WO2019008545A1 - 電極体のサブユニット、電極ユニット、積層電極体及び蓄電素子 - Google Patents

電極体のサブユニット、電極ユニット、積層電極体及び蓄電素子 Download PDF

Info

Publication number
WO2019008545A1
WO2019008545A1 PCT/IB2018/054991 IB2018054991W WO2019008545A1 WO 2019008545 A1 WO2019008545 A1 WO 2019008545A1 IB 2018054991 W IB2018054991 W IB 2018054991W WO 2019008545 A1 WO2019008545 A1 WO 2019008545A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode plate
negative electrode
positive electrode
separator
laminated
Prior art date
Application number
PCT/IB2018/054991
Other languages
English (en)
French (fr)
Original Assignee
リチウム・エネルギー・アンド・パワー・GmbH & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リチウム・エネルギー・アンド・パワー・GmbH & Co. KG filed Critical リチウム・エネルギー・アンド・パワー・GmbH & Co. KG
Publication of WO2019008545A1 publication Critical patent/WO2019008545A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • H01M50/466U-shaped, bag-shaped or folded
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0459Cells or batteries with folded separator between plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0468Compression means for stacks of electrodes and separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Patent application title Electrode body sheet, electrode sheet, laminated electrode body and storage element
  • the present invention relates to a subunit of an electrode assembly, an electrode unit, a laminated electrode assembly, and a storage element. ⁇ Background technology ⁇
  • Chargeable and dischargeable storage elements are used in various devices such as mobile phones and electric vehicles. In recent years, with the increasing output and performance of these devices, storage devices that are smaller and have larger energy density (electrical capacity) are being sought.
  • a storage element is formed by alternately laminating a positive electrode plate having a positive electrode active material layer formed on the surface and a negative electrode plate having a negative electrode active material layer formed on the surface via a separator having electrical insulation. It has a stacked electrode body. In order to increase the energy density per unit volume in such a storage element, it is effective to make the separator thinner. Therefore, a storage element in which a separator is formed of a resin film has been put to practical use.
  • a metal deposit formed by electrodeposition at the negative electrode may penetrate the separator and cause a short circuit between the positive electrode plate and the negative electrode plate.
  • electrolytic species in the vicinity of the positive electrode plate may form precipitates
  • a laminated electrode assembly which suppresses corrosion and suppresses the electrodeposition of metal ions in contact with the negative electrode.
  • the bonded portion of the separator may occupy a predetermined space inside the storage element, which may hinder the increase of the energy density of the storage element.
  • the planar size of the positive electrode plate needs to be smaller than the planar size of the negative electrode plate, which is also a factor that limits the energy density of the storage element.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2 0 1 3 1 3
  • a packaged positive plate in which the positive plate is sandwiched between a pair of separators and the pair of separators are adhered outside the plan view of the positive plate, and a bag larger than the positive plate and smaller than the separator
  • a laminated electrode body in which non-packed negative electrode plates are alternately laminated is accommodated in the packaging material.
  • a plurality of packaged positive electrode plates and a plurality of negative electrode plates are held by sandwiching the plurality of separators with the outer layer material at the outer peripheral portion.
  • An object of the present invention is to provide a multilayer electrode sub-unit, an electrode unit, and a multilayer electrode body capable of efficiently producing a storage element having a large energy density, and a storage element using them.
  • the sheet of the laminated electrode assembly comprises: two separators having adhesive layers on both sides; and one positive electrode plate disposed and adhesively fixed between the two separators.
  • the subunits of the laminated electrode assembly include one positive electrode plate, two separators sandwiching the positive electrode plate, and one negative electrode plate stacked on one separator. Because they are fixed and integrated, the relative positions of the positive plate, the separator and the negative plate within this subunit are accurate and unchanged. Therefore, even if the area in which the positive electrode plate and the negative electrode plate face each other is increased, the subunit does not protrude from the negative electrode plate to promote electrodeposition. Further, in the sub-unit, since the positive electrode plate and the negative electrode plate are adhered and fixed to the separator, the separator is unlikely to be deformed. Therefore, the subunits can be easily positioned by the guide, and multiple sheets can be accurately and quickly stacked. By using such a sheet, it is possible to efficiently manufacture a laminated electrode body having a relatively large ratio of the area of the region where the positive electrode plate and the negative electrode plate are opposed to the area of the separator and a large energy density.
  • FIG. 1 is a schematic cross-sectional view of a buffer according to an embodiment of the present invention.
  • FIG. 2 is a partial enlarged cross-sectional view of the subunit of FIG.
  • FIG. 3 is a schematic cross-sectional view of an electrode sheet having the buffer of FIG. 1;
  • FIG. 4 is a schematic plan view of the electrode unit of FIG. 3;
  • FIG. 5 is a schematic cross-sectional view of a laminated electrode body having the storage battery of FIG. 3;
  • FIG. 6 is a schematic exploded perspective view of a storage element having the laminated electrode assembly of FIG.
  • FIG. 7 is a schematic view showing a process of forming the substrate of FIG. 1.
  • the sheet of the laminated electrode assembly comprises: two separators having adhesive layers on both sides; and one positive electrode plate disposed and adhesively fixed between the two separators.
  • one positive electrode plate, two separators sandwiching the positive electrode plate, and one negative electrode plate stacked on one separator are bonded and integrated to form an integrated circuit.
  • the relative positions of the positive electrode plate, the separator and the negative electrode plate are accurate and unchanged. Therefore, even if the area in which the positive electrode plate and the negative electrode plate face each other is enlarged, the sub-units It does not protrude from the negative electrode plate to promote electrodeposition.
  • the positive electrode plate and the negative electrode plate are adhered and fixed to the separator, so the separator is not easily deformed. Therefore, subunits can be easily positioned by guides, and multiple subunits can be stacked accurately and quickly.
  • the ratio of the area of the region where the positive electrode plate and the negative electrode plate are opposite to the area of the separator is relatively large, and a stacked electrode body having a large energy density can be efficiently produced.
  • the adhesive layer does not exhibit adhesiveness at normal temperature, so the handling of the subject is easy, and the adhesive layer exhibits adhesiveness by heating, so that other subunits are produced. And can be easily joined.
  • the separator has a resin layer holding an electrolyte and an oxidation resistant layer that suppresses oxidation of the resin layer between adhesive layers on both sides, so that the resin layer holds a sufficient electrolyte. Will be secured.
  • the oxidation resistant layer can be a relatively thin layer that can be easily broken, the resin layers of the separator should be welded together when the laminated sheet is laminated to form a laminated electrode body. It is possible to facilitate the manufacture of the laminated electrode assembly.
  • the electrode sheet according to an aspect of the present invention is formed by laminating a plurality of the above-described sheets, and separators protruding from the end portions of the positive electrode plate and the negative electrode plate of each of the plurality of sheets are welded. It is done.
  • the electrode unit the relative position between the plurality of sheets is fixed by welding the separators, and the positive electrode plate and the negative electrode plate of each sheet must be held in the correct facing state. Can. Therefore, the electrode unit can increase the area in which the positive electrode plate and the negative electrode plate face each other, so that the energy density of the laminated electrode body formed using the electrode assembly can be increased. it can.
  • the negative electrode plate may not be force-bonded to the separator of the negative electrode plate adjacent to the negative electrode plate. According to this configuration, the electrode unit can be easily manufactured only by laminating a plurality of sheets and welding the end of the separator.
  • the laminated electrode body In the laminated electrode body according to an aspect of the present invention, a plurality of the electrode units described above are laminated, and one negative electrode plate is disposed on the separator disposed in the outermost layer.
  • the laminated electrode body can be easily manufactured since it can be obtained by laminating a plurality of electrode units, and the energy density is large.
  • the laminated electrode body may further include a resin film covering a laminated body of the plurality of electrode units and the negative electrode plate.
  • the resin film suppresses the positional displacement between the electrode units, so that the energy density can be further increased, and the resin film protects the negative electrode plate of the outermost layer. Becomes easy.
  • a storage element includes: the above-described stacked electrode body; a case for housing the stacked electrode body; and an external terminal electrically connected to the stacked electrode body and exposed from the case. Prepare. Since the accumulator device includes the laminated electrode body, it is easy to manufacture and can increase the energy density.
  • FIG. 1 and 2 show a subunit S according to an embodiment of the present invention.
  • This subunit S as shown in FIG. 3 and FIG. 4 itself, is used to manufacture an electrode assembly U according to another embodiment of the present invention.
  • the electrode unit U is itself used to manufacture a laminated electrode body B according to still another embodiment of the present invention.
  • the stacked electrode body B is used as one component of a storage element according to another embodiment of the present invention.
  • the subunit S includes two separators 1, one positive electrode plate 2 disposed between the two separators 1 and adhesively fixed, and one of the two separators 1. And one negative electrode plate 3 bonded and fixed to the opposite surface. In the sheet, the ends of the two separators 1 project from the ends of the positive plate 2 and the negative plate 3.
  • the separator 1 comprises a sheet-like resin layer 4, an oxidation resistant layer 5 laminated on the surface of the resin layer 4 facing at least the positive electrode plate 2, the resin layer 4 and And a pair of adhesive layers 6 laminated on both sides of the laminate of the oxidation resistant layer 5.
  • Separator 1 is an electric storage device manufactured using subunit S, and is interposed between positive electrode plate 2 and negative electrode plate 3 to prevent direct contact between positive electrode plate 2 and negative electrode plate 3. The inside thereof is impregnated with an electrolytic solution to enable transfer of charges via ions between the positive electrode plate 2 and the negative electrode plate 3.
  • the resin layer 4 of the separator 1 is a layer mainly holding an electrolytic solution, and is formed of a porous resin film.
  • the main component of the resin layer 4 is, for example, polyethylene (PE), polypropylene (PP), ethylene-acetate-butyl copolymer, ethylene-methyl atarelate copolymer, ethylene-butyl atylate copolymer, polyolefin derivatives such as chlorinated polyethylene, etc.
  • Polyolefins such as ethylene-propylene copolymer, and polyesters such as polyethylene terephthalate and copolymerized polyester can be employed.
  • polyethylene and polypropylene which are excellent in electrolytic solution resistance, durability and weldability, are preferably used as the main component of the resin layer 4.
  • the term "main component" means a component having the largest mass content.
  • the lower limit of the average thickness of the resin layer 4 is preferably, and more preferably 10 m.
  • the upper limit of the average thickness of the resin layer 4 is preferably 3 0 / x m, more preferably 2 0 / x m.
  • the oxidation resistant layer 5 of the separator 1 is a layer mainly provided to suppress oxidation and deterioration of the resin layer 4 and includes a large number of inorganic particles and a binder connecting the inorganic particles.
  • oxides such as alumina, silica, zirconia, titanium oxide, magnesium, ceria, yttria, zinc oxide, iron oxide, nitrides such as silicon nitride, titanium nitride, boron nitride and the like , Silicon carbide, calcium carbonate, aluminum sulfate, aluminum hydroxide, potassium titanate, talc, kaolin clay, kaolinite, halloysite, pyrophyllite, montmorillonite, sericite, myite, phamateite, bentonite, Examples include asbestos, zeolite, calcium borate and magnesium benzoate. Among them, as the main component of the inorganic particles of the oxidation resistant layer 5, alumina, silica and titanium are particularly preferable. [0 0 3 3]
  • the lower limit of the average particle size of the inorganic particles of the oxidation resistant layer 5 is preferably 1 nm, more preferably 7 nm.
  • the upper limit of the average particle size of the inorganic particles is preferably 5 / x m, more preferably 1 / x m.
  • the main component of the binder of the oxidation resistant layer 5 is, for example, fluorocarbon resin such as poly (vinyl fluoride), poly (tetrafluoroethylene), fluoro rubber such as poly (vinyl fluoride) -hexafluoropropylene-tetrafluoroethylene copolymer, styre -Butadiene copolymer and its hydride, acrylonitrile butadiene copolymer and its hydride, acrylonitrile butadiene-styrene copolymer and its hydride, methacrylate ester-acrylate ester copolymer, styrene Synthetic rubber such as acrylic ester copolymer, acrylonitrile acrylic ester copolymer etc., carboxymethyl cellulose (CMC), hydroxy cellulose (HEC), cellulose derivative such as ammonium salt of carboxymethyl cellulose, polyetherimiPolyamides such as poly, polyamidoimides, polyamides and
  • the lower limit of the average thickness of the oxidation resistant layer 5 is preferably 4 / x m.
  • the upper limit of the average thickness of the oxidation resistant layer 5 is preferably 6 / x m, and is more preferable.
  • the adhesive layer 6 of the separator 1 is a layer which has ion conductivity so as to enable electrode reaction in the positive electrode plate 2 and the negative electrode plate 3 and which bonds the separator 1 to the positive electrode plate 2 and the negative electrode plate 3.
  • the adhesive layer 6 is preferably a layer that exhibits adhesiveness by heating, and a temperature exceeding normal temperature, for example, a temperature of 60 ° C. or more and a shut-down temperature of the separator 1 (the resin layer 4 It is configured such that adhesion can be developed when exposed to a temperature lower than the melting temperature (the temperature at which the adhesion is developed is 60 ° C. or more and less than the shutdown temperature of separator 1).
  • the adhesive layer 6 By forming the adhesive layer 6 so as to exhibit positive adhesion in such a temperature range, the adhesive layer 6 does not exhibit adhesiveness at normal temperature, which facilitates the handling of the sheet U, and other structures By heating the adhesive layer 6 to such an extent that the element is not damaged, the adhesive layer 6 can be easily bonded to the other substrate U by exhibiting adhesiveness.
  • the adhesive layer 6 can be formed from a mixed material containing particles exhibiting ion conductivity and a binder. Specifically, the adhesive layer 6 is formed of a material containing solid electrolytic solution particles containing an electrolytic solution to secure ion conductivity, and a binder exhibiting adhesiveness by, for example, heating or ultrasonic vibration. be able to. The adhesive layer 6 preferably has continuous pores so that liquids and gases can pass through.
  • the lower limit of the average thickness of the adhesive layer 6 is preferably 0.1 / xm, more preferably 0.2 / xm, and still more preferably 0.4 m.
  • the upper limit of the average thickness of the adhesive layer 6 Preferably, 3 / xm is more preferable, and 1.2 / xm is more preferable. Sufficient adhesion can be obtained by setting the average thickness of the adhesive layer 6 to the above lower limit or more. Further, by setting the average thickness of the adhesive layer 6 to the upper limit or less, sufficient ion conductivity can be obtained.
  • Examples of the material of the solid electrolyte particles of the adhesive layer 6 include inorganic solid electrolytes, pure solid polymer electrolytes, and polymer gel electrolytes (gel electrolytes), among which ions are among others.
  • a polymer gel electrolyte which can increase the conductivity and is uniform and easy to adjust the particle size is particularly preferably used.
  • the polymer gel electrolyte is one which is made easy to handle by gelling the electrolyte with a polymer.
  • the polymer that gels the electrolytic solution may include, for example, a fluorinated poly (vinylidene methacrylate) copolymer, polymethyl methacrylate, polyacrylonitrile and the like.
  • an organic electrolyte in which the supporting electrolyte is dissolved in an organic solvent is used as the electrolyte of the polymer gel electrolyte.
  • a lithium salt is preferably used as the supporting electrolyte.
  • the lithium salt is not particularly limited. For example, L i PF 6 L i A s F 6 L i BF 4 L i S b F 6 L i A 1 C 1 4, L i C 1 O 4 , CF 3 SO 3 L i, C 4 F 9 SO 3 L i, CF 3 COO L i,
  • the organic solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolytic solution, but, for example, dimethyl carbonate (DMC), ethylene carbonate (EC), diethylen carbonate (DEC), propylene Carbonates such as carbonate (PC), butylene carbonate (BC), methyl ethyl carbonate (MEC), for example, y-butyric acid latatone, esters such as methyl formate, for example, 12-dimethoxetane, tetrahydrofuran Ethers such as furan and the like, sulfur-containing compounds such as sulfolane and dimethylsulfoxide etc. can be used alone or in combination.
  • carbonates having a high dielectric constant and a wide stable potential region are particularly preferably used.
  • the lower limit of the concentration of the supporting electrolyte in the electrolyte is 1 mass. Is preferred, 5 mass. / 0 is more preferable.
  • the upper limit of the concentration of the supporting electrolyte in the electrolyte is 30 mass. / 0 is preferred, 20 mass. / 0 is more preferable.
  • the lower limit of the average particle size of the solid electrolyte particles is preferably 0.1 ⁇ m, and more preferably 0.2 m.
  • the upper limit of the average particle size of the solid electrolytic solution particles is preferably 2 / xm, more preferably 1 m.
  • the shape of the solid electrolyte particles is preferably a shape having a small sphericity, such as a rod shape, a pyramid shape, or a plate shape, so as to promote the contact between the solid electrolyte particles and to increase the ion conductivity.
  • the binder for the adhesive layer 6 may be any one as long as it has adhesiveness to the solid electrolyte particle and the positive electrode active material layer 8, but heating to a relatively low temperature makes it possible to It is preferable to use a tacky resin, that is, a polymer material having a relatively low glass transition temperature and exhibiting tackiness. [0 0 4 7]
  • the lower limit of the glass transition temperature of the binder is preferably 50.degree. C., more preferably 45.degree.
  • the upper limit of the glass transition temperature of the binder is preferably 50.degree. C., more preferably 45.degree.
  • an acrylic polymer etc. are mentioned, for example.
  • the acrylic polymer a tolyl group-containing acrylic polymer containing a monomer unit having a tolyl group and a (meth) acrylic acid ester monomer unit is suitably used.
  • the monomer unit having a ditolyl group is a structural unit obtained by polymerizing, for example, acrylonitrile, methacrylonitrile or the like, and the (meth) acrylate monomer unit is, for example, CH z: ⁇ ⁇ 1 — COOR
  • the ditolyl group-containing acrylic polymer is formed by polymerizing an ethylenically unsaturated acid monomer in addition to a monomer unit having a ditolyl group and a (meth) acrylic acid ester monomer unit. It may contain an ethylenically unsaturated acid monomer unit.
  • the acrylic polymer having a tolyl group may be crosslinked.
  • the lower limit of the ratio of solid electrolyte particles in the adhesive layer 6 is ⁇ 0 mass. / 0 is preferred, 80 mass. / 0 is more preferable.
  • the upper limit of the ratio of the solid electrolyte particles in the adhesive layer 6 is preferably 95% by mass, and more preferably 90% by mass.
  • the positive electrode plate 2 has a conductive foil- or sheet-like positive electrode current collector 7 and a positive electrode active material layer 8 laminated on the surface of the positive electrode current collector. More specifically, the positive electrode plate 2 includes an active material region having a rectangular shape in plan view in which the positive electrode active material layer 8 is stacked on the surface of the positive electrode current collector 7, and the positive electrode current collector 7 from the active material region. And a positive electrode tab 9 (see FIG. 4) extending in a band smaller than the active material region.
  • a metal such as aluminum, copper, iron, nickel or an alloy thereof is used.
  • aluminum, an aluminum alloy, copper and a copper alloy are preferable, and aluminum and an aluminum alloy are more preferable, from the viewpoint of the balance between the height of conductivity and the cost.
  • a foil, a vapor deposition film, etc. may be mentioned, and a foil is preferable in terms of cost. That is, aluminum foil is preferable as the positive electrode current collector 7.
  • a 1 0 8 5 P, A 3 0 0 3 P, etc. specified in J I S- H 4 0 0 0 (2 0 1 4) can be exemplified.
  • the lower limit of the average thickness of the positive electrode current collector 7 is preferably 5 / xm, more preferably 10 / xm.
  • the upper limit of the average thickness of the positive electrode current collector 7 is preferably 50 / xm , 40 / xm is more preferable.
  • the positive electrode active material layer 8 is formed of a so-called positive electrode mixture containing a positive electrode active material.
  • the positive electrode composite material for forming the positive electrode active material layer 8 may be a conductive agent, a binder, a thickener, a filler, etc., if necessary. Contains optional ingredients.
  • the positive electrode active material for example, a composite oxide (L i x C o 0 2 , L i x N i 0 2 , L i represented by L i x MO y (where M represents at least one transition metal)) x Mn 2 0 4 , L i x M n 3 3, L i x N i ⁇ C o (i- a ) 0 2 , L i x N i a Mn / 3 C o (i- ⁇ - ⁇ ) 0 2 , L i x N i a Mn (2-a) 0 4 and the like, L i w M x (XO y ) z (Me represents at least one transition metal, and X represents, for example, P, S i, B, V And the like (polycarbonate compounds represented by L i F e P 0 4 , L i Mn P 0 4 , L i N i PO 4 , L i
  • the elements or polyions in these compounds may be partially substituted with other elements or species.
  • one of these compounds may be used alone, or two or more thereof may be mixed and used.
  • the crystal structure of the positive electrode active material is preferably a layered structure or a spinel structure.
  • the lower limit of the content of the positive electrode active material in the positive electrode active material layer 8 is 50 mass. / 0 is preferred, 70 mass. / 0 is more preferable, 80 mass. / 0 is more preferable.
  • the upper limit of the content of the positive electrode active material is 99 mass. / 0 is preferred, 94 mass. / 0 is more preferable.
  • the conductive agent is not particularly limited as long as the conductive material does not adversely affect the battery performance.
  • a conductive agent carbon black such as natural or artificial graphite, furnace black, acetylene black and ketjen black, metal, conductive ceramics and the like can be mentioned.
  • the shape of the conductive agent may, for example, be powdery or fibrous.
  • the lower limit of the content of the conductive agent in the positive electrode active material layer 8 is 0.1 mass. / 0 is preferred, 0.5 mass. / 0 is more preferable.
  • the upper limit of the content of the conductive agent is 10 mass. / 0 is preferred, 5 mass. / 0 is more preferable.
  • binder examples include thermoplastic resins such as fluorine resin (polytetrafluoroethylene (PTF E), polyfluorinated biphenyl (PVDF), etc.), polyethylene, polypropylene, polyimide, etc., for example, ethylene propylene rubber (E PDM) And sulfonated EPDM, styrene butadiene rubber (SBR), elastomers such as fluororubber, and polysaccharide macromolecules.
  • thermoplastic resins such as fluorine resin (polytetrafluoroethylene (PTF E), polyfluorinated biphenyl (PVDF), etc.), polyethylene, polypropylene, polyimide, etc.
  • E PDM ethylene propylene rubber
  • SBR styrene butadiene rubber
  • elastomers such as fluororubber, and polysaccharide macromolecules.
  • the lower limit of the binder content in the positive electrode active material layer 8 is 1 mass. / 0 is preferred, 2 mass. / 0 is more preferable.
  • the upper limit of the binder content is 10 mass. / 0 is preferred, 5 mass. / 0 is more preferable.
  • the thickener examples include polysaccharide polymers such as carboxymethylcellulose (CMC) and methylcellulose.
  • CMC carboxymethylcellulose
  • methylcellulose a functional group that reacts with lithium
  • the filler is not particularly limited as long as it does not adversely affect the battery performance.
  • As the main component of the filler polypropylene, polyethylene and other polyolefins, silica, alumina, zeolite, glass, carbon and the like can be mentioned.
  • the lower limit of the average thickness of the positive electrode active material layer 8 is preferably 10 / xm, more preferably 20 / xm. Yes.
  • the upper limit of the average thickness of the positive electrode active material layer 8 is preferably 100 / xm, more preferably 80m.
  • the positive electrode reaction can be sufficiently activated by setting the average thickness of the positive electrode active material layer 8 to the above lower limit or more. In addition, by setting the average thickness of the positive electrode active material layer 8 to the above-described upper limit or less, the energy density of the substrate S and thus the laminated electrode body B can be increased.
  • the negative electrode plate 3 has a conductive foil- or sheet-like negative electrode current collector 10 and a negative electrode active material layer 11 laminated on the surface of the negative electrode current collector 10.
  • the negative electrode plate 3 has an active material region having a rectangular shape in plan view, in which an active material layer is stacked on the surface of the negative electrode current collector 10, and a strip having a width smaller than that of the active material region from this active material region.
  • a negative electrode tab 1 2 spaced apart from the positive electrode tab 9 and extending in the same direction as the positive electrode tab 9.
  • the negative electrode current collector 10 of the negative electrode plate 3 can have the same configuration as that of the positive electrode current collector 7 described above, but as a material, copper or a copper alloy is preferable. That is, copper foil is preferable as the negative electrode current collector 10 of the negative electrode plate 3. Examples of copper foils include rolled copper foils and electrolytic copper foils.
  • the negative electrode active material layer 11 is formed of a so-called negative electrode plate composite material containing a negative electrode active material. Further, the negative electrode plate composite material forming the negative electrode active material layer 11 contains optional components such as a conductive agent, a binder, a thickener, and a filler, as necessary. As the optional components such as the conductive agent, the binder, the thickener, and the filler, those similar to the positive electrode active material layer 8 can be used.
  • the negative electrode active material a material capable of inserting and extracting lithium ions is preferably used.
  • the negative electrode active material include metals such as lithium and lithium alloy, metal oxides, polyphosphate compounds, and carbon materials such as graphite and amorphous carbon (graphitizable carbon or non-graphitizable carbon). Etc.
  • the discharge capacity per unit opposing area between the positive electrode plate 2 and the negative electrode plate 3 in an appropriate range, Si, Si oxide, Sn, Sn oxide or these oxides It is preferable to use the combination of and particularly preferable to use Si oxide. Note that 3 1 and 3 1 can have a discharge capacity about three times that of graphite when made into an oxide.
  • the ratio of the number of atoms to Si of O contained in the Si oxide is preferably more than 0 and less than 2. That is, a compound represented by S i O x (0 ⁇ X ⁇ 2) is preferable as the S i oxide. The ratio of the number of atoms is more preferably 0.5 or more and 1.5 or less.
  • negative electrode active material those mentioned above may be used alone or in combination of two or more.
  • Other negative electrode active materials used in combination with the S i oxide include carbon materials such as graphite, hard carbon, soft carbon, cotas, acetylene black, ketjen black, vapor grown carbon fiber, fullerene, activated carbon and the like.
  • One of these carbon materials may be mixed with the S i oxide, or two or more may be mixed with the S i oxide in any combination and ratio.
  • graphite having a relatively low charge / discharge potential is preferable.
  • the graphite mixed with the S i oxide include scaly graphite, spherical graphite, artificial graphite, natural graphite and the like.
  • scale-like graphite is preferred which easily maintains contact with the surface of the Si oxide particles even after repeated charge and discharge.
  • the negative electrode active material layer 1 1 contains a small amount of B, N, P, F, C 1, B r in addition to the S i oxide.
  • typical nonmetal elements such as Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge and the like metallic elements, Sc, Ti, V, Cr And transition metals such as Mn, Fe, Co, Ni, Cu, Mo, Zr, Ta, Hf, Nb, and W may be contained.
  • S i oxide substance represented by general formula S i O x .
  • Si oxide occludes and desorbs lithium in Si in the matrix of Si 2 O 2 , so that the volume change is small and the charge-discharge cycle characteristics are excellent.
  • the average particle diameter of the Si oxide is preferably 1 ⁇ m to 15 ⁇ m.
  • the Si oxides can be used from highly crystalline ones to amorphous ones. Furthermore, as the Si oxide, one that has been washed with an acid such as hydrogen fluoride or sulfuric acid or one that has been reduced with hydrogen may be used.
  • an acid such as hydrogen fluoride or sulfuric acid or one that has been reduced with hydrogen
  • the lower limit of the content of S i oxide in the negative electrode active material is 30 mass. / 0 is preferred, 50 mass. / 0 is more preferable, 70 mass. / 0 is more preferable.
  • the upper limit of the Si oxide content is usually 100 mass. / 0 , 90 mass. / 0 is preferable.
  • the lower limit of the content of the negative electrode active material in the negative electrode active material layer 11 is 60 mass. / 0 is preferred, 80 mass. / 0 is more preferable, and 90% by mass is more preferable.
  • the upper limit of the content of the negative electrode active material is 99 mass. / 0 is preferred, 9 8 mass. / 0 is more preferable.
  • the negative electrode active material As a lower limit of the content of the binder in the negative electrode active material layer 11, 1 mass. Is preferred, 5 mass. / 0 is more preferable. On the other hand, the upper limit of the binder content is 20 mass. / 0 is preferred, 15 mass. / 0 is more preferable. By setting the content of the binder in the above range, the negative electrode active material can be stably held.
  • the lower limit of the average thickness of the negative electrode active material layer 11 is preferably 10 / x m, more preferably 20 / x m.
  • the upper limit of the average thickness of the negative electrode active material layer 11 is preferably 100 / x m, more preferably 80 / x m.
  • the negative electrode reaction can be sufficiently activated by setting the average thickness of the negative electrode active material layer 11 to the above lower limit or more.
  • the energy density of the substrate S and thus the stacked electrode body B can be increased.
  • a step of disposing one positive electrode plate 2 between two separators 1 and disposing one negative electrode plate 3 on one of the two separators 1 Step of heating and pressing in a state in which one negative electrode plate 3, one of the two separators 1, one positive electrode plate 2 and the other of the two separators 1 are laminated in this order. (Heat and pressure process) and a process of cutting the two separators 1 so that both side edges of the two separators 1 protrude from the side edges of the positive electrode plate 2 and the negative electrode plate 3 (cutting process)
  • a method comprising
  • the sheet forming step may be performed by using a separator 1 which has been cut first and cut to the dimensions in the sheet S in advance, but as shown in FIG. After performing the placement process and bonding heating and pressing process continuously using the sheet-like separator base material 1 a By carrying out the cutting step, the substrate S can be produced continuously and efficiently. [0 0 8 0]
  • the two separator base materials 1a are continuously supplied and transported in the long direction, and the size of the final product is measured between the two separator base materials 1a in this transport state.
  • the positive plate 2 cut into two pieces is sequentially inserted at equal intervals (a pitch equal to the width of the subunit S), and the size of the final product is cut so as to face the positive plate 2 on the outside of one separator base material 1a.
  • the arranged negative electrode plates 3 are sequentially arranged.
  • the long laminate is heated and pressurized while being conveyed continuously. Heating and pressurization may be performed simultaneously. Alternatively, the laminate may be pressed after heating before the temperature of the adhesive layer 6 of the separator 1 drops to a temperature at which it loses adhesion.
  • Continuous conveyance of the laminate of the separator base material 1a, the positive electrode plate 2 and the negative electrode plate 3 can be performed using, for example, a conveyance belt or the like having releasability.
  • the heating of the laminate in the sheet heating and pressing step can be performed using, for example, a plate heater H or the like disposed so as to sandwich the laminate.
  • pressurization in the unit heating and pressing process can be performed using, for example, a pair of pressure rollers P sandwiching the laminate.
  • heating and pressing may be performed simultaneously using a pair of heating rollers which sandwich and heat the laminate.
  • the heating temperature in the sheet heating and pressing step is not lower than the temperature at which the adhesive layer 6 of the separator 1 develops adhesive strength and lower than the shutdown temperature of the resin layer 4, for example, 80 ° C. or higher. It can be less than ° C.
  • the pressure per unit length of the pressure roller can be, for example, not less than 0.1 NZ cm and not more than 10.0 NZ cm as a pressure applied in the sheet heating and pressing process.
  • the sheets S are sequentially separated by cutting the separator base material 1 a with a cutter C to form a separator 1 of a predetermined length.
  • the subunit S since the negative electrode plate 3, one separator 1, the positive electrode plate 2 and the other separator 1 are laminated in this order and adhered and fixed, the relative positions of the two separators 1, the positive electrode plate 2 and the negative electrode plate 3 Position is maintained. For this reason, in the subunit S, even if the difference in size between the positive electrode plate 2 and the negative electrode plate 3 is reduced, the positive electrode plate 2 does not protrude from the negative electrode plate 3 in plan view to promote electrodeposition. In addition, in the subunit S, the difference in size between the negative electrode plate and the separator can be reduced.
  • the area of the positive plate 2, that is, the positive plate 2 and the negative plate 3 is smaller than the projected area of the subunit S (the area when viewed from the stacking direction of the separator 1, the positive plate 2 and the negative plate 3).
  • the energy density can be increased by relatively increasing the area of the area to which the electrode plate contributes.
  • Subunit S since the positive electrode plate 2 and the negative electrode plate 3 are adhered and fixed in addition to the outer edge portion of the separator 1, the separator 1 is difficult to stagnate. For this reason, by using the subunit S, by placing a guide or the like on the outer edge of the separator 1, it is possible to position and stack the sub-pieces S relatively accurately and quickly. It is possible to efficiently produce a laminated electrode body B having a large value.
  • Subunit S is added to two separators 1 and one positive electrode plate 2 as compared with the case of using a packed positive electrode plate in which a conventional positive electrode plate is accommodated in a bag-shaped separator.
  • the subunit S can position the separator 1 more accurately, so the energy density is larger. Can form a laminated electrode assembly.
  • An electrode unit U according to an embodiment of the present invention, as shown in FIG. 3, has a plurality of subunits S and protrudes from the end portions of the positive electrode plate 2 and the negative electrode plate 3 of the plurality of substrates S. The ends of the separators 1 are welded together.
  • the positive electrode plate 2 is bonded and fixed to the separators 1 on both sides, but the negative electrode plate 3 is bonded and fixed only to the separator 1 of the same subunit S, and the adjacent It is not adhesively fixed to the separator 1.
  • a first welding region R 1 is formed along a pair of opposing side edges where the positive electrode tab 9 and the negative electrode tab 12 of the positive electrode plate 2 and the negative electrode plate 3 do not exist. It is preferable that Further, the electrode unit U is formed by partially welding a plurality of separators 1 along the side edge where the positive electrode tab 9 and the negative electrode tab 12 of the positive electrode plate 2 and the negative electrode plate 3 are present and the side edge opposite thereto. Two welding areas R2 may be formed. In this case, it is preferable that the first welding area R 1 and the second welding area R 2 are not formed in the vicinity of the corners of the separator 1.
  • Each separator is bent in the thickness direction of the positive electrode plate 2 and the negative electrode plate 3 along the side edges of the positive electrode plate 2 and the negative electrode plate 3 in order to bring the plurality of separators 1 into close contact with each other. In this case, since bending in different directions interferes, welding at this part may cause excessive load and damage to the separator 1.
  • the number of sheets S included in the electrode sheet U can be, for example, 5 or more and 15 or less.
  • the distance between the separators 1 on both outer sides does not become too large. As a result, it protrudes from the end of positive electrode plate 2 and negative electrode plate 3 of each subunit S Even if the length of the separator 1 is reduced, the end portions of the separator 1 can be bundled and welded to integrate the plurality of subunits S, so that the usage amount of the separator 1 can be reduced.
  • the electrode unit U includes a process of laminating a plurality of subunits S (subunit laminating process), and a plurality of separators S protruding from the end of the positive electrode plate 2 and the negative electrode plate 3 of the plurality of laminated substrates S And a step of welding (welding step). Further, in the method of manufacturing the electrode unit U, the step of trimming the outer portions of the plurality of welded separators 1 (trimming step), and the welded portions of the plurality of separators 1 along the side edges of the positive plate 2 and the negative plate 3 And the step of bending (folding step).
  • a plurality of subunits S are oriented in the same direction and laminated.
  • a plurality of positive electrode plates 2 and a plurality of negative electrode plates 3 are alternately disposed with the separator 1 in between, and a laminate in which the separators 1 are disposed further outside the outermost positive electrode plate 2 is formed.
  • a stack of a plurality of sheets S is, for example, using a guide or the like that abuts on the outer edge of the square of the separator 1 and sequentially guides the sheets S formed in the above-described sheet forming step. It is possible to do it relatively quickly and accurately by putting in and putting up the sheets S by gravity.
  • the end portions of all the separators 1 are bundled and welded so as to be in close contact with each other. Specifically, the oxidation resistant layer 5 of the separator 1 is broken to weld the resin layers 4 together. For this reason, welding of the separator 1 is preferably performed using an ultrasonic vibration indenter (horn).
  • horn ultrasonic vibration indenter
  • the oxidation resistant layer 5 is broken, and fragments of the oxidation resistant layer 5 are separated.
  • Resin layer 4 It is possible to weld together efficiently.
  • the projections of the ultrasonic vibration indenter are preferably in the shape of a quadrangular frustum, which are arranged at equal intervals in the vertical and horizontal directions. Such projections can be easily formed by forming grooves at regular intervals on the surface of the ultrasonic vibration indenter, and efficiently destroy the oxidation resistant layer 5 to securely weld the separator 1. be able to.
  • the portions protruding to the outside of the welding regions R1, R2 of the separator 1 are cut off.
  • the separator 1 is designed to have the minimum size that can form the welding regions R 1 and R 2, but by bundling the plurality of separators 1 in close contact with each other in the welding step, the two-dot chain lines in FIG.
  • the end of the separator 1 is shifted in a step-like manner depending on the thickness of the positive electrode plate 2 and the negative electrode plate 3, the welding regions R 1 and R 2 formed in the portion where all the separators 1 are stacked.
  • the separator 1 will protrude to the outside. Therefore, in this trimming step, the portions projecting in a step-like manner outside the welding regions R 1 and R 2 are mainly cut off.
  • the energy density of the laminated electrode body B can be increased by reducing the dead space occupied by the separator 1 outside the welding regions R 1 and R 2. .
  • the electrode unit U the relative positions of the plurality of subunits S are maintained by welding all the separators 1 to the body. For this reason, the plurality of positive electrode plates 2 and negative electrode plates 3 are alternately stacked on both sides of the separator 1 so as to face each other with relative accuracy. Therefore, the electrode sheet can increase the energy density by increasing the facing area of the positive plate 2 and the negative plate 3.
  • the stacked electrode assembly B includes: a plurality of stacked electrode units U; and one negative electrode plate 3 disposed further outside of the separator 1 disposed at the outermost side in the stacked body of the electrode units U Have.
  • one negative electrode plate is disposed on the separator is not intended to limit the vertical relationship between the plurality of electrode units U and the further negative electrode plate 3, and is stacked on the outermost side 2 Of the two electrode sheets u, one of the electrode sheets U in which the negative electrode plate 3 is in contact with the separator 1 of the adjacent electrode unit U. Further outside the separator 1 opposite to the negative electrode plate 3 of the electrode sheet U It means that a further negative electrode plate 3 is laminated. Therefore, a plurality of electrode stacks U may be stacked on one negative electrode plate 3.
  • each negative electrode plate 3 is bonded and fixed not only to the separator 1 of the same subunit S but also to the separator 1 of the adjacent subunit S.
  • the laminated electrode body B further includes a resin film 13 covering the entire laminated body (the outer periphery of the laminated body) of the plurality of electrode sheets U and one further negative electrode plate 3.
  • the thickness of the separator 1, the positive electrode plate 2 and the negative electrode plate 3 is drawn large in the figure for easy understanding, the actual thickness of the separator 1, the positive electrode plate 2 and the negative electrode plate 3 is small.
  • the thickness of the welding regions R 1 and R 2 of the plurality of separators 1 is very small compared to the width of the welding regions R 1 and R 2. Therefore, the portions of the electrode unit U that project from the positive electrode plate 2 and the negative electrode plate 3 including the first welding region R 1 of the separator 1 are bent along the side edges of the positive electrode plate 2 and the negative electrode plate 3. It is also good. [0 1 0 5]
  • the main component of the resin film 13 examples include polypropylene (PP), polyethylene (PE), polyethylene terephthalate (PET) and the like. Among them, as a main component of the resin film 13, polypropylene having a good heat sealability is particularly preferable.
  • the lower limit of the average thickness of the resin film 13 is preferably 20 / xm, more preferably 50 / xm.
  • the upper limit of the average thickness of the resin film 13 is preferably 150 / xm, more preferably 100 / xm.
  • the average thickness of the resin film 13 equal to or less than the above upper limit, it is possible to coat the laminate of the plurality of electrode sheets U and the negative electrode plate 3 easily and without gaps, so The effect of preventing the misalignment of the soot U and the negative electrode plate 3 can be ensured, which contributes to the improvement of the energy density of the laminated electrode body B.
  • the laminated electrode body B a step of laminating a plurality of electrode units U (electrode unit laminating step) and a step of arranging one negative electrode plate 3 on the separator 1 arranged in the outermost layer (negative plate arranging step) And a step of heating and pressing the plurality of electrode stacks U and the negative electrode plate 3 in a stacked state (electrode heating and pressing step).
  • a step of covering the outer periphery of the laminate of the plurality of electrode sheets U and the negative electrode plate 3 with a resin film 13 before the electrode body heating and pressing step Preferably, the method further comprises a film wrapping step).
  • a plurality of electrode units u are oriented in the same direction and laminated. That is, between adjacent two electrode units U, the separator 1 of the other electrode unit U abuts the negative electrode plate 3 of one electrode unit U. Thus, a laminate in which a plurality of positive electrode plates 2 and negative electrode plates 3 are stacked via the separator 1 is formed.
  • the negative electrode plate 3 is disposed on both outer sides by further laminating the negative electrode plate 3 on the outer side of the separator 1 disposed in the outermost layer, and the plurality of positive electrode plates 2 and the negative electrode plates 3 are respectively separators Form a laminated body alternately stacked via 1.
  • the laminate of a plurality of electrode sheets U and one additional negative electrode plate 3 is covered with a resin film 13 to obtain a plurality of electrode films in the next electrode body heating and pressing process. Hold the U and negative plate 3 so that they do not shift.
  • the resin film 13 prevents positional deviation of the separator 1, positive electrode plate 2 and negative electrode plate 3 in the electrode body heating and pressing process, thereby providing a margin for positional deviation of the positive electrode plate 2 and negative electrode plate 3.
  • the resin film 13 covering the laminate of the plurality of electrode sheets U and the negative electrode plate 3 protects the negative electrode plate 3 on both outer sides, and in particular, the manufacture of a storage element described later can be facilitated.
  • adjacent sheets S are preferably formed by heating and pressing a laminate of a plurality of electrode sheets U and one negative electrode plate 3 covered with a resin film 13.
  • the separator 1 and the negative electrode plate 3 are joined to each other between the outer electrode sheet U and the outermost electrode sheet U.
  • a laminated electrode body B in which all the separators 1, the positive electrode plate 2 and the negative electrode plate 3 are adhered and fixed to each other is obtained.
  • An electricity storage device as shown in FIG. And a positive electrode external terminal 15 and a negative electrode external terminal 16 which are connected to the positive electrode tab 9 and the negative electrode tab 12 of the laminated electrode body B and are exposed from the case 14. .
  • an electrolytic solution is enclosed in the case 14 together with the laminated electrode body B.
  • the case 14 has a bottomed square cylindrical case body 17 and a plate-like lid 18 for sealing the opening of the case body 17.
  • the positive electrode external terminal 15 and the negative electrode external terminal 16 are provided to pass through the lid 18.
  • the storage element is attached to the positive electrode external terminal 15 and the negative electrode external terminal 16 inside the case 14 and the positive electrode connecting member 1 9 to which the positive electrode tab 9 and the negative electrode tab 12 of the laminated electrode body B are connected. And a negative electrode connecting member 20.
  • Case 14 is a sealed container that accommodates the stacked electrode assembly B and in which the electrolytic solution is sealed. ⁇ 0 1 1 8 ⁇
  • the material of the case 14 may be, for example, a resin or the like as long as it has a sealing property capable of sealing the electrolyte and a strength capable of protecting the laminated electrode body B, but metal is preferably used. Ru.
  • the case 14 may be, for example, a flexible bag formed of a laminate film, but a rigid metal case capable of more reliably protecting the laminated electrode B may be used. preferable.
  • a known electrolytic solution generally used for the storage element can be used.
  • lithium carbonate in a solvent containing cyclic carbonate such as JETyl carbonate (DEC), linear carbonate such as jetyl carbonate (DEC), dimethinole carbonate (DMC), and ethenole methinole carbonate (EMC).
  • DEC JETyl carbonate
  • DEC linear carbonate
  • DEC jetyl carbonate
  • DMC dimethinole carbonate
  • EMC ethenole methinole carbonate
  • a solution in which (L i PF 6 ) or the like is dissolved can be used.
  • the storage element includes a step of housing the laminated electrode body B in the case 14 (stacked electrode body housing step) and a step of filling the electrolytic solution in the case 14 (electrolyte filling step).
  • the positive electrode tab 9 and the negative electrode tab 12 are respectively connected to the positive electrode connecting member 19 and the negative electrode connecting member 20, and then the laminated electrode body B is inserted into the case main body 17 Seal the opening of case body 17 with body 18
  • the electrolyte filling step the electrolyte is injected into the case 14.
  • the case 14 is preferably provided with a sealable inlet.
  • the storage element has a large energy density and uses the laminated electrode body B that can be manufactured efficiently, the energy density is large and the manufacturing can be performed efficiently.
  • the above embodiment does not limit the configuration of the present invention. Therefore, the above embodiment can omit, replace, or add the components of the above embodiments based on the description in the present specification and technical common sense, and all of them can be construed as belonging to the scope of the present invention. It should.
  • separators and negative plates may be adhered and fixed between adjacent electrode sheets.
  • the separator and the negative electrode plate may not be adhesively fixed between the adjacent electrode sheets.
  • the laminated electrode body may have only one electrode sheet.
  • the laminated electrode body may have no resin film.
  • the positive electrode external terminal may be omitted, the positive electrode tab may be connected to a case (for example, a lid plate), and the case may serve as an external terminal.
  • the method of manufacturing a stacked electrode assembly and the method of manufacturing a storage element according to the present invention can be used to manufacture various storage elements, but in particular, vehicles such as electric vehicles and plug-in hybrid electric vehicles (PHEVs) It is preferably used to manufacture a secondary battery used as a power source of
  • PHEVs plug-in hybrid electric vehicles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

【課題】本発明は、エネルギー密度が大きい蓄電素子を効率よく製造することができる積層電極体のサブユニットを提供することを課題とする。 【解決手段】本発明の一態様に係る積層電極体のサブユニットは、両面に接着層を有する2枚のセパレータと、前記2枚のセパレータの間に配置され接着固定された1枚の正極板と、前記2枚のセパレータのうちの一方の前記正極板と反対側の面に接着固定された1枚の負極板とを備え、前記2枚のセパレータの端部が、前記正極板及び前記負極板の端部から突出する。

Description

【書類名】 明細童
【発明の名称】 電極体のサブュ-ット、 電極ュ-ット、 積層電極体及び蓄電素子 【技術分野】
【0 0 0 1】
本発明は、 電極体のサブユニット、 電極ユニット、 積層電極体及び蓄電素子に関する。 【背景技術】
【0 0 0 2】
携帯電話、 電気自動車等の様々な機器に、 充放電可能な蓄電素子が使用されている。 近 年、 これらの機器の高出力化や高性能化に伴い、 より小型でエネルギー密度 (電気容量) が大きい蓄電素子が求められている。
【0 0 0 3】
一般に蓄電素子は、 表面に正極活物質層が形成された正極板と表面に負極活物質層が形 成された負極板とを電気絶縁性を有するセパレータを介して交互に積層して形成される積 層電極体を有する。 このような蓄電素子で単位体積当たりのエネルギー密度を大きくする には、 セパレータを薄くすることが有効である。 このため、 セパレータを樹脂フィルムに よって形成した蓄電素子が実用化されている。
【0 0 0 4】
蓄電素子では、 負極において電析によって生成される金属析出物 (例えばリチウムデン ドライ トゃ金属異物の溶解析出による金属析出物) がセパレータを貫通して正極板と負極 板とを微小短絡させる可能性がある。 正極板又は負極板を挟み込む一対のセパレータの外 縁を接着して袋状にした袋詰電極板を用いて、 正極板近傍の電解液に析出物を生成し得る 金属イオンを生じる金属種が混入することを抑制し、 金属イオンが負極に接触して電析す ることを抑制する積層電極体が公知である。
【0 0 0 5】
セパレータの接着部分は充放電に寄与しないため、 セパレータの接着部分は蓄電素子内 部の所定空間を占有して、 蓄電素子のエネルギー密度を大きくする妨げとなり得る。
【0 0 0 6】
積層電極体において、 平面視で正極板が負極板からはみ出すと負極板の端部に電流が集 中して電析が局所的に促進される。 このため、 積層電極体では、 正極板の平面寸法が負極 板の平面寸法よりも小さい必要があり、 これも蓄電素子のエネルギー密度を制限する要因 となっている。
【0 0 0 7】
樹脂フィルムから形成されるセパレータは、 比較的熱に弱いため、 蓄電素子のエネルギ 一密度を大きくすると、 セパレータが熱により損傷し、 電析によって生成される金属析出 物がセパレータを貫通して正極板と負極板とを微小短絡させる可能性がある。 このため、 セパレータの電極板に当接する面に耐熱層 (無機層) を形成し、 セパレータの耐熱性を向 上した蓄電素子が提案されている (特開 2 0 1 3 - 1 4 3 3 3 7号公報参照) 。
【先行技術文献】
【特許文献】
【0 0 0 8】
【特許文献 1】 特開 2 0 1 3— 1 4 3 3 3 7号公報
【発明の概要】
【発明が解決しようとする課題】
【0 0 0 9】
前記公報に記載の蓄電素子では、 正極板を一対のセパレータで挟み込み、 正極板の平面 視外側において一対のセパレータを接着した袋詰正極板と、 正極板よりも大きく、 かつセ パレータよりも小さい袋詰めされていない負極板とを交互に積層した積層電極体を外装材 の中に収容している。 外周部において複数のセパレータを外層材で挟み込むことによって 複数の袋詰正極板及び複数の負極板を保持している。
【0 0 1 0】 このように、 複数の袋詰正極板と複数の負極板とを交互に積層する場合、 積層電極体の 中で負極板を正確に位置決めすることが難しい。 正極板が負極板からはみ出さないよう正 極板を小さく形成することが必要となるため、 エネルギー密度の向上が阻害される。 また 、 正極板を小さく しても、 袋詰正極板の上に負極板を正確に位置決めして配置する必要が あることから、 複数の袋詰正極板と複数の負極板とを積層する作業が煩雑であり、 製造効 率の向上が制限される。
【0 0 1 1】
本発明は、 エネルギー密度が大きい蓄電素子を効率よく製造することができる積層電極 体のサブユニット、 電極ユニット、 及び積層電極体、 並びにそれらを用いた蓄電素子を提 供することを課題とする。
【課題を解決するための手段】
【0 0 1 2】
本発明の一態様に係る積層電極体のサブュ-ットは、 両面に接着層を有する 2枚のセパ レータと、 前記 2枚のセパレータの間に配置され接着固定された 1枚の正極板と、 前記 2 枚のセパレータのうちの一方の前記正極板と反対側の面に接着固定された 1枚の負極板と を備え、 前記 2枚のセパレータの端部が、 前記正極板及び前記負極板の端部から突出する
【発明の効果】
【0 0 1 3】
本発明の一態様に係る積層電極体のサブユニットは、 1枚の正極板と、 この正極板を挟 み込む 2枚のセパレータと、 一方のセパレータに積層される 1枚の負極板とが接着固定さ れて一体化しているので、 このサブユニット内で正極板、 セパレータ及び負極板の相対位 置が正確かつ不変である。 このため、 当該サブユニットは、 正極板と負極板とが対向する 面積を大きく しても、 正極板が負極板からはみ出して電析を助長することがない。 また、 当該サブユニットは、 セパレータに正極板及び負極板が接着固定されているので、 セパレ ータが変形し難い。 そのためサブユニットは、 ガイ ドで容易に位置決めすることができ、 複数のサブュ-ットを正確かつ迅速に積層することができる。 当該サブュ-ットを用いる ことで、 セパレータの面積に対する正極板と負極板とが対向する領域の面積の比が比較的 大きく、 エネルギー密度が大きい積層電極体を効率よく製造することができる。
【図面の簡単な説明】
【0 0 1 4】
【図 1】 本発明の一実施形態のサブュ-ットの模式的断面図である。
【図 2】 図 1のサブユニットの部分拡大断面図である。
【図 3】 図 1のサブュ-ットを有する電極ュ-ットの模式的断面図である。
【図 4】 図 3の電極ユニットの模式的平面図である。
【図 5】 図 3の蓄電ュ-ットを有する積層電極体の模式的断面図である。
【図 6】 図 5の積層電極体を有する蓄電素子の模式的分解斜視図である。
【図 7】 図 1のサブュ-ットを形成する工程を示す模式図である。
【発明を実施するための形態】
【0 0 1 5】
本発明の一態様に係る積層電極体のサブュ-ットは、 両面に接着層を有する 2枚のセパ レータと、 前記 2枚のセパレータの間に配置され接着固定された 1枚の正極板と、 前記 2 枚のセパレータのうちの一方の前記正極板と反対側の面に接着固定された 1枚の負極板と を備え、 前記 2枚のセパレータの端部が、 前記正極板及び前記負極板の端部から突出する
【0 0 1 6】
当該サブユニットは、 1枚の正極板と、 この正極板を挟み込む 2枚のセパレータと、 一 方のセパレータに積層される 1枚の負極板とが接着固定されて一体化しているので、 この サブユニット内で正極板、 セパレータ及び負極板の相対位置が正確かつ不変である。 この ため、 当該サブユニットは、 正極板と負極板とが対向する面積を大きく しても、 正極板が 負極板からはみ出して電析を助長することがない。 また、 当該サブユニッ トは、 セパレー タに正極板及び負極板が接着固定されているので、 セパレータが変形し難い。 そのためサ ブユニットは、 ガイドで容易に位置決めすることができ、 複数のサブユニットを正確かつ 迅速に積層することができる。 当該サブユニットを用いることで、 セパレータの面積に対 する正極板と負極板とが対向する領域の面積の比が比較的大きく、 エネルギー密度が大き い積層電極体を効率よく製造することができる。
【0 0 1 7】
当該サブユニットにおいて、 前記 2枚のセパレータが、 前記接着層の間に配置される多 孔性の樹脂層と、 前記正極板と対向する面の前記接着層及び前記樹脂層の間に耐酸化層と をそれぞれ有し、 前記接着層が、 加熱されると接着性を発現してもよい。 この構成によれ ば、 接着層が常温では接着性を発現しないことから当該サブュ-ットの取り扱いが容易で あり、 かつ加熱することで接着層が接着性を発現することで、 他のサブユニットと容易に 接合することができる。 また、 セパレータが、 両面の接着層の間に、 電解液を保持する樹 脂層と、 樹脂層の酸化を抑制する耐酸化層とを有することによって、 樹脂層が十分な電解 液を保持することを担保される。 また、 耐酸化層は、 比較的薄く、 容易に破壊できる層と することができるため、 当該サブュ-ットを積層して積層電極体を形成する際にセパレー タの樹脂層同士を溶着することが可能であり、 積層電極体の製造を容易にすることができ る。
【0 0 1 8】
本発明の一態様に係る電極ュ-ットは上述のサブュ-ットが複数積層され、 前記複数の サブュ-ットそれぞれの前記正極板及び前記負極板の端部から突出するセパレータ同士が 溶着されている。 当該電極ユニットは、 セパレータ同士が溶着されていることによって複 数のサブュ-ット間の相対位置が固定され、 各サブュ-ットの正極板及び負極板が正確に 正対する状態を保持することができる。 このため、 当該電極ユニットは、 正極板と負極板 とが対向する面積をより大きくすることができるので、 当該電極ュ-ットを用いて形成さ れる積層電極体のエネルギー密度を大きくすることができる。
【0 0 1 9】
当該電極ュュットにおいて、 前記負極板と、 前記負極板に隣接する前記サブュュッ トの セパレータと力 接着されていなくてもよレ、。 この構成によれば、 当該電極ユニットは、 複数のサブュ-ットを積層してセパレータの端部を溶着するだけで容易に製造することが できる。
【0 0 2 0】
本発明の一態様に係る積層電極体は、 上述の電極ユニットが複数積層され、 最も外層に 配置される前記セパレータ上に 1枚の負極板が配置されている。 当該積層電極体は、 複数 の電極ユニットを積層することによって得られるので、 容易に製造することができ、 かつ エネルギー密度が大きい。
【0 0 2 1】
当該積層電極体において、 前記複数の電極ュニット及び前記負極板の積層体を覆う樹脂 フィルムをさらに備えてもよい。 この構成によれば、 樹脂フィルムが電極ユニット間の位 置ずれを抑制するので、 エネルギー密度をより大きくすることができると共に、 樹脂フィ ルムが最外層の負極板を保護するため、 蓄電素子の製造が容易となる。
【0 0 2 2】
本発明の一態様に係る蓄電素子は、 上述の積層電極体と、 前記積層電極体を収容するケ ースと、 前記積層電極体に電気的に接続され、 前記ケースから露出する外部端子とを備え る。 当該蓄銭素子は、 前記積層電極体を備えるので、 製造が容易であり、 かつエネルギー 密度を大きくすることができる。
【0 0 2 3】
以下、 適宜図面を参照しつつ、 本発明の実施の形態を詳説する。
【0 0 2 4】
図 1及び図 2に、 本発明の一実施形態に係るサブユニット Sを示す。 このサブユニット Sは、 図 3及び図 4に示すそれ自体が本発明の別の実施形態に係る電極ュ-ット Uを製造 するために用いられる。 また、 電極ユニット Uは、 図 5に示すようそれ自体が本発明のさ らに別の実施形態に係る積層電極体 Bを製造するために用いられる。 さらに積層電極体 B は、 図 6に示すように、 本発明の別の実施形態に係る蓄電素子の一構成要素として用いら れる。
【0 0 2 5】
図 1に示すように、 サブユニット Sは、 2枚のセパレータ 1と、 この 2枚のセパレータ 1の間に配置されて接着固定された 1枚の正極板 2と、 2枚のセパレータ 1のうちの一方 の正極板 2と反対側の面に接着固定された 1枚の負極板 3とを備える。 サブュ-ット に おいて、 2枚のセパレータ 1は、 その端部が正極板 2及び負極板 3の端部から突出してい る。
【0 0 2 6】
図 2に詳しく示すように、 セパレータ 1は、 シート状の樹脂層 4と、 この樹脂層 4の少 なくとも正極板 2に対向する面に積層された耐酸化層 5と、 この樹脂層 4及び耐酸化層 5 の積層体の両面に積層された一対の接着層 6とを有する。
【0 0 2 7】
セパレータ 1は、 サブユニット Sを用いて製造される蓄電素子において、 正極板 2と負 極板 3との間に介在して正極板 2と負極板 3とが直接接触することを防止するとともに、 その内部に電解液が含浸して、 正極板 2と負極板 3との間でイオンを介した電荷の受け渡 しを可能にする。
【0 0 2 8】
セパレータ 1の樹脂層 4は、 主に電解液を保持する層であり、 多孔質樹脂フィルムから 形成される。
【0 0 2 9】
この樹脂層 4の主成分としては、 例えばポリエチレン (P E ) 、 ポリプロピレン (P P ) 、 エチレン 酢酸ビュル共重合体、 エチレン メチルアタリ レート共重合体、 エチレン ェチルアタリ レート共重合体、 塩素化ポリエチレン等のポリオレフイン誘導体、 ェチレ ンープロピレン共重合体等のポリオレフイン、 ポリエチレンテレフタレートゃ共重合ポリ エステル等のポリエステルなどを採用することができる。 中でも、 樹脂層 4の主成分とし ては、 耐電解液性、 耐久性及び溶着性に優れるポリエチレン及びポリプロピレンが好適に 用いられる。 なお、 「主成分」 とは、 最も質量含有率が大きい成分を意味する。
【0 0 3 0】
樹脂層 4の平均厚さの下限としては、 が好ましく、 1 0 mがより好ましい。 一 方、 樹脂層 4の平均厚さの上限としては、 3 0 /x mが好ましく、 2 0 /x mがより好ましい 。 樹脂層 4の平均厚さを前記下限以上とすることによって、 セパレータ 1同士の溶着時に 樹脂層 4が破断することを防止できる。 また、 樹脂層 4の平均厚さを前記上限以下とする ことによって、 サブュ-ット Sひいては積層電極体 Bのエネルギー密度を大きくすること ができる。
【0 0 3 1】
セパレータ 1の耐酸化層 5は、 主に樹脂層 4が酸化して劣化することを抑制するために 設けられる層であり、 多数の無機粒子とこの無機粒子間を接続するバインダとを含む。
【0 0 3 2】
無機粒子の主成分としては、 例えばアルミナ、 シリカ、 ジルコユア、 チタ二了、 マグネ シァ、 セリア、 イットリア、 酸化亜鉛、 酸化鉄等の酸化物、 窒化ケィ素、 窒化チタン、 窒 化ホウ素等の窒化物、 シリコンカーバイ ド、 炭酸カルシウム、 硫酸アルミニウム、 水酸化 アルミニウム、 チタン酸カリウム、 タルク、 カオリンクレイ、 カオリナイ ト、 ハロイサイ ト、 パイロフイライ ト、 モンモリロナイ ト、 セリサイ ト、 マイ力、 ァメサイ ト、 ベントナ イ ト、 アスベスト、 ゼォライ ト、 ケィ酸カルシウム、 ケィ酸マグネシウムなどが挙げられ る。 中でも、 耐酸化層 5の無機粒子の主成分としては、 アルミナ、 シリカ及びチタユアが 特に好ましい。 【0 0 3 3】
