WO2019004065A1 - Rotary electric machine and in-wheel motor drive device provided with rotary electric machine - Google Patents

Rotary electric machine and in-wheel motor drive device provided with rotary electric machine Download PDF

Info

Publication number
WO2019004065A1
WO2019004065A1 PCT/JP2018/023736 JP2018023736W WO2019004065A1 WO 2019004065 A1 WO2019004065 A1 WO 2019004065A1 JP 2018023736 W JP2018023736 W JP 2018023736W WO 2019004065 A1 WO2019004065 A1 WO 2019004065A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling medium
stator
cooling
coil
coolant
Prior art date
Application number
PCT/JP2018/023736
Other languages
French (fr)
Japanese (ja)
Inventor
祐介 牧野
優 黒田
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2019004065A1 publication Critical patent/WO2019004065A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • B60K11/04Arrangement or mounting of radiators, radiator shutters, or radiator blinds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/14Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing the motor of fluid or electric gearing being disposed in or adjacent to traction wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel

Definitions

  • the present invention relates to a rotary motor mounted on a motor-driven vehicle and an in-wheel motor drive device equipped with the rotary motor, and more particularly to a technology capable of efficiently cooling heat generated inside the motor, particularly the stator coil. .
  • Patent Document 1 proposes a cooling device.
  • the cooling device of the proposed rotating electrical machine cools the coil end with the cooling oil discharged from the cooling oil pipe provided on the coil end upper portion.
  • the coil end refers to a portion of the stator coil that protrudes outward beyond the axial end surface of the stator.
  • An object of the present invention is to provide a rotary motor capable of efficiently cooling a coil end without providing a complicated pipe for a cooling medium inside the rotary motor, and an in-wheel motor drive device equipped with the rotary motor. It is to provide.
  • a rotary motor is an annular stator, and has a stator core having a plurality of tooth portions arranged in an annular shape, and a stator coil wound around each of the tooth portions, and a radially inward direction of the stator And a cooling mechanism for cooling the coil end of the stator coil with a cooling medium, wherein the cooling mechanism is wound on a tooth portion located at an upper portion of the plurality of tooth portions.
  • the cooling medium flow path for guiding the cooling medium above the coiled end, and the cooling medium discharged from the discharge port of the cooling medium flow path is received by the cooling medium guiding surface consisting of the upper surface, and the received cooling
  • the cooling medium is led through the cooling medium channel, above the coil end of the stator coil wound around the teeth located at the top, and discharged from the discharge port.
  • the coolant is received by the coolant guide surface of the guide plate and guided in the circumferential direction of the stator to flow the coolant to the coil end. Since the cooling medium can be guided to the appropriate position of each coil end aligned in the circumferential direction by the guide plate, the cooling medium can be spread over the entire coil end, and the coil end can be cooled efficiently. That is, by providing the guide plate, it is possible to efficiently cool the coil end without providing a complicated pipe for the cooling medium inside the rotary motor. After cooling the upper coil end, the cooling medium drops from the upper coil end and cools the lower coil end.
  • the following action can be obtained by providing the protrusion at a position directly below the discharge port on the cooling medium guide surface of the guide plate.
  • the cooling medium on the cooling medium guiding surface moves forward from one side in the circumferential direction on the forward side in the acceleration / deceleration of the electric vehicle. It is inhibited that the current flows to the other side of the circumferential direction which is the rear side of the or in the opposite direction.
  • the cooling medium can be evenly distributed on both sides in the circumferential direction even during acceleration / deceleration of the electric vehicle, and it is possible to prevent the bias of the way of the cooling medium with respect to the coil end.
  • the guide plate is a plurality of through holes arranged in the circumferential direction, each having a plurality of through holes for causing the cooling medium flowing on the cooling medium guiding surface to fall toward the coil end.
  • the cooling medium can be effectively spread over the entire coil end.
  • the guide plate may be fixed to the stator core by the stator coil. In this case, parts for fixing the guide plate are not required separately, and the number of parts of the entire rotary motor can be reduced.
  • An in-wheel motor drive device includes a wheel bearing for supporting a wheel, and the rotary motor according to any one of the above-described embodiments for rotating a rotary wheel of the wheel bearing.
  • FIG. 4 is a cross-sectional view taken along line IV-IV of FIG. It is a perspective view of the stator of the rotary motor of FIG. 1, and a guide plate. It is a perspective view of the guide plate of FIG.
  • FIG. 1 is a cross-sectional view of an in-wheel motor drive provided with a rotary motor according to this embodiment.
  • the vehicle is, for example, an in-wheel motor type in which two in-wheel motor drive devices are mounted and the left and right drive wheels are independently driven by the in-wheel motor drive devices. Since the two in-wheel motor drive devices have the same configuration, only one in-wheel motor drive device is shown in FIG.
  • the in-wheel motor drive device includes a rotary motor 1 for generating a driving force of the vehicle, a reduction gear 2 for decelerating and outputting the rotation of the rotary motor 1, and an output from the reduction gear 2 as drive wheels not shown. And a wheel hub bearing portion (wheel bearing) 3 for transmitting the information.
  • the rotary motor 1 has a housing 4, a stator 5 and a rotor 6.
  • the rotary motor 1 is a radial gap type in which an annular stator 5 is provided on the inner periphery of a housing 4 and a rotor 6 is provided at an interval inward in the radial direction of the stator 5.
  • the housing 4 has a main housing 4a and a side housing 4b.
  • the main housing 4a and the side housing 4b are fastened to each other by a plurality of bolts 4c (FIG. 1) arranged side by side in the circumferential direction.
  • Internal components of the rotary motor 1, the reduction gear 2 (FIG. 1), and the wheel hub bearing 3 (FIG. 1) are provided in the bottomed substantially cylindrical main housing 4a.
  • the side housing 4b closes the open end on the inboard side of the main housing 4a.
  • the in-wheel motor drive device when mounted on a vehicle, the side closer to the outside in the vehicle width direction of the vehicle is called the outboard side, and the side closer to the center in the vehicle width direction is in Called the board side.
  • the type of motor an axial gap type motor is also applicable.
  • the stator 5 has a stator core 8 in which a plurality of divided cores 7 are arranged in an annular shape, and a stator coil 9 wound around tooth portions 7 a of each divided core 7.
  • the stator core 8 is divided into a plurality of divided cores 7, but the stator core 8 may be integrally formed. In that case, a plurality of tooth portions (not shown) are provided annularly on stator core 8 and stator coil 9 is wound around each of these tooth portions.
  • the rotor 6 is rotatable relative to the stator 5.
  • the rotor 6 has a rotor spindle 10, a rotor core 11, and a plurality of permanent magnets 12 incorporated in the rotor core 11.
  • the plurality of permanent magnets 12 are arranged at regular intervals in the circumferential direction.
  • the rotor spindle 10 is located at the center of the rotary motor 1.
  • the rotor spindle 10 is rotatably supported by rolling bearings 13 and 13 fitted and fixed to the main housing 4a and the side housing 4b.
  • a part of the rotor spindle 10 in the axial direction protrudes into the outboard reducer 2 and is coaxially fitted with the input gear shaft 14 of the reducer 2 coaxially (including serrations, hereinafter the same).
  • the rotary motor 1 is provided with rotational speed detection means 15 such as a resolver for detecting the rotational speed of the rotor 6.
  • the reduction gear 2 is a parallel shaft gear reduction including an input gear shaft 14 having an input gear 14a, an intermediate gear shaft 16 having first and second intermediate gears 16a and 16b, and an output gear shaft 17 having an output gear 17a.
  • the input gear shaft 14 is rotatably supported via rolling bearings 18, 18 provided on the main housing 4a.
  • the intermediate gear shaft 16 is a stepped gear having a large diameter first intermediate gear 16a meshing with the input gear 14a and a small diameter second intermediate gear 16b meshing with the output gear 17a on the outer peripheral surface.
  • the intermediate gear shaft 16 is rotatably supported via rolling bearings 19 and 20 provided on the main housing 4a.
  • the output gear shaft 17 has a large diameter output gear 17a, and is rotatably supported via rolling bearings 21 and 22 provided on the main housing 4a.
  • the driving force is transmitted to the input gear shaft 14 from the rotor spindle 10 of the rotary motor 1.
  • the first intermediate gear 16a meshes with the input gear 14a
  • the second intermediate gear 16b meshes with the output gear 17a.
  • a portion of the output gear shaft 17 in the axial direction is pulled out from the main housing 4a to the outboard side, and is spline-fitted to the rotating wheel of the wheel hub bearing portion 3 to transmit the driving force to a driving wheel (not shown).
  • the stator core 8 is fixed to the inner periphery of the main housing 4 a. Specifically, an annular step 24 is formed on the outboard side of the inner peripheral surface of the main housing 4a, and an annular step 25 is formed on the inboard side. Thereby, the inner peripheral surface of the main housing 4a is formed in the small diameter portion 27, the medium diameter portion 28, and the large diameter portion 29 sequentially from the outboard side toward the inboard side. Then, the outer peripheral surface of the stator core 8 is fitted to the middle diameter portion 28 of the inner peripheral surface of the main housing 4a, and the stator core 8 is attached to the main housing 4a by a plurality of (six in this example) bolts 30 (FIG. 1). It is concluded. In this fixed state, the end face on the outboard side of the stator core 8 abuts against the step 24 on the outboard side, and the stator 5 is positioned in the axial direction.
  • the rotary motor 1 is provided with a cooling mechanism 35 for cooling the coil end 9 a of the stator coil 9 by a cooling medium R.
  • a cooling medium R For example, oil is used as the cooling medium R.
  • the cooling mechanism 35 includes a cooling medium supply source (not shown), a cooling medium channel 36 provided in the housing 4, and a pair for guiding the cooling medium R flowing through the cooling medium channel 36 to the coil end 9a. And guide plates 37, 37 of FIG.
  • the cooling medium supply source may be provided outside the housing 4 or may be provided inside the housing 4.
  • the cooling medium channel 36 has a supply port 36a provided at the upper portion of the main housing 4a, a circulation hole 36b extending axially to both sides from the supply port 36a, an inboard end and an outboard end of the circulation hole 36b. And a pair of discharge ports 36c and 36c respectively provided on the The supply port 36a is connected to the cooling medium supply source via a pipe.
  • the discharge ports 36c, 36c are located above the coil end 9a at the top of the inboard side and the outboard side, respectively.
  • each guide plate 37 has an arc-shaped portion 37a whose upper surface is the cooling medium guiding surface 38, and a plurality (three in this example) extending inward from one end in the width direction of the arc-shaped portion 37a.
  • a flange portion 37c that protrudes outward is provided over the entire area in the circumferential direction.
  • the cooling medium guiding surface 38 is divided into a first portion 38A on one side in the circumferential direction and a second portion 38B on the other side at a circumferentially central portion of the arc-shaped portion 37a.
  • a projection 37d is provided which protrudes to the outer diameter side.
  • the height of the protrusion 37 d is approximately the same as the height of the flange 37 c.
  • a plurality of through holes 37e are provided side by side in the circumferential direction.
  • the guide plate 37 is desirably made of, for example, an insulating material such as a resin.
  • the guide plate 37 is configured such that the stator coil 9 is divided in a state in which each leg 37 b is in close contact with the side surface of the plurality of (three in this example) divided cores 7 located at the upper part. And fixed to the stator core 8 by being wound around the legs 37b. As described above, when the guide plate 37 is fixed to the stator core 8 by the stator coil 9, a separate component for fixing the guide plate 37 is unnecessary. Therefore, the number of parts of the entire rotary motor 1 can be reduced.
  • an arc-shaped portion 37a of the stator coil 9 is wound around a plurality of (three in the example of the figure) divided cores located at the upper part. It is along the upper side of each coil end 9a.
  • the projection 37d of the guide plate 37 is located directly below the discharge port 36c of the cooling medium flow channel 36.
  • the cooling medium supplied from the cooling medium supply source passes through the supply port 36 a and the circulation hole 36 b of the cooling medium channel 36, and the upper portions on the inboard side and the outboard side It is led above the coil end 9a located at. Then, the cooling medium R is discharged downward from the discharge port 36c. As shown in FIG. 4, the discharged cooling medium R is received by the cooling medium guiding surface 38 of the guide plate 37. To be precise, the discharged cooling medium R is divided into halves by the projections 37d, and each is received by the first portion 38A and the second portion 38B of the cooling medium guiding surface 38.
  • the cooling medium R received by the cooling medium guiding surface 38 is guided to the first portion 38A and the second portion 38B of the cooling medium guiding surface 38 and flows in the circumferential direction of the stator 5 from each through hole 37e. It falls toward the coil end 9a.
  • the cooling medium can be effectively spread over the entire coil end 9a.
  • the coil end 9a can be cooled efficiently. That is, by providing the guide plate 37, the coil end 9a can be efficiently cooled without providing a complicated pipe for the cooling medium inside the rotary motor 1.
  • a part of the cooling medium R that has not dropped from the through hole 37 e falls from both ends of the cooling medium guiding surface 38. Further, as described above, the cooling medium after cooling the coil end 9a located at the upper part also falls from the coil end 9a. The cooling medium R also cools the lower coil end 9a.
  • the cooling medium guide surface 38 of the guide plate 37 is provided with the projection 37 d at a position immediately below the discharge port 36 c, whereby the following effects can be obtained.
  • the circumference of the cooling medium R on the cooling medium guiding surface 38 is on the front side in the traveling direction when accelerating or decelerating the electric vehicle. Flow from one side of the direction (for example, the first portion 38A) to the other side in the circumferential direction (for example, the second portion 38B) that is the rear side in the traveling direction or vice versa .
  • the cooling medium R can be evenly distributed on both sides in the circumferential direction, and the deviation of the cooling medium R can be prevented.
  • This rotary motor may be applied to a motor on board type vehicle.
  • this rotary motor is mounted on the spring side of the vehicle, and is mounted on a single-motor vehicle drive unit equipped with one electric motor and a reduction gear, or on the spring side of the vehicle to drive the left and right drive wheels independently.
  • the present invention may be applied to a two-motor vehicle drive device provided with two electric motors and a reduction gear.
  • the reduction gear is not limited to a parallel shaft gear reduction gear, and can be applied to various reduction gears such as a planetary gear type.
  • the in-wheel motor drive device may be a direct motor type rotary motor without a reduction gear.
  • the rotary motor may be of the SPM type in which permanent magnets are provided on the surface of the rotor core.
  • the pump may be built in the in-wheel motor drive device, or the pump may be provided outside the in-wheel motor drive device. Instead of the through holes in the outer peripheral fixing ring, grooves may be provided through which bolts pass and through which the cooling medium passes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Motor Power Transmission Devices (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

Provided is a rotary electric machine capable of efficiently cooling a coil end without providing complicated piping for coolant inside the rotary electric machine. The rotary electric machine is provided with a stator (5), a rotor (6), and a cooling mechanism (35). The stator (5) includes: a stator core (8) in which a plurality of tooth parts (7a) are arranged in an annular pattern; and a stator coil (9) wound on each of the tooth parts (7a). The cooling mechanism (35) includes: a coolant channel (36) for cooling; and a guide plate (37). The coolant channel (36) guides a coolant (R) to an area above coil ends (9a) located in the upper section. The guide plate (37) receives, at a coolant guide surface (38), the coolant (R) discharged through a discharge port (36c) of the coolant channel (36), and guides the coolant (R) along the circumference of the stator (5) to cause the coolant(R) to flow to the coil ends (9a). A protrusion (37d) for preventing reverse flow of the coolant (R) in the circumferential direction is provided to the coolant guide surface (38) at a position immediately below the discharge port (36c).

Description

回転電動機およびこの回転電動機を備えたインホイールモータ駆動装置Rotary motor and in-wheel motor drive device equipped with the rotary motor 関連出願Related application
 本出願は、2017年6月30日出願の特願2017-129095の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2017-129095 filed on June 30, 2017, which is incorporated by reference in its entirety as part of the present application.
 この発明は、電動車両に搭載される回転電動機およびこの回転電動機を備えたインホイールモータ駆動装置に関し、詳細には、電動機内部、特にステータコイルで発生する発熱を効率よく冷却することができる技術に関する。 The present invention relates to a rotary motor mounted on a motor-driven vehicle and an in-wheel motor drive device equipped with the rotary motor, and more particularly to a technology capable of efficiently cooling heat generated inside the motor, particularly the stator coil. .
 近年の電動機の小型化、高出力化に伴う回転電動機内部の発熱の増加が課題となっている。回転電動機内部の発熱の主なものとしては、電流を通電することによるステータコイルの発熱(銅損)が挙げられる。これを効率よく冷却することで高出力化が可能となる。 In recent years, the increase in heat generation inside the rotary motor due to the miniaturization and high output of the motor has become an issue. As a main thing of heat generation inside a rotary motor, heat generation (copper loss) of a stator coil by supplying current is mentioned. By efficiently cooling this, high output can be achieved.
 ステータコイルの冷却に関して、例えば特許文献1で冷却装置が提案されている。この提案の回転電機の冷却装置は、コイルエンド上部に設けられた冷却油パイプから吐出される冷却油によりコイルエンドを冷却する。なお、コイルエンドとは、ステータコイルにおけるステータの軸方向端面よりも外側に突出した部分のことを言う。 For cooling of the stator coil, for example, Patent Document 1 proposes a cooling device. The cooling device of the proposed rotating electrical machine cools the coil end with the cooling oil discharged from the cooling oil pipe provided on the coil end upper portion. The coil end refers to a portion of the stator coil that protrudes outward beyond the axial end surface of the stator.
特開2006-115650号公報Unexamined-Japanese-Patent No. 2006-115650
 特許文献1の手法は、冷却油パイプから吐出される冷却油を単にコイルエンド上に落下させるだけであるため、コイルエンド全体に冷却油が行き渡りにくく、冷却が十分であるとは言えない。また、車両の加減速時に、冷却油パイプから吐出される冷却油が車両の進行方向の前方または後方に流れるため、コイルエンドに対する冷却油のかかり方に偏りが発生し、コイルエンドを均等に冷却できないと考えられる。 In the method of Patent Document 1, since the cooling oil discharged from the cooling oil pipe is merely dropped onto the coil end, it is difficult for the cooling oil to spread all over the coil end, and it can not be said that the cooling is sufficient. In addition, since the cooling oil discharged from the cooling oil pipe flows forward or backward in the traveling direction of the vehicle at the time of acceleration or deceleration of the vehicle, bias occurs in how the cooling oil strikes the coil end, evenly cooling the coil end It is considered impossible.
 この発明の目的は、回転電動機の内部に冷却媒体用の複雑な配管を設けることなく、コイルエンドを効率的に冷却することができる回転電動機、およびこの回転電動機を備えたインホイールモータ駆動装置を提供することである。 An object of the present invention is to provide a rotary motor capable of efficiently cooling a coil end without providing a complicated pipe for a cooling medium inside the rotary motor, and an in-wheel motor drive device equipped with the rotary motor. It is to provide.
 この発明の回転電動機は、環状のステータであって、複数の歯部が円環状に並ぶステータコア、および前記各歯部にそれぞれ巻回されたステータコイルを有するステータと、このステータの半径方向内方に位置し、前記ステータに対して回転自在であるロータと、前記ステータコイルのコイルエンドを冷却媒体により冷却する冷却機構であって、前記複数の歯部のうちの上部に位置する歯部に巻回された前記コイルエンドの上方に前記冷却媒体を導く冷却媒体流路、および、この冷却媒体流路の吐出口から吐出される冷却媒体を上面からなる冷却媒体案内面で受け、その受けた冷却媒体を、前記コイルエンドに沿って前記ステータの円周方向に案内して前記コイルエンドに流す円弧状の案内板であって、前記冷却媒体案内面における前記吐出口の直下の位置に、前記直下の位置を超えて前記冷却媒体案内面上の前記冷却媒体が円周方向に逆流するのを阻害する突起部が設けられている案内板を有する冷却構造とを備える。 A rotary motor according to the present invention is an annular stator, and has a stator core having a plurality of tooth portions arranged in an annular shape, and a stator coil wound around each of the tooth portions, and a radially inward direction of the stator And a cooling mechanism for cooling the coil end of the stator coil with a cooling medium, wherein the cooling mechanism is wound on a tooth portion located at an upper portion of the plurality of tooth portions. The cooling medium flow path for guiding the cooling medium above the coiled end, and the cooling medium discharged from the discharge port of the cooling medium flow path is received by the cooling medium guiding surface consisting of the upper surface, and the received cooling An arc-shaped guide plate for guiding a medium along the coil end in the circumferential direction of the stator to flow to the coil end, wherein the discharge in the cooling medium guide surface A cooling structure having a guide plate provided at a position directly below the mouth with a projection which prevents the cooling medium on the cooling medium guiding surface from flowing backward in a circumferential direction beyond the position directly below the mouth; Prepare.
 この構成によると、冷却媒体が冷却媒体流路を通って、上部に位置する歯部に巻回されたステータコイルのコイルエンドの上方に導かれ、吐出口から吐出される。その冷却媒体を、案内板の冷却媒体案内面が受け、ステータの円周方向に案内して、コイルエンドに冷却媒体を流す。案内板により円周方向に並ぶ各コイルエンドの適正位置まで冷却媒体を案内することができるため、コイルエンド全体に冷却媒体を行き渡らせて、コイルエンドを効率的に冷却することができる。つまり、案内板を設けることで、回転電動機の内部に冷却媒体用の複雑な配管を設けることなく、コイルエンドを効率的に冷却することが可能である。上部のコイルエンドを冷却した後、冷却媒体は上部のコイルエンドから落下し、下部のコイルエンドを冷却する。 According to this configuration, the cooling medium is led through the cooling medium channel, above the coil end of the stator coil wound around the teeth located at the top, and discharged from the discharge port. The coolant is received by the coolant guide surface of the guide plate and guided in the circumferential direction of the stator to flow the coolant to the coil end. Since the cooling medium can be guided to the appropriate position of each coil end aligned in the circumferential direction by the guide plate, the cooling medium can be spread over the entire coil end, and the coil end can be cooled efficiently. That is, by providing the guide plate, it is possible to efficiently cool the coil end without providing a complicated pipe for the cooling medium inside the rotary motor. After cooling the upper coil end, the cooling medium drops from the upper coil end and cools the lower coil end.
 また、案内板の冷却媒体案内面における吐出口の直下の位置に突起部が設けられていることにより、以下の作用が得られる。例えば、この回転電動機を電動車両の車両駆動装置に使用する場合、電動車両の加減速時に、冷却媒体案内面上の冷却媒体が、進行方向の前方側となる円周方向の一方側から進行方向の後方側となる円周方向の他方側へ、またはその逆向きに越境して流れることが阻害される。これにより、電動車両の加減速時においても、冷却媒体を円周方向の両側に均等に分配することができ、コイルエンドに対する冷却媒体のかかり方の偏りを防ぐことができる。 In addition, the following action can be obtained by providing the protrusion at a position directly below the discharge port on the cooling medium guide surface of the guide plate. For example, when this rotary motor is used in a vehicle drive device of an electric vehicle, the cooling medium on the cooling medium guiding surface moves forward from one side in the circumferential direction on the forward side in the acceleration / deceleration of the electric vehicle. It is inhibited that the current flows to the other side of the circumferential direction which is the rear side of the or in the opposite direction. As a result, the cooling medium can be evenly distributed on both sides in the circumferential direction even during acceleration / deceleration of the electric vehicle, and it is possible to prevent the bias of the way of the cooling medium with respect to the coil end.
 前記案内板は、円周方向に並んで配置された複数の貫通孔であって、それぞれ、冷却媒体案内面を流れる前記冷却媒体を前記コイルエンドに向けて落下させる複数の貫通孔を有していてもよい。 The guide plate is a plurality of through holes arranged in the circumferential direction, each having a plurality of through holes for causing the cooling medium flowing on the cooling medium guiding surface to fall toward the coil end. May be
 複数の貫通孔を適正箇所に設けることにより、コイルエンドの全体に冷却媒体を効果的に行き渡らせることができる。 By providing a plurality of through holes at appropriate locations, the cooling medium can be effectively spread over the entire coil end.
 前記案内板は、前記ステータコイルにより前記ステータコアに固定されていてもよい。この場合、案内板を固定するための部品が別途に不要となり、回転電動機全体の部品点数を減らすことができる。 The guide plate may be fixed to the stator core by the stator coil. In this case, parts for fixing the guide plate are not required separately, and the number of parts of the entire rotary motor can be reduced.
 この発明のインホイールモータ駆動装置は、車輪を支持する車輪用軸受と、この車輪用軸受の回転輪を回転させる前記いずれかに記載の回転電動機とを備えている。 An in-wheel motor drive device according to the present invention includes a wheel bearing for supporting a wheel, and the rotary motor according to any one of the above-described embodiments for rotating a rotary wheel of the wheel bearing.
 インホイールモータ駆動装置を備えた車両では、車体に回転電動機が搭載されるオンボード形式の車両に比べて、回転電動機で発生する熱を外部に逃し難い。これに対して、この構成のインホイールモータ駆動装置は、前記いずれかに記載の回転電動機を備えているため、コイルエンドを効率的に冷却して、回転電動機の温度上昇を抑えることができる。 In a vehicle provided with an in-wheel motor drive device, heat generated by the rotary motor is less likely to be dissipated to the outside as compared with an on-board type vehicle in which the rotary motor is mounted on the vehicle body. On the other hand, since the in-wheel motor drive device of this structure is equipped with the rotary motor in any one of the said, it can cool a coil end efficiently and can suppress the temperature rise of a rotary motor.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。 Any combination of the at least two configurations disclosed in the claims and / or the description and / or the drawings is included in the present invention. In particular, any combination of two or more of the claims is included in the present invention.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の一実施形態に係る回転電動機を備えたインホイールモータ駆動装置の断面図である。 図1の回転電動機の拡大断面図である。 図1の回転電動機のステータとメインハウジングを軸方向から見た側面図である。 図2のIV-IV線に沿った断面図である。 図1の回転電動機のステータおよび案内板の斜視図である。 図5の案内板の斜視図である。
The invention will be more clearly understood from the following description of the preferred embodiments with reference to the accompanying drawings. However, the embodiments and the drawings are for the purpose of illustration and description only and are not to be taken as limiting the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same reference numerals in multiple drawings indicate the same or corresponding parts.
It is a sectional view of an in-wheel motor drive provided with a rotary motor concerning one embodiment of this invention. It is an expanded sectional view of the rotary motor of FIG. It is the side view which looked at the stator and main housing of the rotary motor of FIG. 1 from the axial direction. FIG. 4 is a cross-sectional view taken along line IV-IV of FIG. It is a perspective view of the stator of the rotary motor of FIG. 1, and a guide plate. It is a perspective view of the guide plate of FIG.
 この発明の一実施形態を図1ないし図6と共に説明する。
 図1は、この実施形態に係る回転電動機を備えたインホイールモータ駆動装置の断面図である。
An embodiment of the present invention will be described in conjunction with FIGS.
FIG. 1 is a cross-sectional view of an in-wheel motor drive provided with a rotary motor according to this embodiment.
 <インホイールモータ駆動装置の概略構造について>
 車両は、例えば、インホイールモータ駆動装置が二つ搭載され、これらインホイールモータ駆動装置により左右の駆動輪が独立して駆動されるインホイールモータ形式である。前記二つのインホイールモータ駆動装置は、同一構成であるため、図1では一つのインホイールモータ駆動装置のみを表す。このインホイールモータ駆動装置は、車両の駆動力を発生する回転電動機1と、この回転電動機1の回転を減速して出力する減速機2と、この減速機2からの出力を図示外の駆動輪に伝える車輪ハブ軸受部(車輪用軸受)3とを備える。
<About schematic structure of in-wheel motor drive device>
The vehicle is, for example, an in-wheel motor type in which two in-wheel motor drive devices are mounted and the left and right drive wheels are independently driven by the in-wheel motor drive devices. Since the two in-wheel motor drive devices have the same configuration, only one in-wheel motor drive device is shown in FIG. The in-wheel motor drive device includes a rotary motor 1 for generating a driving force of the vehicle, a reduction gear 2 for decelerating and outputting the rotation of the rotary motor 1, and an output from the reduction gear 2 as drive wheels not shown. And a wheel hub bearing portion (wheel bearing) 3 for transmitting the information.
 <回転電動機>
 図2に示すように、回転電動機1は、ハウジング4と、ステータ5と、ロータ6とを有する。この回転電動機1は、ハウジング4の内周に環状のステータ5が設けられ、このステータ5の半径方向内方に間隔を隔ててロータ6を設けたラジアルギャップタイプである。ハウジング4は、メインハウジング4aと、サイドハウジング4bとを有する。メインハウジング4aとサイドハウジング4bとは、円周方向に並んで配置された複数のボルト4c(図1)により互いに締結される。有底略円筒形状のメインハウジング4aに、回転電動機1の内部構成部品、減速機2(図1)および車輪ハブ軸受部3(図1)が設けられる。サイドハウジング4bは、メインハウジング4aのインボード側の開口端を閉塞する。
<Rotary motor>
As shown in FIG. 2, the rotary motor 1 has a housing 4, a stator 5 and a rotor 6. The rotary motor 1 is a radial gap type in which an annular stator 5 is provided on the inner periphery of a housing 4 and a rotor 6 is provided at an interval inward in the radial direction of the stator 5. The housing 4 has a main housing 4a and a side housing 4b. The main housing 4a and the side housing 4b are fastened to each other by a plurality of bolts 4c (FIG. 1) arranged side by side in the circumferential direction. Internal components of the rotary motor 1, the reduction gear 2 (FIG. 1), and the wheel hub bearing 3 (FIG. 1) are provided in the bottomed substantially cylindrical main housing 4a. The side housing 4b closes the open end on the inboard side of the main housing 4a.
 なおこの明細書において、インホイールモータ駆動装置が車両に搭載された状態で車両の車幅方向の外側寄りとなる側をアウトボード側と呼び、車両の車幅方向の中央寄りとなる側をインボード側と呼ぶ。モータの形式については、アキシアルギャップタイプのモータでも、適用可能である。 In this specification, when the in-wheel motor drive device is mounted on a vehicle, the side closer to the outside in the vehicle width direction of the vehicle is called the outboard side, and the side closer to the center in the vehicle width direction is in Called the board side. Regarding the type of motor, an axial gap type motor is also applicable.
 図3に示すように、ステータ5は、複数の分割コア7が円環状に並ぶステータコア8と、各分割コア7の歯部7aに巻回されたステータコイル9とを有する。この実施形態では、ステータコア8が複数の分割コア7に分割された構成であるが、ステータコア8は一体に構成されたものであってもよい。その場合、ステータコア8に複数の歯部(図示せず)が円環状に並んで設けられ、これら各歯部にそれぞれステータコイル9が巻回される。 As shown in FIG. 3, the stator 5 has a stator core 8 in which a plurality of divided cores 7 are arranged in an annular shape, and a stator coil 9 wound around tooth portions 7 a of each divided core 7. In this embodiment, the stator core 8 is divided into a plurality of divided cores 7, but the stator core 8 may be integrally formed. In that case, a plurality of tooth portions (not shown) are provided annularly on stator core 8 and stator coil 9 is wound around each of these tooth portions.
 図1に戻って、ロータ6は、ステータ5に対し回転自在である。ロータ6は、ロータスピンドル10と、ロータコア11、このロータコア11に内蔵される複数の永久磁石12とを有する。複数の永久磁石12は、円周方向一定間隔おきに配列される。 Returning to FIG. 1, the rotor 6 is rotatable relative to the stator 5. The rotor 6 has a rotor spindle 10, a rotor core 11, and a plurality of permanent magnets 12 incorporated in the rotor core 11. The plurality of permanent magnets 12 are arranged at regular intervals in the circumferential direction.
 ロータスピンドル10は、回転電動機1の中心部に位置する。ロータスピンドル10は、メインハウジング4a、サイドハウジング4bにそれぞれ嵌合固定された転がり軸受13,13によって回転自在に支持されている。このロータスピンドル10の軸方向の一部は、アウトボード側の減速機2内まで突出し、同減速機2の入力歯車軸14に同軸にスプライン(セレーションも含む。以下、同じ。)嵌合される。なお、この回転電動機1には、ロータ6の回転速度を検出するレゾルバ等の回転速度検出手段15が設けられている。 The rotor spindle 10 is located at the center of the rotary motor 1. The rotor spindle 10 is rotatably supported by rolling bearings 13 and 13 fitted and fixed to the main housing 4a and the side housing 4b. A part of the rotor spindle 10 in the axial direction protrudes into the outboard reducer 2 and is coaxially fitted with the input gear shaft 14 of the reducer 2 coaxially (including serrations, hereinafter the same). . The rotary motor 1 is provided with rotational speed detection means 15 such as a resolver for detecting the rotational speed of the rotor 6.
 <減速機等>
 減速機2は、入力歯車14aを有する入力歯車軸14と、第1、第2中間歯車16a,16bを有する中間歯車軸16と、出力歯車17aを有する出力歯車軸17とを備える平行軸歯車減速機である。入力歯車軸14は、メインハウジング4aに設けられた転がり軸受18,18を介して回転自在に支持されている。中間歯車軸16は、外周面に入力歯車14aに噛み合う大径の第1中間歯車16aと、出力歯車17aに噛み合う小径の第2中間歯車16bとを有する段付き歯車である。この中間歯車軸16は、メインハウジング4aに設けられた転がり軸受19,20を介して回転自在に支持されている。出力歯車軸17は、大径の出力歯車17aを有し、メインハウジング4aに設けられた転がり軸受21,22を介して回転自在に支持されている。
<Speed reducer etc.>
The reduction gear 2 is a parallel shaft gear reduction including an input gear shaft 14 having an input gear 14a, an intermediate gear shaft 16 having first and second intermediate gears 16a and 16b, and an output gear shaft 17 having an output gear 17a. Machine. The input gear shaft 14 is rotatably supported via rolling bearings 18, 18 provided on the main housing 4a. The intermediate gear shaft 16 is a stepped gear having a large diameter first intermediate gear 16a meshing with the input gear 14a and a small diameter second intermediate gear 16b meshing with the output gear 17a on the outer peripheral surface. The intermediate gear shaft 16 is rotatably supported via rolling bearings 19 and 20 provided on the main housing 4a. The output gear shaft 17 has a large diameter output gear 17a, and is rotatably supported via rolling bearings 21 and 22 provided on the main housing 4a.
 入力歯車軸14には、回転電動機1のロータスピンドル10から駆動力が伝達される。第1中間歯車16aは入力歯車14aに噛み合い、第2中間歯車16bは出力歯車17aに噛み合う。出力歯車軸17は、軸方向の一部がメインハウジング4aからアウトボード側に引き出されて、車輪ハブ軸受部3の回転輪にスプライン嵌合され、図示外の駆動輪に駆動力を伝達する。 The driving force is transmitted to the input gear shaft 14 from the rotor spindle 10 of the rotary motor 1. The first intermediate gear 16a meshes with the input gear 14a, and the second intermediate gear 16b meshes with the output gear 17a. A portion of the output gear shaft 17 in the axial direction is pulled out from the main housing 4a to the outboard side, and is spline-fitted to the rotating wheel of the wheel hub bearing portion 3 to transmit the driving force to a driving wheel (not shown).
 <ステータの固定構造等について>
 図2に示すように、ステータコア8は、メインハウジング4aの内周に固定されている。詳しくは、メインハウジング4aの内周面におけるアウトボード側に環状の段差24が形成され、かつインボード側に環状の段差25が形成されている。これにより、メインハウジング4aの内周面は、アウトボード側からインボード側に向けて順次、小径部27、中径部28、および大径部29に形成される。そして、メインハウジング4aの内周面のうち中径部28にステータコア8の外周面を嵌合させて、複数(この例では6本)のボルト30(図1)によりステータコア8をメインハウジング4aに締結している。この固定状態では、アウトボード側の段差24にステータコア8のアウトボード側の端面が当接されて、ステータ5が軸方向に位置決めされる。
<About fixed structure of stator>
As shown in FIG. 2, the stator core 8 is fixed to the inner periphery of the main housing 4 a. Specifically, an annular step 24 is formed on the outboard side of the inner peripheral surface of the main housing 4a, and an annular step 25 is formed on the inboard side. Thereby, the inner peripheral surface of the main housing 4a is formed in the small diameter portion 27, the medium diameter portion 28, and the large diameter portion 29 sequentially from the outboard side toward the inboard side. Then, the outer peripheral surface of the stator core 8 is fitted to the middle diameter portion 28 of the inner peripheral surface of the main housing 4a, and the stator core 8 is attached to the main housing 4a by a plurality of (six in this example) bolts 30 (FIG. 1). It is concluded. In this fixed state, the end face on the outboard side of the stator core 8 abuts against the step 24 on the outboard side, and the stator 5 is positioned in the axial direction.
 <冷却機構>
 回転電動機1には、ステータコイル9のコイルエンド9aを冷却媒体Rにより冷却する冷却機構35が設けられている。前記冷却媒体Rとしては、例えば、油が使用される。冷却機構35は、図示しない冷却媒体供給源と、ハウジング4内に設けられた冷却媒体流路36と、この冷却媒体流路36を通って流れてくる冷却媒体Rをコイルエンド9aに案内する一対の案内板37,37とを有する。冷却媒体供給源は、ハウジング4の外部に設けられていてもよく、ハウジング4の内部に設けられていてもよい。
<Cooling mechanism>
The rotary motor 1 is provided with a cooling mechanism 35 for cooling the coil end 9 a of the stator coil 9 by a cooling medium R. For example, oil is used as the cooling medium R. The cooling mechanism 35 includes a cooling medium supply source (not shown), a cooling medium channel 36 provided in the housing 4, and a pair for guiding the cooling medium R flowing through the cooling medium channel 36 to the coil end 9a. And guide plates 37, 37 of FIG. The cooling medium supply source may be provided outside the housing 4 or may be provided inside the housing 4.
 冷却媒体流路36は、メインハウジング4aの上部に設けられた供給口36aと、この供給口36aから軸方向両側に延びる流通孔36bと、この流通孔36bのインボード側端およびアウトボード側端にそれぞれ設けられた一対の吐出口36c,36cとで構成される。供給口36aは、配管を介して前記冷却媒体供給源に接続されている。各吐出口36c,36cは、インボード側およびアウトボード側のそれぞれ最上位にあるコイルエンド9aの上方に位置する。 The cooling medium channel 36 has a supply port 36a provided at the upper portion of the main housing 4a, a circulation hole 36b extending axially to both sides from the supply port 36a, an inboard end and an outboard end of the circulation hole 36b. And a pair of discharge ports 36c and 36c respectively provided on the The supply port 36a is connected to the cooling medium supply source via a pipe. The discharge ports 36c, 36c are located above the coil end 9a at the top of the inboard side and the outboard side, respectively.
 一対の案内板37,37は互いに同形であり、互いに軸方向逆向きにして使用される。各案内板37は、図6に示すように、上面が冷却媒体案内面38となる円弧状部37aと、この円弧状部37aの幅方向一端から内周側に延びる複数(この例では3つ)の脚部37bとを有する。円弧状部37aの幅方向他端には、周方向の全域にわたって外径側に突出するつば部37cが設けられている。また、円弧状部37aにおける円周方向中央部の位置に、冷却媒体案内面38を円周方向の一方側にある第1の部分38Aと他方側にある第2の部分38Bとに分けるように外径側に突出する突起部37dが設けられている。図の例では、突起部37dの高さは、つば部37cの高さと同程度とされている。さらに、円弧状部37には、円周方向に並んで複数の貫通孔37eが設けられている。 The pair of guide plates 37, 37 are identical to each other, and are used in mutually opposite axial directions. As shown in FIG. 6, each guide plate 37 has an arc-shaped portion 37a whose upper surface is the cooling medium guiding surface 38, and a plurality (three in this example) extending inward from one end in the width direction of the arc-shaped portion 37a. And the legs 37b of the At the other end in the width direction of the arc-shaped portion 37a, a flange portion 37c that protrudes outward is provided over the entire area in the circumferential direction. Further, the cooling medium guiding surface 38 is divided into a first portion 38A on one side in the circumferential direction and a second portion 38B on the other side at a circumferentially central portion of the arc-shaped portion 37a. A projection 37d is provided which protrudes to the outer diameter side. In the example of the figure, the height of the protrusion 37 d is approximately the same as the height of the flange 37 c. Furthermore, in the arc-shaped portion 37, a plurality of through holes 37e are provided side by side in the circumferential direction.
 案内板37は、例えば、樹脂等の絶縁材料から成ることが望ましい。 The guide plate 37 is desirably made of, for example, an insulating material such as a resin.
 図2に示すように、案内板37は、上部に位置する複数(この例では3つ)の分割コア7の側面に各脚部37bをそれぞれ密着させた状態で、ステータコイル9を分割コア7および脚部37bに巻回することによって、ステータコア8に固定される。このように、ステータコイル9により案内板37をステータコア8に固定すると、案内板37を固定するための部品が別途に不要となる。そのため、回転電動機1全体の部品点数を減らすことができる。 As shown in FIG. 2, the guide plate 37 is configured such that the stator coil 9 is divided in a state in which each leg 37 b is in close contact with the side surface of the plurality of (three in this example) divided cores 7 located at the upper part. And fixed to the stator core 8 by being wound around the legs 37b. As described above, when the guide plate 37 is fixed to the stator core 8 by the stator coil 9, a separate component for fixing the guide plate 37 is unnecessary. Therefore, the number of parts of the entire rotary motor 1 can be reduced.
 ステータコア8に固定された案内板37は、図5に示すように、円弧状部37aが、上部に位置する複数(図の例では3つ)の分割コア7に巻回されたステータコイル9の各コイルエンド9aの上側に沿っている。ステータ5をメインハウジング4aに固定した状態では、冷却媒体流路36の吐出口36cの直下に案内板37の突起部37dが位置する。 In the guide plate 37 fixed to the stator core 8, as shown in FIG. 5, an arc-shaped portion 37a of the stator coil 9 is wound around a plurality of (three in the example of the figure) divided cores located at the upper part. It is along the upper side of each coil end 9a. In the state where the stator 5 is fixed to the main housing 4a, the projection 37d of the guide plate 37 is located directly below the discharge port 36c of the cooling medium flow channel 36.
 <冷却機構の作用>
 この構成によると、図2に示すように、冷却媒体供給源から供給される冷却媒体が、冷却媒体流路36の供給口36aおよび流通孔36bを通って、インボード側およびアウトボード側の上部に位置するコイルエンド9aの上方に導かれる。そして、吐出口36cから、冷却媒体Rが下向きに吐出される。図4に示すように、吐出された冷却媒体Rは、案内板37の冷却媒体案内面38に受けられる。正確には、吐出された冷却媒体Rは突起部37dによって半分ずつに分けられ、それぞれが冷却媒体案内面38の第1の部分38Aおよび第2の部分38Bに受けられる。
<Operation of cooling mechanism>
According to this configuration, as shown in FIG. 2, the cooling medium supplied from the cooling medium supply source passes through the supply port 36 a and the circulation hole 36 b of the cooling medium channel 36, and the upper portions on the inboard side and the outboard side It is led above the coil end 9a located at. Then, the cooling medium R is discharged downward from the discharge port 36c. As shown in FIG. 4, the discharged cooling medium R is received by the cooling medium guiding surface 38 of the guide plate 37. To be precise, the discharged cooling medium R is divided into halves by the projections 37d, and each is received by the first portion 38A and the second portion 38B of the cooling medium guiding surface 38.
 冷却媒体案内面38に受けられた冷却媒体Rは、冷却媒体案内面38の第1の部分38Aおよび第2の部分38Bに案内されて、ステータ5の円周方向に流れ、各貫通孔37eからコイルエンド9aに向けて落下する。貫通孔37eを適正箇所に設けておくことで、コイルエンド9aの全体に冷却媒体を効果的に行き渡らせることができる。これにより、コイルエンド9aを効率的に冷却することができる。つまり、案内板37を設けることで、回転電動機1の内部に冷却媒体用の複雑な配管を設けることなく、コイルエンド9aを効率的に冷却することが可能である。 The cooling medium R received by the cooling medium guiding surface 38 is guided to the first portion 38A and the second portion 38B of the cooling medium guiding surface 38 and flows in the circumferential direction of the stator 5 from each through hole 37e. It falls toward the coil end 9a. By providing the through holes 37e at appropriate positions, the cooling medium can be effectively spread over the entire coil end 9a. Thereby, the coil end 9a can be cooled efficiently. That is, by providing the guide plate 37, the coil end 9a can be efficiently cooled without providing a complicated pipe for the cooling medium inside the rotary motor 1.
 貫通孔37eから落下しなかった一部の冷却媒体Rは、冷却媒体案内面38の両端から落下する。また、上述したように、上部に位置するコイルエンド9aを冷却した後の冷却媒体も、同コイルエンド9aから落下する。これらの冷却媒体Rにより、下部に位置するコイルエンド9aも冷却される。 A part of the cooling medium R that has not dropped from the through hole 37 e falls from both ends of the cooling medium guiding surface 38. Further, as described above, the cooling medium after cooling the coil end 9a located at the upper part also falls from the coil end 9a. The cooling medium R also cools the lower coil end 9a.
 また、案内板37の冷却媒体案内面38には、吐出口36cの直下の位置に突起部37dが設けられていることにより、以下の作用が得られる。この実施形態のように、回転電動機1を電動車両の車両駆動装置に使用する場合、電動車両の加減速時に、冷却媒体案内面38上の冷却媒体Rが、進行方向の前方側となる円周方向の一方側(例えば第1の部分38A)から進行方向の後方側となる円周方向の他方側(例えば第2の部分38B)へ、またはその逆向きに越境して流れることが阻害される。これにより、電動車両の加減速時においても、冷却媒体Rを円周方向の両側に均等に分配することができ、冷却媒体Rの偏りを防ぐことができる。 Further, the cooling medium guide surface 38 of the guide plate 37 is provided with the projection 37 d at a position immediately below the discharge port 36 c, whereby the following effects can be obtained. As in this embodiment, when the rotary motor 1 is used for a vehicle drive device of an electric vehicle, the circumference of the cooling medium R on the cooling medium guiding surface 38 is on the front side in the traveling direction when accelerating or decelerating the electric vehicle. Flow from one side of the direction (for example, the first portion 38A) to the other side in the circumferential direction (for example, the second portion 38B) that is the rear side in the traveling direction or vice versa . Thereby, even at the time of acceleration / deceleration of the electric powered vehicle, the cooling medium R can be evenly distributed on both sides in the circumferential direction, and the deviation of the cooling medium R can be prevented.
 <他の実施形態について>
 この回転電動機をモータオンボード形式の車両に適用してもよい。
<Other Embodiments>
This rotary motor may be applied to a motor on board type vehicle.
 また、この回転電動機を車両のばね上側に搭載され、1基の電動モータと減速機を備える1モータ車両駆動装置や、車両のばね上側に搭載され、左右の駆動輪をそれぞれ独立して駆動させる2基の電動モータと減速機を備える2モータ車両駆動装置に適用してもよい。 In addition, this rotary motor is mounted on the spring side of the vehicle, and is mounted on a single-motor vehicle drive unit equipped with one electric motor and a reduction gear, or on the spring side of the vehicle to drive the left and right drive wheels independently. The present invention may be applied to a two-motor vehicle drive device provided with two electric motors and a reduction gear.
 前記減速機は、平行軸歯車減速機に限定されるものではなく、遊星歯車式等種々の減速機に適用し得る。 The reduction gear is not limited to a parallel shaft gear reduction gear, and can be applied to various reduction gears such as a planetary gear type.
 インホイールモータ駆動装置は、減速機の無いダイレクトモータ形式の回転電動機としてもよい。 The in-wheel motor drive device may be a direct motor type rotary motor without a reduction gear.
 回転電動機は、ロータコアの表面に永久磁石が設けられるSPM型であってもよい。 The rotary motor may be of the SPM type in which permanent magnets are provided on the surface of the rotor core.
 インホイールモータ駆動装置に前記ポンプが内蔵される形態であってもよいし、インホイールモータ駆動装置の外部にポンプが設けられる形態であってもよい。
 外周固定リングの貫通孔に代えて、ボルトが通り且つ冷却媒体の通路となる溝を設けてもよい。
The pump may be built in the in-wheel motor drive device, or the pump may be provided outside the in-wheel motor drive device.
Instead of the through holes in the outer peripheral fixing ring, grooves may be provided through which bolts pass and through which the cooling medium passes.
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。 As described above, although the preferred embodiments have been described with reference to the drawings, various additions, modifications or deletions can be made without departing from the spirit of the present invention. Therefore, such is also included in the scope of the present invention.
1…回転電動機
5…ステータ
6…ロータ
7a…歯部
8…ステータコア
9…ステータコイル
9a…コイルエンド
35…冷却機構
36…冷却媒体流路
36c…吐出口
37…案内板
37d…突起部
38…冷却媒体案内面
R…冷却媒体
DESCRIPTION OF SYMBOLS 1 ... Rotational motor 5 ... Stator 6 ... Rotor 7a ... Tooth part 8 ... Stator core 9 ... Stator coil 9a ... Coil end 35 ... Cooling mechanism 36 ... Cooling-medium flow path 36c ... Discharge port 37 ... Guide plate 37d ... Projection part 38 ... Cooling Medium guiding surface R ... Cooling medium

Claims (4)

  1.  環状のステータであって、複数の歯部が円環状に並ぶステータコア、および前記各歯部にそれぞれ巻回されたステータコイルを有するステータと、
     このステータの半径方向内方に位置し、前記ステータに対して回転自在であるロータと、
     前記ステータコイルのコイルエンドを冷却媒体により冷却する冷却機構であって、
      前記複数の歯部のうちの上部に位置する歯部に巻回された前記コイルエンドの上方に前記冷却媒体を導く冷却媒体流路、および、
      この冷却媒体流路の吐出口から吐出される冷却媒体を上面からなる冷却媒体案内面で受け、その受けた冷却媒体を、前記コイルエンドに沿って前記ステータの円周方向に案内して前記コイルエンドに流す円弧状の案内板であって、前記冷却媒体案内面における前記吐出口の直下の位置に、前記直下の位置を超えて前記冷却媒体案内面上の前記冷却媒体が円周方向に逆流するのを阻害する突起部が設けられている案内板を有する冷却構造とを備えた回転電動機。
    An annular stator having a stator core in which a plurality of tooth portions are annularly arranged, and a stator coil having a stator coil wound around each of the tooth portions;
    A rotor located radially inward of the stator and rotatable relative to the stator;
    A cooling mechanism for cooling a coil end of the stator coil by a cooling medium, the cooling mechanism comprising:
    A cooling medium channel for guiding the cooling medium above the coil end wound on a tooth located at an upper portion of the plurality of teeth;
    The cooling medium discharged from the discharge port of the cooling medium flow path is received by the cooling medium guiding surface consisting of the upper surface, and the received cooling medium is guided in the circumferential direction of the stator along the coil end to carry out the coil An arc-shaped guide plate flowing to the end, wherein the cooling medium on the cooling medium guiding surface is backflowed in the circumferential direction beyond the position directly below the discharge port in the cooling medium guiding surface. And a cooling structure having a guide plate provided with a protrusion that inhibits the movement of the motor.
  2.  請求項1に記載の回転電動機において、前記案内板は、円周方向に並んで配置された複数の貫通孔であって、それぞれ、前記冷却媒体案内面を流れる前記冷却媒体を前記コイルエンドに向けて落下させる複数の貫通孔を有する回転電動機。 The rotary motor according to claim 1, wherein the guide plate is a plurality of through holes arranged in a circumferential direction, and the cooling medium flowing in the cooling medium guiding surface is directed to the coil end. Rotary motor having a plurality of through holes to be dropped.
  3.  請求項1または請求項2に記載の回転電動機において、前記案内板は、前記ステータコイルにより前記ステータコアに固定されている回転電動機。 The rotary motor according to claim 1, wherein the guide plate is fixed to the stator core by the stator coil.
  4.  車輪を支持する車輪用軸受と、この車輪用軸受の回転輪を回転させる請求項1ないし請求項3のいずれか1項に記載の回転電動機とを備えたインホイールモータ駆動装置。 The in-wheel motor drive device provided with the wheel bearing which supports a wheel, and the rotary motor of any one of Claim 1 thru | or 3 which rotates the rotating wheel of this bearing for wheels.
PCT/JP2018/023736 2017-06-30 2018-06-22 Rotary electric machine and in-wheel motor drive device provided with rotary electric machine WO2019004065A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017129095A JP2019013101A (en) 2017-06-30 2017-06-30 Rotating motor and in-wheel motor driving device with rotating motor
JP2017-129095 2017-06-30

Publications (1)

Publication Number Publication Date
WO2019004065A1 true WO2019004065A1 (en) 2019-01-03

Family

ID=64741512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023736 WO2019004065A1 (en) 2017-06-30 2018-06-22 Rotary electric machine and in-wheel motor drive device provided with rotary electric machine

Country Status (2)

Country Link
JP (1) JP2019013101A (en)
WO (1) WO2019004065A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7314588B2 (en) * 2019-04-11 2023-07-26 ニデック株式会社 motors and drives
JP6881692B1 (en) * 2019-12-24 2021-06-02 株式会社明電舎 Cooling structure of rotary electric machine
WO2021131182A1 (en) * 2019-12-24 2021-07-01 株式会社明電舎 Cooling structure of rotary electric machine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004180376A (en) * 2002-11-25 2004-06-24 Nippon Soken Inc Rotating electric machine
JP2011097761A (en) * 2009-10-30 2011-05-12 Toyota Motor Corp Cooling device for rotary electric machine
JP2012205374A (en) * 2011-03-25 2012-10-22 Hitachi Industrial Equipment Systems Co Ltd Rotary electric machine
JP2013013229A (en) * 2011-06-29 2013-01-17 Toyota Motor Corp Stator for rotary electric machine
JP2013055799A (en) * 2011-09-05 2013-03-21 Toyota Motor Corp Rotary electric machine
JP2014107874A (en) * 2012-11-22 2014-06-09 Toyota Motor Corp Rotary electric machine
JP2017093002A (en) * 2015-11-02 2017-05-25 Ntn株式会社 Motor drive unit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004180376A (en) * 2002-11-25 2004-06-24 Nippon Soken Inc Rotating electric machine
JP2011097761A (en) * 2009-10-30 2011-05-12 Toyota Motor Corp Cooling device for rotary electric machine
JP2012205374A (en) * 2011-03-25 2012-10-22 Hitachi Industrial Equipment Systems Co Ltd Rotary electric machine
JP2013013229A (en) * 2011-06-29 2013-01-17 Toyota Motor Corp Stator for rotary electric machine
JP2013055799A (en) * 2011-09-05 2013-03-21 Toyota Motor Corp Rotary electric machine
JP2014107874A (en) * 2012-11-22 2014-06-09 Toyota Motor Corp Rotary electric machine
JP2017093002A (en) * 2015-11-02 2017-05-25 Ntn株式会社 Motor drive unit

Also Published As

Publication number Publication date
JP2019013101A (en) 2019-01-24

Similar Documents

Publication Publication Date Title
JP6303770B2 (en) Drive device
US9729027B2 (en) Cooling structure of rotary electric machine
WO2019004065A1 (en) Rotary electric machine and in-wheel motor drive device provided with rotary electric machine
JP5374902B2 (en) Oil cooling structure of motor
JP5367276B2 (en) Lubrication cooling structure of electric motor
JP2007209160A (en) Fixing structure of cooling pipe, and electric motor vehicle
JP2013528353A (en) Electromechanical cooling system and method
KR20130114147A (en) Electric machine cooling system and method
JP2006300101A (en) Lubricating device of rotary electric machine
JP6099965B2 (en) In-wheel motor drive device
JP2009118712A (en) Dynamo-electric machine
JP2009195082A (en) Cooling structure of stator
JP2018207700A (en) Rotary motor and in-wheel motor driving device having the same
JP6065805B2 (en) Electric motor
JP2017060319A (en) Cooling structure for electric motor
WO2019124152A1 (en) In-wheel motor
WO2019124243A1 (en) In-wheel motor
JP2016086495A (en) In-wheel motor drive
JP2014092216A (en) Driving device
JP2015015851A (en) Rotary electric machine
JP6364948B2 (en) Cooling structure of rotating electric machine
JP2007126065A (en) Bearing device for motor rotary shaft in hybrid prime mover
JP2014047795A (en) Rotary machine
JP5354793B2 (en) Axial gap type motor
JP2010273504A (en) Rotor, rotary electric machine, and vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18824026

Country of ref document: EP

Kind code of ref document: A1