WO2018235287A1 - Grease - Google Patents

Grease Download PDF

Info

Publication number
WO2018235287A1
WO2018235287A1 PCT/JP2017/023282 JP2017023282W WO2018235287A1 WO 2018235287 A1 WO2018235287 A1 WO 2018235287A1 JP 2017023282 W JP2017023282 W JP 2017023282W WO 2018235287 A1 WO2018235287 A1 WO 2018235287A1
Authority
WO
WIPO (PCT)
Prior art keywords
grease
resin
worm
motor
metal oxide
Prior art date
Application number
PCT/JP2017/023282
Other languages
French (fr)
Japanese (ja)
Inventor
真也 飯尾
研介 木暮
今井 徹
Original Assignee
マブチモーター株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マブチモーター株式会社 filed Critical マブチモーター株式会社
Priority to PCT/JP2017/023282 priority Critical patent/WO2018235287A1/en
Publication of WO2018235287A1 publication Critical patent/WO2018235287A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/10Metal oxides, hydroxides, carbonates or bicarbonates

Definitions

  • the present invention relates to a grease.
  • a motor provided with a worm gear reducer having a worm and a worm wheel is known.
  • Such a motor with a reduction gear is used, for example, when it is used for a power window of an automobile that vertically opens and closes a window glass, in order to prevent the window glass from being opened by its own weight or vibration or being opened from the outside.
  • Reverse resistance is required as a characteristic of
  • a lubricant (mainly grease) is used at a portion where the worm and the worm wheel mesh with each other to prevent wear and seizing due to friction between parts. Therefore, in consideration of the gear transmission efficiency of the worm gear in the reduction gear motor, a lubricant having a smaller coefficient of friction between the worm and the worm wheel is preferable. On the other hand, lubricants with a low coefficient of friction are not always optimal with regard to the above-mentioned reversal resistance.
  • Patent No. 3466920 gazette
  • the present invention has been made in view of these circumstances, and an object thereof is to provide a new grease in which gear transmission efficiency and reverse resistance are taken into consideration.
  • grease of an embodiment of the present invention is grease containing metal oxide powder, and metal oxide powder is non-spherical shape with one or more corners.
  • Another aspect of the present invention is also a grease.
  • this grease when the minor axis of the metal oxide powder is ds and the major axis is dl, ds / dl is 0.5 or less.
  • the apparent density of the metal oxide powder may be less than 0.50 g / ml.
  • new grease can be provided.
  • FIG. 1 It is a figure which shows schematic structure of a power window. It is a front view of a motor with a reduction gear concerning a 1st embodiment. It is a figure which shows the electron micrograph which image
  • the grease as a lubricant is a semi-solid material and has a viscosity that allows it to stay in a region requiring lubrication.
  • the motor with a reduction gear is used, for example, as a power window for automatically opening and closing a window glass of an automobile, an actuator for driving automobile electrical equipment such as an electric sunroof attached to a ceiling portion of a vehicle body, and the like.
  • FIG. 1 is a diagram showing a schematic configuration of a power window.
  • FIG. 2 is a front view of the motor with a reduction gear according to the first embodiment. In FIG. 2, parts of the worm reducer are shown in cross section.
  • the window glass 16 locked to the wire cable 14 is moved up and down as shown by the arrow B.
  • the drive current supplied from the battery 18 of the automobile is supplied to the motor with speed reducer 12 under the control of on / off control and switching control for forward and reverse rotation by the control circuit 20.
  • the speed reducer motor 12 rotates in the positive and reverse directions by the drive current to drive the power window 10.
  • the motor with a reduction gear 12 includes a motor unit 22 and a worm reduction gear 24 attached to the motor unit 22.
  • the output of the motor unit 22 is reduced by the worm reduction gear 24 and output.
  • a gear case side mounting portion 28 is provided on the gear case 26 of the worm reduction gear 24.
  • the flange portion 30 of the motor portion 22 is fastened and fixed to the gear case side attachment portion 28 by a screw 32.
  • a worm 36 is attached to the motor shaft 34 of the motor unit 22.
  • the tip end portion 38 of the motor shaft 34 is rotatably supported by the bearing 40 on the gear case 26.
  • a worm wheel 42 engaged with the worm 36 is rotatably provided inside the gear case 26, a worm wheel 42 engaged with the worm 36 is rotatably provided.
  • the worm wheel 42 may be configured by a helical gear.
  • An output shaft 44 is attached to the center of the worm wheel 42.
  • a worm gear 46 is configured by the worm 36 and the worm wheel 42.
  • the worm 36 is made of carbon steel for machine structure (S20C)
  • the worm wheel 42 is made of polyacetal (POM)
  • the gear case 26 is made of synthetic resin made of polybutylene terephthalate (PBT). It will be in mesh with the resin.
  • the motor unit 22 when the drive current is supplied from the battery 18 to the motor unit 22 by the control signal from the control circuit 20, the motor unit 22 is driven and the motor shaft 34 to rotate in the forward and reverse directions.
  • the driving torque of the motor shaft 34 is transmitted to the worm 36, and then transmitted from the worm 36 to the worm wheel 42 and the output shaft 44 and taken out from the output shaft 44.
  • the drive cable at the output shaft 44 moves the wire cable 14 of the power window 10 to automatically open and close the window glass 16.
  • the following items may be mentioned.
  • the window glass 16 can be repeatedly opened and closed, that is, the number of life cycles (corresponding to the life of the speed reducer motor 12) is large. (4) Motor noise is low and quiet.
  • the grease according to the present embodiment lubricates the meshing portion R1 of the worm 36 and the worm wheel 42 in the worm gear 46 of the worm reduction gear 24.
  • grease is designed with particular attention given to (1), and meets the seemingly contradictory requirements of achieving desired reverse resistance while achieving high transmission efficiency.
  • the outline of the composition of the grease will be described.
  • the grease which concerns on this Embodiment mainly contains a base oil, a thickener, and a solid additive, if it satisfy
  • the base oil is selected from synthetic oils and mineral oils. Synthetic oils include hydrocarbon oils and ester oils. Examples of hydrocarbon oils include poly- ⁇ -olefins, ethylene- ⁇ -olefin copolymers, polybutenes, alkylbenzenes and alkylnaphthalenes.
  • a thickener is a substance having the function of dispersing in a base oil to make the whole grease semisolid. Thickeners are roughly classified into soap-based (metal soap) and non-soap-based (urea). Examples of the metal soap include lithium (Li) soap, calcium (Ca) soap, aluminum (Al) soap, sodium (Na) soap and the like. As urea, aliphatic urea, aromatic urea, alicyclic urea etc. are mentioned.
  • Solid additives examples include crosslinked resins, inorganic compounds, and self-lubricating resins.
  • the crosslinked resin is a non-plasticizing resin, a thermosetting resin, or the like, and may be three-dimensionally crosslinked.
  • Specific cross-linked resins include cross-linked acrylic resins that are aliphatic, silicone resins, urea resins, polyurethane resins, and the like, phenol resins that are aromatic, cross-linked polystyrene resins, epoxy resins, melamine resins, benzoguanamine resins, and the like.
  • the metal oxide is contained in the inorganic type compound.
  • Specific metal oxides include titanium oxide (TiO 2 ), silicon oxide (SiO 2 ), aluminum oxide (Al 2 O, Al 2 O 3 ), zinc oxide (ZnO), zirconium oxide (ZrO 2 ), oxide Examples include magnesium (MgO 2 ) and cerium oxide (CeO 2 ).
  • nylon (PA: polyamide) resin, polyacetal (POM: polyoxymethylene) resin, polytetrafluoroethylene (PTFE) resin, ultra high molecular weight polyethylene (UHMWPE) resin, polyether ether ketone ( PEEK) resin, polybutylene terephthalate (PBT) resin, etc. are mentioned.
  • Transmission efficiency and anti-reverse performance were measured as performance evaluation of grease.
  • ⁇ Transmission efficiency> The transmission efficiency ⁇ [%] applies a predetermined amount of grease to the meshing portion R1 of the worm gear 46 of the motor 12 with a reduction gear, and the output torque T 1 (stopping torque Ts) of the motor unit 22 before decelerating From the output torque T 2 of the output shaft 44 (the torque that causes the output shaft not to rotate as well as the stoppage torque), the following equation is calculated.
  • Transmission efficiency [[%] (T 2 / (T 1 ⁇ reduction ratio)) ⁇ 100
  • the reduction ratio of the reduction gear motor 12 is 65, and can be calculated as the number of rotations of the worm necessary for one rotation of the worm wheel.
  • the advance angle of the worm 36 is about 6 °. Further, the measurement was carried out in three environments of ⁇ 40 ° C., normal temperature (eg, 25 ° C.) and 85 ° C.
  • ⁇ Reversing resistance performance In the evaluation of the reverse rotation resistance performance, when a torque of 20 Nm is applied in the direction of rotation of the output shaft 44, the output shaft 44 is judged to be acceptable if it does not rotate, and rejected if it is rotated. This measurement is performed at three speeds (low speed, medium speed, high speed) at the time of applying torque, and torque is applied in the forward direction and reverse direction at each speed. That is, the test is performed six times on one reduction motor 12. Then, by performing on the N reducer-equipped motors 12, a total of 3 ⁇ 2 ⁇ N results can be obtained.
  • the anti-reverse performance test was conducted in three environments of low temperature (-40 ° C.), normal temperature (eg 25 ° C.) and high temperature (85 ° C.). In addition, at normal temperature, the reverse rotation resistance test was also performed after the life test (20,000 cycles) on the assumption that the motor 12 with a reduction gear is applied to the power window 10.
  • the pass ratio of reversal resistance at low temperature is 100%, but the pass ratio of reversal resistance at normal temperature (after life test) or high temperature is 0% is there.
  • the pass rate of the reversal resistance performance in all environments of low temperature, normal temperature and high temperature is 100%.
  • the grease containing hydrocarbon oil, urea, a crosslinked resin, and a metal oxide can realize sufficient anti-reversal performance while maintaining the transmission efficiency of gears to a certain extent or more.
  • the pass ratio of the reverse resistance at low temperature is 100%, but the pass ratio of the reverse resistance at normal temperature or high temperature is 0%.
  • the pass rate of the reverse rotation resistance performance is improved.
  • the acrylic resin may be contained at least 0.1 wt% or more, and may be 1 wt% or more, preferably more than 5 wt%, and more preferably 10 wt% or more.
  • the content of the acrylic resin is at most 50 wt% or less, preferably 40 wt% or less, preferably 30 wt% or less, and more preferably 20 wt% or less.
  • the content of the acrylic resin is set when the lead angle is made small by emphasizing anti-reverse performance. Can be reduced.
  • the acrylic resin contained in the grease may be contained at least 0.1 wt% or more, preferably more than 0.4 wt%, more preferably It is good that it is 0.8 wt% or more.
  • the content of the acrylic resin is at most 3.2 wt% or less, preferably 2.4 wt% or less, and more preferably 1.6 wt% or less.
  • the pass ratio of the anti-reverse performance at low temperature is 100%, but the pass ratio of the anti-reverse performance at normal temperature and high temperature is 0%.
  • the pass rate of the reverse rotation resistance performance is improved.
  • the titanium oxide content is preferably at least 0.1 wt% or more, and preferably 1 wt% or more, preferably more than 5 wt%, and more preferably 10 wt% or more.
  • the content of titanium oxide is at most 40 wt% or less, preferably 30 wt% or less, more preferably 20 wt% or less.
  • the grease may contain at least 0.1 wt% or more of titanium oxide, preferably more than 0.4 wt%, more preferably It is good that it is 0.8 wt% or more.
  • titanium oxide is preferably contained at most 3.2 wt% or less, preferably 2.4 wt% or less, more preferably 1.6 wt% or less.
  • the pass rate of the anti-reverse performance at low temperature is 100%, the pass rate of the anti-reverse performance at normal temperature and high temperature is 0%.
  • the pass rate of the anti-reverse performance is improved.
  • the nylon resin which is a self-lubricating resin is preferably contained at least 0.1 wt% or more, and preferably 1 wt% or more, preferably 5 wt% or more.
  • the content of the nylon resin is at most 20 wt% or less, preferably 15 wt% or less.
  • the content of nylon resin is Can be reduced.
  • the nylon resin contained in the grease may be at least 0.1 wt% or more, preferably 0.4 wt% or more.
  • the content of nylon resin is at most 1.6 wt% or less, preferably 1.2 wt% or less.
  • the crosslinked resin contained in the grease is preferably in the range of 0.1 wt% to 40 wt%.
  • the metal oxide contained in the grease is preferably in the range of 0.1 wt% to 40 wt%.
  • the grease may comprise 0.2 wt% to 80 wt% of the total solid additive.
  • the proportion of the solid additive is too large, the amount of the base oil and thickener necessary for the grease characteristics becomes too small, so the solid additive should be 60 wt% or less with respect to the whole grease, preferably 50 wt%
  • the content is more preferably 40 wt% or less.
  • the ratio of the content of the metal oxide to the content of the crosslinked resin is preferably in the range of at least 0.025 to 40, preferably in the range of 0.167 to 6, and more preferably in the range of 0.5 to 2. It is good. Outside this range, the characteristics of one of the two solid additives become dominant, and the synergetic effect of using the two solid additives decreases.
  • the ratio of the content of the metal oxide to the content of the crosslinked resin is 15.
  • the ratio of the content of the metal oxide to the content of the crosslinked resin is 0.5.
  • the ratio of the content of the metal oxide to the content of the cross-linked resin is 0.066.
  • the ratio of the content of the metal oxide to the content of the crosslinked resin is 2.0.
  • the grease may have a crosslinked resin and a metal oxide as solid additives.
  • the average particle size of the crosslinked resin is 1 to 200 ⁇ m, preferably 5 to 100 ⁇ m, and more preferably 20 to 50 ⁇ m.
  • the average particle size of the metal oxide is 1 to 10000 nm, preferably 5 to 4000 nm, and more preferably 10 to 500 nm.
  • the greases F1 to F5 have an average particle size of the contained acrylic resin of 8 to 85 ⁇ m, and an average particle size of the contained titanium oxide of 15 nm.
  • the pass ratio of reversal resistance in a low temperature and high temperature environment is 100%, and particularly in the case of greases F1 to F3 containing an acrylic resin having an average particle diameter of less than 50 ⁇ m, low temperature, normal temperature, high temperature 100% pass rate for anti-reversal performance in all environments.
  • the greases F6 to F11 have an average particle diameter of contained titanium oxide of 10 to 290 nm and an average particle diameter of contained acrylic resin of 28 ⁇ m.
  • the pass ratio of the anti-reverse performance in all environments of low temperature, normal temperature and high temperature is 100%.
  • the average particle diameter of the nylon resin which is a self-lubricating resin is 1 to 200 ⁇ m, preferably 3 to 80 ⁇ m, and more preferably 5 to 30 ⁇ m.
  • the average particle diameter of the acrylic resin is the volume average diameter MV
  • the average particle diameter of the titanium oxide is the number average diameter MN
  • the average particle diameter of the nylon resin is the volume average diameter MV.
  • description is abbreviate
  • FIG. 3 is an electron micrograph showing a state in which an aggregate of titanium oxide having an average particle diameter of 15 nm is attached to the surface of an acrylic resin powder having an average particle diameter of 28 ⁇ m.
  • FIG. 4 is a view showing an electron micrograph of an enlarged view of one acrylic resin powder shown in FIG.
  • FIG. 5 is an electron micrograph showing a state in which an aggregate of silicon oxide having an average particle diameter of 7 nm is attached to the surface of an acrylic resin powder having an average particle diameter of 28 ⁇ m.
  • polygonal (indeterminate) titanium oxide or silicon oxide adheres as aggregates on the surface of the spherical acrylic resin powder.
  • the shape of the acrylic resin powder was also measured by observation with an electron microscope.
  • one acrylic resin powder in the field of view of an electron microscope had a minor axis ds of 25.460 ⁇ m, a major axis dl of 26.050 ⁇ m, and a ds / dl of 0.976.
  • the true-spherical or substantially spherical crosslinked resin powder used for the grease according to the present embodiment has ds / dl of 0.8 or more, preferably 0.9 or more, and more preferably 0.95 or more.
  • the acrylic resin which is a crosslinked resin has an apparent density of 0.59 to 0.63 g / ml, a tap density of 0.72 to 0.76 g / ml, and a true density of 1.1 to 1.2 g / ml.
  • the apparent density of the crosslinked resin used in the grease according to the present embodiment is 0.40 g / ml or more, preferably 0.45 g / ml or more, and more preferably 0.50 g / ml or more.
  • titanium oxide or silicon oxide which is a metal oxide powder has a non-spherical shape (polygon shape) having one or more corner portions.
  • the larger the particle diameter the larger the ratio of the minor diameter ds to the major diameter dl, the larger the apparent density, and the smaller the specific surface area. It tends to make the grease hard to harden even if the same amount is added.
  • the shape of the titanium oxide powder having an average particle diameter of 15 nm the average of the minor diameter ds was 12 nm, the average of the major diameter dl was 60 nm, and ds / dl was 0.20.
  • the metal oxide powder having a non-spherical shape having corner portions used in the grease according to the present embodiment has ds / dl of 0.05 or more, preferably 0.1 or more, and more preferably 0. 15 or more.
  • titanium oxide which is a metal oxide has an apparent density of 0.24 to 0.31 g / ml, a tap density of 0.47 g / ml, a true density of 4.27 g / ml, and a specific surface area of 90 m 2 / g.
  • the apparent density of the metal oxide used in the grease according to the present embodiment is 0.1 g / ml or more, preferably 0.15 g / ml or more, and more preferably 0.2 g / ml or more.
  • the specific surface area of the metal oxide used in the grease according to the present embodiment is 200 m 2 / g or less, preferably 150 m 2 / g or less, more preferably 100 m 2 / g or less.
  • the shape of the nylon resin which is a self-lubricating resin was also measured by observation with an electron microscope.
  • the nylon resin powder having an average particle diameter of 10 ⁇ m was spherical, and the minor diameter ds was 9.301 ⁇ m, the major diameter dl was 9.550 ⁇ m, and the ds / dl was 0.972.
  • the spherical or nearly spherical self-lubricating resin powder used for the grease according to the present embodiment has ds / dl of 0.8 or more.
  • nylon resin which is a self-lubricating resin, has an apparent density of 0.33 to 0.40 g / ml, a tap density of 0.53 g / ml, a true density of 1.02 g / ml, and a specific surface area of 0. It is 56 m 2 / g.
  • the average particle diameter of the acrylic resin which is a crosslinked resin powder is 20 times or more the average particle diameter of titanium oxide which is a metal oxide powder.
  • the number of particles of crosslinked resin (acrylic resin) powder per unit volume of grease is NA
  • the number of particles of metal oxide (titanium oxide) powder per unit volume of grease is NB
  • NA / NB 1/2000 or less.
  • the metal oxide powder is appropriately dispersed and present on the surface of the crosslinked resin powder.
  • the grease which concerns on this Embodiment contains urea, crosslinked resin powder, and metal oxide powder, as shown to grease A1. Further, as shown in FIGS. 3 to 5, in the crosslinked resin powder, a plurality of metal oxide powders adhere to the surface. Further, as shown in greases D4 to D10, the grease according to the present embodiment contains a crosslinked resin powder and a metal oxide powder. Further, as shown in FIGS. 3 to 5, in the crosslinked resin powder, a plurality of metal oxide powders adheres to the surface, and the content of the metal oxide powder is 10 to 40 wt% of the whole grease.
  • the worm gear 46 has a grease containing urea as a thickening agent at the engagement portion R1 like the above-mentioned grease A1 and the like. Further, the grease further contains a crosslinked resin powder, and the crosslinked resin is selected from the group consisting of acrylic resin, urea resin, polyurethane resin, phenol resin, polystyrene resin, epoxy resin, melamine resin, and benzoguanamine resin 1 Contains more than species of material.
  • the worm gear 46 also has a worm 36 and a worm wheel 42.
  • the grease is applied to an engagement portion R1 in which the worm 36 and the worm wheel 42 are engaged.
  • the grease further includes a metal oxide, and the metal oxide includes at least one material selected from the group consisting of titanium oxide, aluminum oxide, zinc oxide, zirconium oxide, magnesium oxide, and cerium oxide. There is.
  • the worm according to the present embodiment is configured such that the lead angle ⁇ is 2 ° ⁇ ⁇ 12 °, preferably 3 ° ⁇ ⁇ 10 °, more preferably 4 ° ⁇ ⁇ 8 °. It is configured to be Although increasing the lead angle ⁇ improves transmission efficiency, it works disadvantageously in terms of anti-reverse performance. However, by using the grease according to the present embodiment, the anti-reverse performance can be improved while maintaining the transmission efficiency without reducing the lead angle ⁇ .
  • Total amount of solid additive and lead angle of worm From the test results of various greases according to the present embodiment, it is derived that there is a tendency for the anti-reverse performance to be improved by increasing the solid additive to be contained in the grease.
  • the appropriateness of the total amount of solid additives may vary depending on the configuration of the worm gear. Therefore, without changing the ratio of cross-linked resin, metal oxide, and self-lubricating resin contained in the solid additive, a grease in which only the total amount of fixed additive is changed is prepared, and the lead angle of the worm is 5 ° or 6 The performance was evaluated with a motor with a reduction gear of °°.
  • the solid additive is an important component, it can be applied to a motor with a reduction gear with a wider range by appropriately selecting the total amount of the solid additive. It became clear.
  • the greases G1 to G4 are the same as the grease A1 except that they contain silicon oxide having an average particle diameter of 16 nm as a metal oxide. As shown in the test results of grease G1 to grease G3 in Table 16, when the content of silicon oxide having an average particle diameter of 16 nm is 1 to 5 wt%, the passing of the reversal resistance performance in all environments of low temperature, normal temperature and high temperature The rate is almost 100%. However, when the content of silicon oxide was 10 wt% as in grease G4, the grease was too hard to conduct the test.
  • greases G5 to G7 are the same as grease A1 except that they contain aluminum oxide having an average particle diameter of 13 nm as metal oxide. As shown in the test results of greases G5 to G7 in Table 16, when the content of aluminum oxide having an average particle diameter of 13 nm is 5 to 15 wt%, the passing of the anti-reverse performance in all environments of low temperature, normal temperature and high temperature The rate is 100%.
  • grease G8 to grease G10 are the same as grease A1 except that they contain zinc oxide having an average particle diameter of 50 nm as a metal oxide.
  • the pass ratio of the reversal resistance performance in a low temperature and high temperature environment is 100% It is.
  • the pass ratio of the anti-reverse performance in an environment at normal temperature is also 100%.
  • Greases H1 to H3 are the same as grease A1 except that they contain a phenol resin having an average particle diameter of 20 ⁇ m as a crosslinked resin. As shown in the test results of greases H1 to H3 in Table 18, when the content of the phenolic resin having an average particle diameter of 20 ⁇ m is 5 to 15 wt%, the pass ratio of reversal resistance in a low temperature and high temperature environment is 100%. It is. In particular, when the content of the phenolic resin is 15 wt%, the pass rate of the reversal resistance performance in a normal temperature environment is also 100%.
  • Greases H4 to H6 are the same as grease A1 except that they contain a polystyrene resin having an average particle diameter of 17 ⁇ m as a crosslinked resin. As shown in the test results of greases H4 to H6 in Table 18, when the content of polystyrene resin having an average particle diameter of 17 ⁇ m is 5 to 15 wt%, the pass ratio of the reversal resistance performance in a low temperature and high temperature environment is 100%. It is. In particular, when the content of the polystyrene resin is 15 wt%, the pass ratio of the anti-reverse performance in a normal temperature environment is also 100%.
  • compositions of grease K1 to grease K27 are shown in Table 19. Further, the results of the static friction coefficient and the dynamic friction coefficient of grease K1 to grease K27 are shown in Table 20. Further, the results of transmission efficiency and reverse rotation resistance performance of grease K2 to grease K5 and grease K8 are shown in Table 21.
  • the dynamic friction coefficient and the static friction coefficient decrease at normal temperature and high temperature as the solid additive decreases.
  • the grease K14 has the same coefficient of friction as the composition of the solid additive but with different thickeners (a thickener is an alicyclic urea) and a grease K14 (a thickener is a lithium soap). It is less than half the coefficient of friction of the grease K1. Therefore, it can be seen that urea, which is a thickener, affects the increase in the coefficient of friction.
  • grease K9 to grease K14 containing lithium soap as a thickener and grease K25 containing only a base oil have low coefficient of friction, and the additive has an influence on the increase in coefficient of friction. I understand that there is not.
  • grease K20 to grease K24 (thickener is aliphatic urea or aromatic urea) containing the same solid additive as grease K1 (thickener is alicyclic urea), and lithium soap is used as a thickener.
  • the friction coefficient is larger than that of a certain grease K14. Also, depending on whether the thickener is an alicyclic urea, an aliphatic urea or an aromatic urea, there is no significant difference in the coefficient of friction.
  • the amount of thickener added to each grease is adjusted so that the JIS consistency of the grease is 2 (blend consistency 265 to 295).
  • the preferable JIS consistency of the grease according to the present embodiment may be at least in the range of 0 to 3.
  • the range of the blending amount of the thickener is, for example, 2 to 30 wt%, preferably 5 to 25 wt%, more preferably 8 to 20 wt%.
  • the greases L1 to L8 contain lithium soap as a thickening agent, but all have a low pass rate of the anti-reverse performance in an environment of normal temperature and high temperature.
  • FIG. 6 is a view schematically showing an example of the grease according to the present embodiment.
  • Grease 50 shown in FIG. 6 includes base oil 52 such as poly- ⁇ -olefin, thickener 54 such as alicyclic urea, crosslinked resin 56 such as acrylic resin powder, and metal oxide 58 such as titanium oxide powder. And a self-lubricating resin 60 such as nylon resin powder.
  • Urea used as the thickening agent 54 is expected to have high friction at high contact pressure.
  • alicyclic urea has a steric structure, and when pressure is applied, it is considered that the friction is increased due to the molecules sticking to each other.
  • crosslinked resin 56 is generally hard, difficult to be broken or crushed by pressure, and is considered to contribute to the maintenance of stable properties over a long period of time.
  • titanium oxide which is the metal oxide 58
  • the acrylic resin powder which is the crosslinked resin 56. This is considered to improve the anti-reverse performance.
  • the metal oxide 58 in order for the metal oxide 58 to cover the cross-linked resin 56 relatively uniformly, it is important that the size of the metal oxide 58 be sufficiently smaller than the size of the cross-linked resin 56.
  • the grease containing urea as the thickening agent 54, the cross-linked resin 56, and the metal oxide 58 can improve the anti-reverse performance. Furthermore, by adding the self-lubricating resin 60 to such a grease 50, the transmission efficiency is improved.
  • the size of the acrylic resin powder and the size of the nylon resin powder included in the grease according to the present embodiment are about several times different. Therefore, the acrylic resin powder and the nylon resin powder do not adhere to each other to cover the other, and a situation in which titanium oxide having a relatively small particle diameter covers the acrylic resin powder can be realized (see FIG. 6).
  • the reducer-equipped motor 12 shown in FIG. 2 includes a motor unit 22 and a worm gear 46 as a reduction mechanism having a gear for reducing the output of the motor unit 22 and transmitting the output to the output shaft 44.
  • the worm gear 46 has a first grease applied to the meshing portion R ⁇ b> 1 of the worm gear 46 for suppressing the reverse rotation of the motor by the rotational force input from the output shaft 44.
  • the first grease preferably contains urea as a thickening agent based on the test results of Grease K1 to Grease K7 and Grease K20 to Grease K24.
  • the coefficient of static friction at normal temperature of the grease is 20% or more larger than the coefficient of dynamic friction at normal temperature (see Table 20). That is, the coefficient of static friction which is considered to mainly affect the anti-reverse performance is large, and the coefficient of dynamic friction which is considered to mainly affect the transmission efficiency during the operation of the motor can be made relatively small.
  • the reduction gear motor has a transmission efficiency of 40% or more at normal temperature while satisfying the reverse rotation resistance performance.
  • the sliding portion between the parts is not limited to the worm gear 46 alone.
  • a portion (protrusion or support shaft) for rotatably supporting the worm wheel 42 is at the bottom of the gear case 26, and the second portion is for smooth sliding of that portion and the supported portion of the worm wheel 42.
  • Grease is applied to region R2 of FIG.
  • the second grease may be selected in consideration of the transmission efficiency rather than the reverse rotation resistance, and may be, for example, a grease (grease L2, grease J8) not containing urea as a main component of the thickener. As described above, by selectively using the grease in the plurality of sliding portions of the reduction gear motor, it is possible to realize the transmission efficiency and the reverse rotation resistance at a higher level.
  • Second Embodiment By using various greases according to the first embodiment, it is possible to realize a motor with a reduction gear that satisfies the reverse rotation resistance performance without significantly reducing the transmission efficiency. However, it may be difficult to achieve both the transmission efficiency and the reverse rotation resistance before and after the use environment and the life of the motor with a reduction gear.
  • the motor with a reduction gear includes a motor and a reduction mechanism having a gear that decelerates the output of the motor and transmits the output to the output shaft.
  • the reduction mechanism is provided in a torque transmission path between the output shaft and the drive shaft of the motor, and the reverse rotation prevention mechanism that suppresses the reverse rotation of the drive shaft of the motor by the rotational force input from the output shaft, and the gear meshing And grease which is applied to the part and which suppresses the reverse rotation of the drive shaft of the motor by the rotational force inputted from the output shaft.
  • the grease is selected from, for example, various greases listed in the first embodiment.
  • the motor with a reduction gear is similar in general configuration to the motor with a reduction gear 12 according to the first embodiment.
  • a reverse rotation preventing mechanism a worm gear having a worm whose surface is roughened by shot blasting, a worm gear having a worm whose advancing angle is reduced to secure reverse rotation resistance performance, and a meshing portion between a worm and a worm wheel And sliding parts etc. in which the friction coefficient between parts is high to some extent.
  • One example of a method of roughening the surface of the worm is to perform shot blasting at the stage of the single component before the worm is press-fitted into the motor shaft.
  • a surface roughness of about 2 to 10 ⁇ m with Rz (10-point average roughness) can be given to the tooth surface of the worm. Thereafter, electroless nickel plating is formed on the worm surface to maintain its surface roughness, and a baking process is performed to further increase the surface hardness.
  • the specifications of the motor with a reduction gear to which the grease according to the above embodiment is applied include, for example, a reduction ratio of 50 to 150, a diameter of a worm wheel of 20 to 75 mm, a diameter of a worm of 3 to 20 mm, a stalling
  • the torque Ts is about 5 to 20 Nm
  • the Is is about 10 to 50 A, but of course it is not limited to this range.
  • the present invention can be used, for example, for a motor with a reduction gear.

Abstract

This grease 50 includes a metal oxide powder. The metal oxide powder has an aspherical shape having one or more corners.

Description

グリースGrease
 本発明は、グリースに関する。 The present invention relates to a grease.
 従来、ウォームおよびウォームホイールを有するウォームギヤ減速機を備えたモータが知られている。このような減速機付モータは、例えば窓ガラスを上下動して開閉させる自動車のパワーウィンドウに使用される場合、窓ガラスが自重や振動で開いたり、外部から開けられたりといった事態を防止するための特性として耐逆転性が求められている。 Conventionally, a motor provided with a worm gear reducer having a worm and a worm wheel is known. Such a motor with a reduction gear is used, for example, when it is used for a power window of an automobile that vertically opens and closes a window glass, in order to prevent the window glass from being opened by its own weight or vibration or being opened from the outside. Reverse resistance is required as a characteristic of
 通常、ウォームとウォームホイールとが噛み合う部分には、部品同士の摩擦による摩耗や焼き付きを防止するための潤滑剤(主としてグリース)が用いられている。したがって、減速機付モータにおけるウォームギヤのギヤ伝達効率を考慮すれば、ウォームとウォームホイールとの間の摩擦係数が小さくなる潤滑剤が好ましいことになる。一方で、摩擦係数の小さい潤滑剤は、前述の耐逆転性について最適なものであるとは限らない。 Usually, a lubricant (mainly grease) is used at a portion where the worm and the worm wheel mesh with each other to prevent wear and seizing due to friction between parts. Therefore, in consideration of the gear transmission efficiency of the worm gear in the reduction gear motor, a lubricant having a smaller coefficient of friction between the worm and the worm wheel is preferable. On the other hand, lubricants with a low coefficient of friction are not always optimal with regard to the above-mentioned reversal resistance.
 そこで、一般的な耐摩耗性だけでなく耐逆転性を考慮したグリースが考案されている(特許文献1参照)。 Then, the grease which considered not only general abrasion resistance but reversal resistance is devised (refer to patent documents 1).
特許第3466920号公報Patent No. 3466920 gazette
 本発明はこうした状況に鑑みてなされたものであり、その目的とするところは、ギヤ伝達効率と耐逆転性を考慮した新たなグリースを提供することにある。 The present invention has been made in view of these circumstances, and an object thereof is to provide a new grease in which gear transmission efficiency and reverse resistance are taken into consideration.
 上記課題を解決するために、本発明のある態様のグリースは、金属酸化物粉末を含むグリースであって、金属酸化物粉末は、一つ以上の角部を有する非球形の形状である。 In order to solve the above-mentioned subject, grease of an embodiment of the present invention is grease containing metal oxide powder, and metal oxide powder is non-spherical shape with one or more corners.
 本発明の別の態様もまた、グリースである。このグリースは、金属酸化物粉末の短径をds、長径をdlとすると、ds/dlが0.5以下である。 Another aspect of the present invention is also a grease. In this grease, when the minor axis of the metal oxide powder is ds and the major axis is dl, ds / dl is 0.5 or less.
 金属酸化物粉末の見掛け密度が0.50g/ml未満であってもよい。 The apparent density of the metal oxide powder may be less than 0.50 g / ml.
 なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システムなどの間で変換したものもまた、本発明の態様として有効である。 It is to be noted that any combination of the above-described constituent elements and one obtained by converting the expression of the present invention among methods, apparatuses, systems, etc. are also effective as an aspect of the present invention.
 本発明によれば、新たなグリースを提供できる。 According to the present invention, new grease can be provided.
パワーウィンドウの概略構成を示す図である。It is a figure which shows schematic structure of a power window. 第1の実施の形態に係る減速機付モータの正面図である。It is a front view of a motor with a reduction gear concerning a 1st embodiment. 平均粒径28μmのアクリル樹脂粉末の表面に、平均粒径15nmの酸化チタン粉末の凝集体が付着している様子を撮影した電子顕微鏡写真を示す図である。It is a figure which shows the electron micrograph which image | photographed a mode that the aggregate of the titanium oxide powder with an average particle diameter of 15 nm has adhered to the surface of the acrylic resin powder with an average particle diameter of 28 micrometers. 図3に示す一つのアクリル樹脂粉末を拡大して撮影した電子顕微鏡写真を示す図である。It is a figure which shows the electron micrograph which image | photographed and image | photographed one acrylic resin powder shown in FIG. 平均粒径28μmのアクリル樹脂粉末の表面に、平均粒径7nmの酸化ケイ素粉末の凝集体が付着している様子を撮影した電子顕微鏡写真を示す図である。It is a figure which shows the electron micrograph which image | photographed a mode that the aggregate of the silicon oxide powder with an average particle diameter of 7 nm has adhered to the surface of the acrylic resin powder with an average particle diameter of 28 micrometers. 本実施の形態に係るグリースの一例を模式的に示した図である。It is the figure which showed typically an example of the grease which concerns on this Embodiment.
 以下、本発明の実施の形態を図面を参照して説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。また、以下に述べる構成は例示であり、本発明の範囲を何ら限定するものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the drawings, the same elements will be denoted by the same reference symbols, and overlapping descriptions will be omitted as appropriate. Further, the configurations described below are exemplifications and do not limit the scope of the present invention.
 以下の実施の形態に係る潤滑剤としてのグリースは、半固体状の材料であり、潤滑を必要とする領域に留まることができる程度の粘度を有するものである。以下では、減速機付モータにグリースを適用する場合について説明する。減速機付モータは、例えば、自動車の窓ガラスを自動的に開閉するパワーウィンドウ、車体の天井部に取り付けられる電動サンルーフなど自動車用電装機器を駆動するアクチュエータ等に使用される。 The grease as a lubricant according to the following embodiment is a semi-solid material and has a viscosity that allows it to stay in a region requiring lubrication. Below, the case where grease is applied to a motor with a reduction gear is explained. The motor with a reduction gear is used, for example, as a power window for automatically opening and closing a window glass of an automobile, an actuator for driving automobile electrical equipment such as an electric sunroof attached to a ceiling portion of a vehicle body, and the like.
 [第1の実施の形態]
 (減速機付モータ)
 図1は、パワーウィンドウの概略構成を示す図である。図2は、第1の実施の形態に係る減速機付モータの正面図である。図2において、ウォーム減速機の部分は断面で示されている。
First Embodiment
(Motor with reduction gear)
FIG. 1 is a diagram showing a schematic configuration of a power window. FIG. 2 is a front view of the motor with a reduction gear according to the first embodiment. In FIG. 2, parts of the worm reducer are shown in cross section.
 パワーウィンドウ10において、減速機付モータ12に駆動されてワイヤケーブル14が移動すると、ワイヤケーブル14に係止されている窓ガラス16が、矢印Bに示すように昇降する。自動車のバッテリ18から供給される駆動用電流は、制御回路20によりオン、オフ制御および正、逆回転用の切替え制御がなされて減速機付モータ12に供給される。減速機付モータ12は、駆動用電流により正,逆方向に回転してパワーウィンドウ10を駆動する。 In the power window 10, when the wire cable 14 is driven by the reduction motor 12 and the wire cable 14 is moved, the window glass 16 locked to the wire cable 14 is moved up and down as shown by the arrow B. The drive current supplied from the battery 18 of the automobile is supplied to the motor with speed reducer 12 under the control of on / off control and switching control for forward and reverse rotation by the control circuit 20. The speed reducer motor 12 rotates in the positive and reverse directions by the drive current to drive the power window 10.
 減速機付モータ12は、モータ部22と、モータ部22に取り付けられたウォーム減速機24とを備えており、モータ部22の出力をウォーム減速機24で減速して出力する。ウォーム減速機24のギヤケース26には、ギヤケース側取付部28が設けられている。モータ部22のフランジ部30は、ギヤケース側取付部28にねじ32により締め付け固定されている。モータ部22のモータ軸34にはウォーム36が取り付けられている。モータ軸34の先端部38は、軸受40によりギヤケース26に回転自在に軸支されている。 The motor with a reduction gear 12 includes a motor unit 22 and a worm reduction gear 24 attached to the motor unit 22. The output of the motor unit 22 is reduced by the worm reduction gear 24 and output. A gear case side mounting portion 28 is provided on the gear case 26 of the worm reduction gear 24. The flange portion 30 of the motor portion 22 is fastened and fixed to the gear case side attachment portion 28 by a screw 32. A worm 36 is attached to the motor shaft 34 of the motor unit 22. The tip end portion 38 of the motor shaft 34 is rotatably supported by the bearing 40 on the gear case 26.
 ギヤケース26の内部には、ウォーム36に噛合するウォームホイール42が回転自在に設けられている。ウォームホイール42はヘリカルギヤにより構成されていてもよい。ウォームホイール42の中心部には出力軸44が取り付けられている。ウォーム36とウォームホイール42によりウォームギヤ46が構成されている。ウォーム36は機械構造用炭素鋼(S20C)で形成され、ウォームホイール42はポリアセタール(POM)、ギヤケース26はポリブチレンテレフタレート(PBT)からなる合成樹脂により形成されているので、ウォームギヤ46は金属と合成樹脂とが噛み合っていることになる。 Inside the gear case 26, a worm wheel 42 engaged with the worm 36 is rotatably provided. The worm wheel 42 may be configured by a helical gear. An output shaft 44 is attached to the center of the worm wheel 42. A worm gear 46 is configured by the worm 36 and the worm wheel 42. The worm 36 is made of carbon steel for machine structure (S20C), the worm wheel 42 is made of polyacetal (POM), and the gear case 26 is made of synthetic resin made of polybutylene terephthalate (PBT). It will be in mesh with the resin.
 このような構成の減速機付モータ12を有するパワーウィンドウ10において、制御回路20からの制御信号により駆動用電流がバッテリ18からモータ部22に供給されると、モータ部22は駆動されてモータ軸34を正転、逆転方向に回転させる。モータ軸34の駆動トルクはウォーム36に伝達され、次いで、ウォーム36からウォームホイール42および出力軸44に伝わって、出力軸44から外部に取り出される。この出力軸44における駆動トルクにより、パワーウィンドウ10のワイヤケーブル14が移動して、窓ガラス16が自動的に開閉する。 In the power window 10 having the reducer-equipped motor 12 having such a configuration, when the drive current is supplied from the battery 18 to the motor unit 22 by the control signal from the control circuit 20, the motor unit 22 is driven and the motor shaft 34 to rotate in the forward and reverse directions. The driving torque of the motor shaft 34 is transmitted to the worm 36, and then transmitted from the worm 36 to the worm wheel 42 and the output shaft 44 and taken out from the output shaft 44. The drive cable at the output shaft 44 moves the wire cable 14 of the power window 10 to automatically open and close the window glass 16.
 パワーウィンドウ10の減速機付モータ12に要求される主な機能としては、例えば下記の項目が挙げられる。
(1)幅広い使用温度範囲(例えば、-40℃ないし85℃)で、常に所望のギヤ伝達効率を確保して耐逆転性を維持すること。
(2)減速機付モータ12は、自動車のドアの内部の狭いスペースにアッセンブリされるので、全体が小型であること。
(3)窓ガラス16を繰り返して開閉動作できること、すなわちライフサイクル数(減速機付モータ12の寿命に相当)が大きいこと。
(4)モータ騒音が低く静粛であること。
As main functions required of the motor 12 with a reduction gear of the power window 10, for example, the following items may be mentioned.
(1) Maintaining the desired gear transmission efficiency and maintaining reverse resistance over a wide operating temperature range (eg, -40 ° C. to 85 ° C.).
(2) Since the motor 12 with a reduction gear is assembled in the narrow space inside the door of the automobile, the whole is small.
(3) The window glass 16 can be repeatedly opened and closed, that is, the number of life cycles (corresponding to the life of the speed reducer motor 12) is large.
(4) Motor noise is low and quiet.
 本実施の形態に係るグリースは、ウォーム減速機24のウォームギヤ46におけるウォーム36とウォームホイール42との噛み合い部R1を潤滑するものである。また、グリースは、特に(1)に着目して考案されたものであり、高い伝達効率を達成しつつ所望の耐逆転性も実現するという一見相反する要求を満たすものである。次に、グリースの組成の概略について説明する。本実施の形態に係るグリースは、主としてベースオイルと、増ちょう剤と、固体添加剤とを含むが、前述の(1)の機能を満たすものであれば、この構成に限られるものではない。 The grease according to the present embodiment lubricates the meshing portion R1 of the worm 36 and the worm wheel 42 in the worm gear 46 of the worm reduction gear 24. In addition, grease is designed with particular attention given to (1), and meets the seemingly contradictory requirements of achieving desired reverse resistance while achieving high transmission efficiency. Next, the outline of the composition of the grease will be described. Although the grease which concerns on this Embodiment mainly contains a base oil, a thickener, and a solid additive, if it satisfy | fills the above-mentioned function (1), it will not be restricted to this structure.
 (ベースオイル)
 ベースオイルは、合成油や鉱物油から選択される。合成油としては、炭化水素油やエステル油が挙げられる。炭化水素油としては、例えば、ポリ-α-オレフィン、エチレン-α-オレフィン共重合体、ポリブデン、アルキルベンゼン、アルキルナフタレンが挙げられる。
(Base oil)
The base oil is selected from synthetic oils and mineral oils. Synthetic oils include hydrocarbon oils and ester oils. Examples of hydrocarbon oils include poly-α-olefins, ethylene-α-olefin copolymers, polybutenes, alkylbenzenes and alkylnaphthalenes.
 (増ちょう剤)
 増ちょう剤は、ベースオイルの中に分散しグリース全体を半固体状にする作用を持つ物質である。増ちょう剤は、石鹸系(金属石鹸)と非石鹸系(ウレア)に大別される。金属石鹸としては、リチウム(Li)石鹸、カルシウム(Ca)石鹸、アルミニウム(Al)石鹸、ナトリウム(Na)石鹸等が挙げられる。ウレアとしては、脂肪族ウレア、芳香族ウレア、脂環族ウレア等が挙げられる。
(Thickener)
A thickener is a substance having the function of dispersing in a base oil to make the whole grease semisolid. Thickeners are roughly classified into soap-based (metal soap) and non-soap-based (urea). Examples of the metal soap include lithium (Li) soap, calcium (Ca) soap, aluminum (Al) soap, sodium (Na) soap and the like. As urea, aliphatic urea, aromatic urea, alicyclic urea etc. are mentioned.
 (固体添加剤)
 固体添加剤は、架橋樹脂、無機系化合物、自己潤滑性樹脂等が挙げられる。架橋樹脂は、非可塑性樹脂や熱硬化性樹脂等であり、三次元に架橋しているものであってもよい。具体的な架橋樹脂としては、脂肪族である架橋アクリル樹脂、シリコーン樹脂、尿素樹脂、ポリウレタン樹脂等、芳香族であるフェノール樹脂、架橋ポリスチレン樹脂、エポキシ樹脂、メラミン樹脂、ベンゾグアナミン樹脂等、が挙げられる。
(Solid additive)
Examples of solid additives include crosslinked resins, inorganic compounds, and self-lubricating resins. The crosslinked resin is a non-plasticizing resin, a thermosetting resin, or the like, and may be three-dimensionally crosslinked. Specific cross-linked resins include cross-linked acrylic resins that are aliphatic, silicone resins, urea resins, polyurethane resins, and the like, phenol resins that are aromatic, cross-linked polystyrene resins, epoxy resins, melamine resins, benzoguanamine resins, and the like. .
 また、無機系化合物には、金属酸化物が含まれている。具体的な金属酸化物としては、酸化チタン(TiO)、酸化ケイ素(SiO)、酸化アルミニウム(AlO、Al)、酸化亜鉛(ZnO)、酸化ジルコニウム(ZrO)、酸化マグネシウム(MgO)、酸化セリウム(CeO)が挙げられる。 Moreover, the metal oxide is contained in the inorganic type compound. Specific metal oxides include titanium oxide (TiO 2 ), silicon oxide (SiO 2 ), aluminum oxide (Al 2 O, Al 2 O 3 ), zinc oxide (ZnO), zirconium oxide (ZrO 2 ), oxide Examples include magnesium (MgO 2 ) and cerium oxide (CeO 2 ).
 また、自己潤滑性樹脂としては、ナイロン(PA:ポリアミド)樹脂、ポリアセタール(POM:ポリオキシメチレン)樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、超高分子量ポリエチレン(UHMWPE)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリブチレンテレフタレート(PBT)樹脂等が挙げられる。 In addition, as self-lubricating resin, nylon (PA: polyamide) resin, polyacetal (POM: polyoxymethylene) resin, polytetrafluoroethylene (PTFE) resin, ultra high molecular weight polyethylene (UHMWPE) resin, polyether ether ketone ( PEEK) resin, polybutylene terephthalate (PBT) resin, etc. are mentioned.
 (グリースの性能評価)
 グリースの性能評価として伝達効率と耐逆転性能を測定した。
 <伝達効率>
 伝達効率η[%]は、減速機付モータ12のウォームギヤ46の噛み合い部R1に所定量のグリースを塗布し、減速前のモータ部22の出力トルクT(停動トルクTs)と減速後の出力軸44の出力トルクT(停動トルクと同様に出力軸が回転しなくなるトルク)とから次の式により算出される。
 伝達効率η[%]=(T/(T×減速比))×100
(Performance evaluation of grease)
Transmission efficiency and anti-reverse performance were measured as performance evaluation of grease.
<Transmission efficiency>
The transmission efficiency η [%] applies a predetermined amount of grease to the meshing portion R1 of the worm gear 46 of the motor 12 with a reduction gear, and the output torque T 1 (stopping torque Ts) of the motor unit 22 before decelerating From the output torque T 2 of the output shaft 44 (the torque that causes the output shaft not to rotate as well as the stoppage torque), the following equation is calculated.
Transmission efficiency [[%] = (T 2 / (T 1 × reduction ratio)) × 100
 ここで、減速機付モータ12の減速比は65であり、ウォームホイールが一回転するのに必要なウォームの回転数として算出できる。また、ウォーム36の進み角は約6°である。また、測定は、-40℃、常温(例えば25℃)、85℃の3環境で行った。 Here, the reduction ratio of the reduction gear motor 12 is 65, and can be calculated as the number of rotations of the worm necessary for one rotation of the worm wheel. Also, the advance angle of the worm 36 is about 6 °. Further, the measurement was carried out in three environments of −40 ° C., normal temperature (eg, 25 ° C.) and 85 ° C.
 <耐逆転性能>
 耐逆転性能の評価は、出力軸44の回転方向に20Nmのトルクをかけた際に、出力軸44が回転しなければ合格とし、回転したら不合格とする。この測定を、トルクをかける際の速度を3水準(低速、中速、高速)で行い、かつ、それぞれの速度で正転方向、逆転方向にトルクをかける。つまり、一つの減速機付モータ12に対して6回試験する。そして、N個の減速機付モータ12に対して行うことで計3×2×Nの結果が得られる。出力軸44が回転しなかったものを合格、回転したものを不合格とし、合格した試験結果の数をN1とすると、耐逆転性能の合格率P[%]は次の式により算出される。
 合格率P=(N1/(3×2×N))×100
<Reversing resistance performance>
In the evaluation of the reverse rotation resistance performance, when a torque of 20 Nm is applied in the direction of rotation of the output shaft 44, the output shaft 44 is judged to be acceptable if it does not rotate, and rejected if it is rotated. This measurement is performed at three speeds (low speed, medium speed, high speed) at the time of applying torque, and torque is applied in the forward direction and reverse direction at each speed. That is, the test is performed six times on one reduction motor 12. Then, by performing on the N reducer-equipped motors 12, a total of 3 × 2 × N results can be obtained. Assuming that the output shaft 44 does not rotate is accepted, and the rotated one is rejected, and the number of accepted test results is N1, the pass ratio P [%] of the anti-reverse performance is calculated by the following equation.
Pass rate P = (N1 / (3 x 2 x N)) x 100
 なお、耐逆転性能の試験は、低温(-40℃)、常温(例えば25℃)、高温(85℃)の3環境で行った。また、常温においては、減速機付モータ12をパワーウィンドウ10に適用した場合を想定した寿命試験後(2万サイクル)にも耐逆転性能の試験を行った。 The anti-reverse performance test was conducted in three environments of low temperature (-40 ° C.), normal temperature (eg 25 ° C.) and high temperature (85 ° C.). In addition, at normal temperature, the reverse rotation resistance test was also performed after the life test (20,000 cycles) on the assumption that the motor 12 with a reduction gear is applied to the power window 10.
 以下の各表において、試験を行ったグリースの組成とそのグリースを用いた減速機付モータの性能を示している。 In each of the following tables, the composition of the tested grease and the performance of the reduction gear motor using the grease are shown.
 (固体添加物の種類)
 グリースA1~グリースA7の組成を表1に示す。また、グリースA1~A7の伝達効率および耐逆転性能の結果を表2に示す。
(Type of solid additive)
The compositions of greases A1 to A7 are shown in Table 1. Further, the results of the transmission efficiency and the reverse rotation resistance performance of the greases A1 to A7 are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 グリースA3のように固体添加剤を含まない場合、低温での耐逆転性能の合格率は100%であるものの、常温や高温における耐逆転性能の合格率は0%である。これに対して、固体添加剤であるアクリル樹脂の粉末や酸化チタンの粉末を1種類添加したグリースA4やグリースA5は、グリースA3と比較して常温や高温において耐逆転性能の合格率が向上している。また、固体添加剤としてアクリル樹脂の粉末および酸化チタンの粉末の2種類を添加したグリースA1は、低温、常温、高温の全ての環境における耐逆転性能の合格率が100%である。 When the solid additive is not included as in the grease A3, although the pass rate of the anti-reverse performance at low temperature is 100%, the pass rate of the anti-reverse performance at normal temperature and high temperature is 0%. On the other hand, Grease A4 and Grease A5 to which one kind of powder of acrylic resin and powder of titanium oxide which are solid additives is added are improved in passing rate of reversal resistance at normal temperature and high temperature compared to Grease A3. ing. Grease A1 to which two types of powder of acrylic resin and powder of titanium oxide are added as solid additives has a pass rate of 100% of the reversal resistance performance in all environments of low temperature, normal temperature and high temperature.
 また、固体添加剤としてアクリル樹脂、酸化チタンおよびナイロン樹脂の3種類を添加したグリースA2は、グリースA1より更に伝達効率が改善している。一方、3種類目の固体添加剤としてメラミンシアヌレート(MCA)やPTFEを含有するグリースA6やグリースA7は、グリースA2ほどには耐逆転性能が向上していない。したがって、3種類目の固体添加剤としてはナイロン樹脂(ポリアミド樹脂)が好ましい。 Further, in the grease A2 to which three types of acrylic resin, titanium oxide and nylon resin are added as solid additives, the transmission efficiency is further improved compared to the grease A1. On the other hand, Grease A6 and Grease A7 containing melamine cyanurate (MCA) and PTFE as the third type of solid additive have not improved their anti-reverse performance as grease A2. Therefore, nylon resin (polyamide resin) is preferable as the third type of solid additive.
 (グリースの主成分)
 グリースB1~グリースB6の組成を表3に示す。また、グリースB1~B6の伝達効率および耐逆転性能の結果を表4に示す。
(Main component of grease)
The compositions of greases B1 to B6 are shown in Table 3. Further, the results of the transmission efficiency and the reverse rotation resistance performance of the greases B1 to B6 are shown in Table 4.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 グリースB2のように増ちょう剤としてリチウム石鹸を含む場合、低温での耐逆転性能の合格率は100%であるものの、常温(寿命試験後)や高温における耐逆転性能の合格率は0%である。一方、グリースB1のように増ちょう剤としてウレアの一種である脂環族ウレアを含む場合、低温、常温、高温の全ての環境における耐逆転性能の合格率が100%である。 When lithium soap is included as a thickening agent like Grease B2, the pass ratio of reversal resistance at low temperature is 100%, but the pass ratio of reversal resistance at normal temperature (after life test) or high temperature is 0% is there. On the other hand, in the case of containing alicyclic urea which is a kind of urea as a thickening agent as in grease B1, the pass rate of the reversal resistance performance in all environments of low temperature, normal temperature and high temperature is 100%.
 また、固体添加剤の一種である架橋樹脂として、アクリル樹脂(グリースB1)、フェノール樹脂(グリースB5)、ポリスチレン樹脂(グリースB6)を含む場合も、低温、常温、高温の全ての環境における耐逆転性能の合格率が100%である。また、固体添加剤の一種である金属酸化物として、酸化チタン(グリースB1)、酸化アルミニウム(グリースB3)、酸化亜鉛(グリースB4)を含む場合も、低温、常温、高温の全ての環境における耐逆転性能の合格率が100%である。 In addition, even in the case of containing acrylic resin (grease B1), phenol resin (grease B5) and polystyrene resin (grease B6) as a cross-linking resin which is a kind of solid additive, the reverse resistance in all environments of low temperature, normal temperature and high temperature The pass rate of performance is 100%. In addition, even when titanium oxide (grease B1), aluminum oxide (grease B3) and zinc oxide (grease B4) are contained as metal oxides which are a kind of solid additive, resistance to low temperature, normal temperature and high temperature in all environments. The pass rate of reverse performance is 100%.
 以上より、炭化水素油とウレアと架橋樹脂と金属酸化物とを含むグリースは、ある程度以上のギヤの伝達効率を維持しつつ、十分な耐逆転性能を実現できる。 As mentioned above, the grease containing hydrocarbon oil, urea, a crosslinked resin, and a metal oxide can realize sufficient anti-reversal performance while maintaining the transmission efficiency of gears to a certain extent or more.
 (架橋樹脂の含有量)
 グリースC1~グリースC17の組成を表5に示す。また、グリースC1~グリースC17の伝達効率および耐逆転性能の結果を表6に示す。
(Content of crosslinked resin)
The compositions of grease C1 to grease C17 are shown in Table 5. Further, the results of transmission efficiency and reverse rotation resistance performance of grease C1 to grease C17 are shown in Table 6.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 グリースC1のように固体添加剤としてのアクリル樹脂を含まない場合、低温での耐逆転性能の合格率は100%であるものの、常温や高温における耐逆転性能の合格率は0%である。一方、アクリル樹脂を含有しているグリースC2~グリースC17の場合、耐逆転性能の合格率が向上する。アクリル樹脂は、少なくとも0.1wt%以上含有しているとよく、1wt%以上、好ましくは5wt%より多く、更に好ましくは10wt%以上であるとよい。一方、アクリル樹脂は多くとも50wt%以下含有しているとよく、40wt%以下、好ましくは30wt%以下、更に好ましくは20wt%以下であるとよい。 When the acrylic resin as a solid additive is not included as in the grease C1, the pass ratio of the reverse resistance at low temperature is 100%, but the pass ratio of the reverse resistance at normal temperature or high temperature is 0%. On the other hand, in the case of grease C2 to grease C17 containing an acrylic resin, the pass rate of the reverse rotation resistance performance is improved. The acrylic resin may be contained at least 0.1 wt% or more, and may be 1 wt% or more, preferably more than 5 wt%, and more preferably 10 wt% or more. On the other hand, the content of the acrylic resin is at most 50 wt% or less, preferably 40 wt% or less, preferably 30 wt% or less, and more preferably 20 wt% or less.
 なお、表6に示す結果は、進み角6°のウォーム36を備えた減速機付モータ12の場合であるが、耐逆転性能を重視して進み角を小さくした場合、アクリル樹脂の含有量を減らせる。例えば進み角5°のウォームを備えた減速機付モータの場合、グリースが含有するアクリル樹脂は、少なくとも0.1wt%以上含有しているとよく、好ましくは0.4wt%より多く、更に好ましくは0.8wt%以上であるとよい。一方、アクリル樹脂は多くとも3.2wt%以下含有しているとよく、好ましくは2.4wt%以下、更に好ましくは1.6wt%以下であるとよい。 Although the result shown in Table 6 is the case of the motor 12 with a reduction gear provided with the worm 36 having a lead angle of 6 °, the content of the acrylic resin is set when the lead angle is made small by emphasizing anti-reverse performance. Can be reduced. For example, in the case of a motor with a reduction gear provided with a worm having a lead angle of 5 °, the acrylic resin contained in the grease may be contained at least 0.1 wt% or more, preferably more than 0.4 wt%, more preferably It is good that it is 0.8 wt% or more. On the other hand, the content of the acrylic resin is at most 3.2 wt% or less, preferably 2.4 wt% or less, and more preferably 1.6 wt% or less.
 (金属酸化物の含有量)
 グリースD1~グリースD10の組成を表7に示す。また、グリースD1~グリースD10の伝達効率および耐逆転性能の結果を表8に示す。
(Content of metal oxide)
The compositions of grease D1 to grease D10 are shown in Table 7. Further, the results of transmission efficiency and anti-reverse performance of grease D1 to grease D10 are shown in Table 8.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 グリースD1のように固体添加剤としての酸化チタンを含まない場合、低温での耐逆転性能の合格率は100%であるものの、常温や高温における耐逆転性能の合格率は0%である。一方、酸化チタンを含有しているグリースD2~グリースD3、酸化チタンおよびアクリル樹脂を含有しているグリースD4~D10の場合、耐逆転性能の合格率が向上する。酸化チタンは、少なくとも0.1wt%以上含有しているとよく、1wt%以上、好ましくは5wt%より多く、更に好ましくは10wt%以上であるとよい。一方、酸化チタンは多くとも40wt%以下含有しているとよく、好ましくは30wt%以下、更に好ましくは20wt%以下であるとよい。 In the case where titanium oxide as a solid additive is not included as in the grease D1, the pass ratio of the anti-reverse performance at low temperature is 100%, but the pass ratio of the anti-reverse performance at normal temperature and high temperature is 0%. On the other hand, in the case of grease D2 to grease D3 containing titanium oxide and grease D4 to D10 containing titanium oxide and an acrylic resin, the pass rate of the reverse rotation resistance performance is improved. The titanium oxide content is preferably at least 0.1 wt% or more, and preferably 1 wt% or more, preferably more than 5 wt%, and more preferably 10 wt% or more. On the other hand, the content of titanium oxide is at most 40 wt% or less, preferably 30 wt% or less, more preferably 20 wt% or less.
 なお、表8に示す結果は、進み角6°のウォーム36を備えた減速機付モータ12の場合であるが、耐逆転性能を重視して進み角を小さくした場合、酸化チタンの含有量を減らせる。例えば進み角5°のウォームを備えた減速機付モータの場合、グリースが含有する酸化チタンは、少なくとも0.1wt%以上含有しているとよく、好ましくは0.4wt%より多く、更に好ましくは0.8wt%以上であるとよい。一方、酸化チタンは多くとも3.2wt%以下含有しているとよく、好ましくは2.4wt%以下、更に好ましくは1.6wt%以下であるとよい。 Although the result shown in Table 8 is the case of the motor 12 with a reduction gear provided with the worm 36 with a lead angle of 6 °, when the lead angle is made small by emphasizing the anti-reverse performance, the content of titanium oxide Can be reduced. For example, in the case of a motor with a reduction gear having a worm having a lead angle of 5 °, the grease may contain at least 0.1 wt% or more of titanium oxide, preferably more than 0.4 wt%, more preferably It is good that it is 0.8 wt% or more. On the other hand, titanium oxide is preferably contained at most 3.2 wt% or less, preferably 2.4 wt% or less, more preferably 1.6 wt% or less.
 (自己潤滑性樹脂の含有量)
 グリースE1~グリースE10の組成を表9に示す。また、グリースE1~グリースE10の伝達効率および耐逆転性能の結果を表10に示す。
(Content of self-lubricating resin)
The compositions of greases E1 to E10 are shown in Table 9. Further, the results of the transmission efficiency and the reverse rotation resistance performance of grease E1 to grease E10 are shown in Table 10.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 グリースE1のように固体添加剤を含まない場合、低温での耐逆転性能の合格率は100%であるものの、常温や高温における耐逆転性能の合格率は0%である。一方、固体添加剤としてアクリル樹脂、酸化チタンおよびナイロン樹脂を含有しているグリースE3~E10の場合、耐逆転性能の合格率が向上する。自己潤滑性樹脂であるナイロン樹脂は、少なくとも0.1wt%以上含有しているとよく、1wt%以上、好ましくは5wt%以上であるとよい。一方、ナイロン樹脂は多くとも20wt%以下含有しているとよく、好ましくは15wt%以下であるとよい。 When the solid additive is not included as in the grease E1, although the pass rate of the anti-reverse performance at low temperature is 100%, the pass rate of the anti-reverse performance at normal temperature and high temperature is 0%. On the other hand, in the case of the greases E3 to E10 containing acrylic resin, titanium oxide and nylon resin as solid additives, the pass rate of the anti-reverse performance is improved. The nylon resin which is a self-lubricating resin is preferably contained at least 0.1 wt% or more, and preferably 1 wt% or more, preferably 5 wt% or more. On the other hand, the content of the nylon resin is at most 20 wt% or less, preferably 15 wt% or less.
 なお、表10に示す結果は、進み角6°のウォーム36を備えた減速機付モータ12の場合であるが、耐逆転性能を重視して進み角を小さくした場合、ナイロン樹脂の含有量を減らせる。例えば進み角5°のウォーム減速機付モータの場合、グリースが含有するナイロン樹脂は、少なくとも0.1wt%以上含有しているとよく、好ましくは0.4wt%以上であるとよい。一方、ナイロン樹脂は多くとも1.6wt%以下含有しているとよく、好ましくは1.2wt%以下であるとよい。 Although the result shown in Table 10 is the case of the motor 12 with a reduction gear provided with a worm 36 with a lead angle of 6 °, when the lead angle is made small by giving importance to the reverse rotation resistance performance, the content of nylon resin is Can be reduced. For example, in the case of a motor with a worm reducer with a lead angle of 5 °, the nylon resin contained in the grease may be at least 0.1 wt% or more, preferably 0.4 wt% or more. On the other hand, the content of nylon resin is at most 1.6 wt% or less, preferably 1.2 wt% or less.
 (架橋樹脂と金属酸化物との含有量の比率)
 前述の通り、グリースが含有する架橋樹脂は、0.1wt%~40wt%の範囲が好ましい。また、グリースが含有する金属酸化物は、0.1wt%~40wt%の範囲が好ましい。したがって、グリースは、固体添加剤全体として0.2wt%~80wt%含みうる。しかしながら、固体添加剤の割合が多すぎると、グリースの特性として必要なベースオイルや増ちょう剤が少なくなりすぎるため、固体添加剤はグリース全体に対して60wt%以下であるとよく、好ましくは50wt%以下、更に好ましくは40wt%以下である。
(The ratio of the content of crosslinked resin and metal oxide)
As described above, the crosslinked resin contained in the grease is preferably in the range of 0.1 wt% to 40 wt%. Further, the metal oxide contained in the grease is preferably in the range of 0.1 wt% to 40 wt%. Thus, the grease may comprise 0.2 wt% to 80 wt% of the total solid additive. However, if the proportion of the solid additive is too large, the amount of the base oil and thickener necessary for the grease characteristics becomes too small, so the solid additive should be 60 wt% or less with respect to the whole grease, preferably 50 wt% The content is more preferably 40 wt% or less.
 また、架橋樹脂の含有量に対する金属酸化物の含有量の比率が少なくとも0.025~40の範囲がよく、好ましくは0.167~6の範囲、更に好ましくは0.5~2の範囲であるとよい。この範囲を外れるほど、2種類の固体添加剤の一方の特性が支配的になるため、2種類の固体添加剤を用いた相乗効果が薄くなる。 Further, the ratio of the content of the metal oxide to the content of the crosslinked resin is preferably in the range of at least 0.025 to 40, preferably in the range of 0.167 to 6, and more preferably in the range of 0.5 to 2. It is good. Outside this range, the characteristics of one of the two solid additives become dominant, and the synergetic effect of using the two solid additives decreases.
 具体的には、グリースC11は、アクリル樹脂の含有量が1wt%であり酸化チタンの含有量が15wt%であるため、架橋樹脂の含有量に対する金属酸化物の含有量の比率は15である。一方、グリースC17は、アクリル樹脂の含有量が30wt%であり酸化チタンの含有量が15wt%であるため、架橋樹脂の含有量に対する金属酸化物の含有量の比率は0.5である。また、グリースD4は、アクリル樹脂の含有量が15wt%であり酸化チタンの含有量が1wt%であるため、架橋樹脂の含有量に対する金属酸化物の含有量の比率は0.066である。一方、グリースD10は、アクリル樹脂の含有量が15wt%であり酸化チタンの含有量が30wt%であるため、架橋樹脂の含有量に対する金属酸化物の含有量の比率は2.0である。 Specifically, since the content of the acrylic resin is 1 wt% and the content of the titanium oxide is 15 wt%, the ratio of the content of the metal oxide to the content of the crosslinked resin is 15. On the other hand, in the grease C17, since the content of the acrylic resin is 30 wt% and the content of the titanium oxide is 15 wt%, the ratio of the content of the metal oxide to the content of the crosslinked resin is 0.5. Further, since the content of the acrylic resin is 15 wt% and the content of the titanium oxide is 1 wt%, the ratio of the content of the metal oxide to the content of the cross-linked resin is 0.066. On the other hand, in the grease D10, since the content of the acrylic resin is 15 wt% and the content of the titanium oxide is 30 wt%, the ratio of the content of the metal oxide to the content of the crosslinked resin is 2.0.
 (固体添加剤の平均粒径)
 グリースは、固体添加剤として架橋樹脂と金属酸化物とを有するとよい。架橋樹脂の平均粒径は、1~200μmであり、好ましくは5~100μm、より好ましく20~50μmである。また、金属酸化物の平均粒径は、1~10000nmであり、好ましくは5~4000nmであり、より好ましくは10~500nmである。
(Average particle size of solid additive)
The grease may have a crosslinked resin and a metal oxide as solid additives. The average particle size of the crosslinked resin is 1 to 200 μm, preferably 5 to 100 μm, and more preferably 20 to 50 μm. The average particle size of the metal oxide is 1 to 10000 nm, preferably 5 to 4000 nm, and more preferably 10 to 500 nm.
 グリースF1~グリースF15の組成を表11に示す。また、グリースF1~グリースF15の伝達効率および耐逆転性能の結果を表12に示す。 The compositions of grease F1 to grease F15 are shown in Table 11. Further, the results of transmission efficiency and anti-reverse performance of grease F1 to grease F15 are shown in Table 12.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 グリースF1~F5は、含有するアクリル樹脂の平均粒径が8~85μmであり、含有する酸化チタンの平均粒径が15nmである。グリースF1~F5の場合、低温、高温の環境における耐逆転性能の合格率が100%であり、特に平均粒径が50μm未満のアクリル樹脂を含有するグリースF1~F3の場合、低温、常温、高温の全ての環境における耐逆転性能の合格率が100%である。 The greases F1 to F5 have an average particle size of the contained acrylic resin of 8 to 85 μm, and an average particle size of the contained titanium oxide of 15 nm. In the case of greases F1 to F5, the pass ratio of reversal resistance in a low temperature and high temperature environment is 100%, and particularly in the case of greases F1 to F3 containing an acrylic resin having an average particle diameter of less than 50 μm, low temperature, normal temperature, high temperature 100% pass rate for anti-reversal performance in all environments.
 グリースF6~F11は、含有する酸化チタンの平均粒径が10~290nmであり、含有するアクリル樹脂の平均粒径が28μmである。グリースF6~F11の場合、低温、常温、高温の全ての環境における耐逆転性能の合格率が100%である。 The greases F6 to F11 have an average particle diameter of contained titanium oxide of 10 to 290 nm and an average particle diameter of contained acrylic resin of 28 μm. In the case of the greases F6 to F11, the pass ratio of the anti-reverse performance in all environments of low temperature, normal temperature and high temperature is 100%.
 なお、自己潤滑性樹脂であるナイロン樹脂の平均粒径は、1~200μmであり、好ましくは3~80μmであり、より好ましくは5~30μmである。 The average particle diameter of the nylon resin which is a self-lubricating resin is 1 to 200 μm, preferably 3 to 80 μm, and more preferably 5 to 30 μm.
 (平均粒径)
 アクリル樹脂の平均粒径は体積平均径MVであり、酸化チタンの平均粒径は個数平均径MNであり、ナイロン樹脂の平均粒径は体積平均径MVである。なお、平均粒径の測定は公知の各種装置を使用して行うことが可能なため説明は省略する。
(Average particle size)
The average particle diameter of the acrylic resin is the volume average diameter MV, the average particle diameter of the titanium oxide is the number average diameter MN, and the average particle diameter of the nylon resin is the volume average diameter MV. In addition, since the measurement of an average particle diameter can be performed using well-known various apparatuses, description is abbreviate | omitted.
 (固体添加剤の形状)
 次に、グリースに含まれる固体添加剤の形状について説明する。図3は、平均粒径28μmのアクリル樹脂粉末の表面に、平均粒径15nmの酸化チタンの凝集体が付着している様子を撮影した電子顕微鏡写真を示す図である。図4は、図3に示す一つのアクリル樹脂粉末を拡大して撮影した電子顕微鏡写真を示す図である。図5は、平均粒径28μmのアクリル樹脂粉末の表面に、平均粒径7nmの酸化ケイ素の凝集体が付着している様子を撮影した電子顕微鏡写真を示す図である。
(Shape of solid additive)
Next, the shape of the solid additive contained in the grease will be described. FIG. 3 is an electron micrograph showing a state in which an aggregate of titanium oxide having an average particle diameter of 15 nm is attached to the surface of an acrylic resin powder having an average particle diameter of 28 μm. FIG. 4 is a view showing an electron micrograph of an enlarged view of one acrylic resin powder shown in FIG. FIG. 5 is an electron micrograph showing a state in which an aggregate of silicon oxide having an average particle diameter of 7 nm is attached to the surface of an acrylic resin powder having an average particle diameter of 28 μm.
 図3乃至図5に示すように、真球状のアクリル樹脂粉末の表面の所々に、多角形状(不定形状)の酸化チタンや酸化ケイ素が凝集体として付着している。アクリル樹脂粉末の形状は、電子顕微鏡の観察によっても測定した。例えば、電子顕微鏡の視野にある一つのアクリル樹脂粉末は、短径dsが25.460μm、長径dlが26.050μmであり、ds/dlが0.976であった。本実施の形態に係るグリースに用いられる真球状あるいはほぼ球形状の架橋樹脂粉末は、ds/dlが0.8以上であり、好ましくは0.9以上、より好ましくは0.95以上である。 As shown in FIG. 3 to FIG. 5, polygonal (indeterminate) titanium oxide or silicon oxide adheres as aggregates on the surface of the spherical acrylic resin powder. The shape of the acrylic resin powder was also measured by observation with an electron microscope. For example, one acrylic resin powder in the field of view of an electron microscope had a minor axis ds of 25.460 μm, a major axis dl of 26.050 μm, and a ds / dl of 0.976. The true-spherical or substantially spherical crosslinked resin powder used for the grease according to the present embodiment has ds / dl of 0.8 or more, preferably 0.9 or more, and more preferably 0.95 or more.
 また、架橋樹脂であるアクリル樹脂は、見掛け密度が0.59~0.63g/ml、タップ密度が0.72~0.76g/ml、真密度が1.1~1.2g/mlである。本実施の形態に係るグリースに用いられる架橋樹脂の見掛け密度は0.40g/ml以上であり、好ましくは0.45g/ml以上、より好ましくは0.50g/ml以上である。 In addition, the acrylic resin which is a crosslinked resin has an apparent density of 0.59 to 0.63 g / ml, a tap density of 0.72 to 0.76 g / ml, and a true density of 1.1 to 1.2 g / ml. . The apparent density of the crosslinked resin used in the grease according to the present embodiment is 0.40 g / ml or more, preferably 0.45 g / ml or more, and more preferably 0.50 g / ml or more.
 図3乃至図5に示すように、金属酸化物粉末である酸化チタンや酸化ケイ素は、一つ以上の角部を有する非球形の形状(多角形状)である。なお、金属酸化物粉末は、粒径が大きいものの方が、(i)短径dsと長径dlの比が大きくなる、(ii)見掛け密度が大きくなる、(iii)比表面積が小さくなる、といった傾向があり、同じ量が添加されてもグリースが硬くなりにくい。具体的には、平均粒径15nmの酸化チタン粉末の形状は、短径dsの平均が12nm、長径dlの平均が60nmであり、ds/dlが0.20であった。本実施の形態に係るグリースに用いられる角部を有する非球形の形状の金属酸化物粉末は、ds/dlが0.05以上であり、好ましくは0.1以上であり、より好ましくは0.15以上である。金属酸化物粉末のds/dlの値が大きい程、同じ量の金属酸化物粉末をグリースに添加した場合のグリースの硬さが柔らかくなる。換言すると、金属酸化物粉末のds/dlの値が大きい程、所望の硬さのグリースを得るために添加できる金属酸化物粉末の量を多くできる。 As shown in FIGS. 3 to 5, titanium oxide or silicon oxide which is a metal oxide powder has a non-spherical shape (polygon shape) having one or more corner portions. In the metal oxide powder, the larger the particle diameter, the larger the ratio of the minor diameter ds to the major diameter dl, the larger the apparent density, and the smaller the specific surface area. It tends to make the grease hard to harden even if the same amount is added. Specifically, as for the shape of the titanium oxide powder having an average particle diameter of 15 nm, the average of the minor diameter ds was 12 nm, the average of the major diameter dl was 60 nm, and ds / dl was 0.20. The metal oxide powder having a non-spherical shape having corner portions used in the grease according to the present embodiment has ds / dl of 0.05 or more, preferably 0.1 or more, and more preferably 0. 15 or more. The larger the value of ds / dl of the metal oxide powder, the softer the hardness of the grease when the same amount of metal oxide powder is added to the grease. In other words, the larger the value of ds / dl of the metal oxide powder, the greater the amount of metal oxide powder that can be added to obtain a grease of desired hardness.
 また、金属酸化物である酸化チタンは、見掛け密度が0.24~0.31g/ml、タップ密度が0.47g/ml、真密度が4.27g/mlであり、比表面積が90m/gである。本実施の形態に係るグリースに用いられる金属酸化物の見掛け密度は0.1g/ml以上であり、好ましくは0.15g/ml以上、より好ましくは0.2g/ml以上である。本実施の形態に係るグリースに用いられる金属酸化物の比表面積は200m/g以下であり、好ましくは150m/g以下、より好ましくは100m/g以下である。 Further, titanium oxide which is a metal oxide has an apparent density of 0.24 to 0.31 g / ml, a tap density of 0.47 g / ml, a true density of 4.27 g / ml, and a specific surface area of 90 m 2 / g. The apparent density of the metal oxide used in the grease according to the present embodiment is 0.1 g / ml or more, preferably 0.15 g / ml or more, and more preferably 0.2 g / ml or more. The specific surface area of the metal oxide used in the grease according to the present embodiment is 200 m 2 / g or less, preferably 150 m 2 / g or less, more preferably 100 m 2 / g or less.
 なお、自己潤滑性樹脂であるナイロン樹脂の形状についても、電子顕微鏡の観察によって測定した。平均粒径10μmのナイロン樹脂粉末は、真球状であり、短径dsが9.301μm、長径dlが9.550μmであり、ds/dlが0.972であった。本実施の形態に係るグリースに用いられる真球状あるいはほぼ球形状の自己潤滑性樹脂粉末は、ds/dlが0.8以上である。 The shape of the nylon resin which is a self-lubricating resin was also measured by observation with an electron microscope. The nylon resin powder having an average particle diameter of 10 μm was spherical, and the minor diameter ds was 9.301 μm, the major diameter dl was 9.550 μm, and the ds / dl was 0.972. The spherical or nearly spherical self-lubricating resin powder used for the grease according to the present embodiment has ds / dl of 0.8 or more.
 また、自己潤滑性樹脂であるナイロン樹脂は、見掛け密度が0.33~0.40g/ml、タップ密度が0.53g/ml、真密度が1.02g/mlであり、比表面積が0.56m/gである。 Further, nylon resin, which is a self-lubricating resin, has an apparent density of 0.33 to 0.40 g / ml, a tap density of 0.53 g / ml, a true density of 1.02 g / ml, and a specific surface area of 0. It is 56 m 2 / g.
 本実施の形態に係るグリースは、グリースF1やグリースF11に示すように、架橋樹脂粉末であるアクリル樹脂の平均粒径が金属酸化物粉末である酸化チタンの平均粒径の20倍以上である。 In the grease according to the present embodiment, as shown in grease F1 and grease F11, the average particle diameter of the acrylic resin which is a crosslinked resin powder is 20 times or more the average particle diameter of titanium oxide which is a metal oxide powder.
 同様に、本実施の形態に係るグリースは、グリースの単位体積当たりの架橋樹脂(アクリル樹脂)粉末の粒数をNA、グリースの単位体積当たりの金属酸化物(酸化チタン)粉末の粒数をNBとすると、NA/NB≦1/2000以下であるとよい。これにより、架橋樹脂粉末の表面に金属酸化物粉末が適度に分散されて存在する。 Similarly, in the grease according to this embodiment, the number of particles of crosslinked resin (acrylic resin) powder per unit volume of grease is NA, and the number of particles of metal oxide (titanium oxide) powder per unit volume of grease is NB Then, it is preferable that NA / NB ≦ 1/2000 or less. Thus, the metal oxide powder is appropriately dispersed and present on the surface of the crosslinked resin powder.
 また、本実施の形態に係るグリースは、グリースA1に示すように、ウレアと架橋樹脂粉末と金属酸化物粉末とを含んでいる。また、図3乃至図5に示すように、架橋樹脂粉末は、表面に複数の金属酸化物粉末が付着している。また、本実施の形態に係るグリースは、グリースD4~D10に示すように、架橋樹脂粉末と金属酸化物粉末とを含んでいる。また、図3乃至図5に示すように、架橋樹脂粉末は、表面に複数の金属酸化物粉末が付着しており、金属酸化物粉末の含有量がグリース全体の10~40wt%である。 Moreover, the grease which concerns on this Embodiment contains urea, crosslinked resin powder, and metal oxide powder, as shown to grease A1. Further, as shown in FIGS. 3 to 5, in the crosslinked resin powder, a plurality of metal oxide powders adhere to the surface. Further, as shown in greases D4 to D10, the grease according to the present embodiment contains a crosslinked resin powder and a metal oxide powder. Further, as shown in FIGS. 3 to 5, in the crosslinked resin powder, a plurality of metal oxide powders adheres to the surface, and the content of the metal oxide powder is 10 to 40 wt% of the whole grease.
 (ウォームギヤ)
 図2に示す本実施の形態に係るウォームギヤ46は、上述のグリースA1等のように増ちょう剤としてウレアを含むグリースが噛み合い部R1にある。また、グリースは、架橋樹脂粉末を更に含んでおり、架橋樹脂は、アクリル樹脂、尿素樹脂、ポリウレタン樹脂、フェノール樹脂、ポリスチレン樹脂、エポキシ樹脂、メラミン樹脂、及びベンゾグアナミン樹脂からなる群より選択される1種以上の材料を含んでいる。
(Worm gear)
The worm gear 46 according to the present embodiment shown in FIG. 2 has a grease containing urea as a thickening agent at the engagement portion R1 like the above-mentioned grease A1 and the like. Further, the grease further contains a crosslinked resin powder, and the crosslinked resin is selected from the group consisting of acrylic resin, urea resin, polyurethane resin, phenol resin, polystyrene resin, epoxy resin, melamine resin, and benzoguanamine resin 1 Contains more than species of material.
 また、ウォームギヤ46は、ウォーム36とウォームホイール42とを有している。グリースは、ウォーム36とウォームホイール42とが噛み合う噛み合い部R1に塗布されている。グリースは、金属酸化物を更に含んでおり、金属酸化物は、酸化チタン、酸化アルミニウム、酸化亜鉛、酸化ジルコニウム、酸化マグネシウム、及び酸化セリウムからなる群より選択される1種以上の材料を含んでいる。 The worm gear 46 also has a worm 36 and a worm wheel 42. The grease is applied to an engagement portion R1 in which the worm 36 and the worm wheel 42 are engaged. The grease further includes a metal oxide, and the metal oxide includes at least one material selected from the group consisting of titanium oxide, aluminum oxide, zinc oxide, zirconium oxide, magnesium oxide, and cerium oxide. There is.
 本実施の形態に係るウォームは、進み角γが2°<γ<12°となるように構成されており、好ましくは3°<γ<10°、より好ましくは4°<γ<8°となるように構成されている。進み角γは、大きくすることで伝達効率は向上するものの、耐逆転性能の観点では不利に働く。しかしながら、本実施の形態に係るグリースを用いることで、進み角γを小さくせずに伝達効率を維持したまま耐逆転性能を向上できる。 The worm according to the present embodiment is configured such that the lead angle γ is 2 ° <γ <12 °, preferably 3 ° <γ <10 °, more preferably 4 ° <γ <8 °. It is configured to be Although increasing the lead angle γ improves transmission efficiency, it works disadvantageously in terms of anti-reverse performance. However, by using the grease according to the present embodiment, the anti-reverse performance can be improved while maintaining the transmission efficiency without reducing the lead angle γ.
 (固体添加剤の総量とウォームの進み角)
 本実施の形態に係る各種グリースの試験結果から、グリースに含有させる固体添加剤を増加させることで耐逆転性能が向上する傾向があることが導かれている。しかしながら、固体添加剤の総量がどの程度が適切かはウォームギヤの構成によって異なる可能性がある。そこで、固体添加剤に含まれる架橋樹脂と金属酸化物と自己潤滑性樹脂の比率を変えずに、固定添加剤の総量だけを変化させたグリースを作成し、ウォームの進み角が5°または6°の減速機付モータにてその性能を評価した。
(Total amount of solid additive and lead angle of worm)
From the test results of various greases according to the present embodiment, it is derived that there is a tendency for the anti-reverse performance to be improved by increasing the solid additive to be contained in the grease. However, the appropriateness of the total amount of solid additives may vary depending on the configuration of the worm gear. Therefore, without changing the ratio of cross-linked resin, metal oxide, and self-lubricating resin contained in the solid additive, a grease in which only the total amount of fixed additive is changed is prepared, and the lead angle of the worm is 5 ° or 6 The performance was evaluated with a motor with a reduction gear of °°.
 グリースJ1~グリースJ8の組成を表13に示す。また、グリースJ1~グリースJ8の伝達効率および耐逆転性能の結果を表14に示す。 The compositions of grease J1 to grease J8 are shown in Table 13. Further, the results of transmission efficiency and anti-reverse performance of grease J1 to grease J8 are shown in Table 14.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 進み角6°のウォームを備える減速機付モータでは、グリースJ1やグリースJ2のように固体添加剤の総量が20wt%~40wt%の場合に、常温での耐逆転性能の合格率が100%である。固体添加剤の総量を13.3wt%(グリースJ3)、6.7wt%(グリースJ4)と減らしていくと耐逆転性能の合格率も低下していく。 In a motor with a reduction gear equipped with a worm with a lead angle of 6 °, when the total amount of solid additives is 20 wt% to 40 wt% like Grease J1 and Grease J2, the pass ratio of reversal resistance at normal temperature is 100% is there. As the total amount of the solid additive is reduced to 13.3 wt% (grease J3) and 6.7 wt% (grease J4), the pass rate of the anti-reverse performance also decreases.
 また、進み角5°のウォームを備えるモータでは、グリースJ4やグリースJ5のように固体添加剤の総量が3.3wt%~6.7wt%の場合に、常温での耐逆転性能の合格率が100%である。固体添加剤の総量を1.3wt%(グリースJ6)まで減らしていくと耐逆転性能の合格率は0%になる。 Also, in motors equipped with a worm with a lead angle of 5 °, when the total amount of solid additives is 3.3 wt% to 6.7 wt% like Grease J4 and Grease J5, the pass rate of the reversal resistance at normal temperature is It is 100%. If the total amount of solid additives is reduced to 1.3 wt% (grease J6), the pass rate of the anti-reverse performance becomes 0%.
 一方、固体添加剤が含まれていないグリースJ7(増ちょう剤がウレア)やグリースJ8(増ちょう剤がリチウム石鹸)を用いた場合、進み角が6°の減速機付モータにおいて、耐逆転性能の合格率は0%である。 On the other hand, when grease J7 (thickening agent is urea) or grease J8 (thickening agent is lithium soap) containing no solid additive, reverse rotation resistance performance of a motor with a reduction gear with a lead angle of 6 ° Pass rate is 0%.
 以上のことから、本実施の形態に係るグリースでは、固体添加剤が重要な成分である一方、固体添加剤の総量を適宜選択することで、より広範囲な構成の減速機付モータに適用できることが明らかとなった。 From the above, in the grease according to the present embodiment, while the solid additive is an important component, it can be applied to a motor with a reduction gear with a wider range by appropriately selecting the total amount of the solid additive. It became clear.
 (金属酸化物の他の例)
 グリースG1~グリースG10の組成を表15に示す。また、グリースG1~グリースG10の伝達効率および耐逆転性能の結果を表16に示す。
(Other examples of metal oxides)
The compositions of grease G1 to grease G10 are shown in Table 15. Further, the results of transmission efficiency and reverse rotation resistance performance of grease G1 to grease G10 are shown in Table 16.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 グリースG1~グリースG4は、金属酸化物として平均粒径16nmの酸化ケイ素を含有している以外は、グリースA1と同じである。表16のグリースG1~グリースG3の試験結果に示すように、平均粒径16nmの酸化ケイ素の含有量が1~5wt%であれば、低温、常温、高温の全ての環境における耐逆転性能の合格率がほぼ100%である。ただし、グリースG4のように、酸化ケイ素の含有量が10wt%の場合、グリースが硬くなりすぎて試験を行えなかった。 The greases G1 to G4 are the same as the grease A1 except that they contain silicon oxide having an average particle diameter of 16 nm as a metal oxide. As shown in the test results of grease G1 to grease G3 in Table 16, when the content of silicon oxide having an average particle diameter of 16 nm is 1 to 5 wt%, the passing of the reversal resistance performance in all environments of low temperature, normal temperature and high temperature The rate is almost 100%. However, when the content of silicon oxide was 10 wt% as in grease G4, the grease was too hard to conduct the test.
 また、グリースG5~グリースG7は、金属酸化物として平均粒径13nmの酸化アルミニウムを含有している以外は、グリースA1と同じである。表16のグリースG5~グリースG7の試験結果に示すように、平均粒径13nmの酸化アルミニウムの含有量が5~15wt%であれば、低温、常温、高温の全ての環境における耐逆転性能の合格率が100%である。 Further, greases G5 to G7 are the same as grease A1 except that they contain aluminum oxide having an average particle diameter of 13 nm as metal oxide. As shown in the test results of greases G5 to G7 in Table 16, when the content of aluminum oxide having an average particle diameter of 13 nm is 5 to 15 wt%, the passing of the anti-reverse performance in all environments of low temperature, normal temperature and high temperature The rate is 100%.
 また、グリースG8~グリースG10は、金属酸化物として平均粒径50nmの酸化亜鉛を含有している以外は、グリースA1と同じである。表16のグリースG8~グリースG10の試験結果に示すように、平均粒径50nmの酸化亜鉛の含有量が5~15wt%であれば、低温、高温の環境における耐逆転性能の合格率が100%である。特に、酸化亜鉛の含有量が15wt%であれば、常温の環境における耐逆転性能の合格率も100%である。 Further, grease G8 to grease G10 are the same as grease A1 except that they contain zinc oxide having an average particle diameter of 50 nm as a metal oxide. As shown in the test results of grease G8 to grease G10 in Table 16, if the content of zinc oxide having an average particle diameter of 50 nm is 5 to 15 wt%, the pass ratio of the reversal resistance performance in a low temperature and high temperature environment is 100% It is. In particular, when the content of zinc oxide is 15 wt%, the pass ratio of the anti-reverse performance in an environment at normal temperature is also 100%.
 (架橋樹脂の他の例)
 グリースH1~グリースH6の組成を表17に示す。また、グリースH1~グリースH6の伝達効率および耐逆転性能の結果を表18に示す。
(Other examples of cross-linked resin)
The compositions of grease H1 to grease H6 are shown in Table 17. Further, the results of transmission efficiency and anti-reverse performance of grease H1 to grease H6 are shown in Table 18.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 グリースH1~グリースH3は、架橋樹脂として平均粒径20μmのフェノール樹脂を含有している以外は、グリースA1と同じである。表18のグリースH1~グリースH3の試験結果が示すように、平均粒径20μmのフェノール樹脂の含有量が5~15wt%であれば、低温、高温の環境における耐逆転性能の合格率が100%である。特に、フェノール樹脂の含有量が15wt%であれば、常温の環境における耐逆転性能の合格率も100%である。 Greases H1 to H3 are the same as grease A1 except that they contain a phenol resin having an average particle diameter of 20 μm as a crosslinked resin. As shown in the test results of greases H1 to H3 in Table 18, when the content of the phenolic resin having an average particle diameter of 20 μm is 5 to 15 wt%, the pass ratio of reversal resistance in a low temperature and high temperature environment is 100%. It is. In particular, when the content of the phenolic resin is 15 wt%, the pass rate of the reversal resistance performance in a normal temperature environment is also 100%.
 グリースH4~グリースH6は、架橋樹脂として平均粒径17μmのポリスチレン樹脂を含有している以外は、グリースA1と同じである。表18のグリースH4~グリースH6の試験結果が示すように、平均粒径17μmのポリスチレン樹脂の含有量が5~15wt%であれば、低温、高温の環境における耐逆転性能の合格率が100%である。特に、ポリスチレン樹脂の含有量が15wt%であれば、常温の環境における耐逆転性能の合格率も100%である。 Greases H4 to H6 are the same as grease A1 except that they contain a polystyrene resin having an average particle diameter of 17 μm as a crosslinked resin. As shown in the test results of greases H4 to H6 in Table 18, when the content of polystyrene resin having an average particle diameter of 17 μm is 5 to 15 wt%, the pass ratio of the reversal resistance performance in a low temperature and high temperature environment is 100%. It is. In particular, when the content of the polystyrene resin is 15 wt%, the pass ratio of the anti-reverse performance in a normal temperature environment is also 100%.
 (グリースの摩擦係数)
 グリース自体の性能を定量化するために各種グリースに対して静摩擦係数および動摩擦係数を測定した。測定方法は、金属プレート上に所定量のグリースを塗布し、上から樹脂製ボールを押し付けて往復摺動させる。往復摺動させた時の金属プレートと樹脂製ボールとの間に発生する摩擦力から静摩擦係数および動摩擦係数を算出する。なお、金属プレートはウォームと同じ材質、樹脂製ボールはウォームホイールと同じ材質である。
<試験条件>
 上部試験片(樹脂製ボール):POMボール(直径3/16インチ)
 下部試験片(金属プレート):S20Cプレート
 試験荷重:3kgf
 グリース塗布量:0.05g
 摺動速度:1mm/s
 摺動距離:10mm
 試験温度:常温、高温(85℃)
(Friction coefficient of grease)
In order to quantify the performance of the grease itself, the static and dynamic friction coefficients were measured for various greases. In the measurement method, a predetermined amount of grease is applied on a metal plate, and a resin ball is pressed from above to make a reciprocal slide. The coefficient of static friction and the coefficient of dynamic friction are calculated from the frictional force generated between the metal plate and the resin ball when sliding back and forth. The metal plate is made of the same material as the worm, and the resin ball is made of the same material as the worm wheel.
<Test conditions>
Upper test piece (resin ball): POM ball (diameter 3/16 inch)
Lower test piece (metal plate): S20C plate Test load: 3 kgf
Grease application amount: 0.05 g
Sliding speed: 1 mm / s
Sliding distance: 10 mm
Test temperature: normal temperature, high temperature (85 ° C)
 グリースK1~グリースK27の組成を表19に示す。また、グリースK1~グリースK27の静摩擦係数および動摩擦係数の結果を表20に示す。また、グリースK2~グリースK5、グリースK8の伝達効率および耐逆転性能の結果を表21に示す。 The compositions of grease K1 to grease K27 are shown in Table 19. Further, the results of the static friction coefficient and the dynamic friction coefficient of grease K1 to grease K27 are shown in Table 20. Further, the results of transmission efficiency and reverse rotation resistance performance of grease K2 to grease K5 and grease K8 are shown in Table 21.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
 グリースK1~グリースK8に示すように、固体添加剤の減少に伴い、動摩擦係数及び静摩擦係数は常温及び高温において小さくなっていることがわかる。また、固体添加剤の組成は同じだが、増ちょう剤が異なるグリースK1(増ちょう剤は脂環族ウレア)とグリースK14(増ちょう剤はリチウム石鹸)とを比較すると、グリースK14の摩擦係数はグリースK1の摩擦係数の半分以下しかない。そのため、増ちょう剤であるウレアが摩擦係数の上昇に影響していることがわかる。
Figure JPOXMLDOC01-appb-T000021
As shown in greases K1 to K8, it is understood that the dynamic friction coefficient and the static friction coefficient decrease at normal temperature and high temperature as the solid additive decreases. In addition, the grease K14 has the same coefficient of friction as the composition of the solid additive but with different thickeners (a thickener is an alicyclic urea) and a grease K14 (a thickener is a lithium soap). It is less than half the coefficient of friction of the grease K1. Therefore, it can be seen that urea, which is a thickener, affects the increase in the coefficient of friction.
 また、増ちょう剤としてリチウム石鹸を含有しているグリースK9~グリースK14や、ベースオイルのみしか含んでいないグリースK25は、いずれの摩擦係数も低く、添加剤が摩擦係数の上昇に余り影響を与えていないことがわかる。 In addition, grease K9 to grease K14 containing lithium soap as a thickener and grease K25 containing only a base oil have low coefficient of friction, and the additive has an influence on the increase in coefficient of friction. I understand that there is not.
 また、ベースオイルとウレアのみを含有するグリースK8、グリースK15~グリースK19を比較すると、摩擦係数について、脂環族ウレア、脂肪族ウレア、芳香族ウレアによって大きな差はない。 Further, when the grease K8 and the grease K15 to grease K19 containing only the base oil and urea are compared, there is no large difference in the friction coefficient among the alicyclic urea, the aliphatic urea and the aromatic urea.
 また、グリースK1(増ちょう剤は脂環族ウレア)と同様の固体添加剤を含む、グリースK20~グリースK24(増ちょう剤は脂肪族ウレアまたは芳香族ウレア)は、増ちょう剤がリチウム石鹸であるグリースK14よりも摩擦係数は大きくなっている。また、増ちょう剤が脂環族ウレアか脂肪族ウレアか芳香族ウレアかによって、摩擦係数に大きな差は見られない。 In addition, grease K20 to grease K24 (thickener is aliphatic urea or aromatic urea) containing the same solid additive as grease K1 (thickener is alicyclic urea), and lithium soap is used as a thickener. The friction coefficient is larger than that of a certain grease K14. Also, depending on whether the thickener is an alicyclic urea, an aliphatic urea or an aromatic urea, there is no significant difference in the coefficient of friction.
 各グリースに配合する増ちょう剤の量は、グリースのJISちょう度が2号(混和ちょう度265~295)になるように調整されている。なお、本実施の形態に係るグリースの好ましいJISちょう度は、少なくとも0号~3号の範囲であればよい。 The amount of thickener added to each grease is adjusted so that the JIS consistency of the grease is 2 (blend consistency 265 to 295). The preferable JIS consistency of the grease according to the present embodiment may be at least in the range of 0 to 3.
 また、増ちょう剤の配合量の範囲は、例えば、2~30wt%、好ましくは5~25wt%、より好ましくは8~20wt%である。 Further, the range of the blending amount of the thickener is, for example, 2 to 30 wt%, preferably 5 to 25 wt%, more preferably 8 to 20 wt%.
 (参考例)
 本実施の形態に係るグリースの構成をより理解するために参考例に係るグリースについても説明する。グリースL1~グリースL8の組成を表22に示す。また、グリースL1~グリースL8の伝達効率および耐逆転性能の結果を表23に示す。
(Reference example)
The grease according to the reference example will also be described in order to further understand the configuration of the grease according to the present embodiment. The compositions of grease L1 to grease L8 are shown in Table 22. Further, the results of the transmission efficiency and the reverse rotation resistance performance of grease L1 to grease L8 are shown in Table 23.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 グリースL1~グリースL8は、増ちょう剤としてリチウム石鹸を含有しているが、いずれも常温、高温の環境における耐逆転性能の合格率が低い。 The greases L1 to L8 contain lithium soap as a thickening agent, but all have a low pass rate of the anti-reverse performance in an environment of normal temperature and high temperature.
 (グリースの作用効果)
 上述の様々な検討から本実施の形態に係るグリースの作用効果について説明する。図6は、本実施の形態に係るグリースの一例を模式的に示した図である。図6に示すグリース50は、ポリ-α-オレフィン等のベースオイル52と、脂環族ウレア等の増ちょう剤54と、アクリル樹脂粉末等の架橋樹脂56と、酸化チタン粉末等の金属酸化物58と、ナイロン樹脂粉末等の自己潤滑性樹脂60等を含有する。
(Effect of grease)
The effects of the grease according to the present embodiment will be described based on the various studies described above. FIG. 6 is a view schematically showing an example of the grease according to the present embodiment. Grease 50 shown in FIG. 6 includes base oil 52 such as poly-α-olefin, thickener 54 such as alicyclic urea, crosslinked resin 56 such as acrylic resin powder, and metal oxide 58 such as titanium oxide powder. And a self-lubricating resin 60 such as nylon resin powder.
 増ちょう剤54として用いられるウレアは、面圧が高い部分での摩擦が高くなると予想される。特に、脂環族ウレアは立体的な構造を有しており、圧力がかかると分子同士が引っかかることで摩擦が高くなると考えられる。 Urea used as the thickening agent 54 is expected to have high friction at high contact pressure. In particular, alicyclic urea has a steric structure, and when pressure is applied, it is considered that the friction is increased due to the molecules sticking to each other.
 また、架橋樹脂56は、一般的に硬質で、圧力で破壊したりつぶれたりしにくく、長期に亘る安定した特性の維持に寄与すると考えられる。 In addition, the crosslinked resin 56 is generally hard, difficult to be broken or crushed by pressure, and is considered to contribute to the maintenance of stable properties over a long period of time.
 また、グリース50では、架橋樹脂56であるアクリル樹脂粉末の表面に金属酸化物58である酸化チタンが分散して付着している。これにより、耐逆転性能が向上していると考えられる。また、金属酸化物58が架橋樹脂56を比較的均一に覆うためには、金属酸化物58の大きさが架橋樹脂56の大きさよりも十分に小さいことが重要である。 In the grease 50, titanium oxide, which is the metal oxide 58, is dispersed and attached to the surface of the acrylic resin powder, which is the crosslinked resin 56. This is considered to improve the anti-reverse performance. Also, in order for the metal oxide 58 to cover the cross-linked resin 56 relatively uniformly, it is important that the size of the metal oxide 58 be sufficiently smaller than the size of the cross-linked resin 56.
 このように、増ちょう剤54としてのウレアと、架橋樹脂56と、金属酸化物58とを含有するグリースは、耐逆転性能を向上できる。更に、このようなグリース50に自己潤滑性樹脂60を加えることで、伝達効率が改善される。 Thus, the grease containing urea as the thickening agent 54, the cross-linked resin 56, and the metal oxide 58 can improve the anti-reverse performance. Furthermore, by adding the self-lubricating resin 60 to such a grease 50, the transmission efficiency is improved.
 また、本実施の形態に係るグリースに含まれるアクリル樹脂粉末の大きさとナイロン樹脂粉末の大きさは、数倍程度の違いである。そのため、アクリル樹脂粉末とナイロン樹脂粉末とが互いに付着して他方を覆ってしまうことは無く、比較的粒径の小さい酸化チタンがアクリル樹脂粉末を覆う状況が実現できる(図6参照)。 Further, the size of the acrylic resin powder and the size of the nylon resin powder included in the grease according to the present embodiment are about several times different. Therefore, the acrylic resin powder and the nylon resin powder do not adhere to each other to cover the other, and a situation in which titanium oxide having a relatively small particle diameter covers the acrylic resin powder can be realized (see FIG. 6).
 (グリースが塗布された減速機付モータ)
 図2に示す減速機付モータ12は、モータ部22と、モータ部22の出力を減速して出力軸44へ伝達するギヤを有する減速機構としてのウォームギヤ46と、を備える。ウォームギヤ46は、出力軸44から入力される回転力によってモータが逆転することを抑制する第1のグリースがウォームギヤ46の噛み合い部R1に塗布されている。また、第1のグリースは、グリースK1~グリースK7、グリースK20~グリースK24の試験結果から、増ちょう剤としてウレアを含むとよい。
(Grease applied motor with reduction gear)
The reducer-equipped motor 12 shown in FIG. 2 includes a motor unit 22 and a worm gear 46 as a reduction mechanism having a gear for reducing the output of the motor unit 22 and transmitting the output to the output shaft 44. The worm gear 46 has a first grease applied to the meshing portion R <b> 1 of the worm gear 46 for suppressing the reverse rotation of the motor by the rotational force input from the output shaft 44. The first grease preferably contains urea as a thickening agent based on the test results of Grease K1 to Grease K7 and Grease K20 to Grease K24.
 また、グリースは、常温における静摩擦係数が常温における動摩擦係数よりも20%以上大きいとよい(表20参照)。つまり、耐逆転性能に主として影響を与えると思われる静摩擦係数が大きく、モータの動作中の伝達効率に主として影響を与えると思われる動摩擦係数を比較的小さくできる。 Further, it is preferable that the coefficient of static friction at normal temperature of the grease is 20% or more larger than the coefficient of dynamic friction at normal temperature (see Table 20). That is, the coefficient of static friction which is considered to mainly affect the anti-reverse performance is large, and the coefficient of dynamic friction which is considered to mainly affect the transmission efficiency during the operation of the motor can be made relatively small.
 また、減速機付モータは、耐逆転性能を満たしつつ常温における伝達効率が40%以上であるとよい。 Further, it is preferable that the reduction gear motor has a transmission efficiency of 40% or more at normal temperature while satisfying the reverse rotation resistance performance.
 また、減速機付モータにおいては、部品同士の摺動部はウォームギヤ46だけに限らない。例えば、ウォームホイール42を回転可能に支持する部分(突起や支持軸)がギヤケース26の底部にあり、その部分とウォームホイール42の被支持部との摺動をスムーズにするために、第2のグリースが図1の領域R2に塗布されている。第2のグリースは、耐逆転性能よりも伝達効率を考慮して選定すればよく、例えば、増ちょう剤の主成分としてウレアを含まないグリース(グリースL2、グリースJ8)であってもよい。このように、減速機付モータの複数の摺動部において、グリースを使い分けることで、伝達効率と耐逆転性能をより高いレベルで実現できる。 Further, in the motor with a reduction gear, the sliding portion between the parts is not limited to the worm gear 46 alone. For example, a portion (protrusion or support shaft) for rotatably supporting the worm wheel 42 is at the bottom of the gear case 26, and the second portion is for smooth sliding of that portion and the supported portion of the worm wheel 42. Grease is applied to region R2 of FIG. The second grease may be selected in consideration of the transmission efficiency rather than the reverse rotation resistance, and may be, for example, a grease (grease L2, grease J8) not containing urea as a main component of the thickener. As described above, by selectively using the grease in the plurality of sliding portions of the reduction gear motor, it is possible to realize the transmission efficiency and the reverse rotation resistance at a higher level.
 [第2の実施の形態]
 第1の実施の形態に係る各種グリースを用いることで、伝達効率を大きく下げずに耐逆転性能を満たす減速機付モータを実現できる。しかしながら、減速機付モータの使用環境や寿命の前後において伝達効率と耐逆転性能を両立することが困難な場合も有り得る。
Second Embodiment
By using various greases according to the first embodiment, it is possible to realize a motor with a reduction gear that satisfies the reverse rotation resistance performance without significantly reducing the transmission efficiency. However, it may be difficult to achieve both the transmission efficiency and the reverse rotation resistance before and after the use environment and the life of the motor with a reduction gear.
 そこで、第2の実施の形態に係る減速機付モータは、モータと、モータの出力を減速して出力軸へ伝達するギヤを有する減速機構と、を備える。減速機構は、出力軸とモータの駆動軸との間のトルク伝達経路に設けられ、出力軸から入力される回転力によってモータの駆動軸が逆転することを抑制する逆転防止機構と、ギヤの噛み合い部に塗布され、出力軸から入力される回転力によってモータの駆動軸が逆転することを抑制するグリースと、を有する。 Therefore, the motor with a reduction gear according to the second embodiment includes a motor and a reduction mechanism having a gear that decelerates the output of the motor and transmits the output to the output shaft. The reduction mechanism is provided in a torque transmission path between the output shaft and the drive shaft of the motor, and the reverse rotation prevention mechanism that suppresses the reverse rotation of the drive shaft of the motor by the rotational force input from the output shaft, and the gear meshing And grease which is applied to the part and which suppresses the reverse rotation of the drive shaft of the motor by the rotational force inputted from the output shaft.
 グリースは、例えば、第1の実施の形態で挙げられている各種グリースから選択される。また、減速機付モータは、概略構成は第1の実施の形態に係る減速機付モータ12と同様である。例えば、逆転防止機構としては、表面をショットブラストで荒らしたウォームを有するウォームギヤや、進み角を小さくして耐逆転性能を確保したウォームを有するウォームギヤや、ウォームとウォームホイールとの噛み合い部とは別に、部品同士の摩擦係数がある程度高い摺動部等、が挙げられる。ウォームの表面を荒らす方法の一例は、ウォームがモータ軸に圧入固定される前の単体部品の段階でショットブラストを行うことである。この方法によれば、Rz(10点平均粗さ)が2~10μm程度の表面粗さをウォームの歯面に与えることができる。その後、その表面粗さを維持させるために無電解ニッケルメッキをウォーム表面に形成し、更に表面の硬度を増すためにベーキング処理が行われる。 The grease is selected from, for example, various greases listed in the first embodiment. Further, the motor with a reduction gear is similar in general configuration to the motor with a reduction gear 12 according to the first embodiment. For example, as a reverse rotation preventing mechanism, a worm gear having a worm whose surface is roughened by shot blasting, a worm gear having a worm whose advancing angle is reduced to secure reverse rotation resistance performance, and a meshing portion between a worm and a worm wheel And sliding parts etc. in which the friction coefficient between parts is high to some extent. One example of a method of roughening the surface of the worm is to perform shot blasting at the stage of the single component before the worm is press-fitted into the motor shaft. According to this method, a surface roughness of about 2 to 10 μm with Rz (10-point average roughness) can be given to the tooth surface of the worm. Thereafter, electroless nickel plating is formed on the worm surface to maintain its surface roughness, and a baking process is performed to further increase the surface hardness.
 このように、一つの摺動部(噛み合い部)におけるグリースの最適化だけではなく、他の要素で耐逆転性能を制御することで、伝達効率を維持しつつ耐逆転性能を満たす減速機付モータを設計する際の自由度が増す。 In this way, not only the optimization of the grease in one sliding part (meshing part) but also the reverse rotation resistance performance is controlled by the other elements, thereby maintaining the transmission efficiency and satisfying the reverse rotation resistance performance while maintaining the transmission efficiency The degree of freedom in designing
 (減速機付モータの諸元)
 なお、上述の実施の形態に係るグリースを適用する減速機付モータの諸元は、例えば、減速比が50~150、ウォームホイールの直径が20~75mm、ウォームの直径が3~20mm、停動トルクTsが5~20Nm、Isが10~50A程度であるが、もちろんこの範囲に限られない。
(Specifications of motor with reduction gear)
The specifications of the motor with a reduction gear to which the grease according to the above embodiment is applied include, for example, a reduction ratio of 50 to 150, a diameter of a worm wheel of 20 to 75 mm, a diameter of a worm of 3 to 20 mm, a stalling The torque Ts is about 5 to 20 Nm, and the Is is about 10 to 50 A, but of course it is not limited to this range.
 以上、本発明を上述の各実施の形態を参照して説明したが、本発明は上述の各実施の形態に限定されるものではなく、各実施の形態の構成を適宜組み合わせたものや置換したものについても本発明に含まれるものである。また、当業者の知識に基づいて各実施の形態における組合せや処理の順番を適宜組み替えることや各種の設計変更等の変形を各実施の形態に対して加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうる。 As mentioned above, although this invention was demonstrated with reference to each above-mentioned embodiment, this invention is not limited to each above-mentioned embodiment, What combined suitably the structure of each embodiment, and it substituted Those are also included in the present invention. In addition, it is also possible to appropriately modify the combinations and the order of processing in each embodiment based on the knowledge of those skilled in the art and to add various modifications such as design changes to each embodiment, and such modifications An embodiment in which is added may be included in the scope of the present invention.
 R1 噛み合い部、 R2 領域、 10 パワーウィンドウ、 12 減速機付モータ、 22 モータ部、 24 ウォーム減速機、 34 モータ軸、 36 ウォーム、 42 ウォームホイール、 44 出力軸、 46 ウォームギヤ、 50 グリース、 52 ベースオイル、 54 増ちょう剤、 56 架橋樹脂、 58 金属酸化物、 60 自己潤滑性樹脂。 R1 meshing part, R2 area, 10 power window, 12 motor with reduction gear, 22 motor part, 24 worm reduction gear, 34 motor shaft, 36 worm, 42 worm wheel, 44 output shaft, 46 worm gear, 50 grease, 52 base oil, 54 thickeners, 56 crosslinked resins, 58 metal oxides, 60 self-lubricating resins.
 本発明は、例えば減速機付モータに利用できる。 The present invention can be used, for example, for a motor with a reduction gear.

Claims (3)

  1.  金属酸化物粉末を含むグリースであって、
     前記金属酸化物粉末は、一つ以上の角部を有する非球形の形状であることを特徴とするグリース。
    Grease containing metal oxide powder,
    Grease characterized in that said metal oxide powder is non-spherical in shape with one or more corners.
  2.  金属酸化物粉末の短径をds、長径をdlとすると、ds/dlが0.5以下であることを特徴とするグリース。 A grease characterized in that ds / dl is 0.5 or less, where ds is the minor axis of the metal oxide powder and dl is the major axis.
  3.  前記金属酸化物粉末の見掛け密度が0.50g/ml未満であることを特徴とする請求項1または2に記載のグリース。 The grease according to claim 1 or 2, wherein the apparent density of the metal oxide powder is less than 0.50 g / ml.
PCT/JP2017/023282 2017-06-23 2017-06-23 Grease WO2018235287A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/023282 WO2018235287A1 (en) 2017-06-23 2017-06-23 Grease

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/023282 WO2018235287A1 (en) 2017-06-23 2017-06-23 Grease

Publications (1)

Publication Number Publication Date
WO2018235287A1 true WO2018235287A1 (en) 2018-12-27

Family

ID=64735969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023282 WO2018235287A1 (en) 2017-06-23 2017-06-23 Grease

Country Status (1)

Country Link
WO (1) WO2018235287A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11332177A (en) * 1998-05-15 1999-11-30 Mabuchi Motor Co Ltd Small-sized motor with worm reducer
WO2003014251A1 (en) * 2001-08-09 2003-02-20 Hitachi Maxell, Ltd. Non-magnetic particles having a plate shape and method for production thereof, abrasive material, polishing article and abrasive fluid comprising such particles
JP2005247971A (en) * 2004-03-03 2005-09-15 Nsk Ltd Grease composition for lubricating resin, gear apparatus and electrically driven power steering apparatus
JP2009179715A (en) * 2008-01-31 2009-08-13 Japan Energy Corp Lubricant composition and lubricant system using the same
JP2011080065A (en) * 2009-10-09 2011-04-21 Rhein Chemie Rheinau Gmbh Additive for lubricant for improving tribologic property, novel lubricant, process for preparation and use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11332177A (en) * 1998-05-15 1999-11-30 Mabuchi Motor Co Ltd Small-sized motor with worm reducer
WO2003014251A1 (en) * 2001-08-09 2003-02-20 Hitachi Maxell, Ltd. Non-magnetic particles having a plate shape and method for production thereof, abrasive material, polishing article and abrasive fluid comprising such particles
JP2005247971A (en) * 2004-03-03 2005-09-15 Nsk Ltd Grease composition for lubricating resin, gear apparatus and electrically driven power steering apparatus
JP2009179715A (en) * 2008-01-31 2009-08-13 Japan Energy Corp Lubricant composition and lubricant system using the same
JP2011080065A (en) * 2009-10-09 2011-04-21 Rhein Chemie Rheinau Gmbh Additive for lubricant for improving tribologic property, novel lubricant, process for preparation and use thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY(AIST ET AL., HEISEI 24 NENDO KOKUSAI HYOJUN KYODO KENKYU KAIHATSU JIGYO NANO ZAIRYO NO ANZENSEI HYOKA KIBAN NI KANSURU KOKUSAI HYOJUNKA SEIKA HOKOKUSHO, March 2013 (2013-03-01), pages 23 - 30, Retrieved from the Internet <URL:http://www.meti.go.jp/meti_lib/report/2013fy/E003331.pdf> [retrieved on 20170720] *

Similar Documents

Publication Publication Date Title
KR101933435B1 (en) Method for lubricating strain wave gearing
JPH11332177A (en) Small-sized motor with worm reducer
US6162767A (en) Composite bearing with iron oxide additive
CN104017635A (en) Resin gear device with resin lubricating grease composition
JP2010052385A (en) Multi-layer sliding member and rack guide in rack-and-pinion steering device for automobiles using same
JPWO2013039177A1 (en) Sliding member and sliding material composition
JP6847645B2 (en) Grease composition for resin lubrication, resin gear device and actuator of in-vehicle air conditioning treatment system
WO2018235288A1 (en) Grease
WO2018235290A1 (en) Gear
WO2018235287A1 (en) Grease
WO2018235293A1 (en) Grease
WO2018235281A1 (en) Grease
WO2018235295A1 (en) Motor with speed reducer
WO2018235289A1 (en) Grease
WO2018235282A1 (en) Grease
WO2018235283A1 (en) Grease
WO2018235292A1 (en) Gear
WO2018235284A1 (en) Grease
WO2018235286A1 (en) Grease
WO2018235280A1 (en) Grease
WO2018235294A1 (en) Motor with speed reducer
WO2018235285A1 (en) Grease
WO2018235296A1 (en) Motor with speed reducer
WO2018235291A1 (en) Gear
WO2024014011A1 (en) Speed reducer-equipped motor unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17915001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17915001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP