WO2019007022A1 - 基于广播的网格化差分数据播发方法、服务器及存储介质 - Google Patents

基于广播的网格化差分数据播发方法、服务器及存储介质 Download PDF

Info

Publication number
WO2019007022A1
WO2019007022A1 PCT/CN2018/072277 CN2018072277W WO2019007022A1 WO 2019007022 A1 WO2019007022 A1 WO 2019007022A1 CN 2018072277 W CN2018072277 W CN 2018072277W WO 2019007022 A1 WO2019007022 A1 WO 2019007022A1
Authority
WO
WIPO (PCT)
Prior art keywords
station
differential data
broadcast
virtual
virtual station
Prior art date
Application number
PCT/CN2018/072277
Other languages
English (en)
French (fr)
Inventor
朱钧
尹华镜
张光华
Original Assignee
深圳思凯微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳思凯微电子有限公司 filed Critical 深圳思凯微电子有限公司
Publication of WO2019007022A1 publication Critical patent/WO2019007022A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • G01S19/41Differential correction, e.g. DGPS [differential GPS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/021Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a broadcast-based gridded differential data broadcast method, a server, and a storage medium.
  • Navigation satellite-based location services are widely used in various fields. With the user experience, the development of emerging industries, and the need for standardized management, location services are increasingly demanding location accuracy.
  • ground-based augmentation Systems which provide differential correction signals through ground-based equipment to enhance the positioning and timing performance of satellite navigation systems to increase system reliability, availability, and positioning accuracy.
  • Ground-based augmentation system is mainly operated by continuous operation reference station (Continuously Operating Reference Stations, CORS), data distribution system, user terminal.
  • the CORS station is a ground fixed station, and generates differential correction data according to the satellite signals received in real time, and transmits the data to a specific user through the data distribution system.
  • the user terminal corrects the positioning information based on the obtained difference correction data.
  • the effect of the user terminal directly using the differential data broadcast by the CORS station to improve the positioning accuracy will also be deteriorated.
  • a primary object of the present invention is to improve the problem of improving positioning accuracy by using differential data provided by a plurality of CORS stations as in the case of a network RTK when a differential signal is broadcast by a broadcast technique.
  • the present invention provides a broadcast-based gridded differential data advertisement method, the broadcast-based gridded differential data advertisement method comprising the following steps:
  • the to-be-sent data packet is broadcasted in the form of a broadcast.
  • the method before the generating the data packet to be sent according to the differential data of the virtual station, the method further includes:
  • the differential data of the virtual station is obtained according to the spatial correlation error model.
  • the establishing the spatial correlation error model by using the continuous operation reference station comprises:
  • the obtaining the difference data of the virtual station according to the spatial correlation error model includes:
  • a minimum value is selected from the differential data between the virtual station and each successive running reference station as differential data of the virtual station.
  • the method further includes:
  • the determining the reference point of each mesh interval specifically includes:
  • the generating, according to the differential data of the virtual station, the data packet to be sent specifically:
  • the location information of the virtual station includes:
  • the interval type, interval ID, latitude value, and longitude value of the virtual station is the interval type, interval ID, latitude value, and longitude value of the virtual station.
  • the present invention further provides a broadcast-based gridded differential data distribution server, the broadcast-based gridded differential data distribution server comprising: a memory, a processor, and a memory stored in the memory
  • a broadcast-based gridded differential data advertised program operable on the processor, the broadcast-based gridded differential data advertised program configured to implement a broadcast-based gridded differential data advertised method as described above A step of.
  • the present invention further provides a computer readable storage medium having stored thereon a broadcast-based meshed differential data advertised program, the broadcast-based meshed differential data
  • the steps of the broadcast-based gridded differential datacasting method as described above are implemented when the advertised program is executed by the processor.
  • the broadcast-based gridded differential data broadcast method of the present invention divides a target area into a plurality of grid sections according to a preset radius, and determines a reference point of each grid section, according to the reference point Configuring a virtual station according to the grid interval, generating a to-be-sent data packet according to the differential data of the virtual station, and broadcasting the to-be-sent data packet in a broadcast manner, thereby reducing a baseline distance of a single area and improving positioning accuracy. Thereby selecting the appropriate differential data to achieve the optimal positioning enhancement.
  • FIG. 1 is a schematic structural diagram of a broadcast-based gridded differential data distribution server in a hardware operating environment according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a first embodiment of a broadcast-based gridded differential data distribution method according to the present invention
  • FIG. 3 is a schematic diagram of a format of a grid interval location information in a broadcast-based gridded differential data broadcast method according to the present invention
  • FIG. 4 is a schematic flowchart of a second embodiment of a broadcast-based gridded differential data distribution method according to the present invention.
  • FIG. 5 is a schematic flowchart diagram of a third embodiment of a broadcast-based gridded differential data advertisement method according to the present invention.
  • the solution of the embodiment of the present invention is mainly: dividing a target area into a plurality of grid sections according to a preset radius, and determining a reference point of each grid section, and setting a virtual station for the grid section according to the reference point, Generating a to-be-sent data packet according to the differential data of the virtual station, and broadcasting the to-be-sent data packet in a broadcast manner, reducing a baseline distance of a single area and improving positioning accuracy, thereby selecting appropriate differential data to achieve
  • the optimal positioning enhancement effect improves the problem of improving the positioning accuracy by using differential data provided by multiple CORS stations like the network RTK when the differential signal is broadcast by the broadcast technology.
  • FIG. 1 is a schematic structural diagram of a broadcast-based gridded differential data advertisement server in a hardware operating environment according to an embodiment of the present invention.
  • the broadcast-based gridded differential data distribution server may include a processor 1001, such as a CPU, a communication bus 1002, a user interface 1003, a network interface 1004, and a memory 1005.
  • the communication bus 1002 is used to implement connection communication between these components.
  • the user interface 1003 can include a display, an input unit such as a keyboard, and the optional user interface 1003 can also include a standard wired interface, a wireless interface.
  • the network interface 1004 can optionally include a standard wired interface, a wireless interface (such as a WI-FI interface).
  • the memory 1005 may be a high speed RAM memory or a stable memory (non-volatile) Memory), such as disk storage.
  • the memory 1005 can also optionally be a storage device independent of the aforementioned processor 1001.
  • the broadcast-based gridded differential datacast server structure shown in FIG. 1 does not constitute a limitation of a broadcast-based gridded differential data distribution server, and may include more or more than the illustration. There are few parts, or some parts are combined, or different parts are arranged.
  • a memory 1005 as a computer storage medium may include an operating system, a network communication module, a user interface module, and a broadcast-based gridded differential data advertisement program.
  • the network interface 1004 is mainly used to connect a broadcast-based gridded differential data broadcast port to perform data communication with a broadcast-based gridded differential data broadcast port.
  • the user interface 1003 is mainly used to connect the user terminal and perform data communication with the terminal; the processor 1001 and the memory 1005 in the charging server of the present invention may be disposed in a broadcast-based gridded differential data distributing device, the broadcast-based network
  • the personalized differential data distributing apparatus calls the broadcast-based meshed differential data advertised program stored in the memory 1005 by the processor 1001, and performs the following operations:
  • the to-be-sent data packet is broadcasted in the form of a broadcast.
  • the processor 1001 can call the broadcast-based gridded differential data advertised program stored in the memory 1005, and also perform the following operations:
  • the differential data of the virtual station is obtained according to the spatial correlation error model.
  • the processor 1001 can call the broadcast-based gridded differential data advertised program stored in the memory 1005, and also perform the following operations:
  • the processor 1001 can call the broadcast-based gridded differential data advertised program stored in the memory 1005, and also perform the following operations:
  • a minimum value is selected from the differential data between the virtual station and each successive running reference station as differential data of the virtual station.
  • the processor 1001 can call the broadcast-based gridded differential data advertised program stored in the memory 1005, and also perform the following operations:
  • the processor 1001 can call the broadcast-based gridded differential data advertised program stored in the memory 1005, and also perform the following operations:
  • the processor 1001 can call the broadcast-based gridded differential data advertised program stored in the memory 1005, and also perform the following operations:
  • the target area by dividing the target area into a plurality of grid sections according to the preset radius, determining a reference point of each grid section, and setting a virtual station for the grid section according to the reference point, according to the
  • the differential data of the virtual station generates a data packet to be sent, and the data packet to be transmitted is broadcasted in a broadcast manner, which reduces the baseline distance of a single area and improves the positioning precision, thereby selecting appropriate differential data to achieve optimality.
  • Positioning enhancements by dividing the target area into a plurality of grid sections according to the preset radius, determining a reference point of each grid section, and setting a virtual station for the grid section according to the reference point, according to the
  • the differential data of the virtual station generates a data packet to be sent, and the data packet to be transmitted is broadcasted in a broadcast manner, which reduces the baseline distance of a single area and improves the positioning precision, thereby selecting appropriate differential data to achieve optimality.
  • Positioning enhancements by dividing the target area into
  • FIG. 2 is a schematic flowchart diagram of a first embodiment of a broadcast-based gridded differential data distribution method according to the present invention.
  • the broadcast-based gridded differential data advertisement method comprises the following steps:
  • Step S10 dividing the target area into a plurality of grid sections according to a preset radius
  • the preset radius is the radius of the grid interval, and may be other parameters that can determine the size of the grid interval. This embodiment does not limit this; the target area is the target broadcast station.
  • the range of signals that can be covered by the signal in which there will be multiple continuous running reference stations (Continuously Operating Reference Stations (CORS), where the entire area is divided into preset radii, divided into multiple grid intervals.
  • CORS Continuous Operating Reference Stations
  • the preset radius may be a value that is preset by a person skilled in the art, or may be an estimated value calculated by a large number of experiments or calculations, or may be a value determined by other means. Or a range of data, this embodiment does not limit this;
  • the shape of the mesh interval adopts a regular hexagon, because the regular hexagon can cover the same area with a minimum number of mesh intervals compared to a triangle or a square, and does not overlap like a circular interval.
  • the area avoids the trouble of signal switching; of course, the distribution and shape of the grid interval can be flexibly planned according to actual needs, and each grid interval can be divided into different shape intervals according to the geographical environment, which is not limited in this embodiment;
  • Step S20 determining a reference point of each grid section
  • the determining the reference point of each mesh interval includes:
  • determining the reference point of each grid section by determining whether the grid section has a target broadcast station or continuously running the reference station can more accurately determine the positioning points of each grid section, which can be beneficial for subsequent follow-up. Accurately calculate the difference information, thereby improving the positioning accuracy of the user terminals in each grid interval and improving the user experience.
  • the reference point is a point determined by a latitude and longitude position in a mesh section, and when the mesh section exists the target broadcast station or the continuous operation reference station, the grid interval is The location of the actual site is used as a reference point; when the target broadcast station or the continuous operation reference station does not exist in the mesh section, the center position of the grid section is used as a reference point.
  • the distance between the user terminal and the reference point of the currently located grid interval is less than the distance between each successive running reference station, and is less than the precision attenuation distance, when the user uses the corresponding corresponding to the grid interval.
  • the accuracy will be higher than the differential data given directly by the continuous operation reference station.
  • Step S30 setting a virtual station for the grid interval according to the reference point
  • the virtual station is set according to the determined reference point in each grid interval, and the data of the virtual station can be saved in the database, or can be saved in other similar devices with storage functions to facilitate subsequent Operation, this embodiment does not limit this.
  • the information of the virtual station is stored in the data processing and control center to be processed after the base station data of the reference station is continuously operated, and may be stored in other devices or databases similar to the storage function.
  • the embodiment does not limit this.
  • Step S40 Generate a data packet to be sent according to the differential data of the virtual station.
  • the differential data is a pseudorange correction amount or a position correction amount determined according to information provided by the continuous operation reference station; the to-be-sent data packet includes differential data of the virtual station.
  • the generating, according to the differential data of the virtual station, the data packet to be sent specifically includes:
  • the user terminal can be advantageously recognized when the broadcasted broadcast data packet is received.
  • the source of the data so that the differential data of the current position is quickly calculated and corrected, and the current navigation position is corrected, thereby further improving the accuracy of the navigation and positioning and improving the user experience.
  • calculating the differential data of each virtual station requires utilizing the required information provided by the plurality of consecutive running reference stations, and generally requires at least three consecutive running reference stations to provide required information, that is, real-time differential data.
  • the real-time differential data is a difference between the latitude and longitude position of the continuous operation reference station and the latitude and longitude position of the continuous operation reference station according to the continuous reception reference station.
  • the location information of the virtual station includes: a section type, an interval ID, a latitude value, and a longitude value of the virtual station;
  • the interval type of the virtual station is a type indicating a mesh interval, for example, 00 indicates that the reference point is a continuous operation reference station CORS; 11 indicates that the reference point is a broadcast station; and 01 indicates that the reference point is a grid interval virtual
  • the station can be used to determine the source of the differential data received by the receiving terminal. Therefore, the type of the mesh interval is not limited to the above method, and the type can be divided by other methods.
  • the interval ID is a unique identifier of each grid interval in the coverage of the broadcast station, and may be an identification code, a code or a different icon, or other information for identifying or verifying. This embodiment does not limit this;
  • the longitude value includes a longitude longitude value and a longitude expansion value, wherein the longitude longitude value is (180) . /2 15
  • the longitude extended value further improves the positioning accuracy of the longitude, represented by an unsigned number, and the value is multiplied by (180) . / 2 19
  • the latitude value includes a latitude coarse value and a latitude expansion value, wherein the latitude coarse value is (90 .
  • the latitude extension value and the longitude extension value are used for the parameters used when the positioning accuracy requirement is high.
  • the user can select whether to set the latitude extension.
  • the value and the longitude extension value; the format of the grid interval location information in the broadcast-based gridded differential data advertisement method of the present invention is as shown in FIG. 3, wherein the interval type occupies 2 bits, the interval ID occupies 8 bits, and the latitude coarse value accounts for 16
  • the bit length, the longitude value is 16 bits
  • the latitude extension value is 4 bits
  • the longitude extension value is 4 bits
  • the grid interval position information format is not necessarily limited to the form shown in FIG. 3, and may be other forms. This embodiment does not limit this.
  • Step S50 The data packet to be sent is broadcasted in the form of a broadcast.
  • the broadcast of the to-be-sent data packet in the form of a broadcast may be in a broadcast carrier phase difference technique (Real time).
  • the kinematic, RTK) mode implements the differential enhancement effect of the approximate network RTK mode.
  • the target area is divided into a plurality of grid sections according to a preset radius, and a reference point of each grid section is determined, and a virtual station is set according to the reference point for the grid section, according to the virtual station.
  • the differential data generates a data packet to be sent, and the data packet to be sent is broadcasted in a broadcast manner, which reduces the baseline distance of a single area and improves the positioning accuracy, thereby selecting appropriate differential data to achieve an optimal positioning enhancement effect. .
  • a second embodiment of the broadcast-based gridded differential data advertisement method of the present invention is proposed based on the first embodiment.
  • the method before the step S40, the method further includes the following steps:
  • Step S31 using a continuous operation reference station to establish a spatial correlation error model
  • the establishing a spatial correlation error model by using the continuous operation reference station includes:
  • the spatial error model can be quickly used to find or calculate each grid.
  • the differential data of the virtual station in the interval so that when the user terminal is in a certain grid interval, the corresponding differential data can be quickly calculated, and the current navigation positioning is corrected, thereby improving the positioning accuracy and improving the user experience.
  • the differential data of each virtual station can be calculated by the real-time differential data of the continuous operation reference station in the local area; the continuous operation reference station associated with all the grid intervals in the coverage area of the target broadcast station is referred to as belonging to the local area. Continuous operation reference station;
  • the real-time differential data is obtained and transmitted to the data processing and control center.
  • the data processing and control center comprehensively utilizes the data, and establishes a spatial correlation error model according to the real-time differential data and the latitude and longitude positions of each virtual station;
  • the real-time differential data is stored in other similar devices or databases having storage functions, which is not limited in this embodiment.
  • establishing a spatial correlation error model with the latitude and longitude positions of each virtual station is of course not limited to the method of establishing a model, and may also be a mapping between real-time differential data and latitude and longitude of each virtual station.
  • the differential data of the virtual station can be calculated in other manners, which is not limited in this embodiment.
  • the method further includes:
  • the preset radius of the grid interval is based on the positioning accuracy to meet the planning requirements, and generally does not exceed the differential data to maintain a relatively stable distance; each grid interval can determine its radius according to the actual propagation conditions, in the interference A small area can appropriately expand the radius, and in areas with severe interference, the radius should be appropriately reduced.
  • the real-time differential data uploaded by each successive operation reference station is received; the spatial correlation error model is established according to the real-time differential data and the latitude and longitude positions of each virtual station; and the relationship between each virtual station and the real-time differential data can be quickly obtained. It is convenient to calculate the differential data of the virtual station and improve the efficiency of determining the differential data of the virtual station.
  • step S32 specifically includes the following steps:
  • Step S33 Acquire a latitude and longitude position of the virtual station, and calculate difference data between the virtual station and each successive running reference station by using the spatial correlation error model;
  • the differential data between the virtual station and each successive running reference station can be quickly calculated by the spatial correlation error model, and the differential data is stored as a set.
  • the real-time differential data may of course be stored in other devices or databases having a storage function, which is not limited in this embodiment.
  • Step S34 Select a minimum value from the difference data between the virtual station and each successive running reference station as the differential data of the virtual station.
  • selecting the minimum value from the differential data between the virtual station and each successive running reference station as the differential data of the virtual station is a method for screening differential data, and of course, other screening methods may also be adopted.
  • the differential data of the virtual station is selected by the rule, which is not limited in this embodiment.
  • the data processing and control center after receiving real-time differential data from each successive running reference station, comprehensively uses the real-time differential data to select information of a group of consecutive running reference stations according to the latitude and longitude position information of the virtual station. Establishing the spatial correlation error model, thereby estimating a spatial correlation error between each virtual station and the continuous operation reference station, that is, differential data of each virtual station, and then selecting a minimum value as the differential data of the virtual station .
  • the traditional broadcast RTK can only receive fixed differential data regardless of the location, because the user terminal is in a wide range of the broadcast coverage area, so the accuracy of the navigation and positioning when the user terminal is away from the broadcast station It is inevitable to reduce, and receiving the gridded differential data by the method of the embodiment can greatly improve the positioning accuracy and achieve similar effects to the network RTK; the user terminal can receive the gridded differential data to improve the positioning as follows: Accuracy: First, the user terminal obtains its own approximate location through the ordinary navigation positioning method, and the user terminal establishes a positioning solution equation based on the directly received satellite signal to obtain a preliminary positioning result.
  • the positioning accuracy is generally low.
  • the user terminal receives the digital broadcast signal, and demodulates the encrypted data packet to be transmitted, and obtains the position information of each grid interval after demodulation, and the user terminal calculates the distance between the approximate position and each grid interval.
  • the differential data of the virtual station corresponding to the grid interval is parsed, that is, the differential data of the current virtual station, and finally the differential data of the virtual station is compared to the preliminary The positioning result is corrected to obtain a more accurate navigation positioning result.
  • the difference data between the virtual station and each successive running reference station is calculated by the spatial correlation error model; and between the virtual station and each successive running reference station
  • the minimum value is selected as the differential data of the virtual station in the difference data;
  • the spatial error model can be used to quickly determine the differential data of the virtual station, the speed of determining the differential data of the virtual station is improved, and the accuracy of the differential data is improved, and the appropriate
  • the differential data achieves optimal positioning enhancement.
  • an embodiment of the present invention further provides a computer readable storage medium, where the broadcast-based gridded differential data advertised program is stored, and the broadcast-based gridded differential data advertised program is The processor performs the following operations when it executes:
  • the to-be-sent data packet is broadcasted in the form of a broadcast.
  • broadcast-based meshed differential data advertisement program when executed by the processor, the following operations are also implemented:
  • the differential data of the virtual station is obtained according to the spatial correlation error model.
  • broadcast-based meshed differential data advertisement program when executed by the processor, the following operations are also implemented:
  • broadcast-based meshed differential data advertisement program when executed by the processor, the following operations are also implemented:
  • a minimum value is selected from the differential data between the virtual station and each successive running reference station as differential data of the virtual station.
  • broadcast-based meshed differential data advertisement program when executed by the processor, the following operations are also implemented:
  • broadcast-based meshed differential data advertisement program when executed by the processor, the following operations are also implemented:
  • broadcast-based meshed differential data advertisement program when executed by the processor, the following operations are also implemented:
  • the target area is divided into a plurality of grid sections according to the preset radius, thereby reducing the baseline distance of the single area to improve the positioning accuracy; determining the reference point of each grid section; according to the reference point The grid interval setting virtual station; generating a to-be-sent data packet according to the differential data of the virtual station, thereby selecting appropriate differential data to achieve an optimal positioning enhancement effect.
  • portions of the technical solution of the present invention that contribute substantially or to the prior art may be embodied in the form of a software product stored in a storage medium (such as a ROM/RAM as described above). , a disk, an optical disk, including a number of instructions for causing a terminal device (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • a terminal device which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种基于广播的网格化差分数据播发方法、服务器及存储介质,本发明通过根据预设半径将目标区域划分为若干个网格区间,通过确定各网格区间的基准点,根据所述基准点为所述网格区间设置虚拟站,根据所述虚拟站的差分数据生成待发送数据包,将所述待发送数据包以广播的形式进行播发,减小了单个区域的基线距离并提高了定位精度,从而选择恰当的差分数据以达到最优的定位增强效果。

Description

基于广播的网格化差分数据播发方法、服务器及存储介质
技术领域
本发明涉及通信技术领域,尤其涉及一种基于广播的网格化差分数据播发方法、服务器及存储介质。
背景技术
基于导航卫星的位置服务在各个领域中被广泛应用, 随着用户体验、新兴产业的发展以及规范管理的需求升级,位置服务对定位精度的要求越来越高。
提升卫星导航定位精度的典型方式是建立地基增强***(ground-based augmentation systems,GBAS),通过地基设备提供差分修正信号对卫星导航***的定位和授时性能进行增强,以达到增加***可靠性、可用性、定位精度等目的。地基增强***主要由连续运行参考站(Continuously Operating Reference Stations,CORS)、数据播发***、用户终端组成。CORS站为地面固定站,根据实时接收到的卫星信号产生差分修正数据,通过数据播发***传给特定的用户, 用户终端根据得到的差分修正数据,修正定位信息。但是当用户终端与CORS站之间的距离增大,用户终端直接利用CORS站播发的差分数据来提高定位精度的效果也将变差。
现有北斗导航地基增强***中的数据播发***主要有两种方式:移动通信网络和数字广播技术。基于移动通信网的差分数据播发方法即网络RTK,载波相位差分技术(Real time kinematic,RTK)可根据用户上传的概略位置来生成虚拟参考站技术(Virtual Reference Station ,VRS)从而解决用户终端与CORS站间 的距离(基线距离)所带来的影响。但是移动通信网络存在用户容量有限、并发性低、使用成本高、信号覆盖范围受限等多种限制条件,难以支持大规模应用。基于广播方式的广播RTK,用户容量无限,但由于缺少回传通道,目前只能工作于单基站模式,差分数据的增强效果随基线距离增加而变差。
发明内容
本发明的主要目的在于改善通过广播技术播发差分信号时,因缺少回传通道而无法像网络RTK那样通过利用多个CORS站提供的差分数据提高定位精度的问题。
为实现上述目的,本发明提供一种基于广播的网格化差分数据播发方法,所述基于广播的网格化差分数据播发方法包括以下步骤:
根据预设半径将目标区域划分为若干个网格区间;
确定各网格区间的基准点;
根据所述基准点为所述网格区间设置虚拟站;
根据所述虚拟站的差分数据生成待发送数据包;
将所述待发送数据包以广播的形式进行播发。
优选地,所述根据所述虚拟站的差分数据生成待发送数据包之前,所述方法还包括:
利用连续运行参考站建立空间相关误差模型;
根据所述空间相关误差模型获得所述虚拟站的差分数据。
优选地,所述利用所述连续运行参考站建立空间相关误差模型,具体包括:
接收各连续运行参考站上传的实时差分数据;
根据所述实时差分数据与各虚拟站的经纬度位置建立空间相关误差模型;其中,所述实时差分数据为所述连续运行参考站根据连续接收导航定位信号的经纬度位置与所述连续运行参考站的经纬度位置进行比对后的差值。
优选地,所述根据所述空间相关误差模型获得所述虚拟站的差分数据,具体包括:
获取所述虚拟站的经纬度位置,通过所述空间相关误差模型计算出所述虚拟站与各连续运行参考站之间的差分数据;
从所述虚拟站与各连续运行参考站之间的差分数据中选取最小值作为所述虚拟站的差分数据。
优选地,所述根据所述空间相关误差模型获得所述虚拟站的差分数据之后,所述方法还包括:
将所述虚拟站的差分数据与所述预设半径进行比对,当所述预设半径大于所述虚拟站的差分数据时,对所述预设半径进行调整,使所述预设半径不超过所述虚拟站的差分数据。
优选地,所述确定各网格区间的基准点,具体包括:
判断所述网格区间是否存在目标广播站或连续运行参考站,当所述网格区间存在所述目标广播站或所述连续运行参考站时,将所述网格区间内的实际站点所处位置作为基准点;当所述网格区间不存在所述目标广播站或所述连续运行参考站时,将所述网格区间的中心位置作为基准点。
优选地,所述根据所述虚拟站的差分数据生成待发送数据包,具体包括:
接收所述虚拟站的差分数据和所述虚拟站的位置信息,根据所述虚拟站的差分数据和所述虚拟站的位置信息生成所述待发送数据包。
优选地,所述虚拟站的位置信息包括:
所述虚拟站的区间类型、区间ID、纬度值和经度值。
此外,为实现上述目的,本发明还提出一种基于广播的网格化差分数据播发服务器,所述基于广播的网格化差分数据播发服务器包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的基于广播的网格化差分数据播发程序,所述基于广播的网格化差分数据播发程序配置为实现如上文所述的基于广播的网格化差分数据播发方法的步骤。
此外,为实现上述目的,本发明还提出一种计算机可读存储介质,所述计算机可读存储介质上存储有基于广播的网格化差分数据播发程序,所述基于广播的网格化差分数据播发程序被处理器执行时实现如上文所述的基于广播的网格化差分数据播发方法的步骤。
本发明提出的基于广播的网格化差分数据播发方法,本发明通过根据预设半径将目标区域划分为若干个网格区间,通过确定各网格区间的基准点,根据所述基准点为所述网格区间设置虚拟站,根据所述虚拟站的差分数据生成待发送数据包,将所述待发送数据包以广播的形式进行播发,减小了单个区域的基线距离并提高了定位精度,从而选择恰当的差分数据以达到最优的定位增强效果。
附图说明
图1为本发明实施例方案涉及的硬件运行环境的基于广播的网格化差分数据播发服务器结构示意图;
图2为本发明基于广播的网格化差分数据播发方法第一实施例的流程示意图;
图3为本发明基于广播的网格化差分数据播发方法中网格区间位置信息格式示意图;
图4为本发明基于广播的网格化差分数据播发方法第二实施例的流程示意图;
图5为本发明基于广播的网格化差分数据播发方法第三实施例的流程示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例的解决方案主要是:根据预设半径将目标区域划分为若干个网格区间,通过确定各网格区间的基准点,根据所述基准点为所述网格区间设置虚拟站,根据所述虚拟站的差分数据生成待发送数据包,将所述待发送数据包以广播的形式进行播发,减小了单个区域的基线距离并提高了定位精度,从而选择恰当的差分数据以达到最优的定位增强效果,改善了当通过广播技术播发差分信号时,因缺少回传通道而无法像网络RTK那样通过利用多个CORS站提供的差分数据提高定位精度的问题。
参照图1,图1为本发明实施例方案涉及的硬件运行环境的基于广播的网格化差分数据播发服务器结构示意图。
如图1所示,该基于广播的网格化差分数据播发服务器可以包括:处理器1001,例如CPU,通信总线1002、用户接口1003,网络接口1004,存储器1005。其中,通信总线1002用于实现这些组件之间的连接通信。用户接口1003可以包括显示屏(Display)、输入单元比如键盘(Keyboard),可选用户接口1003还可以包括标准的有线接口、无线接口。网络接口1004可选的可以包括标准的有线接口、无线接口(如WI-FI接口)。存储器1005可以是高速RAM存储器,也可以是稳定的存储器(non-volatile memory),例如磁盘存储器。存储器1005可选的还可以是独立于前述处理器1001的存储装置。
本领域技术人员可以理解,图1中示出的基于广播的网格化差分数据播发服务器结构并不构成对基于广播的网格化差分数据播发服务器的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图1所示,作为一种计算机存储介质的存储器1005中可以包括操作***、网络通信模块、用户接口模块以及基于广播的网格化差分数据播发程序。
在图1所示的基于广播的网格化差分数据播发服务器中,网络接口1004主要用于连接基于广播的网格化差分数据播发口,与基于广播的网格化差分数据播发口进行数据通信;用户接口1003主要用于连接用户终端,与终端进行数据通信;本发明收费服务器中的处理器1001、存储器1005可以设置在基于广播的网格化差分数据播发装置中,所述基于广播的网格化差分数据播发装置通过处理器1001调用存储器1005中存储的基于广播的网格化差分数据播发程序,并执行以下操作:
根据预设半径将目标区域划分为若干个网格区间;
确定各网格区间的基准点;
根据所述基准点为所述网格区间设置虚拟站;
根据所述虚拟站的差分数据生成待发送数据包;
将所述待发送数据包以广播的形式进行播发。
进一步地,处理器1001可以调用存储器1005中存储的基于广播的网格化差分数据播发程序,还执行以下操作:
利用连续运行参考站建立空间相关误差模型;
根据所述空间相关误差模型获得所述虚拟站的差分数据。
进一步地,处理器1001可以调用存储器1005中存储的基于广播的网格化差分数据播发程序,还执行以下操作:
接收各连续运行参考站上传的实时差分数据;
根据所述实时差分数据与各虚拟站的经纬度位置建立空间相关误差模型;其中,所述实时差分数据为所述连续运行参考站根据连续接收导航定位信号的经纬度位置与所述连续运行参考站的经纬度位置进行比对后的差值。
进一步地,处理器1001可以调用存储器1005中存储的基于广播的网格化差分数据播发程序,还执行以下操作:
获取所述虚拟站的经纬度位置,通过所述空间相关误差模型计算出所述虚拟站与各连续运行参考站之间的差分数据;
从所述虚拟站与各连续运行参考站之间的差分数据中选取最小值作为所述虚拟站的差分数据。
进一步地,处理器1001可以调用存储器1005中存储的基于广播的网格化差分数据播发程序,还执行以下操作:
将所述虚拟站的差分数据与所述预设半径进行比对,当所述预设半径大于所述虚拟站的差分数据时,对所述预设半径进行调整,使所述预设半径不超过所述虚拟站的差分数据。
进一步地,处理器1001可以调用存储器1005中存储的基于广播的网格化差分数据播发程序,还执行以下操作:
判断所述网格区间是否存在目标广播站或连续运行参考站,当所述网格区间存在所述目标广播站或所述连续运行参考站时,将所述网格区间内的实际站点所处位置作为基准点;当所述网格区间不存在所述目标广播站或所述连续运行参考站时,将所述网格区间的中心位置作为基准点。
进一步地,处理器1001可以调用存储器1005中存储的基于广播的网格化差分数据播发程序,还执行以下操作:
接收所述虚拟站的差分数据和所述虚拟站的位置信息,根据所述虚拟站的差分数据和所述虚拟站的位置信息生成所述待发送数据包。
本实施例通过上述方案,通过根据预设半径将目标区域划分为若干个网格区间,通过确定各网格区间的基准点,根据所述基准点为所述网格区间设置虚拟站,根据所述虚拟站的差分数据生成待发送数据包,将所述待发送数据包以广播的形式进行播发,减小了单个区域的基线距离并提高了定位精度,从而选择恰当的差分数据以达到最优的定位增强效果。
基于上述硬件结构,提出本发明基于广播的网格化差分数据播发方法实施例。
参照图2,图2为本发明基于广播的网格化差分数据播发方法第一实施例的流程示意图。
在第一实施例中,所述基于广播的网格化差分数据播发方法包括以下步骤:
步骤S10、根据预设半径将目标区域划分为若干个网格区间;
需要说明的是,所述预设半径为所述网格区间的半径,当然也可以是其他能够确定网格区间大小的参数,本实施例对此不加以限制;所述目标区域为目标广播站的信号能够覆盖到的范围的区域,在这个区域内会存在多个连续运行参考站(Continuously Operating Reference Stations,CORS),整个区域范围在哪找预设半径进行划分,划分成多个网格区间。
可以理解的是,所述预设半径可以是本领域技术人员随意地进行预先设定的值,也可以是通过大量实验或计算推算出的一个预估值,还可以是通过其他方式确定的值或者一个数据范围,本实施例对此不加以限制;
在具体实现中,网格区间的形状采用正六边形,因为正六边形相比于三角形或正方形,可以用最少量的网格区间覆盖相同面积的区域,而且不会像圆形区间那样产生交叠区域,避免信号切换的麻烦;当然网格区间的分布和形状可以根据实际需求来进行灵活规划,每个网格区间可以根据地理环境划分为不同的形状区间,本实施例对此不加以限制;
步骤S20、确定各网格区间的基准点;
进一步的,所述确定各网格区间的基准点,具体包括:
判断所述网格区间是否存在目标广播站或连续运行参考站,当所述网格区间存在所述目标广播站或所述连续运行参考站时,将所述网格区间内的实际站点所处位置作为基准点;当所述网格区间不存在所述目标广播站或所述连续运行参考站时,将所述网格区间的中心位置作为基准点。
可以理解的是,通过判断所述网格区间是否存在目标广播站或连续运行参考站来确定各网格区间的基准点,能够更加准确的确定各网格区间的定位点,能够有利于后续更加精确的计算差分信息,从而提高各网格区间内的用户终端的定位精度,提升用户体验。
需要说明的是,所述基准点为网格区间中的经纬度位置确定的点,当所述网格区间存在所述目标广播站或所述连续运行参考站时,将所述网格区间内的实际站点所处位置作为基准点;当所述网格区间不存在所述目标广播站或所述连续运行参考站时,将所述网格区间的中心位置作为基准点。
在具体实现中,用户终端与当前所处的网格区间的基准点之间的距离小于到各连续运行参考站之间的距离,并且小于精度衰减距离,当用户使用该网格区间所对应的差分数据来修正定位结果时,精度将高于直接使用连续运行参考站给出的差分数据。
步骤S30、根据所述基准点为所述网格区间设置虚拟站;
可以理解的是,根据每个网格区间内确定的基准点设置虚拟站,虚拟站的数据可以在数据库中进行保存,或者也可以在其他类似的具有存储功能的装置中进行保存,以方便后续操作,本实施例对此不加以限制。
在具体实现中,将虚拟站的信息存储在数据处理与控制中心中以待连续运行参考站的基准站数据收集后进行处理,当然也可以存储在其他类似具有存储功能的装置或数据库中,本实施例对此不加以限制。
步骤S40、根据所述虚拟站的差分数据生成待发送数据包;
可以理解的是,所述差分数据为根据所述连续运行参考站提供的信息确定的伪距修正量或位置修正量;所述待发送数据包包含所述虚拟站的差分数据。
进一步的,所述根据所述虚拟站的差分数据生成待发送数据包,具体包括:
接收所述虚拟站的差分数据和所述虚拟站的位置信息,根据所述虚拟站的差分数据和所述虚拟站的位置信息生成所述待发送数据包。
可以理解的是,通过根据所述虚拟站的差分数据和所述虚拟站的位置信息生成所述待发送数据包,能够有利于用户终端在收到广播播发的数据包时,能够快速识别出差分数据的来源,从而快速计算解析出当前位置的差分数据,并对当前导航定位进行校正,从而进一步提高导航定位的精确度,提升用户体验。
在具体实现中,计算每个虚拟站的差分数据需要利用多个连续运行参考站提供的所需信息,一般需要至少3个连续运行参考站提供的所需信息即实时差分数据,本实施例对此不加以限制。所述实时差分数据为所述连续运行参考站根据连续接收导航定位信号的经纬度位置与所述连续运行参考站的经纬度位置进行比对后的差值。
需要说明的是,所述虚拟站的位置信息包括:所述虚拟站的区间类型、区间ID、纬度值和经度值;
应当理解的是,所述虚拟站的区间类型为表示网格区间的类型,例如,00表示基准点为连续运行参考站CORS;11表示基准点为广播站;01表示基准点为网格区间虚拟站,这样进行区间类型划分后能够有利于快速确定接收终端识别接收到的差分数据的来源;当然网格区间的类型划分方式也不仅仅局限于上述方式,也可以通过其他方式进行类型划分,本实施例对此不加以限制;区间ID为广播站覆盖范围内每个网格区间的唯一标识,可以为标识码,还可以是代码或者不同的图标,还可以是其他起标识或验证作用的信息,本实施例对此不加以限制;
应当理解的是,所述经度值包括经度粗值和经度扩展值,其中所述经度粗值为以(180 /2 15 )为单位表示的经度值,正数表示东经,负数表示西经;所述经度扩展值为进一步提高经度的定位精度,用无符号数表示,取值乘以(180 / 219 )之后与所述经度粗值相加得到更加准确的经度值;所述纬度值包括纬度粗值和纬度扩展值,其中所述纬度粗值为以(90/ 215)为单位表示的纬度值,正数表示北纬,负数表示南纬;所述纬度扩展值为进一步提高经度的定位精度,用无符号数表示,取值乘以(90 / 219)之后与所述纬度粗值相加得到更加准确的纬度值。
在具体实现中,纬度扩展值和经度扩展值是为了应用于定位精度要求较高时利用到的参数,用户在进行普通的定位需求对精度要求没那么精细时,可以自行选择设置是否需要纬度扩展值和经度扩展值;本发明基于广播的网格化差分数据播发方法中网格区间位置信息格式示意图如图3所示,其中区间类型占2比特,区间ID占8比特,纬度粗值占16比特,经度粗值占16比特,纬度扩展值占4比特,经度扩展值占4比特;当然所述网格区间位置信息格式不一定局限于图3所示的形式,还可以是其他形式的格式,本实施例对此不加以限制。
步骤S50、将所述待发送数据包以广播的形式进行播发。
可以理解的是,将所述待发送数据包以广播的形式进行播发可以在广播载波相位差分技术(Real time kinematic,RTK)模式下实现近似网络RTK模式的差分增强效果。
本实施例通过根据预设半径将目标区域划分为若干个网格区间,通过确定各网格区间的基准点,根据所述基准点为所述网格区间设置虚拟站,根据所述虚拟站的差分数据生成待发送数据包,将所述待发送数据包以广播的形式进行播发,减小了单个区域的基线距离并提高了定位精度,从而选择恰当的差分数据以达到最优的定位增强效果。
进一步地,如图4所示,基于第一实施例提出本发明基于广播的网格化差分数据播发方法第二实施例,在本实施例中,所述步骤S40之前,还包括步骤:
步骤S31、利用连续运行参考站建立空间相关误差模型;
进一步地,所述利用连续运行参考站建立空间相关误差模型,具体包括:
接收各连续运行参考站上传的实时差分数据;
根据所述实时差分数据与各虚拟站的经纬度位置建立空间相关误差模型;其中,所述实时差分数据为所述连续运行参考站根据连续接收导航定位信号的经纬度位置与所述连续运行参考站的经纬度位置进行比对后的差值。
可以理解的是,通过接收各连续运行参考站上传的实时差分数据,根据所述实时差分数据与各虚拟站的经纬度位置建立空间相关误差模型,能够快速通过空间误差模型查找或计算出各网格区间中虚拟站的差分数据,从而当用户终端处于某一网格区间时,能快速计算出相应的差分数据,对当前导航定位进行校正,进而提高定位精度,提升用户体验。
需要说明的是,通过本区域的连续运行参考站的实时差分数据能够计算各虚拟站的差分数据;与目标广播站覆盖区域内所有网格区间相互关联的连续运行参考站称为归属于本区域的连续运行参考站;
在具体实现中,所述实时差分数据获得后会传送给数据处理与控制中心。所述数据处理与控制中心在收到来自各个连续运行参考站的数据后,综合利用这些数据,根据所述实时差分数据与各虚拟站的经纬度位置建立空间相关误差模型;当然也可以将所述实时差分数据存储在其他类似具有存储功能的装置或数据库中,本实施例对此不加以限制。
S32、根据所述空间相关误差模型获得所述虚拟站的差分数据。
可以理解的是,获取所述实时差分数据后与各虚拟站的经纬度位置建立空间相关误差模型,当然不局限于建立模型这一种方式,也可以是建立实时差分数据与各虚拟站经纬度的映射关系列表,还可以是以其他的方式计算获得虚拟站的差分数据,本实施例对此不加以限制。
进一步地,所述根据所述空间相关误差模型获得所述虚拟站的差分数据之后,所述方法还包括:
将所述虚拟站的差分数据与所述预设半径进行比对,当所述预设半径大于所述虚拟站的差分数据时,对所述预设半径进行调整,使所述预设半径不超过所述虚拟站的差分数据。
需要说明的是,通过将所述虚拟站的差分数据与所述预设半径进行比对,当所述预设半径大于所述虚拟站的差分数据时,对所述预设半径进行调整,能够及时地、灵活地调整各网格区间中的虚拟站的差分数据,选择出比较合适的虚拟站的差分数据的取值范围,从而选出最恰当的虚拟站的差分数据对处于网格区间内的用户终端的导航定位进行比较准确的校正,从而提高定位精度,达到最优的定位增强效果,提升用户体验。
可以理解的是,网格区间的预设半径以定位精度满足规划需求为准,一般不超过差分数据保持相对稳定的距离;每个网格区间可依实际传播条件来确定其半径大小,在干扰少的地区可以适当扩大半径大小,而在干扰严重的地区则应适当减小半径大小。
本实施例中,通过利用接收各连续运行参考站上传的实时差分数据;根据所述实时差分数据与各虚拟站的经纬度位置建立空间相关误差模型;能够快速获取各虚拟站与实时差分数据的关系,方便后续计算虚拟站差分数据,提高了确定虚拟站差分数据的效率。
进一步地,如图5所示,基于第二实施例提出本发明基于广播的网格化差分数据播发方法第三实施例,在本实施例中,所述步骤S32具体包括步骤:
步骤S33、获取所述虚拟站的经纬度位置,通过所述空间相关误差模型计算出所述虚拟站与各连续运行参考站之间的差分数据;
可以理解的是,通过输入当前虚拟站的经纬度位置,可以快速通过所述空间相关误差模型计算出所述虚拟站与各连续运行参考站之间的差分数据,将这些差分数据作为一个集合存储在数据处理与控制中心中,当然也可以将所述实时差分数据存储在其他类似具有存储功能的装置或数据库中,本实施例对此不加以限制。
步骤S34、从所述虚拟站与各连续运行参考站之间的差分数据中选取最小值作为所述虚拟站的差分数据。
应当理解的是,从所述虚拟站与各连续运行参考站之间的差分数据中选取最小值作为所述虚拟站的差分数据是一种筛选差分数据的方式,当然也可以是通过其他筛选方式或者规则选出所述虚拟站的差分数据,本实施例对此不加以限制。
在具体实现中,数据处理与控制中心在收到来自各个连续运行参考站的实时差分数据后,综合利用所述实时差分数据根据所述虚拟站的经纬度位置信息选取一组连续运行参考站的信息建立所述空间相关误差模型,从而估计出每个虚拟站与所述连续运行参考站之间的空间相关误差即各个虚拟站的差分数据,再从中选取出最小值作为所述虚拟站的差分数据。
需要说明的是,传统广播RTK由于用户终端处于广播覆盖区域的大范围内,无论位置在哪里都只能接收到固定不变的差分数据,因此当用户终端在远离广播站时,导航定位的精度难免降低,而通过本实施例的方法接收网格化的差分数据,则可以大大提高定位精度,达到与网络RTK类似的效果;用户终端可以按照如下的方式来接收网格化差分数据来提高定位精度:首先,用户终端通过普通导航定位方法得到的自身的概略位置,用户终端根据直接接收到的卫星信号建立定位解算方程得到初步的定位结果。由于受卫星星历误差、卫星钟差、电离层误差和对流层误差等影响,其定位精度一般比较低。然后,用户终端接收数字广播信号,并解调加密后的待发送数据包,解调后获得每个网格区间的位置信息,用户终端通过计算所述概略位置与每个网格区间的距离,搜索最小值,并找到其对应的网格编号后,解析出该网格区间对应的虚拟站的差分数据,即当前虚拟站的差分数据,最后根据但求虚拟站的差分数据对所述初步的定位结果进行修正,以获得更高精度的导航定位结果。
本实施例通过获取虚拟站的经纬度位置,通过所述空间相关误差模型计算出所述虚拟站与各连续运行参考站之间的差分数据;从所述虚拟站与各连续运行参考站之间的差分数据中选取最小值作为所述虚拟站的差分数据;能够利用空间误差模型快速确定虚拟站的差分数据,提高了确定虚拟站差分数据的速度,并且提升了差分数据的精确度,能够以适当的差分数据达到最优的定位增强效果。
此外,本发明实施例还提出一种计算机可读存储介质,所述计算机可读存储介质上存储有基于广播的网格化差分数据播发程序,所述基于广播的网格化差分数据播发程序被处理器执行时实现如下操作:
根据预设半径将目标区域划分为若干个网格区间;
确定各网格区间的基准点;
根据所述基准点为所述网格区间设置虚拟站;
根据所述虚拟站的差分数据生成待发送数据包;
将所述待发送数据包以广播的形式进行播发。
进一步地,所述基于广播的网格化差分数据播发程序被处理器执行时还实现如下操作:
利用连续运行参考站建立空间相关误差模型;
根据所述空间相关误差模型获得所述虚拟站的差分数据。
进一步地,所述基于广播的网格化差分数据播发程序被处理器执行时还实现如下操作:
接收各连续运行参考站上传的实时差分数据;
根据所述实时差分数据与各虚拟站的经纬度位置建立空间相关误差模型;其中,所述实时差分数据为所述连续运行参考站根据连续接收导航定位信号的经纬度位置与所述连续运行参考站的经纬度位置进行比对后的差值。
进一步地,所述基于广播的网格化差分数据播发程序被处理器执行时还实现如下操作:
获取虚拟站的经纬度位置,通过所述空间相关误差模型计算出所述虚拟站与各连续运行参考站之间的差分数据;
从所述虚拟站与各连续运行参考站之间的差分数据中选取最小值作为所述虚拟站的差分数据。
进一步地,所述基于广播的网格化差分数据播发程序被处理器执行时还实现如下操作:
将所述虚拟站的差分数据与所述预设半径进行比对,当所述预设半径大于所述虚拟站的差分数据时,对所述预设半径进行调整,使所述预设半径不超过所述虚拟站的差分数据。
进一步地,所述基于广播的网格化差分数据播发程序被处理器执行时还实现如下操作:
判断所述网格区间是否存在目标广播站或连续运行参考站,当所述网格区间存在所述目标广播站或所述连续运行参考站时,将所述网格区间内的实际站点所处位置作为基准点;当所述网格区间不存在所述目标广播站或所述连续运行参考站时,将所述网格区间的中心位置作为基准点。
进一步地,所述基于广播的网格化差分数据播发程序被处理器执行时还实现如下操作:
接收所述虚拟站的差分数据和所述虚拟站的位置信息,根据所述虚拟站的差分数据和所述虚拟站的位置信息生成所述待发送数据包。
本实施例通过根据预设半径将目标区域划分为若干个网格区间,从而减小了单个区域的基线距离提高了定位精度;通过确定各网格区间的基准点;根据所述基准点为所述网格区间设置虚拟站;根据所述虚拟站的差分数据生成待发送数据包,从而选择恰当的差分数据以达到最优的定位增强效果。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者***不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者***所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者***中还存在另外的相同要素。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (15)

  1. 一种基于广播的网格化差分数据播发方法,其特征在于,所述方法包括:
    根据预设半径将目标区域划分为若干个网格区间;
    确定各网格区间的基准点;
    根据所述基准点为所述网格区间设置虚拟站;
    根据所述虚拟站的差分数据生成待发送数据包;
    将所述待发送数据包以广播的形式进行播发。
  2. 如权利要求1所述的方法,其特征在于,所述根据所述虚拟站的差分数据生成待发送数据包之前,所述方法还包括:
    利用连续运行参考站建立空间相关误差模型;
    根据所述空间相关误差模型获得所述虚拟站的差分数据。
  3. 如权利要求2所述的方法,其特征在于,所述利用所述连续运行参考站建立空间相关误差模型,具体包括:
    接收各连续运行参考站上传的实时差分数据;
    根据所述实时差分数据与各虚拟站的经纬度位置建立空间相关误差模型;其中,所述实时差分数据为所述连续运行参考站根据连续接收导航定位信号的经纬度位置与所述连续运行参考站的经纬度位置进行比对后的差值。
  4. 如权利要求3所述的方法,其特征在于,所述根据所述空间相关误差模型获得所述虚拟站的差分数据,具体包括:
    获取所述虚拟站的经纬度位置,通过所述空间相关误差模型计算出所述虚拟站与各连续运行参考站之间的差分数据;
    从所述虚拟站与各连续运行参考站之间的差分数据中选取最小值作为所述虚拟站的差分数据。
  5. 如权利要求2所述的方法,其特征在于,所述根据所述空间相关误差模型获得所述虚拟站的差分数据之后,所述方法还包括:
    将所述虚拟站的差分数据与所述预设半径进行比对,当所述预设半径大于所述虚拟站的差分数据时,对所述预设半径进行调整,使所述预设半径不超过所述虚拟站的差分数据。
  6. 如权利要求1所述的方法,其特征在于,所述确定各网格区间的基准点,具体包括:
    判断所述网格区间是否存在目标广播站或连续运行参考站,当所述网格区间存在所述目标广播站或所述连续运行参考站时,将所述网格区间内的实际站点所处位置作为基准点;当所述网格区间不存在所述目标广播站或所述连续运行参考站时,将所述网格区间的中心位置作为基准点。
  7. 如权利要求1所述的方法,其特征在于,所述根据所述虚拟站的差分数据生成待发送数据包,具体包括:
    接收所述虚拟站的差分数据和所述虚拟站的位置信息,根据所述虚拟站的差分数据和所述虚拟站的位置信息生成所述待发送数据包。
  8. 如权利要求7所述的方法,其特征在于,所述虚拟站的位置信息包括:
    所述虚拟站的区间类型、区间ID、纬度值和经度值。
  9. 如权利要求8所述的方法,其特征在于,所述纬度值包括纬度粗值和纬度扩展值,所述经度值包括经度粗值和经度扩展值。
  10. 如权利要求2所述的方法,其特征在于,所述确定各网格区间的基准点,具体包括:
    判断所述网格区间是否存在目标广播站或连续运行参考站,当所述网格区间存在所述目标广播站或所述连续运行参考站时,将所述网格区间内的实际站点所处位置作为基准点;当所述网格区间不存在所述目标广播站或所述连续运行参考站时,将所述网格区间的中心位置作为基准点。
  11. 如权利要求1所述的方法,其特征在于,所述网格区间的形状采用正六边形。
  12. 如权利要求2所述的方法,其特征在于,所述根据所述虚拟站的差分数据生成待发送数据包,具体包括:
    接收所述虚拟站的差分数据和所述虚拟站的位置信息,根据所述虚拟站的差分数据和所述虚拟站的位置信息生成所述待发送数据包。
  13. 如权利要求2所述的方法,其特征在于,所述网格区间的形状采用正六边形。
  14. 一种基于广播的网格化差分数据播发服务器,其特征在于,所述基于广播的网格化差分数据播发服务器包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的基于广播的网格化差分数据播发程序,所述基于广播的网格化差分数据播发程序配置为实现如权利要求1所述的基于广播的网格化差分数据播发方法的步骤。
  15. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有基于广播的网格化差分数据播发程序,所述基于广播的网格化差分数据播发程序被处理器执行时实现如权利要求1所述的基于广播的网格化差分数据播发方法的步骤。
PCT/CN2018/072277 2017-07-07 2018-01-11 基于广播的网格化差分数据播发方法、服务器及存储介质 WO2019007022A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710555501.XA CN107426695B (zh) 2017-07-07 2017-07-07 基于广播的网格化差分数据播发方法、服务器及存储介质
CN201710555501.X 2017-07-07

Publications (1)

Publication Number Publication Date
WO2019007022A1 true WO2019007022A1 (zh) 2019-01-10

Family

ID=60427500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/072277 WO2019007022A1 (zh) 2017-07-07 2018-01-11 基于广播的网格化差分数据播发方法、服务器及存储介质

Country Status (2)

Country Link
CN (1) CN107426695B (zh)
WO (1) WO2019007022A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107426695B (zh) * 2017-07-07 2020-03-20 深圳思凯微电子有限公司 基于广播的网格化差分数据播发方法、服务器及存储介质
CN109899932B (zh) * 2017-12-11 2021-03-02 香港城市大学深圳研究院 空调的控制方法和装置
CN109525936B (zh) * 2018-01-15 2024-03-19 四川中电昆辰科技有限公司 多频点位置数据回传***
CN108490459B (zh) * 2018-02-12 2022-08-05 千寻位置网络有限公司 精度与风险均衡应用于gnss位置服务的方法及***
CN110488332B (zh) * 2018-05-14 2021-09-10 广州市中海达测绘仪器有限公司 基于网络rtk技术的定位信息处理方法和装置
CN108897025B (zh) * 2018-05-15 2021-11-26 艾欧创想智能科技(武汉)有限公司 高精度定位方法、装置、终端设备及计算机可读存储介质
CN108710676A (zh) * 2018-05-17 2018-10-26 武汉导航与位置服务工业技术研究院有限责任公司 面向大规模分布式用户的高精度位置播发服务装置和方法
CN108802765B (zh) * 2018-07-03 2022-05-10 千寻位置网络有限公司 网格信息传输的控制方法及***、定位方法及终端
CN111277945A (zh) * 2018-11-20 2020-06-12 北京华信泰科技股份有限公司 一种rtk定位方法及装置
CN111273324A (zh) * 2018-12-05 2020-06-12 深圳华大北斗科技有限公司 卫星定位增强方法、装置、计算机设备和存储介质
CN111045051B (zh) * 2019-07-10 2022-02-08 广东星舆科技有限公司 Vrs信息的生成方法、提供定位服务的方法、定位服务装置
CN110545519A (zh) * 2019-10-15 2019-12-06 和芯星通科技(北京)有限公司 网络rtk服务方法、网络rtk服务器、通信基站和存储介质
CN112764072B (zh) * 2019-11-01 2022-12-16 千寻位置网络有限公司 差分数据播发方法及装置、服务终端及存储介质
CN112765759B (zh) * 2019-11-01 2023-03-24 千寻位置网络有限公司 基准站速度场处理方法及装置
CN111641926B (zh) * 2020-05-19 2021-11-16 深圳思凯微电子有限公司 广播信号覆盖区的网格划分方法、服务器及存储介质
CN111427074B (zh) * 2020-06-10 2020-10-09 天津七一二通信广播股份有限公司 一种基于gbas的高可靠性时统服务设备
CN111781618B (zh) * 2020-07-08 2022-10-18 深圳思凯微电子有限公司 卫星导航差分数据接收方法、装置、设备及存储介质
CN111817807A (zh) * 2020-07-21 2020-10-23 深圳思凯微电子有限公司 基于广播的差分数据播发方法、装置、设备及存储介质
CN114236583B (zh) * 2021-12-23 2022-10-11 国汽大有时空科技(安庆)有限公司 一种空间地理范围编码方法及全球范围内的gnss差分增强定位方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011203100A (ja) * 2010-03-25 2011-10-13 Electronic Navigation Research Institute 衛星航法システムにおける測位誤差の補正方法及びその装置。
CN106569239A (zh) * 2015-10-09 2017-04-19 唐颖哲 一种广播式网络rtk定位技术
CN106855632A (zh) * 2016-12-30 2017-06-16 广州市中海达测绘仪器有限公司 一种广播式vrs定位方法及***
CN107426695A (zh) * 2017-07-07 2017-12-01 深圳思凯微电子有限公司 基于广播的网格化差分数据播发方法、服务器及存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106707317B (zh) * 2016-12-01 2024-03-29 上海埃威航空电子有限公司 区域位置差分定位方法及***

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011203100A (ja) * 2010-03-25 2011-10-13 Electronic Navigation Research Institute 衛星航法システムにおける測位誤差の補正方法及びその装置。
CN106569239A (zh) * 2015-10-09 2017-04-19 唐颖哲 一种广播式网络rtk定位技术
CN106855632A (zh) * 2016-12-30 2017-06-16 广州市中海达测绘仪器有限公司 一种广播式vrs定位方法及***
CN107426695A (zh) * 2017-07-07 2017-12-01 深圳思凯微电子有限公司 基于广播的网格化差分数据播发方法、服务器及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, HAIRUI ET AL.: "Application Status and Outlook of CORS System", TECHNICAL FEATURES, 31 January 2010 (2010-01-31) *

Also Published As

Publication number Publication date
CN107426695B (zh) 2020-03-20
CN107426695A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
WO2019007022A1 (zh) 基于广播的网格化差分数据播发方法、服务器及存储介质
WO2019015232A1 (zh) 汇款处理方法、***及计算机可读存储介质
WO2016163803A1 (ko) 무선 통신 시스템에서 위치 측정을 위한 장치 및 방법
WO2014094431A1 (zh) 演进通信***的网络覆盖规划方法及装置
WO2017082632A1 (ko) 빔포밍이 적용되는 통신 시스템에서 복수 개의 기지국들에 의한 협력 통신 제공 방법 및 장치
WO2018223607A1 (zh) 电视终端及hdr图像转为sdr的方法和计算机可读存储介质
WO2017143692A1 (zh) 智能电视及其语音控制方法
WO2015158297A1 (en) Method, apparatus, and system for controlling delivery task in social networking platform
WO2019090966A1 (zh) 双通道卫星导航差分数据接收方法、接收机及存储介质
WO2020046034A1 (en) Method and apparatus for using softsim mobile data
WO2015110014A1 (en) Method, apparatus, and terminal device for determining user activity range
WO2019114269A1 (zh) 一种节目续播方法、电视设备及计算机可读存储介质
WO2019071762A1 (zh) 楼层位置定位方法、***、服务器和计算机可读存储介质
WO2019000801A1 (zh) 数据同步方法、装置、设备及计算机可读存储介质
WO2017088438A1 (zh) 无线路由器及其控制方法
WO2018233221A1 (zh) 多窗口声音输出方法、电视机以及计算机可读存储介质
WO2019071775A1 (zh) 节点定位方法、服务器、***及计算机可读存储介质
WO2019051891A1 (zh) 基于日程的信息推送方法、装置和计算机可读存储介质
WO2019051903A1 (zh) 终端控制方法、装置及计算机可读存储介质
WO2016127458A1 (zh) 改进的基于语义词典的词语相似度计算方法和装置
WO2020085870A1 (en) Method of detecting multipath state of global navigation satellite system signal and electronic device supporting the same
EP3766041A1 (en) Method of processing image, computer-readable storage medium recording method, and apparatus for processing image
WO2018032679A1 (zh) 电视定时开关机的设置方法和装置
WO2016107249A1 (zh) ***搜台的方法和装置
WO2018090461A1 (zh) 多声道无线音箱之间数据同步的方法及***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828142

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18828142

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18828142

Country of ref document: EP

Kind code of ref document: A1