WO2019003508A1 - 内視鏡 - Google Patents

内視鏡 Download PDF

Info

Publication number
WO2019003508A1
WO2019003508A1 PCT/JP2018/009756 JP2018009756W WO2019003508A1 WO 2019003508 A1 WO2019003508 A1 WO 2019003508A1 JP 2018009756 W JP2018009756 W JP 2018009756W WO 2019003508 A1 WO2019003508 A1 WO 2019003508A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
objective optical
transparent
tip member
refractive index
Prior art date
Application number
PCT/JP2018/009756
Other languages
English (en)
French (fr)
Inventor
あかり 森田
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to CN201880042851.9A priority Critical patent/CN110799087B/zh
Priority to JP2019504992A priority patent/JP6523587B1/ja
Publication of WO2019003508A1 publication Critical patent/WO2019003508A1/ja
Priority to US16/715,387 priority patent/US11099374B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2461Illumination
    • G02B23/2469Illumination using optical fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00096Optical elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • G02B23/243Objectives for endoscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides

Definitions

  • the present invention relates to an endoscope.
  • an endoscope disposed in an inserted state see, for example, Patent Document 1.
  • the endoscope of Patent Document 1 is assembled in a state in which a lens group constituting an objective optical system is surrounded by a cylindrical frame, and the objective optical system and the transparent tip member are completely completed in the radial direction by the frame. It is divided into Therefore, the occurrence of flare due to the illumination light emitted from the light guide fiber being transmitted through the inside of the transparent tip member and entering the objective optical system is prevented.
  • One aspect of the present invention is formed by a light guide fiber comprising an exit end for emitting illumination light, and a transparent material for holding the exit end of the light guide fiber and transmitting the illumination light emitted from the exit end.
  • the objective optical system inserted into the through hole provided in the transparent tip member, and the refractive index of the transparent material constituting the transparent tip member is the inner surface of the through hole
  • the illumination light emitted from the emission end of the light guide fiber is incident into the transparent tip member holding the emission end, passes through the inside of the transparent tip member, and is externally transmitted from the tip surface of the transparent tip member It emits light and illuminates the part to be observed.
  • a part of the illumination light emitted at an angle to the optical axis from the exit surface of the transparent tip member or a part of the illumination light leaked from the side surface of the light guide fiber is inserted into the through hole as the objective optical It travels through the transparent tip member toward the system, but the refractive index of the transparent material constituting the transparent tip member is larger than the refractive index of at least a part of the material in contact with the inner surface of the through hole.
  • a part of the illumination light is totally reflected at the boundary between the and the material in contact with the inner surface, and the part is refracted in the direction toward the tip.
  • illumination directed to the proximal end side in the optical axis direction by entering the objective optical system Light can be reduced, flare can be prevented, and cost can be reduced while keeping the outer diameter of the endoscope small.
  • the objective optical system may include a plurality of resin layers stacked in the optical axis direction, and the outer peripheral surface of each resin layer may be in contact with the inner surface of the through hole.
  • a filler is filled between the outer peripheral surface of the objective optical system and the inner surface of the through hole, and the refractive index of the filler is the refractive index of the transparent material constituting the transparent tip member. It may be smaller. In this way, by filling the gap between the objective optical system and the transparent tip member with the filler, the objective optical system can be reliably supported by the transparent tip member, and the frame is eliminated to make the endoscope Even if the cost is reduced while keeping the outer diameter small, the occurrence of flare can be suppressed by utilizing the difference in refractive index between the transparent tip member and the filler.
  • the filler may be an adhesive.
  • the objective optical system can be reliably fixed by the transparent tip member, and the frame is eliminated. Even if the cost is reduced while keeping the outer diameter of the endoscope small, it is possible to suppress the occurrence of flare using the difference in refractive index between the transparent tip member and the filler.
  • the outer peripheral surface of the tip of the objective optical system and the inner surface of the through hole at the tip of the transparent tip member may be provided with an inclined surface that gradually tapers toward the tip.
  • the incident angle to the boundary between the through hole of the illumination light and the material in contact with the inner surface can be made larger, and the total reflection condition is satisfied. It is easy to do. Thereby, the light amount of the illumination light passing through the boundary can be reduced, and the occurrence of flare can be further suppressed.
  • an angle of the inclined surface of the transparent tip member to the tip surface of the objective optical system may satisfy the following conditional expression.
  • no is the refractive index of the material in contact with the inner surface of the through hole
  • ni is the refractive index of the transparent material constituting the transparent tip member
  • is the objective of the inclined surface of the transparent tip member It is an angle with respect to the tip surface of the optical system.
  • the angle of the inclined surface of the transparent tip member to the tip surface of the objective optical system may satisfy the following conditional expression. 30 ° ⁇ ⁇ ⁇ 180 ° - ⁇ - (sin -1 (no / ni))