耐酸化層 5の無機粒子の平均粒子径の下限としては、 1 n mが好ましく、 7 n mがより 好ましい。 一方、 無機粒子の平均粒子径の上限としては、 5 /x mが好ましく、 1 /x mがよ り好ましい。 無機粒子の平均粒子径を前記下限以上とすることによって、 耐酸化層 5中の バインダの比率を小さく して、 耐酸化層 5の耐熱性を大きくすることができる。 また、 無 機粒子の平均粒子径を前記上限以下とすることによって、 均質な耐酸化層 5を形成するこ とができる。 なお、 「平均粒子径」 とは、 透過電子顕微鏡 (T E M) 又は走查電子顕微鏡 ( S E M) を用いて J I S—R 1 6 7 0に準じて測定される値である。
【0 0 3 4】
耐酸化層 5のバインダの主成分としては、 例えばポリフッ化ビ-リデン、 ポリテトラフ ルォロエチレン等のフッ素樹脂、 フッ化ビ-リデン一へキサフルォロプロピレンーテトラ フルォロェチレン共重合体等のフッ素ゴム、 スチレンーブタジェン共重合体及びその水素 化物、 アクリロニトリル ブタジエン共重合体及びその水素化物、 アクリロニトリルーブ タジェンースチレン共重合体及びその水素化物、 メタクリル酸エステルーァクリル酸エス テル共重合体、 スチレン アクリル酸エステル共重合体、 アクリロニトリル アクリル酸 エステル共重合体等の合成ゴム、 カルボキシメチルセルロース (C M C ) 、 ヒ ドロキシェ チルセルロース (H E C ) 、 カルボキシメチルセルロースのアンモ-ゥム塩等のセルロー ス誘導体、 ポリエーテルイミ ド、 ポリアミ ドイミ ド、 ポリアミ ド及びその前駆体 (ポリア ミック酸等) 等のポリイミ ド、 エチレン ェチルアタリ レート共重合体等のエチレンーァ クリル酸共重合体、 ポリビュルアルコール (P V A) 、 ポリビュルブチラール (P V B ) 、 ポリビ-ノレピロリ ドン (P V P ) 、 ポリ酢酸ビ-ノレ、 ポリ ウレタン、 ポリフエ-レンェ ーテノレ、 ポリスノレホン、 ポリエーテノレス/レホン、 ポリフエ二レンスノレフイ ド、 ポリエステ ルなどが挙げられる。
【0 0 3 5】
耐酸化層 5の平均厚さの下限としては、 が好ましく、 4 /x mがより好ましい。 一 方、 耐酸化層 5の平均厚さの上限としては、 6 /x mが好ましく、 がより好ましい。 耐酸化層 5の平均厚さを前記下限以上とすることによって、 耐酸化層 5がセパレータ 1の 接着固定時に破断することを防止できる。 また、 耐酸化層 5の平均厚さを前記上限以下と することによって、 セパレータ 1同士の溶着時に耐酸化層 5が容易に破壊されるので樹脂 層 4同士を確実に一体化することができる。
【0 0 3 6】
セパレータ 1の接着層 6は、 正極板 2及び負極板 3における電極反応を可能にすること ができるようイオン伝導性を有するとともに、 セパレータ 1を正極板 2及び負極板 3に接 着する層である。 具体的には、 接着層 6は、 加熱により接着性を発現する層であることが 好ましく、 常温を超える温度、 例えば 6 0 °C以上の温度かつセパレータ 1のシャッ トダウ ン温度 (樹脂層 4が溶融する温度) 未満の温度に晒されたときに接着性を発現することが できる (接着性を発現する温度が 6 0 °C以上セパレータ 1のシャツトダウン温度未満であ る) よう構成される。 接着層 6をこのような温度範囲で接着正を発現するよう構成するこ とによって、 常温では接着層 6が接着性を発現しないことからサブュ-ット Uの取り扱い が容易となり、 かつ他の構成要素がダメージを受けない程度に加熱することで接着層 6が 接着性を発現することで、 他のサブュ-ット Uと容易に接合することができる。
【0 0 3 7】
接着層 6は、 イオン伝導性を発現する粒子と、 バインダとを含む混合材料から形成する ことができる。 具体的には、 接着層 6は、 電解液を含んでイオン伝導性を担保する固体電 解液粒子と、 例えば加熱、 超音波振動等により接着性を発現するバインダとを含む材料か ら形成することができる。 接着層 6は、 液体及び気体が通過できるよう、 連続気孔を有す ることが好ましい。
【0 0 3 8】
接着層 6の平均厚さの下限としては、 0 . 1 /x mが好ましく、 0 . 2 /x mがより好まし く、 0 . 4 mがさらに好ましい。 一方、 接着層 6の平均厚さの上限としては、 が 好ましく、 3 /xmがより好ましく、 1. 2 /xmがさらに好ましい。 接着層 6の平均厚さを 前記下限以上とすることによって、 十分な接着性を得ることができる。 また、 接着層 6の 平均厚さを前記上限以下とすることによって、 十分なイオン伝導性を得ることができる。
【00 3 9】
接着層 6の固体電解液粒子の材質としては、 例えば無機固体電解液、 純正固体高分子電 解液、 高分子ゲル電解液 (G e l P o l yme r E l e c t r o l y t e) 等が挙げ られるが、 中でもイオン伝導度を大きくできるとともに均質で粒子径を調節し易い高分子 ゲル電解液が特に好適に用いられる。
【0040】
高分子ゲル電解液は、 電解液を高分子によってゲル化することによって取り扱いを容易 化したものである。 電解液をゲル化する高分子としては、 例えばフッ化ビ-リデン キ サフルォロプロピレン共重合体、 ポリメチルメタクリル酸、 ポリアクリロニトリル等を挙 げることができる。
【004 1】
高分子ゲル電解液の電解液としては、 有機溶媒に支持電解液を溶解した有機電解液が用 いられる。 支持電解液としては、 リチウム塩が好適に用いられる。 リチウム塩としては、 特に制限はないが、 例えば L i P F 6 L i A s F 6 L i B F 4 L i S b F 6 L i A 1 C 1 4, L i C 1 O 4, C F 3 S O 3 L i , C 4 F 9 S O 3 L i , C F 3 COO L i ,
(C F 3 C O) 2NL i (C F 3 S O 2) 2 N L i , (C 2 F 5 S O 2) N L i等が挙げ られる。 中でも、 有機溶媒に溶けやすく高い解離度を示す L i P F 6 L i C 1 04 C F 3 S O 3 L iが特に好ましい。
【004 2】
電解液に使用する有機溶媒としては、 支持電解液を溶解できるものであれば特に限定さ れないが、 例えばジメチルカーボネート (DMC) 、 エチレンカーボネート (EC) 、 ジ ェチノレカーボネート (DEC) 、 プロピレンカーボネート (P C) 、 ブチレンカーボネー ト (BC) 、 メチルェチルカーボネート (MEC) 等のカーボネート類、 例えば y—ブチ 口ラタ トン、 ギ酸メチル等のエステル類、 例えば 1 2—ジメ トキシェタン、 テトラヒ ド 口フラン等のエーテル類、 スルホラン、 ジメチルスルホキシド等の含硫黄化合物類など一 種又は複数種を組み合わせて用いることができる。 中でも、 誘電率が高く、 安定な電位領 域が広いカーボネート類が特に好適に用いられる。
【004 3】
電解液中における支持電解液の濃度の下限としては、 1質量。 が好ましく、 5質量。 /0が より好ましい。 一方、 電解液中における支持電解液の濃度の上限としては、 3 0質量。 /0が 好ましく、 20質量。 /0がより好ましい。 電解液中における支持電解液の濃度を上記範囲内 とすることによって、 比較的大きいイオン伝導性を得ることができる。
【0044】
固体電解液粒子の平均粒子径の下限としては、 0. 1 μ mが好ましく、 0. 2 mがよ り好ましい。 一方、 固体電解液粒子の平均粒子径の上限としては、 2 /xmが好ましく、 1 mがより好ましい。 固体電解液粒子の平均粒子径を前記下限以上とすることによって、 固体電解液粒子同士を接触させて接着層 6にイオン伝導性を付与することが容易となる。 また、 固体電解液粒子の平均粒子径を前記上限以下とすることによって、 接着層 6を均一 な膜状に形成することが容易となる。
【004 5】
固体電解液粒子の形状としては、 固体電解液粒子同士の接触を促進してイオン伝導性を 大きくできるよう、 例えば棒状、 錐状、 板状等の真球度が小さい形状が好ましい。
【004 6】
接着層 6のバインダとしては、 固体電解液粒子及び正極活物質層 8に対して接着性を有 するものであればよいが、 比較的低い温度で加熱することによって、 正極活物質層 8に対 して粘着可能な樹脂、 つまり比較的低いガラス転移点を有し、 粘着性を発現する高分子材 料が好適に用いられる。 【0 0 4 7】
バインダのガラス転移点の下限としては、 5 0 °Cが好ましく、 4 5 °Cがより好まし い。 一方、 バインダのガラス転移点の上限としては、 5 0 °Cが好ましく、 4 5 °Cがより好 ましい。 バインダのガラス転移点を前記下限以上とすることによって、 接着層 6の強度を 確保できる。 また、 バインダのガラス転移点を前記上限以下とすることによって、 樹脂層 4を損傷しない温度でセパレータ 1を正極板 2及び対向するセパレータ 1に接着すること ができる。
【0 0 4 8】
バインダの主成分としては、 例えばアクリル系重合体等が挙げられる。 アクリル重合体 としては、 二トリル基を有する単量体単位及び (メタ) ァクリル酸エステル単量体単位を 含む-トリル基含有アクリル重合体が好適に用いられる。 ここで、 二トリル基を有する単 量体単位とは、 例えばアクリロニトリル、 メタアクリロニトリル等を重合して得られる構 造単位であり、 (メタ) アクリル酸エステル単量体単位とは、 C H z : ^^ 1— C O O R
2 (式中、 R 1は水素原子又はメチル基を、 R 2はアルキル基又はシクロアルキル基を表 す。 ) で表される化合物由来の単量体単位である。 二トリル基含有アクリル重合体は、 二 トリル基を有する単量体単位及び (メタ) アクリル酸エステル単量体単位に加えて、 ェチ レン性不飽和酸単量体を重合して形成されるェチレン性不飽和酸単量体単位を含んでいて もよい。 また、 二トリル基含有アクリル重合体は、 架橋されていてもよい。
【0 0 4 9】
接着層 6における固体電解液粒子の割合の下限としては、 Ί 0質量。 /0が好ましく、 8 0 質量。 /0がより好ましい。 一方、 接着層 6における固体電解液粒子の割合の上限としては、 9 5質量%が好ましく、 9 0質量%がより好ましい。 接着層 6における固体電解液粒子の 割合を前記下限以上とすることによって、 接着層 6に十分なイオン伝導性を付与すること ができる。 また、 接着層 6における固体電解液粒子の割合を前記上限以下とすることによ つて、 相対的にバインダの割合を一定以上として接着層 6に十分な接着性を付与すること ができる。
【0 0 5 0】
正極板 2は、 導電性を有する箔状乃至シート状の正極集電体 7と、 この正極集電体 Ίの 表面に積層される正極活物質層 8とを有する。 より具体的には、 正極板 2は、 正極集電体 7の表面に正極活物質層 8が積層される平面視矩形状の活物質領域と、 この活物質領域か ら正極集電体 7が活物質領域よりも幅の小さい帯状に延出する正極タブ 9 (図 4参照) と を有する。
【0 0 5 1】
正極板 2の正極集電体 7の材質としては、 アルミニウム、 銅、 鉄、 ニッケル等の金属又 はそれらの合金が用いられる。 これらの中でも、 導電性の高さとコストとのバランスから アルミニウム、 アルミニウム合金、 銅及び銅合金が好ましく、 アルミニウム及びアルミ- ゥム合金がより好ましい。 また、 正極集電体 7の形成形態としては、 箔、 蒸着膜等が挙げ られ、 コス トの面から箔が好ましい。 つまり、 正極集電体 7としてはアルミニウム箔が好 ましレ、。 なお、 アルミニウム又はアルミニウム合金としては、 J I S— H 4 0 0 0 ( 2 0 1 4 ) に規定される A 1 0 8 5 P、 A 3 0 0 3 P等が例示できる。
【0 0 5 2】
正極集電体 7の平均厚さの下限としては、 5 /x mが好ましく、 1 0 /x mがより好ましい 、 一方、 正極集電体 7の平均厚さの上限としては、 5 0 /x mが好ましく、 4 0 /x mがより 好ましい。 正極集電体 7の平均厚さを前記下限以上とすることによって、 正極集電体 7に 十分な強度を付与することができる。 また、 正極集電体 7の平均厚さを前記上限以下とす ることによって、 サブュ-ット Sひいては積層電極体 Bのエネルギー密度を大きくするこ とができる。
【0 0 5 3】
正極活物質層 8は、 正極活物質を含むいわゆる正極合材から形成される。 また、 正極活 物質層 8を形成する正極合材は、 必要に応じて導電剤、 バインダ、 増粘剤、 フイラ一等の 任意成分を含む。
【00 54】
前記正極活物質としては、 例えば L i xMOy (Mは少なくとも一種の遷移金属を表す ) で表される複合酸化物 (L i x C o 02、 L i xN i 02、 L i xMn 204、 L i xM n〇3、 L i x N i α C o (i -a) 02、 L i xN i aMn /3 C o (i -α-β) 02、 L i xN i aMn (2 - a) 04等) 、 L i wMe x (XOy) z (Meは少なくとも一種の遷移 金属を表し、 Xは例えば P、 S i、 B、 V等を表す) で表されるポリア-オン化合物 (L i F e P04、 L i Mn P04、 L i N i P O 4, L i C o P 04, L i 3 V 2 (P O 4) 3、 L i 2Mn S i 04、 L i 2 C o P04 F等) が挙げられる。 これらの化合物中の元 素又はポリア-オンは他の元素又はァ-ォン種で一部が置換されていてもよい。 正極活物 質層 8においては、 これら化合物の一種を単独で用いてもよく、 二種以上を混合して用い てもよい。 また、 正極活物質の結晶構造は、 層状構造又はスピネル構造であることが好ま しい。
【00 5 5】
正極活物質層 8における正極活物質の含有量の下限としては、 5 0質量。 /0が好ましく、 70質量。 /0がより好ましく、 8 0質量。 /0がさらに好ましい。 一方、 正極活物質の含有量の 上限としては、 9 9質量。 /0が好ましく、 94質量。 /0がより好ましい。 正極活物質粒子の含 有量を前記範囲とすることで、 サブュ-ット Sひいては積層電極体 Bのエネルギー密度を 大きくすることができる。
【00 5 6】
前記導電剤としては、 電池性能に悪影響を与えない導電性材料であれば特に限定されな い。 このような導電剤としては、 天然又は人造の黒鉛、 ファーネスブラック、 アセチレン ブラック、 ケッチェンブラック等のカーボンブラック、 金属、 導電性セラミックスなどが 挙げられる。 導電剤の形状としては、 粉状、 繊維状等が挙げられる。
【00 5 7】
正極活物質層 8における導電剤の含有量の下限としては、 0. 1質量。 /0が好ましく、 0 . 5質量。 /0がより好ましい。 一方、 導電剤の含有量の上限としては、 1 0質量。 /0が好まし く、 5質量。 /0がより好ましい。 導電剤の含有量を前記範囲とすることで、 サブユニット S ひいては積層電極体 Bのエネルギー密度を大きくすることができる。
【00 5 8】
前記バインダとしては、 例えばフッ素樹脂 (ポリテトラフルォロエチレン (PTF E) 、 ポリフッ化ビ-リデン (PVDF) 等) 、 ポリエチレン、 ポリプロピレン、 ポリイミ ド 等の熱可塑性樹脂、 例えばエチレン プロピレン ジェンゴム (E PDM) 、 スルホン化 E PDM、 スチレンブタジエンゴム (S BR) 、 フッ素ゴム等のエラス トマ一、 多糖類高 分子などが挙げられる。
【00 5 9】
正極活物質層 8におけるバインダの含有量の下限としては、 1質量。 /0が好ましく、 2質 量。 /0がより好ましい。 一方、 バインダの含有量の上限としては、 1 0質量。 /0が好ましく、 5質量。 /0がより好ましい。 バインダの含有量を前記範囲とすることで、 正極活物質を安定 して保持することができる。
【00 6 0】
前記増粘剤としては、 カルボキシメチルセルロース (CMC) 、 メチルセルロース等の 多糖類高分子が挙げられる。 また、 増粘剤がリチウムと反応する官能基を有する場合、 予 めメチル化等によりこの官能基を失活させておくことが好ましい。
【00 6 1】
前記フィラーとしては、 電池性能に悪影響を与えないものであれば特に限定されない。 フィラーの主成分としては、 ポリプロピレン、 ポリエチレン等のポリオレフイン、 シリカ 、 アルミナ、 ゼォライ ト、 ガラス、 炭素などが挙げられる。
【00 6 2】
正極活物質層 8の平均厚さの下限としては、 1 0 /xmが好ましく、 20 /xmがより好ま しい。 一方、 正極活物質層 8の平均厚さの上限としては、 1 0 0 /x mが好ましく、 8 0 mがより好ましい。 正極活物質層 8の平均厚さを前記下限以上とすることによって、 正極 反応を十分に活性化することができる。 また、 正極活物質層 8の平均厚さを前記上限以下 とすることによって、 サブュ-ット Sひいては積層電極体 Bのエネルギー密度を大きくす ることができる。
【0 0 6 3】
負極板 3は、 導電性を有する箔状乃至シート状の負極集電体 1 0と、 この負極集電体 1 0の表面に積層される負極活物質層 1 1とを有する。 具体的には、 負極板 3は、 負極集電 体 1 0の表面に活物質層が積層される平面視矩形状の活物質領域と、 この活物質領域から 活物質領域よりも幅の小さい帯状に、 正極タブ 9と間隔を空けて正極タブ 9と同じ方向に 延出する負極タブ 1 2 (図 4参照) とを有する。
【0 0 6 4】
負極板 3の負極集電体 1 0は、 上述の正極集電体 7と同様の構成とすることができるが 、 材質としては、 銅又は銅合金が好ましい。 つまり、 負極板 3の負極集電体 1 0としては 銅箔が好ましい。 銅箔としては、 圧延銅箔、 電解銅箔等が例示される。
【0 0 6 5】
負極活物質層 1 1は、 負極活物質を含むいわゆる負極板合材から形成される。 また、 負 極活物質層 1 1を形成する負極板合材は、 必要に応じて導電剤、 バインダ、 増粘剤、 フィ ラー等の任意成分を含む。 導電剤、 バインダ、 増粘剤、 フイラ一等の任意成分は、 正極活 物質層 8と同様のものを用いることができる。
【0 0 6 6】
負極活物質としては、 リチウムイオンを吸蔵及び放出することができる材質が好適に用 いられる。 具体的な負極活物質としては、 例えばリチウム、 リチウム合金等の金属、 金属 酸化物、 ポリ リン酸化合物、 例えば黒鉛、 非晶質炭素 (易黒鉛化炭素又は難黒鉛化性炭素 ) 等の炭素材料などが挙げられる。
【0 0 6 7】
前記負極活物質の中でも、 正極板 2と負極板 3との単位対向面積当たりの放電容量を好 適な範囲とする観点から、 S i 、 S i酸化物、 S n、 S n酸化物又はこれらの組み合わせ を用いることが好ましく、 S i酸化物を用いることが特に好ましい。 なお、 3 1 と 3 1 と は、 酸化物にした際に、 黒鉛の 3倍程度の放電容量を持つことができる。
【0 0 6 8】
負極活物質として S i酸化物を用いる場合、 S i酸化物に含まれる Oの S iに対する原 子数の比としては 0超 2未満が好ましい。 つまり、 S i酸化物としては、 S i O x ( 0 < X < 2 ) で表される化合物が好ましい。 また、 前記原子数の比としては、 0 . 5以上 1 . 5以下がより好ましい。
【0 0 6 9】
なお、 負極活物質は上述したものを一種単体で用いてもよいし、 二種以上を混合して用 いてもよい。 例えば、 S i酸化物と他の負極活物質とを混合して用いることで、 正極板 2 と負極板 3との単位対向面積当たりの放電容量及び後述する負極活物質の質量に対する前 記正極活物質の質量の比がともに好適な値となるように調整できる。 S i酸化物と混合し て用いる他の負極活物質としては、 黒鉛、 ハードカーボン、 ソフトカーボン、 コータス類 、 アセチレンブラック、 ケッチェンブラック、 気相成長炭素繊維、 フラーレン、 活性炭等 の炭素材料が挙げられる。 これらの炭素材料は、 一種のみを S i酸化物と混合してもよい し、 二種以上を任意の組み合わせ及び比率で S i酸化物と混合してもよい。 これらの他の 負極活物質の中でも、 充放電電位が比較的卑である黒鉛が好ましく、 黒鉛を用いることで 高いエネルギー密度の二次電池素子が得られる。 S i酸化物と混合して用いる黒鉛として は、 鱗片状黒鉛、 球状黒鉛、 人造黒鉛、 天然黒鉛等が挙げられる。 これらの中でも、 充放 電を繰り返しても S i酸化物粒子表面との接触を維持し易い鱗片状黒鉛が好ましい。
【0 0 7 0】
さらに、 負極活物質層 1 1は、 S i酸化物に加えて少量の B、 N、 P、 F、 C l 、 B r 、 I等の典型非金属元素、 L i 、 N a、 Mg、 A l 、 K、 C a、 Z n、 G a、 G e等の典 型金属元素、 S c、 T i 、 V、 C r、 Mn、 F e、 C o、 N i 、 C u、 Mo、 Z r、 T a 、 H f 、 N b、 W等の遷移金属元素を含有してもよい。
【0 0 7 1】
前記 S i酸化物 (一般式 S i O xで表される物質) として、 S i 02及び S iの両相を 含むものを使用することが好ましい。 このような S i酸化物は、 S i 02のマトリ ックス 中の S iにリチウムが吸蔵及び放出されるため、 体積変化が小さく、 かつ充放電サイクル 特性に優れる。
【0 0 7 2】
また、 前記 S i酸化物の平均粒子径は、 1 μ m以上 1 5 μ m以下が好ましい。 S i酸化 物の平均粒子径を前記上限以下とすることで、 サブュ-ット Sひいては積層電極体 Bの充 放電サイクル特性を向上できる。
【0 0 7 3】
前記 S i酸化物は、 高結晶性のものからアモルファスのものまで使用することができる 。 さらに、 S i酸化物としては、 フッ化水素、 硫酸などの酸で洗浄されているものや水素 で還元されているものを使用してもよい。
【0 0 7 4】
負極活物質における S i酸化物の含有量の下限としては、 3 0質量。 /0が好ましく、 5 0 質量。 /0より好ましく、 7 0質量。 /0がさらに好ましい。 一方、 S i酸化物の含有量の上限と しては、 通常 1 0 0質量。 /0であり、 9 0質量。 /0が好ましい。
【0 0 7 5】
負極活物質層 1 1における負極活物質の含有量の下限としては、 6 0質量。 /0が好ましく 、 8 0質量。 /0がより好ましく、 9 0質量%がさらに好ましい。 一方、 負極活物質の含有量 の上限としては、 9 9質量。 /0が好ましく、 9 8質量。 /0がより好ましい。 負極活物質粒子の 含有量を前記範囲とすることで、 サブュニット Sひいては積層電極体 Bのエネルギー密度 を大きくすることができる。
【0 0 7 6】
負極活物質層 1 1におけるバインダの含有量の下限としては、 1質量。 が好ましく、 5 質量。 /0がより好ましい。 一方、 バインダの含有量の上限としては、 2 0質量。 /0が好ましく 、 1 5質量。 /0がより好ましい。 バインダの含有量を前記範囲とすることで、 負極活物質を 安定して保持することができる。
【0 0 7 7】
負極活物質層 1 1の平均厚さの下限としては、 1 0 /x mが好ましく、 2 0 /x mがより好 ましい。 逆に、 負極活物質層 1 1の平均厚さの上限としては、 1 0 0 /x mが好ましく、 8 0 /x mがより好ましい。 負極活物質層 1 1の平均厚さを前記下限以上とすることによって 、 負極反応を十分に活性化することができる。 また、 負極活物質層 1 1の平均厚さを前記 上限以下とすることによって、 サブュ-ット Sひいては積層電極体 Bのエネルギー密度を 大きくすることができる。
【0 0 7 8】
サブュ-ット sは、 2枚のセパレータ 1の間に 1枚の正極板 2を配置するとともに 2枚 のセパレータ 1のうちの一方のセパレータ 1上に 1枚の負極板 3を配置する工程 (配置ェ 程) と、 1枚の負極板 3、 2枚のセパレータ 1の一方、 1枚の正極板 2及び 2枚のセパレ ータ 1の他方をこの順番に積層した状態で加熱及び加圧する工程 (ュ -ット加熱加圧工程 ) と、 2枚のセパレータ 1の両側縁が正極板 2及び負極板 3の側縁からそれぞれ突出する ように 2枚のセパレータ 1を切断する工程 (切断工程) とを備える方法によって製造する ことができる。
【0 0 7 9】
サブュ-ット形成工程は、 最初に切断工程を行って予めサブュ-ット Sにおける寸法に 切断されたセパレータ 1を用いて行ってもよいが、 図 7に示すように、 2枚の長尺シート 状のセパレータ母材 1 aを用いて連続的に配置工程及びュ-ット加熱加圧工程を行った後 に切断工程を行うことで、 サブュ-ット Sを連続的に効率よく製造することができる。 【0 0 8 0】
具体的に説明すると、 配置工程では、 2枚のセパレータ母材 1 aを連続的に供給して長 手方向に搬送し、 この搬送状態の 2つのセパレータ母材 1 aの間に最終製品における寸法 に切断された正極板 2を等間隔 (サブユニット Sの幅と等しいピッチ) で順次挿入すると ともに、 一方のセパレータ母材 1 aの外側に正極板 2と対向するよう最終製品における寸 法に切断された負極板 3を順次配置する。
【0 0 8 1】
ユニット加熱加圧工程では、 この長尺の積層体を連続搬送しつつ加熱及び加圧する。 加 熱と加圧とは、 同時に行ってもよい。 代替的に、 加熱後にセパレータ 1の接着層 6の温度 が接着力を喪失する温度まで低下する前に積層体を加圧してもよい。
【0 0 8 2】
セパレータ母材 1 a、 正極板 2及び負極板 3の積層体の連続搬送は、 例えば離型性を有 する搬送ベルト等を用いて行うことができる。
【0 0 8 3】
ュ-ット加熱加圧工程における積層体の加熱は、 例えば前記積層体を挟み込むよう配置 されるプレートヒータ H等を用いて行うことができる。 また、 ユニット加熱加圧工程にお ける加圧は、 例えば前記積層体を挟み込む一対の加圧ローラ Pを用いて行うことができる 。 代替的に、 前記積層体を挟み込んで発熱する一対の加熱ローラを用いて加熱と加圧とを 同時に行ってもよい。
【0 0 8 4】
ュ-ット加熱加圧工程における加熱温度としては、 セパレータ 1の接着層 6が接着力を 発現する温度以上、 かつ樹脂層 4のシャッ トダウン温度未満とされ、 例えば 8 0 °C以上 1 2 0 °C以下とすることができる。
【0 0 8 5】
ュ-ット加熱加圧工程における加圧圧力としては、 加圧ローラの単位長さ当たりの荷重 で、 例えば 0 . I NZ c m以上 1 0 . O NZ c m以下とすることができる。
【0 0 8 6】
切断工程では、 カツタ Cによりセパレータ母材 1 aを切断して所定の長さのセパレータ 1とすることによって、 サブュ-ット Sを順次分離する。
【0 0 8 7】
サブユニット Sは、 負極板 3、 一方のセパレータ 1、 正極板 2及び他方のセパレータ 1 がこの順に積層されて接着固定されているので、 2枚のセパレータ 1、 正極板 2及び負極 板 3の相対位置が保持される。 このため、 サブユニット Sでは、 正極板 2と負極板 3との 大きさの差を小さくしても、 平面視で正極板 2が負極板 3からはみ出して電析を助長する ことがない。 また、 サブユニット Sでは、 負極板とセパレータとの大きさの差も小さくす ることができる。 これにより、 サブユニット Sの投影面積 (セパレータ 1、 正極板 2及び 負極板 3の積層方向から見た場合の面積) に比して、 正極板 2の面積、 つまり正極板 2と 負極板 3とが対向して電極板の寄与する領域の面積を比較的大きく してエネルギー密度を 大きくすることができる。
【0 0 8 8】
また、 サブユニット Sは、 セパレータ 1の外縁部以外に正極板 2及び負極板 3が接着固 定されているのでセパレータ 1が橈み難い。 このため、 サブユニット Sを使用すれば、 セ パレータ 1の外縁にガイ ド等を当接させることで比較的正確かつ迅速にサブュ-ット Sを 位置決めして積層することができるので、 エネルギー密度が大きい積層電極体 Bを効率よ く製造することができる。 従来の正極板を袋状に形成されたセパレータの中に収容した袋 詰正極板を用いる場合と比べても、 サブユニット Sでは、 2枚のセパレータ 1及び 1枚の 正極板 2に加えて、 正極板 2よりも大きい 1枚の負極板 3がさらに一体化されていること によって、 セパレータ 1の橈みを抑制する効果がより大きい。 このため、 サブユニット S はセパレータ 1をより正確に位置決めすることができるので、 よりエネルギー密度が大き い積層電極体を形成することができる。
【0 0 8 9】
本発明の一実施形態に係る電極ユニット Uは、 図 3に示すように、 複数のサブユニット Sを有し、 複数のサブュ-ット Sの正極板 2及び負極板 3の端部から突出しているセパレ ータ 1の端部がまとめて溶着されている。
【0 0 9 0】
この電極ユニット Uにおいて、 正極板 2は、 両側のセパレータ 1に接着固定されている が、 負極板 3は、 同じサブユニット Sのセパレータ 1のみに接着固定され、 隣接するサブ ュ-ット Sのセパレータ 1には接着固定されていない。
【0 0 9 1】
図 4に示すように、 電極ユニット Uは、 正極板 2及び負極板 3の正極タブ 9及び負極タ ブ 1 2が存在しない対向する一対の側縁に沿って第 1の溶着領域 R 1が形成されることが 好ましい。 また、 電極ユニット Uは、 正極板 2及び負極板 3の正極タブ 9及び負極タブ 1 2が存在する側縁及びこれに対向する側縁に沿って、 複数のセパレータ 1を部分的に溶着 した第 2の溶着領域 R 2が形成されてもよい。 この場合、 第 1の溶着領域 R 1及び第 2の 溶着領域 R 2は、 セパレータ 1の角の近傍には形成されないことが好ましい。 複数のセパ レータ 1を互いに密着させるために各セパレータは正極板 2及び負極板 3の側縁にそって 、 正極板 2及び負極板 3の厚さ方向に折り曲げられるが、 セパレータ 1の角の近傍では異 なる方向の折り曲げが干渉するため、 この部分で溶着すると過度の負荷が加わってセパレ ータ 1が損傷するおそれがある。
【0 0 9 2】
電極ュ-ット Uが有するサブュ-ット Sの数としては、 例えば 5以上 1 5以下とするこ とができる。 サブユニット Sの積層数をこの範囲とすることによって、 両外側のセパレー タ 1間の距離が大きくなり過ぎない、 これにより、 各サブユニット Sの正極板 2及び負極 板 3の端部から突出するセパレータ 1の長さを小さく しても、 セパレータ 1の端部同士を 束ねて溶着し、 複数のサブユニット Sを一体化することができるので、 セパレータ 1の使 用量を低減することができる。
【0 0 9 3】
当該電極ユニット Uは、 サブユニット Sを複数積層する工程 (サブユニット積層工程) と、 積層した複数のサブュ-ット Sそれぞれの正極板 2及び負極板 3の端部から突出する セパレータ 1同士を溶着する工程 (溶着工程) とを備える方法によって製造することがで きる。 また、 電極ユニット Uの製造方法は、 溶着した複数のセパレータ 1の外側部分をト リミングする工程 (トリミング工程) と、 複数のセパレータ 1の溶着部分を正極板 2及び 負極板 3の側縁に沿って折り曲げる工程 (折り曲げ工程) とをさらに備えてもよい。
【0 0 9 4】
サブユニット積層工程では、 複数のサブユニット Sを同じ向きに配向して積層する。 こ れにより、 複数の正極板 2と複数の負極板 3とがセパレータ 1を介して交互に配置され、 最も外側の正極板 2のさらに外側にセパレータ 1が配置される積層体が形成される。
【0 0 9 5】
複数のサブュ-ット Sの積層は、 例えばセパレータ 1の四方の外縁に当接するガイ ド等 を用いて、 前記サブュ-ット形成工程で形成されたサブュ-ット Sを順番にガイ ド内に投 入して重力によりサブュ-ット Sを積み重ねることで、 比較的迅速かつ正確に行うことが できる。
【0 0 9 6】
溶着工程では、 全てのセパレータ 1の端部を互いに密着させるよう束ねて溶着する。 具 体的には、 セパレータ 1の耐酸化層 5を破壊して樹脂層 4同士を溶着させる。 このため、 セパレータ 1の溶着は、 超音波振動圧子 (ホーン) を用いて行うことが好ましい。
【0 0 9 7】
また、 超音波振動圧子として、 当接面に例えば多数の微細な突起が形成されたものを使 用することで、 耐酸化層 5を破壊し、 耐酸化層 5の破片を搔き分けるようにして樹脂層 4 同士を効率よく溶着することができる。 超音波振動圧子の突起としては、 縦横に等間隔に 並んで配設される四角錐台形状とすることが好ましい。 このような突起は超音波振動圧子 の表面に縦横に一定間隔の溝を形成することによって容易に形成することができ、 かつ耐 酸化層 5を効率的に破壊してセパレータ 1を確実に溶着することができる。
【0 0 9 8】
トリミング工程では、 セパレータ 1の溶着領域 R 1, R 2の外側に突出する部分を切り 落とす。 セパレータ 1は、 溶着領域 R l, R 2を形成できる最小限の大きさに設計される が、 溶着工程で複数のセパレータ 1を互いに密着するよう束ねたことによって、 図 3に二 点鎖線で図示するように、 正極板 2及び負極板 3の厚さによりセパレータ 1の端部が階段 状に位置ずれするため、 全てのセパレータ 1が積層される部分に形成される溶着領域 R 1 , R 2の外側にセパレータ 1が突出することになる。 従って、 このトリミング工程では、 溶着領域 R l, R 2の外側に階段状に突出する部分を主に切除する。 これにより、 積層電 極体 Bを形成したときに溶着領域 R 1, R 2の外側のセパレータ 1が占有するデッドスべ ースを小さく して、 積層電極体 Bのエネルギー密度を大きくすることができる。
【0 0 9 9】
折り曲げ工程では、 セパレータ 1の正極板 2及び負極板 3から突出する部分を、 正極板 2及び負極板 3の側縁に沿って折り曲げる。 これにより、 積層電極体 Bを形成したときに セパレータ 1の正極板 2及び負極板 3から突出する部分が占有するデッドスペースを小さ く して、 積層電極体 Bのエネルギー密度を大きくすることができる。
【0 1 0 0】
当該電極ユニット Uは、 全てのセパレータ 1がー体に溶着されることによって、 複数の サブユニット Sの相対位置が保持される。 このため、 複数の正極板 2及び負極板 3が比較 的正確に正対するよう、 セパレータ 1を挟んで交互に積層されている。 このため、 当該電 極ュ-ットは、 正極板 2及び負極板 3の対向面積を大きく してエネルギー密度を大きくす ることができる。
【0 1 0 1】
本発明の一実施形態に係る積層電極体 Bは、 図 5に示すように、 電極ユニット Uが複数 積層され、 最も外層に配置されるセパレータ 1上に 1枚の負極板 3が配置されている。 つ まり、 この積層電極体 Bは、 積層された複数の電極ユニット Uと、 この電極ユニット Uの 積層体において最も外側に配置されるセパレータ 1のさらに外側に配置された 1枚の負極 板 3とを有する。
【0 1 0 2】
なお、 「セパレータ上に 1枚の負極板が配置されている」 とは、 複数の電極ユニット U とさらなる負極板 3との上下関係を限定することは意図せず、 最も外側に積層される 2つ の電極ュ-ット uのうち隣接する電極ュニット Uのセパレータ 1に負極板 3を当接させて いる方の電極ュ-ット Uの負極板 3と反対側のセパレータ 1のさらに外側にさらなる負極 板 3を積層することを意味する。 従って、 1枚の負極板 3の上に複数の電極ュュット Uが 積層されてもよい。
【0 1 0 3】
積層電極体 Bにおいて、 各負極板 3は、 同じサブユニット Sのセパレータ 1だけでなく 隣接するサブユニット Sのセパレータ 1にも接着固定されている。 また、 積層電極体 Bは 、 複数の電極ュュット U及び 1枚のさらなる負極板 3の積層体の全体 (積層体の外周) を 覆う樹脂フィルム 1 3をさらに備える。
【0 1 0 4】
なお、 図では、 分りやすくするためにセパレータ 1、 正極板 2及び負極板 3の厚さが大 きく描かれているが、 実際のセパレータ 1、 正極板 2及び負極板 3は厚さが小さいため、 複数のセパレータ 1の溶着領域 R 1, R 2における厚さは、 溶着領域 R 1, R 2の幅に比 して非常に小さいものとなる。 このため、 各電極ユニット Uのセパレータ 1の第 1溶着領 域 R 1を含む正極板 2及び負極板 3から突出する部分は、 正極板 2及び負極板 3の側縁に 沿って折り曲げられていてもよい。 【0 1 0 5】
樹脂フィルム 1 3の主成分としては、 例えばポリプロピレン (P P) 、 ポリエチレン ( P E) 、 ポリエチレンテレフタレート (P ET) 等を挙げることができる。 中でも、 樹脂 フィルム 1 3の主成分としては、 ヒートシール性が良好なポリプロピレンが特に好適であ る。
【0 1 0 6】
樹脂フィルム 1 3の平均厚さの下限としては、 20 /xmが好ましく、 50 /xmがより好 ましい。 一方、 樹脂フィルム 1 3の平均厚さの上限としては、 1 5 0 /xmが好ましく、 1 00 /xmがより好ましい。 樹脂フィルム 1 3の平均厚さを上記下限以上とすることによつ て、 破れることなく複数の電極ュ-ット U及び負極板 3の位置ずれを防止すると共に負極 板 3を保護することができる。 また、 樹脂フィルム 1 3の平均厚さを上記上限以下にする ことによって、 複数の電極ュ-ット U及び負極板 3の積層体を容易かつ隙間なくタイ トに 被覆することができるので、 電極ュュット U及び負極板 3の位置ずれを防止する効果を確 実にすることができ、 積層電極体 Bのエネルギー密度向上に貢献する。
【0 1 0 7】
当該積層電極体 Bは、 電極ユニット Uを複数積層する工程 (電極ユニット積層工程) と 、 最も外層に配置されるセパレータ 1上に 1枚の負極板 3を配置する工程 (負極板配置ェ 程) と、 複数の電極ュュット U及び負極板 3を積層した状態で加熱及び加圧する工程 (電 極体加熱加圧工程) とを備える。 また、 この積層電極体 Bの製造方法は、 前記電極体加熱 加圧工程の前に、 複数の電極ュ-ット U及び負極板 3の積層体の外周を樹脂フィルム 1 3 で覆う工程 (樹脂フィルムラッピング工程) をさらに備えることが好ましい。
【0 1 0 8】
電極ユニット積層工程では、 複数の電極ユニット uを同じ向きに配向して積層する。 つ まり、 隣接する 2つの電極ユニット U間では、 一方の電極ユニット Uの負極板 3に他方の 電極ユニット Uのセパレータ 1が当接する。 これにより、 複数の正極板 2及び負極板 3が セパレータ 1を介して積層された積層体を形成する。
【0 1 0 9】
負極板配置工程では、 最も外層に配置されるセパレータ 1の外側にさらなる負極板 3を 積層することで、 両外側に負極板 3が配置され、 複数の正極板 2と負極板 3とがそれぞれ セパレータ 1を介して交互に積層された積層体を形成する。
【0 1 1 0】
樹脂フィルムラッビング工程では、 複数の電極ュ-ット U及び 1枚のさらなる負極板 3 の積層体を樹脂フィルム 1 3で覆うことによって、 次の電極体加熱加圧工程において複数 の電極ュ-ット U及び負極板 3が位置ずれしないよう保持する。
【0 1 1 1】
このように、 樹脂フィルム 1 3によって電極体加熱加圧工程におけるセパレータ 1、 正 極板 2及び負極板 3の位置ずれを防止することで、 正極板 2及び負極板 3の位置ずれに対 するマージンを小さく して正極板 2及び負極板 3の対向面積をより大きくし、 積層電極体 Bのエネルギー密度をさらに向上することができる。
【0 1 1 2】
また、 複数の電極ュュット U及び負極板 3の積層体を覆う樹脂フイルム 1 3は、 両外側 の負極板 3を保護し、 特に後述する蓄電素子の製造を容易にすることができる。
【0 1 1 3】
電極体加熱加圧工程では、 好ましくは樹脂フィルム 1 3で覆った複数の電極ュ-ット U 及び 1枚の負極板 3の積層体を加熱及び加圧することにより、 隣接するサブュ-ット S間 及び最も外側の電極ュ-ット Uの外側のセパレータ 1と負極板 3との間を接合する。 これ により、 全てのセパレータ 1、 正極板 2及び負極板 3が互いに接着固定された積層電極体 Bが得られる。
【0 1 1 4】
本発明の一実施形態に係る蓄電素子は、 図 6に示すように、 上述の積層電極体 Bと、 こ の積層電極体 Bを収容するケース 1 4と、 積層電極体 Bの正極タブ 9及び負極タブ 1 2に 接続され、 ケース 1 4から露出する正極外部端子 1 5及び負極外部端子 1 6とを備える。 また、 蓄電素子は、 ケース 1 4内に積層電極体 Bと共に電解液が封入されている。
【0 1 1 5】
ケース 1 4は、 有底四角筒状のケース本体 1 7と、 このケース本体 1 7の開口を封止す る板状の蓋体 1 8とを有する。 正極外部端子 1 5及び負極外部端子 1 6は、 蓋体 1 8を貫 通するよう設けられている。
【0 1 1 6】
また、 蓄電素子は、 ケース 1 4の内側で正極外部端子 1 5及び負極外部端子 1 6に取り 付けられ、 積層電極体 Bの正極タブ 9及び負極タブ 1 2が接続される正極接続部材 1 9及 び負極接続部材 20をさらに備える。
【0 1 1 7】
ケース 1 4は、 積層電極体 Bを収容し、 内部に電解液が封入される密閉容器である。 【0 1 1 8】
ケース 1 4の材質としては、 電解液を封入できるシール性と、 積層電極体 Bを保護でき る強度とを備えるものであれば、 例えば樹脂等であってもよいが、 金属が好適に用いられ る。 換言すると、 ケース 1 4としては、 例えばラミネートフィルムから形成され、 可撓性 を有する袋体等であってもよいが、 積層電極体 Bをより確実に保護できる堅固な金属ケー スを用いることが好ましい。
【0 1 1 9】
ケース 1 4に積層電極体 Bと共に封入される電解液としては、 当該蓄電素子に通常用い られる公知の電解液が使用でき、 例えばエチレンカーボネート (EC) 、 プロピレンカー ボネート (P C) 、 ブチレンカーボネート (BC) 等の環状カーボネート、 又はジェチル カーボネート (DEC) 、 ジメチノレカーボネート (DMC) 、 ェチノレメチノレカーボネート (EMC) 等の鎖状カーボネートを含有する溶媒に、 リチウムへキサフルォロホスフエ一 ト (L i P F 6) 等を溶解した溶液を用いることができる。
【0 1 20】
当該蓄電素子は、 積層電極体 Bをケース 1 4に収容する工程 (積層電極体収容工程) と 、 ケース 1 4内に電解液を充填する工程 (電解液充填工程) とを備える。
【0 1 2 1】
積層電極体収容工程では、 正極タブ 9及び負極タブ 1 2を正極接続部材 1 9及び負極接 続部材 20にそれぞれ接続してから、 積層電極体 Bをケース本体 1 7内に挿入して、 蓋体 1 8でケース本体 1 7の開口を封止する。
【0 1 2 2】
正極タブ 9及び負極タブ 1 2の正極接続部材 1 9及び負極接続部材 20への接続方法と しては、 例えば超音波溶接、 レーザー溶接、 かしめ等を採用することができる。
【0 1 2 3】
電解液充填工程では、 ケース 1 4内に電解液を注入する。 このために、 ケース 1 4には 、 封止可能な注入口が形成されることが好ましい。
【0 1 24】
当該蓄電素子は、 エネルギー密度が大きく、 効率よく製造できる積層電極体 Bを用いる ので、 エネルギー密度が大きく、 効率よく製造することができる。
【0 1 2 5】
上記実施形態は、 本発明の構成を限定するものではない。 従って、 上記実施形態は、 本 明細書の記載及び技術常識に基づいて上記実施形態各部の構成要素の省略、 置換又は追加 が可能であり、 それらは全て本発明の範囲に属するものと解釈されるべきである。
【0 1 2 6】
当該電極ュ-ットにおいて、 隣接する電極ュ-ット間でセパレータと負極板とが接着固 定されていてもよレ、。
【0 1 2 7】 当該積層電極体において、 隣接する電極ュ-ット間でセパレータと負極板とが接着固定 されていなくてもよい。
【0 1 2 8】
当該積層電極体は、 電極ュ-ットを 1つだけ有するものであってもよい。
【0 1 2 9】
当該積層電極体は、 樹脂フィルムを有しないものであってもよい。
【0 1 3 0】
当該蓄電素子は、 正極外部端子が省略され、 ケース (例えば蓋板) に正極タブが接続さ れ、 ケースが外部端子の役目を果たすものであってもよい。
【産業上の利用可能性】
【0 1 3 1】
本発明に係る積層電極体の製造方法及び蓄電素子の製造方法は、 多様な蓄電素子を製造 するために利用することができるが、 特に電気自動車やプラグインハイプリッド電気自動 車 (PHEV) といった車両の電力源として用いられる二次電池を製造するために好適に 利用される。
【符号の説明】
【0 1 3 2】
1 セノヽ。レータ
2 正極板
3 負極板
4 樹脂層
5 耐酸化層
6 接着層
7 正極集電体
8 正極活物質層
9 正極タブ
1 0 負極集電体
1 1 負極活物質層
1 2 負極タブ
1 3 樹脂フィルム
1 4 ケース
1 5 正極外部端子
1 6 負極外部端子
1 7 ケース本体
1 8 蓋体
1 9 正極接続部材
20 負極接続部材
B 積層電極体
C カツタ
H プレートヒータ
P 加圧ローラ
S サブュニット
U 電極ュュット

Claims

【書類名】 特許請求の範囲
【請求項 1】
両面に接着層を有する 2枚のセパレータと、
前記 2枚のセパレータの間に配置され接着固定された 1枚の正極板と、
前記 2枚のセパレータのうちの一方の前記正極板と反対側の面に接着固定された 1枚の 負極板と、 を備え、
前記 2枚のセパレータの端部が、 前記正極板及び前記負極板の端部から突出する、 積層 電極体のサブュ-ット。
【請求項 2】
前記 2枚のセパレータが、 前記接着層の間に配置される多孔性の樹脂層と、 前記正極板 と対向する面の前記接着層及び前記樹脂層の間に耐酸化層とをそれぞれ有し、
前記接着層が、 加熱されると接着性を発現する、 請求項 1に記載の積層電極体のサブュ ニット。
【請求項 3】
請求項 1又は請求項 2に記載のサブュニットが複数積層され、
前記複数のサブュ-ットそれぞれの前記正極板及び前記負極板の端部から突出するセパ レータ同士が溶着された、 電極ユニット。
【請求項 4】
前記負極板と、 前記負極板に隣接する前記サブユニッ トのセパレータとが、 接着されて いない、 請求項 3に記載の電極ユニット。
【請求項 5】
請求項 3又は請求項 4に記載の電極ュニットが複数積層され、
最も外層に配置される前記セパレータ上に 1枚の負極板が配置された、 積層電極体。
【請求項 6】
前記複数の電極ュュット及び前記負極板の積層体を覆う樹脂フィルムをさらに備える請 求項 5に記載の積層電極体。
【請求項 7】
請求項 5又は請求項 6に記載の積層電極体と、
前記積層電極体を収容するケースと、
前記積層電極体に電気的に接続され、 前記ケースから露出する外部端子と
を備える蓄電素子。
PCT/IB2018/054991 2017-07-06 2018-07-06 電極体のサブユニット、電極ユニット、積層電極体及び蓄電素子 WO2019008545A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017132492A JP2019016493A (ja) 2017-07-06 2017-07-06 電極体のサブユニット、電極ユニット、積層電極体及び蓄電素子
JP2017-132492 2017-07-06

Publications (1)

Publication Number Publication Date
WO2019008545A1 true WO2019008545A1 (ja) 2019-01-10

Family

ID=63371729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/054991 WO2019008545A1 (ja) 2017-07-06 2018-07-06 電極体のサブユニット、電極ユニット、積層電極体及び蓄電素子

Country Status (2)

Country Link
JP (1) JP2019016493A (ja)
WO (1) WO2019008545A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210058143A (ko) * 2019-11-13 2021-05-24 주식회사 엘지에너지솔루션 배터리 모듈, 이러한 배터리 모듈의 제조 방법 및 이러한 배터리 모듈을 포함하는 배터리 팩 및 자동차
JP2022025869A (ja) * 2020-07-30 2022-02-10 株式会社豊田自動織機 蓄電セル

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2731186A1 (en) * 2011-07-07 2014-05-14 LG Chem, Ltd. Electrode assembly for an electrochemical device and electrochemical device including same
EP2804247A1 (en) * 2012-01-12 2014-11-19 Nissan Motor Co., Ltd. Secondary battery fabrication method, secondary battery, and deposition device
EP2808933A1 (en) * 2012-05-23 2014-12-03 Lg Chem, Ltd. Method for manufacturing electrode assembly and electrochemical device comprising the electrode assembly
WO2017034353A1 (ko) * 2015-08-25 2017-03-02 주식회사 엘지화학 접착층을 포함하는 전기화학소자용 복합 분리막 및 이를 포함하는 전기화학소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2731186A1 (en) * 2011-07-07 2014-05-14 LG Chem, Ltd. Electrode assembly for an electrochemical device and electrochemical device including same
EP2804247A1 (en) * 2012-01-12 2014-11-19 Nissan Motor Co., Ltd. Secondary battery fabrication method, secondary battery, and deposition device
EP2808933A1 (en) * 2012-05-23 2014-12-03 Lg Chem, Ltd. Method for manufacturing electrode assembly and electrochemical device comprising the electrode assembly
WO2017034353A1 (ko) * 2015-08-25 2017-03-02 주식회사 엘지화학 접착층을 포함하는 전기화학소자용 복합 분리막 및 이를 포함하는 전기화학소자
US20180123106A1 (en) * 2015-08-25 2018-05-03 Lg Chem, Ltd. Complex separator for electrochemical element, comprising bonding layer, and electrochemical element comprising same

Also Published As

Publication number Publication date
JP2019016493A (ja) 2019-01-31

Similar Documents

Publication Publication Date Title
US10516185B2 (en) Electrode assembly and electrochemical cell containing the same
JP6093370B2 (ja) 電極組立体及びこれを含む電気化学素子
JP7069612B2 (ja) 積層電極体、蓄電素子及び積層電極体の製造方法
US20120244423A1 (en) Laminate case secondary battery
US9502694B2 (en) Pouch for secondary battery and secondary battery including the same
EP3154114B1 (en) Electrode assembly, fabricating method of the electrode assembly and electrochemical cell containing the electrode assembly
EP2757625B1 (en) Method for manufacturing electrode assembly and electrochemical device
EP1531505A2 (en) Flat cell, battery, combined battery, and vehicle
KR101496547B1 (ko) 이차 전지용 파우치 및 이를 포함하는 이차 전지
CN111799440B (zh) 非水电解质二次电池
KR20170045564A (ko) 전지케이스의 내면이 전기 절연성 소재로 코팅되어 있는 전지셀
KR102137697B1 (ko) 리드 플레이트를 구비한 보호회로모듈 어셈블리를 포함하는 전지셀
US10468638B2 (en) Method for forming a pouch for a secondary battery
WO2019008546A1 (ja) 積層電極体の製造方法及び蓄電素子の製造方法
KR101487092B1 (ko) 이차전지용 파우치 및 이를 포함하는 이차전지
KR20140012601A (ko) 이차전지 및 이를 포함하는 전기화학소자
KR101484369B1 (ko) 이차전지 및 이를 포함하는 전기화학소자
JP7069625B2 (ja) 蓄電素子の製造方法
WO2019008545A1 (ja) 電極体のサブユニット、電極ユニット、積層電極体及び蓄電素子
CN108335915B (zh) 电极组件的制造方法及包括该电极组件的电化学电池
KR101661562B1 (ko) 실링부를 실란트로 실링한 이차전지
JP5646944B2 (ja) 二次電池およびその製造方法
JP2018152226A (ja) 袋詰正極板、積層電極体、蓄電素子及び袋詰正極板の製造方法
JP2022552358A (ja) 電極組立体およびその製造方法
CN118156579A (zh) 二次电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18759731

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18759731

Country of ref document: EP

Kind code of ref document: A1