WO2019008908A1 - Linear motor system - Google Patents

Linear motor system Download PDF

Info

Publication number
WO2019008908A1
WO2019008908A1 PCT/JP2018/018673 JP2018018673W WO2019008908A1 WO 2019008908 A1 WO2019008908 A1 WO 2019008908A1 JP 2018018673 W JP2018018673 W JP 2018018673W WO 2019008908 A1 WO2019008908 A1 WO 2019008908A1
Authority
WO
WIPO (PCT)
Prior art keywords
linear motor
command value
motor system
value
stroke
Prior art date
Application number
PCT/JP2018/018673
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 尚礼
小山 昌喜
Original Assignee
日立オートモティブシステムズ株式会社
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社, 株式会社日立産機システム filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2019008908A1 publication Critical patent/WO2019008908A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • H02P25/064Linear motors of the synchronous type

Definitions

  • the present invention relates to a linear motor system, and more particularly to a linear motor system including a linear motor having a mover to which an elastic body is connected.
  • Patent Document 1 discloses a linear compressor having a reciprocating piston, a linear motor for driving the piston, and a motor control unit for controlling the linear motor so that the stroke length of the piston varies according to a required cold force.
  • the linear compressor described in Patent Document 1 includes a collision proximity sensing unit that detects whether or not the piston passes through the collision proximity position, and the return time of the collision proximity point is determined according to a predetermined tolerance time for each cooling power. It changes the thrust of the linear motor.
  • the collision / proximity sensing unit described in Patent Document 1 needs to have a sensor such as a laser or an optical sensor in order to sense the position of the piston, and wiring becomes complicated and it is difficult to realize space saving. Become. Therefore, the present invention provides a linear motor system capable of avoiding the collision of the mover without requiring a sensor for detecting the collision.
  • a linear motor system concerning the present invention is provided with a linear motor which has a mover to which a winding to which at least alternating current voltage is applied and an elastic body are connected, and an amplitude of alternating current flowing through the winding. And a linear motor drive device that detects that the mover has exceeded a maximum displacement when the detected amplitude exceeds a predetermined value.
  • FIG. 7 is an entire schematic configuration diagram of a linear motor system of a second embodiment. It is explanatory drawing which shows the structural example of the collision determination device which comprises the control part of the linear motor drive shown in FIG.
  • the terms “front-rear direction, left-right direction, and up-down direction orthogonal to each other” are used, but the gravity direction does not have to be parallel to the lower direction. It can be parallel to other directions.
  • FIG. 1 is a schematic view of the entire configuration of a linear motor system according to a first embodiment of the present invention.
  • the linear motor system 100 includes a linear motor drive device 101 and a linear motor 104.
  • the linear motor 104 has an armature 9 and a mover 6 which move relative to each other.
  • the mover 6 moves in the vertical direction, but the armature 9 and the mover 6 (field element) may move relative to each other, and the armature 9 may move in the vertical direction.
  • the direction of the reciprocation is not limited to the vertical direction.
  • control unit 102 outputs an output voltage command value to power conversion circuit 105 or a drive signal (pulse signal) for driving power conversion circuit 105 according to the detection result of current detector 107. Details of the control unit 102 will be described later. Although the details will be described later, the power conversion circuit 105 is an example of a power conversion unit that converts the voltage of the DC voltage source 120 (FIG. 21) and outputs an AC voltage. A direct current source may be used instead of the direct current voltage source 120.
  • FIG. 2 is a perspective view of the linear motor 104 (a perspective view of a configuration example of an armature).
  • the linear motor 104 of the present embodiment has a mover 6 which can move relative to the armature 9 in the direction (longitudinal direction) in which the permanent magnets 2 (2a, 2b) are arranged.
  • the armature 9 has two magnetic poles 7 opposed in the vertical direction via an air gap, and a winding 8 wound around the magnetic poles 7.
  • the mover 6 is disposed in this air gap.
  • the magnetic pole 7 has magnetic pole teeth 70 (also referred to as teeth) as end surfaces facing the mover 6.
  • the armature 9 can apply a force in the front-rear direction (hereinafter referred to as thrust) to the mover 6.
  • thrust can be controlled so that the mover 6 reciprocates in the front-rear direction.
  • the mover 6 has two flat permanent magnets 2 (2a, 2b) magnetized in the vertical direction.
  • the rear permanent magnet 2a and the front permanent magnet 2b are magnetized in opposite directions.
  • the rear permanent magnet 2a has an N pole on the upper side
  • the front permanent magnet 2b has an S pole on the upper side.
  • the permanent magnets 2 a and 2 b are illustrated, but the mover 6 is not illustrated.
  • the control unit 102 outputs a drive signal so that the mover 6 reciprocates in a range in which the permanent magnets 2 a and 2 b face the armature 9.
  • FIG. 3 is a cross-sectional view taken along the line A-A 'of FIG. 2 (A-A' cross-sectional view).
  • the magnetic pole 7 and the yoke 7e are integrally formed of, for example, a magnetic substance such as iron, and constitute a magnetic circuit.
  • Arrow lines in FIG. 3 indicate an example of magnetic flux lines when current flows through the two windings 8. The direction of flow of the magnetic flux can be reversed depending on the direction of the current flowing through the winding 8 and thus is not limited to the illustrated one.
  • the magnetic pole teeth 70 are magnetized by the magnetic flux lines.
  • FIG. 4 is a diagram for explaining the thrust that the mover 6 receives due to the magnetization of the magnetic pole teeth 70.
  • the polarities of the magnetic pole teeth 70 generated by the current flowing through the winding 8 are represented by "N" and "S” attached near the magnetic pole teeth 70 in the figure.
  • the white arrow indicates the direction of the current flowing through the winding 8.
  • the left figure in FIG. 4 shows that the mover 6 is forced forward by magnetizing the upper magnetic pole teeth 70 a to “S” and the lower magnetic pole teeth 70 b to “N” by the current flowing through the winding 8.
  • An example is shown in which the mover 6 has moved forward.
  • the current flowing through the winding 8 magnetizes the upper magnetic pole teeth 70a to "N” and the lower magnetic pole teeth 70b to "S", thereby moving the mover 6 backward in force.
  • An example is shown in which the mover 6 moves backward.
  • magnetic flux can be supplied to the magnetic circuit including the two magnetic poles 7 to magnetize the two opposing magnetic pole teeth 70 (magnetic pole tooth set).
  • an alternating voltage or current such as a sine wave or a rectangular wave (square wave) as the voltage or current, it is possible to give a thrust for reciprocating the mover 6. Thereby, the motion of the mover 6 can be controlled.
  • the thrust applied to the mover 6 can be changed by changing the amplitude of the applied alternating current or alternating voltage.
  • the displacement of the mover 6 can be changed as desired by appropriately changing the thrust applied to the mover 6 using a known method.
  • the mover 6 reciprocates (e.g., a motion generated in the mover 6 by sequentially repeating magnetization of the magnetic pole teeth 70 as shown in the left and right views of FIG. 4), it changes in an alternating waveform.
  • the amount of change in displacement of the mover 6 is called a stroke.
  • the magnetic pole teeth 70 are magnetic members, a magnetic attraction force for attracting the permanent magnet 2 acts.
  • the two magnetic pole teeth 70 are disposed to face each other with a space between them so as to sandwich the mover 6, the total force of the magnetic attraction force acting on the mover 6 can be reduced.
  • the linear motor drive device 101 constituting the linear motor system 100 has a configuration for detecting that the stroke has exceeded a predetermined value.
  • FIG. 5 is an explanatory view of an external mechanism connected to the mover 6.
  • an external mechanism constituted by a resonance spring 23 (assist spring) which is a coil spring is connected to one end of the mover 6, and its spring force It is a figure explaining the mechanism by which the needle
  • One end of the resonant spring 23 is connected to the mover 6 via the intermediate portion 24, and the other end is fixed to the base 25.
  • a side portion 26 which extends substantially in parallel with the extending direction of the resonant spring 23 and guides or supports the resonant spring 23 is provided.
  • the mover 6 (field element 6) is configured as a mover (field element) moving type that moves in the vertical direction, but instead of the mover 6, an elastic body is connected to the armature 9 Then, it may be configured as an armature movement type in which the armature 9 is moved in the vertical direction.
  • the resonant springs 23 are compressed too much and contact each other, or the mover 6 collides with a stopper (not shown) that restricts the stroke, thereby causing vibration. And cause noise. Therefore, it is desirable to detect that the stroke has exceeded a predetermined value.
  • the control unit 102 receives a current detection value Im from the current detector 107 and outputs a low frequency component amplitude value, and outputs a low frequency component detector 130 and a low frequency component detector 130.
  • the collision determination unit 131 performs collision determination based on the amplitude value of the component and outputs a collision determination signal, which will be described later, and a stroke command value l * and collision determination unit 131 input from an upper controller (not shown).
  • Voltage command value generator 133 outputs voltage command value Vm * applied to linear motor 104 based on the above, and PWM signal outputs a drive signal driving power conversion circuit 105 based on input voltage command value Vm *.
  • a creator 134 is a creator 134.
  • FIG. 6 is an explanatory view showing a configuration example of the voltage command value generator 133 that constitutes the control unit 102 of the linear motor drive device 101 shown in FIG.
  • the voltage command value generator 133 outputs a single-phase AC voltage command value Vm * based on the stroke command value l * input from the upper controller (not shown) or the like and a collision determination signal described later.
  • the voltage command value Vm * applied to the linear motor 104 can be adjusted by changing either or both of the stroke command value l * and the frequency number command value ⁇ * . That is, by adjusting the amplitude and frequency of the applied voltage, it becomes possible to control the drive frequency ⁇ to the resonance frequency and to control the stroke.
  • the frequency command value omega * or preset by the voltage command value generator 133 another controller integrates the frequency command value input (not shown) or the like omega * phase
  • the command value ⁇ * is created by the integrator 140.
  • the phase command value ⁇ * is input to a cosine calculator 82 b (the cosine of the input value is output) to obtain a cosine (cos ⁇ * ) with respect to the phase command value ⁇ * .
  • the cosine (cos ⁇ * ) and the stroke command value l * are multiplied by the multiplier 92a.
  • the velocity command value vm * of the mover 6 can be obtained without performing the differential operation.
  • one of the position command value xm * and the speed command value vm * can be sine and the other can be cosine.
  • the speed command value vm * of the mover 6 is multiplied by the induced voltage constant Ke * by the multiplier 92 b to obtain a single-phase AC voltage command value Vm * .
  • the voltage command value generator 133 can apply a known driving voltage command method of a synchronous motor other than the above.
  • the frequency command value ⁇ * may be fixed to the mechanical resonance frequency of the vibrator including the mover 6. The stroke command switch 150 will be described later.
  • ⁇ PWM signal generator 133 The PWM signal generator 134 that constitutes the control unit 102 of the linear motor drive device 101 shown in FIG. 1 is known by comparing the carrier signal of the triangular wave with the voltage command value Vm * output from the voltage command value generator 133.
  • the drive signal corresponding to the voltage command value Vm * is generated using the pulse width modulation of the above, and the generated drive signal is output to the power conversion circuit 105.
  • FIG. 7 is a diagram showing a configuration example of the power conversion circuit 105 that constitutes the linear motor drive device 101 shown in FIG.
  • the full bridge circuit 126 switches the DC voltage source 120 according to the drive signal input by the control unit 102, and outputs a voltage to the linear motor 104.
  • the full bridge circuit 126 includes four switching elements 122, and includes first and second upper and lower arms (hereinafter referred to as U phase) having switching elements 122a and 122b connected in series, and second upper and lower arms having switching elements 122c and 122d.
  • An arm hereinafter, referred to as a V phase
  • U phase first and second upper and lower arms having switching elements 122a and 122b connected in series
  • V phase An arm
  • Switching element 122 can perform switching operation according to pulse-shaped gate signals (124 a to 124 d) output from gate driver circuit 123 based on voltage command value Vm * generated by control unit 102 and a drive signal by pulse width modulation. .
  • a voltage corresponding to an AC voltage of DC voltage source 120 can be output to winding 8.
  • a direct current source may be used instead of the direct current voltage source 120.
  • the switching element 122 for example, a semiconductor switching element such as an IGBT or a MOS-FET can be employed.
  • the linear motor 104 is connected between the switching elements 122 a and 122 b of the first upper and lower arms and between the switching elements 122 c and 122 d of the second upper and lower arms of the power conversion circuit 105.
  • FIG. 7 shows an example in which the windings 8 of the upper and lower armatures 9 are connected in parallel, the windings 8 may be connected in series.
  • the U-phase lower arm and the V-phase lower arm may be provided with a current detector 107 such as a CT (current transformer).
  • a current detector 107 such as a CT (current transformer).
  • CT current transformer
  • the current detector 107 for example, in place of the CT, a shunt resistor 125 is added to the lower arm of the power conversion circuit 105, and a phase shunt current method is employed to detect the current flowing to the linear motor 104 from the current flowing to the shunt resistor 125 it can.
  • a single shunt current detection method for detecting the current on the alternating current side of the power conversion circuit 105 from the direct current flowing in the shunt resistor 125 added to the direct current side of the power conversion circuit 105 may be adopted.
  • the single shunt current detection method utilizes that the current flowing in the shunt resistor 125 temporally changes depending on the conduction state of the switching element 122 that constitutes the power conversion circuit 105.
  • FIG. 8 is an explanatory diagram of an example of a current waveform when the mover 6 constituting the linear motor 104 collides with a staple which limits the stroke.
  • the horizontal axis represents time
  • the vertical axis represents motor current, and shows time change of motor current.
  • the upper drawing of FIG. 8 shows the waveform of the motor current when the electromechanical time constant is short
  • the lower drawing of FIG. 8 shows the waveform of the motor current when the electromechanical time constant is long.
  • the current waveform of the motor current at the time of the collision alternately appears in amplitude. This can be explained as follows.
  • the electromechanical time constant when the electromechanical time constant is long, it can be regarded as a frequency lower than 1/2 of the drive frequency.
  • the example shown in the lower part of FIG. 8 can be regarded as one-third the drive frequency.
  • the drive cycle can be regarded as three times.
  • it is detected that the stroke has exceeded a predetermined value by specifying a current waveform of a frequency half of the drive frequency or a frequency component lower than half the drive frequency.
  • the current waveform at the time of collision is acquired in advance, it can be known which frequency component should be acquired.
  • the driving frequency is illustrated as an example of 1/2 and 1/3 of the driving frequency, the present invention is not limited to this.
  • the current waveform at the time of a collision, such as 1/4 of a drive wave number beforehand.
  • FIG. 9 is an explanatory view showing a configuration example of the low frequency component detector 130 constituting the control unit 102 of the linear motor drive device 101 shown in FIG.
  • the current waveform at the time of a collision has a short electromechanical time constant including the load system shown in the upper drawing of FIG. Therefore, the current waveform of the frequency component having a half of the drive frequency (twice the drive cycle) is specified.
  • the coefficient of the division period 156 described later may be changed as appropriate.
  • the frequency command value omega * or preset by the voltage command value generator 133, another controller (not shown) is multiplied by 1/2 by the frequency command value omega * the frequency divider 156 obtained from such, integration
  • the phase command value ⁇ 2 * is created by the integrator 140 a.
  • the phase command value ⁇ 2 * is input to a sine calculator 81c (outputs the sine of the input value) and a cosine calculator 82c (outputs the cosine of the input value), and sine (sin ⁇ 2 * ) with respect to the phase command value ⁇ 2 * And the cosine (cos ⁇ 2 * ).
  • multipliers 92e and 92f, an adder 90, and a square root calculator 96 are used to take the sum of squares of the output values of the LPF 157a and the LPF 157b to obtain a current amplitude. By doing this, it is possible to obtain the current amplitude (Im_1 / 2) of the desired frequency component (here, the frequency component of 1/2 of the drive frequency).
  • FIG. 10 is an explanatory view showing a configuration example of the collision determination unit 131 which constitutes the control unit 102 of the linear motor drive device 101 shown in FIG.
  • the determination unit 164 included in the collision determination unit 131 is a low level signal (digital In the case of an output, for example, "0" is output as a collision determination signal, and when larger than a predetermined value A, a high level signal (for example, "1" in the case of digital output) is output as a collision determination signal. .
  • the determination value (predetermined value A) may be changed according to the elapsed time, or may be changed from a higher controller (not shown). Further, by providing a hysteresis width in the determination value (predetermined value A), it is possible to change the determination timing when the stroke exceeds the predetermined value and the determination timing when the stroke becomes less than or equal to the predetermined value. Thereby, false detection can be prevented. This is particularly effective, for example, when the current detection value contains a large amount of noise.
  • FIG. 11 is an explanatory view showing time change of various values at the time of collision and collision avoidance.
  • FIGS. 6 and 11 showing a configuration example of the voltage command value creation unit 133 that configures the control unit 102 of the linear motor drive device 101.
  • FIG. 11 from top to bottom, temporal change of motor current (current waveform), temporal change of stroke of movable element 6, temporal change of voltage / current phase difference, temporal change of low frequency component current amplitude, condition of collision determination signal It shows a change and a time change of voltage amplitude.
  • FIG. 11 shows a change and a time change of voltage amplitude.
  • the motor current detected by the current detector 107 and the time change of the stroke of the mover 6 have a sinusoidal waveform having approximately the same phase and constant amplitude.
  • the voltage / current phase difference is zero
  • the low frequency component current amplitude output from the low frequency component detector 130 is near zero
  • the collision determination signal output from the collision determination unit 131 is a low level signal (L).
  • the voltage amplitude of the voltage command value Vm * output from the voltage command value generator 133 is constant.
  • the low frequency component current amplitude output from the low frequency component detector 130 is delayed as described above by the LPFs (low pass filters) 157a and 157b that constitute the low frequency component detector 130. Therefore, the waveform becomes a waveform that gradually increases.
  • the current amplitude (Im_1 / 2) of the frequency component of 1/2 of the drive frequency is output.
  • the collision determination unit 131 determines that the current amplitude (Im_1 / 2) of the frequency component input from the low frequency component detector 130, that is, the low frequency component current amplitude value exceeds the predetermined value A in FIG.
  • a high level signal (H) is output as a collision determination signal when it is detected.
  • the stroke command switching device 150 which configures the voltage command value creator 133 as shown in FIG. Switch from side to side B Then, the value reduced by the stroke subtraction value ⁇ l * from the stroke command value l * by the subtractor 91 becomes the stroke command value l * .
  • the collision determination unit 131 After the above-described collision avoidance operation, when the current amplitude (Im_1 / 2) of the frequency component input from the low frequency component detector 130 reaches a predetermined value C, the collision determination unit 131 generates a low level signal (L) as a collision determination signal. Are output to the voltage command value generator 133. Then, as shown in FIG. 11, the normal operation state described above is restored.
  • the present embodiment it is possible to provide a linear motor system capable of avoiding the collision of the mover without requiring a sensor for detecting the collision. Further, with the configuration of this embodiment, it is possible to realize wire saving and downsizing of the linear motor system capable of detecting that the stroke has exceeded a predetermined value.
  • the configuration of this embodiment can be the same as that of Embodiment 1 except for the following points.
  • the present embodiment relates to a hermetic compressor 50 as an example of a device equipped with a linear motor system 200 described later.
  • FIG. 12 is a longitudinal sectional view of a hermetic compressor according to a second embodiment of the present invention, and is an example of a longitudinal cross sectional view of the hermetic compressor 50 having the linear motor 104.
  • the hermetic compressor 50 is a reciprocating compressor in which the compression element 20 and the electric element 30 are disposed in the hermetic container 3.
  • the compression element 20 and the motor element 30 are elastically supported in the closed container 3 by a support spring 49.
  • the motor element 30 includes the mover 6 and the armature 9.
  • the compression element 20 comprises a cylinder block 1 forming a cylinder 1 a, a cylinder head 16 assembled on the end face of the cylinder block 1, and a head cover 17 forming a discharge chamber space.
  • the working fluid supplied into the cylinder 1a is compressed by the reciprocating motion of the piston 4, and the compressed working fluid is sent to a discharge pipe (not shown) communicating with the outside of the compressor.
  • a discharge pipe (not shown) communicating with the outside of the compressor.
  • the working fluid for example, air or a refrigerant of a refrigeration cycle can be adopted.
  • a piston 4 is attached to one end of the mover 6.
  • the working fluid is compressed and expanded by reciprocating the mover 6 and the piston 4.
  • the work and the like required for the compression and expansion correspond to the fluctuating load.
  • a compression element 20 is disposed at one end of the motorized element 30.
  • the cylinder block 1 has a guide rod for guiding the reciprocating motion of the mover 6 along the longitudinal direction.
  • a hermetic connector called hermetic connector or hermetic seal may be used. In order to maintain air tightness, it is desirable to minimize the number of connectors.
  • the piston 4 is fixed to the base 25 via the mover 6 and the resonance spring 23, but the stroke is not mechanically limited. Therefore, if the stroke of the mover 6 becomes larger than expected, the piston 4 may collide with the cylinder head 16. Alternatively, the piston 4 on the opposite side of the cylinder 1 a or the mover 6 may collide with, for example, the magnetic pole 7 or the winding 8 of the linear motor 104. When the piston 4 collides with the cylinder head 16, not only it becomes noise, but in the worst case, the piston 4 and the cylinder head 16 may be damaged. Therefore, it is desirable to appropriately control the stroke even at the time of transition such as at the time of start-up, and in the case of a collision, it is necessary to detect that.
  • the linear motor system 200 detects the fluctuation of the amplitude of the alternating current flowing through the linear motor 104, and detects that the maximum displacement of the mover 6 is exceeded when the amplitude fluctuation exceeds a predetermined value. As a result, it is possible to save wiring and space, and to realize highly efficient linear motor drive.
  • FIG. 13 is an overall schematic configuration diagram of the linear motor system 200 of the present embodiment.
  • the linear motor system 200 includes a linear motor drive device 201 and a linear motor 104.
  • the linear motor drive device 201 includes a power conversion circuit 105, a current detector 106, and a control unit 202.
  • the control unit 202 includes a low frequency component detector 130, a collision determination unit 131a, a voltage command value generator 133, and a PWM signal generator 134.
  • the determination value (predetermined value) is switched depending on the elapsed time or the load condition.
  • FIG. 14 is an explanatory view showing a configuration example of the collision determination unit 131a constituting the control unit 202 of the linear motor drive device 201 shown in FIG.
  • the collision determination unit 131a includes two determination units 164a and 164b, an integrator 94, and a coefficient unit 159.
  • the determiner 164a included in the collision determiner 131 has a low level signal (in the case of digital output, for example, “0” is output, and when it is larger than the predetermined value A, a high level signal (for example, “1” in the case of digital output) is output.
  • the output from the determiner 164 a is a value multiplied by the coefficient K_coll in the coefficient unit 159, and is further integrated in the integrator 94.
  • the output of the integrator 94 is input to the determiner 164b.
  • the determination unit 164b When the output from the integrator 94 exceeds the predetermined value B (determination value), the determination unit 164b outputs a high level signal (for example, “1” in the case of digital output) as a collision determination signal, and the predetermined value B In the following cases, a low level signal (for example, “0” in the case of digital output) is output as a collision determination signal.
  • a high level signal for example, “1” in the case of digital output
  • a low level signal for example, “0” in the case of digital output
  • the linear motor system 200 for detecting that the stroke has exceeded the predetermined value in the hermetic compressor 50, it is possible to realize wire saving and downsizing. It becomes.
  • the judgment value (predetermined value) during operation or providing a hysteresis to the judgment value (predetermined value)
  • the linear motor 104 by appropriately switching the determination value (predetermined value) according to the elapsed time or the load of the linear motor 104 (for example, proportional to the difference between the suction pressure and the discharge pressure of the pressure element 20), no load (pressure It is possible to provide a linear motor system capable of appropriately performing collision detection even under a wide range of load conditions such as suction pressure and discharge pressure of the element 20 from pressure equalization) to heavy load.
  • the compressor shown in the present embodiment can be applied to a compressor that compresses a working fluid to adjust the height of the air suspension.
  • the present invention is not limited to the embodiments described above, but includes various modifications.
  • the embodiments described above are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • each of the configurations, functions, processing units, processing procedures, and the like described above may be realized by hardware, for example, by designing part or all of them with an integrated circuit.
  • each configuration, function, and the like described above may be realized by software by a processor interpreting and executing a program that realizes each function.
  • the power conversion circuit 105 may output a current.
  • a current command value creator may be provided instead of the voltage command value creator 103.
  • head cover 20: compression element, 23: resonance spring (assist spring), 30: electric element, 50: sealed compressor, 100, 200: linear motor system, 101, 201: linear motor drive, 102, 202: control unit 104: linear motor, 105: power conversion circuit, 106, 107: current detector, 126: full bridge circuit, 130: low frequency component detector, 131, 131a: collision determiner, 133: voltage command value generator, 134: PWM signal generator, 140: integrator, 150: stroke command switch

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Control Of Linear Motors (AREA)
  • Linear Motors (AREA)

Abstract

Provided is a linear motor system that can prevent mobile element impact, without the need for a sensor that detects impact. A linear motor system 100 that comprises: a linear motor 104 that has a winding 8 to which at least alternating current voltage is applied and a mobile element 6 to which an elastic body 23 is connected; and a linear motor drive device 101 that detects fluctuations in the amplitude of the alternating current flowing in the winding 8 and, when the detected amplitude has exceeded a prescribed value, detects that the mobile element 6 has exceeded a maximum displacement.

Description

リニアモータシステムLinear motor system
 本発明は、リニアモータシステムに係り、特に、弾性体を接続させた可動子を有するリニアモータを備えるリニアモータシステムに関する。 The present invention relates to a linear motor system, and more particularly to a linear motor system including a linear motor having a mover to which an elastic body is connected.
 リニアモータにてピストンを往復運動させる、所謂リニア圧縮機として例えば特許文献1に記載される技術が知られている。特許文献1では、往復動形のピストン、ピストンを駆動するリニアモータ、及び所要冷力に従ってピストンのストロークの大きさが異なるようにリニアモータを制御するモータ制御部を有するリニア圧縮機が開示されている。特許文献1に記載されるリニア圧縮機は、ピストンが衝突近接位置を通過するか否かを検出する衝突近接感知部を備え、衝突近接点のリターン時間が冷力別の所定の許容時間により、リニアモータの推力を変更するものである。 For example, as a so-called linear compressor in which a piston is reciprocated by a linear motor, a technology described in Patent Document 1 is known. Patent Document 1 discloses a linear compressor having a reciprocating piston, a linear motor for driving the piston, and a motor control unit for controlling the linear motor so that the stroke length of the piston varies according to a required cold force. There is. The linear compressor described in Patent Document 1 includes a collision proximity sensing unit that detects whether or not the piston passes through the collision proximity position, and the return time of the collision proximity point is determined according to a predetermined tolerance time for each cooling power. It changes the thrust of the linear motor.
特開2005-195026号公報JP 2005-195026 A
 しかしながら特許文献1に記載される衝突近接感知部は、ピストンの位置を感知するため、レーザ或いは光センサ等のセンサを有する必要があり、配線が煩雑になり省スペース化を実現することは困難となる。 
 そこで、本発明は、衝突を検知するセンサを要することなく、可動子の衝突を回避可能なリニアモータシステムを提供する。
However, the collision / proximity sensing unit described in Patent Document 1 needs to have a sensor such as a laser or an optical sensor in order to sense the position of the piston, and wiring becomes complicated and it is difficult to realize space saving. Become.
Therefore, the present invention provides a linear motor system capable of avoiding the collision of the mover without requiring a sensor for detecting the collision.
 上記課題を解決するため、本発明に係るリニアモータシステムは、少なとも交流電圧が印加される巻線及び弾性体が接続する可動子を有するリニアモータを備え、前記巻線に流れる交流電流の振幅の変動を検出し、検出される振幅が所定値を超えた場合、前記可動子が最大変位を超えたと検知するリニアモータ駆動装置を有することを特徴とする。 In order to solve the above-mentioned subject, a linear motor system concerning the present invention is provided with a linear motor which has a mover to which a winding to which at least alternating current voltage is applied and an elastic body are connected, and an amplitude of alternating current flowing through the winding. And a linear motor drive device that detects that the mover has exceeded a maximum displacement when the detected amplitude exceeds a predetermined value.
 本発明によれば、衝突を検知するセンサを要することなく、可動子の衝突を回避可能なリニアモータシステムを提供することが可能となる。 
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to the present invention, it is possible to provide a linear motor system capable of avoiding the collision of the mover without requiring a sensor for detecting the collision.
Problems, configurations, and effects other than those described above will be apparent from the description of the embodiments below.
本発明の一実施例に係る実施例1のリニアモータシステムの全体概略構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole schematic block diagram of the linear motor system of Example 1 which concerns on one Example of this invention. 電機子の構成例の斜視図である。It is a perspective view of the example of composition of an armature. 磁極の縦断面と磁束の流れを示す模式図である。It is a schematic diagram which shows the longitudinal cross section of a magnetic pole, and the flow of magnetic flux. 磁極歯に発生する極性の説明図である。It is explanatory drawing of the polarity generate | occur | produced in a magnetic pole tooth. 可動子に接続される外部機構の説明図である。It is explanatory drawing of the external mechanism connected to a needle | mover. 図1に示すリニアモータ駆動装置の制御部を構成する電圧指令値作成器の構成例を示す説明図である。It is explanatory drawing which shows the structural example of the voltage command value creation part which comprises the control part of the linear motor drive shown in FIG. 図1に示すリニアモータ駆動装置を構成する電力変換回路の構成例を示す図である。It is a figure which shows the structural example of the power inverter circuit which comprises the linear motor drive shown in FIG. リニアモータを構成する可動子がストロークを制限するスットパーに衝突した際の電流波形例の説明図である。It is explanatory drawing of the example of a current waveform at the time of the mover which comprises a linear motor colliding with the stapler which restrict | limits a stroke. 図1に示すリニアモータ駆動装置の制御部を構成する低周波成分検出器の構成例を示す説明図である。It is explanatory drawing which shows the structural example of the low frequency component detector which comprises the control part of the linear motor drive shown in FIG. 図1に示すリニアモータ駆動装置の制御部を構成する衝突判定器の構成例を示す説明図である。It is explanatory drawing which shows the structural example of the collision determination device which comprises the control part of the linear motor drive shown in FIG. 衝突及び衝突回避時における各種値の時間変化を示す説明図である。It is an explanatory view showing time change of various values at the time of collision and collision avoidance. 本発明の他の実施例に係る実施例2の密閉型圧縮機の縦断面図である。It is a longitudinal cross-sectional view of the closed type compressor of Example 2 which concerns on the other Example of this invention. 実施例2のリニアモータシステムの全体概略構成図である。FIG. 7 is an entire schematic configuration diagram of a linear motor system of a second embodiment. 図13に示すリニアモータ駆動装置の制御部を構成する衝突判定器の構成例を示す説明図である。It is explanatory drawing which shows the structural example of the collision determination device which comprises the control part of the linear motor drive shown in FIG.
 以下、添付の図面を参照しつつ本発明の実施例を詳細に説明する。同様の構成要素には同様の符号を付し、重複する説明を省略する。 
 本発明の各種の構成要素は、必ずしも個々に独立した存在である必要はなく、複数の構成要素が一個の部材として形成されていること、一つの構成要素が複数の部材で形成されていること、或る構成要素が他の構成要素の一部であること、或る構成要素の一部と他の構成要素の一部とが重複していること、等を許容する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the attached drawings. The same components are denoted by the same reference numerals and redundant description will be omitted.
The various components of the present invention do not necessarily have to be independent entities, but a plurality of components are formed as one member, and one component is formed of a plurality of members. , Allow one component to be part of another component, overlap between part of one component and part of another component, etc.
 本実施例では、説明の便宜上、互いに直交する前後方向、左右方向、及び上下方向という語を用いるが、重力方向は必ずしも下方向に平行である必要はなく、前後方向、左右方向、上下方向又はそれ以外の方向に平行にすることができる。 In this embodiment, for convenience of explanation, the terms “front-rear direction, left-right direction, and up-down direction orthogonal to each other” are used, but the gravity direction does not have to be parallel to the lower direction. It can be parallel to other directions.
 <リニアモータシステム100> 
 図1は、本発明の一実施例に係る実施例1のリニアモータシステムの全体概略構成図である。リニアモータシステム100は、リニアモータ駆動装置101及びリニアモータ104から構成される。後述するようにリニアモータ104は、相対移動する電機子9及び可動子6を有する。 
 本実施例では、可動子6が鉛直方向に移動するが、電機子9及び可動子6(界磁子)が相対移動すれば良く、電機子9が鉛直方向に移動する態様でも良い。なお、以下では、可動子6が鉛直方向に往復運動する場合を一例として説明するが、往復運動の方向は鉛直方向に限られるものではない。例えば、可動子6が水平方向に往復運動するよう構成しても良く、また、鉛直方向に対し任意の角度を有する方向に可動子6が往復運動する構成としても良い。また、これらは、電機子9につても同様である。 
 制御部102は、電流検出器107の検出結果に応じて、電力変換回路105への出力電圧指令値、又は電力変換回路105を駆動するドライブ信号(パルス信号)を出力する。制御部102の詳細は後述する。 
 詳細は後述するが、電力変換回路105は、直流電圧源120(図21)の電圧を変換して交流電圧を出力する電力変換部の一例である。なお、直流電圧源120に代えて直流電流源を用いても良い。
<Linear motor system 100>
FIG. 1 is a schematic view of the entire configuration of a linear motor system according to a first embodiment of the present invention. The linear motor system 100 includes a linear motor drive device 101 and a linear motor 104. As described later, the linear motor 104 has an armature 9 and a mover 6 which move relative to each other.
In the present embodiment, the mover 6 moves in the vertical direction, but the armature 9 and the mover 6 (field element) may move relative to each other, and the armature 9 may move in the vertical direction. Although the case where the mover 6 reciprocates in the vertical direction will be described as an example below, the direction of the reciprocation is not limited to the vertical direction. For example, the mover 6 may be configured to reciprocate in the horizontal direction, or may be configured to reciprocate in a direction having an arbitrary angle with respect to the vertical direction. Also, these are the same for the armature 9.
Control unit 102 outputs an output voltage command value to power conversion circuit 105 or a drive signal (pulse signal) for driving power conversion circuit 105 according to the detection result of current detector 107. Details of the control unit 102 will be described later.
Although the details will be described later, the power conversion circuit 105 is an example of a power conversion unit that converts the voltage of the DC voltage source 120 (FIG. 21) and outputs an AC voltage. A direct current source may be used instead of the direct current voltage source 120.
 <リニアモータ104> 
 図2はリニアモータ104の斜視図(電機子の構成例の斜視図)である。本実施例のリニアモータ104は、電機子9に対して、永久磁石2(2a,2b)が並んだ方向(前後方向)に相対移動可能な可動子6を有する。電機子9は空隙を介して上下方向に対向する2つの磁極7と、磁極7に捲回された巻線8とを有している。可動子6は、この空隙に配置されている。磁極7は、可動子6に対向する端面としての磁極歯70(ティースとも称される)を有している。 
 電機子9は、可動子6に対して前後方向の力(以下、推力と称する)を付与できる。例えば、後述するように、可動子6が前後方向に往復運動するように推力を制御できる。  可動子6は、上下方向に磁化した2つの平板状の永久磁石2(2a,2b)を有している。後側の永久磁石2a及び前側の永久磁石2bは、互いに反対方向に磁化されている。
本実施例では、後側の永久磁石2aは上側にN極を有し、前側の永久磁石2bは上側にS極を有している。図2では、永久磁石2a,2bは図示しているが、可動子6は図示していない。可動子6としては、例えば、平板状の永久磁石2を固定した平板状のものを採用できる。 
 制御部102は、可動子6を永久磁石2a,2bが電機子9に対向する範囲で往復運動させるようにドライブ信号を出力する。
<Linear motor 104>
FIG. 2 is a perspective view of the linear motor 104 (a perspective view of a configuration example of an armature). The linear motor 104 of the present embodiment has a mover 6 which can move relative to the armature 9 in the direction (longitudinal direction) in which the permanent magnets 2 (2a, 2b) are arranged. The armature 9 has two magnetic poles 7 opposed in the vertical direction via an air gap, and a winding 8 wound around the magnetic poles 7. The mover 6 is disposed in this air gap. The magnetic pole 7 has magnetic pole teeth 70 (also referred to as teeth) as end surfaces facing the mover 6.
The armature 9 can apply a force in the front-rear direction (hereinafter referred to as thrust) to the mover 6. For example, as described later, the thrust can be controlled so that the mover 6 reciprocates in the front-rear direction. The mover 6 has two flat permanent magnets 2 (2a, 2b) magnetized in the vertical direction. The rear permanent magnet 2a and the front permanent magnet 2b are magnetized in opposite directions.
In the present embodiment, the rear permanent magnet 2a has an N pole on the upper side, and the front permanent magnet 2b has an S pole on the upper side. In FIG. 2, the permanent magnets 2 a and 2 b are illustrated, but the mover 6 is not illustrated. As the mover 6, for example, a flat plate in which a flat permanent magnet 2 is fixed can be adopted.
The control unit 102 outputs a drive signal so that the mover 6 reciprocates in a range in which the permanent magnets 2 a and 2 b face the armature 9.
 図3は、図2のA-A’線に沿った平面での断面図である(A―A’断面矢視図)。図3に示すように、磁極7及びヨーク7eは、例えば鉄などの磁性体で一体的に形成され、磁気回路を構成している。図3の矢印線は、2つの巻線8に電流を流したときの磁束線の一例を示している。磁束の流れの向きは、巻線8に流れる電流の向きにより逆方向になり得るため、図に示す限りではない。この磁束線により、磁極歯70が磁化される。 FIG. 3 is a cross-sectional view taken along the line A-A 'of FIG. 2 (A-A' cross-sectional view). As shown in FIG. 3, the magnetic pole 7 and the yoke 7e are integrally formed of, for example, a magnetic substance such as iron, and constitute a magnetic circuit. Arrow lines in FIG. 3 indicate an example of magnetic flux lines when current flows through the two windings 8. The direction of flow of the magnetic flux can be reversed depending on the direction of the current flowing through the winding 8 and thus is not limited to the illustrated one. The magnetic pole teeth 70 are magnetized by the magnetic flux lines.
 [可動子6に付与する推力] 
 図4は磁極歯70の磁化により、可動子6が受ける推力を説明する図である。巻線8に流れる電流により生じる磁極歯70の極性を、図中の磁極歯70近傍に付した「N」、「S」で表している。また、図4において白抜き矢印は巻線8を流れる電流の向きを示している。図4の左図は、巻線8を流れる電流により、上側の磁極歯70aが「S」、下部の磁極歯70bが「N」に磁化されることにより、可動子6が前方向に力を受け、可動子6が前に移動した例を示している。図4の右図は、巻線8を流れる電流により、上部の磁極歯70aが「N」、下部の磁極歯70bが「S」に磁化されることにより、可動子6が後ろ方向に力を受け、可動子6が後ろに移動した例を示している。
[Thrust to be given to mover 6]
FIG. 4 is a diagram for explaining the thrust that the mover 6 receives due to the magnetization of the magnetic pole teeth 70. The polarities of the magnetic pole teeth 70 generated by the current flowing through the winding 8 are represented by "N" and "S" attached near the magnetic pole teeth 70 in the figure. Further, in FIG. 4, the white arrow indicates the direction of the current flowing through the winding 8. The left figure in FIG. 4 shows that the mover 6 is forced forward by magnetizing the upper magnetic pole teeth 70 a to “S” and the lower magnetic pole teeth 70 b to “N” by the current flowing through the winding 8. An example is shown in which the mover 6 has moved forward. In the right view of FIG. 4, the current flowing through the winding 8 magnetizes the upper magnetic pole teeth 70a to "N" and the lower magnetic pole teeth 70b to "S", thereby moving the mover 6 backward in force. An example is shown in which the mover 6 moves backward.
 このように、巻線8に電圧や電流を印加することで、2つの磁極7を含む磁気回路に磁束を供給して、対向する2つの磁極歯70(磁極歯組)を磁化できる。電圧や電流として、例えば正弦波や矩形波(方形波)といった交流の電圧や電流を与えることで、可動子6を往復運動させる推力を与えることができる。これにより可動子6の運動を制御できる。 As described above, by applying voltage or current to the winding 8, magnetic flux can be supplied to the magnetic circuit including the two magnetic poles 7 to magnetize the two opposing magnetic pole teeth 70 (magnetic pole tooth set). By applying an alternating voltage or current such as a sine wave or a rectangular wave (square wave) as the voltage or current, it is possible to give a thrust for reciprocating the mover 6. Thereby, the motion of the mover 6 can be controlled.
 なお、可動子6に付与する推力は、印加する交流電流や交流電圧の振幅を変更することで変えられる。また、可動子6に付与する推力を既知の方法を用いて適切に変更することで、可動子6の変位を所望に変えられる。ここで、可動子6が往復運動(例えば、図4の左図及び右図のような磁極歯70の磁化を順次繰り返すことで可動子6に生じる運動)をする場合、交流波形的に変化する可動子6の変位の変化量をストロークと呼ぶ。 
 磁極歯70は磁性体であるため、永久磁石2を吸引する磁気吸引力が作用する。本実施例では可動子6を挟むよう間隙を介して2つの磁極歯70を対向配置しているため、可動子6に作用する磁気吸引力の合力を低減できる。
The thrust applied to the mover 6 can be changed by changing the amplitude of the applied alternating current or alternating voltage. Also, the displacement of the mover 6 can be changed as desired by appropriately changing the thrust applied to the mover 6 using a known method. Here, when the mover 6 reciprocates (e.g., a motion generated in the mover 6 by sequentially repeating magnetization of the magnetic pole teeth 70 as shown in the left and right views of FIG. 4), it changes in an alternating waveform. The amount of change in displacement of the mover 6 is called a stroke.
Since the magnetic pole teeth 70 are magnetic members, a magnetic attraction force for attracting the permanent magnet 2 acts. In the present embodiment, since the two magnetic pole teeth 70 are disposed to face each other with a space between them so as to sandwich the mover 6, the total force of the magnetic attraction force acting on the mover 6 can be reduced.
 回転モータの回転運動を直線運動に変換する場合、その変換機構として、例えばクランクシャフトが用いられる。クランクシャフトを有する場合、直線運動ストロークは機械的に制限される。一方、リニアモータの可動子6は機械的に制限されない。そのため、可動子6のストロークが所定値を超えてしまう可能性がある。そこで、本実施例に係るリニアモータシステム100を構成するリニアモータ駆動装置101は、ストロークが所定値を超えたことを検出する構成を備える。 When converting the rotational motion of the rotary motor to linear motion, for example, a crankshaft is used as the conversion mechanism. When having a crankshaft, the linear motion stroke is mechanically limited. On the other hand, the mover 6 of the linear motor is not mechanically limited. Therefore, the stroke of the mover 6 may exceed a predetermined value. Therefore, the linear motor drive device 101 constituting the linear motor system 100 according to the present embodiment has a configuration for detecting that the stroke has exceeded a predetermined value.
 [可動子6外部の機構] 
 図5は、可動子6に接続される外部機構の説明図であり、例えば、コイルバネである共振バネ23(アシストバネ)によって構成される外部機構を可動子6の一端に接続し、そのバネ力により可動子6が戻される機構を説明する図である。共振バネ23は、一端が中間部24を介して可動子6に接続し、他端が基部25に固定されている。また、共振バネ23の延在方向と略平行に延在し、共振バネ23を案内又は支持する側部26が設けられている。リニアモータ104を往復運動させる場合、可動子6の運動方向が変わる度に、加速と減速を繰り返す。減速時は、可動子6の速度エネルギーが電気エネルギーに変換される(回生動作)が、リニアモータ104への配線の抵抗によって損失が生じる。一方、図5のように、可動子6に共振バネ23(アシストバネ)を付加し、可動子6の質量とバネ定数から決まる機械的な共振周波数で、可動子6を往復運動させる場合、可動子6の速度エネルギーを有効活用でき、高効率なリニアモータ駆動システムを構成することができる。共振バネ23に代えて、例えば、板バネ、或は、適度なヤング率を有しコイルバネを用いた場合と同様に伸縮するゴム等の弾性体を用いても良い。このように構成すると、可動子6(界磁子6)が鉛直方向に移動する可動子(界磁子)移動型として構成されるが、可動子6に代えて電機子9に弾性体を接続して電機子9を鉛直方向に移動させる電機子移動型として構成しても良い。
[Mechanism outside the mover 6]
FIG. 5 is an explanatory view of an external mechanism connected to the mover 6. For example, an external mechanism constituted by a resonance spring 23 (assist spring) which is a coil spring is connected to one end of the mover 6, and its spring force It is a figure explaining the mechanism by which the needle | mover 6 is returned by this. One end of the resonant spring 23 is connected to the mover 6 via the intermediate portion 24, and the other end is fixed to the base 25. Further, a side portion 26 which extends substantially in parallel with the extending direction of the resonant spring 23 and guides or supports the resonant spring 23 is provided. When the linear motor 104 is reciprocated, acceleration and deceleration are repeated whenever the direction of movement of the mover 6 changes. At the time of deceleration, the velocity energy of the mover 6 is converted into electric energy (regeneration operation), but a loss occurs due to the resistance of the wiring to the linear motor 104. On the other hand, as shown in FIG. 5, in the case where the resonance spring 23 (assist spring) is added to the mover 6 and the mover 6 is reciprocated at the mechanical resonance frequency determined from the mass of the mover 6 and the spring constant, The speed energy of the rotor 6 can be effectively utilized, and a highly efficient linear motor drive system can be configured. Instead of the resonance spring 23, for example, an elastic body such as a leaf spring or rubber which has an appropriate Young's modulus and can be expanded and contracted as in the case of using a coil spring may be used. In this configuration, the mover 6 (field element 6) is configured as a mover (field element) moving type that moves in the vertical direction, but instead of the mover 6, an elastic body is connected to the armature 9 Then, it may be configured as an armature movement type in which the armature 9 is moved in the vertical direction.
 例えば、可動子6のストロークが過大となった場合、共振バネ23が縮みすぎて互いが接触したり、可動子6がストロークを制限するストッパー(図示せず)に衝突したりすることで、振動や騒音の原因となる。そのため、ストロークが所定値を超えたことを検出することが望ましい。 For example, when the stroke of the mover 6 becomes excessive, the resonant springs 23 are compressed too much and contact each other, or the mover 6 collides with a stopper (not shown) that restricts the stroke, thereby causing vibration. And cause noise. Therefore, it is desirable to detect that the stroke has exceeded a predetermined value.
 <制御部102の概要> 
 図1に示すように、制御部102は、電流検出器107による電流検出値Imを入力し低周波成分の振幅値を出力する低周波成分検出器130、低周波成分検出器130からの低周波成分の振幅値に基づき衝突判定を行い後述する衝突判定信号を出力する衝突判定器131、上位の制御器(図示せず)などより入力されるストローク指令値l及び衝突判定器131を入力しこれらに基づきリニアモータ104に印加する電圧指令値Vmを出力する電圧指令値作成器133、及び、入力される電圧指令値Vmに基づき電力変換回路105を駆動するドライブ信号を出力するPWM信号作成器134と、を備える。 
 以下、制御部102を構成する上述の各部の構成及び動作につき説明する。
<Overview of Control Unit 102>
As shown in FIG. 1, the control unit 102 receives a current detection value Im from the current detector 107 and outputs a low frequency component amplitude value, and outputs a low frequency component detector 130 and a low frequency component detector 130. The collision determination unit 131 performs collision determination based on the amplitude value of the component and outputs a collision determination signal, which will be described later, and a stroke command value l * and collision determination unit 131 input from an upper controller (not shown). Voltage command value generator 133 outputs voltage command value Vm * applied to linear motor 104 based on the above, and PWM signal outputs a drive signal driving power conversion circuit 105 based on input voltage command value Vm *. And a creator 134.
Hereinafter, configurations and operations of the above-described units constituting the control unit 102 will be described.
 <電圧指令値作成器103> 
 図6は、図1に示すリニアモータ駆動装置101の制御部102を構成する電圧指令値作成器133の構成例を示す説明図である。電圧指令値作成器133には、上位の制御器(図示せず)などより入力されるストローク指令値l及び後述する衝突判定信号に基づき、単相の交流電圧指令値Vmを出力する。ここで、ストローク指令値l或いは周波数数指令値ωのいずれか、または両方を変更することにより、リニアモータ104に印加する電圧指令値Vmを調整することができる。すなわち、印加電圧の振幅及び周波数を調整することで、駆動周波数ωを共振周波数に制御することやストロークを制御することが可能となる。 
 図6に示すように、まず、電圧指令値作成器133で予め設定した周波数指令値ω或いは、他の制御器(図示せず)などから入力される周波数指令値ωを積分して位相指令値θを積分器140で作成する。次に、位相指令値θを余弦演算器82b(入力値の余弦を出力)に入力し、位相指令値θに対する余弦(cosθ)を得る。この余弦(cosθ)とストローク指令値lとを乗算器92aで乗じる。こうすることで、微分演算を行わずに可動子6の速度指令値vmを得ることができる。一般には、位置指令値xm及び速度指令値vmの一方を正弦、他方を余弦にすることができる。なお、組み合わせによっては、負号を付加する必要がある。
<Voltage command value generator 103>
FIG. 6 is an explanatory view showing a configuration example of the voltage command value generator 133 that constitutes the control unit 102 of the linear motor drive device 101 shown in FIG. The voltage command value generator 133 outputs a single-phase AC voltage command value Vm * based on the stroke command value l * input from the upper controller (not shown) or the like and a collision determination signal described later. Here, the voltage command value Vm * applied to the linear motor 104 can be adjusted by changing either or both of the stroke command value l * and the frequency number command value ω * . That is, by adjusting the amplitude and frequency of the applied voltage, it becomes possible to control the drive frequency ω to the resonance frequency and to control the stroke.
6, first, the frequency command value omega * or preset by the voltage command value generator 133, another controller integrates the frequency command value input (not shown) or the like omega * phase The command value θ * is created by the integrator 140. Next, the phase command value θ * is input to a cosine calculator 82 b (the cosine of the input value is output) to obtain a cosine (cos θ * ) with respect to the phase command value θ * . The cosine (cos θ * ) and the stroke command value l * are multiplied by the multiplier 92a. By doing this, the velocity command value vm * of the mover 6 can be obtained without performing the differential operation. Generally, one of the position command value xm * and the speed command value vm * can be sine and the other can be cosine. In addition, depending on the combination, it is necessary to add a minus sign.
 さらに、可動子6の速度指令値vmを乗算器92bで誘起電圧定数Keと乗じ、単相の交流電圧指令値Vmを得る。 
 なお、電圧指令値作成器133には、上記以外にも既知の同期式モータの駆動電圧指令方法を適用することができる。また、例えば周波数指令値ωを、可動子6を含む振動体の機械共振周波数に固定しても良い。 
 また、ストローク指令切替器150につては後述する。
Further, the speed command value vm * of the mover 6 is multiplied by the induced voltage constant Ke * by the multiplier 92 b to obtain a single-phase AC voltage command value Vm * .
It should be noted that the voltage command value generator 133 can apply a known driving voltage command method of a synchronous motor other than the above. Further, for example, the frequency command value ω * may be fixed to the mechanical resonance frequency of the vibrator including the mover 6.
The stroke command switch 150 will be described later.
 <PWM信号作成器133> 
 図1に示すリニアモータ駆動装置101の制御部102を構成するPWM信号作成器134には、三角波のキャリア信号と電圧指令値作成器133より出力される電圧指令値Vmを比較することによる既知のパルス幅変調を用い、電圧指令値Vmに応じたドライブ信号が生成され、生成されたドライブ信号は電力変換回路105へ出力される。
<PWM signal generator 133>
The PWM signal generator 134 that constitutes the control unit 102 of the linear motor drive device 101 shown in FIG. 1 is known by comparing the carrier signal of the triangular wave with the voltage command value Vm * output from the voltage command value generator 133. The drive signal corresponding to the voltage command value Vm * is generated using the pulse width modulation of the above, and the generated drive signal is output to the power conversion circuit 105.
 <電力変換回路105> 
 図7は、図1に示すリニアモータ駆動装置101を構成する電力変換回路105の構成例を示す図である。フルブリッジ回路126は、制御部102により入力されたドライブ信号に応じて直流電圧源120をスイッチングして、リニアモータ104に電圧を出力する。フルブリッジ回路126は4つのスイッチング素子122を備えており、直列接続されたスイッチング素子122a,122bを持つ第一上下アーム(以下、U相と称する)と、スイッチング素子122c,122dを持つ第二上下アーム(以下、V相と称する)と、を構成している。スイッチング素子122は、制御部102で生成される電圧指令値Vmやパルス幅変調によるドライブ信号に基づき、ゲートドライバ回路123が出力するパルス状のゲート信号(124a~124d)に応じてスイッチング動作できる。 
 スイッチング素子122の導通状態(オン/オフ)を制御することにより、直流電圧源120の直流電圧を交流電圧に相当する電圧を巻線8に出力できる。なお、直流電圧源120に代えて直流電流源を用いても良い。スイッチング素子122としては、例えば、IGBTやMOS-FETなどの半導体スイッチング素子を採用できる。
<Power conversion circuit 105>
FIG. 7 is a diagram showing a configuration example of the power conversion circuit 105 that constitutes the linear motor drive device 101 shown in FIG. The full bridge circuit 126 switches the DC voltage source 120 according to the drive signal input by the control unit 102, and outputs a voltage to the linear motor 104. The full bridge circuit 126 includes four switching elements 122, and includes first and second upper and lower arms (hereinafter referred to as U phase) having switching elements 122a and 122b connected in series, and second upper and lower arms having switching elements 122c and 122d. An arm (hereinafter, referred to as a V phase) is configured. Switching element 122 can perform switching operation according to pulse-shaped gate signals (124 a to 124 d) output from gate driver circuit 123 based on voltage command value Vm * generated by control unit 102 and a drive signal by pulse width modulation. .
By controlling the conduction state (on / off) of switching element 122, a voltage corresponding to an AC voltage of DC voltage source 120 can be output to winding 8. A direct current source may be used instead of the direct current voltage source 120. As the switching element 122, for example, a semiconductor switching element such as an IGBT or a MOS-FET can be employed.
 [リニアモータ104との結線] 
 電力変換回路105の第一上下アームのスイッチング素子122a,122b間および第二上下アームのスイッチング素子122c,122d間それぞれが、リニアモータ104に接続されている。図7では、上側及び下側の電機子9の巻線8が並列に接続されている例を示しているが、巻線8を直列に接続することもできる。
[Wire connection to linear motor 104]
The linear motor 104 is connected between the switching elements 122 a and 122 b of the first upper and lower arms and between the switching elements 122 c and 122 d of the second upper and lower arms of the power conversion circuit 105. Although FIG. 7 shows an example in which the windings 8 of the upper and lower armatures 9 are connected in parallel, the windings 8 may be connected in series.
 <電流検出器107> 
 U相下アームとV相下アームには、例えばCT(カレントトランス)等の電流検出器107を設けることができる。これにより、リニアモータ104の巻線8に流れる電流Imを検出できる。 
 電流検出器107として、例えば、CTに代えて、電力変換回路105の下アームにシャント抵抗125を付加し、シャント抵抗125に流れる電流からリニアモータ104に流れる電流を検出する相シャント電流方式を採用できる。電流検出器107に代えて又は追加して、電力変換回路105の直流側に付加されたシャント抵抗125に流れる直流電流から、電力変換回路105の交流側の電流を検出するシングルシャント電流検出方式を採用しても良い。シングルシャント電流検出方式は、電力変換回路105を構成するスイッチング素子122の通電状態によって、シャント抵抗125に流れる電流が時間的に変化することを利用している。
<Current detector 107>
The U-phase lower arm and the V-phase lower arm may be provided with a current detector 107 such as a CT (current transformer). Thus, the current Im flowing through the winding 8 of the linear motor 104 can be detected.
As the current detector 107, for example, in place of the CT, a shunt resistor 125 is added to the lower arm of the power conversion circuit 105, and a phase shunt current method is employed to detect the current flowing to the linear motor 104 from the current flowing to the shunt resistor 125 it can. Instead of or in addition to the current detector 107, a single shunt current detection method for detecting the current on the alternating current side of the power conversion circuit 105 from the direct current flowing in the shunt resistor 125 added to the direct current side of the power conversion circuit 105 It may be adopted. The single shunt current detection method utilizes that the current flowing in the shunt resistor 125 temporally changes depending on the conduction state of the switching element 122 that constitutes the power conversion circuit 105.
 [衝突時の電流波形] 
 図8は、リニアモータ104を構成する可動子6がストロークを制限するスットパーに衝突した際の電流波形例の説明図である。図8では横軸を時間、縦軸をモータ電流とし、モータ電流の時間変化を示している。なお、図8の上図は電気機械時定数が短い場合のモータ電流の波形を示しており、図8の下図は電気機械時定数が長い場合のモータ電流の波形を示している。図8の上図に示されるように、負荷系を含めた電気機械時定数が短い場合においては、衝突時のモータ電流の電流波形は振幅が大小交互に現れる。これは次のように説明できる。可動子6がストッパーに衝突すると、可動子6の速度が低下するため、誘起電圧は減少する。そのため、印加電圧が過多となり電流振幅が増加する。本実施例の可動子6は往復運動しているため、やがては逆方向に移動する。この時、可動子6の位置と印加電圧の位相関係がズレ、推力が減少する。そのため、次の周期ではストロークが所定値に収まり、モータ電流の電流振幅は元に戻る。その後、可動子6の位置と印加電圧の位相関係のズレが解消され、再度、可動子がストッパーに衝突する。
[Current waveform at collision]
FIG. 8 is an explanatory diagram of an example of a current waveform when the mover 6 constituting the linear motor 104 collides with a staple which limits the stroke. In FIG. 8, the horizontal axis represents time, and the vertical axis represents motor current, and shows time change of motor current. The upper drawing of FIG. 8 shows the waveform of the motor current when the electromechanical time constant is short, and the lower drawing of FIG. 8 shows the waveform of the motor current when the electromechanical time constant is long. As shown in the upper part of FIG. 8, when the electromechanical time constant including the load system is short, the current waveform of the motor current at the time of the collision alternately appears in amplitude. This can be explained as follows. When the mover 6 collides with the stopper, the speed of the mover 6 decreases, and the induced voltage decreases. Therefore, the applied voltage becomes excessive and the current amplitude increases. Since the mover 6 of this embodiment reciprocates, it moves in the opposite direction over time. At this time, the phase relationship between the position of the mover 6 and the applied voltage deviates, and the thrust decreases. Therefore, in the next cycle, the stroke falls within the predetermined value, and the current amplitude of the motor current returns to the original value. Thereafter, the deviation of the phase relationship between the position of the mover 6 and the applied voltage is eliminated, and the mover collides with the stopper again.
 一方、図8の下図に示すように、負荷系を含めた電気機械時定数が長い場合においては、可動子6の位置と印加電圧の位相関係のズレが収束するまでに時間を要する。そのため、モータ電流の電流振幅の変動は、図8の上図より低い周波数となる。 
 図8の上図に示すように、電気機械時定数が短い場合には、可動子6がストッパーに衝突している際のモータ電流の電流波形は、振幅が大小交互になる。振幅が大小交互になっているということは、駆動周波数の1/2の周波数と見做すことができる。換言すれば、駆動周期は2倍と見做すことができる。一方、図8の上図に示すように、電気機械時定数が長い場合には、駆動周波数の1/2よりも低い周波数と見做すことができる。図8の下図の例は、駆動周波数の1/3の周波数と見做せる。換言すれば、駆動周期は3倍と見做すことができる。本実施例では、駆動周波数の1/2の周波数又は駆動周波数の1/2より低い周波数成分の電流波形を特定することで、ストロークが所定値を超えたことを検出する。なお、予め衝突時の電流波形を取得しておけば、どの周波数成分を取得すればよいか分かる。また、本実施例では、駆動周波数の1/2及び駆動周波数の1/3の一例として示したがこれに限られるものではない。例えば、駆動波数の1/4など予め衝突時の電流波形を取得することで適宜設定することができる。換言すれば駆動周期のN倍(N≧2)の周波数成分の巻線8に流れる電流(モータ電流)を検出することで、ストロークが所定値を超えたことを検出できる。
On the other hand, as shown in the lower part of FIG. 8, when the electromechanical time constant including the load system is long, it takes time for the deviation of the phase relationship between the position of the mover 6 and the applied voltage to converge. Therefore, the fluctuation of the current amplitude of the motor current has a lower frequency than the upper diagram of FIG.
As shown in the upper drawing of FIG. 8, when the electromechanical time constant is short, the current waveform of the motor current when the mover 6 collides with the stopper alternates in amplitude between large and small. The fact that the amplitude is alternately large and small can be regarded as a half of the drive frequency. In other words, the drive cycle can be regarded as double. On the other hand, as shown in the upper drawing of FIG. 8, when the electromechanical time constant is long, it can be regarded as a frequency lower than 1/2 of the drive frequency. The example shown in the lower part of FIG. 8 can be regarded as one-third the drive frequency. In other words, the drive cycle can be regarded as three times. In the present embodiment, it is detected that the stroke has exceeded a predetermined value by specifying a current waveform of a frequency half of the drive frequency or a frequency component lower than half the drive frequency. In addition, if the current waveform at the time of collision is acquired in advance, it can be known which frequency component should be acquired. Furthermore, in the present embodiment, although the driving frequency is illustrated as an example of 1/2 and 1/3 of the driving frequency, the present invention is not limited to this. For example, it can set suitably by acquiring the current waveform at the time of a collision, such as 1/4 of a drive wave number beforehand. In other words, it is possible to detect that the stroke has exceeded a predetermined value by detecting the current (motor current) flowing through the winding 8 of a frequency component N times (N ≧ 2) of the drive cycle.
 <低周波成分検出器130> 
 図9は、図1に示すリニアモータ駆動装置101の制御部102を構成する低周波成分検出器130の構成例を示す説明図である。なお、図9では、一例として、衝突時の電流波形が上述の図8の上図に示す負荷系を含めた電気機械時定数が短い場合について説明する。そのため、駆動周波数の1/2(駆動周期の2倍)の周波数成分の電流波形を特定する構成である。特定する周波数を変更する場合は、後述する分周期156の係数を適宜変更すれば良い。
<Low frequency component detector 130>
FIG. 9 is an explanatory view showing a configuration example of the low frequency component detector 130 constituting the control unit 102 of the linear motor drive device 101 shown in FIG. In FIG. 9, as an example, the case where the current waveform at the time of a collision has a short electromechanical time constant including the load system shown in the upper drawing of FIG. Therefore, the current waveform of the frequency component having a half of the drive frequency (twice the drive cycle) is specified. When the frequency to be specified is changed, the coefficient of the division period 156 described later may be changed as appropriate.
 まず、電圧指令値作成器133で予め設定した周波数指令値ω或いは、他の制御器(図示せず)などから得られる周波数指令値ωを分周期156にて1/2倍し、積分して位相指令値θ2を積分器140aで作成する。 
 次に、位相指令値θ2を正弦演算器81c(入力値の正弦を出力)及び余弦演算器82c(入力値の余弦を出力)に入力し、それぞれ位相指令値θ2に対する正弦(sinθ2)及び余弦(cosθ2)を得る。こ正弦(sinθ2)と電流検出値Imとを乗算器92cで乗じると共に、余弦(cosθ2)と電流検出値Imとを乗算器92dで乗じる。それらの結果をLPF(低域通過フィルタ)157a,157bで、LPF(ローパスフィルタ)の遮断周波数以下の値を得る。なお、これらLPF(低域通過フィルタ)157a,157bは、1次遅れフィルタ或いは2次遅れフィルタと同様に後れを有する。
First, the frequency command value omega * or preset by the voltage command value generator 133, another controller (not shown) is multiplied by 1/2 by the frequency command value omega * the frequency divider 156 obtained from such, integration Then, the phase command value θ 2 * is created by the integrator 140 a.
Next, the phase command value θ2 * is input to a sine calculator 81c (outputs the sine of the input value) and a cosine calculator 82c (outputs the cosine of the input value), and sine (sin θ2 * ) with respect to the phase command value θ2 * And the cosine (cos θ 2 * ). With multiplying this sine (sinθ2 *) and a current detection value Im in a multiplier 92c, multiplies the cosine (cos *) and a current detection value Im in a multiplier 92d. Those results are obtained by LPFs (low pass filters) 157a and 157b to obtain a value equal to or lower than the cutoff frequency of the LPF (low pass filter). Note that these LPFs (low pass filters) 157a and 157b have a delay similar to the first order lag filter or the second order lag filter.
 さらに、乗算器92eおよび乗算器92fと、加算器90と、平方根演算器96とを用いて、LPF157a及びLPF157bの出力値の二乗和平方根を取り、電流振幅を得る。 
 こうすることで、所望の周波数成分(ここでは、駆動周波数の1/2の周波数成分)の電流振幅(Im_1/2)を得ることができる。
Further, multipliers 92e and 92f, an adder 90, and a square root calculator 96 are used to take the sum of squares of the output values of the LPF 157a and the LPF 157b to obtain a current amplitude.
By doing this, it is possible to obtain the current amplitude (Im_1 / 2) of the desired frequency component (here, the frequency component of 1/2 of the drive frequency).
 もし、可動子6がストロークを制限するストッパー等に衝突していて、電流波形が図8の上図のように、振幅が大小交互に現れている場合、平方根演算器96から出力される1/2周波数電流振幅(Im_1/2)が検出される。なお、リニアモータ104に流れる電流の振幅に変動がない場合は、平方根演算器96の出力はゼロ近傍となる。 If the mover 6 collides with a stopper or the like that restricts the stroke, and the current waveform appears alternately in magnitude as shown in the upper diagram of FIG. Two frequency current amplitudes (Im_1 / 2) are detected. When there is no change in the amplitude of the current flowing through the linear motor 104, the output of the square root calculator 96 is near zero.
 <衝突判定器131> 
 図10は、図1に示すリニアモータ駆動装置101の制御部102を構成する衝突判定器131の構成例を示す説明図である。図10に示すように、衝突判定器131が有する判定器164は、上述の低周波成分検出器130より入力された電流振幅(Im_1/2)が所定値A以下の場合、ローレベル信号(デジタル出力の場合は、例えば、“0”)を衝突判定信号として出力し、所定値Aよりも大きい場合、ハイレベル信号(デジタル出力の場合は、例えば、“1”)を衝突判定信号として出力する。 
 例えば、判定値(所定値A)を経過時間に応じて変更する構成、或いは上位の制御器(図示せず)から変更する構成としても良い。また、判定値(所定値A)にヒステリシス幅を設けることにより、ストロークが所定値を超えた判定タイミングと、ストロークが所定値以下になった判定タイミングを変えることができる。これにより、誤検知を防ぐことができる。これは例えば、電流検出値にノイズが多く含まれる場合に特に有効である。
<Collision judging unit 131>
FIG. 10 is an explanatory view showing a configuration example of the collision determination unit 131 which constitutes the control unit 102 of the linear motor drive device 101 shown in FIG. As shown in FIG. 10, when the current amplitude (Im_1 / 2) input from the low frequency component detector 130 described above is lower than or equal to the predetermined value A, the determination unit 164 included in the collision determination unit 131 is a low level signal (digital In the case of an output, for example, "0" is output as a collision determination signal, and when larger than a predetermined value A, a high level signal (for example, "1" in the case of digital output) is output as a collision determination signal. .
For example, the determination value (predetermined value A) may be changed according to the elapsed time, or may be changed from a higher controller (not shown). Further, by providing a hysteresis width in the determination value (predetermined value A), it is possible to change the determination timing when the stroke exceeds the predetermined value and the determination timing when the stroke becomes less than or equal to the predetermined value. Thereby, false detection can be prevented. This is particularly effective, for example, when the current detection value contains a large amount of noise.
 [衝突判定時の動作] 
 図11は、衝突及び衝突回避時における各種値の時間変化を示す説明図である。以下ではリニアモータ駆動装置101の制御部102を構成する電圧指令値作成器133の構成例を示す図6及び図11を用いて、衝突判定時の一連の動作について説明する。図11では上から順に、モータ電流の時間変化(電流波形)、可動子6のストロークの時間変化、電圧/電流の位相差の時間変化、低周波成分電流振幅の時間変化、衝突判定信号の状態変化、及び電圧振幅の時間変化を示している。なお、図11では、一例として、衝突時のモータ電流の電流波形が上述の図8の上図に示す負荷系を含めた電気機械時定数が短い場合について説明する。すなわち、駆動周波数の1/2(駆動周期の2倍)の周波数成分の電流波形を特定する場合を一例として示している。
[Operation at collision determination]
FIG. 11 is an explanatory view showing time change of various values at the time of collision and collision avoidance. Hereinafter, a series of operations at the time of collision determination will be described using FIGS. 6 and 11 showing a configuration example of the voltage command value creation unit 133 that configures the control unit 102 of the linear motor drive device 101. In FIG. 11, from top to bottom, temporal change of motor current (current waveform), temporal change of stroke of movable element 6, temporal change of voltage / current phase difference, temporal change of low frequency component current amplitude, condition of collision determination signal It shows a change and a time change of voltage amplitude. In FIG. 11, as an example, the case where the current waveform of the motor current at the time of a collision has a short electromechanical time constant including the load system shown in the upper drawing of FIG. 8 described above will be described. That is, the case of specifying the current waveform of the frequency component which is half the drive frequency (twice the drive cycle) is shown as an example.
 通常動作状態においては、電流検出器107より検出されるモータ電流及び可動子6のストロークの時間変化は、ほぼ同位相で一定の振幅を有する正弦波状の波形となっている。電圧/電流の位相差はゼロであり、低周波成分検出器130より出力される低周波成分電流振幅はゼロ近傍であり、衝突判定器131より出力される衝突判定信号はローレベル信号(L)であり、電圧指令値作成器133より出力される電圧指令値Vmの電圧振幅は一定である。 In the normal operation state, the motor current detected by the current detector 107 and the time change of the stroke of the mover 6 have a sinusoidal waveform having approximately the same phase and constant amplitude. The voltage / current phase difference is zero, the low frequency component current amplitude output from the low frequency component detector 130 is near zero, and the collision determination signal output from the collision determination unit 131 is a low level signal (L). The voltage amplitude of the voltage command value Vm * output from the voltage command value generator 133 is constant.
 可動子6がストッパーに衝突すると、モータ電流の振幅が増加し、通常動作状態におけるモータ電流の振幅よりも図11に示すように振幅差分増加する。また、可動子6がストッパーに衝突することにより、可動子6の速度が低下するため誘起電圧は減少し、印加電圧が過多となり電流振幅が増加することにより、電圧/電流の位相差が急峻に増加する。
その後、可動子6は往復運動しているため、やがては逆方向に移動し、電圧/電流の位相差は徐々に減少し次の周期ではゼロとなる。図11に示す例では、これらの波形の変化が交互に3回繰り返されている。なお、この期間中、低周波成分検出器130より出力される低周波成分電流振幅は、上述のように低周波成分検出器130を構成するLPF(低域通過フィルタ)157a,157bは遅れを有することから、波形は徐々に増加する波形となる。なお、ここで低周波成分検出器130より出力される低周波成分電流振幅は、駆動周波数の1/2の周波数成分の電流振幅(Im_1/2)が出力されている。
When the mover 6 collides with the stopper, the amplitude of the motor current increases, and the amplitude difference increases as shown in FIG. 11 than the amplitude of the motor current in the normal operation state. In addition, when the mover 6 collides with the stopper, the speed of the mover 6 decreases, so the induced voltage decreases and the applied voltage becomes excessive and the current amplitude increases, so that the voltage / current phase difference becomes sharp. To increase.
Thereafter, since the mover 6 reciprocates, the mover 6 moves in the opposite direction eventually, and the voltage / current phase difference gradually decreases and becomes zero in the next cycle. In the example shown in FIG. 11, these waveform changes are alternately repeated three times. During this period, the low frequency component current amplitude output from the low frequency component detector 130 is delayed as described above by the LPFs (low pass filters) 157a and 157b that constitute the low frequency component detector 130. Therefore, the waveform becomes a waveform that gradually increases. Here, as the low frequency component current amplitude output from the low frequency component detector 130, the current amplitude (Im_1 / 2) of the frequency component of 1/2 of the drive frequency is output.
 上述のように、衝突判定器131は、低周波成分検出器130より入力される周波数成分の電流振幅(Im_1/2)、すなわち、図11に低周波成分電流振幅値が所定値Aを超えたことを検出すると衝突判定信号としてハイレベル信号(H)を出力する。電圧指令値作成器133は、衝突判定器131より衝突判定信号としてハイレベル信号(H)を入力すると、図6に示すように電圧指令値作成器133を構成するストローク指令切替器150は、A側からB側に切り替る。すると、減算器91にてストローク指令値lからストローク減算値Δlだけ減少した値がストローク指令値lとなる。このストローク指令値lからストローク減算値Δlだけ減少した値がストローク指令値lと余弦(cosθ)とを乗算器92aで乗じる。さらに、可動子6の速度指令値vmを乗算器92bで誘起電圧定数Keと乗じ、単相の交流電圧指令値Vmを出力する。すなわち、図11の電圧振幅の時間変化に示されるように、モータに印加する電圧の振幅が減少し、衝突回避動作となる。 As described above, the collision determination unit 131 determines that the current amplitude (Im_1 / 2) of the frequency component input from the low frequency component detector 130, that is, the low frequency component current amplitude value exceeds the predetermined value A in FIG. When a high level signal (H) is output as a collision determination signal when it is detected. When the voltage command value creator 133 inputs the high level signal (H) as the collision determination signal from the collision determiner 131, the stroke command switching device 150 which configures the voltage command value creator 133 as shown in FIG. Switch from side to side B Then, the value reduced by the stroke subtraction value Δl * from the stroke command value l * by the subtractor 91 becomes the stroke command value l * . A value obtained by reducing the stroke command value l * by the stroke subtraction value Δl * multiplies the stroke command value l * and the cosine (cos θ * ) by the multiplier 92a. Further, the speed command value vm * of the mover 6 is multiplied by the induced voltage constant Ke * by the multiplier 92 b to output a single-phase AC voltage command value Vm * . That is, as shown in the time change of the voltage amplitude in FIG. 11, the amplitude of the voltage applied to the motor decreases, and the collision avoidance operation is performed.
 上述の衝突回避動作後、低周波成分検出器130より入力される周波数成分の電流振幅(Im_1/2)が所定値Cに到達すると、衝突判定器131は衝突判定信号としてローレベル信号(L)を電圧指令値作成器133へ出力する。そして、図11に示すように、上述の通常動作状態に復帰する。 After the above-described collision avoidance operation, when the current amplitude (Im_1 / 2) of the frequency component input from the low frequency component detector 130 reaches a predetermined value C, the collision determination unit 131 generates a low level signal (L) as a collision determination signal. Are output to the voltage command value generator 133. Then, as shown in FIG. 11, the normal operation state described above is restored.
 以上の通り本実施例によれば、衝突を検知するセンサを要することなく、可動子の衝突を回避可能なリニアモータシステムを提供することが可能となる。 
 また、本実施例の構成を用いれば、ストロークが所定値を超えたことを検出可能なリニアモータシステムの省配線化及び小型化が実現できる。
As described above, according to the present embodiment, it is possible to provide a linear motor system capable of avoiding the collision of the mover without requiring a sensor for detecting the collision.
Further, with the configuration of this embodiment, it is possible to realize wire saving and downsizing of the linear motor system capable of detecting that the stroke has exceeded a predetermined value.
 本実施例の構成は、下記の点を除き実施例1と同様にできる。本実施例は、後述するリニアモータシステム200を搭載した機器の一例としての密閉型圧縮機50に関する。 The configuration of this embodiment can be the same as that of Embodiment 1 except for the following points. The present embodiment relates to a hermetic compressor 50 as an example of a device equipped with a linear motor system 200 described later.
 <密閉型圧縮機50> 
 図12、本発明の他の実施例に係る実施例2の密閉型圧縮機の縦断面図であり、リニアモータ104を有する密閉型圧縮機50の縦断面図の一例である。密閉型圧縮機50は、圧縮要素20と電動要素30とが密閉容器3内に配置されたレシプロ圧縮機である。圧縮要素20及び電動要素30は支持ばね49によって密閉容器3内に弾性的に支持されている。電動要素30は、可動子6及び電機子9を含む。 
 圧縮要素20、はシリンダ1aを形成するシリンダブロック1と、シリンダブロック1の端面に組み立てられるシリンダヘッド16と、吐出室空間を形成するヘッドカバー17とを備えている。シリンダ1a内に供給された作動流体はピストン4の往復動によって圧縮され、圧縮された作動流体は圧縮機外部に連通する吐出管(図示せず)へと送られる。
なお、作動流体は、例えば、空気や冷凍サイクルの冷媒などを採用できる。
<Sealed compressor 50>
FIG. 12 is a longitudinal sectional view of a hermetic compressor according to a second embodiment of the present invention, and is an example of a longitudinal cross sectional view of the hermetic compressor 50 having the linear motor 104. The hermetic compressor 50 is a reciprocating compressor in which the compression element 20 and the electric element 30 are disposed in the hermetic container 3. The compression element 20 and the motor element 30 are elastically supported in the closed container 3 by a support spring 49. The motor element 30 includes the mover 6 and the armature 9.
The compression element 20 comprises a cylinder block 1 forming a cylinder 1 a, a cylinder head 16 assembled on the end face of the cylinder block 1, and a head cover 17 forming a discharge chamber space. The working fluid supplied into the cylinder 1a is compressed by the reciprocating motion of the piston 4, and the compressed working fluid is sent to a discharge pipe (not shown) communicating with the outside of the compressor.
As the working fluid, for example, air or a refrigerant of a refrigeration cycle can be adopted.
 可動子6の一端にはピストン4が取り付けられている。本実施例では、可動子6及びピストン4が往復運動することで、作動流体を圧縮及び膨張させる。この圧縮及び膨張に要する仕事等が変動する負荷に相当する。電動要素30の片端には圧縮要素20を配置してある。シリンダブロック1は、可動子6の往復運動を案内するガイドロッドを前後方向に沿って有している。 
 密閉容器3にリニアモータ104を設置する場合は、ハーメチックコネクタやハーメチックシールと呼ばれる、気密性を持ったコネクタが用いられることがある。気密性を保つためには、コネクタの数は最小限にするのが望ましい。
A piston 4 is attached to one end of the mover 6. In the present embodiment, the working fluid is compressed and expanded by reciprocating the mover 6 and the piston 4. The work and the like required for the compression and expansion correspond to the fluctuating load. A compression element 20 is disposed at one end of the motorized element 30. The cylinder block 1 has a guide rod for guiding the reciprocating motion of the mover 6 along the longitudinal direction.
In the case where the linear motor 104 is installed in the closed container 3, a hermetic connector called hermetic connector or hermetic seal may be used. In order to maintain air tightness, it is desirable to minimize the number of connectors.
 可動子6に共振バネ23(図12中では図示せず)を付加し、可動子6の質量とバネ定数から決まる機械的な共振周波数で可動子6を往復運動させる場合、圧縮要素20による共振周波数への影響も考慮する必要がある。すなわち、圧縮要素20の吸込圧力や吐出空間の圧力によって、作動流体のバネ的な作用が加わるため、共振状態となる周波数が変化する。すなわち、シリンダ1aの圧力が高い場合には、可動子6に付加された共振バネ23のバネ定数が高いのと等価であり、共振周波数は高くなる。反対に、シリンダ1aの圧力が低い場合には、可動子6に付加された共振バネ23のバネ定数が支配的となり、共振周波数は、可動子6の質量とバネ定数から決まる機械的な共振周波数に近い。 When a resonance spring 23 (not shown in FIG. 12) is added to the mover 6 and the mover 6 is reciprocated at a mechanical resonance frequency determined from the mass of the mover 6 and the spring constant, the resonance by the compression element 20 The effect on frequency also needs to be considered. That is, the spring-like action of the working fluid is exerted by the suction pressure of the compression element 20 and the pressure of the discharge space, so that the frequency at which the resonance state occurs is changed. That is, when the pressure of the cylinder 1a is high, it is equivalent to the spring constant of the resonance spring 23 added to the mover 6 being high, and the resonance frequency becomes high. On the other hand, when the pressure in the cylinder 1a is low, the spring constant of the resonant spring 23 added to the mover 6 becomes dominant, and the resonance frequency is a mechanical resonance frequency determined from the mass of the mover 6 and the spring constant. Close to
 ピストン4は可動子6及び共振バネ23を介して基部25に固定されているが、ストロークは機械的に制限されていない。そのため、想定以上に可動子6のストロークが大きくなると、ピストン4がシリンダヘッド16に衝突する虞がある。或いは、ピストン4のシリンダ1aと反対側や可動子6が、例えば、リニアモータ104の磁極7や巻線8に衝突する虞がある。ピストン4がシリンダヘッド16に衝突すると、騒音となるだけでなく、最悪の場合、ピストン4やシリンダヘッド16が破損し得る。そのため、起動時等の過渡時においても適切にストロークを制御することが望ましく、衝突した場合にはそれを検知する必要がある。 The piston 4 is fixed to the base 25 via the mover 6 and the resonance spring 23, but the stroke is not mechanically limited. Therefore, if the stroke of the mover 6 becomes larger than expected, the piston 4 may collide with the cylinder head 16. Alternatively, the piston 4 on the opposite side of the cylinder 1 a or the mover 6 may collide with, for example, the magnetic pole 7 or the winding 8 of the linear motor 104. When the piston 4 collides with the cylinder head 16, not only it becomes noise, but in the worst case, the piston 4 and the cylinder head 16 may be damaged. Therefore, it is desirable to appropriately control the stroke even at the time of transition such as at the time of start-up, and in the case of a collision, it is necessary to detect that.
 リニアモータ104を圧縮要素20の動力とする場合は、圧縮要素20の条件によって共振周波数が変化してしまう。これにより、たとえ同じ電圧をリニアモータ104に印加してもストロークが変化してしまうため、幅広い負荷条件においてもピストン4や可動子6が何処に衝突したのを検知することが必要である。そのため、本実施例のリニアモータシステム200は、リニアモータ104に流れる交流電流の振幅の変動を検出し、振幅変動が所定値を超えた場合、可動子6の最大変位を超えたと検知することで、省配線化及び省スペース化を図り、且つ高効率なリニアモータ駆動を実現できる。 When the linear motor 104 is used as the power of the compression element 20, the resonance frequency changes depending on the condition of the compression element 20. As a result, even if the same voltage is applied to the linear motor 104, the stroke changes, so it is necessary to detect where the piston 4 and the mover 6 collided even under a wide range of load conditions. Therefore, the linear motor system 200 according to the present embodiment detects the fluctuation of the amplitude of the alternating current flowing through the linear motor 104, and detects that the maximum displacement of the mover 6 is exceeded when the amplitude fluctuation exceeds a predetermined value. As a result, it is possible to save wiring and space, and to realize highly efficient linear motor drive.
 <リニアモータシステム200> 
 図13は、本実施例のリニアモータシステム200の全体概略構成図である。リニアモータシステム200は、リニアモータ駆動装置201及びリニアモータ104から構成される。 
 リニアモータ駆動装置201は、電力変換回路105、電流検出器106、及び制御部202を備える。制御部202は、低周波数成分検出器130、衝突判定器131a、電圧指令値作成器133、及びPWM信号作成器134を有する。 
 密閉型圧縮機50を駆動する場合、吸込圧と吐出圧が変化する。特に、起動時は圧力の変化の割合が大きいため、衝突判定器131aが誤検知する虞があるという課題がある。
<Linear motor system 200>
FIG. 13 is an overall schematic configuration diagram of the linear motor system 200 of the present embodiment. The linear motor system 200 includes a linear motor drive device 201 and a linear motor 104.
The linear motor drive device 201 includes a power conversion circuit 105, a current detector 106, and a control unit 202. The control unit 202 includes a low frequency component detector 130, a collision determination unit 131a, a voltage command value generator 133, and a PWM signal generator 134.
When the hermetic compressor 50 is driven, the suction pressure and the discharge pressure change. In particular, since the rate of change in pressure is large at the time of start-up, there is a problem that there is a possibility that the collision determination unit 131a may erroneously detect.
 そこで、本実施例では、判定値(所定値)を経過時間或いは負荷条件によって切り替える構成としている。 Therefore, in the present embodiment, the determination value (predetermined value) is switched depending on the elapsed time or the load condition.
 図14は、図13に示すリニアモータ駆動装置201の制御部202を構成する衝突判定器131aの構成例を示す説明図である。図14に示すように、衝突判定器131aは、2つの判定器164a及び判定器164b、積分器94、及び係数器159を備える。
衝突判定器131が有する判定器164aは、低周波成分検出器130より入力された他例えば電流振幅(Im_1/2)が所定値A以下の場合、ローレベル信号(デジタル出力の場合は、例えば、“0”)を出力し、所定値Aよりも大きい場合、ハイレベル信号(デジタル出力の場合は、例えば、“1”)を出力する。判定器164aからの出力は、係数器159にて係数K_collを乗じた値とされ、更に積分器94にて積分される。 
 積分器94の出力は、判定器164bへ入力される。判定器164bは積分器94からの出力が所定値B(判定値)を超えた場合、ハイレベル信号(デジタル出力の場合は、例えば、“1”)を衝突判定信号として出力し、所定値B以下の場合、ローレベル信号(デジタル出力の場合は、例えば、“0”)を衝突判定信号として出力する。 
 これにより、所望の周波数成分の電流振幅が、所定の期間、判定値(所定値)を超えた場合に、ストロークが所定値を超えたことを検出することができる。
FIG. 14 is an explanatory view showing a configuration example of the collision determination unit 131a constituting the control unit 202 of the linear motor drive device 201 shown in FIG. As shown in FIG. 14, the collision determination unit 131a includes two determination units 164a and 164b, an integrator 94, and a coefficient unit 159.
For example, when the current amplitude (Im_1 / 2) is equal to or less than a predetermined value A, the determiner 164a included in the collision determiner 131 has a low level signal (in the case of digital output, for example, “0” is output, and when it is larger than the predetermined value A, a high level signal (for example, “1” in the case of digital output) is output. The output from the determiner 164 a is a value multiplied by the coefficient K_coll in the coefficient unit 159, and is further integrated in the integrator 94.
The output of the integrator 94 is input to the determiner 164b. When the output from the integrator 94 exceeds the predetermined value B (determination value), the determination unit 164b outputs a high level signal (for example, “1” in the case of digital output) as a collision determination signal, and the predetermined value B In the following cases, a low level signal (for example, “0” in the case of digital output) is output as a collision determination signal.
Thus, when the current amplitude of the desired frequency component exceeds the determination value (predetermined value) for a predetermined period, it is possible to detect that the stroke has exceeded the predetermined value.
 以上の通り本実施例によれば、密閉型圧縮機50において、ストロークが所定値を超えたことを検出するリニアモータシステム200を適用することで、省配線化及び小型化を実現することが可能となる。動作中に判定値(所定値)を変更、或いは判定値(所定値)にヒステリシスを設けることにより、誤検知を少なくでき、安定な駆動を実現できるリニアモータシステムを提供することができる。 
 また、経過時間や、リニアモータ104の負荷(例えば、圧力要素20の吸込圧力と吐出圧力の差に比例する)に応じて、判定値(所定値)を適切に切り替えることにより、無負荷(圧力要素20の吸込圧力と吐出圧力が均圧状態)から重負荷といった、幅広い負荷条件においても適切に衝突検知を行うことが可能なリニアモータシステムを提供することができる。 
 また、本実施例に示した圧縮機は、エアサスペンションにおいて車高を調整するために作動流体を圧縮する圧縮機に適用できる。
As described above, according to the present embodiment, by applying the linear motor system 200 for detecting that the stroke has exceeded the predetermined value in the hermetic compressor 50, it is possible to realize wire saving and downsizing. It becomes. By changing the judgment value (predetermined value) during operation or providing a hysteresis to the judgment value (predetermined value), it is possible to provide a linear motor system capable of reducing erroneous detection and realizing stable driving.
Also, by appropriately switching the determination value (predetermined value) according to the elapsed time or the load of the linear motor 104 (for example, proportional to the difference between the suction pressure and the discharge pressure of the pressure element 20), no load (pressure It is possible to provide a linear motor system capable of appropriately performing collision detection even under a wide range of load conditions such as suction pressure and discharge pressure of the element 20 from pressure equalization) to heavy load.
In addition, the compressor shown in the present embodiment can be applied to a compressor that compresses a working fluid to adjust the height of the air suspension.
 本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。 
 また、上記の各構成、機能、処理部、処理手続き等は、それらの一部または全部を、例えば集積回路で設計する等によりハードウェアで実現しても良い。また、上記の各構成や機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現しても良い。 
 電力変換回路105は、電流を出力する態様であってもよい。この場合は、電圧指令値作成器103に代えて電流指令値作成器を設ければよい。
The present invention is not limited to the embodiments described above, but includes various modifications. For example, the embodiments described above are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
Further, each of the configurations, functions, processing units, processing procedures, and the like described above may be realized by hardware, for example, by designing part or all of them with an integrated circuit. In addition, each configuration, function, and the like described above may be realized by software by a processor interpreting and executing a program that realizes each function.
The power conversion circuit 105 may output a current. In this case, a current command value creator may be provided instead of the voltage command value creator 103.
1…シリンダブロック、1a…シリンダ、2…永久磁石、3…密閉容器、4…ピストン、6…可動子、7…磁極、8…巻線、9…電機子、16…シリンダヘッド、17…ヘッドカバー、20…圧縮要素、23…共振バネ(アシストバネ)、30…電動要素、50…密閉型圧縮機、100,200…リニアモータシステム、101,201…リニアモータ駆動装置、102,202…制御部、104…リニアモータ、105…電力変換回路、106,107…電流検出器、126…フルブリッジ回路、130…低周波成分検出器、131,131a…衝突判定器、133…電圧指令値作成器、134…PWM信号作成器、140…積分器、150…ストローク指令切替器 DESCRIPTION OF SYMBOLS 1 ... cylinder block, 1a ... cylinder, 2 ... permanent magnet, 3 ... closed container, 4 ... piston, 6 ... mover, 7 ... magnetic pole, 8 ... winding, 9 ... armature, 16 ... cylinder head, 17 ... head cover , 20: compression element, 23: resonance spring (assist spring), 30: electric element, 50: sealed compressor, 100, 200: linear motor system, 101, 201: linear motor drive, 102, 202: control unit 104: linear motor, 105: power conversion circuit, 106, 107: current detector, 126: full bridge circuit, 130: low frequency component detector, 131, 131a: collision determiner, 133: voltage command value generator, 134: PWM signal generator, 140: integrator, 150: stroke command switch

Claims (20)

  1.  少なとも交流電圧が印加される巻線及び弾性体が接続する可動子を有するリニアモータを備え、
     前記巻線に流れる交流電流の振幅の変動を検出し、検出される振幅が所定値を超えた場合、前記可動子が最大変位を超えたと検知するリニアモータ駆動装置を有することを特徴とするリニアモータシステム。
    A linear motor having a mover to which at least a winding to which an alternating voltage is applied and an elastic body are connected;
    A linear motor drive device for detecting a variation in the amplitude of the alternating current flowing through the winding and detecting that the mover exceeds a maximum displacement when the detected amplitude exceeds a predetermined value; Motor system.
  2.  請求項1に記載のリニアモータシステムにおいて、
     前記リニアモータ駆動装置は、
     前記巻線に流れる交流電流を入力し、駆動周波数より低い周波数成分の電流振幅を検出する低周波成分検出器と、
     前記低周波成分検出器により検出された電流振幅が所定値を超えた場合、前記可動子が最大変位を超えたと検知する衝突判定器と、を有することを特徴とするリニアモータシステム。
    In the linear motor system according to claim 1,
    The linear motor drive device
    A low frequency component detector which receives an alternating current flowing through the winding and detects a current amplitude of a frequency component lower than a drive frequency;
    A linear motor system comprising: a collision determiner which detects that the mover exceeds a maximum displacement when the current amplitude detected by the low frequency component detector exceeds a predetermined value.
  3.  請求項2に記載のリニアモータシステムにおいて、
     前記低周波成分検出器は、前記巻線に流れる交流電流の振幅の周期毎の変動を検出し、 前記衝突判定器は、前記低周波成分検出器により検出された前記振幅が所定値を超えた場合、前記可動子が最大変位を超えたと検知することを特徴とするリニアモータシステム。
    In the linear motor system according to claim 2,
    The low frequency component detector detects a period-to-period variation of the amplitude of the alternating current flowing through the winding, and the collision determiner detects that the amplitude detected by the low frequency component detector exceeds a predetermined value. In this case, it is detected that the mover exceeds the maximum displacement.
  4.  請求項2に記載のリニアモータシステムにおいて、
     前記低周波成分検出器は、駆動周波数の1/2以下の周波数成分の前記巻線に流れる電流の電流振幅を検出し、
     前記衝突判定器は、前記低周波成分検出器により検出された前記電流振幅が所定値を超えた場合、前記可動子が最大変位を超えたと検知することを特徴とするリニアモータシステム。
    In the linear motor system according to claim 2,
    The low frequency component detector detects the current amplitude of the current flowing through the winding at a frequency component of 1/2 or less of the drive frequency,
    The linear motor system, wherein the collision determiner detects that the mover exceeds a maximum displacement when the current amplitude detected by the low frequency component detector exceeds a predetermined value.
  5.  請求項2に記載のリニアモータシステムにおいて、
     前記低周波成分検出器は、駆動周波数の1/2以下の周波数成分の前記巻線に流れる電流の電流振幅を検出し、
     前記衝突判定器は、前記低周波成分検出器により検出された前記電流振幅が所定値を所定期間超えた場合、前記可動子が最大変位を超えたと検知することを特徴とするリニアモータシステム。
    In the linear motor system according to claim 2,
    The low frequency component detector detects the current amplitude of the current flowing through the winding at a frequency component of 1/2 or less of the drive frequency,
    The linear motor system, wherein the collision determiner detects that the mover exceeds a maximum displacement when the current amplitude detected by the low frequency component detector exceeds a predetermined value for a predetermined period.
  6.  請求項2に記載のリニアモータシステムにおいて、
     前記低周波成分検出器は、駆動周期のN倍(N≧2)の周波数成分の前記巻線に流れる電流の電流振幅を検出し、
     前記衝突判定器は、前記低周波成分検出器により検出された前記電流振幅が所定値を超えた場合、前記可動子が最大変位を超えたと検知することを特徴とするリニアモータシステム。
    In the linear motor system according to claim 2,
    The low frequency component detector detects the current amplitude of the current flowing through the winding at a frequency component of N times (N ≧ 2) of the drive period,
    The linear motor system, wherein the collision determiner detects that the mover exceeds a maximum displacement when the current amplitude detected by the low frequency component detector exceeds a predetermined value.
  7.  請求項2に記載のリニアモータシステムにおいて、
     前記低周波成分検出器は、駆動周期のN倍(N≧2)の周波数成分の前記巻線に流れる電流の電流振幅を検出し、
     前記衝突判定器は、前記低周波成分検出器により検出された前記電流振幅が所定値を所定期間超えた場合、前記可動子が最大変位を超えたと検知することを特徴とするリニアモータシステム。
    In the linear motor system according to claim 2,
    The low frequency component detector detects the current amplitude of the current flowing through the winding at a frequency component of N times (N ≧ 2) of the drive period,
    The linear motor system, wherein the collision determiner detects that the mover exceeds a maximum displacement when the current amplitude detected by the low frequency component detector exceeds a predetermined value for a predetermined period.
  8.  請求項4に記載のリニアモータシステムにおいて、
     前記衝突判定器は、経過時間又は負荷条件に基づき、前記所定値を変更することを特徴とするリニアモータシステム。
    In the linear motor system according to claim 4,
    The linear motor system, wherein the collision determination unit changes the predetermined value based on an elapsed time or a load condition.
  9.  請求項6に記載のリニアモータシステムにおいて、
     前記衝突判定器は、経過時間又は負荷条件に基づき、前記所定値を変更することを特徴とするリニアモータシステム。
    In the linear motor system according to claim 6,
    The linear motor system, wherein the collision determination unit changes the predetermined value based on an elapsed time or a load condition.
  10.  請求項8に記載のリニアモータシステムにおいて、
     前記リニアモータ駆動装置は、
     前記衝突判定器により前記可動子が最大変位を超えたと検知された場合、前記巻線に印加する電圧を変更するための電圧指令値を出力する電圧指令値作成器を有することを特徴とするリニアモータシステム。
    In the linear motor system according to claim 8,
    The linear motor drive device
    And a voltage command value generator for outputting a voltage command value for changing a voltage applied to the winding when the collision determiner detects that the mover exceeds the maximum displacement. Motor system.
  11.  請求項9に記載のリニアモータシステムにおいて、
     前記リニアモータ駆動装置は、
     前記衝突判定器により前記可動子が最大変位を超えたと検知された場合、前記巻線に印加する電圧を変更するための電圧指令値を出力する電圧指令値作成器を有することを特徴とするリニアモータシステム。
    In the linear motor system according to claim 9,
    The linear motor drive device
    And a voltage command value generator for outputting a voltage command value for changing a voltage applied to the winding when the collision determiner detects that the mover exceeds the maximum displacement. Motor system.
  12.  請求項8に記載のリニアモータシステムにおいて、
     前記リニアモータ駆動装置は、
     前記衝突判定器により前記可動子が最大変位を超えたと検知された場合、前記巻線に印加する電圧を減少させるための電圧指令値を出力する電圧指令値作成器を有することを特徴とするリニアモータシステム。
    In the linear motor system according to claim 8,
    The linear motor drive device
    And a voltage command value generator for outputting a voltage command value for reducing a voltage applied to the winding when the collision determiner detects that the mover exceeds the maximum displacement. Motor system.
  13.  請求項9に記載のリニアモータシステムにおいて、
     前記リニアモータ駆動装置は、
     前記衝突判定器により前記可動子が最大変位を超えたと検知された場合、前記巻線に印加する電圧を減少させるための電圧指令値を出力する電圧指令値作成器を有することを特徴とするリニアモータシステム。
    In the linear motor system according to claim 9,
    The linear motor drive device
    And a voltage command value generator for outputting a voltage command value for reducing a voltage applied to the winding when the collision determiner detects that the mover exceeds the maximum displacement. Motor system.
  14.  請求項10に記載のリニアモータシステムにおいて、
     前記衝突判定器は、
     前記低周波成分検出器により検出された前記電流振幅が前記所定値以下の場合、ローレベル信号を衝突判定信号として前記電圧指令値作成器へ出力し、
     前記低周波成分検出器により検出された前記電流振幅が前記所定値を超える場合、ハイレベル信号を衝突判定信号として前記電圧指令値作成器へ出力することを特徴とするリニアモータシステム。
    The linear motor system according to claim 10,
    The collision determination unit
    When the current amplitude detected by the low frequency component detector is equal to or less than the predetermined value, a low level signal is output as a collision determination signal to the voltage command value generator.
    A linear motor system characterized in that when the current amplitude detected by the low frequency component detector exceeds the predetermined value, a high level signal is output to the voltage command value generator as a collision determination signal.
  15.  請求項11に記載のリニアモータシステムにおいて、
     前記衝突判定器は、
     前記低周波成分検出器により検出された前記電流振幅が前記所定値以下の場合、ローレベル信号を衝突判定信号として前記電圧指令値作成器へ出力し、
     前記低周波成分検出器により検出された前記電流振幅が前記所定値を超える場合、ハイレベル信号を衝突判定信号として前記電圧指令値作成器へ出力することを特徴とするリニアモータシステム。
    In the linear motor system according to claim 11,
    The collision determination unit
    When the current amplitude detected by the low frequency component detector is equal to or less than the predetermined value, a low level signal is output as a collision determination signal to the voltage command value generator.
    A linear motor system characterized in that when the current amplitude detected by the low frequency component detector exceeds the predetermined value, a high level signal is output to the voltage command value generator as a collision determination signal.
  16.  請求項12に記載のリニアモータシステムにおいて、
     前記衝突判定器は、
     前記低周波成分検出器により検出された前記電流振幅が前記所定値以下の場合、ローレベル信号を衝突判定信号として前記電圧指令値作成器へ出力し、
     前記低周波成分検出器により検出された前記電流振幅が前記所定値を超える場合、ハイレベル信号を衝突判定信号として前記電圧指令値作成器へ出力することを特徴とするリニアモータシステム。
    In the linear motor system according to claim 12,
    The collision determination unit
    When the current amplitude detected by the low frequency component detector is equal to or less than the predetermined value, a low level signal is output as a collision determination signal to the voltage command value generator.
    A linear motor system characterized in that when the current amplitude detected by the low frequency component detector exceeds the predetermined value, a high level signal is output to the voltage command value generator as a collision determination signal.
  17.  請求項13に記載のリニアモータシステムにおいて、
     前記衝突判定器は、
     前記低周波成分検出器により検出された前記電流振幅が前記所定値以下の場合、ローレベル信号を衝突判定信号として前記電圧指令値作成器へ出力し、
     前記低周波成分検出器により検出された前記電流振幅が前記所定値を超える場合、ハイレベル信号を衝突判定信号として前記電圧指令値作成器へ出力することを特徴とするリニアモータシステム。
    In the linear motor system according to claim 13,
    The collision determination unit
    When the current amplitude detected by the low frequency component detector is equal to or less than the predetermined value, a low level signal is output as a collision determination signal to the voltage command value generator.
    A linear motor system characterized in that when the current amplitude detected by the low frequency component detector exceeds the predetermined value, a high level signal is output to the voltage command value generator as a collision determination signal.
  18.  請求項14に記載のリニアモータシステムにおいて、
     前記電圧指令値作成器は、
     予め設定或いは外部より入力される周波数指令値を積分して位相指令値を求める積分器と、
     前記位相指令値に対する余弦を求める余弦演算器と、
     前記可動子の変位の変化量であるストロークのストローク指令値と、前記ストローク指令値から所定のストローク減算値を減じた値のうちいずれか一方を選択するストローク指令切替器と、
     前記余弦演算器の出力と、前記ストローク指令値又は前記ストローク指令値から所定のストローク減算値を減じた値とを乗ずる乗算器と、を備え、
     前記ストローク指令切替器は、前記衝突判定信号がローレベル信号の場合、前記ストローク指令値を選択し、前記衝突判定信号がハイレベル信号の場合、前記ストローク指令値から所定のストローク減算値を減じた値を選択することを特徴とするリニアモータシステム。
    In the linear motor system according to claim 14,
    The voltage command value creator
    An integrator which obtains a phase command value by integrating a frequency command value which is set in advance or input from the outside;
    A cosine operator for obtaining a cosine with respect to the phase command value;
    A stroke command switch for selecting one of a stroke command value of a stroke which is a change amount of displacement of the mover, and a value obtained by subtracting a predetermined stroke subtraction value from the stroke command value;
    A multiplier for multiplying the output of the cosine calculator by the stroke command value or the value obtained by subtracting a predetermined stroke subtraction value from the stroke command value;
    The stroke command switch selects the stroke command value when the collision determination signal is a low level signal, and subtracts a predetermined stroke subtraction value from the stroke command value when the collision determination signal is a high level signal. A linear motor system characterized by selecting a value.
  19.  請求項15に記載のリニアモータシステムにおいて、
     前記電圧指令値作成器は、
     予め設定或いは外部より入力される周波数指令値を積分して位相指令値を求める積分器と、
     前記位相指令値に対する余弦を求める余弦演算器と、
     前記可動子の変位の変化量であるストロークのストローク指令値と、前記ストローク指令値から所定のストローク減算値を減じた値のうちいずれか一方を選択するストローク指令切替器と、
     前記余弦演算器の出力と、前記ストローク指令値又は前記ストローク指令値から所定のストローク減算値を減じた値とを乗ずる乗算器と、を備え、
     前記ストローク指令切替器は、前記衝突判定信号がローレベル信号の場合、前記ストローク指令値を選択し、前記衝突判定信号がハイレベル信号の場合、前記ストローク指令値から所定のストローク減算値を減じた値を選択することを特徴とするリニアモータシステム。
    In the linear motor system according to claim 15,
    The voltage command value creator
    An integrator which obtains a phase command value by integrating a frequency command value which is set in advance or input from the outside;
    A cosine operator for obtaining a cosine with respect to the phase command value;
    A stroke command switch for selecting one of a stroke command value of a stroke which is a change amount of displacement of the mover, and a value obtained by subtracting a predetermined stroke subtraction value from the stroke command value;
    A multiplier for multiplying the output of the cosine calculator by the stroke command value or the value obtained by subtracting a predetermined stroke subtraction value from the stroke command value;
    The stroke command switch selects the stroke command value when the collision determination signal is a low level signal, and subtracts a predetermined stroke subtraction value from the stroke command value when the collision determination signal is a high level signal. A linear motor system characterized by selecting a value.
  20.  請求項16に記載のリニアモータシステムにおいて、
     前記電圧指令値作成器は、
     予め設定或いは外部より入力される周波数指令値を積分して位相指令値を求める積分器と、
     前記位相指令値に対する余弦を求める余弦演算器と、
     前記可動子の変位の変化量であるストロークのストローク指令値と、前記ストローク指令値から所定のストローク減算値を減じた値のうちいずれか一方を選択するストローク指令切替器と、
     前記余弦演算器の出力と、前記ストローク指令値又は前記ストローク指令値から所定のストローク減算値を減じた値とを乗ずる乗算器と、を備え、
     前記ストローク指令切替器は、前記衝突判定信号がローレベル信号の場合、前記ストローク指令値を選択し、前記衝突判定信号がハイレベル信号の場合、前記ストローク指令値から所定のストローク減算値を減じた値を選択することを特徴とするリニアモータシステム。
    In the linear motor system according to claim 16,
    The voltage command value creator
    An integrator which obtains a phase command value by integrating a frequency command value which is set in advance or input from the outside;
    A cosine operator for obtaining a cosine with respect to the phase command value;
    A stroke command switch for selecting one of a stroke command value of a stroke which is a change amount of displacement of the mover, and a value obtained by subtracting a predetermined stroke subtraction value from the stroke command value;
    A multiplier for multiplying the output of the cosine calculator by the stroke command value or the value obtained by subtracting a predetermined stroke subtraction value from the stroke command value;
    The stroke command switch selects the stroke command value when the collision determination signal is a low level signal, and subtracts a predetermined stroke subtraction value from the stroke command value when the collision determination signal is a high level signal. A linear motor system characterized by selecting a value.
PCT/JP2018/018673 2017-07-06 2018-05-15 Linear motor system WO2019008908A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017132626A JP6916053B2 (en) 2017-07-06 2017-07-06 Linear motor system
JP2017-132626 2017-07-06

Publications (1)

Publication Number Publication Date
WO2019008908A1 true WO2019008908A1 (en) 2019-01-10

Family

ID=64949862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018673 WO2019008908A1 (en) 2017-07-06 2018-05-15 Linear motor system

Country Status (2)

Country Link
JP (1) JP6916053B2 (en)
WO (1) WO2019008908A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003339188A (en) * 2002-05-21 2003-11-28 Matsushita Electric Ind Co Ltd Linear motor drive apparatus
JP2009275828A (en) * 2008-05-14 2009-11-26 Sinfonia Technology Co Ltd Vibration damping device and manufacturing method of excitation command table
JP2011209830A (en) * 2010-03-29 2011-10-20 Sinfonia Technology Co Ltd Motorized actuator drive device and vibration damper including the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003339188A (en) * 2002-05-21 2003-11-28 Matsushita Electric Ind Co Ltd Linear motor drive apparatus
JP2009275828A (en) * 2008-05-14 2009-11-26 Sinfonia Technology Co Ltd Vibration damping device and manufacturing method of excitation command table
JP2011209830A (en) * 2010-03-29 2011-10-20 Sinfonia Technology Co Ltd Motorized actuator drive device and vibration damper including the same

Also Published As

Publication number Publication date
JP2019017175A (en) 2019-01-31
JP6916053B2 (en) 2021-08-11

Similar Documents

Publication Publication Date Title
CN109792224B (en) Linear motor control device and compressor equipped with linear motor control device
EP1724914B1 (en) System and method for controlling linear compressor
WO2017006744A1 (en) Motor system and device equipped with same
JP6220967B2 (en) Linear motor and equipment equipped with linear motor
US20180003224A1 (en) Motor System and Compressor Equipped Therewith
JP6965048B2 (en) Linear motor system
JP3674364B2 (en) Vibrating motor and drive control device thereof
WO2019008908A1 (en) Linear motor system
JP6899720B2 (en) Linear motor system and compressor with it
KR102189035B1 (en) Linear motor system and compressor
WO2019176471A1 (en) Linear compressor and linear compressor control system
Jang et al. Dynamic performance of tubular linear actuator with halbach array and mechanical spring driven by PWM inverter
Kimpara Mitigation of Torque Ripple and Vibration in Switched Reluctance Motor Drives: A Switching Optimization
JP2009017755A (en) Linear-motor controller and stirling engine
KR101403007B1 (en) Linear Compressor and its control method
JP2008237016A (en) Linear compressor drive unit
KR20120039007A (en) Control system for electric motor applied to cyclic loads and control method for electric motor applied to cyclic loads

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18828964

Country of ref document: EP

Kind code of ref document: A1