  • is an angle formed with the optical axis direction of the illumination light emitted from the emission end.
  • is too small, it is necessary to increase the dimension in the direction orthogonal to the optical axis of the objective optical system in order to secure the effective diameter of the objective optical system, and there is a disadvantage that the outer diameter of the endoscope becomes large. If ⁇ is too large, the flare prevention effect is reduced. By satisfying the above conditions, it is possible to improve the flare prevention effect while keeping the outer diameter of the endoscope small.
  • the refractive indices of the plurality of resin layers may increase toward the tip. In this way, when the illumination light incident on the objective optical system passes obliquely from the image plane side to the object plane side, total reflection on the boundary surface of each resin layer is prevented, and each resin layer Since the incident angle to the boundary of the lens gradually decreases, it is difficult for the illumination light to reach the imaging surface side, and the flare prevention effect can be improved.
  • the endoscope 1 condenses observation light returned from the subject, and an illumination optical system 3 that radiates illumination light toward the subject at the tip of the elongated insertion portion 2.
  • An objective optical system 4 and an image pickup device 5 for photographing the observation light collected by the objective optical system 4 are provided.
  • the illumination optical system 3 includes a light guide fiber 6 for guiding illumination light from a light source (not shown) disposed on the proximal end side of the insertion portion 2 to the tip of the insertion portion 2, and a tip of the light guide fiber 6. And a transparent tip member 7 made of a transparent material that transmits illumination light emitted from the emission end 6a.
  • the transparent tip member 7 is formed in a substantially cylindrical shape, and is provided with a through hole 8 having a square cross section in the center thereof in the axial direction.
  • the transparent material constituting the transparent tip member 7 is made of, for example, a resin such as polysulfone, and has a predetermined refractive index ni.
  • the transparent end member 7 is provided with a plurality of fitting holes 9 at one end face in the axial direction at intervals in the circumferential direction around the axis of the through hole 8 and in which the emitting end 6a of the light guide fiber 6 is fitted. ing.
  • the fitting hole 9 is formed from one end face in the axial direction of the transparent tip member 7 to a predetermined depth position, and is supported in a positioned state by abutting the fitted light guide fiber 6 on the bottom surface It can be done.
  • the objective optical system 4 is configured in a substantially square prism by laminating resin layers 10 made of a plurality of resin materials in the axial direction.
  • the cross section of the objective optical system 4 has a dimension that fits perfectly with the cross section of the through hole 8 of the transparent tip member 7.
  • the objective optical system 4 is manufactured, for example, by cutting out a substrate on which a large number of resin materials are laminated by thin film molding technology by dicing or the like.
  • the cut surface cut out by dicing or the like is brought into direct contact with the inner surface of the through hole 8 of the transparent tip member 7 and fitted in the through hole 8.
  • the imaging device 5 is, for example, a solid-state imaging device such as a CCD or a CMOS image sensor, and is fixed to an end surface on the image plane side which is a focal position of the objective optical system 4.
  • the incident end of the imaging fiber may be disposed on the end face of the objective optical system 4.
  • the illumination optical system 3 and the objective optical system 4 provided at the tip of the insertion portion 2 are disposed facing the object, and emitted from the light source The obtained illumination light is guided to the tip of the insertion portion 2 through the light guide fiber 6.
  • the illumination light guided to the tip of the insertion portion 2 by the light guide fiber 6 is emitted forward from the emission end 6a of the light guide fiber 6, and most of it is transmitted through the transparent tip member 7 made of a transparent material.
  • the subject facing the distal end surface of the insertion unit 2 is irradiated.
  • Image is formed on 5 Thereby, the image of the observation light from the subject can be obtained by the imaging device 5, and the subject can be observed.
  • the refractive index ni of the transparent material constituting the transparent tip member 7 and the refractive index nox of the resin material of each resin layer 10 constituting the objective optical system 4 satisfy the conditional expression (1). Since it is satisfied, the illumination light incident above the total reflection angle is totally reflected.
  • illumination light whose incident angle is small and does not satisfy the total reflection condition passes through the boundary and enters into the objective optical system 4. In this case, the light is refracted in the direction further to the front at the boundary. It is difficult for the light to be directed to the side of the imaging device 5 disposed at the base end face of the optical system 4.
  • the endoscope 1 As described above, according to the endoscope 1 according to the present embodiment, a plurality of lenses are accommodated in the frame one by one in comparison with the conventional endoscope which constitutes the objective optical system 4.
  • the objective optical system 4 of a square pillar only by cutting out a plurality of types of resins by a thin film molding technique by dicing or the like is directly engaged with the through hole 8 of the transparent tip member 7 only. It has the advantage of being able to significantly reduce part costs and assembly costs. Further, by eliminating the frame, there is an advantage that the diameter of the endoscope 1 can be reduced by reducing the outer diameter of the endoscope 1 by the thickness of the frame.
  • the transparent tip member 7 and the objective optical system 4 are utilized by utilizing the difference in refractive index.
  • the illumination light incident on the boundary of the light source the light amount of the illumination light passing through the boundary is reduced, and the illumination light directed to the image There is an advantage that the occurrence of flare in the image acquired by can be effectively prevented.
  • the refractive index nox of the material of each resin layer 10 constituting the objective optical system 4 is on the object side (tip) along the optical axis direction of the objective optical system 4 It is preferably selected to become larger as In this way, as shown in FIG. 4, the illumination light incident on the objective optical system 4 is refracted so as to be more directed to the object side when passing through the boundary of each resin layer 10 . As a result, the light amount of the illumination light directed to the imaging device 5 can be reduced, and the occurrence of flare can be prevented more effectively.
  • the square-pillared objective optical system 4 is used by cutting out a substrate on which a plurality of resin layers 10 are laminated by dicing, but the present invention is not limited to this, and cylindrical objective optics System 4 may be used.
  • the through hole 8 of the transparent tip member 7 can also be formed to be circular in cross section, and both can be fitted with high accuracy.
  • the refractive index of the transparent material constituting the transparent tip member 7 one having the refractive index or more of all the resin layers 10 in contact with the inner surface of the through hole 8 has been exemplified.
  • a refractive index greater than the refractive index of at least one (at least part of) materials in contact with the inner surface of 8 may be employed.
  • the refractive index of the transparent material constituting the transparent tip member 7 may not be equal to or higher than the refractive index of the resin layer 10. That is, the refractive index of the transparent material constituting the transparent tip member 7 should be equal to or higher than the refractive index of the resin layer 10 at least at a position where the illumination light enters the objective optical system 4 and reaches the imaging surface. .
  • each resin layer 10 constituting the objective optical system 4 is fitted so as to be in direct contact with the inner surface of the through hole 8 of the transparent tip member 7
  • an optional filler may be interposed between the outer peripheral surface of the objective optical system 4 and the inner surface of the through hole 8 to eliminate the gap therebetween.
  • An adhesive may be employed as the filler.
  • a filler having a refractive index no smaller than the refractive index ni of the transparent tip member 7 is selected as the filler. do it.
  • the refractive index nox of each resin layer 10 constituting the objective optical system 4 is not limited to be smaller than the refractive index ni of the transparent tip member 7, the degree of freedom in material selection can be expanded.
  • the objective optical system 4 is formed in a columnar shape having a uniform cross section, but instead, as shown in FIG. 5, the tip surface (surface on the object side) around the entire optical axis The sloped surface 10a may be tapered toward the end. Then, the inclined surface 8 a to be brought into close contact with the inclined surface 10 a of the objective optical system 4 may be provided in the through hole 8 of the transparent tip member 7 as well.
  • the fitting for fixing the emission end 6a of the light guide fiber 6 It is preferable that the holes 9 and the inclined surfaces 10a be disposed at mutually corresponding positions as shown in FIG.
  • the number of light guide fibers 6 may be arbitrary.
  • the fitting hole 9 can be disposed at any circumferential position outside the through hole 8 in the radial direction.
  • the incident angle of the illumination light emitted from the emission end 6a of the light guide fiber 6 to the boundary between the transparent tip member 7 and the objective optical system 4 is made larger than in the place other than the inclined surface 10a.
  • the light quantity of the illumination light totally reflected at the boundary can be increased, and the light quantity of the illumination light incident in the objective optical system 4 can be reduced. Since part of the illumination light incident into the objective optical system 4 is directed toward the imaging element 5 by Fresnel reflection on the tip end surface of the objective optical system 4, the illumination light itself incident into the objective optical system 4 is By reducing it, the flare prevention effect can be improved.
  • the inclination angle ⁇ of the inclined surface 8 a of the through hole 8 with respect to the end surface of the objective optical system 4 satisfy the following conditional expression (2).
  • no is the refractive index of the material in contact with the inclined surface 8a, for example, the objective optical system 4 or the filler.
  • Table 2 shows an example of the combination of materials satisfying the conditional expression (2) and the maximum inclination angle.
  • the inclination angle ⁇ of the inclined surface 8a may satisfy the following conditional expression (3). 30 ° ⁇ ⁇ ⁇ 180 ° - ⁇ - (sin -1 (no / ni)) (3)
  • is an angle formed by the illumination light emitted from the emission end 6 a of the light guide fiber 6 with the optical axis of the objective optical system 4.
  • the outer diameter of the endoscope 1 can be kept small, and a sufficient flare prevention effect can be obtained. That is, if ⁇ becomes small, the tip surface becomes small and the effective diameter can not be secured unless the dimension in the direction orthogonal to the optical axis of the objective optical system 4 is increased, so the outer diameter of the endoscope 1 becomes large. . In addition, when ⁇ becomes large, the light amount of the illumination light totally reflected on the inclined surface 8a is reduced, so that the flare preventing effect is reduced. By satisfying conditional expression (3), the occurrence of these disadvantages can be suppressed.
  • Table 3 shows an example of the combination of materials satisfying the conditional expression (3) and the maximum inclination angle.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Surgery (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

対物光学系と透明先端部材との間を遮光している枠体をなくして内視鏡の外径を小さく抑えつつコストを低く抑えながら、フレアの発生を防止する。照明光を射出する射出端を備えるライトガイドファイバ(6)と、ライトガイドファイバ(6)の射出端(6a)を保持し、射出端(6a)から射出された照明光を透過させる透明材料によって形成された透明先端部材(7)と、透明先端部材(7)に設けられた貫通孔(8)に挿入された対物光学系(4)とを備え、透明先端部材(7)を構成している透明材料の屈折率が、貫通孔(8)の内面に接している材料の屈折率より大きい内視鏡(1)を提供する。

Description

内視鏡
 本発明は、内視鏡に関する。
 ライトガイドファイバを保持する挿入部を有し、ライトガイドファイバから射出された照明光を透過可能な透明材料からなる筒状の透明先端部材を備えるとともに、透明先端部材の中央孔に対物光学系を挿入状態に配置してなる内視鏡が知られている(例えば、特許文献1参照。)。
 特許文献1の内視鏡は、対物光学系を構成するレンズ群が筒状の枠体によって取り囲まれた状態に組み立てられており、対物光学系と透明先端部材とは枠体によって径方向に完全に区画されている。このため、ライトガイドファイバから射出された照明光が透明先端部材内を透過して対物光学系に入射することによるフレアの発生が防止されている。
特開2009-207529号公報
 しかしながら、特許文献1のように、複数のレンズを枠体に順次組み付けていく構造では、製造に手間がかかるとともに、部品点数も多くコストが高く付くという不都合がある。また、内視鏡の外径が枠体の厚さ分大きくなってしまうという不都合がある。
 本発明は上述した事情に鑑みてなされたものであって、対物光学系と透明先端部材との間を遮光している枠体をなくして内視鏡の外径を小さく抑えつつコストを低く抑えながら、フレアの発生を防止することができる内視鏡を提供することを目的としている。
 上記目的を達成するために、本発明は以下の手段を提供する。
 本発明の一態様は、照明光を射出する射出端を備えるライトガイドファイバと、該ライトガイドファイバの前記射出端を保持し、該射出端から射出された前記照明光を透過させる透明材料によって形成された透明先端部材と、該透明先端部材に設けられた貫通孔に挿入された対物光学系とを備え、前記透明先端部材を構成している前記透明材料の屈折率が、前記貫通孔の内面に接している少なくとも一部の材料の屈折率より大きい内視鏡を提供する。
 本態様によれば、ライトガイドファイバの射出端から射出された照明光は射出端を保持している透明先端部材内に入射され、透明先端部材内を透過して透明先端部材の先端面から外部に射出され、観察しようとする部位を照明する。透明先端部材の射出面から光軸に対して角度をなして射出された照明光の一部あるいはライトガイドファイバの側面から漏れた照明光の一部は、貫通孔に挿入配置されている対物光学系に向かって透明先端部材内を進行するが、透明先端部材を構成している透明材料の屈折率が、貫通孔の内面に接している少なくとも一部の材料の屈折率より大きいので、貫通孔とその内面に接する材料との境界において照明光の一部が全反射し、一部がより先端に向かう方向に屈折させられる。
 すなわち、対物光学系とその周囲の透明先端部材とを光軸に直交する方向に区画する枠体を有していなくても、対物光学系に入射して光軸方向の基端側に向かう照明光を低減することができ、フレアの発生を防止することができるとともに、内視鏡の外径を小さく抑えつつコストを低減することができる。
 上記態様においては、前記対物光学系が光軸方向に積層された複数の樹脂層を備え、各該樹脂層の外周面が前記貫通孔の内面に接触していてもよい。
 このようにすることで、樹脂層を積層して構成された安価な対物光学系を採用して、さらにコストの低減を図ることができる。また、複数の樹脂層を構成している材料として透明先端部材の透明材料よりも屈折率の小さい材料を選択するだけで、コストの低減とフレアの低減とを図ることができる。
 上記態様においては、前記対物光学系の外周面と前記貫通孔の内面との間に充填材が充填され、該充填材の屈折率が前記透明先端部材を構成している前記透明材料の屈折率より小さくてもよい。
 このようにすることで、対物光学系と透明先端部材との隙間を充填材によって埋めることにより、対物光学系を透明先端部材により確実に支持させることができ、枠体をなくして内視鏡の外径を小さく抑えつつコストを低減しても、透明先端部材と充填材との屈折率差を利用してフレアの発生を抑制することができる。
 上記態様においては、前記充填材が接着材であってもよい。
 このようにすることで、対物光学系と透明先端部材との隙間を接着材からなる充填材によって埋めることにより、対物光学系を透明先端部材により確実に固定することができ、枠体をなくして内視鏡の外径を小さく抑えつつコストを低減しても、透明先端部材と充填材との屈折率差を利用してフレアの発生を抑制することができる。
 上記態様においては、前記対物光学系の先端の外周面および前記透明先端部材の先端の前記貫通孔の内面が、先端に向かって漸次先細になる傾斜面を備えていてもよい。
 このようにすることで、傾斜面が設けられている部分においては、照明光の貫通孔とその内面に接する材料との境界への入射角度をより大きくすることができて、全反射条件を満足し易くすることができる。これにより、境界を通過する照明光の光量を低減し、フレアの発生をより抑制することができる。
 上記態様においては、前記透明先端部材の前記傾斜面の前記対物光学系の先端面に対する角度が以下の条件式を満足してもよい。
 no/ni≦cosθ
 ここで、noは前記貫通孔の内面に接している材料の屈折率、niは前記透明先端部材を構成している前記透明材料の屈折率、θは前記透明先端部材の前記傾斜面の前記対物光学系の先端面に対する角度である。
 このようにすることで、透明先端部材の傾斜面に対して光軸に直交する方向から照明光が入射しても、該照明光を全反射させることができ、フレア防止効果を高めることができる。
 上記態様においては、前記透明先端部材の前記傾斜面の前記対物光学系の先端面に対する角度が、以下の条件式を満足してもよい。
 30°≦θ≦180°-α-(sin-1(no/ni))
 ここで、αは前記射出端から射出される前記照明光の光軸方向とのなす角度である。
 θが小さすぎると対物光学系の有効径を確保するために対物光学系の光軸に直交する方向の寸法を大きくする必要があり、内視鏡の外径が大きくなるという不都合がある。θが大きすぎると、フレア防止効果が低減してしまう。上記条件を満足することで、内視鏡の外径を小さく抑えつつ、フレア防止効果を向上することができる。
 上記態様においては、複数の前記樹脂層の屈折率が、先端に向かって大きくなっていてもよい。
 このようにすることで、対物光学系に入射した照明光が像面側から物体面側に斜めに通過していく際に、各樹脂層の境界面での全反射を防止し、各樹脂層の境界への入射角が順次小さくなるため、照明光が撮像面側に到達しにくくなり、フレア防止効果を向上することができる。
 本発明によれば、対物光学系と透明先端部材との間を遮光している枠体をなくして内視鏡の外径を小さく抑えつつコストを低く抑えながら、フレアの発生を防止することができるという効果を奏する。
本発明の一実施形態に係る内視鏡を示す先端部の部分的な縦断面図である。 図1の内視鏡の対物光学系の一例を示す斜視図である。 図1の内視鏡におけるライトガイドファイバからの照明光の軌跡を示す模式図である。 図1の内視鏡の第1の変形例において、対物光学系に入射した照明光の軌跡を示す模式図である。 図1の内視鏡の第2の変形例を示す先端部の部分的な縦断面図である。 図5の内視鏡の対物光学系の一例を示す斜視図である。 図6の対物光学系とライトガイドファイバの配置例を示す正面図である。 図6の対物光学系の変形例を示す斜視図である。 図5の内視鏡における条件式(1)を説明する図である。 図5の内視鏡における条件式(2)を説明する図である。
 本発明の一実施形態に係る内視鏡1について、図面を参照して以下に説明する。
 本実施形態に係る内視鏡1は、図1に示されるように、細長い挿入部2の先端に照明光を被写体に向けて照射する照明光学系3と、被写体から戻る観察光を集光する対物光学系4と、該対物光学系4により集光された観察光を撮影する撮像素子5とを備えている。
 照明光学系3は、挿入部2の基端側に配置された図示しない光源からの照明光を挿入部2の先端まで導光してくるライトガイドファイバ6と、該ライトガイドファイバ6の先端の射出端6aから射出された照明光を透過させる透明材料からなる透明先端部材7とを備えている。
 透明先端部材7は、略円柱状に形成され、その中央に軸方向に貫通する横断面正方形の貫通孔8を備えている。透明先端部材7を構成している透明材料は、例えば、ポリサルフォン等の樹脂からなり、所定の屈折率niを有している。
 透明先端部材7には、軸方向の一端面に、貫通孔8の軸線回りに周方向に間隔をあけて、ライトガイドファイバ6の射出端6aを嵌合させる複数の嵌合孔9が設けられている。嵌合孔9は、透明先端部材7の軸方向の一端面から所定の深さ位置まで形成されており、その底面に、嵌合されたライトガイドファイバ6を突き当てることにより位置決め状態に支持することができるようになっている。
 対物光学系4は、図2に示されるように、複数種の樹脂材料からなる樹脂層10を軸方向に積層して略四角柱状に構成されている。対物光学系4の横断面は、透明先端部材7の貫通孔8の横断面にピッタリと嵌合する寸法を有している。対物光学系4を構成している各樹脂層10の樹脂材料の屈折率nox(x=1,2,…,n)は以下の条件式(1)を満足している。
 nox≦ni       (1)
 対物光学系4は、例えば、薄膜成形技術により多数の樹脂材料を積層した基板をダイシング等によって切り出すことにより製造されている。そして、ダイシング等によって切り出された切断面を透明先端部材7の貫通孔8内面に直接接触させて貫通孔8内に嵌合されている。
 すなわち、対物光学系4と透明先端部材7との間には両者間を遮光する枠体は存在していない。
 撮像素子5は、例えば、CCDまたはCMOSイメージセンサ等の固体撮像素子であり、対物光学系4の焦点位置である像面側の端面に固定されている。対物光学系4の端面に、撮像素子5に代えて、イメージングファイバの入射端を配置してもよい。
 このように構成された本実施形態に係る内視鏡1の作用について、以下に説明する。
 本実施形態に係る内視鏡1を用いて被写体の観察を行うには、挿入部2の先端に設けられた照明光学系3および対物光学系4を被写体に対向して配置し、光源から発せられた照明光をライトガイドファイバ6を介して挿入部2の先端まで導く。
 ライトガイドファイバ6によって挿入部2の先端まで導かれてきた照明光は、ライトガイドファイバ6の射出端6aから前方に向かって射出され、その大部分が透明材料からなる透明先端部材7を透過して、挿入部2の先端面に対向している被写体に照射される。被写体における照明光の反射光、被写体において発生した蛍光等の観察光は、対物光学系4の先端面から対物光学系4に入射し、対物光学系4の基端側に配置されている撮像素子5に結像される。これにより、撮像素子5によって被写体からの観察光の画像を取得することができ、被写体の観察を行うことができる。
 この場合において、図3に示されるように、ライトガイドファイバ6の射出端6aあるいはその近傍から射出される照明光はそのほぼ全てが斜め前方に射出されるが、その一部が、貫通孔8の方向に指向されて、透明先端部材7と対物光学系4との境界に入射する。透明先端部材7と対物光学系4との境界に斜め前方に向かって入射した照明光は、入射角度に応じて、一部が境界において全反射し、残りが境界を通過して対物光学系4内に入射する。
 本実施形態においては、透明先端部材7を構成している透明材料の屈折率niと対物光学系4を構成している各樹脂層10の樹脂材料の屈折率noxとが条件式(1)を満足しているので、全反射角度以上で入射した照明光は全反射されるようになっている。
 また、入射角度が小さく、全反射条件を満たさない照明光は境界を通過して対物光学系4内に入射するが、この場合には、境界においてさらに前方に向かう方向に屈折させられるので、対物光学系4の基端面に配置されている撮像素子5側には指向され難くなっている。
 このように、本実施形態に係る内視鏡1によれば、複数のレンズを1枚ずつ枠体内に収容していくことにより対物光学系4を構成していた従来の内視鏡と比較して、複数種の樹脂を薄膜成形技術により積層して構成された基板からダイシング等によって切り出しただけの四角柱状の対物光学系4を透明先端部材7の貫通孔8に直接嵌合するだけで構成でき、部品コストおよび組立コストを大幅に削減することができるという利点がある。また、枠体をなくしたことで、内視鏡1の外径を枠体の厚さ分小さくして、内視鏡1を細径化することができるという利点がある。
 枠体をなくしたことで、透明先端部材7から対物光学系4への照明光が枠体によって遮光されることはないが、屈折率差を利用して、透明先端部材7と対物光学系4との境界に入射する照明光のうち、境界を通過する照明光の光量を低減するとともに、境界を通過した照明光についても撮像素子5側に指向される照明光を低減して、撮像素子5により取得される画像におけるフレアの発生を効果的に防止することができるという利点がある。
 なお、本実施形態に係る内視鏡1においては、対物光学系4を構成している各樹脂層10の材料の屈折率noxが対物光学系4の光軸方向に沿って物体側(先端)に向かうに従って大きくなるように選択されていることが好ましい。このようにすることで、図4に示されるように、対物光学系4に入射した照明光が、各樹脂層10の境界を通過する際に、より物体側に指向されるように屈折させられる。これにより、撮像素子5側に指向される照明光の光量を減らして、より効果的にフレアの発生を防止することができるという利点がある。
 本実施形態においては、複数の樹脂層10を積層した基板をダイシングによって切り出すことにより四角柱状の対物光学系4を使用することとしたが、これに限定されるものではなく、円柱状の対物光学系4を使用してもよい。このようにすることで、透明先端部材7の貫通孔8も横断面円形に形成できて、両者を精度よく嵌合させることができる。
 本実施形態においては、透明先端部材7を構成している透明材料の屈折率として、貫通孔8の内面に接している全ての樹脂層10の屈折率以上であるものを例示したが、貫通孔8の内面に接している少なくとも1つ(少なくとも一部)の材料の屈折率より大きいものを採用してもよい。例えば、照明光が対物光学系4に入射する位置によっては屈折率の関係に関わらず、入射しても撮像面に到達しない場合がある。この場合、照明光が対物光学系4に入射する位置においては、透明先端部材7を構成している透明材料の屈折率が樹脂層10の屈折率以上でなくてもよい。すなわち、少なくとも照明光が対物光学系4に入射して撮像面に到達する経路がある位置において透明先端部材7を構成している透明材料の屈折率が樹脂層10の屈折率以上であればよい。
 本実施形態に係る内視鏡1においては、対物光学系4を構成している各樹脂層10が透明先端部材7の貫通孔8の内面に直接接触するように嵌合させる場合について説明したが、これに代えて、対物光学系4の外周面と貫通孔8の内面との間に、任意の充填材を介在させて両者間の隙間をなくすことにしてもよい。充填材としては接着材を採用してもよい。これにより、対物光学系4を透明先端部材7に確実に固定することができる。
 そして、対物光学系4の外周面と貫通孔8の内面との間に充填材を介在させる場合には、充填材として、透明先端部材7の屈折率niより小さい屈折率noを有するものを選択すればよい。この場合には、対物光学系4を構成する各樹脂層10の屈折率noxが透明先端部材7の屈折率niより小さく限定されないので、材料選択の自由度を広げることができる。
 透明先端部材7の屈折率ni、および、貫通孔8の内面に接する材料の屈折率noの例を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 これによれば、表1に示されている全ての組合せにおいて条件式(1)が満たされている。
 本実施形態においては、対物光学系4として横断面が均一な柱状に形成したが、これに代えて、図5に示されるように、光軸回りに全周にわたって先端面(物体側の面)に向かって先細になる傾斜面10aを備えていてもよい。そして、透明先端部材7の貫通孔8にも対物光学系4の傾斜面10aに密着させられる傾斜面8aが設けられていればよい。
 対物光学系4が四角柱状に形成されている場合には、図6に示されるように、傾斜面10aは4つの側面にそれぞれ設けられるので、ライトガイドファイバ6の射出端6aを固定する嵌合孔9と傾斜面10aとは図7に示されるように相互に対応する位置に配置されていることが好ましい。ライトガイドファイバ6の数は任意でよい。
 一方、図8に示されるように、対物光学系4が円柱状である場合には、嵌合孔9は貫通孔8の径方向外方の任意の周方向位置に配置することができる。
 このようにすることで、ライトガイドファイバ6の射出端6aから射出される照明光の透明先端部材7と対物光学系4との境界への入射角度を傾斜面10a以外の場所よりも大きくすることができる。これにより、境界において全反射される照明光の光量を増大させ、対物光学系4内に入射される照明光の光量を低減することができる。対物光学系4内に入射された照明光の一部は、対物光学系4の先端面においてフレネル反射により撮像素子5側に指向されるので、対物光学系4内に入射される照明光自体を減らすことで、フレア防止効果を向上することができる。
 このような傾斜面10aを設ける場合には、貫通孔8の傾斜面8aの対物光学系4の先端面に対する傾斜角度θが以下の条件式(2)を満足することが好ましい。
 no/ni≦cosθ     (2)
 ここで、noは傾斜面8aに接する材料、例えば、対物光学系4あるいは充填材の屈折率である。
 この条件式(2)を満足することにより、図9に示されるように、傾斜面8aに対して光軸に略直交する方向から照明光が入射しても、傾斜面8aにおいて照明光を全反射させることができ、フレア防止効果を向上することができる。
 表2に条件式(2)を満足する材料の組合せと最大傾斜角度の例を示す。
Figure JPOXMLDOC01-appb-T000002
 傾斜面8aの傾斜角度θが以下の条件式(3)を満足していてもよい。
 30°≦θ≦180°-α-(sin-1(no/ni))   (3)
 ここで、αは、図10に示されるように、ライトガイドファイバ6の射出端6aから射出される照明光の対物光学系4の光軸とのなす角度である。
 条件式(3)を満足することにより、内視鏡1の外径を小さく抑えることができるとともに、十分なフレア防止効果を得ることができる。
 すなわち、θが小さくなると、対物光学系4の光軸に直交する方向の寸法を大きくしなければ先端面が小さくなって有効径が確保できないため、内視鏡1の外径が大きくなってしまう。また、θが大きくなると、傾斜面8aにおいて全反射される照明光の光量が低減していくので、フレア防止効果が減ってしまう。条件式(3)を満足することにより、これらの不都合の発生を抑制することができる。
 表3に条件式(3)を満足する材料の組合せと最大傾斜角度の例を示す。
Figure JPOXMLDOC01-appb-T000003
 1 内視鏡
 4 対物光学系
 6 ライトガイドファイバ
 6a 射出端
 7 透明先端部材
 8 貫通孔
 8a,10a 傾斜面
 10 樹脂層
 ni,no 屈折率

Claims (8)

  1.  照明光を射出する射出端を備えるライトガイドファイバと、
     該ライトガイドファイバの前記射出端を保持し、該射出端から射出された前記照明光を透過させる透明材料によって形成された透明先端部材と、
     該透明先端部材に設けられた貫通孔に挿入された対物光学系とを備え、
     前記透明先端部材を構成している前記透明材料の屈折率が、前記貫通孔の内面に接している少なくとも一部の材料の屈折率より大きい内視鏡。
  2.  前記対物光学系が光軸方向に積層された複数の樹脂層を備え、
     各該樹脂層の外周面が前記貫通孔の内面に接触している請求項1に記載の内視鏡。
  3.  前記対物光学系の外周面と前記貫通孔の内面との間に充填材が充填され、
     該充填材の屈折率が前記透明先端部材を構成している前記透明材料の屈折率より小さい請求項1に記載の内視鏡。
  4.  前記充填材が接着材である請求項3に記載の内視鏡。
  5.  前記対物光学系の先端の外周面および前記透明先端部材の先端の前記貫通孔の内面が、先端に向かって漸次先細になる傾斜面を備える請求項1から請求項4のいずれかに記載の内視鏡。
  6.  前記透明先端部材の前記傾斜面の前記対物光学系の先端面に対する角度が以下の条件式を満足する請求項5に記載の内視鏡。
     no/ni≦cosθ
     ここで、
     no:前記貫通孔の内面に接している材料の屈折率、
     ni:前記透明先端部材を構成している前記透明材料の屈折率、
     θ:前記透明先端部材の前記傾斜面の前記対物光学系の先端面に対する角度
    である。
  7.  前記透明先端部材の前記傾斜面の前記対物光学系の先端面に対する角度が、以下の条件式を満足する請求項6に記載の内視鏡。
     30°≦θ≦180°-α-(sin-1(no/ni))
     ここで、
     α:前記射出端から射出される前記照明光の光軸方向とのなす角度
    である。
  8.  複数の前記樹脂層の屈折率が、先端に向かって大きくなる請求項2に記載の内視鏡。
PCT/JP2018/009756 2017-06-29 2018-03-13 内視鏡 WO2019003508A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880042851.9A CN110799087B (zh) 2017-06-29 2018-03-13 内窥镜
JP2019504992A JP6523587B1 (ja) 2017-06-29 2018-03-13 内視鏡
US16/715,387 US11099374B2 (en) 2017-06-29 2019-12-16 Endoscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-126907 2017-06-29
JP2017126907 2017-06-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/715,387 Continuation US11099374B2 (en) 2017-06-29 2019-12-16 Endoscope

Publications (1)

Publication Number Publication Date
WO2019003508A1 true WO2019003508A1 (ja) 2019-01-03

Family

ID=64742892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009756 WO2019003508A1 (ja) 2017-06-29 2018-03-13 内視鏡

Country Status (4)

Country Link
US (1) US11099374B2 (ja)
JP (1) JP6523587B1 (ja)
CN (1) CN110799087B (ja)
WO (1) WO2019003508A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734826A (en) * 1980-08-08 1982-02-25 Olympus Optical Co Endoscope
JPH09285440A (ja) * 1996-04-24 1997-11-04 Olympus Optical Co Ltd 保護カバー式内視鏡装置
JP2008043626A (ja) * 2006-08-21 2008-02-28 Olympus Medical Systems Corp カプセル内視鏡
JP2009207578A (ja) * 2008-03-03 2009-09-17 I Systems:Kk 撮像装置
JP2009207529A (ja) * 2008-02-29 2009-09-17 Olympus Medical Systems Corp 内視鏡
US8948560B1 (en) * 2010-03-15 2015-02-03 Cirrex Systems, Llc Elevating numerical aperture of optical systems
WO2017072847A1 (ja) * 2015-10-27 2017-05-04 オリンパス株式会社 内視鏡

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810033A (ja) * 1981-05-26 1983-01-20 オリンパス光学工業株式会社 内視鏡用照明光学系
JPH0690363B2 (ja) 1986-11-28 1994-11-14 オリンパス光学工業株式会社 内視鏡装置
JPH03264037A (ja) 1990-03-14 1991-11-25 Machida Endscope Co Ltd 内視鏡用保護装置
JPH07294828A (ja) 1994-04-27 1995-11-10 Olympus Optical Co Ltd 保護カバー付き内視鏡
JPH09197292A (ja) 1996-01-12 1997-07-31 Furukawa Electric Co Ltd:The パイプカメラの頭部
JPH09236758A (ja) 1996-03-01 1997-09-09 Shimadzu Corp 内視鏡
JPH105171A (ja) 1996-06-26 1998-01-13 Fuji Photo Optical Co Ltd 内視鏡用保護カバー
JPH11249030A (ja) 1998-12-07 1999-09-17 Olympus Optical Co Ltd 内視鏡用撮像装置
JP2002065587A (ja) 2000-08-28 2002-03-05 Asahi Optical Co Ltd 光学内視鏡
JP4172959B2 (ja) 2002-07-12 2008-10-29 Hoya株式会社 内視鏡の先端部
JP2004049793A (ja) 2002-07-24 2004-02-19 Pentax Corp 内視鏡の先端部
JP2004267255A (ja) 2003-03-05 2004-09-30 Pentax Corp 外套シース付内視鏡の先端部
US7578786B2 (en) 2003-04-01 2009-08-25 Boston Scientific Scimed, Inc. Video endoscope
US20050245789A1 (en) 2003-04-01 2005-11-03 Boston Scientific Scimed, Inc. Fluid manifold for endoscope system
US7591783B2 (en) 2003-04-01 2009-09-22 Boston Scientific Scimed, Inc. Articulation joint for video endoscope
US20050154262A1 (en) 2003-04-01 2005-07-14 Banik Michael S. Imaging system for video endoscope
US20040199052A1 (en) 2003-04-01 2004-10-07 Scimed Life Systems, Inc. Endoscopic imaging system
US20050222499A1 (en) 2003-04-01 2005-10-06 Banik Michael S Interface for video endoscope system
US8118732B2 (en) 2003-04-01 2012-02-21 Boston Scientific Scimed, Inc. Force feedback control system for video endoscope
EP2266452A3 (en) 2004-09-30 2012-07-18 Boston Scientific Limited Video endoscope
JP2006239185A (ja) 2005-03-04 2006-09-14 Pentax Corp 側方視型内視鏡の先端部
JP4704386B2 (ja) 2007-03-29 2011-06-15 オリンパスメディカルシステムズ株式会社 内視鏡
JP5366575B2 (ja) * 2008-05-08 2013-12-11 Hoya株式会社 複数機種の内視鏡
JP4777482B2 (ja) * 2009-03-31 2011-09-21 オリンパスメディカルシステムズ株式会社 内視鏡
US8485966B2 (en) * 2009-05-08 2013-07-16 Boston Scientific Scimed, Inc. Endoscope with distal tip having encased optical components and display orientation capabilities
JP2011200428A (ja) 2010-03-25 2011-10-13 Olympus Medical Systems Corp 内視鏡
WO2013027366A1 (ja) 2011-08-25 2013-02-28 パナソニック株式会社 プラスチックレンズ
JP2013202082A (ja) 2012-03-27 2013-10-07 Tokkyokiki Corp ライトガイドファイバからの光漏れを遮光した内視鏡
JP5922967B2 (ja) 2012-03-29 2016-05-24 Hoya株式会社 内視鏡装置
JP6071290B2 (ja) 2012-07-11 2017-02-01 オリンパス株式会社 レンズカバー
JP6430104B2 (ja) 2013-07-09 2018-11-28 オリンパス株式会社 照明装置
JP6192399B2 (ja) 2013-07-09 2017-09-06 オリンパス株式会社 照明装置
CN107072467A (zh) * 2014-12-05 2017-08-18 奥林巴斯株式会社 照明装置和内窥镜
JP6309654B2 (ja) * 2014-12-17 2018-04-11 オリンパス株式会社 内視鏡用照明装置および内視鏡
JP5977911B1 (ja) * 2015-01-28 2016-08-24 オリンパス株式会社 内視鏡
JP2016150215A (ja) 2015-02-19 2016-08-22 京セラオプテック株式会社 医療用カメラおよびトロカール
JP6509628B2 (ja) * 2015-05-12 2019-05-08 Hoya株式会社 内視鏡
US9829698B2 (en) * 2015-08-31 2017-11-28 Panasonic Corporation Endoscope
US9838576B2 (en) * 2015-08-31 2017-12-05 Panasonic Corporation Endoscope

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734826A (en) * 1980-08-08 1982-02-25 Olympus Optical Co Endoscope
JPH09285440A (ja) * 1996-04-24 1997-11-04 Olympus Optical Co Ltd 保護カバー式内視鏡装置
JP2008043626A (ja) * 2006-08-21 2008-02-28 Olympus Medical Systems Corp カプセル内視鏡
JP2009207529A (ja) * 2008-02-29 2009-09-17 Olympus Medical Systems Corp 内視鏡
JP2009207578A (ja) * 2008-03-03 2009-09-17 I Systems:Kk 撮像装置
US8948560B1 (en) * 2010-03-15 2015-02-03 Cirrex Systems, Llc Elevating numerical aperture of optical systems
WO2017072847A1 (ja) * 2015-10-27 2017-05-04 オリンパス株式会社 内視鏡

Also Published As

Publication number Publication date
JPWO2019003508A1 (ja) 2019-06-27
CN110799087B (zh) 2021-08-10
CN110799087A (zh) 2020-02-14
JP6523587B1 (ja) 2019-06-05
US20200142177A1 (en) 2020-05-07
US11099374B2 (en) 2021-08-24

Similar Documents

Publication Publication Date Title
WO2015005112A1 (ja) 照明装置
WO2015005159A1 (ja) 照明装置
JP6309654B2 (ja) 内視鏡用照明装置および内視鏡
JP6490432B2 (ja) 照明装置
JP2015223463A5 (ja)
WO2021014876A1 (ja) イメージファイバ、イメージファイバを有する内視鏡、及び内視鏡を有する内視鏡システム
JP2015080646A (ja) 内視鏡用レンズユニットおよびこれを備えた内視鏡
JP6523587B1 (ja) 内視鏡
WO2020031261A1 (ja) ウェハーレンズ,積層レンズアレイ,内視鏡
JP2015136545A5 (ja)
WO2014068958A1 (ja) 内視鏡および内視鏡用挿入部
JP6509628B2 (ja) 内視鏡
JP2014087483A (ja) 内視鏡
JP2005189231A (ja) 光学装置とその製造方法
CN113613544B (zh) 内窥镜
JP2017129619A5 (ja)
JP5526011B2 (ja) 導光部材および内視鏡装置
JP6980922B2 (ja) 内視鏡および内視鏡の挿入部
JP2007017580A (ja) 光モジュール
JP7024084B2 (ja) 撮像モジュール及び内視鏡
JP7064625B2 (ja) 内視鏡装置
KR20170052229A (ko) 타원형 입광부 라이트 가이드 장치
JP2009226035A (ja) 内視鏡の照明レンズ
JP2021153780A (ja) 内視鏡
JP2009225947A (ja) 内視鏡の照明光学系およびその組立方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019504992

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18825039

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18825039

Country of ref document: EP

Kind code of ref document: A1