WO2019004438A1 - Analysis kit and analysis method - Google Patents

Analysis kit and analysis method Download PDF

Info

Publication number
WO2019004438A1
WO2019004438A1 PCT/JP2018/024844 JP2018024844W WO2019004438A1 WO 2019004438 A1 WO2019004438 A1 WO 2019004438A1 JP 2018024844 W JP2018024844 W JP 2018024844W WO 2019004438 A1 WO2019004438 A1 WO 2019004438A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
working electrode
test substance
label
secondary antibody
Prior art date
Application number
PCT/JP2018/024844
Other languages
French (fr)
Japanese (ja)
Inventor
坂本 健
崔 京九
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018069967A external-priority patent/JP2019012056A/en
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Publication of WO2019004438A1 publication Critical patent/WO2019004438A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/42Measuring deposition or liberation of materials from an electrolyte; Coulometry, i.e. measuring coulomb-equivalent of material in an electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/551Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/551Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
    • G01N33/553Metal or metal coated

Definitions

  • the present invention relates to an analysis kit and an analysis method for analyzing a test substance using an antigen-antibody reaction.
  • Priority is claimed on Japanese Patent Application No. 2017-129440, filed on Jun. 30, 2017, and Japanese Patent Application No. 2018-069967, filed on Mar. 30, 2018, on June 30, 2017. The contents of which are incorporated herein by reference.
  • Detection of biological substances is performed in the fields of medicine, healthcare, environment and the like. Then, development of an analysis method capable of selectively quantifying a biological substance to be measured from a plurality of biological substances with high sensitivity and easy operability is desired.
  • An immunoassay is known as one of the methods capable of selectively measuring a minute amount of biological substance in a liquid with high sensitivity.
  • the immunoassay is a method of quantifying an antigen using a reaction (antigen-antibody reaction) between a biological substance to be measured (antigen, hapten, etc.) and a substance (antibody) that binds to the antigen.
  • the sandwich method is known as a method of quantifying an antigen.
  • the sandwich method is a method of sandwiching (sandwiching) an antigen between a solid on which the primary antibody is immobilized and a label on which the secondary antibody is immobilized. That is, the sandwich method is a method of capturing an antigen with a primary antibody, binding the captured antigen to a secondary antibody, and quantifying the label immobilized on the secondary antibody bound to the antigen.
  • a method of quantifying a label a method of using metal particles as a label and quantifying the amount of the metal particles using an electrochemical method is known.
  • antigens and antibodies do not have electrical conductivity, it is difficult to quantify labels (metal particles) bound to antigens and antibodies directly using electrochemical methods.
  • Patent Document 1 discloses a diagnostic kit including at least one reagent labeled with colloidal metal particles, at least one electrode, and a reagent for chemically dissolving the colloidal metal particles.
  • a colloidal metal particle that is a label is chemically dissolved, and then a solution in which the colloidal metal particle that is a label is dissolved is transferred to an electrode for reduction. Then, after the reduced metal is deposited on the electrode, the metal deposited on the surface of the electrode is electrically redissolved. The amount of metal deposited on the surface of the electrode is then determined by analyzing the voltammetric peaks that appear after re-dissolution.
  • a method of quantifying the amount of metal particles using a metal particle as a label and using an electrochemical method is a useful method in terms of sensitivity and accuracy.
  • the operation is complicated because, for example, a step of dissolving colloidal metal particles once is required, and it takes time to obtain an analysis result. . Therefore, its introduction is difficult in clinical examinations at medical sites.
  • the present invention has been made in view of the above problems, and its object is to provide an analysis kit and an analysis method which are easy to operate, can analyze a test substance with high selectivity and high sensitivity. It is to do.
  • a sensor using a conductive diamond electrode or a conductive diamond-like carbon electrode on which a primary antibody is immobilized as a working electrode, and a secondary antibody on which a label capable of oxidation-reduction or capable of promoting an oxidation-reduction reaction is immobilized The antigen (the test substance) and the primary antibody are bound and immobilized on the working electrode. Then, the antigen and secondary antigen are bound, and the label on which the secondary antibody bound to the antigen is immobilized is brought into close contact with or in close proximity to the working electrode.
  • the catalytic function that promotes the oxidation, reduction, or redox reaction by electrochemical means that the label attached to or in close proximity to the working electrode can be quantified without chemically dissolving the label. Then, the amount of current generated when the label is exposed to a catalytic function that promotes oxidation or reduction or the redox reaction thereof by an electrochemical method has a high correlation with the amount of antigen, and the current After confirming that it is possible to determine the amount of antigen from the amount, the present invention has been completed. That is, the present invention provides the following means in order to solve the above problems.
  • the analysis kit according to the first aspect has a working electrode, a reference electrode, and a counter electrode, and the working electrode is a conductive diamond electrode or a conductive diamond-like carbon electrode, and the working electrode It is characterized in that it comprises a sensor comprising a primary antibody immobilized on the surface, and a solution comprising a secondary antibody on which a redox-enabled or a label capable of promoting a redox reaction is immobilized.
  • the label capable of the oxidation-reduction or promoting the oxidation-reduction reaction may be at least one selected from the group consisting of an enzyme, a metal complex and a metal nanoparticle.
  • the label capable of the oxidation-reduction or promoting the oxidation-reduction reaction is a metal nanoparticle, and the metal nanoparticle contains sulfur. It is also good.
  • the reference electrode may be a silver-silver chloride electrode.
  • the counter electrode may be a carbon electrode, a noble metal electrode, a conductive diamond electrode or a conductive diamond-like carbon electrode.
  • the analysis method according to the second aspect is an analysis method for analyzing a test substance contained in a test substance solution, comprising: a working electrode, a reference electrode, and a counter electrode
  • the working electrode of the sensor wherein the electrode is a conductive diamond electrode or a conductive diamond-like carbon electrode, and a primary antibody binding to the test substance is immobilized on the surface of the working electrode, and the test substance solution
  • To the primary antibody of the working electrode A second binding step of connecting the test substance with a redox-reducible label by binding the combined test substance and a secondary antibody; and washing the working electrode to thereby
  • the analysis method according to the third aspect is an analysis method for analyzing a test substance contained in a test substance solution, comprising: a working electrode, a reference electrode, and a counter electrode
  • the working electrode of the sensor wherein the electrode is a conductive diamond electrode or a conductive diamond-like carbon electrode, and a primary antibody binding to the test substance is immobilized on the surface of the working electrode, and the test substance solution
  • the primary of the working electrode A second binding step of connecting the test substance and the label promoting the redox reaction by binding the test substance bound to the body and the secondary antibody; and washing the working electrode A second washing step of removing a solution containing a secondary antibody which is not bound to the test substance and on which a label is immobilized which promotes the oxidation-reduction reaction, and between the working electrode and the counter electrode, oxidation-reduction
  • the redox-capable label required for the oxidation or reduction of the other redox-capable substance, with the possible substances present and then applying a voltage between the working electrode and the counter electrode
  • the current amount measuring step of measuring the current amount, and the calculation step of determining the labeling amount promoting oxidation-reduction reaction from the current amount and calculating the mass of the test object from the labeling amount promoting the oxidation-reduction reaction It is characterized by
  • an analysis kit and an analysis method capable of analyzing a test substance with high selectivity and sensitivity with simple operation it is possible to provide an analysis kit and an analysis method capable of analyzing a test substance with high selectivity and sensitivity with simple operation.
  • FIG. 2 is a cross-sectional view taken along line II-II of FIG. It is a flowchart explaining the analysis method concerning one embodiment of the present invention. It is a conceptual diagram explaining the analysis method concerning one embodiment of the present invention. It is the graph which plotted the antigen concentration of the sample for each antigen analysis used in Example 1, and the electric current amount required in order to ionize the cobalt nanoparticle which is a label
  • the analysis kit of the present embodiment is an analysis kit for analyzing a test substance contained in a test substance solution using an antigen-antibody reaction.
  • the test substance is, for example, a biomaterial, and in particular, a protein or metaphorome.
  • the analysis kit of the present embodiment comprises a liquid containing a sensor and a secondary antibody.
  • the sensor is immobilized with a primary antibody that supplements the test substance contained in the test substance solution, and the secondary antibody is immobilized with a label for quantifying the captured test substance.
  • FIG. 1 is a plan view showing an embodiment of a sensor.
  • FIG. 2 is a cross-sectional view taken along line II-II of FIG.
  • the sensor 10 shown in FIG. 1 includes a first substrate 11, a working electrode 12, a counter electrode 13 and a reference electrode 14 provided in the vicinity of one end on the surface (upper surface in FIG.
  • the second substrate 16 has a window 15 formed to expose the working electrode 12, the counter electrode 13 and the reference electrode 14 bonded thereto.
  • the second substrate 16 covers a portion of the lead wires 12 a, 13 a and 14 a other than the vicinity of the other end of the first substrate 11.
  • the working electrode 12 is a conductive diamond electrode or a conductive diamond-like carbon electrode (DLC electrode).
  • a boron-doped boron-doped diamond electrode can be used as the conductive diamond electrode.
  • the conductive diamond electrode is a crystalline carbon electrode having a diamond structure having sp 3 bonds.
  • the conductive DLC electrode is an amorphous carbon electrode mainly composed of carbon and hydrogen and in which sp 3 bonds and sp 2 bonds are mixed.
  • the doped p-type semiconductor DLC electrodes can be used.
  • the conductive diamond electrode and the DLC electrode based on sp 3 bonded carbon and the DLC electrode have very few processes in which the chemical substance to be oxidized or reduced by the electrochemical reaction is adsorbed. For this reason, for example, the inner zone oxidation-reduction reaction through adsorption on the electrode by hydrogen, hydroxide or ions thereof caused by water hardly occurs. As a result, since the noise current, which is referred to as the residual current, becomes extremely small, it is possible to detect the electrochemical reaction of the analyte to be detected with a high SN ratio.
  • the working electrode 12 has a primary antibody fixed on the surface (upper surface in FIG. 2).
  • the primary antibody is appropriately selected and used in accordance with the test substance (antigen) to be measured. Any primary antibody can be used without particular limitation as long as it has high affinity for the test substance to be measured and binds to the antigen.
  • the counter electrode 13 is composed of a conductive material for an electrode that is usually used in a sensor for electrochemical measurement.
  • a noble metal electrode such as a carbon electrode, a platinum electrode and a gold electrode, the same conductive diamond electrode or conductive DLC electrode as the working electrode 12 can be used.
  • a silver-silver chloride electrode or a mercury-mercury chloride electrode can be used as the reference electrode 14.
  • the reference electrode 14 is preferably a silver-silver chloride electrode.
  • the first substrate 11 is a support that supports the working electrode 12, the counter electrode 13, and the reference electrode 14.
  • the first substrate 11 may have physical strength that can withstand use as an electrochemical sensor.
  • the working electrode 12 is an n-type semiconductor DLC electrode
  • the first substrate 11 is preferably an n-type crystalline silicon substrate.
  • the working electrode 12 is a p-type semiconductor DLC electrode
  • the first substrate 11 is preferably a p-type crystalline silicon substrate. As a result, interface resistance such as a Schottky barrier is less likely to occur between the first substrate 11 and the working electrode 12.
  • the second substrate 16 a substrate similar to the first substrate 11 is used.
  • the first substrate 11 and the second substrate 16 are bonded by an adhesive 17.
  • the liquid containing the secondary antibody is composed of a solvent and a secondary antibody dispersed in the solvent and capable of oxidation-reduction or a label capable of promoting the oxidation-reduction reaction is immobilized.
  • the label capable of oxidation-reduction or promoting the oxidation-reduction reaction can be oxidized by releasing an electron, can be reduced by accepting an electron, or both Possible is a chemical substance that is an enzyme or catalyst that promotes the redox of another redox substance and is immobilized on a secondary antibody.
  • the label capable of redox or promoting the redox reaction is preferably at least one selected from the group consisting of an enzyme, a metal complex and a metal nanoparticle.
  • Examples of the enzyme used as a label in the present embodiment include horseradish peroxidase, alkaline phosphatase, ⁇ -galactosidase, glucose oxidase, glucose dehydrogenase, glucose-6-phosphate dehydrogenase and glucose amylase.
  • GDH glucose dehydrogenase
  • PQQ-GDH pyrroloquinoline quinone
  • FAD-GDH flavin adenine dinucleotide
  • NAD-GDH nicotinamide adenine dinucleotide
  • NADP nicotine adenine dinucleotide phosphate
  • Aspergillus oryzae FAD-GDH which does not use maltose other than glucose or galactose as a substrate, wild type FAD-GDH of Aspergillus oryzae or a modified form thereof is preferable.
  • wild type FAD-GDH of Aspergillus oryzae or a modified form thereof is preferable.
  • flavin adenine dinucleotide, pyrroloquinoline quinone or the like may be added.
  • ferricyanide ion, ferrocene, ruthenium compound, hexachloroiridium (IV) ion, bis (2,2'-bipyridine) dichlororuthenium, bis (2,2'-bipyridine) dichloroosmium, iodine etc. as mediator. You may.
  • metal complexes used as labels in this embodiment include iron complexes, copper complexes, iridium complexes, ruthenium complexes, and osmium complexes, such as ferricyanide ion, ferrocene, hexachloro iridium (IV) ion, bis (2,2 '-Bipyridine) dichlororuthenium, ruthenocene, bis (2,2'-bipyridine) dichlororuthenium, bis (2,2'-bipyridine) dichlororuthenium, bis (2,2'-bipyridine) dichlororuthenium, bis (2,2'-bipyridine) dichlororuthenium, bis (2,2'-bipyridine) dichloroosmium and the like.
  • the metal nanoparticles used as a label in the present embodiment preferably include at least one metal selected from the group consisting of gold, platinum, silver, copper, rhodium, palladium, iron, cobalt and nickel.
  • the metals may be used alone or in combination of two or more.
  • gold nanoparticles and silver nanoparticles are preferred.
  • One of these metal nanoparticles may be used alone, or two or more of these metal nanoparticles may be used in combination.
  • the metal nanoparticles preferably have an average particle size in the range of 1 nm to 100 nm, and more preferably in the range of 10 nm to 50 nm.
  • the liquid containing the metal nanoparticles is preferably a dispersion of metal nanoparticles.
  • the metal nanoparticles may contain sulfur.
  • the sulfur may be attached to the surface of the metal particle nanoparticles or may be intercalated between metal atoms. Sulfur has the effect of suppressing the oxidation of metal nanoparticles.
  • the sulfur content of the metal nanoparticles is preferably in the range of 0.001% by mass to 0.5% by mass.
  • the secondary antibody is appropriately selected and used in accordance with the test substance (antigen) to be measured. Any secondary antibody may be used without particular limitation as long as it has high affinity to the analyte to be measured and binds to the antigen.
  • an aqueous solvent an organic solvent and a mixture thereof can be used.
  • aqueous solvents include water and buffers.
  • phosphate buffered saline (PBS) can be used.
  • the organic solvent include monohydric alcohols such as methanol, ethanol, 1-propanol and 2-propanol, and ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone.
  • the liquid containing the secondary antibody may further contain a thickener, a surfactant, a dispersant, an antioxidant and the like.
  • the liquid containing the secondary antibody is a liquid containing the secondary antibody to which a redox-capable label is immobilized, or a redox agent, and a secondary antibody to which a label capable of promoting the redox agent is immobilized. It is preferable that it is a liquid containing.
  • the liquid containing the secondary antibody to which the redox-provable label is fixed is preferably a liquid containing metal nanoparticles.
  • the redox agent is preferably hydrogen peroxide water
  • the redox agent is preferably an enzyme or a metal complex.
  • FIG. 3 is a flow diagram illustrating an analysis method according to an embodiment of the present invention.
  • FIG. 4 is a conceptual diagram for explaining an analysis method according to an embodiment of the present invention.
  • the analysis method of the present embodiment includes a first bonding step S01, a first washing step S02, a second bonding step S03, a second washing step S04, a magnetic field application step S05, a current amount measuring step S06, Calculation step S07 is included.
  • First bonding step S01 In the first bonding step S01, the working electrode 12 of the above-described sensor 10 is brought into contact with the test substance solution. As shown in FIG. 4A, on the surface of the working electrode 12, a primary antibody 31 capable of selectively binding to a test substance to be measured is fixed. Therefore, in the first binding step S01, only the test substance 32 to be measured is captured by the primary antibody 31, as shown in FIG. 4 (b).
  • First cleaning step S02 In the first cleaning step S02, the working electrode 12 is washed to remove the test substance solution adhering to the working electrode 12.
  • the washing solution an aqueous solvent or an organic solvent can be used.
  • the working electrode 12 is brought into contact with the aforementioned dispersion of magnetic metal nanoparticles.
  • a secondary antibody 34 capable of selectively binding to the test substance 32, which is an object to be measured, is fixed. Therefore, as shown in FIG. 4C, in the second binding step S03, the test substance 32 and the secondary antibody 34 are bound, and the magnetic metal nanoparticles 33 to be labeled are connected to the test substance 32. .
  • the working electrode 12 is washed to remove the dispersion liquid of magnetic metal nanoparticles attached to the working electrode 12.
  • the magnetic metal nanoparticles 33 not connected to the test substance 32 are removed by the second cleaning step S04.
  • As the washing solution an aqueous solvent or an organic solvent can be used.
  • Magnetic field application step S05 In the magnetic field application step S05, a magnetic field is applied to the magnetic metal nanoparticles 33 connected to the test substance 32 in the presence of a solvent.
  • the magnetic field is preferably applied from the back side of the working electrode 12 in the direction in which the magnetic metal nanoparticles 33 are attracted.
  • the magnetic field can be applied, for example, by disposing the magnet 35 on the side of the back surface (the lower surface in FIG. 4D) of the working electrode 12 as shown in FIG. 4D.
  • a permanent magnet or an electromagnet can be used.
  • the magnetic metal nanoparticles 33 connected to the test substance 32 come into contact with the working electrode 12.
  • the solvent is not particularly limited as long as it can move the magnetic metal nanoparticles 33 into contact with the working electrode 12 by the applied magnetic field, but the conductivity can be used in the next current amount measurement step S06. It is preferred to use an organic solvent.
  • a voltage is applied between the working electrode 12 and the counter electrode 13 to ionize (oxidize) the magnetic metal nanoparticles 33 in the presence of the conductive solvent, and the total amount of the magnetic metal nanoparticles 33 is Measure the amount of current until ionization.
  • the magnetic metal nanoparticles 33 are cobalt nanoparticles, as shown in FIG. 4 (d)
  • the cobalt nanoparticles are divalent ions by applying a voltage between the working electrode 12 and the counter electrode 13. Measure the amount of current when dissolving.
  • the lead wires 12a, 13a and 14a of the sensor 10 are connected to a potentiostat, and while applying a voltage between the working electrode 12 and the counter electrode 13 using the voltammetry method, the working electrode 12 and the counter electrode Measure the amount of current flowing between it and 13.
  • an electrolyte solution as the conductive solvent.
  • chlorides such as potassium chloride, sodium chloride and lithium chloride can be used.
  • the chloride destroys the oxide film (passive film) formed on the surface of the magnetic metal nanoparticles 33 when the magnetic metal nanoparticles 33 are ionized, exposing the magnetic metal to a solution, and advancing the ionization. It has the effect of making it easy to do.
  • An aqueous solvent can be used as a solvent of the electrolyte solution. Examples of aqueous solvents include water and buffers.
  • the chloride ion concentration of the electrolyte solution is preferably in the range of 0.05 mol / L to 1.0 mol / L.
  • the amount (the labeled amount) of the magnetic metal nanoparticles 33 is obtained from the current amount, and the mass of the test object is calculated from the amount of the magnetic metal nanoparticles 33.
  • the amount of current obtained in the step of current amount measurement step S06 correlates with the amount of the magnetic metal nanoparticles 33 (that is, the mass of the test object). Therefore, by preparing a calibration curve using a sample containing a known amount of a test substance, it becomes possible to accurately quantify the test substance contained in the test substance solution.
  • the analysis method of the present embodiment has been described with an example where magnetic metal nanoparticles are used as a label capable of redox or promoting a redox reaction.
  • an enzyme, a metal complex, or a metal nanoparticle having no magnetism is used as a label capable of redox or promoting a redox reaction, it is not necessary to perform the magnetic field application step S05.
  • the magnetic field application step S05 may be omitted even when magnetic metal nanoparticles are used as a label capable of oxidation reduction or promoting oxidation reduction reaction.
  • the conductive diamond electrode and the conductive diamond-like carbon electrode (DLC electrode) used as the working electrode of the sensor in this embodiment have high sensitivity, and the minute redox current flowing between the working electrode and the label is detected at a high SN ratio can do. For this reason, even if the label and the working electrode are not in close contact with each other, the amount of label can be measured with high accuracy.
  • the labeling amount is calculated by ionizing (oxidizing) the magnetic metal nanoparticles 33 in the current amount measurement step S06, but the present invention is not limited to this.
  • a substance capable of redox reaction is present between the working electrode and the counter electrode, and then a voltage is applied between the working electrode and the counter electrode to promote the redox reaction.
  • the amount of labeling may be calculated by measuring the amount of current required for oxidation or reduction.
  • a mediator may be used for this.
  • a method of using hydrogen peroxide as a substance capable of oxidation and reduction and a ferrocyanide ion as a mediator it can be performed as follows.
  • the conductive diamond electrode or the conductive diamond-like carbon electrode (DLC electrode) is used as the working electrode 12 of the sensor 10, the electrochemistry of the magnetic metal nanoparticles It is possible to detect the reaction at a high SN ratio.
  • the primary antibody is immobilized on the working electrode 12 of the sensor 10, the test substance contained in the test substance solution can be complemented with high selectivity.
  • the dispersion liquid of magnetic metal nanoparticles to which the secondary antibody is immobilized is provided, magnetic metal nanoparticles are used as a label, and the amount of the magnetic metal nanoparticles is determined by By quantifying using a chemical method, it is possible to analyze with high sensitivity the analyte captured by the primary antibody.
  • the magnetic metal nanoparticles connected to the test substance contain a solvent
  • the test is carried out using an electrochemical method without carrying out the conventional chemical dissolution step of the metal.
  • the substance can be quantified. Therefore, according to the analysis kit and the analysis method of the present invention, it is possible to simplify the operation and analyze the test substance with high selectivity and high sensitivity.
  • Cobalt nanoparticles described above ovalbumin (OA, grade III), anti-goat IgG, phosphate buffered saline (PBS), and polyethylene glycol sorbitan monolaurate (Tween 20, non-ionic surfactant) It mixed and the cobalt nanoparticle dispersion liquid with a secondary antibody which fixed anti-goat IgG (secondary antibody) on the surface of cobalt nanoparticles was produced.
  • the concentration of cobalt nanoparticles in the cobalt nanoparticle dispersion liquid with secondary antibody was 0.007% by mass.
  • anti-goat IgG a polyclonal antibody commercially available from Jackson Immunoresearch Laboratories was used.
  • the working electrode of the sensor with a primary antibody was washed using a washing solution to wash away the sample for antigen analysis (first washing step).
  • PBS was used as the washing solution.
  • the working electrode of the sensor with a primary antibody was washed using a washing solution to wash out the cobalt nanoparticle dispersion with a secondary antibody (second washing step).
  • PBS was used as the washing solution.
  • a neodymium magnet was disposed closely to the outside of the bottom of the plastic rectangular container, and a magnetic field was applied to the working electrode of the sensor with a primary antibody in the direction to attract cobalt nanoparticles from the back side of the sensor (magnetic field application step).
  • FIG. 1 to No. The graph which plotted the antigen concentration of the sample for each antigen analysis of 6, and the electric current amount (namely, electric current amount required in order to ionize a cobalt nanoparticle) which flowed between the working electrode and the counter electrode is shown. From the graph of FIG. 5, it was confirmed that there is a correlation between the current value and the antigen concentration of the sample for antigen analysis. Therefore, by preparing a standard curve (current value-antigen concentration curve) using a sample containing a known amount of antigen (test substance), it is possible to accurately determine the antigen (test substance) contained in the test substance solution. It was confirmed that it would be possible.
  • a standard curve current value-antigen concentration curve
  • Example 2 In the magnetic field application step, that is, a neodymium magnet is disposed closely to the outside of the bottom of a plastic rectangular container, and a magnetic field is not applied to the working electrode of the sensor with primary antibody from the back side of the sensor Except for the above, in the same manner as in Example 1, a graph was created in which the antigen concentration of each antigen analysis sample was plotted with the amount of current required to ionize the cobalt nanoparticle that is the label of the antigen. The results are shown in FIG. From the graph of FIG. 6, it was confirmed that there is a correlation between the current value and the antigen concentration of the sample for antigen analysis.
  • the antigen contained in the test substance solution is prepared by preparing a calibration curve (current value-antigen concentration curve) using a sample containing a known amount of antigen (test substance). It was confirmed that it was possible to quantify (the test substance).
  • Gold Nanoparticles-Dispersed Liquid with Secondary Antibody Gold Colloid Solution (20 nm particle size) manufactured by Tanaka Kikinzoku Co., Ltd., ovalbumin (OA, grade III), anti-goat IgG, phosphate buffered saline (PBS) And polyethylene glycol sorbitan monolaurate (Tween 20, non-ionic surfactant) mixed, and a gold nanoparticle dispersion liquid with a secondary antibody on which anti-goat IgG (secondary antibody) is immobilized on the surface of the gold nanoparticles Made.
  • the concentration of gold nanoparticles in the secondary antibody-loaded gold nanoparticle dispersion was 0.007% by mass.
  • anti-goat IgG a polyclonal antibody commercially available from Jackson Immunoresearch Laboratories was used.
  • the working electrode of the sensor with a primary antibody was washed using a washing solution to wash away the sample for antigen analysis (first washing step).
  • PBS was used as the washing solution.
  • the working electrode of the sensor with a primary antibody was washed using a washing solution to wash out the secondary antibody-bearing gold nanoparticle dispersion (second washing step).
  • PBS was used as the washing solution.
  • FIG. 1 to No. The graph which plotted the antigen concentration of the sample for each antigen analysis of 6, and the electric current amount (namely, electric current amount required in order to ionize a gold nanoparticle) which flowed between the working electrode and the counter electrode is shown. From the graph of FIG. 5, it was confirmed that there is a correlation between the current value and the antigen concentration of the sample for antigen analysis. Therefore, by preparing a standard curve (current value-antigen concentration curve) using a sample containing a known amount of antigen (test substance), it is possible to accurately determine the antigen (test substance) contained in the test substance solution. It was confirmed that it would be possible.
  • a standard curve current value-antigen concentration curve
  • bioscience anti-8-hydroxydeoxyguanosine (anti-8-OHdG) antibody SMC-155D
  • Enzyme-labeled secondary antibody solution Enzyme-labeled secondary antibody includes horseradish peroxidase (HRP) -labeled 8-hydroxydeoxyguanosine (anti-8-OHdG) antibody (SMC-155D-HRP) manufactured by Stressmark Biosciences Inc. Using this, it was diluted to 10 ⁇ g / mL with phosphate buffered saline (PBS) to prepare an enzyme-labeled secondary antibody solution.
  • HRP horseradish peroxidase
  • SMC-155D-HRP 8-hydroxydeoxyguanosine
  • No. 1 with different antigen concentrations. 1 to No. I prepared six.
  • the following No. 1 to No. 6 was prepared by mixing PBS buffer containing 0.1% Tween 20 with 8-OH dG (antigen) so that the antigen concentration became the following concentration.
  • No. 1: Antigen concentration 0.01 ng / mL
  • No. 2: Antigen concentration 0.1 ng / mL
  • No. 3: Antigen concentration 1 ng / mL
  • No. 4: Antigen concentration 10 ng / mL
  • Antigen concentration 100 ng / mL
  • the working electrode of the sensor with a primary antibody was washed using a washing solution to wash away the sample for antigen analysis (first washing step).
  • PBS was used as the washing solution.
  • the present invention can provide an analysis kit and an analysis method capable of analyzing a test substance with high sensitivity and sensitivity with simple scanning.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Hematology (AREA)
  • General Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

This analysis kit is characterized by being provided with: a sensor having a working electrode, a reference electrode, and a counter electrode, the working electrode being an electroconductive diamond electrode or an electroconductive diamond-like carbon electrode, and primary antibodies being fixed to a surface of the working electrode; and a liquid including secondary antibodies to which a label is fixed that is capable of oxidation-reduction or that promotes an oxidation-reduction reaction.

Description

分析キットおよび分析方法Analysis kit and method
 本発明は、抗原抗体反応を利用して被検物質を分析するための分析キット及び分析方法に関する。
本願は、2017年6月30日に、日本に出願された特願2017-129440号、および、2018年3月30日に、日本に出願された特願2018-069967号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an analysis kit and an analysis method for analyzing a test substance using an antigen-antibody reaction.
Priority is claimed on Japanese Patent Application No. 2017-129440, filed on Jun. 30, 2017, and Japanese Patent Application No. 2018-069967, filed on Mar. 30, 2018, on June 30, 2017. The contents of which are incorporated herein by reference.
生体物質の検出は、医療、ヘルスケア、環境などの分野において行われている。そして、複数の生体物質から測定対象の生体物質を、選択的に高感度かつ簡便な操作性で定量することができる分析方法の開発が望まれている。 Detection of biological substances is performed in the fields of medicine, healthcare, environment and the like. Then, development of an analysis method capable of selectively quantifying a biological substance to be measured from a plurality of biological substances with high sensitivity and easy operability is desired.
液体中の微量な生体物質を選択的に高感度で測定することができる方法の1つとして、免疫測定法が知られている。免疫測定法とは、測定対象の生体物質(抗原、ハプテン等)と、その抗原と結合する物質(抗体)との反応(抗原抗体反応)を利用して、抗原を定量する方法である。 An immunoassay is known as one of the methods capable of selectively measuring a minute amount of biological substance in a liquid with high sensitivity. The immunoassay is a method of quantifying an antigen using a reaction (antigen-antibody reaction) between a biological substance to be measured (antigen, hapten, etc.) and a substance (antibody) that binds to the antigen.
抗原を定量する方法としては、サンドイッチ法が知られている。サンドイッチ法とは、一次抗体が固定された固体と、二次抗体が固定された標識とで、抗原を挟む(サンドイッチする)方法である。すなわち、サンドイッチ法は、抗原を一次抗体で補足し、その補足した抗原と二次抗体とを結合させ、その抗原と結合した二次抗体に固定されている標識を定量する方法である。標識を定量する方法として、標識として金属粒子を用い、その金属粒子の量を、電気化学的手法を用いて定量する方法が知られている。なお、抗原および抗体は電気伝導性を有しないため、抗原および抗体に結合した標識(金属粒子)を、直接的に電気化学的手法を用いて定量することは困難である。 The sandwich method is known as a method of quantifying an antigen. The sandwich method is a method of sandwiching (sandwiching) an antigen between a solid on which the primary antibody is immobilized and a label on which the secondary antibody is immobilized. That is, the sandwich method is a method of capturing an antigen with a primary antibody, binding the captured antigen to a secondary antibody, and quantifying the label immobilized on the secondary antibody bound to the antigen. As a method of quantifying a label, a method of using metal particles as a label and quantifying the amount of the metal particles using an electrochemical method is known. In addition, since antigens and antibodies do not have electrical conductivity, it is difficult to quantify labels (metal particles) bound to antigens and antibodies directly using electrochemical methods.
特許文献1には、コロイド金属粒子で標識した少なくとも1つの試薬と、少なくとも1つの電極と、前記コロイド金属粒子を化学的に溶解するための試薬を含む診断キットと、が開示されている。特許文献1に開示されている診断キットでは、標識であるコロイド金属粒子を化学的に溶解し、次いで標識であるコロイド金属粒子が溶解した溶液を電極に移して還元する。次いで、還元した金属を電極に堆積させた後、電極の表面に堆積した金属を電気的に再溶解させる。次いで、再溶解後に現れるボルタンメトリーピークを解析することによって、電極の表面に堆積した金属の量を測定する。 Patent Document 1 discloses a diagnostic kit including at least one reagent labeled with colloidal metal particles, at least one electrode, and a reagent for chemically dissolving the colloidal metal particles. In the diagnostic kit disclosed in Patent Document 1, a colloidal metal particle that is a label is chemically dissolved, and then a solution in which the colloidal metal particle that is a label is dissolved is transferred to an electrode for reduction. Then, after the reduced metal is deposited on the electrode, the metal deposited on the surface of the electrode is electrically redissolved. The amount of metal deposited on the surface of the electrode is then determined by analyzing the voltammetric peaks that appear after re-dissolution.
特表2004-512496号公報Japanese Patent Publication No. 2004-512496
標識として金属粒子を用い、その金属粒子の量を、電気化学的手法を用いて定量する方法は、感度や精度の観点では有用な方法である。しかしながら、特許文献1に記載されているコロイド金属粒子の定量方法では、コロイド金属粒子を一旦化学的に溶解させる工程が必要となるなど、操作が煩雑で、分析結果が得られるまでに時間がかかる。従って、医療現場での臨床検査においてはその導入は困難である。 A method of quantifying the amount of metal particles using a metal particle as a label and using an electrochemical method is a useful method in terms of sensitivity and accuracy. However, in the method of quantifying colloidal metal particles described in Patent Document 1, the operation is complicated because, for example, a step of dissolving colloidal metal particles once is required, and it takes time to obtain an analysis result. . Therefore, its introduction is difficult in clinical examinations at medical sites.
本発明は、上記の課題に鑑みてなされたものであり、その目的は、操作が簡便で、被検物質を高い選択性で、かつ高感度で分析することができる分析キットおよび分析方法を提供することにある。 The present invention has been made in view of the above problems, and its object is to provide an analysis kit and an analysis method which are easy to operate, can analyze a test substance with high selectivity and high sensitivity. It is to do.
 本発明者らは、以下のことを見出した。
作用電極として、一次抗体が固定された導電性ダイヤモンド電極または導電性ダイヤモンド様炭素電極を用いたセンサと、酸化還元が可能あるいは酸化還元反応を促進する標識が固定されている二次抗体と、を用い、抗原(被検物質)と、一次抗体と、を結合させて作用電極に固定する。次いで、抗原と二次抗原を結合させ、その抗原と結合した二次抗体が固定された標識を作用電極に密着あるいは接近させる。作用電極に密着あるいは接近した標識を電気化学的手法により酸化または還元または酸化還元反応を促進する、触媒機能の発露により、標識を化学的に溶解させずに定量することが可能となる。
そして、標識を電気化学的手法により酸化もしくは還元またはその酸化還元反応を促進する触媒機能の発露させたときに発生する電流量と、抗原の量と、が高い相関性を有することと、その電流量から抗原の量を求めることが可能となることと、を確認して、本発明を完成させるに至った。
 すなわち、本発明は、上記課題を解決するため、以下の手段を提供する。
The present inventors have found the following.
A sensor using a conductive diamond electrode or a conductive diamond-like carbon electrode on which a primary antibody is immobilized as a working electrode, and a secondary antibody on which a label capable of oxidation-reduction or capable of promoting an oxidation-reduction reaction is immobilized The antigen (the test substance) and the primary antibody are bound and immobilized on the working electrode. Then, the antigen and secondary antigen are bound, and the label on which the secondary antibody bound to the antigen is immobilized is brought into close contact with or in close proximity to the working electrode. The catalytic function that promotes the oxidation, reduction, or redox reaction by electrochemical means that the label attached to or in close proximity to the working electrode can be quantified without chemically dissolving the label.
Then, the amount of current generated when the label is exposed to a catalytic function that promotes oxidation or reduction or the redox reaction thereof by an electrochemical method has a high correlation with the amount of antigen, and the current After confirming that it is possible to determine the amount of antigen from the amount, the present invention has been completed.
That is, the present invention provides the following means in order to solve the above problems.
(1)第1の態様にかかる分析キットは、作用電極と、参照電極と、対極と、を有し、前記作用電極が導電性ダイヤモンド電極または導電性ダイヤモンド様炭素電極であり、前記作用電極の表面に一次抗体が固定されているセンサ、及び、酸化還元が可能あるいは酸化還元反応を促進する標識が固定されている二次抗体を含む液を備えることを特徴とする。
(2)上記(1)の分析キットにおいて、前記酸化還元が可能あるいは酸化還元反応を促進する標識が、酵素、金属錯体および金属ナノ粒子からなる群より選ばれる少なくとも一つであってもよい。
(3)上記(1)または(2)の分析キットにおいて、前記酸化還元が可能あるいは酸化還元反応を促進する標識は、金属ナノ粒子であって、前記金属ナノ粒子が、硫黄を含有していてもよい。
(4)上記(1)~(3)のいずれかの分析キットにおいて、前記参照電極が、銀-塩化銀電極であってもよい。
(5)上記(1)~(4)のいずれかの分析キットにおいて、前記対極が、カーボン電極、貴金属電極、導電性ダイヤモンド電極または導電性ダイヤモンド様炭素電極であってもよい。
(1) The analysis kit according to the first aspect has a working electrode, a reference electrode, and a counter electrode, and the working electrode is a conductive diamond electrode or a conductive diamond-like carbon electrode, and the working electrode It is characterized in that it comprises a sensor comprising a primary antibody immobilized on the surface, and a solution comprising a secondary antibody on which a redox-enabled or a label capable of promoting a redox reaction is immobilized.
(2) In the analysis kit of the above (1), the label capable of the oxidation-reduction or promoting the oxidation-reduction reaction may be at least one selected from the group consisting of an enzyme, a metal complex and a metal nanoparticle.
(3) In the analysis kit of the above (1) or (2), the label capable of the oxidation-reduction or promoting the oxidation-reduction reaction is a metal nanoparticle, and the metal nanoparticle contains sulfur. It is also good.
(4) In the analysis kit according to any one of the above (1) to (3), the reference electrode may be a silver-silver chloride electrode.
(5) In the analysis kit according to any one of the above (1) to (4), the counter electrode may be a carbon electrode, a noble metal electrode, a conductive diamond electrode or a conductive diamond-like carbon electrode.
(6)第2の態様にかかる分析方法は、被検物質溶液に含まれる被検物質を分析するための分析方法であって、作用電極と、参照電極と、対極と、を備え、前記作用電極が導電性ダイヤモンド電極または導電性ダイヤモンド様炭素電極であって、前記作用電極の表面に前記被検物質と結合する一次抗体が固定されているセンサの前記作用電極と、前記被検物質溶液とを接触させて、前記作用電極の前記一次抗体と前記被検物質溶液の被検物質とを結合させる第1結合工程と、前記作用電極を洗浄して前記作用電極に付着している前記被検物質溶液を除去する第1洗浄工程と、前記作用電極と、表面に前記被検物質と結合する二次抗体に酸化還元が可能な標識が固定されている二次抗体を含む液とを接触させて、前記作用電極の前記一次抗体に結合した前記被検物質と二次抗体とを結合させることによって、前記被検物質と酸化還元が可能な標識とを接続させる第2結合工程と、前記作用電極を洗浄して、前記被検物質と結合せず前記酸化還元が可能な標識が固定されている二次抗体を含む液を除去する第2洗浄工程と、前記作用電極と前記対極との間に電圧を印加して、前記酸化還元が可能な標識を酸化させ、その電流量を計測する電流量計測工程と、前記電流量から酸化還元が可能な標識量を求め、前記酸化還元が可能な標識量から被検物質量を算出する算出工程と、を含むことを特徴とする。 (6) The analysis method according to the second aspect is an analysis method for analyzing a test substance contained in a test substance solution, comprising: a working electrode, a reference electrode, and a counter electrode The working electrode of the sensor, wherein the electrode is a conductive diamond electrode or a conductive diamond-like carbon electrode, and a primary antibody binding to the test substance is immobilized on the surface of the working electrode, and the test substance solution A first binding step of bringing the primary antibody of the working electrode and the test substance solution of the test substance solution into contact with each other, and the test attached to the working electrode by washing the working electrode A first washing step for removing a substance solution, the working electrode, and a liquid containing a secondary antibody in which a redox-immobilizable label is immobilized on a secondary antibody binding to the test substance on the surface To the primary antibody of the working electrode A second binding step of connecting the test substance with a redox-reducible label by binding the combined test substance and a secondary antibody; and washing the working electrode to thereby connect the test substance A second washing step of removing the liquid containing the secondary antibody on which the redox-immobilizing label is immobilized without binding thereto, and applying a voltage between the working electrode and the counter electrode to carry out the redox reaction. The amount of the label capable of oxidation and reduction is determined from the amount of current, and the amount of analyte is calculated from the amount of label capable of oxidation and reduction. And calculating step.
(7)第3の態様にかかる分析方法は、被検物質溶液に含まれる被検物質を分析するための分析方法であって、作用電極と、参照電極と、対極と、を備え、前記作用電極が導電性ダイヤモンド電極または導電性ダイヤモンド様炭素電極であって、前記作用電極の表面に前記被検物質と結合する一次抗体が固定されているセンサの前記作用電極と、前記被検物質溶液とを接触させて、前記作用電極の前記一次抗体と前記被検物質溶液の被検物質とを結合させる第1結合工程と、前記作用電極を洗浄して前記作用電極に付着している前記被検物質溶液を除去する第1洗浄工程と、前記作用電極と、表面に前記被検物質と結合する二次抗体に酸化還元反応を促進する標識が固定されている二次抗体を含む液とを接触させて、前記作用電極の前記一次抗体に結合した前記被検物質と前記二次抗体とを結合させることによって、前記被検物質と前記酸化還元反応を促進する標識とを接続させる第2結合工程と、前記作用電極を洗浄して、前記被検物質と結合せず前記酸化還元反応を促進する標識が固定されている二次抗体を含む液を除去する第2洗浄工程と、前記作用電極と前記対極との間に、酸化還元可能な物質を存在させ、次いで前記作用電極と前記対極との間に電圧を印加して、前記酸化還元が可能な標識が、前記別の酸化還元可能な物質を酸化または還元させるために要した電流量を計測する電流量計測工程と、前記電流量から酸化還元反応を促進する標識量を求め、前記酸化還元反応を促進する標識量から被検物質量を算出する算出工程と、を含むことを特徴とする。 (7) The analysis method according to the third aspect is an analysis method for analyzing a test substance contained in a test substance solution, comprising: a working electrode, a reference electrode, and a counter electrode The working electrode of the sensor, wherein the electrode is a conductive diamond electrode or a conductive diamond-like carbon electrode, and a primary antibody binding to the test substance is immobilized on the surface of the working electrode, and the test substance solution A first binding step of bringing the primary antibody of the working electrode and the test substance solution of the test substance solution into contact with each other, and the test attached to the working electrode by washing the working electrode A first washing step for removing a substance solution, the contact with the working electrode, and a liquid containing a secondary antibody in which a label promoting a redox reaction is immobilized on the surface to a secondary antibody binding to the test substance. Let the primary of the working electrode A second binding step of connecting the test substance and the label promoting the redox reaction by binding the test substance bound to the body and the secondary antibody; and washing the working electrode A second washing step of removing a solution containing a secondary antibody which is not bound to the test substance and on which a label is immobilized which promotes the oxidation-reduction reaction, and between the working electrode and the counter electrode, oxidation-reduction The redox-capable label required for the oxidation or reduction of the other redox-capable substance, with the possible substances present and then applying a voltage between the working electrode and the counter electrode The current amount measuring step of measuring the current amount, and the calculation step of determining the labeling amount promoting oxidation-reduction reaction from the current amount and calculating the mass of the test object from the labeling amount promoting the oxidation-reduction reaction It is characterized by
 本発明によれば、操作が簡便で、被検物質を高い選択性で、かつ高感度で分析することができる分析キットおよび分析方法を提供することが可能となる。 According to the present invention, it is possible to provide an analysis kit and an analysis method capable of analyzing a test substance with high selectivity and sensitivity with simple operation.
本発明の一実施形態にかかる分析キットで用いるセンサの平面図である。It is a top view of the sensor used with the analysis kit concerning one embodiment of the present invention. 図1のII-II線断面図である。FIG. 2 is a cross-sectional view taken along line II-II of FIG. 本発明の一実施形態にかかる分析方法を説明するフロー図である。It is a flowchart explaining the analysis method concerning one embodiment of the present invention. 本発明の一実施形態にかかる分析方法を説明する概念図である。It is a conceptual diagram explaining the analysis method concerning one embodiment of the present invention. 実施例1で使用した各抗原分析用試料の抗原濃度と、抗原の標識であるコバルトナノ粒子をイオン化させるために要した電流量とをプロットしたグラフである。It is the graph which plotted the antigen concentration of the sample for each antigen analysis used in Example 1, and the electric current amount required in order to ionize the cobalt nanoparticle which is a label | mark of an antigen. 実施例2で使用した各抗原分析用試料の抗原濃度と、抗原の標識であるコバルトナノ粒子をイオン化させるために要した電流量とをプロットしたグラフである。It is the graph which plotted the antigen concentration of the sample for each antigen analysis used in Example 2, and the electric current amount required in order to ionize the cobalt nanoparticle which is a label | mark of an antigen. 実施例3で使用した各抗原分析用試料の抗原濃度と、抗原の標識である金ナノ粒子をイオン化させるために要した電流量とをプロットしたグラフである。It is the graph which plotted the antigen concentration of the sample for each antigen analysis used in Example 3, and the electric current amount required in order to ionize the gold nanoparticle which is a label | mark of an antigen. 実施例4で使用した各抗原分析用試料の抗原濃度と、二次抗体に固定した標識酵素HRPが過酸化水素を分解するために要した電流をメディエータ液中のフェロシアン化イオンが増幅した電流量とをプロットしたグラフである。The antigen concentration of each of the samples for antigen analysis used in Example 4 and the current obtained by amplifying the ferrocyanide ion in the mediator solution, the current required for the decomposition of hydrogen peroxide by the labeled enzyme HRP immobilized on the secondary antibody It is the graph which plotted amount and.
 以下、本発明を適用した実施形態について、図面を用いてその構成を説明する。以下の説明で用いる図面は、特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際と同じであるとは限らない。また、以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではない。 Hereinafter, the configuration of an embodiment to which the present invention is applied will be described using the drawings. In the drawings used in the following description, in order to make the features easy to understand, the features that are the features may be enlarged for the sake of convenience, and the dimensional ratio of each component is not necessarily the same as the actual. Further, the materials, dimensions, etc. exemplified in the following description are merely examples, and the present invention is not limited thereto.
[分析キット]
 本実施形態の分析キットは、被検物質溶液に含まれる被検物質を、抗原抗体反応を利用して分析するための分析キットである。被検物質は、例えば、生体材料であり、特にタンパク質やメタポロームである。
 本実施形態の分析キットは、センサと二次抗体を含む液を備える。センサは、被検物質溶液に含まれる被検物質を補足する一次抗体が固定されていて、二次抗体は、補足した被検物質を定量するための標識が固定されている。
[Analysis kit]
The analysis kit of the present embodiment is an analysis kit for analyzing a test substance contained in a test substance solution using an antigen-antibody reaction. The test substance is, for example, a biomaterial, and in particular, a protein or metaphorome.
The analysis kit of the present embodiment comprises a liquid containing a sensor and a secondary antibody. The sensor is immobilized with a primary antibody that supplements the test substance contained in the test substance solution, and the secondary antibody is immobilized with a label for quantifying the captured test substance.
(センサ)
 本発明の一実施形態にかかる分析キットで用いるセンサを図1と図2を参照して説明する。図1は、センサの一実施形態を示す平面図である。図2は、図1のII-II線断面図である。
 図1に示すセンサ10は、第1基板11と、第1基板11の表面(図2において上面)において一方の端部近傍に設けられた作用電極12、対極13及び参照電極14と、作用電極12、対極13及び参照電極14にそれぞれ接続されるとともに第1基板11の他方の端部まで延在するように第1基板11上に形成されたリード線12a、13a及び14aと、第1基板11に接着された、作用電極12、対極13及び参照電極14が露出するような窓15が形成されている第2基板16とから構成される。第2基板16は、リード線12a、13a及び14aのうち第1基板11の他方の端部近傍以外の部分を覆っている。
(Sensor)
A sensor used in an analysis kit according to one embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a plan view showing an embodiment of a sensor. FIG. 2 is a cross-sectional view taken along line II-II of FIG.
The sensor 10 shown in FIG. 1 includes a first substrate 11, a working electrode 12, a counter electrode 13 and a reference electrode 14 provided in the vicinity of one end on the surface (upper surface in FIG. 2) of the first substrate 11; 12, lead wires 12a, 13a and 14a formed on the first substrate 11 so as to be connected to the counter electrode 13 and the reference electrode 14 and to extend to the other end of the first substrate 11, and the first substrate The second substrate 16 has a window 15 formed to expose the working electrode 12, the counter electrode 13 and the reference electrode 14 bonded thereto. The second substrate 16 covers a portion of the lead wires 12 a, 13 a and 14 a other than the vicinity of the other end of the first substrate 11.
 作用電極12は、導電性ダイヤモンド電極または導電性ダイヤモンド様炭素電極(DLC電極)である。導電性ダイヤモンド電極としては、ホウ素をドープしたホウ素ドープダイヤモンド電極を用いることができる。導電性ダイヤモンド電極は、sp結合を有するダイヤモンド構造を有する結晶質炭素電極である。導電性DLC電極は、主として炭素及び水素から構成され、sp結合およびsp結合が混在する非晶質炭素電極である。導電性DLC電極としては、窒素、リン、ヒ素、アンチモン及びビスマスからなる群から選ばれる少なくとも一種の元素をドープしたn型半導体のDLC電極と、ホウ素、ガリウム及びインジウムからなる群から選ばれる元素をドープしたp型半導体のDLC電極のいずれも用いることができる。 The working electrode 12 is a conductive diamond electrode or a conductive diamond-like carbon electrode (DLC electrode). A boron-doped boron-doped diamond electrode can be used as the conductive diamond electrode. The conductive diamond electrode is a crystalline carbon electrode having a diamond structure having sp 3 bonds. The conductive DLC electrode is an amorphous carbon electrode mainly composed of carbon and hydrogen and in which sp 3 bonds and sp 2 bonds are mixed. As the conductive DLC electrode, an n-type semiconductor DLC electrode doped with at least one element selected from the group consisting of nitrogen, phosphorus, arsenic, antimony and bismuth, and an element selected from the group consisting of boron, gallium and indium Any of the doped p-type semiconductor DLC electrodes can be used.
 sp結合の炭素を主体とする導電性ダイヤモンド電極およびDLC電極は、電気化学反応によって酸化または還元される化学物質が吸着する過程が極めて少ない。このため、例えば水に起因する水素や水酸化物やそれらのイオンによる電極への吸着を経る内圏酸化還元反応が極めて起こりにくい。その結果、残余電流と言われるノイズ電流が極端に小さくなるので、検出対象である被検物質の電気化学的反応を高SN比で検出することが可能である。 The conductive diamond electrode and the DLC electrode based on sp 3 bonded carbon and the DLC electrode have very few processes in which the chemical substance to be oxidized or reduced by the electrochemical reaction is adsorbed. For this reason, for example, the inner zone oxidation-reduction reaction through adsorption on the electrode by hydrogen, hydroxide or ions thereof caused by water hardly occurs. As a result, since the noise current, which is referred to as the residual current, becomes extremely small, it is possible to detect the electrochemical reaction of the analyte to be detected with a high SN ratio.
 作用電極12は、表面(図2において上側の面)に、一次抗体が固定されている。一次抗体は、測定対象の被検物質(抗原)に合せて適宜、選択して使用する。一次抗体としては、測定対象の被検物質に対して高い親和性を有し、抗原と結合するものであれば特に制限なく使用することができる。 The working electrode 12 has a primary antibody fixed on the surface (upper surface in FIG. 2). The primary antibody is appropriately selected and used in accordance with the test substance (antigen) to be measured. Any primary antibody can be used without particular limitation as long as it has high affinity for the test substance to be measured and binds to the antigen.
 対極13は、電気化学計測用のセンサにおいて通常用いられる電極用の導電性材料から構成される。対極13としては、例えば、カーボン電極、白金電極及び金電極などの貴金属電極、作用電極12と同じ導電性ダイヤモンド電極または導電性DLC電極を用いることができる。 The counter electrode 13 is composed of a conductive material for an electrode that is usually used in a sensor for electrochemical measurement. As the counter electrode 13, for example, a noble metal electrode such as a carbon electrode, a platinum electrode and a gold electrode, the same conductive diamond electrode or conductive DLC electrode as the working electrode 12 can be used.
 参照電極14としては、例えば、銀-塩化銀電極または水銀-塩化水銀電極を用いることができる。参照電極14は、好ましくは銀-塩化銀電極である。 For example, a silver-silver chloride electrode or a mercury-mercury chloride electrode can be used as the reference electrode 14. The reference electrode 14 is preferably a silver-silver chloride electrode.
 第1基板11は、作用電極12、対極13及び参照電極14を支持する支持体である。第1基板11は、電気化学センサとしての使用に耐え得る物理的強度を有していればよい。
 作用電極12がn型半導体のDLC電極であるときは、第1基板11はn型結晶性シリコン基板であることが好ましい。また、作用電極12がp型半導体のDLC電極であるときは、第1基板11はp型結晶性シリコン基板であることが好ましい。これにより、第1基板11と作用電極12との間に、ショットキー障壁などの界面抵抗が生じにくくなる。
The first substrate 11 is a support that supports the working electrode 12, the counter electrode 13, and the reference electrode 14. The first substrate 11 may have physical strength that can withstand use as an electrochemical sensor.
When the working electrode 12 is an n-type semiconductor DLC electrode, the first substrate 11 is preferably an n-type crystalline silicon substrate. When the working electrode 12 is a p-type semiconductor DLC electrode, the first substrate 11 is preferably a p-type crystalline silicon substrate. As a result, interface resistance such as a Schottky barrier is less likely to occur between the first substrate 11 and the working electrode 12.
 第2基板16は、第1基板11と同様の基板が用いられる。第1基板11と第2基板16は接着剤17によって接着されている。 As the second substrate 16, a substrate similar to the first substrate 11 is used. The first substrate 11 and the second substrate 16 are bonded by an adhesive 17.
(二次抗体を含む液)
 二次抗体を含む液は、溶媒と溶媒に分散された酸化還元が可能あるいは酸化還元反応を促進する標識が固定されている二次抗体とからなる。本実施形態において、酸化還元が可能あるいは酸化還元反応を促進する標識は、電子を放出することで酸化が可能であるか、電子を受容することで還元が可能であるか、どちらかあるいは両方が可能か、他の酸化還元物質の酸化還元を促進する酵素や触媒であり、かつ二次抗体に固定されている化学物質を意味する。二次抗体と酸化還元が可能あるいは酸化還元反応を促進する標識とを固定化させる方法としては、特に制限はなく、物理吸着、化学吸着、水素結合、イオン結合、共有結合等を用いることができる。酸化還元が可能あるいは酸化還元反応を促進する標識は、酵素、金属錯体および金属ナノ粒子からなる群より選ばれる少なくとも一つであることが好ましい。
(Solution containing secondary antibody)
The liquid containing the secondary antibody is composed of a solvent and a secondary antibody dispersed in the solvent and capable of oxidation-reduction or a label capable of promoting the oxidation-reduction reaction is immobilized. In this embodiment, the label capable of oxidation-reduction or promoting the oxidation-reduction reaction can be oxidized by releasing an electron, can be reduced by accepting an electron, or both Possible is a chemical substance that is an enzyme or catalyst that promotes the redox of another redox substance and is immobilized on a secondary antibody. There is no particular limitation on the method for immobilizing the secondary antibody and the label capable of redox or promoting the redox reaction, and physical adsorption, chemical adsorption, hydrogen bond, ionic bond, covalent bond, etc. can be used. . The label capable of redox or promoting the redox reaction is preferably at least one selected from the group consisting of an enzyme, a metal complex and a metal nanoparticle.
 本実施形態で標識として用いる酵素としては、例えば、西洋ワサビペルオキシターゼ、アルカリフォスファターゼ、β-ガラクトシダーゼ、グルコースオキシダーゼ、グルコースデヒドロゲナーゼ、グルコース-6-リン酸デヒドロゲナーゼ、グルコースアミラーゼが挙げられる。グルコースデヒドロゲナーゼ(GDH)としては、ピロロキノリンキノン(PQQ)を補酵素とするもの(PQQ-GDH)、フラビンアデニンジヌクレオチド(FAD)を補酵素とするもの(FAD-GDH)、ニコチンアミドアデニンジヌクレオチド(NAD)あるいはニコチンアデニンジヌクレオチドリン酸(NADP)を補酵素とするもの(NAD(P)-GDH)の3種類に大きく大別される。GDHは、グルコース以外のマルトースやガラクトースを基質としないアスペルギルス・オリゼのFAD-GDH、アスペルギルス・オリゼの野生型FAD-GDH及びその改変体などが好ましい。また、補酵素として、フラビンアデニンジヌクレオチド、ピロロキノリンキノン等を追加しても良い。また、メディエータとしてフェリシアン化イオン、フェロセン、ルテニウム化合物、ヘキサクロロイリジウム(IV)酸イオン、ビス(2,2’-ビピリジン)ジクロロルテニウム、ビス(2,2’-ビピリジン)ジクロロオスミウム、ヨウ素等を追加しても良い。 Examples of the enzyme used as a label in the present embodiment include horseradish peroxidase, alkaline phosphatase, β-galactosidase, glucose oxidase, glucose dehydrogenase, glucose-6-phosphate dehydrogenase and glucose amylase. As glucose dehydrogenase (GDH), one having pyrroloquinoline quinone (PQQ) as a coenzyme (PQQ-GDH), one having flavin adenine dinucleotide (FAD) as a coenzyme (FAD-GDH), nicotinamide adenine dinucleotide (NAD) or nicotine adenine dinucleotide phosphate (NADP) as a coenzyme (NAD (P)-GDH) is roughly classified into three. As GDH, Aspergillus oryzae FAD-GDH which does not use maltose other than glucose or galactose as a substrate, wild type FAD-GDH of Aspergillus oryzae or a modified form thereof is preferable. Further, as a coenzyme, flavin adenine dinucleotide, pyrroloquinoline quinone or the like may be added. Also, add ferricyanide ion, ferrocene, ruthenium compound, hexachloroiridium (IV) ion, bis (2,2'-bipyridine) dichlororuthenium, bis (2,2'-bipyridine) dichloroosmium, iodine etc. as mediator. You may.
 本実施形態で標識として用いる金属錯体としては、鉄錯体、銅錯体、イリジウム錯体、ルテニウム錯体、およびオスミウム錯体、例えば、フェリシアン化イオン、フェロセン、ヘキサクロロイリジウム(IV)酸イオン、ビス(2,2’-ビピリジン)ジクロロルテニウム、ルテノセン、ビス(2,2’-ビピリジン)ジクロロルテニウム、ビス(2,2’-ビピリジン)ジクロロルテニウム、ビス(2,2’-ビピリジン)ジクロロオスミウムなどが挙げられる。 Examples of metal complexes used as labels in this embodiment include iron complexes, copper complexes, iridium complexes, ruthenium complexes, and osmium complexes, such as ferricyanide ion, ferrocene, hexachloro iridium (IV) ion, bis (2,2 '-Bipyridine) dichlororuthenium, ruthenocene, bis (2,2'-bipyridine) dichlororuthenium, bis (2,2'-bipyridine) dichlororuthenium, bis (2,2'-bipyridine) dichloroosmium and the like.
 本実施形態で標識として用いる金属ナノ粒子は、金、白金、銀、銅、ロジウム、パラジウム、鉄、コバルトおよびニッケルからなる群より選ばれる少なくとも一種の金属を含むことが好ましい。金属は一種を単独で使用してもよいし、二種以上を組合せた合金として使用してもよい。特に、金ナノ粒子、銀ナノ粒子であることが好ましい。これらの金属ナノ粒子は、一種を単独で使用してもよいし、二種以上を組合せて使用してもよい。 The metal nanoparticles used as a label in the present embodiment preferably include at least one metal selected from the group consisting of gold, platinum, silver, copper, rhodium, palladium, iron, cobalt and nickel. The metals may be used alone or in combination of two or more. In particular, gold nanoparticles and silver nanoparticles are preferred. One of these metal nanoparticles may be used alone, or two or more of these metal nanoparticles may be used in combination.
 金属ナノ粒子は、平均粒子径が1nm以上100nm以下の範囲にあることが好ましく、10nm以上50nm以下の範囲にあることがさらに好ましい。金属ナノ粒子を含む液は、金属ナノ粒子の分散液であることが好ましい。 The metal nanoparticles preferably have an average particle size in the range of 1 nm to 100 nm, and more preferably in the range of 10 nm to 50 nm. The liquid containing the metal nanoparticles is preferably a dispersion of metal nanoparticles.
 金属ナノ粒子は、硫黄を含有していてもよい。硫黄は金属粒子ナノ粒子の表面に付着してもよいし、金属原子間に挿入されていてもよい。硫黄は、金属ナノ粒子の酸化を抑制する効果ある。金属ナノ粒子の硫黄の含有量は、0.001質量%以上0.5質量%以下の範囲にあることが好ましい。 The metal nanoparticles may contain sulfur. The sulfur may be attached to the surface of the metal particle nanoparticles or may be intercalated between metal atoms. Sulfur has the effect of suppressing the oxidation of metal nanoparticles. The sulfur content of the metal nanoparticles is preferably in the range of 0.001% by mass to 0.5% by mass.
 二次抗体は、測定対象の被検物質(抗原)に合せて適宜、選択して使用する。二次抗体としては、測定対象の被検物質に対して高い親和性を有し、抗原と結合するものであれば特に制限なく使用することができる。 The secondary antibody is appropriately selected and used in accordance with the test substance (antigen) to be measured. Any secondary antibody may be used without particular limitation as long as it has high affinity to the analyte to be measured and binds to the antigen.
 溶媒としては、水系溶媒、有機系溶媒およびこれらの混合液を用いることができる。水系溶媒の例としては、水、緩衝液を挙げることができる。緩衝液としては、リン酸緩衝生理食塩水(PBS)を用いることができる。有機系溶媒の例としては、メタノール、エタノール、1-プロパノール、2-プロパノールなどの1価アルコール、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトンを挙げることができる。 As a solvent, an aqueous solvent, an organic solvent and a mixture thereof can be used. Examples of aqueous solvents include water and buffers. As a buffer solution, phosphate buffered saline (PBS) can be used. Examples of the organic solvent include monohydric alcohols such as methanol, ethanol, 1-propanol and 2-propanol, and ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone.
 二次抗体を含む液は、さらに、増粘剤、界面活性剤、分散剤、酸化防止剤などを含有していてもよい。二次抗体を含む液は、酸化還元が可能な標識が固定される二次抗体を含む液体、又は、酸化還元剤と、この酸化還元剤を促進可能な標識が固定される二次抗体とを含む液体であることが好ましい。前者の酸化還元が可能な標識が固定されている二次抗体を含む液体は、金属ナノ粒子を含む液体であることが好ましい。また、後者の酸化還元剤と酸化還元剤の酸化還元反応を促進可能な標識が固定されている二次抗体とを含む液体において、酸化還元剤は過酸化水素水であることが好ましく、酸化還元反応を促進可能な標識は、酵素または金属錯体であることが好ましい。 The liquid containing the secondary antibody may further contain a thickener, a surfactant, a dispersant, an antioxidant and the like. The liquid containing the secondary antibody is a liquid containing the secondary antibody to which a redox-capable label is immobilized, or a redox agent, and a secondary antibody to which a label capable of promoting the redox agent is immobilized. It is preferable that it is a liquid containing. The liquid containing the secondary antibody to which the redox-provable label is fixed is preferably a liquid containing metal nanoparticles. In the liquid containing the latter redox agent and a secondary antibody to which a label capable of promoting the redox reaction of the redox agent is immobilized, the redox agent is preferably hydrogen peroxide water, and the redox The label capable of promoting the reaction is preferably an enzyme or a metal complex.
[分析方法]
 次に、本実施形態の分析方法を、酸化還元が可能あるいは酸化還元反応を促進する標識として、磁性を有する磁性金属ナノ粒子を用いた場合を例にとって、図3と図4を参照して説明する。
 図3は、本発明の一実施形態にかかる分析方法を説明するフロー図である。図4は、本発明の一実施形態にかかる分析方法を説明する概念図である。
 本実施形態の分析方法は、図3に示すように、第1結合工程S01、第1洗浄工程S02、第2結合工程S03、第2洗浄工程S04、磁場印加工程S05、電流量計測工程S06、算出工程S07を含む。
[Analytical method]
Next, the analysis method of the present embodiment will be described with reference to FIGS. 3 and 4 by using magnetic metal nanoparticles having magnetism as a label capable of oxidation reduction or promoting oxidation reduction reaction as an example. Do.
FIG. 3 is a flow diagram illustrating an analysis method according to an embodiment of the present invention. FIG. 4 is a conceptual diagram for explaining an analysis method according to an embodiment of the present invention.
As shown in FIG. 3, the analysis method of the present embodiment includes a first bonding step S01, a first washing step S02, a second bonding step S03, a second washing step S04, a magnetic field application step S05, a current amount measuring step S06, Calculation step S07 is included.
(第1結合工程S01)
 第1結合工程S01では、上述のセンサ10の作用電極12と、被検物質溶液とを接触させる。図4(a)に示すように、作用電極12の表面には、測定対象物である被検物質と選択的に結合可能な一次抗体31が固定されている。このため、第1結合工程S01では、図4(b)に示すように、測定対象となる被検物質32のみが一次抗体31に補足される。
(First bonding step S01)
In the first bonding step S01, the working electrode 12 of the above-described sensor 10 is brought into contact with the test substance solution. As shown in FIG. 4A, on the surface of the working electrode 12, a primary antibody 31 capable of selectively binding to a test substance to be measured is fixed. Therefore, in the first binding step S01, only the test substance 32 to be measured is captured by the primary antibody 31, as shown in FIG. 4 (b).
(第1洗浄工程S02)
 第1洗浄工程S02では、作用電極12を洗浄して作用電極12に付着している被検物質溶液を除去する。洗浄液としては、水系溶媒、有機系溶媒を用いることができる。
(First cleaning step S02)
In the first cleaning step S02, the working electrode 12 is washed to remove the test substance solution adhering to the working electrode 12. As the washing solution, an aqueous solvent or an organic solvent can be used.
(第2結合工程S03)
 第2結合工程S03では、作用電極12と、前述の磁性金属ナノ粒子の分散液とを接触させる。図4(c)に示すように、磁性金属ナノ粒子33の表面には、測定対象物である被検物質32と選択的に結合可能な二次抗体34が固定されている。このため、第2結合工程S03により、図4(c)に示すように、被検物質32と二次抗体34が結合し、被検物質32に標識となる磁性金属ナノ粒子33が接続される。
(Second bonding step S03)
In the second bonding step S03, the working electrode 12 is brought into contact with the aforementioned dispersion of magnetic metal nanoparticles. As shown in FIG. 4C, on the surface of the magnetic metal nanoparticles 33, a secondary antibody 34 capable of selectively binding to the test substance 32, which is an object to be measured, is fixed. Therefore, as shown in FIG. 4C, in the second binding step S03, the test substance 32 and the secondary antibody 34 are bound, and the magnetic metal nanoparticles 33 to be labeled are connected to the test substance 32. .
(第2洗浄工程S04)
 第2洗浄工程S04では、作用電極12を洗浄して作用電極12に付着している磁性金属ナノ粒子の分散液を除去する。この第2洗浄工程S04により、被検物質32に接続されていない磁性金属ナノ粒子33が除去される。洗浄液としては、水系溶媒、有機系溶媒を用いることができる。
(Second cleaning step S04)
In the second cleaning step S04, the working electrode 12 is washed to remove the dispersion liquid of magnetic metal nanoparticles attached to the working electrode 12. The magnetic metal nanoparticles 33 not connected to the test substance 32 are removed by the second cleaning step S04. As the washing solution, an aqueous solvent or an organic solvent can be used.
(磁場印加工程S05)
 磁場印加工程S05では、被検物質32と接続された磁性金属ナノ粒子33に溶媒の存在下で磁場を印加する。磁場は、作用電極12の背面側から磁性金属ナノ粒子33を引き付ける方向に印加することが好ましい。磁場は、例えば、図4(d)に示すように、作用電極12の背面(図4(d)において下面)の側に磁石35を配置することによって印加することができる。磁石35としては、永久磁石または電磁石を用いることができる。この磁場印加工程S05により、被検物質32と接続された磁性金属ナノ粒子33が作用電極12に接触する。
(Magnetic field application step S05)
In the magnetic field application step S05, a magnetic field is applied to the magnetic metal nanoparticles 33 connected to the test substance 32 in the presence of a solvent. The magnetic field is preferably applied from the back side of the working electrode 12 in the direction in which the magnetic metal nanoparticles 33 are attracted. The magnetic field can be applied, for example, by disposing the magnet 35 on the side of the back surface (the lower surface in FIG. 4D) of the working electrode 12 as shown in FIG. 4D. As the magnet 35, a permanent magnet or an electromagnet can be used. In the magnetic field application step S05, the magnetic metal nanoparticles 33 connected to the test substance 32 come into contact with the working electrode 12.
 溶媒は、印加された磁場によって、磁性金属ナノ粒子33を作用電極12に接触するように移動させることができるものであれば、特に制限はないが、次の電流量計測工程S06で使用できる導電性溶媒を用いることが好ましい。 The solvent is not particularly limited as long as it can move the magnetic metal nanoparticles 33 into contact with the working electrode 12 by the applied magnetic field, but the conductivity can be used in the next current amount measurement step S06. It is preferred to use an organic solvent.
(電流量計測工程S06)
 電流量計測工程S06では、作用電極12と対極13との間に電圧を印加して、磁性金属ナノ粒子33を導電性溶媒の存在下でイオン化(酸化)させ、磁性金属ナノ粒子33の全量がイオン化するまでの電流量を計測する。例えば、磁性金属ナノ粒子33がコバルトナノ粒子である場合、図4(d)に示すように、作用電極12と対極13との間に電圧を印加することによって、コバルトナノ粒子が2価のイオンとして溶解するときの電流量を計測する。具体的には、センサ10のリード線12a、13a、14aをポテンシオスタットに接続し、ボルタンメトリー法を用いて、作用電極12と対極13との間に電圧を印加しながら、作用電極12と対極13との間に流れる電流量を測定する。
(Current amount measurement process S06)
In the current amount measurement step S06, a voltage is applied between the working electrode 12 and the counter electrode 13 to ionize (oxidize) the magnetic metal nanoparticles 33 in the presence of the conductive solvent, and the total amount of the magnetic metal nanoparticles 33 is Measure the amount of current until ionization. For example, when the magnetic metal nanoparticles 33 are cobalt nanoparticles, as shown in FIG. 4 (d), the cobalt nanoparticles are divalent ions by applying a voltage between the working electrode 12 and the counter electrode 13. Measure the amount of current when dissolving. Specifically, the lead wires 12a, 13a and 14a of the sensor 10 are connected to a potentiostat, and while applying a voltage between the working electrode 12 and the counter electrode 13 using the voltammetry method, the working electrode 12 and the counter electrode Measure the amount of current flowing between it and 13.
 導電性溶媒としては、電解質溶液を用いることが好ましい。電解質溶液の電解質としては、塩化カリウム、塩化ナトリウム、塩化リチウムなどの塩化物を用いることができる。塩化物は、磁性金属ナノ粒子33をイオン化させる際に、磁性金属ナノ粒子33の表面に形成されている酸化物被膜(不働態被膜)を破壊し、磁性金属を溶液に露呈させ、イオン化を進行し易くする効果がある。電解質溶液の溶媒としては、水系溶媒を用いることができる。水系溶媒の例としては、水、緩衝液を挙げることができる。電解質溶液の塩化物イオン濃度は、0.05モル/L以上1.0モル/L以下の範囲にあることが好ましい。 It is preferable to use an electrolyte solution as the conductive solvent. As the electrolyte of the electrolyte solution, chlorides such as potassium chloride, sodium chloride and lithium chloride can be used. The chloride destroys the oxide film (passive film) formed on the surface of the magnetic metal nanoparticles 33 when the magnetic metal nanoparticles 33 are ionized, exposing the magnetic metal to a solution, and advancing the ionization. It has the effect of making it easy to do. An aqueous solvent can be used as a solvent of the electrolyte solution. Examples of aqueous solvents include water and buffers. The chloride ion concentration of the electrolyte solution is preferably in the range of 0.05 mol / L to 1.0 mol / L.
(算出工程S07)
 算出工程S07では、電流量から磁性金属ナノ粒子33の量(標識量)を求め、磁性金属ナノ粒子33の量から被検物質量を算出する。電流量計測工程S06で得られる電流量は、磁性金属ナノ粒子33の量(すなわち、被検物質量)と相関する。従って、既知量の被検物質を含む試料を用いて検量線を作成することによって、被検物質溶液に含まれる被検物質を正確に定量することが可能となる。
(Calculation process S07)
In the calculation step S07, the amount (the labeled amount) of the magnetic metal nanoparticles 33 is obtained from the current amount, and the mass of the test object is calculated from the amount of the magnetic metal nanoparticles 33. The amount of current obtained in the step of current amount measurement step S06 correlates with the amount of the magnetic metal nanoparticles 33 (that is, the mass of the test object). Therefore, by preparing a calibration curve using a sample containing a known amount of a test substance, it becomes possible to accurately quantify the test substance contained in the test substance solution.
 以上、酸化還元が可能あるいは酸化還元反応を促進する標識として、磁性金属ナノ粒子を用いた場合を例にとって本実施形態の分析方法を説明した。が、酸化還元が可能あるいは酸化還元反応を促進する標識として、酵素、金属錯体、磁性を有しない金属ナノ粒子を用いる場合は、磁場印加工程S05を行う必要はない。さらに、酸化還元が可能あるいは酸化還元反応を促進する標識として、磁性金属ナノ粒子を用いた場合でも、磁場印加工程S05を省略してもよい。本実施形態でセンサの作用電極として用いる導電性ダイヤモンド電極および導電性ダイヤモンド様炭素電極(DLC電極)は感度が高く、作用電極と標識との間に流れる微小な酸化還元電流を高SN比で検出することができる。このため、標識と作用電極とが密着していなくても標識量を高精度に測定することができる。 In the above, the analysis method of the present embodiment has been described with an example where magnetic metal nanoparticles are used as a label capable of redox or promoting a redox reaction. However, when an enzyme, a metal complex, or a metal nanoparticle having no magnetism is used as a label capable of redox or promoting a redox reaction, it is not necessary to perform the magnetic field application step S05. Furthermore, the magnetic field application step S05 may be omitted even when magnetic metal nanoparticles are used as a label capable of oxidation reduction or promoting oxidation reduction reaction. The conductive diamond electrode and the conductive diamond-like carbon electrode (DLC electrode) used as the working electrode of the sensor in this embodiment have high sensitivity, and the minute redox current flowing between the working electrode and the label is detected at a high SN ratio can do. For this reason, even if the label and the working electrode are not in close contact with each other, the amount of label can be measured with high accuracy.
 また、上記の分析方法では、電流量計測工程S06において、磁性金属ナノ粒子33をイオン化(酸化)させることによって、標識量を算出しているが、これに限定されるものではない。
 例えば、作用電極と対極との間に、酸化還元可能な物質を存在させ、次いで作用電極と対極との間に電圧を印加して、酸化還元反応を促進する標識が、酸化還元可能な物質を酸化または還元させるために要した電流量を計測することによって、標識量を算出してもよい。さらには、これにメディエータを用いてもよい。
 酸化還元可能な物質として過酸化水素、メディエータとしてフェロシアン化イオンを用いる方法としては、次のようにすることができる。電圧印加下において、標識化合物である酵素HRPの働きにより電解液中の過酸化水素が次式の分解が促進される。
  H+2H+2e→2H
 上式の電子はメディエータ液中のフェロシアン化イオンがフェリシアン化イオンへの酸化によるものであり、電極から供給される。その際に生じる電流値を測定した。この電流値は、酵素HRPが過酸化水素を分解するために要した電流量、つまり被検物質と接続した標識の量に比例した値となり、この電流値を測定することによって被検物質を定量的に測定することができる。
Further, in the above analysis method, the labeling amount is calculated by ionizing (oxidizing) the magnetic metal nanoparticles 33 in the current amount measurement step S06, but the present invention is not limited to this.
For example, a substance capable of redox reaction is present between the working electrode and the counter electrode, and then a voltage is applied between the working electrode and the counter electrode to promote the redox reaction. The amount of labeling may be calculated by measuring the amount of current required for oxidation or reduction. Furthermore, a mediator may be used for this.
As a method of using hydrogen peroxide as a substance capable of oxidation and reduction and a ferrocyanide ion as a mediator, it can be performed as follows. Under the application of a voltage, decomposition of the hydrogen peroxide in the electrolytic solution of the following formula is promoted by the action of the enzyme HRP which is a labeling compound.
H 2 O 2 + 2H + + 2e - → 2H 2 O
The electron of the above formula is due to the oxidation of the ferrocyanide ion in the mediator solution to the ferricyanide ion, and is supplied from the electrode. The current value generated at that time was measured. This current value is a value proportional to the amount of current required for the enzyme HRP to decompose hydrogen peroxide, that is, the amount of the label connected to the test substance, and the test substance is quantified by measuring this current value. Can be measured.
 以上説明したように、本実施形態の分析キットによれば、センサ10の作用電極12として、導電性ダイヤモンド電極または導電性ダイヤモンド様炭素電極(DLC電極)を用いるので、磁性金属ナノ粒子の電気化学反応を高SN比で検出することが可能となる。また、センサ10の作用電極12は、一次抗体が固定されているので、被検物質溶液に含まれる被検物質を高い選択性で補足することができる。
 また、本実施形態の分析キットによれば、二次抗体が固定されている磁性金属ナノ粒子の分散液を備えるので、標識として磁性金属ナノ粒子を用い、その磁性金属ナノ粒子の量を、電気化学的手法を用いて定量することによって、一次抗体で補足された被検物質を高い感度で分析することができる。
As described above, according to the analysis kit of the present embodiment, since the conductive diamond electrode or the conductive diamond-like carbon electrode (DLC electrode) is used as the working electrode 12 of the sensor 10, the electrochemistry of the magnetic metal nanoparticles It is possible to detect the reaction at a high SN ratio. In addition, since the primary antibody is immobilized on the working electrode 12 of the sensor 10, the test substance contained in the test substance solution can be complemented with high selectivity.
Further, according to the analysis kit of the present embodiment, since the dispersion liquid of magnetic metal nanoparticles to which the secondary antibody is immobilized is provided, magnetic metal nanoparticles are used as a label, and the amount of the magnetic metal nanoparticles is determined by By quantifying using a chemical method, it is possible to analyze with high sensitivity the analyte captured by the primary antibody.
 また、本実施形態の分析方法において、酸化還元が可能あるいは酸化還元反応を促進する標識として、磁性を有する磁性金属ナノ粒子を用いた場合は、被検物質と接続した磁性金属ナノ粒子に溶媒の存在下で磁場を印加して、磁性金属ナノ粒子を作用電極に接触させることによって、従来行われていた金属を化学的に溶解させる工程を実施せずに、電気化学的手法を用いて被検物質を定量することができる。従って、本発明の分析キットおよび分析方法によれば、操作が簡便で、被検物質を高い選択性で、かつ高感度で分析することが可能となる。 Further, in the analysis method of the present embodiment, when magnetic metal nanoparticles having magnetism are used as a label capable of oxidation reduction or promotion of oxidation reduction reaction, the magnetic metal nanoparticles connected to the test substance contain a solvent By applying a magnetic field in the presence to bring the magnetic metal nanoparticles into contact with the working electrode, the test is carried out using an electrochemical method without carrying out the conventional chemical dissolution step of the metal. The substance can be quantified. Therefore, according to the analysis kit and the analysis method of the present invention, it is possible to simplify the operation and analyze the test substance with high selectivity and high sensitivity.
 以下、具体的実施例を挙げて本発明をさらに詳細に説明するが、本発明は、これら実施例に限定されない。 Hereinafter, the present invention will be described in more detail by way of specific examples, but the present invention is not limited to these examples.
[実施例1]
(1)一次抗体付きセンサの作製
 作用電極に導電性DLC膜、対極とリード線にカーボンペーストのスクリーン印刷により作成したカーボン膜、参照電極にペースト化したAg/AgClのスクリーン印刷により作成したAg/AgCl膜を用いたセンサチップを用意した。このセンサチップの作用電極(電極面積S=0.0962cm)に、一次抗体として未標識の抗ヤギIgGを固定して、作用電極の表面に一次抗体が固定されている一次抗体付きセンサを作製した。
Example 1
(1) Preparation of sensor with primary antibody A conductive DLC film on the working electrode, a carbon film prepared by screen printing of carbon paste on the counter electrode and lead wire, Ag / AgCl prepared by screen printing of Ag / AgCl paste on the reference electrode A sensor chip using an AgCl film was prepared. An unlabeled anti-goat IgG as a primary antibody is immobilized on the working electrode (electrode area S = 0.0962 cm 2 ) of this sensor chip, and a sensor with primary antibody immobilized on the surface of the working electrode is fabricated. did.
(2)二次抗体付きコバルトナノ粒子分散液
 4.60mM硫酸コバルト(II)四水和物、および0.460mMクエン酸三ナトリウム二水和物を、2Lの脱イオン水に溶解させた。8.80mM水素化ホウ素ナトリウムを混合物に添加し、10分間反応させた。ネオジム磁石を用いて生成したコバルトナノ粒子を分離し、エタノールで数回洗浄した。洗浄後、コバルトナノ粒子を室温にて真空オーブンで一晩乾燥させた。乾燥したコバルトナノ粒子を450℃で水素と窒素の混合ガスの下で1時間熱処理を行った。得られたコバルトナノ粒子の平均粒子径は18nmであった。
(2) Cobalt nanoparticle dispersion with secondary antibody 4.60 mM cobalt (II) sulfate tetrahydrate and 0.460 mM trisodium citrate dihydrate were dissolved in 2 L of deionized water. 8.80 mM sodium borohydride was added to the mixture and allowed to react for 10 minutes. The cobalt nanoparticles produced were separated using a neodymium magnet and washed several times with ethanol. After washing, the cobalt nanoparticles were dried overnight in a vacuum oven at room temperature. The dried cobalt nanoparticles were heat treated at 450 ° C. under a mixed gas of hydrogen and nitrogen for 1 hour. The average particle size of the obtained cobalt nanoparticles was 18 nm.
 上記のコバルトナノ粒子と、オボアルブミン(OA、グレードIII)と、抗ヤギIgGと、リン酸緩衝生理食塩水(PBS)と、ポリエチレングリコールソルビタンモノラウラート(Tween20、非イオン系界面活性剤)を混合し、コバルトナノ粒子の表面に、抗ヤギIgG(二次抗体)を固定した二次抗体付きコバルトナノ粒子分散液を作製した。二次抗体付きコバルトナノ粒子分散液のコバルトナノ粒子の濃度は0.007質量%とした。抗ヤギIgGとしては、Jackson Immunoresearch Laboratories社から市販されているポリクローナル抗体を使用した。 Cobalt nanoparticles described above, ovalbumin (OA, grade III), anti-goat IgG, phosphate buffered saline (PBS), and polyethylene glycol sorbitan monolaurate (Tween 20, non-ionic surfactant) It mixed and the cobalt nanoparticle dispersion liquid with a secondary antibody which fixed anti-goat IgG (secondary antibody) on the surface of cobalt nanoparticles was produced. The concentration of cobalt nanoparticles in the cobalt nanoparticle dispersion liquid with secondary antibody was 0.007% by mass. As anti-goat IgG, a polyclonal antibody commercially available from Jackson Immunoresearch Laboratories was used.
(3)抗原分析用試料
 抗原分析用試料として、下記に示すように抗原濃度がそれぞれ異なるNo.1~No.6を用意した。下記のNo.1~No.6は、0.1%のTween20を含むPBS緩衝液と、ヤギIgG(抗原)とを抗原濃度が下記の濃度となるように混合することによって調製した。
 No.1:抗原濃度=0.001ng/mL
 No.2:抗原濃度=0.01ng/mL
 No.3:抗原濃度=0.1ng/mL
 No.4:抗原濃度=1ng/mL
 No.5:抗原濃度=10ng/mL
 No.6:抗原濃度=100ng/mL
(3) Sample for Antigen Analysis As a sample for antigen analysis, as shown below, No. 1 in which the antigen concentrations are different from each other. 1 to No. I prepared six. The following No. 1 to No. 6 was prepared by mixing PBS buffer containing 0.1% of Tween 20 with goat IgG (antigen) such that the antigen concentration became the following concentration.
No. 1: Antigen concentration = 0.001 ng / mL
No. 2: Antigen concentration = 0.01 ng / mL
No. 3: Antigen concentration = 0.1 ng / mL
No. 4: Antigen concentration = 1 ng / mL
No. 5: Antigen concentration = 10 ng / mL
No. 6: Antigen concentration = 100 ng / mL
(4)抗原の分析
 (3)で用意したNo.1~No.6の各抗原分析用試料について、35μLを正確に量り取り、これを上記(1)で作製した一次抗体付きセンサの作用電極の上に滴下した後、40分間インキュベートした(第1結合工程)。
(4) Analysis of antigen No. 1 prepared in (3). 1 to No. For each of the six antigen analysis samples, 35 μL was accurately weighed, dropped on the working electrode of the primary antibody-equipped sensor prepared in (1) above, and then incubated for 40 minutes (first binding step).
 次に、一次抗体付きセンサの作用電極を、洗浄液を用いて洗浄して、抗原分析用試料を洗い流した(第1洗浄工程)。洗浄液には、PBSを用いた。 Next, the working electrode of the sensor with a primary antibody was washed using a washing solution to wash away the sample for antigen analysis (first washing step). PBS was used as the washing solution.
 次に、上記(2)で調製した二次抗体付きコバルトナノ粒子分散液を1μL正確に量り取り、これを、一次抗体付きセンサの作用電極の上に滴下した後、3時間インキュベートした(第2結合工程)。 Next, 1 μL of the cobalt nanoparticle dispersion with secondary antibody prepared in (2) above was accurately measured, and this was dropped on the working electrode of the sensor with primary antibody and then incubated for 3 hours (second Bonding step).
 次に、一次抗体付きセンサの作用電極を、洗浄液を用いて洗浄して、二次抗体付きコバルトナノ粒子分散液を洗い流した(第2洗浄工程)。洗浄液には、PBSを用いた。 Next, the working electrode of the sensor with a primary antibody was washed using a washing solution to wash out the cobalt nanoparticle dispersion with a secondary antibody (second washing step). PBS was used as the washing solution.
 次に、一次抗体付きセンサのリード線をポテンシオスタットに接続し、一次抗体付きセンサを、プラスチック製角型容器に、その一次抗体付きセンサの背面(作用電極側とは反対側の面)がプラスチック製角型容器の底面に接触するように収容した。次いで、プラスチック製角型容器に、PBSに0.1モル/L塩化カリウムを溶解させた電解質溶液を注入し、一次抗体付きセンサを電解質溶液に浸漬させた。そしてプラスチック製角型容器の底部外側にネオジム磁石を密着配置して、一次抗体付きセンサの作用電極に、センサ背面側からコバルトナノ粒子を引き付ける方向に磁場を印加した(磁場印加工程)。 Next, connect the lead wire of the sensor with primary antibody to the potentiostat, put the sensor with primary antibody in the plastic square container, and the back of the sensor with primary antibody (opposite to the working electrode side) It was stored in contact with the bottom of a plastic square container. Next, an electrolyte solution prepared by dissolving 0.1 mol / L potassium chloride in PBS was injected into a plastic rectangular container, and the sensor with a primary antibody was immersed in the electrolyte solution. Then, a neodymium magnet was disposed closely to the outside of the bottom of the plastic rectangular container, and a magnetic field was applied to the working electrode of the sensor with a primary antibody in the direction to attract cobalt nanoparticles from the back side of the sensor (magnetic field application step).
 次に、ポテンシオスタットを用いて、作用電極と対極との間に電圧を印加して、作用電極と対極との間に流れる電流量を計測した(電流量計測工程)。 Next, a voltage was applied between the working electrode and the counter electrode using a potentiostat, and the amount of current flowing between the working electrode and the counter electrode was measured (current amount measuring step).
 図5に、No.1~No.6の各抗原分析用試料の抗原濃度と、作用電極と対極との間に流れた電流量(すなわちコバルトナノ粒子をイオン化させるために要した電流量)とをプロットしたグラフを示す。図5のグラフから電流値と、抗原分析用試料の抗原濃度との間には相関関係があることが確認された。従って、既知量の抗原(被検物質)を含む試料を用いて検量線(電流値-抗原濃度曲線)を作成することによって、被検物質溶液に含まれる抗原(被検物質)を正確に定量することが可能となることが確認された。 In FIG. 1 to No. The graph which plotted the antigen concentration of the sample for each antigen analysis of 6, and the electric current amount (namely, electric current amount required in order to ionize a cobalt nanoparticle) which flowed between the working electrode and the counter electrode is shown. From the graph of FIG. 5, it was confirmed that there is a correlation between the current value and the antigen concentration of the sample for antigen analysis. Therefore, by preparing a standard curve (current value-antigen concentration curve) using a sample containing a known amount of antigen (test substance), it is possible to accurately determine the antigen (test substance) contained in the test substance solution. It was confirmed that it would be possible.
[実施例2]
 磁場印加工程、すなわちプラスチック製角型容器の底部外側にネオジム磁石を密着配置して、一次抗体付きセンサの作用電極に、センサ背面側からコバルトナノ粒子を引き付ける方向に磁場を印加することを行わなかったこと以外は、実施例1と同様にして、各抗原分析用試料の抗原濃度と、抗原の標識であるコバルトナノ粒子をイオン化させるために要した電流量とをプロットしたグラフを作成した。その結果を、図6に示す。図6のグラフから、電流値と、抗原分析用試料の抗原濃度との間には相関関係があることが確認された。従って、磁場印加工程を行わなくても、既知量の抗原(被検物質)を含む試料を用いて検量線(電流値-抗原濃度曲線)を作成することによって、被検物質溶液に含まれる抗原(被検物質)を定量することが可能となることが確認された。
Example 2
In the magnetic field application step, that is, a neodymium magnet is disposed closely to the outside of the bottom of a plastic rectangular container, and a magnetic field is not applied to the working electrode of the sensor with primary antibody from the back side of the sensor Except for the above, in the same manner as in Example 1, a graph was created in which the antigen concentration of each antigen analysis sample was plotted with the amount of current required to ionize the cobalt nanoparticle that is the label of the antigen. The results are shown in FIG. From the graph of FIG. 6, it was confirmed that there is a correlation between the current value and the antigen concentration of the sample for antigen analysis. Therefore, even if the magnetic field application step is not performed, the antigen contained in the test substance solution is prepared by preparing a calibration curve (current value-antigen concentration curve) using a sample containing a known amount of antigen (test substance). It was confirmed that it was possible to quantify (the test substance).
[実施例3]
(1)一次抗体付きセンサの作製
 作用電極に導電性DLC膜、対極とリード線にカーボンペーストのスクリーン印刷により作成したカーボン膜、参照電極にペースト化したAg/AgClのスクリーン印刷により作成したAg/AgCl膜を用いたセンサチップを用意した。このセンサチップの作用電極(電極面積S=0.0962cm)に、一次抗体として未標識の抗ヤギIgGを固定して、作用電極の表面に一次抗体が固定されている一次抗体付きセンサを作製した。
[Example 3]
(1) Preparation of sensor with primary antibody A conductive DLC film on the working electrode, a carbon film prepared by screen printing of carbon paste on the counter electrode and lead wire, Ag / AgCl prepared by screen printing of Ag / AgCl paste on the reference electrode A sensor chip using an AgCl film was prepared. An unlabeled anti-goat IgG as a primary antibody is immobilized on the working electrode (electrode area S = 0.0962 cm 2 ) of this sensor chip, and a sensor with primary antibody immobilized on the surface of the working electrode is fabricated. did.
(2)二次抗体付き金ナノ粒子分散液
 田中貴金属社製金コロイド溶液(粒径20nm)と、オボアルブミン(OA、グレードIII)と、抗ヤギIgGと、リン酸緩衝生理食塩水(PBS)と、ポリエチレングリコールソルビタンモノラウラート(Tween20、非イオン系界面活性剤)を混合し、金ナノ粒子の表面に、抗ヤギIgG(二次抗体)を固定した二次抗体付き金ナノ粒子分散液を作製した。二次抗体付き金ナノ粒子分散液の金ナノ粒子の濃度は0.007質量%とした。抗ヤギIgGとしては、Jackson Immunoresearch Laboratories社から市販されているポリクローナル抗体を使用した。
(2) Gold Nanoparticles-Dispersed Liquid with Secondary Antibody Gold Colloid Solution (20 nm particle size) manufactured by Tanaka Kikinzoku Co., Ltd., ovalbumin (OA, grade III), anti-goat IgG, phosphate buffered saline (PBS) And polyethylene glycol sorbitan monolaurate (Tween 20, non-ionic surfactant) mixed, and a gold nanoparticle dispersion liquid with a secondary antibody on which anti-goat IgG (secondary antibody) is immobilized on the surface of the gold nanoparticles Made. The concentration of gold nanoparticles in the secondary antibody-loaded gold nanoparticle dispersion was 0.007% by mass. As anti-goat IgG, a polyclonal antibody commercially available from Jackson Immunoresearch Laboratories was used.
(3)抗原分析用試料
 抗原分析用試料として、下記に示すように抗原濃度がそれぞれ異なるNo.1~No.6を用意した。下記のNo.1~No.6は、0.1%のTween20を含むPBS緩衝液と、ヤギIgG(抗原)とを抗原濃度が下記の濃度となるように混合することによって調製した。
 No.1:抗原濃度=0.001ng/mL
 No.2:抗原濃度=0.01ng/mL
 No.3:抗原濃度=0.1ng/mL
 No.4:抗原濃度=1ng/mL
 No.5:抗原濃度=10ng/mL
 No.6:抗原濃度=100ng/mL
(3) Sample for Antigen Analysis As a sample for antigen analysis, as shown below, No. 1 in which the antigen concentrations are different from each other. 1 to No. I prepared six. The following No. 1 to No. 6 was prepared by mixing PBS buffer containing 0.1% of Tween 20 with goat IgG (antigen) such that the antigen concentration became the following concentration.
No. 1: Antigen concentration = 0.001 ng / mL
No. 2: Antigen concentration = 0.01 ng / mL
No. 3: Antigen concentration = 0.1 ng / mL
No. 4: Antigen concentration = 1 ng / mL
No. 5: Antigen concentration = 10 ng / mL
No. 6: Antigen concentration = 100 ng / mL
(4)抗原の分析
 (3)で用意したNo.1~No.6の各抗原分析用試料について、35μLを正確に量り取り、これを上記(1)で作製した一次抗体付きセンサの作用電極の上に滴下した後、40分間インキュベートした(第1結合工程)。
(4) Analysis of antigen No. 1 prepared in (3). 1 to No. For each of the six antigen analysis samples, 35 μL was accurately weighed, dropped on the working electrode of the primary antibody-equipped sensor prepared in (1) above, and then incubated for 40 minutes (first binding step).
 次に、一次抗体付きセンサの作用電極を、洗浄液を用いて洗浄して、抗原分析用試料を洗い流した(第1洗浄工程)。洗浄液には、PBSを用いた。 Next, the working electrode of the sensor with a primary antibody was washed using a washing solution to wash away the sample for antigen analysis (first washing step). PBS was used as the washing solution.
 次に、上記(2)で調製した二次抗体付き金ナノ粒子分散液を1μL正確に量り取り、これを、一次抗体付きセンサの作用電極の上に滴下した後、3時間インキュベートした(第2結合工程)。 Next, 1 μL of the gold nanoparticle dispersion prepared with the secondary antibody prepared above in (2) was accurately measured, dropped on the working electrode of the sensor with a primary antibody, and incubated for 3 hours (second time) Bonding step).
 次に、一次抗体付きセンサの作用電極を、洗浄液を用いて洗浄して、二次抗体付き金ナノ粒子分散液を洗い流した(第2洗浄工程)。洗浄液には、PBSを用いた。 Next, the working electrode of the sensor with a primary antibody was washed using a washing solution to wash out the secondary antibody-bearing gold nanoparticle dispersion (second washing step). PBS was used as the washing solution.
 次に、一次抗体付きセンサのリード線をポテンシオスタットに接続し、一次抗体付きセンサを、プラスチック製角型容器に、その一次抗体付きセンサの背面(作用電極側とは反対側の面)がプラスチック製角型容器の底面に接触するように収容した。次いで、プラスチック製角型容器に、PBSに0.1モル/L塩化カリウムを溶解させた電解質溶液を注入し、一次抗体付きセンサを電解質溶液に浸漬させた。 Next, connect the lead wire of the sensor with primary antibody to the potentiostat, put the sensor with primary antibody in the plastic square container, and the back of the sensor with primary antibody (opposite to the working electrode side) It was stored in contact with the bottom of a plastic square container. Next, an electrolyte solution prepared by dissolving 0.1 mol / L potassium chloride in PBS was injected into a plastic rectangular container, and the sensor with a primary antibody was immersed in the electrolyte solution.
 次に、ポテンシオスタットを用いて、作用電極と対極との間に電圧を印加して、作用電極と対極との間に流れる電流量を計測した(電流量計測工程)。 Next, a voltage was applied between the working electrode and the counter electrode using a potentiostat, and the amount of current flowing between the working electrode and the counter electrode was measured (current amount measuring step).
 図7に、No.1~No.6の各抗原分析用試料の抗原濃度と、作用電極と対極との間に流れた電流量(すなわち金ナノ粒子をイオン化させるために要した電流量)とをプロットしたグラフを示す。図5のグラフから電流値と、抗原分析用試料の抗原濃度との間には相関関係があることが確認された。従って、既知量の抗原(被検物質)を含む試料を用いて検量線(電流値-抗原濃度曲線)を作成することによって、被検物質溶液に含まれる抗原(被検物質)を正確に定量することが可能となることが確認された。 In FIG. 1 to No. The graph which plotted the antigen concentration of the sample for each antigen analysis of 6, and the electric current amount (namely, electric current amount required in order to ionize a gold nanoparticle) which flowed between the working electrode and the counter electrode is shown. From the graph of FIG. 5, it was confirmed that there is a correlation between the current value and the antigen concentration of the sample for antigen analysis. Therefore, by preparing a standard curve (current value-antigen concentration curve) using a sample containing a known amount of antigen (test substance), it is possible to accurately determine the antigen (test substance) contained in the test substance solution. It was confirmed that it would be possible.
[実施例4]
(1)一次抗体付きセンサの作製
 ポリエチレンテレフタレート基板に対極とリード線をマスクでパターニングした金蒸着膜、作用電極にSiウエハに成膜した導電性DLC膜、参照電極にペースト化したAg/AgClのスクリーン印刷により作成したAg/AgCl膜を用いたセンサチップを用意した。このセンサチップの作用電極(電極面積S=0.0962cm)に、一次抗体として未標識のストレスマークバイオサイエンス社製抗8-ヒドロキシデオキシグアノシン(抗8-OHdG)抗体(SMC-155D)を固定して、作用電極の表面に一次抗体が固定されている一次抗体付きセンサを作製した。
Example 4
(1) Preparation of sensor with primary antibody Gold evaporated film patterned on counter electrode and lead wire on polyethylene terephthalate substrate, conductive DLC film deposited on Si wafer on working electrode, Ag / AgCl pasted on reference electrode A sensor chip using an Ag / AgCl film prepared by screen printing was prepared. An unlabeled stress mark bioscience anti-8-hydroxydeoxyguanosine (anti-8-OHdG) antibody (SMC-155D) is immobilized as a primary antibody on the working electrode (electrode area S = 0.0962 cm 2 ) of this sensor chip. Then, a sensor with primary antibody in which the primary antibody was immobilized on the surface of the working electrode was prepared.
(2)酵素標識二次抗体液
 酵素標識二次抗体には、ストレスマークバイオサイエンス社製西洋わさびペルオキシダーゼ(HRP)標識8-ヒドロキシデオキシグアノシン(抗8-OHdG)抗体(SMC-155D-HRP)を用い、これをリン酸緩衝生理食塩水(PBS)で10μg/mLに希釈して酵素標識二次抗体液を調製した。
(2) Enzyme-labeled secondary antibody solution Enzyme-labeled secondary antibody includes horseradish peroxidase (HRP) -labeled 8-hydroxydeoxyguanosine (anti-8-OHdG) antibody (SMC-155D-HRP) manufactured by Stressmark Biosciences Inc. Using this, it was diluted to 10 μg / mL with phosphate buffered saline (PBS) to prepare an enzyme-labeled secondary antibody solution.
(3)メディエータ液
 メディエータには、フェロシアン化カリウムを用い、これをウシ血清アルブミン(BSA)と共にPBS緩衝液に溶解してメディエータ液を調製した。フェロシアン化カリウムの濃度は25mg/mL、BSAの濃度は1質量%とした。
(3) Mediator Liquid For the mediator, potassium ferrocyanide was used, and this was dissolved in PBS buffer together with bovine serum albumin (BSA) to prepare a mediator liquid. The concentration of potassium ferrocyanide was 25 mg / mL, and the concentration of BSA was 1% by mass.
(4)抗原分析用試料
 抗原分析用試料として、下記に示すように抗原濃度がそれぞれ異なるNo.1~No.6を用意した。下記のNo.1~No.6は、0.1%のTween20を含むPBS緩衝液と、8-OHdG(抗原)とを抗原濃度が下記の濃度となるように混合することによって調製した。
 No.1:抗原濃度=0.01ng/mL
 No.2:抗原濃度=0.1ng/mL
 No.3:抗原濃度=1ng/mL
 No.4:抗原濃度=10ng/mL
 No.5:抗原濃度=100ng/mL
 No.6:抗原濃度=1000ng/mL
(4) Sample for Antigen Analysis As a sample for antigen analysis, as shown below, No. 1 with different antigen concentrations. 1 to No. I prepared six. The following No. 1 to No. 6 was prepared by mixing PBS buffer containing 0.1% Tween 20 with 8-OH dG (antigen) so that the antigen concentration became the following concentration.
No. 1: Antigen concentration = 0.01 ng / mL
No. 2: Antigen concentration = 0.1 ng / mL
No. 3: Antigen concentration = 1 ng / mL
No. 4: Antigen concentration = 10 ng / mL
No. 5: Antigen concentration = 100 ng / mL
No. 6: Antigen concentration = 1000 ng / mL
(5)抗原の分析
 (4)で用意したNo.1~No.6の各抗原分析用試料について、35μLを正確に量り取り、これを上記(1)で作製した一次抗体付きセンサの作用電極の上に滴下した後、40分間インキュベートした(第1結合工程)。
(5) Analysis of antigen No. 1 prepared in (4). 1 to No. For each of the six antigen analysis samples, 35 μL was accurately weighed, dropped on the working electrode of the primary antibody-equipped sensor prepared in (1) above, and then incubated for 40 minutes (first binding step).
 次に、一次抗体付きセンサの作用電極を、洗浄液を用いて洗浄して、抗原分析用試料を洗い流した(第1洗浄工程)。洗浄液には、PBSを用いた。 Next, the working electrode of the sensor with a primary antibody was washed using a washing solution to wash away the sample for antigen analysis (first washing step). PBS was used as the washing solution.
 次に、上記(2)で調製した酵素標識二次抗体液を1μL正確に量り取り、これを、一次抗体付きセンサの作用電極の上に滴下した後、3時間インキュベートした(第2結合工程)。 Next, 1 μL of the enzyme-labeled secondary antibody solution prepared in (2) above was accurately measured, dropped on the working electrode of the sensor with primary antibody, and then incubated for 3 hours (second binding step) .
 次に、一次抗体付きセンサの表面をPBSにて洗浄し、未反応の酵素標識二次抗体を除去した(第2洗浄工程)。次いで、上記(3)で調製したメディエータ液を1μL滴下し、30分乾燥させた。 Next, the surface of the sensor with a primary antibody was washed with PBS to remove unreacted enzyme-labeled secondary antibody (second washing step). Next, 1 μL of the mediator solution prepared in (3) above was dropped and dried for 30 minutes.
 その後、リード線をポテンシオスタットに接続し、プラスチック製角型容器に、PBSに0.1モル/L過酸化水素を溶解させた電解質溶液を注入し、一次抗体付きセンサを電解質溶液に浸漬させた。 After that, connect the lead wire to the potentiostat, inject an electrolyte solution in which 0.1 mol / L hydrogen peroxide is dissolved in PBS into a square container made of plastic, and immerse the sensor with primary antibody in the electrolyte solution The
 次に、ポテンシオスタットを用いて、作用電極と対極との間に電圧を印加して、作用電極と対極との間に流れる電流量を計測した(電流量計測工程)。すなわち、電圧印加下において、標識化合物である酵素HRPの働きにより、電解液中の過酸化水素の次式による分解が促進される。
   H+2H+2e→2H
 上記の反応式において、電子(e)は、メディエータ液中のフェロシアン化イオンがフェリシアン化イオンへの酸化によるものであり、電極から供給される。その際に生じる電流値を測定した。この電流値は、酵素HRPが過酸化水素を分解するために要した電流量、つまり被検物質と接続した標識の量に比例した値となる。この電流値を測定することによって被検物質を定量的に測定することができる。
Next, a voltage was applied between the working electrode and the counter electrode using a potentiostat, and the amount of current flowing between the working electrode and the counter electrode was measured (current amount measuring step). That is, under the application of a voltage, the decomposition of hydrogen peroxide in the electrolytic solution according to the following equation is promoted by the function of the enzyme HRP which is a labeling compound.
H 2 O 2 + 2H + + 2e - → 2H 2 O
In the above reaction formula, an electron (e -) is ferrocyanide ions mediator solution is due to oxidation of ferricyanide ions, supplied from the electrode. The current value generated at that time was measured. This current value is a value proportional to the amount of current required for the enzyme HRP to decompose hydrogen peroxide, that is, the amount of the label connected to the test substance. The analyte can be quantitatively measured by measuring this current value.
 図8に、No.1~No.6の各抗原分析用試料の抗原濃度と、作用電極と対極との間に流れた電流量(すなわち、二次抗体に固定した標識酵素HRPが過酸化水素を分解するために要した電流をメディエータ液中のフェロシアン化イオンが増幅した電流量)とをプロットしたグラフを示す。図8のグラフから電流値と、抗原分析用試料の抗原濃度との間には相関関係があることが確認された。従って、既知量の抗原(被検物質)を含む試料を用いて検量線(電流値-抗原濃度曲線)を作成することによって、被検物質溶液に含まれる抗原(被検物質)を正確に定量することが確認された。 In FIG. 1 to No. The antigen concentration of each of the six antigen analysis samples and the amount of current flowing between the working electrode and the counter electrode (ie, the current required for the decomposition of hydrogen peroxide by the labeled enzyme HRP immobilized on the secondary antibody) The graph which plotted the electric current amount which the ferrocyanide ion in a liquid amplified) is shown. From the graph of FIG. 8, it was confirmed that there is a correlation between the current value and the antigen concentration of the sample for antigen analysis. Therefore, by preparing a standard curve (current value-antigen concentration curve) using a sample containing a known amount of antigen (test substance), it is possible to accurately determine the antigen (test substance) contained in the test substance solution. It was confirmed to do.
 本発明は、走査が簡便で、被検物質を高い選択性で、かつ高感度で分析することができる分析キットおよび分析方法を提供することができる。 The present invention can provide an analysis kit and an analysis method capable of analyzing a test substance with high sensitivity and sensitivity with simple scanning.
10   センサ
11   第1基板
12   作用電極
12aリード線
13   対極
13aリード線
14   参照電極
14aリード線
15   窓
16   第2基板
17   接着剤
31   一次抗体
32   被検物質
33   磁性金属ナノ粒子
34   二次抗体
35   磁石
DESCRIPTION OF REFERENCE NUMERALS 10 sensor 11 first substrate 12 working electrode 12 a lead 13 counter electrode 13 a lead 14 reference electrode 14 a lead 15 window 16 second substrate 17 adhesive 31 primary antibody 32 analyte 33 magnetic metal nanoparticle 34 secondary antibody 35 magnet

Claims (7)

  1.  作用電極と、参照電極と、対極と、を有し、前記作用電極が導電性ダイヤモンド電極または導電性ダイヤモンド様炭素電極であり、前記作用電極の表面に一次抗体が固定されているセンサ、及び、酸化還元が可能あるいは酸化還元反応を促進する標識が固定されている二次抗体を含む液を備えることを特徴とする分析キット。 A sensor comprising a working electrode, a reference electrode, and a counter electrode, wherein the working electrode is a conductive diamond electrode or a conductive diamond-like carbon electrode, and a primary antibody is immobilized on the surface of the working electrode; An analysis kit comprising a solution comprising a secondary antibody on which a redox-capable or a label promoting a redox reaction is immobilized.
  2.  前記酸化還元が可能あるいは酸化還元反応を促進する標識が、酵素、金属錯体および金属ナノ粒子からなる群より選ばれる少なくとも一つである請求項1に記載の分析キット。 The analysis kit according to claim 1, wherein the label capable of redox reaction or promoting the redox reaction is at least one selected from the group consisting of an enzyme, a metal complex and a metal nanoparticle.
  3.  前記酸化還元が可能あるいは酸化還元反応を促進する標識は金属ナノ粒子であって、前記金属ナノ粒子が硫黄を含有する請求項1または2に記載の分析キット。 The analysis kit according to claim 1 or 2, wherein the oxidation-reduction is possible or the label that promotes the oxidation-reduction reaction is metal nanoparticles, and the metal nanoparticles contain sulfur.
  4.  前記参照電極が、銀-塩化銀電極である請求項1~3のいずれか一項に記載の分析キット。 The analysis kit according to any one of claims 1 to 3, wherein the reference electrode is a silver-silver chloride electrode.
  5.  前記対極が、カーボン電極、貴金属電極、導電性ダイヤモンド電極または導電性ダイヤモンド様炭素電極である請求項1~4のいずれか一項に記載の分析キット。 The analysis kit according to any one of claims 1 to 4, wherein the counter electrode is a carbon electrode, a noble metal electrode, a conductive diamond electrode or a conductive diamond-like carbon electrode.
  6.  被検物質溶液に含まれる被検物質を分析するための分析方法であって、
     作用電極と、参照電極と、対極と、を備え、前記作用電極が導電性ダイヤモンド電極または導電性ダイヤモンド様炭素電極であって、前記作用電極の表面に前記被検物質と結合する一次抗体が固定されているセンサの前記作用電極と、前記被検物質溶液とを接触させて、前記作用電極の前記一次抗体と前記被検物質溶液の被検物質とを結合させる第1結合工程と、
     前記作用電極を洗浄して前記作用電極に付着している前記被検物質溶液を除去する第1洗浄工程と、
     前記作用電極と、表面に前記被検物質と結合する二次抗体に酸化還元が可能な標識が固定されている二次抗体を含む液とを接触させて、前記作用電極の前記一次抗体に結合した前記被検物質と二次抗体とを結合させることによって、前記被検物質と酸化還元が可能な標識とを接続させる第2結合工程と、
     前記作用電極を洗浄して、前記被検物質と結合せず前記酸化還元が可能な標識が固定されている二次抗体を含む液を除去する第2洗浄工程と、
     前記作用電極と前記対極との間に電圧を印加して、前記酸化還元が可能な標識を酸化させ、その電流量を計測する電流量計測工程と、
     前記電流量から酸化還元が可能な標識量を求め、前記酸化還元が可能な標識量から被検物質量を算出する算出工程と、
     を含むことを特徴とする分析方法。
    An analysis method for analyzing a test substance contained in a test substance solution, comprising:
    A working electrode, a reference electrode, and a counter electrode, wherein the working electrode is a conductive diamond electrode or a conductive diamond-like carbon electrode, and a primary antibody binding to the analyte is immobilized on the surface of the working electrode. A first binding step of bringing the primary antibody of the working electrode and the analyte of the test substance solution into contact with each other by bringing the working electrode of the sensor in contact with the test substance solution;
    A first washing step of washing the working electrode to remove the test substance solution adhering to the working electrode;
    The working electrode is brought into contact with a liquid containing a secondary antibody in which a redox-immobilizable label is immobilized on a secondary antibody that binds to the test substance on the surface, and is bound to the primary antibody of the working electrode A second binding step of connecting the test substance with a redox-capable label by binding the test substance with a secondary antibody;
    A second washing step of washing the working electrode to remove a solution containing a secondary antibody which is not bound to the test substance and on which the redox-immobilizable label is immobilized;
    A current amount measuring step of applying a voltage between the working electrode and the counter electrode to oxidize the oxidation-reduction label and measuring the current amount;
    Calculating a labeled amount capable of oxidation / reduction from the current amount, and calculating a mass of the test substance from the labeled amount capable of oxidation / reduction;
    A method of analysis characterized in that
  7.  被検物質溶液に含まれる被検物質を分析するための分析方法であって、
     作用電極と、参照電極と、対極と、を備え、前記作用電極が導電性ダイヤモンド電極または導電性ダイヤモンド様炭素電極であって、前記作用電極の表面に前記被検物質と結合する一次抗体が固定されているセンサの前記作用電極と、前記被検物質溶液とを接触させて、前記作用電極の前記一次抗体と前記被検物質溶液の被検物質とを結合させる第1結合工程と、
     前記作用電極を洗浄して前記作用電極に付着している前記被検物質溶液を除去する第1洗浄工程と、
     前記作用電極と、表面に前記被検物質と結合する二次抗体に酸化還元反応を促進する標識が固定されている二次抗体を含む液とを接触させて、前記作用電極の前記一次抗体に結合した前記被検物質と前記二次抗体とを結合させることによって、前記被検物質と前記酸化還元反応を促進する標識とを接続させる第2結合工程と、
     前記作用電極を洗浄して、前記被検物質と結合せず前記酸化還元反応を促進する標識が固定されている二次抗体を含む液を除去する第2洗浄工程と、
     前記作用電極と前記対極との間に、酸化還元可能な物質を存在させ、次いで前記作用電極と前記対極との間に電圧を印加して、前記酸化還元が可能な標識が、前記別の酸化還元可能な物質を酸化または還元させるために要した電流量を計測する電流量計測工程と、前記電流量から酸化還元反応を促進する標識量を求め、前記酸化還元反応を促進する標識量から被検物質量を算出する算出工程と、
     を含むことを特徴とする分析方法。
    An analysis method for analyzing a test substance contained in a test substance solution, comprising:
    A working electrode, a reference electrode, and a counter electrode, wherein the working electrode is a conductive diamond electrode or a conductive diamond-like carbon electrode, and a primary antibody binding to the analyte is immobilized on the surface of the working electrode. A first binding step of bringing the primary antibody of the working electrode and the analyte of the test substance solution into contact with each other by bringing the working electrode of the sensor in contact with the test substance solution;
    A first washing step of washing the working electrode to remove the test substance solution adhering to the working electrode;
    The primary electrode of the working electrode is brought into contact by bringing the working electrode into contact with a solution containing a secondary antibody in which a label promoting a redox reaction is immobilized on the surface of the secondary antibody that binds to the test substance. A second binding step of connecting the test substance and the label promoting the redox reaction by binding the test substance bound to the secondary antibody;
    A second washing step of washing the working electrode to remove a solution containing a secondary antibody which is not bound to the test substance and to which a label promoting the redox reaction is immobilized;
    A substance capable of redoxing is present between the working electrode and the counter electrode, and then a voltage is applied between the working electrode and the counter electrode, and the redox-capable label is the other oxidation. The current amount measuring step of measuring the amount of current required to oxidize or reduce the reducible substance, and the amount of label promoting the redox reaction from the amount of current is determined from the amount of label promoting the redox reaction. A calculation step of calculating an inspection mass;
    A method of analysis characterized in that
PCT/JP2018/024844 2017-06-30 2018-06-29 Analysis kit and analysis method WO2019004438A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017129440 2017-06-30
JP2017-129440 2017-06-30
JP2018069967A JP2019012056A (en) 2017-06-30 2018-03-30 Analysis kit and analysis method
JP2018-069967 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019004438A1 true WO2019004438A1 (en) 2019-01-03

Family

ID=64742035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024844 WO2019004438A1 (en) 2017-06-30 2018-06-29 Analysis kit and analysis method

Country Status (1)

Country Link
WO (1) WO2019004438A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021205454A1 (en) * 2020-04-08 2021-10-14 The State Of Israel, Ministry Of Agriculture & Rural Development, Agricultural Research Organization (Aro) (Volcani Center) Systems and methods for determining prevalence of sars‑cov‑2 in a population

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62501171A (en) * 1984-12-19 1987-05-07 アイキュ−・(バイオ)・リミテッド Methods and apparatus for biochemical assays
JP2008157730A (en) * 2006-12-22 2008-07-10 Rohm Co Ltd Method of measuring physiological molecules or physiologically-related substance
JP2009025217A (en) * 2007-07-20 2009-02-05 Japan Advanced Institute Of Science & Technology Hokuriku Method of measuring silver ion and method of measuring test substance
JP2009276343A (en) * 2008-04-17 2009-11-26 Canon Inc Immunoassay method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62501171A (en) * 1984-12-19 1987-05-07 アイキュ−・(バイオ)・リミテッド Methods and apparatus for biochemical assays
JP2008157730A (en) * 2006-12-22 2008-07-10 Rohm Co Ltd Method of measuring physiological molecules or physiologically-related substance
JP2009025217A (en) * 2007-07-20 2009-02-05 Japan Advanced Institute Of Science & Technology Hokuriku Method of measuring silver ion and method of measuring test substance
JP2009276343A (en) * 2008-04-17 2009-11-26 Canon Inc Immunoassay method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021205454A1 (en) * 2020-04-08 2021-10-14 The State Of Israel, Ministry Of Agriculture & Rural Development, Agricultural Research Organization (Aro) (Volcani Center) Systems and methods for determining prevalence of sars‑cov‑2 in a population

Similar Documents

Publication Publication Date Title
Bahadır et al. Electrochemical biosensors for hormone analyses
Salimi et al. Highly sensitive immunosensing of prostate-specific antigen based on ionic liquid–carbon nanotubes modified electrode: Application as cancer biomarker for prostatebiopsies
Nantaphol et al. Sensitive and selective electrochemical sensor using silver nanoparticles modified glassy carbon electrode for determination of cholesterol in bovine serum
Dawson et al. Single on-chip gold nanowires for electrochemical biosensing of glucose
Wang et al. Platinum porous nanoparticles hybrid with metal ions as probes for simultaneous detection of multiplex cancer biomarkers
Ding et al. Utilization of nanoparticle labels for signal amplification in ultrasensitive electrochemical affinity biosensors: a review
Huo et al. A highly efficient organophosphorus pesticides sensor based on CuO nanowires–SWCNTs hybrid nanocomposite
Xu et al. Simultaneous electrochemical detection of multiple tumor markers using metal ions tagged immunocolloidal gold
Jia et al. Triple signal amplification using gold nanoparticles, bienzyme and platinum nanoparticles functionalized graphene as enhancers for simultaneous multiple electrochemical immunoassay
Li et al. An electrochemical immunosensor for carcinoembryonic antigen enhanced by self-assembled nanogold coatings on magnetic particles
Pei et al. A sandwich-type electrochemical immunosensor based on RhPt NDs/NH2-GS and Au NPs/PPy NS for quantitative detection hepatitis B surface antigen
Annamalai et al. Highly stable and redox active nano copper species stabilized functionalized-multiwalled carbon nanotube/chitosan modified electrode for efficient hydrogen peroxide detection
Peng et al. Electrochemical immunosensor for carcinoembryonic antigen based on signal amplification strategy of graphene and Fe3O4/Au NPs
Tao et al. The preparation of label-free electrochemical immunosensor based on the Pt–Au alloy nanotube array for detection of human chorionic gonadotrophin
Suresh et al. Development of proof of concept for prostate cancer detection: An electrochemical immunosensor based on fullerene-C60 and copper nanoparticles composite film as diagnostic tool
Cotchim et al. Multiplexed label-free electrochemical immunosensor for breast cancer precision medicine
Tajik et al. Electrochemical immunosensor for the detection of anti-thyroid peroxidase antibody by gold nanoparticles and ionic liquid-modified carbon paste electrode
Kheiri et al. A novel amperometric immunosensor based on acetone-extracted propolis for the detection of the HIV-1 p24 antigen
Gutés et al. Nonenzymatic glucose sensing based on deposited palladium nanoparticles on epoxy-silver electrodes
JP6773225B2 (en) Analysis kit and analysis method
Li et al. A novel signal amplification system fabricated immunosensor based on Au nanoparticles and mesoporous trimetallic PdPtCu nanospheres for sensitive detection of prostate specific antigen
Zhang et al. Electrochemical immunosensor for HBe antigen detection based on a signal amplification strategy: The co-catalysis of horseradish peroxidase and nanoporous gold
Li et al. A new electrochemical immunosensor for sensitive detection of prion based on Prussian blue analogue
Wang et al. An ultrasensitive sandwich-type electrochemical immunosensor based on the signal amplification system of double-deck gold film and thionine unite with platinum nanowire inlaid globular SBA-15 microsphere
Kawde et al. Cathodized gold nanoparticle‐modified graphite pencil electrode for non‐enzymatic sensitive voltammetric detection of glucose

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18823941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18823941

Country of ref document: EP

Kind code of ref document: A1