WO2019004070A1 - Lighting device and display device - Google Patents

Lighting device and display device Download PDF

Info

Publication number
WO2019004070A1
WO2019004070A1 PCT/JP2018/023759 JP2018023759W WO2019004070A1 WO 2019004070 A1 WO2019004070 A1 WO 2019004070A1 JP 2018023759 W JP2018023759 W JP 2018023759W WO 2019004070 A1 WO2019004070 A1 WO 2019004070A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
incident surface
guide plate
light source
light incident
Prior art date
Application number
PCT/JP2018/023759
Other languages
French (fr)
Japanese (ja)
Inventor
洋充 筒井
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2019004070A1 publication Critical patent/WO2019004070A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods

Definitions

  • the technology disclosed herein relates to a lighting device and a display device.
  • liquid crystal display devices including a liquid crystal panel are widely used as image display devices of these devices, since the liquid crystal panel does not emit light by itself, a backlight device is separately required as a lighting device.
  • the backlight device includes a direct type in which the light source is disposed immediately below the liquid crystal panel display surface and an edge light type in which the light source is disposed laterally of the light guide plate disposed immediately below the liquid crystal panel.
  • mobile terminal devices and the like are also required to be thinner, and to cope with this, it is preferable to use an edge light type backlight device.
  • This surface light source device is an edge light type surface light source device including a plurality of LED light source substrates (substrates on which a plurality of LEDs are mounted) for irradiating light into the light guide plate from the end face of the light guide plate.
  • the substrate is disposed on each of a pair of opposing sides in the light guide plate, and is shorter than the length of the side on which the LED light source substrate is disposed.
  • the first light guide plate and the second light guide plate are laminated with the light reflection plate interposed therebetween, and the light incident surface is disposed on the same side in the light guide direction.
  • the first and second light sources are disposed opposite to the light incident surface, and the light incident surface of the first light guide plate is disposed so as to protrude with a predetermined distance offset from the light incident surface of the second light guide plate
  • a light source device is disclosed.
  • the double-sided light emitting planar light source device of Patent Document 2 aims to make it possible to adjust the light emission amounts of both light emitting surfaces independently of each other, and is not intended to increase the luminance of one light emitting surface.
  • the light which goes straight in LED light which entered into the light-guide plate is radiate
  • reuse of light is not achieved.
  • the technology disclosed in the present specification is completed based on the above-mentioned circumstances, and in an edge light type lighting device, light is made to enter the light guide plate from a plurality of directions while suppressing the occurrence of uneven brightness.
  • An object of the present invention is to secure a sufficient amount of incident light, suppress emission of incident light to the outside of the light guide plate, improve the utilization efficiency of light, and achieve high luminance. Further, the technology disclosed in the present specification aims to provide a display device capable of displaying a high brightness and high quality image.
  • the illumination device disclosed in the present specification is a light guide plate which is a plate-like light output surface from which light having one plate surface entered is emitted as planar light, and among the outer peripheral end faces of the light guide plate
  • the first light source is disposed so as to face a part of the first light incident surface as a first light incident surface to which light is incident, and the first light incident surface of the outer peripheral end surface
  • a second light source disposed to face a part of the second light incident surface, wherein an end surface located on the opposite side is a second light incident surface on which light is incident, the first light source and the first light source
  • the second light source is a second light source which is offset in the thickness direction of the light guide plate and viewed from the normal direction of the second light incident surface of the first light incident surface and is superimposed on the second light source
  • a first reflector for reflecting the light propagating in the light guide plate toward the light guide plate is disposed in the directly-facing region, and the second light The light propagating in the light guide plate is directed into
  • the reflective material can be disposed in each light source facing area. Thereby, the light emitted from the region can be reused, and the light utilization efficiency is improved.
  • the first light source and the second light source are disposed offset in the thickness direction of the light guide plate, that is, in the normal direction of the light emission surface, not in the light emission surface.
  • the occurrence of uneven brightness on the surface is suppressed.
  • the plate thickness of the light guide plate becomes relatively thick. For this reason, the number of reflections of light propagating in the light guide plate reflected by the plate surface of the light guide plate decreases, and the attenuation factor of the light propagating in the light guide plate decreases, so that the utilization efficiency of light is improved. .
  • the amount of incident light is increased and the utilization efficiency of light is improved, it is possible to increase the amount of light emitted from the light emitting surface to achieve higher luminance of the lighting device.
  • the present specification also discloses a display device including the above-described lighting device and a display panel that performs display using light from the lighting device.
  • the illumination device for supplying light to the display panel has a sufficient amount of incident light and improved utilization efficiency of light, it is possible to display high-quality and high-quality images.
  • a display device can be provided.
  • the liquid crystal display device using a liquid crystal panel as the display panel can be used in various applications, for example, mobile terminal devices such as smartphones and tablets, and is expected to be used outdoors and high brightness is required. It is particularly useful for equipment.
  • a display device that can be suitably used in the field can be provided.
  • a display device capable of displaying a large image with high quality can be provided.
  • Sectional drawing which shows schematic structure of the liquid crystal display device which concerns on Embodiment 1.
  • Top view showing arrangement of light guide plate, LED and reflector in chassis of lighting device Partially enlarged cross-sectional view showing enlarged left and right end portions of FIG. 1
  • the top view which shows the arrangement configuration of the light-guide plate in the chassis of the illuminating device which concerns on Embodiment 2, LED, and a reflecting material
  • a liquid crystal display device (an example of a display device) 100 including the backlight device (an example of a lighting device) 1 will be illustrated.
  • X-axis, Y-axis, and Z-axis are shown in a part of each drawing, and it is drawn so that each axis direction may turn into the direction shown in each drawing.
  • the left side in each figure is the left (right side is the right), and the upper side in FIGS. 1 and 3 is the front side (the lower side in the figure is the rear side).
  • symbol may be attached to a one part member, and a code
  • the liquid crystal display device 100 has a horizontally long rectangular shape (horizontally long square shape) as a whole, and includes a liquid crystal panel (an example of a display panel) 2 and a backlight device 1 as an external light source.
  • the outer shape of the back side of the liquid crystal display device 100 is formed by a shallow box-like chassis 12.
  • a rectangular frame-like frame 13 for supporting the liquid crystal panel 2 from the back side is attached while holding down the light guide plate 11 and the like of the backlight device 1 disposed on the bottom side from the front side.
  • a rectangular frame-shaped bezel 3 for holding the frame 13 and the liquid crystal panel 2 is externally fitted from the front side of the frame.
  • the liquid crystal panel 2 and the backlight device 1 are integrally held by the chassis 12, the frame 13, and the bezel 3.
  • the chassis 12 and the frame 13 according to the present embodiment constitute a part of the backlight device 1.
  • the liquid crystal panel 2 may have a known configuration. Although details will be omitted, it is possible to use, for example, one in which a pair of glass substrates are pasted together with a predetermined gap therebetween and liquid crystal is sealed between the two glass substrates.
  • a switching element for example, a TFT
  • the other glass substrate is provided with a color filter, an opposing electrode, and an alignment film, in which colored portions such as red (R), green (G) and blue (B) are arranged in a predetermined arrangement.
  • the polarizing plate is distribute
  • the liquid crystal panel 2 is disposed such that the normal direction of the plate surface coincides with the Z-axis direction.
  • the back light device 1 is a so-called edge light type (side light type) in which the light source array 20 is disposed on the side of the light guide plate 11 which has a rectangular shape in plan view and the light guide plate 11 disposed inward. ing.
  • edge light type side light type
  • members constituting the backlight device 1 will be described in order.
  • the backlight device 1 includes a shallow box-like chassis 12 whose one side is opened.
  • the chassis 12 can be made of metal such as aluminum, for example.
  • the chassis 12 includes a rectangular bottom wall 12a supporting the light guide plate 11 and the like described later over the entire area from the back side, and a side wall 12b rising from the four outer peripheral edges of the bottom wall 12a to the front side. .
  • the chassis 12 is opened to the front side along the Z-axis direction, and is disposed so that the long side direction of the bottom wall portion 12a corresponds to the Y-axis direction and the short side direction coincides with the X-axis direction.
  • the outer peripheral edge part in the bottom wall part 12a is formed so that the groove shape which dented toward the back side may be made.
  • a locking structure (not shown) is provided at a portion near the front edge of the inner surface of the side wall portion 12b, and the locking structure provided on the frame 13 described later is locked to open the chassis 12
  • the frame 13 is attached and fixed to the inside of the rim.
  • the backlight device 1 includes a frame 13 having a thin rectangular frame shape.
  • the frame 13 is opened toward both sides (front side and back side) in the Z-axis direction, and is arranged so that the long frame direction matches the Y-axis direction and the short frame direction matches the X-axis direction.
  • the frame 13 is a member for collectively fixing the following members in the chassis 12 and may be made of a molded polycarbonate resin or the like. Although a white one is used in this embodiment, a black one may be used from the viewpoint of preventing light leakage to the outside.
  • the frame 13 is fixed to the back surface of the liquid crystal panel 2 by, for example, sticking a double-sided tape on the front surface.
  • an optical member 15 having a rectangular shape in plan view is provided at a position near the front side in the frame 13.
  • the optical member 15 covers the opening on the front side (the liquid crystal panel 2 side) of the frame 13 and is disposed so as to be interposed between the liquid crystal panel 2 and a light guide plate 11 described later.
  • a diffusion sheet, a prism sheet, a polarizing sheet (for example, "DBEF" manufactured by 3M, etc.) or the like can be used. In the present embodiment, three appropriately selected sheets are stacked and used.
  • the optical member 15 is fixed to the back surface of the frame 13 by, for example, applying a double-sided tape to the outer periphery of the surface of the sheet disposed on the front side.
  • FIG. 2 is a plan view of the backlight device 1 with the frame 13 and the optical member 15 removed.
  • the light guide plate 11 is made of a material whose refractive index is sufficiently higher than that of air and which is excellent in light transmitting property, for example, those made of resin such as transparent acrylic and polycarbonate, or those made of various glasses be able to.
  • the light guide plate 11 is disposed in the Z-axis direction so as to be sandwiched between the optical member 15 and a reflection sheet 14 described later.
  • the alignment direction of the light source array 20 and the light guide plate 11 coincides with the Y axis direction
  • the alignment direction of the optical member 15 (liquid crystal panel 2) and the light guide plate 11 coincides with the Z axis direction.
  • the alignment directions are orthogonal to each other.
  • the light guide plate 11 makes the light emitted from the light source array 20 along the Y-axis direction enter, and while propagating the light inside, rises up to the front side (optical member 15 side) along the Z-axis direction Have a function to Of the plate surfaces of the light guide plate 11, the plate surface on the front side is a light emitting surface 11b from which the light incident into the light guide plate 11 is emitted.
  • the light guide plate 11 is provided with various concavo-convex patterns (not shown) in order to cause the light incident into the light guide plate 11 to exit from the light exit surface 11 b.
  • dots made of light scattering particles are printed on the surface of the light guide plate 11, blasted to form a rough surface, or when forming the light guide plate 11 made of resin, minute irregularities are formed. It can be formed.
  • the angle of the light path is changed to direct the critical angle at the interface between the light guide plate 11 and the outside air toward the light emitting surface 11b.
  • the light may be reflected so as to have an incident angle that does not exceed the value to prompt emission from the light emission surface 11b.
  • the concavo-convex pattern on the plate surface on the front side of the light guide plate 11, that is, the light emitting surface 11b, light may be easily emitted from this surface.
  • the shape and distribution density of the concavo-convex pattern it is possible to adjust the distribution of the emission amount of light from each portion in the light emission surface 11b.
  • light is made to enter the light guide plate 11 from both left and right sides along the Y-axis direction, so it is easy for light to be emitted near the center in the horizontal direction It is preferable to form a concavo-convex pattern so that the light emitted from the light emitting surface 11b is uniformly distributed in the plane.
  • a reflecting sheet 14 having a rectangular shape in plan view is provided on the back side of the light guide plate 11.
  • the reflection sheet 14 is disposed between the bottom wall 12a of the chassis 12 and the light guide plate 11 so as to cover the entire back surface of the light guide plate 11, and the light emitted from the back surface of the light guide plate 11 It has a function of reflecting light toward the light guide plate 11 and causing the light to enter the light guide plate 11 again to increase the utilization efficiency of light.
  • a general white sheet or a specular sheet can be used.
  • a white sheet "Lumirror (registered trademark)” manufactured by Toray Industries, Inc. and the like can be used, and as a mirror sheet, "ESR” manufactured by 3M and the like can be used.
  • one LED substrate (light source substrate) 21 is attached to the inner surfaces of the pair of side wall portions 12 b and 12 b along the X-axis direction of the chassis 12.
  • the LED substrate disposed on the left side of the light guide plate 11 is referred to as a first LED substrate 21A
  • the LED substrate disposed on the right side is referred to as a second LED substrate 21B.
  • the suffixes A or B are attached when the LED boards 21 are described separately, and the suffixes are not attached when collectively referred to without distinction. The same applies to the light source array 20 and the light incident surface 11a described later.
  • the LED substrate 21 has an elongated plate shape extending along the X axis direction, and the normal direction of the pair of plate surfaces is And the Y axis direction, that is, the posture orthogonal to the normal direction (Z axis direction) of the plate surface of the liquid crystal panel 2 and the optical member 15.
  • the LED substrate 21 is fixed to, for example, the inner surface of the side wall portion 12 b along the X-axis direction of the chassis 12 by applying a double-sided tape to one plate surface thereof. Thereby, the other plate surface of each LED substrate 21 is disposed to face the outer peripheral end face of the light guide plate 11.
  • the other plate surface of the first LED substrate 21A faces the left end surface of the light guide plate 11 (constituting a first light incident surface 11aA described later), and the other plate surface of the second LED substrate 21B is It is opposed to the right end surface of the light guide plate 11 (which constitutes a second light incident surface 11aB described later).
  • the base material of the LED substrate 21 is made of insulating and flexible synthetic resin, and a wiring pattern (not shown) made of a metal film such as copper foil is formed on the surface and mounted on the LED substrate 21. LED 22 and the lighting circuit are connected.
  • the wiring pattern of the plurality of LEDs 22 arranged side by side on the LED substrate 21 is not particularly limited, and some or all may be directly connected or may be connected in parallel, but connected in parallel If so, the emission intensity can be controlled in units of the respective LEDs 22, which is preferable.
  • an LED (an example of a light source) 22 (Light Emitting Diode) is mounted on the plate surface of each LED substrate 21 facing the left and right end faces of the light guide plate 11.
  • a so-called top surface light emission type is used as the LED 22 in which the surface opposite to the mounting surface with respect to the LED substrate 21 is a light emitting surface, and the optical axis of each LED 22 is substantially in the Y axis direction.
  • the LED 22 may be of a top surface emitting type or a side surface emitting type, as long as the optical axis of the LED 22 is substantially parallel to the light emitting surface.
  • the LEDs 22 are disposed to face part of the left and right end faces of the light guide plate 11, and these end faces serve as the light incident surface 11a on which the light from the LEDs 22 is incident.
  • LED22 although it can also be used combining LED of white light emission and LED of RGB light emission, in this embodiment, only general white LED is used.
  • a plurality of (in this embodiment, fifteen) LEDs 22 are mounted along the longitudinal direction (X-axis direction) of the main plate surfaces of the first LED substrate 21A and the second LED substrate 21B, and the first light source A row (corresponding to a first light source) 20A and a second light source row (corresponding to a second light source) 20B are formed.
  • each light source array 20 the plurality of LEDs 22 are arranged at constant intervals over the entire length in the longitudinal direction (X-axis direction) of the light incident surface 11a.
  • the left end surface of the light guide plate 11 on which the first light source array 20A is disposed opposite is referred to as a first light incident surface 11aA
  • the right end surface of the light guide plate 11 on which the second light source array 20B is disposed opposite is a second light incident It is referred to as surface 11aB.
  • the reflective material 30 is disposed in a portion where the LEDs 22 are not arranged to face each other.
  • the reflecting member 30 is provided to extend over the entire length in the longitudinal direction (X-axis direction) of the light incident surface 11 a.
  • the reflector disposed on the first light incident surface 11aA is referred to as a first reflector 30A
  • the reflector disposed on the second light incident surface 11aB is referred to as a second reflector 30B.
  • first reflecting member 30A and the second reflecting member 30B for example, it is possible to use a reflecting sheet formed of a white sheet or a mirror surface sheet having a rectangular shape in a plan view and a longitudinal rectangular shape. Alternatively, a reflective paint may be applied to form a reflective coating. In the present embodiment, as the first reflective material 30A and the second reflective material 30B, reflective sheets of the same material and size and shape are used.
  • the light guide plate 11 has a plate thickness of about three times the length dimension of the LED 22 in the Z-axis direction, and is formed relatively thick.
  • the LED 22 constituting the first light source array 20A has the optical axis at the center closer to the surface than the center in the plate thickness direction (Z-axis direction) of the light guide plate 11, and from the surface to the back side about 1/4 of the plate thickness. At the shifted position, it is mounted on the first LED substrate 21A so as to be parallel to the light emitting surface 11b.
  • first light source array 20A and the second light source array 20B are offset in the thickness direction of the light guide plate 11, that is, the normal direction of the light emitting surface 11b, and the first light source array 20A is
  • the second light source array 20B is opposed to the part closer to the front side of the first light incident surface 11aA, and the second light source column 20B is opposed to the part closer to the back side of the second light incident surface 11aB.
  • the reflective material 30 is disposed at a portion where the light source array 20 is not disposed opposite to the light incident surface 11a.
  • the second light source facing region superimposed on the second light source row 20B as viewed from the normal direction of the second light incident surface 11aB, that is, the portion closer to the back side A reflector 30A is disposed.
  • the second light reflecting member is positioned in a first light source facing area overlapping with the first light source row 20A as viewed from the normal direction of the first light incident surface 11aA, that is, a portion near the front side. 30B is distributed.
  • emitted from LED22 is demonstrated.
  • a representative optical path of the light emitted from the first light source column 20A is indicated by the alternate long and short dashed line
  • Representative optical paths of the light emitted from 20B are respectively shown by two-dot chain lines.
  • the light emitted from the LEDs 22 of the first light source array 20A disposed on the left side of the light guide plate 11 enters the light guide plate 11 from the first light incident surface 11aA.
  • the LED used as a light source in the present embodiment is a light source generally showing a Lambertian type light distribution, and the light emission intensity along the optical axis which is the traveling direction of light is the highest, and the optical axis It is known that the light emission intensity decreases in a curved manner as it deviates from.
  • the light beam reaches the first light source facing area of the second light incident surface 11aB and is emitted.
  • the second reflector 30B since the second reflector 30B is disposed in the first light source facing area, the light emitted from this area is reflected by the second reflector 30B and is again introduced into the light guide plate 11. It is incident and propagates in the light guide plate 11.
  • the light emitted from the LED 22 of the second light source column 20B and incident from the second light incident surface 11aB and reaching the second light source facing area and emitted is also a first reflector disposed in this area
  • the light is reflected by the light source 30A, is again incident into the light guide plate 11, and is reused.
  • the light propagating in the light guide plate 11 is appropriately scattered and reflected by the concavo-convex pattern provided on the light guide plate 11 as described above, and the incident angle with respect to the light emitting surface 11 b does not exceed the critical angle.
  • the emission from the light emission surface 11b is prompted.
  • the light emitted from the light emission surface 11 b of the light guide plate 11 is given an optical action in the process of transmitting each optical member 15, and is irradiated to the liquid crystal panel 2.
  • the driving of the liquid crystal panel 2 is controlled by the image processing circuit (not shown), and the luminance data is transmitted to the lighting circuit.
  • the lighting circuit controls the driving of the LEDs 22 constituting the light source array 20 of the backlight device 1 according to the luminance data, whereby light is emitted from the light emission surface 11 b of the light guide plate 11 to the liquid crystal panel 2 Light is emitted, whereby a predetermined image is displayed on the liquid crystal panel 2.
  • the backlight device 1 has a plate shape, and the light guide plate 11 has one plate surface as a light emitting surface 11 b from which incident light is emitted as planar light;
  • the first light source row 20A disposed to face a part of this surface as the first light incident surface 11aA to which light is incident on the left end surface of the outer peripheral end surface of the first light incident surface 11a
  • the second light source array 20B is disposed such that the right end surface located on the opposite side of the one light incident surface 11aA is a second light incident surface 11aB on which light is incident, and is opposed to a part of this surface There is.
  • the first light source array 20A and the second light source array 20B are offset in the thickness direction (Z-axis direction) of the light guide plate 11, and the second light incident surface 11aB of the first light incident surface 11aA.
  • Light emitted from the light guide plate 11 is directed toward the inside of the light guide plate 11 in the second light source just-facing region that is superimposed on the second light source row 20B as viewed from the normal direction (Y-axis direction) of
  • a first light source having a first reflecting member 30A to be reflected and viewed from a normal direction (Y-axis direction) of the first light incident surface 11aA of the second light incident surface 11aB and superimposed on the first light source array 20A
  • a second reflection member 30B is disposed which reflects the light propagating in the light guide plate 11 and emitted therefrom toward the light guide plate 11.
  • a sufficient amount of light can be made to enter into the light guide plate 11 while avoiding problems such as heat radiation by making the light enter from the left and right two directions of the light guide plate 11. it can.
  • the light entering from the light incident surface 11a and traveling straight in the light guide plate 11 is superimposed on each light source row 20 when viewed from the normal direction of each light incident surface 11a at the end face on the opposite side of the light guide plate 11
  • the light is emitted to the outside of the light guide plate 11 from the paired region.
  • the reflective material 30 can be disposed in such respective light source facing regions.
  • the first light source and the second light source are disposed offset in the normal direction (Z-axis direction) of the light emission surface 11b, not in the light emission surface 11b. The occurrence of uneven brightness on the light emitting surface 11b is suppressed. Furthermore, the first light source array 20A and the second light source array 20B are disposed offset in the plate thickness direction (Z-axis direction) of the light guide plate 11, and the plate thickness of the light guide plate 11 is relatively thick.
  • the number of reflections of light propagating in the light guide plate 11 on the plate surface of the light guide plate 11 decreases, the attenuation factor of light propagating in the light guide plate decreases, and the utilization efficiency of light improves. .
  • the first light source array 20A and the second light source array 20B are arranged along the extending direction (X-axis direction) of the light emitting surface 11b at the first light incident surface 11aA or the second light incident surface 11aB.
  • the LEDs 22 are arranged.
  • light is incident from a wide range on the light incident surface 11a of the light guide plate 11, and luminance unevenness in the extending direction (X-axis direction) of the first light incident surface 11aA or the second light incident surface 11aB is suppressed.
  • the light source array 20 an array of a plurality of LEDs 22 mounted on the LED substrate 21 is used.
  • the frequently used LED 22 is used as a light source for reasons such as energy saving, most of the light incident into the light guide plate is emitted from the directly facing region directly facing each light source row 20. Therefore, the use efficiency improvement effect of the light by having arrange
  • the LEDs 22 forming the first light source array 20A and the second light source array 20B, and the first reflective material 30A and the second reflective material 30B are the same members. As a result, the manufacturing cost of the light source and the reflective material can be reduced, and the cost related to parts management can also be reduced.
  • the first light source array 20A and the second light source array 20B extend over the entire length in the extending direction (X-axis direction) of the light emitting surface 11b at the first light incident surface 11aA or the second light incident surface 11aB. It is arranged.
  • light is incident on the light incident surface 11 a of the light guide plate 11 over the entire length of the light emitting surface 11 b in the extending direction (X-axis direction), and luminance unevenness due to incident light from each light source column 20 is suppressed.
  • the amount of incident light into the light guide plate 11 can be increased.
  • the reflecting material 30 is also disposed over the entire length of the light incident surface 11a in the extending direction (X-axis direction) of the light emitting surface 11b, light emission from both left and right end surfaces of the light guide plate 11 is effective. Suppressed.
  • the present embodiment discloses a liquid crystal display device 100 including a liquid crystal panel 2 which performs display using light from the backlight device 1.
  • a liquid crystal display device 100 since the backlight device 1 for supplying light to the liquid crystal panel 2 has a sufficient amount of incident light and improved utilization efficiency of light, high brightness can be achieved.
  • the liquid crystal display device 100 capable of displaying high quality images can be provided.
  • the liquid crystal panel 2 in which liquid crystal is sealed between a pair of substrates is used as a display panel.
  • Such a liquid crystal display device 100 can be used for various applications, for example, mobile terminal devices such as smartphones and tablets, and is particularly useful for devices expected to be used outdoors and for which high luminance is required. . Moreover, it is useful also in achieving the enlargement of a display screen.
  • the second embodiment will be described with reference to FIG.
  • the backlight device 201 according to the second embodiment is different from the backlight device 1 of the first embodiment in that the light source array 20 and the reflectors 30 are disposed along the four sides of the light guide plate 11.
  • the same members as in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and redundant description of the functions and effects will be omitted.
  • the backlight device 201 in addition to the first LED substrate 21A and the second LED substrate 21B attached to the inner surfaces of the pair of side wall portions 12b and 12b along the X axis direction of the chassis 12, One LED substrate is attached to the inner surfaces of the pair of side wall portions 12b, 12b.
  • the LED board 21 attached to the upper side in FIG. 4 is referred to as a third LED board 21C
  • the LED board 21 attached to the lower side is referred to as a fourth LED board 21D.
  • a plurality of top surface emitting LEDs 22 are mounted side by side on the plate surfaces of the third LED substrate 21C and the fourth LED substrate 21D in the same manner as the first LED substrate 21A and the second LED substrate 21B.
  • a row (corresponding to a third light source) 20C and a fourth light source row (corresponding to a fourth light source) 20D are formed.
  • the LEDs 22 forming the third light source array 20C and the fourth light source array 20D are the same as the LEDs 22 forming the first light source array 20A and the second light source array 20B.
  • Pieces are arranged.
  • the end face (upper end face in FIG. 4) of the light guide plate 11 on which the third light source row 20C is disposed opposite is the third light incident surface 11aC
  • the fourth light source row 20D is disposed oppositely.
  • the end face of the light guide plate 11 (the end face on the lower side in FIG. 4) is referred to as a fourth light incident surface 11aD.
  • the third reflector 30C is disposed on the third light incident surface 11aC
  • the fourth reflector 30D is disposed on the fourth light incident surface 11aD.
  • the third reflector 30C and the fourth reflector 30D extend over the entire length in the longitudinal direction (Y-axis direction) of the third light incident surface 11aC and the fourth light incident surface 11aD.
  • the third light source column 20C and the fourth light source column 20D are the same as the first light source column 20A and the second light source column 20B in the thickness direction of the light guide plate 11, that is, the normal to the light emitting surface 11b. It is arranged offset in the direction.
  • the third light source array 20C faces the front side of the third light incident surface 11aC
  • the fourth light source array 20D faces the rear side of the fourth light incident surface 11aD.
  • the fourth light source facing area overlapping with the fourth light source array 20D viewed from the normal direction of the fourth light incident surface 11aD, that is, the third reflective material 30C is distributed.
  • the fourth light source facing region that is, the portion closer to the front side, superimposed on the third light source column 20C as viewed from the normal direction of the third light incident surface 11aC Are arranged.
  • the amount of light incident on the light guide plate 11 can be further increased by causing light to be incident from four directions of the light guide plate 11. Further, by providing the reflective material 30 on the four end faces, the emission from the light guide plate 11 can be suppressed, and the utilization efficiency of light can be further improved. As a result, it is possible to cope with higher brightness.
  • the light guide plate 11 has a rectangular plate shape (long rectangular shape), and the third light incident surface 11aC and the fourth light incident surface 11aD are both the first light incident surface 11aA and the second light incident surface 11aA. It is adjacent to the light incident surface 11aB.
  • the reflecting member 30 is also provided on the entire outer peripheral end face, so that the emission of light from the entire outer peripheral end face of the light guide plate 11 is suppressed, and the light utilization efficiency can be further improved.
  • the light guide plate is rectangular in plan view, but the invention is not limited to this.
  • the light guide plate is not limited to this.
  • the present technology can also be applied to those having a shape formed by an outline including a curve.
  • the light source rows 20 are arranged in one row in each light incident surface 11a.
  • the present invention is not limited to this.
  • a plurality of rows of light incident surfaces 11a are provided.
  • a light source array 20 may be disposed. By doing this, the amount of incident light can be further increased.
  • the plurality of light source arrays 20 be spaced apart from one another on the light incident surface 11a.
  • the first light source array 20A and the second light source array 20B can be alternately arranged in the normal direction of the light emission surface 11b. .
  • the light sources constituting each light source array 20 are all the same LED 22.
  • different light sources may be used for each light source array. It is also possible to use, for example, a cold cathode tube or an organic EL as another type of light source.
  • a light source having a larger light amount may be used as the light source disposed closer to the back side of the light guide plate 11.
  • the same member is used for the reflective material 30 disposed in each light source facing area, different reflecting materials may be provided for each light source facing area. It is also possible to use members with different reflectances and different dimensions and shapes as the reflector, and to use part or all of the reflector as the reflective coating film.
  • the light-guide plate 11 of 1 sheet formed comparatively thickly was used, it is not limited to this.
  • the first light source row 20A is disposed opposite to one end face, and the first light guide plate is provided with the second reflecting member 30B on the opposite end face, and the first reflecting member 30A is attached to one end face.
  • the second light guide plate in which the second light source row 20B is disposed opposite to the end face located on the opposite side, the thickness direction of the light guide plate such that one end face is disposed on the same side It is also possible to use by laminating.
  • the present technology can be applied not only to a liquid crystal display device using a liquid crystal panel as the display panel illustrated in the embodiment, but also to a display device using another type of display panel.
  • Liquid crystal display device (an example of display device) 1, 201 backlight device (an example of illumination device) 2: liquid crystal panel (an example of display panel) 11 light guide plate 11aA first light incident surface 11aB: second light incident surface 11aC: third light incident surface 11aD: fourth light incident surface 11b: light output surface 14: reflection sheet 15: optical member 20A: first light source array (first light source (first light source) 20B: second light source array (corresponding to second light source) 20C: third light source array (corresponding to third light source) 20D: fourth light source array (corresponding to fourth light source) 21A: first LED substrate, 21B: second LED substrate, 21C: third LED substrate, 21D: fourth LED substrate, 22: LED (an example of a light source), 30A: first reflector, 30B: second reflector, 30C: second 3 reflectors, 30D ... 4th reflector

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)

Abstract

According to the present invention, a backlight device (1) is provided with: a light guide plate (11); a first light source array (20A) that is arranged so as to face a part of the left end face of the light guide plate (11) using the left end face as a first light incident surface (11aA); and a second light source array (20B) that is arranged so as to face a part of the right end face of the light guide plate (11) using the right end face as a second light incident surface (11aB). The first light source array (20A) and the second light source array (20B) are arranged so as to offset each other in the plate thickness direction of the light guide plate (11); a first reflective material (30A), which reflects emitted light toward the inside of the light guide plate (11), is arranged in a second light source facing region in the first light incident surface (11aA), said second light source facing region overlapping the second light source array (20B) when viewed from the normal direction of the second light incident surface (11aB); and a second reflective material (30B), which reflects emitted light toward the inside of the light guide plate (11), is arranged in a first light source facing region in the second light incident surface (11aB), said first light source facing region overlapping the first light source array (20A) when viewed from the normal direction of the first light incident surface (11aA).

Description

照明装置および表示装置Lighting device and display device
 本明細書が開示する技術は、照明装置および表示装置に関する。 The technology disclosed herein relates to a lighting device and a display device.
 近年、野外使用が想定されるモバイル端末機器等において、高輝度化が強く求められている。これらの機器の画像表示装置としては、液晶パネルを含む液晶表示装置が多用されているが、液晶パネルは自発光しないため、別途に照明装置としてバックライト装置が必要である。バックライト装置は、その光源の配置によって、液晶パネル表示面の直下に光源を配した直下型と、液晶パネルの直下に配された導光板の側方に光源を配したエッジライト型と、に大別されるが、モバイル端末機器等には薄型化も求められており、これに対応するには、エッジライト型のバックライト装置を用いることが好ましい。 In recent years, in mobile terminal devices and the like expected to be used outdoors, high luminance is strongly demanded. Although liquid crystal display devices including a liquid crystal panel are widely used as image display devices of these devices, since the liquid crystal panel does not emit light by itself, a backlight device is separately required as a lighting device. The backlight device includes a direct type in which the light source is disposed immediately below the liquid crystal panel display surface and an edge light type in which the light source is disposed laterally of the light guide plate disposed immediately below the liquid crystal panel. Although roughly classified, mobile terminal devices and the like are also required to be thinner, and to cope with this, it is preferable to use an edge light type backlight device.
 エッジライト型で高輝度化が図られたバックライト装置の一例として、下記特許文献1に記載されたエッジライト型面光源装置がある。この面光源装置は、導光板の端面から導光板内に光を照射する複数のLED光源基板(複数のLEDが実装された基板)を備えるエッジライト型面光源装置であって、複数のLED光源基板は、導光板において対向する一対の辺の各々に配置され、LED光源基板が配置される辺の長さよりも短くされている。また、下記特許文献2には、光反射板を挟んで第1導光板と第2導光板とを積層し、導光方向同一側に光入射面を配置し、第1、第2導光板の光入射面に対向して第1、第2光源を配置し、第1導光板の光入射面を第2導光板の光入射面に対して所定距離ずらして突出させて配置した両面発光面状光源装置が開示されている。 There is an edge light type surface light source device described in Patent Document 1 below as an example of the edge light type backlight device in which high luminance is achieved. This surface light source device is an edge light type surface light source device including a plurality of LED light source substrates (substrates on which a plurality of LEDs are mounted) for irradiating light into the light guide plate from the end face of the light guide plate. The substrate is disposed on each of a pair of opposing sides in the light guide plate, and is shorter than the length of the side on which the LED light source substrate is disposed. Further, in Patent Document 2 below, the first light guide plate and the second light guide plate are laminated with the light reflection plate interposed therebetween, and the light incident surface is disposed on the same side in the light guide direction. The first and second light sources are disposed opposite to the light incident surface, and the light incident surface of the first light guide plate is disposed so as to protrude with a predetermined distance offset from the light incident surface of the second light guide plate A light source device is disclosed.
特開2014-13746号公報JP 2014-13746 A 特開2012-99224号公報JP 2012-99224 A
(発明が解決しようとする課題)
 エッジライト型の照明装置において高輝度化を図るためには、導光板に入射させる光の量を多くすることが直接的であるが、光源を導光板の一端面側に集中的に配置すると、光源からの熱を十分に放熱できなくなり、輝度劣化や熱による寿命低下がおこる虞がある。上記特許文献1のエッジライト型面光源装置では、導光板の複数方向からの光の入射を可能とすることで、発熱等に起因する不具合の発生を回避しつつ高輝度化が図られているが、複数のLED光源基板は光出射面内においてオフセットして配されており、輝度ムラを生じやすい。
 上記特許文献2の両面発光面状光源装置は、両発光面の発光量を互いに独立して調整可能とすることを目的としており、一の発光面の高輝度化を図ろうとするものではない。また、導光板内に入光したLED光のうち直進する光は光入射面の反対側の端面から出射されるが、このような光の再利用は図られていない。
(Problems to be solved by the invention)
In order to achieve high brightness in the edge light type illumination device, it is straightforward to increase the amount of light to be made incident on the light guide plate, but if the light sources are arranged intensively on one end face side of the light guide plate, The heat from the light source can not be sufficiently dissipated, and there is a possibility that the life may be deteriorated due to the luminance deterioration and the heat. In the edge light type surface light source device of the above-mentioned patent document 1, high brightness can be achieved while avoiding the occurrence of a defect due to heat generation or the like by enabling the light incidence from a plurality of directions of the light guide plate. However, the plurality of LED light source substrates are disposed offset in the light emission surface, and are likely to cause uneven brightness.
The double-sided light emitting planar light source device of Patent Document 2 aims to make it possible to adjust the light emission amounts of both light emitting surfaces independently of each other, and is not intended to increase the luminance of one light emitting surface. Moreover, although the light which goes straight in LED light which entered into the light-guide plate is radiate | emitted from the end surface on the opposite side of a light-incidence surface, such recycling | reuse of light is not achieved.
 本明細書が開示する技術は、上記事情に基づいて完成されたものであって、エッジライト型の照明装置において、輝度ムラの発生を抑制しつつ複数方向から導光板内に光を入射させて十分な入射光量を確保するとともに、入射された光の導光板外への出射を抑制し光の利用効率を向上させ、もって高輝度化を図ることを目的とする。また、本明細書が開示する技術は、高輝度で高品質な画像を表示可能な表示装置を提供することを目的とする。 The technology disclosed in the present specification is completed based on the above-mentioned circumstances, and in an edge light type lighting device, light is made to enter the light guide plate from a plurality of directions while suppressing the occurrence of uneven brightness. An object of the present invention is to secure a sufficient amount of incident light, suppress emission of incident light to the outside of the light guide plate, improve the utilization efficiency of light, and achieve high luminance. Further, the technology disclosed in the present specification aims to provide a display device capable of displaying a high brightness and high quality image.
(課題を解決するための手段)
 本明細書が開示する照明装置は、板状をなし一方の板面が入射された光が面状の光として出射される光出射面とされる導光板と、前記導光板の外周端面のうち一の端面を光が入射される第1光入射面として、当該第1光入射面の一部に対向するように配された第1光源と、前記外周端面のうち前記第1光入射面の反対側に位置する端面を光が入射される第2光入射面として、当該第2光入射面の一部に対向するように配された第2光源と、を備え、前記第1光源と前記第2光源とは、前記導光板の板厚方向にオフセットされ、前記第1光入射面のうち、前記第2光入射面の法線方向から視て前記第2光源と重畳される第2光源正対領域には、前記導光板内を伝播してきた光を前記導光板内に向けて反射させる第1反射材が配され、前記第2光入射面のうち、前記第1光入射面の法線方向から視て前記第1光源と重畳される第1光源正対領域には、前記導光板内を伝播してきた光を前記導光板内に向けて反射させる第2反射材が配されている。
(Means to solve the problem)
The illumination device disclosed in the present specification is a light guide plate which is a plate-like light output surface from which light having one plate surface entered is emitted as planar light, and among the outer peripheral end faces of the light guide plate The first light source is disposed so as to face a part of the first light incident surface as a first light incident surface to which light is incident, and the first light incident surface of the outer peripheral end surface And a second light source disposed to face a part of the second light incident surface, wherein an end surface located on the opposite side is a second light incident surface on which light is incident, the first light source and the first light source The second light source is a second light source which is offset in the thickness direction of the light guide plate and viewed from the normal direction of the second light incident surface of the first light incident surface and is superimposed on the second light source A first reflector for reflecting the light propagating in the light guide plate toward the light guide plate is disposed in the directly-facing region, and the second light The light propagating in the light guide plate is directed into the light guide plate in the first light source just-facing region overlapping the first light source as viewed from the normal direction of the first light incident surface in the light emission surface. A second reflector is disposed to reflect the light.
 上記構成によれば、導光板の二方向から光を入射させることで、光源の集中配置に起因する不具合の発生を回避しつつ、十分な量の光を導光板内に入射させることができる。
 各光入射面から入射されて導光板内を直進してきた光は、導光板の反対側の端面において各光入射面の法線方向から視て各光源と重畳される光源正対領域から、導光板外に出射される。上記構成によれば、第1光源と第2光源とがオフセットして配されているために、各光源正対領域に反射材を配することができる。これにより、当該領域から出射された光の再利用が図られ、光の利用効率が向上する。
 また、上記構成によれば、第1光源と第2光源とが、光出射面内ではなく導光板の板厚方向、すなわち光出射面の法線方向にオフセットして配されるため、光出射面における輝度ムラの発生が抑制される。
 さらに、上記構成によれば、第1光源と第2光源とを導光板の板厚方向にオフセットして配するために、導光板の板厚は比較的に厚くなる。このため、導光板内を伝播する光が導光板の板面で反射される反射回数が減少し、導光板内を伝播する光の減衰率が低下することによっても、光の利用効率が向上する。
 上記のように、入射光量が増加するとともに光の利用効率が向上される結果、光出射面からの出射光量を増加させて照明装置の高輝度化を図ることが可能である。
According to the above configuration, by causing light to be incident from two directions of the light guide plate, it is possible to cause a sufficient amount of light to be incident into the light guide plate while avoiding the occurrence of a defect due to the concentrated arrangement of light sources.
The light entering from each light incident surface and traveling straight in the light guide plate is guided from the light source facing area viewed from the normal direction of each light incident surface at the end face on the opposite side of the light guide plate It is emitted outside the light plate. According to the above configuration, since the first light source and the second light source are arranged to be offset, the reflective material can be disposed in each light source facing area. Thereby, the light emitted from the region can be reused, and the light utilization efficiency is improved.
Further, according to the above configuration, the first light source and the second light source are disposed offset in the thickness direction of the light guide plate, that is, in the normal direction of the light emission surface, not in the light emission surface. The occurrence of uneven brightness on the surface is suppressed.
Furthermore, according to the above configuration, in order to offset the first light source and the second light source in the plate thickness direction of the light guide plate, the plate thickness of the light guide plate becomes relatively thick. For this reason, the number of reflections of light propagating in the light guide plate reflected by the plate surface of the light guide plate decreases, and the attenuation factor of the light propagating in the light guide plate decreases, so that the utilization efficiency of light is improved. .
As described above, as the amount of incident light is increased and the utilization efficiency of light is improved, it is possible to increase the amount of light emitted from the light emitting surface to achieve higher luminance of the lighting device.
 本明細書はまた、上記の照明装置と、前記照明装置からの光を利用して表示を行う表示パネルと、を備える表示装置についても開示する。 The present specification also discloses a display device including the above-described lighting device and a display panel that performs display using light from the lighting device.
 上記構成によれば、表示パネルに光を供給する照明装置が、十分な入射光量が確保されるとともに光の利用効率が改善されたものであるから、高輝度で高品質な画像を表示可能な表示装置を提供することができる。表示パネルとして液晶パネルを用いた液晶表示装置とすれば、種々の用途、例えばスマートフォンやタブレット等のモバイル端末機器等に用いることができ、野外での使用が想定され高輝度化が求められている機器に特に有用である。 According to the above configuration, since the illumination device for supplying light to the display panel has a sufficient amount of incident light and improved utilization efficiency of light, it is possible to display high-quality and high-quality images. A display device can be provided. The liquid crystal display device using a liquid crystal panel as the display panel can be used in various applications, for example, mobile terminal devices such as smartphones and tablets, and is expected to be used outdoors and high brightness is required. It is particularly useful for equipment.
(発明の効果)
 本明細書が開示する技術によれば、野外でも好適に使用可能な表示装置を提供することができる。或いは、大画像を高品質で表示可能な表示装置を提供することができる。
(Effect of the invention)
According to the technology disclosed in the present specification, a display device that can be suitably used in the field can be provided. Alternatively, a display device capable of displaying a large image with high quality can be provided.
実施形態1に係る液晶表示装置の概略構成を示す断面図Sectional drawing which shows schematic structure of the liquid crystal display device which concerns on Embodiment 1. 照明装置のシャーシ内における導光板、LED及び反射材の配置構成を示す平面図Top view showing arrangement of light guide plate, LED and reflector in chassis of lighting device 図1の左右両端部を拡大して示す一部拡大断面図Partially enlarged cross-sectional view showing enlarged left and right end portions of FIG. 1 実施形態2に係る照明装置のシャーシ内における導光板、LED及び反射材の配置構成を示す平面図The top view which shows the arrangement configuration of the light-guide plate in the chassis of the illuminating device which concerns on Embodiment 2, LED, and a reflecting material
 <実施形態1>
 実施形態1を、図1から図3によって説明する。
 本実施形態では、バックライト装置(照明装置の一例)1を備える液晶表示装置(表示装置の一例)100について例示する。なお、各図面の一部にはX軸、Y軸およびZ軸を示しており、各軸方向が各図面で示した方向となるように描かれている。また、各図における左側を左(右側を右)、図1および図3における上側を表側(同図下側を裏側)とする。また、複数の同一部材については、一部の部材に符号を付し、残りの部材については符号を省略することがある。
First Embodiment
Embodiment 1 will be described with reference to FIGS. 1 to 3.
In the present embodiment, a liquid crystal display device (an example of a display device) 100 including the backlight device (an example of a lighting device) 1 will be illustrated. In addition, X-axis, Y-axis, and Z-axis are shown in a part of each drawing, and it is drawn so that each axis direction may turn into the direction shown in each drawing. The left side in each figure is the left (right side is the right), and the upper side in FIGS. 1 and 3 is the front side (the lower side in the figure is the rear side). Moreover, about several same members, a code | symbol may be attached to a one part member, and a code | symbol may be abbreviate | omitted about the remaining member.
 本実施形態に係る液晶表示装置100は、全体として横長の矩形状(横長な方形状)をなしており、液晶パネル(表示パネルの一例)2と、外部光源であるバックライト装置1とを備える。図1に示すように、液晶表示装置100の裏側の外形は、浅箱状のシャーシ12によって形成されている。シャーシ12の内方には、この底面側に配されたバックライト装置1の導光板11等を表側から押さえると同時に液晶パネル2を裏側から支持する矩形枠状のフレーム13が取り付けられ、シャーシ12の表側からは、フレーム13及び液晶パネル2を押さえる矩形枠状のベゼル3が外嵌されている。このように、液晶パネル2とバックライト装置1は、シャーシ12、フレーム13、及びベゼル3によって一体的に保持されている。なお、本実施形態に係るシャーシ12及びフレーム13は、バックライト装置1の一部を構成している。 The liquid crystal display device 100 according to the present embodiment has a horizontally long rectangular shape (horizontally long square shape) as a whole, and includes a liquid crystal panel (an example of a display panel) 2 and a backlight device 1 as an external light source. . As shown in FIG. 1, the outer shape of the back side of the liquid crystal display device 100 is formed by a shallow box-like chassis 12. On the inner side of the chassis 12, a rectangular frame-like frame 13 for supporting the liquid crystal panel 2 from the back side is attached while holding down the light guide plate 11 and the like of the backlight device 1 disposed on the bottom side from the front side. A rectangular frame-shaped bezel 3 for holding the frame 13 and the liquid crystal panel 2 is externally fitted from the front side of the frame. Thus, the liquid crystal panel 2 and the backlight device 1 are integrally held by the chassis 12, the frame 13, and the bezel 3. The chassis 12 and the frame 13 according to the present embodiment constitute a part of the backlight device 1.
 液晶パネル2としては、周知の構成のものを用いることができる。詳細については割愛するが、例えば一対のガラス基板が所定のギャップを隔てた状態で貼り合わせられるとともに、両ガラス基板間に液晶が封入されてなるものを使用できる。このような液晶パネル2では、一方のガラス基板に、互いに直交するソース配線とゲート配線に接続されたスイッチング素子(例えばTFT)と、そのスイッチング素子に接続された画素電極、さらには配向膜等が設けられ、他方のガラス基板に、R(赤色),G(緑色),B(青色)等の各着色部が所定配列で配置されたカラーフィルタや対向電極、さらには配向膜等が設けられる。なお、両基板の外側には偏光板が配される。液晶パネル2は、その板面の法線方向がZ軸方向と一致するように配されるものとする。 The liquid crystal panel 2 may have a known configuration. Although details will be omitted, it is possible to use, for example, one in which a pair of glass substrates are pasted together with a predetermined gap therebetween and liquid crystal is sealed between the two glass substrates. In such a liquid crystal panel 2, on one glass substrate, a switching element (for example, a TFT) connected to source wiring and gate wiring orthogonal to each other, a pixel electrode connected to the switching element, an alignment film, etc. The other glass substrate is provided with a color filter, an opposing electrode, and an alignment film, in which colored portions such as red (R), green (G) and blue (B) are arranged in a predetermined arrangement. In addition, the polarizing plate is distribute | arranged to the outer side of both board | substrates. The liquid crystal panel 2 is disposed such that the normal direction of the plate surface coincides with the Z-axis direction.
 バックライト装置1は、平面視矩形状の概形をなし、その内方に配された導光板11の側方に光源列20が配置されてなる、いわゆるエッジライト型(サイドライト型)とされている。以下、バックライト装置1を構成する部材について順に説明する。 The back light device 1 is a so-called edge light type (side light type) in which the light source array 20 is disposed on the side of the light guide plate 11 which has a rectangular shape in plan view and the light guide plate 11 disposed inward. ing. Hereinafter, members constituting the backlight device 1 will be described in order.
 図1及び図2に示すように、バックライト装置1は、一面が開口された浅箱状をなすシャーシ12を備える。シャーシ12は、例えばアルミニウムなどの金属製とすることができる。シャーシ12は、後述する導光板11等を裏側から全域にわたって支持する矩形状の底壁部12aと、底壁部12aの4つの外周縁から表側に向けて立ち上がる側壁部12bと、から構成される。シャーシ12は、Z軸方向に沿って表側に開口するとともに、底壁部12aの長辺方向をY軸方向、短辺方向をX軸方向と一致させるように配される。なお、図1に示すように、底壁部12aにおける外周縁部は、裏側に向けて陥没した溝状をなすように形成されている。また、側壁部12b内面の表縁寄りの部分には、図示しない被係止構造が設けられており、後述するフレーム13に設けられた係止構造が係止されることで、シャーシ12の開口縁内側にフレーム13が取付固定されるようになっている。 As shown in FIGS. 1 and 2, the backlight device 1 includes a shallow box-like chassis 12 whose one side is opened. The chassis 12 can be made of metal such as aluminum, for example. The chassis 12 includes a rectangular bottom wall 12a supporting the light guide plate 11 and the like described later over the entire area from the back side, and a side wall 12b rising from the four outer peripheral edges of the bottom wall 12a to the front side. . The chassis 12 is opened to the front side along the Z-axis direction, and is disposed so that the long side direction of the bottom wall portion 12a corresponds to the Y-axis direction and the short side direction coincides with the X-axis direction. In addition, as shown in FIG. 1, the outer peripheral edge part in the bottom wall part 12a is formed so that the groove shape which dented toward the back side may be made. In addition, a locking structure (not shown) is provided at a portion near the front edge of the inner surface of the side wall portion 12b, and the locking structure provided on the frame 13 described later is locked to open the chassis 12 The frame 13 is attached and fixed to the inside of the rim.
 図1に示すように、バックライト装置1は、薄い矩形枠状をなすフレーム13を備える。フレーム13は、Z軸方向の両側(表側および裏側)に向けて開口するとともに、長枠方向をY軸方向、短枠方向をX軸方向と一致させるように配される。フレーム13は、シャーシ12内に下記する各部材をまとめて固定するための部材であって、ポリカーボネート樹脂等を成型したものを使用できる。本実施形態では白色のものを使用しているが、外部への光漏れを防止する観点から黒色のものを用いてもよい。フレーム13は、例えばその表面に両面テープを貼付して、液晶パネル2の裏面に固定される。 As shown in FIG. 1, the backlight device 1 includes a frame 13 having a thin rectangular frame shape. The frame 13 is opened toward both sides (front side and back side) in the Z-axis direction, and is arranged so that the long frame direction matches the Y-axis direction and the short frame direction matches the X-axis direction. The frame 13 is a member for collectively fixing the following members in the chassis 12 and may be made of a molded polycarbonate resin or the like. Although a white one is used in this embodiment, a black one may be used from the viewpoint of preventing light leakage to the outside. The frame 13 is fixed to the back surface of the liquid crystal panel 2 by, for example, sticking a double-sided tape on the front surface.
 図1に示すように、フレーム13内の表側寄りの位置には、平面に視て矩形状をなす光学部材15が備えられている。光学部材15は、フレーム13の表側(液晶パネル2側)の開口部を覆い、液晶パネル2と後述する導光板11との間に介在するように配される。光学部材15としては、拡散シートやプリズムシート、偏光シート(例えば、3M社製の"DBEF"等)などを用いることができる。本実施形態では、適宜に選択した3枚のシートを積層して使用している。光学部材15は、例えば最も表側に配されるシートの表面外周に両面テープを貼付して、フレーム13の裏面に固定される。 As shown in FIG. 1, an optical member 15 having a rectangular shape in plan view is provided at a position near the front side in the frame 13. The optical member 15 covers the opening on the front side (the liquid crystal panel 2 side) of the frame 13 and is disposed so as to be interposed between the liquid crystal panel 2 and a light guide plate 11 described later. As the optical member 15, a diffusion sheet, a prism sheet, a polarizing sheet (for example, "DBEF" manufactured by 3M, etc.) or the like can be used. In the present embodiment, three appropriately selected sheets are stacked and used. The optical member 15 is fixed to the back surface of the frame 13 by, for example, applying a double-sided tape to the outer periphery of the surface of the sheet disposed on the front side.
 図1および図2に示すように、光学部材15の裏側、フレーム13内の中央部には、矩形平板状をなす導光板11が備えられている。なお、図2は、バックライト装置1からフレーム13及び光学部材15を取り除いた状態の平面図である。導光板11には、屈折率が空気よりも十分に高くかつ透光性に優れた材料から形成されたもの、例えば透明なアクリルやポリカーボネート等の樹脂製のもの、或いは各種ガラス製のものを用いることができる。導光板11は、Z軸方向には、光学部材15と後述する反射シート14との間に挟み込まれる形で配置される。また、Y軸方向には、シャーシ12内の左右の側壁部12b,12b内面に配された後述する一対の光源列20,20の間に挟み込まれる形で配される。よって、光源列20と導光板11との並び方向がY軸方向と一致するのに対して、光学部材15(液晶パネル2)と導光板11との並び方向はZ軸方向と一致し、両並び方向は互いに直交している。導光板11は、光源列20からY軸方向に沿って出射された光を入射させるとともに、その光を内部で伝播させつつZ軸方向に沿って表側(光学部材15側)に立ち上げて出射させる機能を有する。導光板11の板面のうち表側の板面が、導光板11内に入射された光が出射される光出射面11bとされる。
 導光板11には、導光板11内に入射された光を光出射面11bから出射させるために、様々な凹凸パターン(図示せず)が設けられている。具体的には、導光板11の板面に光散乱粒子からなるドットを印刷したり、ブラスト処理を施して粗面を形成したり、樹脂からなる導光板11を成形する際に微小な凹凸を形成させたりすることができる。例えば、導光板11の裏側の板面に光を反射させる凹凸パターンを設けることにより、光路の角度を変化させ、光出射面11bに向けて、導光板11と外気との境界面における臨界角を超えない入射角をなすように光を反射させて、光出射面11bからの出射を促してもよい。或いは、導光板11の表側の板面、すなわち光出射面11bに凹凸パターンを設けることで、この面から光が出射し易くなるようにしてもよい。凹凸パターンの形状や分布密度を変えることで、光出射面11bにおける各部分からの光の出射量の分布を調整することができる。本実施形態では、後述するように、Y軸方向に沿った左右両側から導光板11内に光が入射される構成とされているため、光量が低下する左右方向中央付近において光が出射され易くなるように凹凸パターンを形成し、光出射面11bからの出射光が面内において均一な分布となるよう調整することが好ましい。
As shown in FIGS. 1 and 2, a light guide plate 11 having a rectangular flat plate shape is provided on the back side of the optical member 15 and at the central portion in the frame 13. FIG. 2 is a plan view of the backlight device 1 with the frame 13 and the optical member 15 removed. The light guide plate 11 is made of a material whose refractive index is sufficiently higher than that of air and which is excellent in light transmitting property, for example, those made of resin such as transparent acrylic and polycarbonate, or those made of various glasses be able to. The light guide plate 11 is disposed in the Z-axis direction so as to be sandwiched between the optical member 15 and a reflection sheet 14 described later. Further, in the Y-axis direction, it is disposed so as to be sandwiched between a pair of light source rows 20 and 20 described later disposed on the inner surfaces of left and right side wall portions 12 b and 12 b in the chassis 12. Therefore, while the alignment direction of the light source array 20 and the light guide plate 11 coincides with the Y axis direction, the alignment direction of the optical member 15 (liquid crystal panel 2) and the light guide plate 11 coincides with the Z axis direction. The alignment directions are orthogonal to each other. The light guide plate 11 makes the light emitted from the light source array 20 along the Y-axis direction enter, and while propagating the light inside, rises up to the front side (optical member 15 side) along the Z-axis direction Have a function to Of the plate surfaces of the light guide plate 11, the plate surface on the front side is a light emitting surface 11b from which the light incident into the light guide plate 11 is emitted.
The light guide plate 11 is provided with various concavo-convex patterns (not shown) in order to cause the light incident into the light guide plate 11 to exit from the light exit surface 11 b. Specifically, dots made of light scattering particles are printed on the surface of the light guide plate 11, blasted to form a rough surface, or when forming the light guide plate 11 made of resin, minute irregularities are formed. It can be formed. For example, by providing a concavo-convex pattern that reflects light on the plate surface on the back side of the light guide plate 11, the angle of the light path is changed to direct the critical angle at the interface between the light guide plate 11 and the outside air toward the light emitting surface 11b. The light may be reflected so as to have an incident angle that does not exceed the value to prompt emission from the light emission surface 11b. Alternatively, by providing a concavo-convex pattern on the plate surface on the front side of the light guide plate 11, that is, the light emitting surface 11b, light may be easily emitted from this surface. By changing the shape and distribution density of the concavo-convex pattern, it is possible to adjust the distribution of the emission amount of light from each portion in the light emission surface 11b. In the present embodiment, as described later, light is made to enter the light guide plate 11 from both left and right sides along the Y-axis direction, so it is easy for light to be emitted near the center in the horizontal direction It is preferable to form a concavo-convex pattern so that the light emitted from the light emitting surface 11b is uniformly distributed in the plane.
 図1に示すように、導光板11の裏側には、平面視矩形状の反射シート14が備えられている。反射シート14は、シャーシ12の底壁部12aと導光板11との間に、導光板11の裏面全域に亘るように配されて、導光板11の裏面から出射された光を、表側、すなわち導光板11側に向けて反射させ、導光板11内に再び入射させて、光の利用効率を高める機能を有する。反射シート14としては、一般的な白色シートや鏡面シートを使用することができる。白色シートとしては東レ株式会社製の"ルミラー(登録商標)"等を、鏡面シートとしては3M社製の"ESR"等を、用いることができる。 As shown in FIG. 1, a reflecting sheet 14 having a rectangular shape in plan view is provided on the back side of the light guide plate 11. The reflection sheet 14 is disposed between the bottom wall 12a of the chassis 12 and the light guide plate 11 so as to cover the entire back surface of the light guide plate 11, and the light emitted from the back surface of the light guide plate 11 It has a function of reflecting light toward the light guide plate 11 and causing the light to enter the light guide plate 11 again to increase the utilization efficiency of light. As the reflection sheet 14, a general white sheet or a specular sheet can be used. As a white sheet, "Lumirror (registered trademark)" manufactured by Toray Industries, Inc. and the like can be used, and as a mirror sheet, "ESR" manufactured by 3M and the like can be used.
 本実施形態では、図1に示すように、シャーシ12のX軸方向に沿った一対の側壁部12b,12bの内面に、各1枚のLED基板(光源用基板)21が取り付けられている。図2に示すように、導光板11の左側に配されるLED基板を第1LED基板21A、右側に配されるLED基板を第2LED基板21Bとする。以下、各LED基板21を区別して記す場合には添え字AまたはBを付し、区別せずに総称する場合には添え字を付さないものとする。後述する光源列20、光入射面11aについても、同様とする。
 本実施形態では、後述するように頂面発光型のLED22が使用されるため、LED基板21は、X軸方向に沿って延びる細長い板状をなすとともに、その一対の板面の法線方向が、Y軸方向と一致する姿勢、すなわち液晶パネル2や光学部材15の板面の法線方向(Z軸方向)と直交する姿勢で配される。LED基板21は、例えばその一方の板面に両面テープを貼付して、シャーシ12のX軸方向に沿った側壁部12bの内面に固定される。これにより、各LED基板21の他方の板面が、導光板11の外周端面に対向するように配される。具体的には、第1LED基板21Aの他方の板面は、導光板11の左端面(後述する第1光入射面11aAを構成する)と対向し、第2LED基板21Bの他方の板面は、導光板11の右端面(後述する第2光入射面11aBを構成する)と対向される。
 LED基板21の基材は絶縁性で可撓性を有する合成樹脂製とされ、その表面に銅箔などの金属膜からなる配線パターン(図示せず)が形成されて、LED基板21に実装されるLED22と、点灯回路とが接続される。LED基板21上に並べて配置された複数のLED22の配線パターンは特に限定されるものではなく、一部または全部が直接に接続されていても、並列に接続されていてもよいが、並列に接続すれば、各LED22の単位で発光強度を制御可能となり好ましい。
In the present embodiment, as shown in FIG. 1, one LED substrate (light source substrate) 21 is attached to the inner surfaces of the pair of side wall portions 12 b and 12 b along the X-axis direction of the chassis 12. As shown in FIG. 2, the LED substrate disposed on the left side of the light guide plate 11 is referred to as a first LED substrate 21A, and the LED substrate disposed on the right side is referred to as a second LED substrate 21B. Hereinafter, the suffixes A or B are attached when the LED boards 21 are described separately, and the suffixes are not attached when collectively referred to without distinction. The same applies to the light source array 20 and the light incident surface 11a described later.
In the present embodiment, since the top surface emission type LED 22 is used as described later, the LED substrate 21 has an elongated plate shape extending along the X axis direction, and the normal direction of the pair of plate surfaces is And the Y axis direction, that is, the posture orthogonal to the normal direction (Z axis direction) of the plate surface of the liquid crystal panel 2 and the optical member 15. The LED substrate 21 is fixed to, for example, the inner surface of the side wall portion 12 b along the X-axis direction of the chassis 12 by applying a double-sided tape to one plate surface thereof. Thereby, the other plate surface of each LED substrate 21 is disposed to face the outer peripheral end face of the light guide plate 11. Specifically, the other plate surface of the first LED substrate 21A faces the left end surface of the light guide plate 11 (constituting a first light incident surface 11aA described later), and the other plate surface of the second LED substrate 21B is It is opposed to the right end surface of the light guide plate 11 (which constitutes a second light incident surface 11aB described later).
The base material of the LED substrate 21 is made of insulating and flexible synthetic resin, and a wiring pattern (not shown) made of a metal film such as copper foil is formed on the surface and mounted on the LED substrate 21. LED 22 and the lighting circuit are connected. The wiring pattern of the plurality of LEDs 22 arranged side by side on the LED substrate 21 is not particularly limited, and some or all may be directly connected or may be connected in parallel, but connected in parallel If so, the emission intensity can be controlled in units of the respective LEDs 22, which is preferable.
 図1及び図2に示すように、導光板11の左右端面に対向する各LED基板21の板面には、LED(光源の一例)22(Light Emitting Diode:発光ダイオード)が実装される。本実施形態では、LED22として、LED基板21に対する実装面の反対側の面が発光面となる、いわゆる頂面発光型のものを使用しており、各LED22はその光軸がY軸方向とほぼ一致するように配される。LED22は、その光軸が光出射面に対して略平行となるように配されれば、頂面発光型のものでも側面発光型のものでもよい。これにより、導光板11の左右端面の一部にLED22が対向配置されて、これらの端面がLED22からの光が入射される光入射面11aとされる。なお、LED22としては、白色発光のLEDとRGB発光のLEDとを組み合わせて使用することもできるが、本実施形態では、一般的な白色LEDのみを使用している。
 図2に示すように、LED22は、第1LED基板21A、第2LED基板21Bの主板面の長手方向(X軸方向)に沿ってそれぞれ複数(本実施形態では15個)実装されて、第1光源列(第1光源に相当する)20A、第2光源列(第2光源に相当する)20Bを形成している。各光源列20において、複数のLED22は、光入射面11aの長手方向(X軸方向)の全長に亘って一定の間隔で配列されている。以下、第1光源列20Aが対向配置される導光板11の左端面を、第1光入射面11aAとし、第2光源列20Bが対向配置される導光板11の右端面を、第2光入射面11aBとする。
As shown in FIG. 1 and FIG. 2, an LED (an example of a light source) 22 (Light Emitting Diode) is mounted on the plate surface of each LED substrate 21 facing the left and right end faces of the light guide plate 11. In this embodiment, a so-called top surface light emission type is used as the LED 22 in which the surface opposite to the mounting surface with respect to the LED substrate 21 is a light emitting surface, and the optical axis of each LED 22 is substantially in the Y axis direction. Arranged to match. The LED 22 may be of a top surface emitting type or a side surface emitting type, as long as the optical axis of the LED 22 is substantially parallel to the light emitting surface. As a result, the LEDs 22 are disposed to face part of the left and right end faces of the light guide plate 11, and these end faces serve as the light incident surface 11a on which the light from the LEDs 22 is incident. In addition, as LED22, although it can also be used combining LED of white light emission and LED of RGB light emission, in this embodiment, only general white LED is used.
As shown in FIG. 2, a plurality of (in this embodiment, fifteen) LEDs 22 are mounted along the longitudinal direction (X-axis direction) of the main plate surfaces of the first LED substrate 21A and the second LED substrate 21B, and the first light source A row (corresponding to a first light source) 20A and a second light source row (corresponding to a second light source) 20B are formed. In each light source array 20, the plurality of LEDs 22 are arranged at constant intervals over the entire length in the longitudinal direction (X-axis direction) of the light incident surface 11a. Hereinafter, the left end surface of the light guide plate 11 on which the first light source array 20A is disposed opposite is referred to as a first light incident surface 11aA, and the right end surface of the light guide plate 11 on which the second light source array 20B is disposed opposite is a second light incident It is referred to as surface 11aB.
 本実施形態では、図1に示すように、導光板11の光入射面11aにおいて、LED22が対向配置されない部分に、反射材30が配されている。図2に示すように、反射材30は、光入射面11aの長手方向(X軸方向)の全長に亘って延在するように設けられている。第1光入射面11aAに配された反射材を第1反射材30A、第2光入射面11aBに配された反射材を第2反射材30Bとする。第1反射材30A及び第2反射材30Bとしては、例えば、平面視長手矩形状の白色シートや鏡面シート等からなる反射シートを用いることができる。或いは、反射塗料を塗布して反射塗膜を形成してもよい。本実施形態では、第1反射材30A及び第2反射材30Bには、材質及び寸法形状が同一の反射シートを用いている。 In the present embodiment, as shown in FIG. 1, in the light incident surface 11 a of the light guide plate 11, the reflective material 30 is disposed in a portion where the LEDs 22 are not arranged to face each other. As shown in FIG. 2, the reflecting member 30 is provided to extend over the entire length in the longitudinal direction (X-axis direction) of the light incident surface 11 a. The reflector disposed on the first light incident surface 11aA is referred to as a first reflector 30A, and the reflector disposed on the second light incident surface 11aB is referred to as a second reflector 30B. As the first reflecting member 30A and the second reflecting member 30B, for example, it is possible to use a reflecting sheet formed of a white sheet or a mirror surface sheet having a rectangular shape in a plan view and a longitudinal rectangular shape. Alternatively, a reflective paint may be applied to form a reflective coating. In the present embodiment, as the first reflective material 30A and the second reflective material 30B, reflective sheets of the same material and size and shape are used.
 続いて、導光板11、光源列20及び反射材30の配置について、図3等を参照しつつ説明する。
 図3に拡大して示すように、本実施形態に係る導光板11は、LED22のZ軸方向の長さ寸法の3倍程度の板厚を有し、比較的肉厚に形成されている。そして、第1光源列20Aを構成するLED22は、その中心の光軸が、導光板11の板厚方向(Z軸方向)における中央よりも表面寄り、表面から板厚の1/4程度裏側にシフトした位置において、光出射面11bと平行をなすように、第1LED基板21Aに実装されている。一方、第2光源列20Bを構成するLED22は、その中心の光軸が、導光板11の板厚方向における中央よりも裏面寄り、表面から板厚の3/4程度裏側にシフトした位置において、光出射面11bと平行をなすように、第2LED基板21Bに実装されている。なお、図1及び図3には、第1光源列20A及び第2光源列20Bの中心光軸を破線で示している。このように、第1光源列20Aと第2光源列20Bとは、導光板11の板厚方向、すなわち光出射面11bの法線方向にオフセットして配されており、第1光源列20Aは第1光入射面11aAの表側寄りの部分に対向し、第2光源列20Bは第2光入射面11aBの裏側寄りの部分に対向するものとされる。
Subsequently, the arrangement of the light guide plate 11, the light source array 20, and the reflectors 30 will be described with reference to FIG.
As shown in an enlarged manner in FIG. 3, the light guide plate 11 according to the present embodiment has a plate thickness of about three times the length dimension of the LED 22 in the Z-axis direction, and is formed relatively thick. The LED 22 constituting the first light source array 20A has the optical axis at the center closer to the surface than the center in the plate thickness direction (Z-axis direction) of the light guide plate 11, and from the surface to the back side about 1/4 of the plate thickness. At the shifted position, it is mounted on the first LED substrate 21A so as to be parallel to the light emitting surface 11b. On the other hand, at the position where the optical axis at the center of the LED 22 constituting the second light source row 20B is shifted closer to the back than the center in the plate thickness direction of the light guide plate 11, It is mounted on the second LED substrate 21B so as to be parallel to the light emitting surface 11b. In FIGS. 1 and 3, central optical axes of the first light source array 20A and the second light source array 20B are indicated by broken lines. Thus, the first light source array 20A and the second light source array 20B are offset in the thickness direction of the light guide plate 11, that is, the normal direction of the light emitting surface 11b, and the first light source array 20A is The second light source array 20B is opposed to the part closer to the front side of the first light incident surface 11aA, and the second light source column 20B is opposed to the part closer to the back side of the second light incident surface 11aB.
 反射材30は、光入射面11aにおいて光源列20が対向配置されない部分に配されている。換言すれば、第1光入射面11aAにおいて、第2光入射面11aBの法線方向から視て第2光源列20Bと重畳される第2光源正対領域、すなわち裏側寄りの部分に、第1反射材30Aが配されている。また、第2光入射面11aBにおいて、第1光入射面11aAの法線方向から視て第1光源列20Aと重畳される第1光源正対領域、すなわち表側寄りの部分に、第2反射材30Bが配されている。 The reflective material 30 is disposed at a portion where the light source array 20 is not disposed opposite to the light incident surface 11a. In other words, in the first light incident surface 11aA, the second light source facing region superimposed on the second light source row 20B as viewed from the normal direction of the second light incident surface 11aB, that is, the portion closer to the back side A reflector 30A is disposed. Further, in the second light incident surface 11aB, the second light reflecting member is positioned in a first light source facing area overlapping with the first light source row 20A as viewed from the normal direction of the first light incident surface 11aA, that is, a portion near the front side. 30B is distributed.
 続いて、LED22から出射された光の光路について説明する。
 図3には、導光板11内に入射して導光板11内を伝播する光の光路のうち、第1光源列20Aから出射された光の代表的な光路を一点鎖線で、第2光源列20Bから出射された光の代表的な光路を二点鎖線で、それぞれ示している。
 例えば、導光板11の左側に配された第1光源列20AのLED22から出射された光は、第1光入射面11aAから導光板11内に入射する。様々な角度で入射される光の中でも、比較的大きな入射角をもって導光板11内に入射された光は、導光板11の裏面に配された反射シート14によって反射されたり、外部の空気層との界面にて全反射されたりしながら、導光板11内を伝播していく。
 ところで、本実施形態において光源として使用しているLEDは、一般的にランバーシアン型の配光分布を示す光源であり、光の進行方向である光軸に沿った発光強度が最も高く、光軸から外れるほど曲線的に発光強度が低下することが知られている。すなわち、第1光源列20AのLED22から出射された光の多くは、比較的小さな入射角をもって導光板11内に入射され、このような光は、反射されることなく導光板11内を直進して、第2光入射面11aBの第1光源正対領域に到達して出射される。しかしながら、本実施形態では、第1光源正対領域に第2反射材30Bが配されているため、この領域から出射された光は第2反射材30Bによって反射され、再び導光板11内へと入射されて導光板11内を伝播していく。同様に、第2光源列20BのLED22から出射され、第2光入射面11aBから入射されて第2光源正対領域に到達して出射された光も、この領域に配された第1反射材30Aによって反射され、再び導光板11内へと入射されて再利用されるようになっている。
 導光板11内を伝播する光は、既述したように導光板11に設けられた凹凸パターンにて適宜散乱反射等され、光出射面11bに対する入射角が臨界角を超えない光となって、光出射面11bからの出射が促される。導光板11の光出射面11bを出射した光は、各光学部材15を透過する過程でそれぞれ光学作用を付与され、液晶パネル2に対して照射される。
Then, the optical path of the light radiate | emitted from LED22 is demonstrated.
In FIG. 3, among the optical paths of light incident into the light guide plate 11 and propagating in the light guide plate 11, a representative optical path of the light emitted from the first light source column 20A is indicated by the alternate long and short dashed line Representative optical paths of the light emitted from 20B are respectively shown by two-dot chain lines.
For example, the light emitted from the LEDs 22 of the first light source array 20A disposed on the left side of the light guide plate 11 enters the light guide plate 11 from the first light incident surface 11aA. Among the light incident at various angles, the light incident into the light guide plate 11 with a relatively large incident angle is reflected by the reflection sheet 14 disposed on the back surface of the light guide plate 11, or with an external air layer. The light is propagated inside the light guide plate 11 while being totally reflected at the interface of
By the way, the LED used as a light source in the present embodiment is a light source generally showing a Lambertian type light distribution, and the light emission intensity along the optical axis which is the traveling direction of light is the highest, and the optical axis It is known that the light emission intensity decreases in a curved manner as it deviates from. That is, most of the light emitted from the LEDs 22 of the first light source array 20A is incident into the light guide plate 11 with a relatively small incident angle, and such light travels straight through the light guide plate 11 without being reflected. Thus, the light beam reaches the first light source facing area of the second light incident surface 11aB and is emitted. However, in the present embodiment, since the second reflector 30B is disposed in the first light source facing area, the light emitted from this area is reflected by the second reflector 30B and is again introduced into the light guide plate 11. It is incident and propagates in the light guide plate 11. Similarly, the light emitted from the LED 22 of the second light source column 20B and incident from the second light incident surface 11aB and reaching the second light source facing area and emitted is also a first reflector disposed in this area The light is reflected by the light source 30A, is again incident into the light guide plate 11, and is reused.
The light propagating in the light guide plate 11 is appropriately scattered and reflected by the concavo-convex pattern provided on the light guide plate 11 as described above, and the incident angle with respect to the light emitting surface 11 b does not exceed the critical angle. The emission from the light emission surface 11b is prompted. The light emitted from the light emission surface 11 b of the light guide plate 11 is given an optical action in the process of transmitting each optical member 15, and is irradiated to the liquid crystal panel 2.
 以上のような構成を有するバックライト装置1を備える液晶表示装置100では、電源がONされると、図示しない画像処理回路によって液晶パネル2の駆動が制御されるとともに、点灯回路に輝度データが送られる。点灯回路が、バックライト装置1の光源列20を構成するLED22の駆動を輝度データに応じて制御することで、導光板11の光出射面11bから液晶パネル2に向けて光が出射して照明光が照射され、もって液晶パネル2に所定の画像が表示される。 In the liquid crystal display device 100 including the backlight device 1 having the above configuration, when the power is turned on, the driving of the liquid crystal panel 2 is controlled by the image processing circuit (not shown), and the luminance data is transmitted to the lighting circuit. Be The lighting circuit controls the driving of the LEDs 22 constituting the light source array 20 of the backlight device 1 according to the luminance data, whereby light is emitted from the light emission surface 11 b of the light guide plate 11 to the liquid crystal panel 2 Light is emitted, whereby a predetermined image is displayed on the liquid crystal panel 2.
 本実施形態の効果は、以下の通りである。
 本実施形態に係るバックライト装置1は、板状をなし、一方の板面が、入射された光が面状の光として出射される光出射面11bとされる導光板11と、導光板11の外周端面のうち左端面を光が入射される第1光入射面11aAとして、この面の一部に対向するように配された第1光源列20Aと、導光板11の外周端面のうち第1光入射面11aAの反対側に位置する右端面を光が入射される第2光入射面11aBとして、この面の一部に対向するように配された第2光源列20Bと、を備えている。そして、第1光源列20Aと第2光源列20Bとは、導光板11の板厚方向(Z軸方向)にオフセットして配され、第1光入射面11aAのうち、第2光入射面11aBの法線方向(Y軸方向)から視て第2光源列20Bと重畳される第2光源正対領域には、導光板11内を伝播して出射された光を導光板11内に向けて反射させる第1反射材30Aが配され、第2光入射面11aBのうち、第1光入射面11aAの法線方向(Y軸方向)から視て第1光源列20Aと重畳される第1光源正対領域には、導光板11内を伝播して出射された光を導光板11内に向けて反射させる第2反射材30Bが配されている。
The effects of the present embodiment are as follows.
The backlight device 1 according to the present embodiment has a plate shape, and the light guide plate 11 has one plate surface as a light emitting surface 11 b from which incident light is emitted as planar light; The first light source row 20A disposed to face a part of this surface as the first light incident surface 11aA to which light is incident on the left end surface of the outer peripheral end surface of the first light incident surface 11a The second light source array 20B is disposed such that the right end surface located on the opposite side of the one light incident surface 11aA is a second light incident surface 11aB on which light is incident, and is opposed to a part of this surface There is. The first light source array 20A and the second light source array 20B are offset in the thickness direction (Z-axis direction) of the light guide plate 11, and the second light incident surface 11aB of the first light incident surface 11aA. Light emitted from the light guide plate 11 is directed toward the inside of the light guide plate 11 in the second light source just-facing region that is superimposed on the second light source row 20B as viewed from the normal direction (Y-axis direction) of A first light source having a first reflecting member 30A to be reflected and viewed from a normal direction (Y-axis direction) of the first light incident surface 11aA of the second light incident surface 11aB and superimposed on the first light source array 20A In the directly-facing region, a second reflection member 30B is disposed which reflects the light propagating in the light guide plate 11 and emitted therefrom toward the light guide plate 11.
 本実施形態に係るバックライト装置1では、導光板11の左右二方向から光を入射させることで、放熱等の問題を回避しつつ、十分な量の光を導光板11内に入射させることができる。
 光入射面11aから入射されて導光板11内を直進してきた光は、導光板11の反対側の端面において各光入射面11aの法線方向から視て各光源列20と重畳される光源正対領域から、導光板11外に出射される。上記構成によれば、第1光源列20Aと第2光源列20Bとをオフセットして配したために、このような各光源正対領域に反射材30を配することができる。これにより、当該領域から出射された光の再利用が図られ、光の利用効率が向上する。
 また、本実施形態に構成によれば、第1光源と第2光源を、光出射面11b内においてではなく、光出射面11bの法線方向(Z軸方向)にオフセットして配したことで、光出射面11bにおける輝度ムラの発生が抑制される。
 さらに、第1光源列20Aと第2光源列20Bとが導光板11の板厚方向(Z軸方向)にオフセットして配されており、導光板11の板厚は比較的に厚くなる。このため、導光板11内を伝播する光が導光板11の板面で反射される反射回数が減少し、導光板内を伝播する光の減衰率が低下して、光の利用効率が向上する。
 上記の結果、光出射面11bからの出射光量を増加させてバックライト装置1の高輝度化を図ることができる。
In the backlight device 1 according to the present embodiment, a sufficient amount of light can be made to enter into the light guide plate 11 while avoiding problems such as heat radiation by making the light enter from the left and right two directions of the light guide plate 11. it can.
The light entering from the light incident surface 11a and traveling straight in the light guide plate 11 is superimposed on each light source row 20 when viewed from the normal direction of each light incident surface 11a at the end face on the opposite side of the light guide plate 11 The light is emitted to the outside of the light guide plate 11 from the paired region. According to the above configuration, since the first light source array 20A and the second light source array 20B are disposed offset, the reflective material 30 can be disposed in such respective light source facing regions. Thereby, the light emitted from the region can be reused, and the light utilization efficiency is improved.
Further, according to the configuration of the present embodiment, the first light source and the second light source are disposed offset in the normal direction (Z-axis direction) of the light emission surface 11b, not in the light emission surface 11b. The occurrence of uneven brightness on the light emitting surface 11b is suppressed.
Furthermore, the first light source array 20A and the second light source array 20B are disposed offset in the plate thickness direction (Z-axis direction) of the light guide plate 11, and the plate thickness of the light guide plate 11 is relatively thick. Therefore, the number of reflections of light propagating in the light guide plate 11 on the plate surface of the light guide plate 11 decreases, the attenuation factor of light propagating in the light guide plate decreases, and the utilization efficiency of light improves. .
As a result of the above, it is possible to increase the luminance of the backlight device 1 by increasing the amount of light emitted from the light emission surface 11 b.
 本実施形態では、第1光源列20A及び第2光源列20Bが、第1光入射面11aAまたは第2光入射面11aBにおいて光出射面11bの延在方向(X軸方向)に沿って複数のLED22が並べられてなる。
 これにより、導光板11の光入射面11aにおいて広い範囲から光が入射され、第1光入射面11aAまたは第2光入射面11aBの延在方向(X軸方向)の輝度ムラが抑制される。
In the present embodiment, the first light source array 20A and the second light source array 20B are arranged along the extending direction (X-axis direction) of the light emitting surface 11b at the first light incident surface 11aA or the second light incident surface 11aB. The LEDs 22 are arranged.
Thus, light is incident from a wide range on the light incident surface 11a of the light guide plate 11, and luminance unevenness in the extending direction (X-axis direction) of the first light incident surface 11aA or the second light incident surface 11aB is suppressed.
 なお、本実施形態では、光源列20として、LED基板21上に実装された複数のLED22からなるものを用いている。
 省エネ等の理由から多用されるLED22を光源として用いた場合、導光板内に入射された光の多くが、各光源列20に正対する正対領域から出射される。よって、光源正対領域に反射材30を配したことによる光の利用効率向上効果が、特に大きなものとなる。
 なお、本実施形態では、第1光源列20A及び第2光源列20Bを形成するLED22、並びに第1反射材30Aと第2反射材30Bとを同一部材としている。これにより、光源や反射材の製造コストが低減されるとともに、部品管理などに係るコストも削減できる。
In the present embodiment, as the light source array 20, an array of a plurality of LEDs 22 mounted on the LED substrate 21 is used.
In the case where the frequently used LED 22 is used as a light source for reasons such as energy saving, most of the light incident into the light guide plate is emitted from the directly facing region directly facing each light source row 20. Therefore, the use efficiency improvement effect of the light by having arrange | positioned the reflective material 30 in a light source facing area becomes especially large.
In the present embodiment, the LEDs 22 forming the first light source array 20A and the second light source array 20B, and the first reflective material 30A and the second reflective material 30B are the same members. As a result, the manufacturing cost of the light source and the reflective material can be reduced, and the cost related to parts management can also be reduced.
 本実施形態では、第1光源列20A及び第2光源列20Bが、第1光入射面11aAまたは第2光入射面11aBにおいて光出射面11bの延在方向(X軸方向)の全長に亘って配されている。
 これにより、導光板11の光入射面11aにおいて光出射面11bの延在方向(X軸方向)の全長に亘って光が入射され、各光源列20からの入射光による輝度ムラを抑制しつつ、導光板11内への入射光量を増大させることができる。また、反射材30も光入射面11aにおいて光出射面11bの延在方向(X軸方向)の全長に亘って配されているため、導光板11の左右両端面からの光の出射が効果的に抑制される。
In the present embodiment, the first light source array 20A and the second light source array 20B extend over the entire length in the extending direction (X-axis direction) of the light emitting surface 11b at the first light incident surface 11aA or the second light incident surface 11aB. It is arranged.
Thus, light is incident on the light incident surface 11 a of the light guide plate 11 over the entire length of the light emitting surface 11 b in the extending direction (X-axis direction), and luminance unevenness due to incident light from each light source column 20 is suppressed. The amount of incident light into the light guide plate 11 can be increased. Further, since the reflecting material 30 is also disposed over the entire length of the light incident surface 11a in the extending direction (X-axis direction) of the light emitting surface 11b, light emission from both left and right end surfaces of the light guide plate 11 is effective. Suppressed.
 本実施形態では、バックライト装置1からの光を利用して表示を行う液晶パネル2と、を備える液晶表示装置100を開示している。
 このような液晶表示装置100によれば、液晶パネル2に光を供給するバックライト装置1が、十分な入射光量が確保されるとともに光の利用効率が改善されたものであるから、高輝度で高品質な画像を表示可能な液晶表示装置100を提供することができる。
 また、本実施形態では、表示パネルとして一対の基板間に液晶を封入した液晶パネル2を用いている。
 このような液晶表示装置100は、種々の用途、例えばスマートフォンやタブレット等のモバイル端末機器等に用いることができ、野外での使用が想定され高輝度化が求められている機器に特に有用である。また、表示画面の大型化を図る上でも有用である。
The present embodiment discloses a liquid crystal display device 100 including a liquid crystal panel 2 which performs display using light from the backlight device 1.
According to such a liquid crystal display device 100, since the backlight device 1 for supplying light to the liquid crystal panel 2 has a sufficient amount of incident light and improved utilization efficiency of light, high brightness can be achieved. The liquid crystal display device 100 capable of displaying high quality images can be provided.
Further, in the present embodiment, the liquid crystal panel 2 in which liquid crystal is sealed between a pair of substrates is used as a display panel.
Such a liquid crystal display device 100 can be used for various applications, for example, mobile terminal devices such as smartphones and tablets, and is particularly useful for devices expected to be used outdoors and for which high luminance is required. . Moreover, it is useful also in achieving the enlargement of a display screen.
 <実施形態2>
 実施形態2を、図4によって説明する。この実施形態2に係るバックライト装置201は、光源列20及び反射材30が、導光板11の四辺に沿って配されている点において、実施形態1のバックライト装置1と相違している。実施形態1と同様の部材には実施形態1と同じ符号を付し、作用効果について重複する説明は省略する。
Second Embodiment
The second embodiment will be described with reference to FIG. The backlight device 201 according to the second embodiment is different from the backlight device 1 of the first embodiment in that the light source array 20 and the reflectors 30 are disposed along the four sides of the light guide plate 11. The same members as in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and redundant description of the functions and effects will be omitted.
 本実施形態に係るバックライト装置201では、シャーシ12のX軸方向に沿った一対の側壁部12b,12bの内面に取り付けられた第1LED基板21A、第2LED基板21Bに加え、Y軸方向に沿った一対の側壁部12b,12bの内面にも、各1枚のLED基板が取り付けられている。図4における上側に取り付けられたLED基板21を、第3LED基板21C、同下側に取り付けられたLED基板21を、第4LED基板21Dとする。
 図4に示すように、第3LED基板21C及び第4LED基板21Dの板面には、第1LED基板21A及び第2LED基板21Bと同様に頂面発光型のLED22が複数並べて実装されて、第3光源列(第3光源に相当する)20C、第4光源列(第4光源に相当する)20Dを形成している。なお、本実施形態では、第3光源列20C及び第4光源列20Dを形成するLED22は、第1光源列20A及び第2光源列20Bを形成しているLED22と同様のものであり、各26個が配列されている。図4に示すように、第3光源列20Cが対向配置される導光板11の端面(図4における上側の端面)を、第3光入射面11aCとし、第4光源列20Dが対向配置される導光板11の端面(図4における下側の端面)を、第4光入射面11aDとする。
 また、図4に示すように、第3光入射面11aCには第3反射材30Cが配され、第4光入射面11aDには第4反射材30Dが配されている。第3反射材30C及び第4反射材30Dは、第3光入射面11aC及び第4光入射面11aDの長手方向(Y軸方向)の全長に亘って延在している。
In the backlight device 201 according to the present embodiment, in addition to the first LED substrate 21A and the second LED substrate 21B attached to the inner surfaces of the pair of side wall portions 12b and 12b along the X axis direction of the chassis 12, One LED substrate is attached to the inner surfaces of the pair of side wall portions 12b, 12b. The LED board 21 attached to the upper side in FIG. 4 is referred to as a third LED board 21C, and the LED board 21 attached to the lower side is referred to as a fourth LED board 21D.
As shown in FIG. 4, a plurality of top surface emitting LEDs 22 are mounted side by side on the plate surfaces of the third LED substrate 21C and the fourth LED substrate 21D in the same manner as the first LED substrate 21A and the second LED substrate 21B. A row (corresponding to a third light source) 20C and a fourth light source row (corresponding to a fourth light source) 20D are formed. In the present embodiment, the LEDs 22 forming the third light source array 20C and the fourth light source array 20D are the same as the LEDs 22 forming the first light source array 20A and the second light source array 20B. Pieces are arranged. As shown in FIG. 4, the end face (upper end face in FIG. 4) of the light guide plate 11 on which the third light source row 20C is disposed opposite is the third light incident surface 11aC, and the fourth light source row 20D is disposed oppositely. The end face of the light guide plate 11 (the end face on the lower side in FIG. 4) is referred to as a fourth light incident surface 11aD.
Further, as shown in FIG. 4, the third reflector 30C is disposed on the third light incident surface 11aC, and the fourth reflector 30D is disposed on the fourth light incident surface 11aD. The third reflector 30C and the fourth reflector 30D extend over the entire length in the longitudinal direction (Y-axis direction) of the third light incident surface 11aC and the fourth light incident surface 11aD.
 図示はしないが、第3光源列20Cと第4光源列20Dとは、第1光源列20A及び第2光源列20Bと同様に、導光板11の板厚方向、すなわち光出射面11bの法線方向にオフセットして配されている。例えば、第3光源列20Cは第3光入射面11aCの表側寄りの部分に対向し、第4光源列20Dは第4光入射面11aDの裏側寄りの部分に対向するものとされる。
 また、第3光入射面11aCにおいて、第4光入射面11aDの法線方向から視て第4光源列20Dと重畳される第4光源正対領域、すなわち裏側寄りの部分に、第3反射材30Cが配されている。第4光入射面11aDにおいて、第3光入射面11aCの法線方向から視て第3光源列20Cと重畳される第3光源正対領域、すなわち表側寄りの部分には、第4反射材30Dが配されている。
Although not shown, the third light source column 20C and the fourth light source column 20D are the same as the first light source column 20A and the second light source column 20B in the thickness direction of the light guide plate 11, that is, the normal to the light emitting surface 11b. It is arranged offset in the direction. For example, the third light source array 20C faces the front side of the third light incident surface 11aC, and the fourth light source array 20D faces the rear side of the fourth light incident surface 11aD.
In the third light incident surface 11aC, the fourth light source facing area overlapping with the fourth light source array 20D viewed from the normal direction of the fourth light incident surface 11aD, that is, the third reflective material 30C is distributed. In the fourth light incident surface 11aD, the fourth light source facing region, that is, the portion closer to the front side, superimposed on the third light source column 20C as viewed from the normal direction of the third light incident surface 11aC Are arranged.
 本実施形態2の構成によれば、導光板11の四方向から光を入射させることで、導光板11への入射光量をさらに増大させることができる。また、四端面に反射材30が設けられることで、導光板11からの出射が抑制されて光の利用効率をさらに向上させることができる。この結果、更なる高輝度対応が可能となる。
 本実施形態2において、導光板11は矩形板状(横長な方形状)をなしており、第3光入射面11aC及び第4光入射面11aDは、何れも第1光入射面11aA及び第2光入射面11aBに隣接している。すなわち、導光板11の外周端面の全周から光が入射されることとなるため、導光板11への入射光量を最大級に大きくできる。また、反射材30も外周端面全周に設けられることとなり、導光板11の外周端面全域からの光の出射が抑制されて、光の利用効率を一層向上させることができる。
According to the configuration of the second embodiment, the amount of light incident on the light guide plate 11 can be further increased by causing light to be incident from four directions of the light guide plate 11. Further, by providing the reflective material 30 on the four end faces, the emission from the light guide plate 11 can be suppressed, and the utilization efficiency of light can be further improved. As a result, it is possible to cope with higher brightness.
In the second embodiment, the light guide plate 11 has a rectangular plate shape (long rectangular shape), and the third light incident surface 11aC and the fourth light incident surface 11aD are both the first light incident surface 11aA and the second light incident surface 11aA. It is adjacent to the light incident surface 11aB. That is, since light enters from the entire circumference of the outer peripheral end face of the light guide plate 11, the amount of light incident on the light guide plate 11 can be increased to the maximum grade. In addition, the reflecting member 30 is also provided on the entire outer peripheral end face, so that the emission of light from the entire outer peripheral end face of the light guide plate 11 is suppressed, and the light utilization efficiency can be further improved.
 <他の実施形態>
 本明細書が開示する技術は、上記記述および図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も技術的範囲に含まれる。
Other Embodiments
The technology disclosed in the present specification is not limited to the embodiments described above with reference to the drawings and the drawings, and, for example, the following embodiments are also included in the technical scope.
 (1)上記した各実施形態では、導光板は何れも平面に視て矩形状のものとしたが、これに限定されるものではなく、平面に視て六角形等の多角形状や、一部に曲線を含む輪郭線で形成される形状をなすものにも、本技術を適用できる。
 (2)上記した各実施形態では、各光入射面11aにおいて、一列の各光源列20が配される構成としたが、これに限定されるものではなく、光入射面11aにおいて、複数列の光源列20が配されていてもよい。このようにすることで、さらに入射光量を増大させることができる。このような場合、光源の集中配置による不具合の発生を回避する観点から、複数列の光源列20は、光入射面11aにおいて互いに間隔を空けて配されることが好ましい。例えば、第1光入射面11aAの法線方向から視て、第1光源列20Aと第2光源列20Bとが、光出射面11bの法線方向において互い違いに配される構成とすることができる。
 (3)上記した各実施形態では、各光源列20を構成する光源を全て同じLED22としたが、光源列ごとに異なる光源を用いてもよい。他の種類の光源として、例えば冷陰極管や有機ELなどを用いることも可能である。例えば、光出射面11bからの出射を考慮して、導光板11の裏側寄りに配される光源ほど光量の大きな光源を用いるようにしてもよい。
 (4)上記した各実施形態では、各光源正対領域に配される反射材30に同一部材を用いたが、光源正対領域ごとに異なる反射材を配してもよい。異なる反射率や異なる寸法形状の部材を反射材として用いることができ、一部または全部の反射材を反射塗膜とすることも可能である。
 (5)上記した各実施形態では、比較的肉厚に形成された1枚の導光板11を使用したが、これに限定されるものではない。例えば、一の端面に第1光源列20Aが対向配置され、この反対側に位置する端面に第2反射材30Bが配設された第1の導光板と、一の端面に第1反射材30Aが配設され、この反対側に位置する端面に第2光源列20Bが対向配置される第2の導光板とを、一の端面同士が同じ側に配されるように導光板の板厚方向に積層して用いることも可能である。
 (6)本技術は、実施形態で例示した表示パネルとして液晶パネルを用いた液晶表示装置に限らず、他の種類の表示パネルを用いた表示装置にも適用できる。
(1) In each of the above-described embodiments, the light guide plate is rectangular in plan view, but the invention is not limited to this. The light guide plate is not limited to this. The present technology can also be applied to those having a shape formed by an outline including a curve.
(2) In each embodiment described above, the light source rows 20 are arranged in one row in each light incident surface 11a. However, the present invention is not limited to this. A plurality of rows of light incident surfaces 11a are provided. A light source array 20 may be disposed. By doing this, the amount of incident light can be further increased. In such a case, from the viewpoint of avoiding the occurrence of problems due to the concentrated arrangement of the light sources, it is preferable that the plurality of light source arrays 20 be spaced apart from one another on the light incident surface 11a. For example, when viewed from the normal direction of the first light incident surface 11aA, the first light source array 20A and the second light source array 20B can be alternately arranged in the normal direction of the light emission surface 11b. .
(3) In each embodiment described above, the light sources constituting each light source array 20 are all the same LED 22. However, different light sources may be used for each light source array. It is also possible to use, for example, a cold cathode tube or an organic EL as another type of light source. For example, in consideration of emission from the light emission surface 11b, a light source having a larger light amount may be used as the light source disposed closer to the back side of the light guide plate 11.
(4) In each embodiment described above, although the same member is used for the reflective material 30 disposed in each light source facing area, different reflecting materials may be provided for each light source facing area. It is also possible to use members with different reflectances and different dimensions and shapes as the reflector, and to use part or all of the reflector as the reflective coating film.
(5) In each embodiment mentioned above, although the light-guide plate 11 of 1 sheet formed comparatively thickly was used, it is not limited to this. For example, the first light source row 20A is disposed opposite to one end face, and the first light guide plate is provided with the second reflecting member 30B on the opposite end face, and the first reflecting member 30A is attached to one end face. And the second light guide plate in which the second light source row 20B is disposed opposite to the end face located on the opposite side, the thickness direction of the light guide plate such that one end face is disposed on the same side It is also possible to use by laminating.
(6) The present technology can be applied not only to a liquid crystal display device using a liquid crystal panel as the display panel illustrated in the embodiment, but also to a display device using another type of display panel.
 100…液晶表示装置(表示装置の一例)、1,201…バックライト装置(照明装置の一例)、2…液晶パネル(表示パネルの一例)、11…導光板、11aA…第1光入射面、11aB…第2光入射面、11aC…第3光入射面、11aD…第4光入射面、11b…光出射面、14…反射シート、15…光学部材、20A…第1光源列(第1光源に相当する)、20B…第2光源列(第2光源に相当する)、20C…第3光源列(第3光源に相当する)、20D…第4光源列(第4光源に相当する)、21A…第1LED基板、21B…第2LED基板、21C…第3LED基板、21D…第4LED基板、22…LED(光源の一例)、30A…第1反射材、30B…第2反射材、30C…第3反射材、30D…第4反射材 100 Liquid crystal display device (an example of display device) 1, 201 backlight device (an example of illumination device) 2: liquid crystal panel (an example of display panel) 11 light guide plate 11aA first light incident surface 11aB: second light incident surface 11aC: third light incident surface 11aD: fourth light incident surface 11b: light output surface 14: reflection sheet 15: optical member 20A: first light source array (first light source (first light source) 20B: second light source array (corresponding to second light source) 20C: third light source array (corresponding to third light source) 20D: fourth light source array (corresponding to fourth light source) 21A: first LED substrate, 21B: second LED substrate, 21C: third LED substrate, 21D: fourth LED substrate, 22: LED (an example of a light source), 30A: first reflector, 30B: second reflector, 30C: second 3 reflectors, 30D ... 4th reflector

Claims (6)

  1.  板状をなし、一方の板面が、入射された光が面状の光として出射される光出射面とされる導光板と、
     前記導光板の外周端面のうち一の端面を光が入射される第1光入射面として、当該第1光入射面の一部に対向するように配された第1光源と、
     前記外周端面のうち前記第1光入射面の反対側に位置する端面を光が入射される第2光入射面として、当該第2光入射面の一部に対向するように配された第2光源と、を備え、
     前記第1光源と前記第2光源とは、前記導光板の板厚方向にオフセットして配され、
     前記第1光入射面のうち、前記第2光入射面の法線方向から視て前記第2光源と重畳される第2光源正対領域には、前記導光板内を伝播してきた光を前記導光板内に向けて反射させる第1反射材が配され、
     前記第2光入射面のうち、前記第1光入射面の法線方向から視て前記第1光源と重畳される第1光源正対領域には、前記導光板内を伝播してきた光を前記導光板内に向けて反射させる第2反射材が配されている照明装置。
    A light guide plate having a plate shape, and one plate surface serving as a light emitting surface from which incident light is emitted as planar light;
    A first light source disposed so as to face a part of the first light incident surface as a first light incident surface on which one of the outer end surfaces of the light guide plate is incident;
    A second light incident surface on which light is incident is disposed on an end surface of the outer peripheral end surface opposite to the first light incident surface, and a second light incident surface is disposed to face the second light incident surface. And a light source,
    The first light source and the second light source are disposed offset in the thickness direction of the light guide plate,
    The light propagating in the light guide plate is directed to a second light source facing area of the first light incident surface viewed from the normal direction of the second light incident surface and superimposed on the second light source. A first reflector for reflecting the light into the light guide plate;
    The light propagating in the light guide plate is directed to a first light source facing region, which is viewed from the normal direction of the first light incident surface and superimposed on the first light source, of the second light incident surface. The lighting installation with which the 2nd reflective material made to reflect in a light guide plate and reflecting is arranged.
  2.  前記第1光源及び前記第2光源の少なくとも一方は、前記第1光入射面または前記第2光入射面において前記光出射面の延在方向に沿って複数の光源が並べられた光源列からなる請求項1に記載の照明装置。 At least one of the first light source and the second light source includes a light source array in which a plurality of light sources are arranged along the extending direction of the light emitting surface on the first light incident surface or the second light incident surface. The lighting device according to claim 1.
  3.  前記第1光源及び前記第2光源の少なくとも一方は、前記第1光入射面または前記第2光入射面において前記光出射面の延在方向の全長に亘って配されている請求項1または請求項2に記載の照明装置。 The at least one of the first light source and the second light source is disposed over the entire length in the extending direction of the light emitting surface in the first light incident surface or the second light incident surface. The lighting device according to Item 2.
  4.  前記導光板の前記外周端面のうち前記第1光入射面と前記第2光入射面との間に位置する端面を光が入射される第3光入射面として、当該第3光入射面の一部に対向するように配された第3光源と、
     前記外周端面のうち前記第3光入射面の反対側に位置する端面を光が入射される第4光入射面として、当該第4光入射面の一部に対向するように配された第4光源と、をさらに備え、
     前記第3光源と前記第4光源とは、前記導光板の板厚方向にオフセットされ、
     前記第3光入射面のうち、前記第4光入射面の法線方向から視て前記第4光源と重畳される第4光源正対領域には、前記導光板内を伝播してきた光を前記導光板内に向けて反射させる第3反射材が配され、
     前記第4光入射面のうち、前記第3光入射面の法線方向から視て前記第3光源と重畳される第3光源正対領域には、前記導光板内を伝播してきた光を前記導光板内に向けて反射させる第4反射材が配されている請求項1から請求項3の何れか一項に記載の照明装置。
    Of the outer peripheral end face of the light guide plate, an end face located between the first light incident surface and the second light incident surface is a third light incident surface to which light is incident, one of the third light incident surface A third light source disposed to face the section;
    The end face of the outer peripheral end face positioned opposite to the third light incident surface is a fourth light incident surface on which light is incident, and a fourth light incident surface arranged to face a part of the fourth light incident surface Further comprising a light source,
    The third light source and the fourth light source are offset in the thickness direction of the light guide plate,
    Of the third light incident surface, the light propagating in the light guide plate is directed to a fourth light source facing region viewed from the normal direction of the fourth light incident surface and superimposed on the fourth light source. A third reflector is disposed to reflect into the light guide plate;
    Of the fourth light incident surface, the light propagating in the light guide plate is directed to a third light source confronting region viewed from the normal direction of the third light incident surface and superimposed on the third light source. The lighting installation according to any one of claims 1 to 3 in which the 4th reflective material made to reflect in a light guide plate and reflecting is arranged.
  5.  前記導光板の前記光出射面は方形状をなし、前記第3光入射面及び前記第4光入射面は、何れも前記第1光入射面及び前記第2光入射面に隣接している請求項4に記載の照明装置。 The light emitting surface of the light guide plate has a rectangular shape, and the third light incident surface and the fourth light incident surface are both adjacent to the first light incident surface and the second light incident surface. The lighting device according to Item 4.
  6.  請求項1から請求項5の何れか一項に記載の照明装置と、前記照明装置からの光を利用して表示を行う表示パネルと、を備える表示装置。 A display device comprising: the lighting device according to any one of claims 1 to 5; and a display panel that performs display using light from the lighting device.
PCT/JP2018/023759 2017-06-30 2018-06-22 Lighting device and display device WO2019004070A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-128375 2017-06-30
JP2017128375 2017-06-30

Publications (1)

Publication Number Publication Date
WO2019004070A1 true WO2019004070A1 (en) 2019-01-03

Family

ID=64742180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023759 WO2019004070A1 (en) 2017-06-30 2018-06-22 Lighting device and display device

Country Status (1)

Country Link
WO (1) WO2019004070A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017027902A (en) * 2015-07-28 2017-02-02 株式会社ジャパンディスプレイ Display and light source device
WO2017051848A1 (en) * 2015-09-25 2017-03-30 シャープ株式会社 Illumination device, display device, television reception device and wavelength conversion part manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017027902A (en) * 2015-07-28 2017-02-02 株式会社ジャパンディスプレイ Display and light source device
WO2017051848A1 (en) * 2015-09-25 2017-03-30 シャープ株式会社 Illumination device, display device, television reception device and wavelength conversion part manufacturing method

Similar Documents

Publication Publication Date Title
KR100989219B1 (en) Backlight assembly and liquid crystal display divice having the same
TWI536081B (en) Backlight unit and display apparatus using the same
KR102395088B1 (en) Backlight unit and liquid crystal dispaly device including the same
US20120287355A1 (en) Lighting device, display device, and television receiver
WO2010058625A1 (en) Illuminating device, display device and television receiving device
US9053650B2 (en) Backlight unit and display apparatus thereof
JP7122832B2 (en) Lighting device, display device and television receiving device
US9016919B2 (en) Lighting device, display device and television receiver
JP6663471B2 (en) Deformed liquid crystal light emitting device
WO2011077866A1 (en) Lighting device, display device, and television receiver device
US8508693B2 (en) Backlight unit and liquid crystal display device having the same
KR20150077547A (en) Backlight assembly and display divece having the same
JP5138813B2 (en) Lighting device, display device, and television receiver
TWI655480B (en) Backlight module and surface light source assembly thereof
WO2014021303A1 (en) Illumination device, display device, and television reception device
WO2023160643A1 (en) Display module and display device
US10705276B2 (en) Lighting device and display device
WO2011092953A1 (en) Lighting device, display device, and television receiver device
US11237428B2 (en) Display apparatus
WO2011077864A1 (en) Illumination device, display device, and television receiver
JP5368586B2 (en) Lighting device, display device, television receiver
US11016239B1 (en) Lighting device and display device
JP2013143220A (en) Lighting system, display device, and television receiver
KR102106546B1 (en) Liquid crystal display device and method for fabricating the same
WO2019004070A1 (en) Lighting device and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18822656

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18822656

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP