
 また、前記第2グランドパターンは、前記平面視において前記放射電極よりも内側にのみ設けられてもよい。
 これによれば、放射電極との距離が短い第2グランドパターンが、基板の平面視において放射電極の外側まで広がっている場合には、グランド電極と放射電極の端部との距離が短くなるため、アンテナ特性が向上しにくくなる。したがって、第2グランドパターンが基板の平面視において放射電極よりも内側にのみ設けられることで、グランド電極と放射電極の端部との距離を確保でき、アンテナ特性が向上する。よって、給電ラインをより短くすることができ、給電ラインにより発生する基板厚み方向の偏波の影響をより抑制できる。
 なお、基板の平面視において、アンテナ特性が劣化しない程度に第2グランドパターンの大きさを放射電極の端部近傍まで広げることができる。また、放射電極の端部近傍まで広がった第2グランドパターンの外縁に1以上のグランド導体を接続する。当該基板には、RF信号処理回路のための配線を設ける配線領域が必要であるが、第2グランドパターンの大きさを放射電極の端部近傍まで広げることで、第2グランドパターンと1以上のグランド導体とで覆われる領域が大きくなり、アンテナ特性を向上しつつ、当該領域において当該配線領域を確保できる。
 また、アンテナモジュールは、前記放射電極を複数備え、前記複数の放射電極は、前記基板にアレイ状に配列されていてもよい。
 これにより、アンテナの指向性の制御を容易に行うことができるアレイアンテナを有するアンテナモジュールを提供できる。なお、当該アレイアンテナにおいて、給電ラインにより発生する基板厚み方向の偏波を抑制できるため、XPDの劣化を抑制できる。
 また、前記RF信号処理回路は、前記基板内に設けられてもよい。
 これにより、アンテナモジュールを小型化(低背化)できる。
 また、前記放射電極は、前記給電ラインに接続された給電素子と、前記給電素子の上方に設けられた無給電素子とから構成されてもよい。
 これにより、アンテナの指向性を高めることができる。
 また、前記給電素子と前記無給電素子との間における前記基板の材料と、前記給電素子と前記グランド電極との間における前記基板の材料とは異なっていてもよい。
 これによれば、給電素子および無給電素子の間と、給電素子およびグランド電極の間との熱膨張係数を異ならせることができる。したがって、基板の反りが緩和され、基板のコプラナリティを改善できる。
 また、本発明の一態様に係るアンテナモジュールは、前記RF信号処理回路は、高周波信号を移相する移相回路と、前記移相された高周波信号を増幅する増幅回路と、前記増幅された高周波信号を前記放射電極に給電するか否かを切り替えるスイッチ素子と、を備える。
 これによれば、マルチバンド/マルチモードのアンテナモジュールを実現できる。
 本発明に係るアンテナモジュールによれば、アンテナ特性を維持したまま、給電ラインにより発生する基板厚み方向の偏波の影響を抑制できる。
図1Aは、実施の形態1に係るアンテナモジュールの外観斜視図である。 図1Bは、実施の形態1に係るアンテナモジュールの一部を透明にした外観斜視図である。 図1Cは、実施の形態1に係るアンテナモジュールの断面図である。 図2は、比較例に係るアンテナモジュールの断面図である。 図3は、実施の形態1におけるアンテナ特性と比較例におけるアンテナ特性とを示す図である。 図4は、実施の形態2に係るアンテナモジュールの外観斜視図である。 図5は、実施の形態2に係るアンテナモジュールの断面図である。 図6は、実施の形態2の変形例に係るアンテナモジュールの断面図である。 図7は、実施の形態3に係るアンテナモジュールの断面図である。 図8は、実施の形態4に係る通信装置の回路図である。 図9Aは、その他の実施の形態に係るアンテナモジュールの外観斜視図である。 図9Bは、その他の実施の形態に係るアンテナモジュールの断面図である。
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態などは、一例であり、本発明を限定する主旨ではない。以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面に示される構成要素の大きさ、又は大きさの比は、必ずしも厳密ではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する場合がある。また、以下の実施の形態において、「接続される」とは、直接接続される場合だけでなく、他の素子等を介して電気的に接続される場合も含まれる。
 (実施の形態1)
 [1.アンテナモジュールの構成]
 図1Aは、実施の形態1に係るアンテナモジュール1の外観斜視図である。図1Aでは、後述する基板10におけるアンテナ領域60の内部をわかりやすくするために、アンテナ領域60を透明にし、端部を破線にしている。図1Bは、実施の形態1に係るアンテナモジュール1の一部を透明にした外観斜視図である。図1Bでも同様に、アンテナ領域60を透明にし、端部を破線にしている。さらに、図1Bでは、後述するグランド電極20の周壁22のy軸のマイナス方向(矢印と反対の方向)側を透明にし、後述する基板10の配線領域70のy軸のマイナス方向側を透明にしている。図1Cは、実施の形態1に係るアンテナモジュール1の断面図である。図1Cは、アンテナモジュール1を、後述する給電ライン50を通るxz平面で切断した際のy軸のマイナス方向側から見た断面図である。なお、以降説明する断面図についても同様である。また、以下では、z軸のプラス方向(矢印の方向)を上とも呼ぶ。
 アンテナモジュール1は、例えば携帯端末等に搭載されるモジュールであり、小型化のために高周波回路およびアンテナ等が一体化されている。図1A~図1Cに示されるように、アンテナモジュール1は、基板10と、それぞれ基板10に設けられた、グランド電極20、放射電極30、給電ライン50およびRF信号処理回路(RFIC)80とを備える。
 基板10は、例えば誘電体基板であり、基板10の一方主面には放射電極30が設けられ、他方主面にはRF信号処理回路80が設けられることで、これらが一体化されている。基板10は、放射電極30とグランド電極20との間に誘電体材料が充填された構造を有する。なお、アンテナ特性は、放射電極30とグランド電極20との間の誘電体材料が充填された領域の体積によって変化し得るため、当該領域をアンテナ領域60とも呼ぶ。図1Aおよび図1Bでは、アンテナ領域60の内部をわかりやすくするために、アンテナ領域60を透明にして示している。また、グランド電極20とRF信号処理回路80との間の領域は、RF信号処理回路のための配線が設けられる領域であるため、配線領域70とも呼ぶ。なお基板10は、例えば、低温同時焼成セラミックス(Low Temperature Co-fired Ceramics:LTCC)基板、または、プリント基板などであってもよい。
 RF信号処理回路80は、放射電極30で送受信される高周波信号を処理する回路である。RF信号処理回路80は、給電ライン50を介して放射電極30と接続される。RF信号処理回路80は、例えば、1つのパッケージで構成されている。
 グランド電極20は、RF信号処理回路80の上方において、基板10に設けられる。グランド電極20は、放射電極30と、基板10の主面の垂直方向で対向するように基板10に設けられ、グランド電位に設定される。
 放射電極30は、例えばパッチアンテナであり、グランド電極20の上方において、基板10の平面視で少なくとも一部がRF信号処理回路80と重なるように基板10に設けられる。図1Cには、基板10をz軸のプラス方向(上から)から見る視点である基板10の平面視において、放射電極30とRF信号処理回路80とが重なる領域を重複領域40として示している。放射電極30は、基板10の主面に略平行となるように基板10に形成された導体パターンであり、RF信号処理回路80から給電ライン50を経由して高周波信号が給電される。放射電極30は、RF信号処理回路80との間で伝達される高周波信号に相当する電波(空間伝搬する高周波信号)を放射する放射素子でもあり、当該電波を受信する受信素子でもある。放射電極30は、基板10の平面視において、例えば矩形形状を有するが、円形または多角形形状等であってもよい。
 また、放射電極30およびグランド電極20は、例えば、Al、Cu、Au、Ag、またはそれらの合金を主成分とする金属膜で構成される。
 グランド電極20は、第1グランドパターン23と、第1グランドパターン23の上方、かつ、基板10の平面視において第1グランドパターン23の内側に設けられた第2グランドパターン21と、第1グランドパターン23と第2グランドパターン21とを接続する1以上のグランド導体と、を有する。第1グランドパターン23および第2グランドパターン21は、基板10の主面に略平行となるように基板10に形成された導体パターンである。
 1以上のグランド導体は、例えば、周壁22(1つのグランド導体)である。周壁22は、具体的には、第1グランドパターン23と第2グランドパターン21の外縁とを接続している。周壁22は、給電ライン50の一部を囲うように設けられ、給電ライン50が延びる方向と略平行な方向に延びている。
 第2グランドパターン21は、給電ライン50が貫通する貫通孔24を有し、給電ライン50が延びる方向と略直交している。第2グランドパターン21は、基板10の平面視において少なくとも放射電極30よりも内側に設けられる。本実施の形態では、第2グランドパターン21は、当該平面視において放射電極30よりも内側にのみ設けられる。周壁22は、第2グランドパターン21の外縁に接続されているため、周壁22も当該平面視において放射電極30よりも内側にのみ設けられる。
 第1グランドパターン23は、基板10の主面と略同じ大きさであり、当該平面視において放射電極30を内側に含んでいる。つまり、第1グランドパターン23は、当該平面視において、放射電極30からはみ出すように設けられている。第1グランドパターン23は、給電ライン50が貫通する貫通孔25を有し、給電ライン50が延びる方向と略直交している。
 このように、グランド電極20が構成されることで、基板10の平面視で放射電極30の外側における放射電極30と第1グランドパターン23との距離h1が、当該平面視で放射電極30の内側における放射電極30と第2グランドパターン21との距離h2よりも長くなる。詳細は後述するが、これにより、アンテナ特性を向上させることができる。
 給電ライン50は、重複領域40に設けられ、放射電極30とRF信号処理回路80とを電気的に接続する導体ビアである。給電ライン50は、放射電極30とRF信号処理回路80との間に設けられたグランド電極20と接触しないように、貫通孔24および25を貫通して、放射電極30とRF信号処理回路80とを接続している。給電ライン50が放射電極30とRF信号処理回路80とが重なる重複領域40に設けられることで、給電ライン50を基板10の第1グランドパターンの垂直方向に形成することができ、給電ライン50を短くすることができる。これにより、給電ライン50により発生する伝送線路ロスが減り、アンテナゲインを改善できる。
 [2.比較例]
 次に、実施の形態1に係るアンテナモジュール1の比較例を、図2を用いて説明する。
 図2は、比較例に係るアンテナモジュール1aの断面図である。比較例に係るアンテナモジュール1aは、グランド電極20aが第2グランドパターン21および周壁22を有しておらず、アンテナモジュール1における第2グランドパターン21の高さで面一となっている点が、アンテナモジュール1と異なる。また、グランド電極20aが第2グランドパターン21および周壁22を有していないため、基板10aにおけるアンテナ領域60aの高さは一定となっており、放射電極30の端部とグランド電極20aとの距離は、距離h2となっている。一方、配線領域70aは、グランド電極20aがアンテナモジュール1における第2グランドパターン21の高さで面一となっていることで、配線領域70よりも大きくなっている。その他の点は、アンテナモジュール1と同様であるため、説明を省略する。
 [3.効果]
 ここで、実施の形態1に係るアンテナモジュール1により奏される効果について比較例に係るアンテナモジュール1aと比較しながら図3を用いて説明する。
 図3は、実施の形態1におけるアンテナ特性と比較例におけるアンテナ特性とを示す図である。
 実施の形態1における放射電極30の端部とグランド電極20との距離h1は、比較例における放射電極30の端部とグランド電極20aとの距離h2よりも長いため、アンテナ領域60における電気力線の密度が減少し、図3に示されるように、実施の形態1では、比較例よりもアンテナ特性が向上していることがわかる。具体的には、アンテナ特性として、電圧定在波比(VSWR:Voltage Standing Wave Ratio)が2以下となる帯域幅が広がっていることがわかる。具体的には、VSWRが2(リターンロスが9.542dB)における帯域幅が比較例では1.622GHzであるのに対して、実施の形態1では2.121GHzとなっており、帯域幅が0.499GHz広がっている。
 したがって、アンテナ特性が向上する分、基板10の厚みを薄くすることができる(つまり給電ライン50を短くできる)ため、比較例に係るアンテナモジュール1aにおけるアンテナ特性を維持したまま、給電ライン50により発生する基板厚み方向の偏波の影響を抑制できる。なお、実施の形態1では、RF信号処理回路80のための配線が設けられる領域の大きさとして、比較例における配線領域70aの全部の領域は必要ないため、配線領域70aの一部の領域をアンテナ領域60に割り当てている。
 このとき、比較例におけるグランド電極20aを、実施の形態1におけるグランド電極20の第2グランドパターン21の高さではなく、第1グランドパターン23の高さで面一とすることが考えられる。しかし、この場合には、給電ライン50の一部を周壁22と第2グランドパターン21とで覆っているグランド電極20と比較すると、グランド電極20aよりも放射電極30側に存在する給電ライン51が長くなる。グランド電極20aよりもRF信号処理回路80側に存在する給電ライン52により発生する基板厚み方向の偏波は、グランド電極20aによって遮蔽され、放射電極30への影響が少ないが、グランド電極20aよりも放射電極30側に存在する給電ライン51が長くなった場合には、給電ライン50により発生する基板厚み方向の偏波による放射電極30への影響も大きくなってしまう。したがって、給電ライン50のうち、周壁22と第2グランドパターン21とによってグランド電極20に覆われる部分が増えることで、グランド電極20よりも放射電極30側に存在する給電ライン51が短くなり、給電ライン50により発生する基板厚み方向の偏波の影響を抑制できる。
 なお、アンテナ特性を維持したまま、給電ライン50により発生する基板厚み方向の偏波の影響を抑制できるということは、言い換えると、給電ライン50により発生する基板厚み方向の偏波の影響を維持したまま、アンテナ特性を向上できるという効果も奏することができると言える。
 さらに、実施の形態1では、比較例よりも、RF信号処理回路80とグランド電極20との距離が短くなるため、RF信号処理回路80により発生する熱の放熱効果が向上する。
 さらに、グランド電極20は、給電ライン50と略平行に設けられた周壁22を有するため、放射ロスが減り、アンテナゲインを改善できる。
 さらに、基板10の内部に階段状のグランド電極20が埋め込まれているため、基板10が反りにくくなり、基板10のコプラナリティを向上できる。
 また、第2グランドパターン21は、基板10の平面視において放射電極30よりも内側にのみ設けられている。
 これによれば、放射電極30との距離が短い第2グランドパターン21が、基板10の平面視において放射電極30の外側まで広がっている場合、グランド電極20と放射電極30の端部との距離が短くなるため、アンテナ特性が向上しにくくなる。したがって、第2グランドパターン21が基板10の平面視において放射電極30よりも内側にのみ設けられることで、グランド電極20と放射電極30の端部との距離h2を確保でき、アンテナ特性が向上する。よって、給電ライン50をより短くすることができ、給電ライン50により発生する基板厚み方向の偏波の影響をより抑制できる。
 なお、基板10の平面視において、アンテナ特性が劣化しない程度に第2グランドパターン21の大きさを放射電極30の端部近傍まで広げることができる。これによれば、基板10には、RF信号処理回路80のための配線を設ける配線領域70が必要であるが、第2グランドパターン21の大きさを当該平面視において放射電極30の端部近傍まで広げることで、第2グランドパターン21と周壁22とで覆われる領域が大きくなり、アンテナ特性を向上しつつ、当該領域において配線領域70を確保できる。
 (実施の形態2)
 実施の形態1に係るアンテナモジュール1は、1つの放射電極30を備えていたが、本発明は、放射電極30を複数備え、複数の放射電極30が基板にアレイ状に配列されていているアレイアンテナを有するアンテナモジュールに適用されてもよい。アンテナの指向性の制御を容易に行うことができるアレイアンテナを有するアンテナモジュールでは、給電ライン50により発生する基板厚み方向の偏波の影響が抑制されることで、XPDの劣化を抑制できる。以下、実施の形態2に係るアンテナモジュールについて、図4および図5を用いて説明する。
 図4は、実施の形態2に係るアンテナモジュール2の外観斜視図である。図5は、実施の形態2に係るアンテナモジュール2の断面図である。図5は、図4におけるアンテナモジュール2のV-V断面図である。
 図4に示されるように、アンテナモジュール2は、放射電極30を複数備え、複数の放射電極30は、基板100にアレイ状に配列されている。本実施の形態では、4×4の2次元状に配置された16個の放射電極30が、アレイアンテナを構成している。
 なお、アレイアンテナを構成する放射電極30の個数および配置は、これに限らず、例えば、複数の放射電極30が1次元状に並んで配置されていてもかまわない。また、複数の放射電極30は、行方向または列方向において直線状に配置されていなくてもよく、例えば、千鳥状に配置されていてもよい。
 図5に示されるように、グランド電極200は、複数の放射電極30のそれぞれに対応する第2グランドパターン21および周壁22を有し、放射電極30のそれぞれに接続された給電ライン50により発生する基板厚み方向の偏波の影響が抑制されている。これにより、基板厚み方向の偏波により発生する基板100の第1グランドパターンと平行な方向(図5の紙面の左右方向、手前奥行き方向)の偏波を抑制できるため、アレイアンテナのXPDの劣化を抑制できる。
 なお、1つの放射電極30は、当該放射電極30における互いに異なる位置に設けられた2つの給電点より給電されてもよい。これにより、互いに異なる2つの偏波方向の電波を放射することができる。また、例えば、1つのRF信号処理回路80は、4つの放射電極30(例えば、2×2の2次元状に配置された4つの放射電極30)に高周波信号を給電する。したがって、1つのRF信号処理回路80には、例えば、4つの放射電極30に給電するための8本の給電ライン50が接続されている。
 以上説明したように、アンテナの指向性の制御を容易に行うことができるアレイアンテナを有するアンテナモジュール2を提供でき、当該アレイアンテナにおいて、給電ライン50により発生する基板厚み方向の偏波を抑制できるため、XPDの劣化を抑制できる。
 なお、RF信号処理回路80は、基板100の他方主面に設けられているが、基板100の内部に設けられてもよい。これについて図6を用いて説明する。
 図6は、実施の形態2の変形例に係るアンテナモジュール3の断面図である。
 図6に示されるように、アンテナモジュール3では、RF信号処理回路80は、基板100内に設けられる。例えば、第2グランドパターン21と周壁22とで覆われた領域においてRF信号処理回路80のための配線が設けられる配線領域を確保できているため、RF信号処理回路80を基板100の内部に設けることができる。これにより、アンテナモジュール3を小型化(低背化)できる。
 (実施の形態3)
 実施の形態1および2に係るアンテナモジュールでは、放射電極30を1つのパターン導体で示していたが、放射電極30は、給電ライン50に接続された給電素子31と、給電素子31の上方に給電素子31と離間して設けられ、給電ライン50と接続されていない無給電素子32とから構成されていてもよい。
 図7は、実施の形態3に係るアンテナモジュール3の断面図である。
 図7に示されるように、給電素子31の上方に給電素子31と離間して無給電素子32が設けられることで、無給電素子32が導波器として機能し、アンテナの指向性を高めることができる。また、給電素子31と無給電素子32との距離が調整されることで、アンテナの指向性を制御できる。
 また、給電素子31と無給電素子32との間における基板100の材料と、給電素子31とグランド電極200との間における基板100の材料とは異なる。これにより、給電素子31および無給電素子32の間と、給電素子31およびグランド電極200の間との熱膨張係数を異ならせることができる。したがって、基板100の反りが緩和され、基板100のコプラナリティを改善できる。
 (実施の形態4)
 上記実施の形態で説明したアンテナモジュールは、通信装置に適用できる。以下では、実施の形態2にアンテナモジュール2を適用した通信装置6について説明する。
 図8は、実施の形態4に係る通信装置6の回路図である。図8に示される通信装置6は、アンテナモジュール2と、ベースバンド信号処理回路(BBIC)5とを備える。通信装置6は、ベースバンド信号処理回路5からアンテナモジュール2へ伝達される信号を高周波信号にアップコンバートして複数の放射電極30(アレイアンテナ)から放射するとともに、アレイアンテナで受信した高周波信号をダウンコンバートしてベースバンド信号処理回路5にて信号処理する。
 RF信号処理回路80は、スイッチ81A~81D、83A~83Dおよび87と、パワーアンプ82AT~82DTと、ローノイズアンプ82AR~82DRと、減衰器84A~84Dと、移相器85A~85Dと、信号合成/分波器86と、ミキサ88と、増幅回路89とを備える。
 スイッチ81A~81Dおよび83A~83Dは、各信号経路における送信および受信を切り替えるスイッチ回路である。
 ベースバンド信号処理回路5から伝達される信号は、増幅回路89で増幅され、ミキサ88でアップコンバートされる。アップコンバートされた高周波信号は、信号合成/分波器86で4分波され、4つの送信経路を通過して、それぞれ異なる放射電極30に給電される。このとき、各信号経路に配置された移相器85A~85Dの移相度が個別に調整されることにより、アレイアンテナの指向性を調整することが可能となる。
 また、各放射電極30で受信した高周波信号は、それぞれ、異なる4つの受信経路を経由し、信号合成/分波器86で合波され、ミキサ88でダウンコンバートされ、増幅回路89で増幅されてベースバンド信号処理回路5へ伝達される。
 RF信号処理回路80は、例えば、上記回路構成を含む1チップの集積回路部品として形成される。
 なお、RF信号処理回路80は、上述した、スイッチ81A~81D、83A~83Dおよび87、パワーアンプ82AT~82DT、ローノイズアンプ82AR~82DR、減衰器84A~84D、移相器85A~85D、信号合成/分波器86、ミキサ88、ならびに増幅回路89のいずれかを備えていなくてもよい。また、RF信号処理回路80は、送信経路および受信経路のいずれかのみを有していてもよい。また、本実施の形態に係るアンテナモジュール2は、単一の周波数帯域(バンド)の高周波信号を送受信するだけでなく、複数の周波数帯域(マルチバンド)の高周波信号を送受信するシステムに適用される。したがって、本実施の形態に係るアンテナモジュール2は、図5に示されるように、RF信号処理回路80が有する回路構成が2系統以上配置されており、それらの回路構成がスイッチにより切り替えられる構成となっている。
 (その他の実施の形態)
 以上、本発明の実施の形態に係るアンテナモジュールについて、上記実施の形態を挙げて説明したが、本発明は、上記実施の形態に限定されるものではない。上記実施の形態における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例も本発明に含まれる。
 例えば、上記実施の形態では、グランド電極20、200における1以上のグランド導体は、周壁22であったが、周壁22のように1つの壁の構成に限らない。これについて、図9Aおよび図9Bを用いて説明する。
 図9Aは、その他の実施の形態に係るアンテナモジュール5の外観斜視図である。図9Aでは、図1Aと同じように、基板10におけるアンテナ領域60の内部をわかりやすくするために、アンテナ領域60を透明にし、端部を破線にしている。また、図9Aには、後述するグランド電極201周辺(上記端部を示す破線よりも太い破線で囲った箇所)の拡大図を示している。
 図9Bは、その他の実施の形態に係るアンテナモジュール5の断面図である。
 アンテナモジュール5の構成は、アンテナモジュール1におけるグランド電極20をグランド電極201に置き換えた点等以外は、アンテナモジュール1の構成と同じであるため、アンテナモジュール1と同じ点については説明を省略する。
 例えば、グランド電極201における1以上のグランド導体は、図9Aおよび図9Bに示すように、給電ライン50を囲むように配置された複数のビア導体(グランド導体)22aであってもよい。複数のビア導体22aは、給電ライン50の一部(給電ライン52)を囲うように設けられ、給電ライン50が延びる方向と略平行な方向に延びている。
 この構成であっても、給電ライン50により発生する基板厚み方向の偏波をグランド電極201によって遮蔽することができる。また、この構成において、複数のビア導体22aのそれぞれが配置される際のピッチは、給電ライン50で給電される高周波信号の基板内波長λgの例えば1/4以下である。
 また、配線領域70についても、図9Aおよび図9Bに示されるように、周囲がビア導体71で覆われていてもよい。
 また、例えば、実施の形態1では、RF信号処理回路80は基板10の他方主面に設けられたが、基板10の内部に設けられていてもよい。
 また、例えば、上記実施の形態では、第2グランドパターン21は、基板10(100)の平面視において放射電極30よりも内側にのみ設けられたが、放射電極30よりも外側にも設けられてもよい。つまり、第2グランドパターン21は、当該平面視において放射電極30からはみ出るように設けられてもよい。これにより、RF信号処理回路80のための配線を設けられる領域をより多く確保できる。
 また、例えば、上記実施の形態に係るアンテナモジュールは、Massive MIMOシステムにも適用できる。5G(第5世代移動通信システム)で有望な無線伝送技術の1つは、ファントムセルとMassive MIMOシステムとの組み合わせである。ファントムセルは、低い周波数帯域のマクロセルと高い周波数帯域のスモールセルとの間で通信の安定性を確保するための制御信号と、高速データ通信の対象であるデータ信号とを分離するネットワーク構成である。各ファントムセルにMassive MIMOのアンテナ装置が設けられる。Massive MIMOシステムは、ミリ波帯等において伝送品質を向上させるための技術であり、各放射電極30から送信される信号を制御することで、アンテナの指向性を制御する。また、Massive MIMOシステムは、多数の放射電極30を用いるため、鋭い指向性のビームを生成することができる。ビームの指向性を高めることで高い周波数帯でも電波をある程度遠くまで飛ばすことができるとともに、セル間の干渉を減らして周波数利用効率を高めることができる。
 本発明は、給電ラインにより発生する基板厚み方向の偏波の影響を抑制できるアンテナモジュールとしてとして、ミリ波帯移動体通信システムおよびMassive MIMOシステムなどの通信機器に広く利用できる。
 1、1a、2、3、4  アンテナモジュール
 5  ベースバンド信号処理回路(BBIC)
 6  通信装置
 10、10a、100  基板
 20、20a、200、201  グランド電極
 21  第2グランドパターン
 22  周壁(グランド導体)
 22a  ビア導体(グランド導体)
 23  第1グランドパターン
 24、25  貫通孔
 30  放射電極
 31  給電素子
 32  無給電素子
 40  重複領域
 50、51、52  給電ライン
 60、60a  アンテナ領域
 70、70a  配線領域
 71  ビア導体
 80  RF信号処理回路(RFIC)
 81A、81B、81C、81D、83A、83B、83C、83D、87  スイッチ
 82AR、82BR、82CR、82DR  ローノイズアンプ
 82AT、82BT、82CT、82DT  パワーアンプ
 84A、84B、84C、84D  減衰器
 85A、85B、85C、85D  移相器
 86  信号合成/分波器
 88  ミキサ
 89  増幅回路

Claims (7)

  1.  基板と、
     前記基板に設けられたRF信号処理回路と、
     前記RF信号処理回路の上方において、前記基板に設けられたグランド電極と、
     前記グランド電極の上方において、前記基板の平面視で少なくとも一部が前記RF信号処理回路と重なるように前記基板に設けられた放射電極と、
     前記放射電極と前記RF信号処理回路とが重なる重複領域に設けられ、前記放射電極と前記RF信号処理回路とを接続する給電ラインと、を備え、
     前記グランド電極は、第1グランドパターンと、前記第1グランドパターンの上方、かつ、前記平面視において前記第1グランドパターンの内側に設けられた第2グランドパターンと、前記第1グランドパターンと前記第2グランドパターンとを接続する1以上のグランド導体と、を有し、
     前記1以上のグランド導体は、前記給電ラインの一部を囲み、
     前記第2グランドパターンは、前記給電ラインが貫通する貫通孔を有する、
     アンテナモジュール。
  2.  前記第2グランドパターンは、前記平面視において前記放射電極よりも内側にのみ設けられる、
     請求項1に記載のアンテナモジュール。
  3.  前記放射電極を複数備え、
     前記複数の放射電極は、前記基板にアレイ状に配列されている、
     請求項1または2に記載のアンテナモジュール。
  4.  前記RF信号処理回路は、前記基板内に設けられる、
     請求項1~3のいずれか1項に記載のアンテナモジュール。
  5.  前記放射電極は、前記給電ラインに接続された給電素子と、前記給電素子の上方に設けられた無給電素子とから構成される、
     請求項1~4のいずれか1項に記載のアンテナモジュール。
  6.  前記給電素子と前記無給電素子との間における前記基板の材料と、前記給電素子と前記グランド電極との間における前記基板の材料とは異なる、
     請求項5に記載のアンテナモジュール。
  7.  前記RF信号処理回路は、
     高周波信号を移相する移相回路と、
     前記移相された高周波信号を増幅する増幅回路と、
     前記増幅された高周波信号を前記放射電極に給電するか否かを切り替えるスイッチ素子と、を備える、
     請求項1~6のいずれか1項に記載のアンテナモジュール。
PCT/JP2018/018898 2017-07-06 2018-05-16 アンテナモジュール WO2019008913A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/732,758 US11146303B2 (en) 2017-07-06 2020-01-02 Antenna module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-132788 2017-07-06
JP2017132788 2017-07-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/732,758 Continuation US11146303B2 (en) 2017-07-06 2020-01-02 Antenna module

Publications (1)

Publication Number Publication Date
WO2019008913A1 true WO2019008913A1 (ja) 2019-01-10

Family

ID=64950812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018898 WO2019008913A1 (ja) 2017-07-06 2018-05-16 アンテナモジュール

Country Status (2)

Country Link
US (1) US11146303B2 (ja)
WO (1) WO2019008913A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020149138A1 (ja) * 2019-01-17 2020-07-23 株式会社村田製作所 アンテナモジュールおよびそれを搭載した通信装置、ならびにアンテナモジュールの製造方法
CN112074992A (zh) * 2019-01-25 2020-12-11 株式会社村田制作所 天线模块和搭载该天线模块的通信装置
CN112400255A (zh) * 2019-04-24 2021-02-23 株式会社村田制作所 天线模块和搭载有该天线模块的通信装置
CN113540767A (zh) * 2020-04-15 2021-10-22 上海天马微电子有限公司 相控阵天线及其控制方法
CN113571909A (zh) * 2021-06-30 2021-10-29 上海中航光电子有限公司 天线单元、天线装置以及电子设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102526400B1 (ko) * 2018-09-06 2023-04-28 삼성전자주식회사 5g 안테나 모듈을 포함하는 전자 장치
CN111566876B (zh) * 2018-10-18 2021-07-30 阿莫技术有限公司 具有腔体结构的天线封装组件
JP2021129194A (ja) * 2020-02-13 2021-09-02 株式会社村田製作所 高周波モジュール及び通信装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6388904A (ja) * 1986-10-01 1988-04-20 Nippon Telegr & Teleph Corp <Ntt> マイクロストリツプアンテナ
JPS63189002A (ja) * 1987-01-15 1988-08-04 ボール、コーパレイシヤン 広帯域マイクロストリツプアンテナ及びその製法
JPH0637532A (ja) * 1992-03-26 1994-02-10 Ngk Insulators Ltd 平面型アンテナ
US20080218418A1 (en) * 2007-03-05 2008-09-11 Gillette Marlin R Patch antenna including septa for bandwidth conrol
WO2017047396A1 (ja) * 2015-09-17 2017-03-23 株式会社村田製作所 アンテナ一体型通信モジュール及びその製造方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4401988A (en) * 1981-08-28 1983-08-30 The United States Of America As Represented By The Secretary Of The Navy Coupled multilayer microstrip antenna
JPH0964636A (ja) 1995-08-21 1997-03-07 Matsushita Electric Ind Co Ltd 平面アンテナ
US6982672B2 (en) * 2004-03-08 2006-01-03 Intel Corporation Multi-band antenna and system for wireless local area network communications
US7646343B2 (en) * 2005-06-24 2010-01-12 Ruckus Wireless, Inc. Multiple-input multiple-output wireless antennas
KR101236226B1 (ko) * 2006-08-25 2013-02-21 레이스팬 코포레이션 메타물질 구조물에 기초된 안테나
KR100842271B1 (ko) * 2006-12-05 2008-06-30 한국전자통신연구원 Rfid 리더용 선형 편파 다이버시티 안테나 장치 및 그제어 방법
KR101246173B1 (ko) * 2007-10-11 2013-03-21 레이스팬 코포레이션 단일층 금속화 및 비아-레스 메타 물질 구조
US9190735B2 (en) * 2008-04-04 2015-11-17 Tyco Electronics Services Gmbh Single-feed multi-cell metamaterial antenna devices
WO2010033865A2 (en) * 2008-09-19 2010-03-25 Rayspan Corporation Metamaterial loaded antenna devices
JP4784636B2 (ja) * 2008-10-28 2011-10-05 Tdk株式会社 表面実装型アンテナ及びこれを用いるアンテナ装置並びに無線通信機
WO2011052238A1 (ja) * 2009-11-02 2011-05-05 パナソニック株式会社 アダプティブアレーアンテナ、およびアダプティブアレーアンテナを備えた無線装置
JP5071465B2 (ja) * 2009-11-11 2012-11-14 株式会社村田製作所 高周波モジュール
CN102377017B (zh) * 2010-08-13 2016-05-18 光宝电子(广州)有限公司 多回圈天线***及具有该多回圈天线***的电子装置
JP5408166B2 (ja) * 2011-03-23 2014-02-05 株式会社村田製作所 アンテナ装置
US8619805B2 (en) * 2011-12-22 2013-12-31 Silver Spring Networks, Inc. System and method for optimal listen before transmit in wireless communications
TWI529939B (zh) * 2012-02-08 2016-04-11 Sony Corp High frequency semiconductor device and its manufacturing method
JP2013223000A (ja) * 2012-04-13 2013-10-28 Toko Inc アンテナ装置
JP5677499B2 (ja) * 2013-04-11 2015-02-25 太陽誘電株式会社 高周波回路モジュール
WO2016063759A1 (ja) 2014-10-20 2016-04-28 株式会社村田製作所 無線通信モジュール
US10122399B2 (en) * 2015-03-10 2018-11-06 Mediatek Inc. Antenna ground and feed swapping in handheld applications
WO2017087730A1 (en) * 2015-11-17 2017-05-26 Ossia Inc. Integrated circuits for transmitting wireless power, receiving wireless power, and/or communicating wirelessly
US9929886B2 (en) * 2016-06-06 2018-03-27 Intel Corporation Phased array antenna cell with adaptive quad polarization

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6388904A (ja) * 1986-10-01 1988-04-20 Nippon Telegr & Teleph Corp <Ntt> マイクロストリツプアンテナ
JPS63189002A (ja) * 1987-01-15 1988-08-04 ボール、コーパレイシヤン 広帯域マイクロストリツプアンテナ及びその製法
JPH0637532A (ja) * 1992-03-26 1994-02-10 Ngk Insulators Ltd 平面型アンテナ
US20080218418A1 (en) * 2007-03-05 2008-09-11 Gillette Marlin R Patch antenna including septa for bandwidth conrol
WO2017047396A1 (ja) * 2015-09-17 2017-03-23 株式会社村田製作所 アンテナ一体型通信モジュール及びその製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020149138A1 (ja) * 2019-01-17 2020-07-23 株式会社村田製作所 アンテナモジュールおよびそれを搭載した通信装置、ならびにアンテナモジュールの製造方法
CN113330644A (zh) * 2019-01-17 2021-08-31 株式会社村田制作所 天线模块、搭载有该天线模块的通信装置以及天线模块的制造方法
CN113330644B (zh) * 2019-01-17 2023-08-08 株式会社村田制作所 天线模块、搭载有该天线模块的通信装置以及天线模块的制造方法
US12027787B2 (en) 2019-01-17 2024-07-02 Murata Manufacturing Co., Ltd. Antenna module, communication device in which antenna module is installed, and method of manufacturing antenna module
CN112074992A (zh) * 2019-01-25 2020-12-11 株式会社村田制作所 天线模块和搭载该天线模块的通信装置
CN112074992B (zh) * 2019-01-25 2021-09-14 株式会社村田制作所 天线模块和搭载该天线模块的通信装置
CN112400255A (zh) * 2019-04-24 2021-02-23 株式会社村田制作所 天线模块和搭载有该天线模块的通信装置
CN113540767A (zh) * 2020-04-15 2021-10-22 上海天马微电子有限公司 相控阵天线及其控制方法
CN113540767B (zh) * 2020-04-15 2022-12-16 上海天马微电子有限公司 相控阵天线及其控制方法
CN113571909A (zh) * 2021-06-30 2021-10-29 上海中航光电子有限公司 天线单元、天线装置以及电子设备
CN113571909B (zh) * 2021-06-30 2024-02-09 上海中航光电子有限公司 天线单元、天线装置以及电子设备

Also Published As

Publication number Publication date
US20200145038A1 (en) 2020-05-07
US11146303B2 (en) 2021-10-12

Similar Documents

Publication Publication Date Title
WO2019008913A1 (ja) アンテナモジュール
CN110998974B (zh) 天线模块和通信装置
US11011843B2 (en) Antenna element, antenna module, and communication apparatus
JP6750738B2 (ja) アンテナモジュールおよび通信装置
US10950945B2 (en) Antenna element, antenna module, and communication apparatus
US10892554B2 (en) Antenna element, antenna module, and communication device
US11211720B2 (en) High-frequency module and communication device
CN111480265B (zh) 高频模块以及通信装置
CN110506367B (zh) 天线模块和通信装置
WO2019130771A1 (ja) アンテナアレイおよびアンテナモジュール
JP6777273B1 (ja) アンテナモジュールおよびそれを搭載した通信装置
US11936123B2 (en) Sub-array antenna, array antenna, antenna module, and communication device
US11936125B2 (en) Antenna module and communication device equipped with the same
CN112640209A (zh) 天线模块以及搭载有该天线模块的通信装置
WO2019017075A1 (ja) アンテナモジュール及び通信装置
US11264732B2 (en) Antenna module and communication apparatus
WO2019054094A1 (ja) アンテナモジュール
WO2020050341A1 (ja) アンテナ素子、アンテナモジュールおよび通信装置
WO2020066604A1 (ja) アンテナモジュール、通信装置およびアレイアンテナ
CN116918183A (zh) 天线模块以及搭载有该天线模块的通信装置
US11588243B2 (en) Antenna module and communication apparatus equipped with the same
US11283150B2 (en) Antenna module
WO2022230427A1 (ja) アンテナ装置
WO2023188969A1 (ja) アンテナモジュール
US20240178567A1 (en) Antenna module and communication apparatus equipped with the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18828001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP