WO2018234686A1 - Procédé de réalisation d'une pièce de forme tronconique ou cylindrique en matériau composite et outillage d'imprégnation d'une préforme fibreuse de forme tronconique ou cylindrique - Google Patents

Procédé de réalisation d'une pièce de forme tronconique ou cylindrique en matériau composite et outillage d'imprégnation d'une préforme fibreuse de forme tronconique ou cylindrique Download PDF

Info

Publication number
WO2018234686A1
WO2018234686A1 PCT/FR2018/051468 FR2018051468W WO2018234686A1 WO 2018234686 A1 WO2018234686 A1 WO 2018234686A1 FR 2018051468 W FR2018051468 W FR 2018051468W WO 2018234686 A1 WO2018234686 A1 WO 2018234686A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
frustoconical
membrane
female mold
preform
Prior art date
Application number
PCT/FR2018/051468
Other languages
English (en)
Inventor
Martine Dauchier
Edouardo RUIZ
François TROCHU
Alexandre Ferreira Benevides
Vincent SHEBIB-LOISELLE
Original Assignee
Safran Aircraft Engines
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines filed Critical Safran Aircraft Engines
Publication of WO2018234686A1 publication Critical patent/WO2018234686A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/48Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/44Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles
    • B29C33/48Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles with means for collapsing or disassembling
    • B29C33/50Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles with means for collapsing or disassembling elastic or flexible
    • B29C33/505Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles with means for collapsing or disassembling elastic or flexible cores or mandrels, e.g. inflatable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • B29C43/3642Bags, bleeder sheets or cauls for isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/44Compression means for making articles of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/462Moulding structures having an axis of symmetry or at least one channel, e.g. tubular structures, frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • B29C70/546Measures for feeding or distributing the matrix material in the reinforcing structure
    • B29C70/548Measures for feeding or distributing the matrix material in the reinforcing structure using distribution constructions, e.g. channels incorporated in or associated with the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • B29C43/3642Bags, bleeder sheets or cauls for isostatic pressing
    • B29C2043/3649Inflatable bladders using gas or fluid and related details

Definitions

  • the present invention relates to the production of frustoconical or cylindrical shaped parts of composite material.
  • a field of application of the invention is more particularly the production of parts made of structural composite material, that is to say parts of structure with fiber reinforcement and densified by a matrix.
  • the composite materials make it possible to produce parts having a lower overall mass than these same parts when they are made of metallic material.
  • FIG. 1 A conventional method for obtaining frustoconical parts made of composite material, such as an aircraft engine exhaust casing, is described in FIG. 1.
  • a fibrous preform 30 is formed by shaping a texture. fibrous mold on a mold 51 of an injection molding tool 50, the mold having a shape as close as possible to the inner wall of the piece of composite material to achieve.
  • the mold 51 is closed by a deformable waterproof membrane 52 compatible with the resin intended to be injected into the preform.
  • the membrane 52 is circled at the top and bottom of the mold 51 to seal the tooling 50.
  • the outer lateral face 30a of the fibrous preform 30 is opposite the membrane 52 while the lower and upper faces 30b, 30c of the preform 30 are respectively facing diffusion gates 53 and 54.
  • the tooling 50 also comprises an injection port 55 connected to an injection machine 60 which is intended to inject under pressure a resin 61 into the tooling 50.
  • the tooling 50 further comprises an output port 56 intended to discharging the effluents and excess resin, the outlet port 56 being connected to an effluent treatment device 70.
  • the tooling 50 is placed in an autoclave 80 which makes it possible to apply pressure to the outside of the tooling and to inject the resin 61 under pressure, thereby increasing the driving force of the resin and decreasing the reaction time. impregnation of the preform.
  • the application of pressure on the outer surface 52a of the membrane 52 is also necessary to compact the fibrous preform 30 during polymerization of the resin to reduce the final porosity.
  • the application of pressure on the membrane during polymerization of the resin causes defects in the fiber preform such as corrugations and folds that can be unacceptable for subsequent use of the resulting part. These defects are accentuated if the fiber preform does not perfectly fit the mold, which is often the case because the manufacturing tolerance of the preforms is of the order of a millimeter while the shape of the mold is difficult to adapt.
  • the object of the present invention is to remedy the aforementioned drawbacks and to propose a solution which makes it possible to impregnate fibrous preforms of frustoconical or cylindrical shape without the risk of fault formation while minimizing the impregnation time in order to obtain parts in good quality composite material.
  • the invention proposes a method of manufacturing a frustoconical or cylindrical piece of composite material comprising the following steps:
  • a fibrous preform of frustoconical or cylindrical shape in a female mold element of an impregnation tool, the female mold element comprising a cavity delimited by a lateral wall having an internal surface of frustoconical or cylindrical shape, the fiber preform being placed facing the inner surface of said side wall,
  • the membrane having a frustoconical or cylindrical shape, the space delimited between the frustoconical or cylindrical internal surface of the side wall of the female mold element and the membrane corresponding to an impregnation chamber in which the fiber preform is present,
  • the male mold member comprising an axisymmetric body housed in the cavity of the female mold member, the outer surface of the axisymmetric body being placed facing and at a determined distance from the frustoconical or cylindrical inner surface of the side wall of the female mold element, the membrane being interposed between the outer wall of the axisymmetric body of the male mold element and the frustoconical inner surface or cylindrical of the side wall of the female mold member, the space defined between the outer surface of the axisymmetric body and the membrane corresponding to a compaction chamber,
  • the compaction fluid exerting a pressure on the membrane to force the resin to impregnate the fibrous preform
  • the preform By first injecting the resin into an impregnating chamber containing the fibrous preform before being pushed into the fiber preform during the injection of the compaction fluid, the preform is impregnated in its thickness and no longer in its axial section as in the prior art described above, thus considerably reduces the impregnation time, which allows more flexibility in the manufacture of the composite material part.
  • the membrane applying on the preform pressure directed from the inner face of the preform to the outer face of the preform it is possible to use preforms that do not perfectly fit the shape of the wall of the element of the preform. female mold or do not flatten perfectly against it without risk of occurrence of ripple type defects and / or folds.
  • the resin is injected at the lower edge of the fibrous preform, the fluid compaction being injected from the lower part of the compaction chamber located in the vicinity of the lower edge of the fiber preform. This allows the membrane to gradually push the resin into the preform and optimize the impregnation of the preform in all its volume.
  • the resin is injected into a circular groove present on the bottom of the female mold element, which allows the resin to spread uniformly around the lower edge of the preform when of his injection.
  • a vacuum is applied in the compaction chamber. This depression makes it possible to ensure that a space is present between the membrane and the preform before the injection of the resin. Thus, during the injection of the resin, it spreads preferentially in the free space and not in the preform which has a lower permeability vis-à-vis the free space.
  • the fibrous preform is obtained by three-dimensional weaving or multilayer weaving.
  • the fibrous preform is obtained by stacking unidirectional fibrous layers bonded together by needling or obtained by two-dimensional weaving.
  • the son of the preform may be formed of fibers consisting of one or more of the following materials: carbon, silicon carbide, glass, alumina, mullite, aluminosilicate, borosilicate, or a mixture of several of these materials.
  • the resin may be chosen from at least one of the following resins: epoxy resin, phenolic resin, carbon precursor resin and silicon carbide precursor resin.
  • the invention also relates to an impregnation tool for a fibrous preform of frustoconical or cylindrical shape, the tool comprising: a female mold element comprising a cavity delimited by a lateral wall having an internal surface of frustoconical or cylindrical shape,
  • a male mold element comprising an axisymmetrical body housed in the cavity of the female mold element, the external surface of the axisymmetrical body being placed opposite and at a determined distance from the internal surface of frustoconical or cylindrical shape of the lateral wall; of the female mold element,
  • an impermeable and deformable membrane having a frustoconical or cylindrical shape, the membrane being placed opposite the outer wall of the axisymmetric body of the male mold element, the space delimited between the internal surface of frustoconical shape or cylindrical side wall of the female mold member and the membrane corresponding to an impregnation chamber, the space defined between the outer surface of the axisymmetric body and the membrane corresponding to a compaction chamber,
  • the female mold element comprising at least one resin injection port opening into the impregnation chamber
  • the male mold element comprising at least one injection port of a compaction fluid opening into the compaction chamber.
  • each resin injection port opens into the impregnation chamber at a bottom of the female mold element, said bottom having a circular channel into which the resin injection port or ports.
  • FIG. 1 is a diagrammatic sectional view of an impregnation tool according to the prior art
  • FIG. 2 is a schematic perspective exploded view of an impregnation tool according to an embodiment of the invention
  • FIG. 3A is a schematic sectional view of the tool of FIG. 2 when closed, showing the injection of a resin into the tool,
  • FIGS. 3B and 3C are schematic sectional views of the tool of FIG. 2 showing impregnation steps of a fiber preform in accordance with one embodiment of the invention
  • FIG. 4 is a schematic perspective view of a part obtained according to a method of the invention.
  • FIG. 2 shows an injection tooling 100 according to an embodiment of the invention.
  • the impregnation tool 100 comprises a female mold element 110 consisting of a side wall 111 whose inner surface 111a has a frustoconical shape and delimits a cavity 112.
  • the inner surface 111a is intended to be in contact with a fibrous preform 200 to impregnate.
  • the female mold member 110 also includes a bottom 113 closing the lower portion 1110 of the side wall 111.
  • the upper portion 1111 of the side wall 111 includes first and second annular grooves 1112 and 1113 which are intended to respectively receive first and second O-rings 1114 and 1115.
  • an annular seal 1140 is furthermore disposed between the upper part 1111 of the side wall 111 and a flange 114 fixed on the upper part 1111 by screws 1141.
  • the impregnation tool 100 also comprises a male mold element 130 comprising an axisymmetrical body 131 which is intended to be housed in the cavity 112 of the female mold element 110 during the closing of the impregnation tooling 100
  • the axisymmetric body 131 has a suitable shape for ensuring the upward movement of the compaction liquid to inject the resin into the texture from bottom to top as described below.
  • the axisymmetric body 131 is inscribed within a truncated cone and has an outer surface 131a of concave shape.
  • the male mold element comprises a removable cover 132 which is fixed on a flange 1310 present on the upper part of the frusto-conical body 131 by means of screws 1320.
  • the impregnation tool 100 also comprises an impermeable membrane 120 having a frustoconical shape, the membrane, for example made of silicone, being able to deform (stretch) without breaking under the effect of the pressure of the compacting liquid.
  • the membrane 120 is interposed between the outer surface 131a of the axisymmetric body 131 of the male mold member and the inner surface 111a of the side wall 111 of the female mold member 110.
  • the membrane 120 is placed near the wall external 131a of the axisymmetrical body 131 of the male mold member 130.
  • the space defined between the inner surface 111a of the side wall 111 of the female mold member 110 and the face 120a of the membrane opposite the surface 111a corresponds to an impregnation chamber 140 in which is present a fibrous preform 200 to be impregnated (FIG. 3A).
  • the space delimited between the outer surface 131a of the axisymmetric body and the face 120b of the membrane 120 opposite the surface 131a corresponds to a compaction chamber 150.
  • the female mold member 110 comprises two injection ports 115 and 116 present on the bottom 113 of the female mold member.
  • the injection ports 115 and 116 open into the impregnation chamber 140 (FIG. 3A).
  • Injection ports 115 and 116 are used to inject a resin into the impregnation chamber when it contains a fibrous preform to be impregnated.
  • the male mold member may further include discharge ports 117 disposed opposite to the injection ports 115 and 116, here located at the flange 114 (Figs. 2 and 3C).
  • the evacuation ports 117 are in communication with the impregnation chamber 140 and facilitate the injection of the resin into the impregnation chamber by evacuating the air present in the chamber impregnation, the discharge ports possibly being connected to a draft pump.
  • the female mold element may comprise only one injection port or more than two injection ports.
  • the bottom 113 of the female mold element 110 may comprise a circular channel 1131 into which the injection ports 115 and 116 open directly.
  • the channel 1131 makes it possible to distribute the injected resin via the injection ports 115 and 116 in a uniform manner at the bottom 113 and, consequently, at the lower edge 201 of the fibrous preform 200 to be impregnated.
  • the male mold element 130 comprises an injection port 133 present at the bottom 134 of the axisymmetric body 131, the injection port 133 opening into the compaction chamber 150.
  • the port of Injection 133 is used to inject a compaction fluid into the compaction chamber 150 as described hereinafter in detail.
  • the male mold member 130 may further comprise discharge ports 135 for facilitating the introduction of the compaction fluid into the compaction chamber 150 by evacuating the air present in said chamber.
  • a plurality of injection ports may be present on the male mold element 130. It is also possible to use the injection port 133 and the vent 135 to circulate the compaction fluid at a temperature which makes it possible to contribute to the polymerization of the resin during the baking phase of the composite part.
  • a method of injecting a resin into a fiber preform according to one embodiment of the invention is now described.
  • the method requires holding means such as a press (not shown in FIGS. 3A to 3C).
  • the elements of the male mold are assembled, namely the parts 114, 131, 132 and the membrane 120 and the porous material 1140.
  • the male part thus equipped is fixed under the upper plate of the press to 1141.
  • a fiber preform 200 is introduced into the cavity 112 of the female mold member 110 which is equipped with seals 1114 and 1115.
  • the tool is closed by lowering the upper plate of the press.
  • a resin 10 is injected into the impregnation chamber 140 between the exposed face 200a of the fibrous preform and the face 120a of the membrane 120 facing the face 200a of the preform 200 ( Figure 3A).
  • the resin 10 is injected into the impregnation chamber 140 via the injection ports 115 and 116, that is to say at the lower edge 201 of the fibrous preform 200.
  • the resin 10 is distributed uniformly around the edge lower 201 of the preform 200 through the channel 1131 in which opens the injection ports 115 and 116.
  • the injection ports 115 and 116 are positioned to open into a void space of the impregnation chamber 140, that is to say a space that is not occupied by the fibrous preform 200.
  • the resin 10 is injected into this free space to be subsequently pushed inside the preform as explained below.
  • the injection ports 115 and 116 can be positioned to open at the lower edge 201 of the preform 200. In this case, the resin 10 is directly injected into the preform.
  • a vacuum can be previously applied in the compaction chamber 150, for example by connecting a vacuum pump to the injection port 133 and the ports evacuation 135.
  • This depression makes it possible to ensure that a space is present between the membrane and the preform before the injection of the resin.
  • a vacuum pump can be connected to the injection port 133 and the ports evacuation 135.
  • the quantity of resin 10 introduced into the impregnation chamber 140 is determined as a function of the volume of the preform 200 to be impregnated and its fiber content.
  • the injection ports 115, 116 and the discharge ports 117 are closed.
  • a compaction fluid 20 is then introduced into the compaction chamber 150 via the injection port 133 present at the bottom 134 of the axisymmetric body 131, a conduit 21 connecting the injection port 133 to the inlet of the tool at lid level 132 (FIG. 3B).
  • the evacuation ports 135 are opened at first to allow 18 051468
  • the injection of the compaction fluid 20 into the compaction chamber 20 has the effect of pushing the membrane 120 towards the fibrous preform 200 in directions indicated by the arrows shown in FIGS. 3B and 3C and of forcing the resin 10 to enter the preform200.
  • the membrane 120 pushes both the resin into the free space of the impregnation chamber 130 and into the preform as illustrated in FIGS. 3B. and 3C.
  • the membrane exerts a compaction pressure on the preform, which pressure is applied from the inside, that is to say on the internal face 200a of the preform, outwardly, that is to say towards the outer face 200b of the fibrous preform 200.
  • the compaction fluid 20 is preferably injected from the lower part 151 of the compaction chamber 150 situated in the vicinity of the lower edge 201 of the fibrous preform 200, which allows the membrane 120 to gradually push the resin 10 into the preform 200 and optimize the impregnation of the preform in all its volume.
  • a fibrous preform impregnated with a matrix precursor is then obtained.
  • the transformation of the precursor into an organic matrix is carried out by heat treatment, generally by heating the impregnation tool, for example by circulating a coolant in coils surrounding the tool and in the chamber. compaction, after removal of the optional solvent and crosslinking of the polymer.
  • a so-called "polymerization pressure" is always applied by the membrane 120 to the fibrous preform 200 because the compaction fluid itself always exerts a pressure on the membrane.
  • the organic matrix may in particular be obtained from epoxy resins, such as, for example, the high performance epoxy resin, or liquid precursors of carbon or ceramic matrices.
  • liquid carbon precursors may be relatively high coke level resins, such as phenolic resins
  • liquid precursors of ceramics, in particular of SiC may be polycarbosilane type resins (PCS). or polytitanocarbosilane (PTCS) or polysilazane (PSZ).
  • PCS polycarbosilane type resins
  • PTCS polytitanocarbosilane
  • PSZ polysilazane
  • a part 400 made of composite material comprising a fibrous reinforcement consisting of the preform 200 densified by a matrix formed by the resin impregnated and polymerized in the preform.
  • Release of the workpiece 400 is accomplished by removing the male mold member 130, the flange 114 and the diaphragm 120.
  • the fiber preform 200 is made in known manner by weaving by means of a jacquard loom on which a bundle of warp yarns or strands has been arranged in a plurality of layers, the warp yarns being bound by yarns. frame or vice versa.
  • the fibrous texture can be made by stacking strata or plies obtained by two-dimensional weaving (2D).
  • two-dimensional weaving is meant here a conventional weaving mode whereby each weft yarn passes from one side to another son of a single chain layer or vice versa.
  • the fibrous texture can also be produced directly in one piece by three-dimensional weaving (3D) or multilayer.
  • three-dimensional weaving or “multilayer weaving” is meant here a weaving mode by which at least some of the weft yarns bind warp yarns on several layers of warp yarns or conversely in a weave corresponding to a weave weave which can be chosen in particular from one of the following armor: interlock, 68
  • the fibrous preform can still be made from unidirectional fibrous layers needled together.
  • the method of the invention is particularly adapted to allow the introduction of a liquid composition in 2D fibrous textures (textures obtained by stacking layers or 2D folds) or 3D thick textures, that is to say fibrous structures having a thickness of at least 90 mm with a fiber content greater than 30%, for example 40%.
  • 3D textures also have a complex geometry in which it is difficult to introduce and distribute homogeneously charged liquid compositions or not.
  • the process of the invention is also very well suited for introducing a liquid composition into 3D woven fiber textures.
  • the yarns used to form the fiber preform 200 and, consequently, the fibrous reinforcement of the piece 400 made of composite material may in particular be formed of fibers consisting of one of the following materials: carbon, silicon carbide, glass, alumina, mullite, aluminosilicate, borosilicate, or a mixture of several of these materials.
  • the manufacturing method and the impregnation tool of the invention also apply to the manufacture of cylindrical composite material parts.
  • the preform, the lateral wall delimiting the cavity of the female mold element and the impermeable and deformable membrane have a cylindrical shape while the axisymmetric body of the male mold element fits inside the mold.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

Un procédé de fabrication d'une pièce de forme tronconique en matériau composite comprenant les étapes suivantes : placement d'une préforme fibreuse de forme tronconique (200) ou cylindrique dans un élément de moule femelle (110), placement d'une membrane imperméable (120) en regard de la face exposée (200a) de la préforme fibreuse (200), l'espace délimité entre la surface interne (111a) de l'élément de moule femelle (110) et la membrane (120) correspondant à une chambre d'imprégnation (140), assemblage d'un élément de moule mâle (130) avec l'élément de moule femelle (110), la membrane (120) étant interposée entre l'élément de moule mâle (130) et l'élément de moule femelle (110), l'espace délimité entre l'élément de moule mâle (130) et la membrane (120) correspondant à une chambre de compaction (150), injection d'une résine (10) dans la chambre d'imprégnation (140), injection d'un fluide de compaction (20) dans la chambre de compaction (150), le fluide de compaction (20) exerçant une pression sur la membrane (120) pour forcer la résine (10) à imprégner la préforme fibreuse (200), polymérisation de la résine de manière à obtenir une pièce en matériau composite comprenant un renfort fibreux densifié par une matrice.

Description

Procédé de réalisation d'une pièce de forme tronconique ou cylindrique en matériau composite et outillage d'imprégnation d'une préforme fibreuse de forme tronconique ou cylindrique Arrière-plan de l'invention
La présente invention concerne la réalisation de pièces de forme tronconique ou cylindrique en matériau composite.
Un domaine d'application de l'invention est plus particulièrement la réalisation de pièces en matériau composite structural, c'est-à-dire des pièces de structure à renfort fibreux et densifié par une matrice. Les matériaux composites permettent de réaliser des pièces ayant une masse globale moins élevée que ces mêmes pièces lorsqu'elles sont réalisées en matériau métallique.
Un procédé usuel d'obtention de pièces tronconiques en matériau composite, telles qu'un carter d'échappement de moteur aéronautique est décrit sur la figure 1. Sur la figure 1, une préforme fibreuse 30 est formée par mise en forme d'une texture fibreuse sur un moule 51 d'un outillage de moulage par injection 50, le moule présentant une forme la plus proche possible de la paroi interne de la pièce en matériau composite à réaliser. Le moule 51 est fermé par une membrane déformable étanche 52 compatible avec la résine destinée à être injectée dans la préforme. La membrane 52 est cerclée en haut et en bas du moule 51 pour assurer l'étanchéité de l'outillage 50. La face latérale extérieure 30a de la préforme fibreuse 30 est en regard de la membrane 52 tandis que les faces inférieure et supérieure 30b, 30c de la préforme 30 sont en regard respectivement de grilles de diffusion 53 et 54.
L'outillage 50 comprend également un port d'injection 55 relié à une machine d'injection 60 qui est destinée à injecter sous pression une résine 61 dans l'outillage 50. L'outillage 50 comprend en outre un port de sortie 56 destiné à évacuer les effluents et la résine en excès, le port de sortie 56 étant relié à un dispositif de traitement des effluents 70.
L'outillage 50 est placé dans un autoclave 80 qui permet d'appliquer une pression à l'extérieur de l'outillage et d'injecter la résine 61 sous pression, ce qui augmente ainsi la force motrice de la résine et diminue le temps d'imprégnation de la préforme. L'application d'une pression sur la surface externe 52a de la membrane 52 est également nécessaire pour assurer le compactage de la préforme fibreuse 30 lors de la polymérisation de la résine afin de réduire la porosité finale.
Cependant, cette technique d'imprégnation pose des problèmes notamment au niveau du temps nécessaire pour imprégner complètement la préforme fibreuse, temps qui doit être inférieur à la durée de vie en pot de la résine. En outre, la gestion de la température reste délicate en particulier pour l'imprégnation de préformes épaisses (épaisseur supérieure à 80 mm) avec une résine qui est potentiellement exothermique.
Par ailleurs, l'application d'une pression sur la membrane lors de la polymérisation de la résine entraîne des défauts dans la préforme fibreuse tels que des ondulations et des plis qui peuvent être rédhibitoires pour une utilisation ultérieure de la pièce résultante. Ces défauts sont accentués si la préforme fibreuse n'épouse pas parfaitement le moule, ce qui est souvent le cas car la tolérance de fabrication des préformes est de l'ordre du millimètre tandis que la forme du moule est difficilement adaptable.
Obiet et résumé de l'invention
La présente invention a pour but de remédier aux inconvénients précités et de proposer une solution qui permet d'imprégner des préformes fibreuses de forme tronconique ou cylindrique sans risque de formation de défauts tout en minimisant le temps d'imprégnation afin d'obtenir des pièces en matériau composite de bonne qualité.
A cet effet, l'invention propose un procédé de fabrication d'une pièce de forme tronconique ou cylindrique en matériau composite comprenant les étapes suivantes :
- placement d'une préforme fibreuse de forme tronconique ou cylindrique dans un élément de moule femelle d'un outillage d'imprégnation, l'élément de moule femelle comportant une cavité délimitée par une paroi latérale présentant une surface interne de forme tronconique ou cylindrique, la préforme fibreuse étant placée en regard de la surface interne de ladite paroi latérale,
- placement d'une membrane imperméable et déformable en regard de la face exposée de la préforme fibreuse, la membrane présentant une forme tronconique ou cylindrique, l'espace délimité entre la surface interne de forme tronconique ou cylindrique de la paroi latérale de l'élément de moule femelle et la membrane correspondant à une chambre d'imprégnation dans laquelle la préforme fibreuse est présente,
- assemblage d'un élément de moule mâle avec l'élément de moule femelle, l'élément de moule mâle comprenant un corps axisymétrique logé dans la cavité de l'élément de moule femelle, la surface externe du corps axisymétrique étant placée en regard et à une distance déterminée de la surface interne de forme tronconique ou cylindrique de la paroi latérale de l'élément de moule femelle, la membrane étant interposée entre la paroi externe du corps axisymétrique de l'élément de moule mâle et la surface interne de forme tronconique ou cylindrique de la paroi latérale de l'élément de moule femelle, l'espace délimité entre la surface externe du corps axisymétrique et la membrane correspondant à une chambre de compaction,
- injection d'une résine dans la chambre d'imprégnation,
- injection d'un fluide de compaction dans la chambre de compaction, le fluide de compaction exerçant une pression sur la membrane pour forcer la résine à imprégner la préforme fibreuse,
- polymérisation de la résine de manière à obtenir une pièce en matériau composite comprenant un renfort fibreux densifié par une matrice.
En injectant d'abord la résine dans une chambre d'imprégnation contenant la préforme fibreuse avant d'être poussée dans la préforme fibreuse lors de l'injection du fluide compaction, la préforme est imprégnée dans son épaisseur et non plus dans sa section axiale comme dans l'art antérieur décrit ci-avant, on réduit ainsi considérablement le temps d'imprégnation, ce qui permet plus de souplesse dans la fabrication de la pièce en matériau composite.
En outre, la membrane appliquant sur la préforme une pression dirigée depuis la face interne de la préforme vers la face externe de la préforme, il est possible d'utiliser des préformes n'épousant pas parfaitement la forme de la paroi de l'élément de moule femelle ou ne se plaquant pas parfaitement contre celle-ci sans risque d'apparition de défauts de type ondulation et/ou plis.
Selon un premier aspect particulier du procédé de l'invention, la résine est injectée au niveau du bord inférieur de la préforme fibreuse, le fluide compaction étant injecté à partir de la partie inférieure de la chambre de compaction située au voisinage du bord inférieur de la préforme fibreuse. Cela permet à la membrane de repousser progressivement la résine dans la préforme et d'optimiser l'imprégnation de la préforme dans tout son volume.
Selon un deuxième aspect particulier du procédé de l'invention, la résine est injectée dans une rigole circulaire présente sur le fond de l'élément de moule femelle, ce qui permet à la résine de se répandre uniformément autour du bord inférieur de la préforme lors de son injection.
Selon un troisième aspect particulier du procédé de l'invention, avant l'injection de la résine dans la chambre d'imprégnation, une dépression est appliquée dans la chambre de compaction. Cette dépression permet de s'assurer qu'un espace est bien présent entre la membrane et la préforme avant l'injection de la résine. Ainsi, lors de l'injection de la résine, celle-ci se répand préférentiellement dans l'espace libre et non dans la préforme qui présente une perméabilité plus faible vis- à-vis de l'espace libre.
Selon un quatrième aspect particulier du procédé de l'invention, la préforme fibreuse est obtenue par tissage tridimensionnel ou multicouche.
Selon un cinquième aspect du procédé de l'invention, la préforme fibreuse est obtenue par empilement de strates fibreuses unidirectionnelles liées entre elles par aiguilletage ou obtenues par tissage bidimensionnel.
Les fils de la préforme peuvent être formés de fibres constituées d'un ou plusieurs des matériaux suivants : carbone, carbure de silicium, verre, alumine, mullite, aluminosilicate, borosilicate, ou un mélange de plusieurs de ces matériaux.
La résine peut être choisie parmi au moins une des résines suivantes : résine époxyde, résine phénolique, résine précurseur de carbone et résine précurseur de carbure de silicium.
L'invention a également pour objet un outillage d'imprégnation pour une préforme fibreuse de forme tronconique ou cylindrique, l'outillage comprenant : - un élément de moule femelle comportant une cavité délimitée par une paroi latérale présentant une surface interne de forme tronconique ou cylindrique,
- un élément de moule mâle comprenant un corps axisymétrique logé dans la cavité de l'élément de moule femelle, la surface externe du corps axisymétrique étant placée en regard et à une distance déterminée de la surface interne de forme tronconique ou cylindrique de la paroi latérale de l'élément de moule femelle,
- une membrane imperméable et déformable présentant une forme tronconique ou cylindrique, la membrane étant placée en vis-à-vis de la paroi externe du corps axisymétrique de l'élément de moule mâle, l'espace délimité entre la surface interne de forme tronconique ou cylindrique de la paroi latérale de l'élément de moule femelle et la membrane correspondant à une chambre d'imprégnation, l'espace délimité entre la surface externe du corps axisymétrique et la membrane correspondant à une chambre de compaction,
- l'élément de moule femelle comprenant au moins un port d'injection de résine débouchant dans la chambre d'imprégnation,
- l'élément de moule mâle comprenant au moins un port d'injection d'un fluide de compaction débouchant dans la chambre de compaction.
Selon un aspect particulier de l'outillage de l'invention, chaque port d'injection de résine débouche dans la chambre d'imprégnation au niveau d'un fond de l'élément de moule femelle, ledit fond comportant une rigole circulaire dans laquelle débouchent le ou les ports d'injection de résine.
Brève description des dessins
D'autres caractéristiques et avantages de l'invention ressortiront de la description suivante de modes particuliers de réalisation de l'invention, donnés à titre d'exemples non limitatifs, en référence aux dessins annexés, sur lesquels :
- la figure 1 est une vue schématique en coupe d'un outillage d'imprégnation selon l'art antérieur, - la figure 2 est une vue schématique en perspective éclatée d'un outillage d'imprégnation conformément à un mode de réalisation de l'invention,
- la figure 3A une vue schématique en coupe de l'outillage de la figure 2 une fois fermé montrant l'injection d'une résine dans l'outillage,
- les figures 3B et 3C sont des vues schématiques en coupe de l'outillage de la figure 2 montrant des étapes d'imprégnation d'une préforme fibreuse conformément à un mode de réalisation de l'invention,
- la figure 4 est une vue schématique en perspective d'un pièce obtenue conformément à un procédé de l'invention.
Description détaillée de modes de réalisation
La figure 2 représente un outillage d'injection 100 conformément à un mode de réalisation de l'invention. L'outillage d'imprégnation 100 comprend un élément de moule femelle 110 constitué d'une paroi latérale 111 dont la surface interne 111a présente une forme tronconique et délimite une cavité 112. La surface interne 111a est destinée à être en contact avec une préforme fibreuse 200 à imprégner. L'élément de moule femelle 110 comprend également un fond 113 fermant la partie inférieure 1110 de la paroi latérale 111. Dans l'exemple décrit ici, la partie supérieure 1111 de la paroi latérale 111 comporte une première et une deuxième gorges annulaires 1112 et 1113 qui sont destinées à recevoir respectivement un premier et un deuxième joints toriques 1114 et 1115. Toujours dans l'exemple décrit ici, un joint annulaire 1140 est en outre disposé entre la partie supérieure 1111 de la paroi latérale 111 et une bride 114 fixée sur la partie supérieure 1111 par des vis 1141.
L'outillage d'imprégnation 100 comprend également un élément de moule mâle 130 comportant un corps axisymétrique 131 qui est destiné à être logé dans la cavité 112 de l'élément de moule femelle 110 lors de la fermeture de l'outillage d'imprégnation 100. Le corps axisymétrique 131 présente une forme adaptée permettant d'assurer la remontée du liquide de compaction pour injecter la résine dans la texture du bas vers le haut comme décrit ci-après. Dans l'exemple décrit ici, le corps axisymétrique 131 s'inscrit à l'intérieur d'un tronc de cône et présente une surface externe 131a de forme concave. Lorsque l'élément de moule mâle 130 est assemblé avec l'élément de moule femelle 110, la surface externe 131a du corps axisymétrique 131 est placée en regard et à une distance déterminée de la surface interne de forme tronconique 111a de la paroi latérale 111 de l'élément de moule femelle 110 (figure 3A). L'élément de moule mâle comprend un couvercle 132 amovible qui est fixé sur une bride 1310 présente sur la partie supérieure du corps tronconique 131 au moyen de vis 1320.
L'outillage d'imprégnation 100 comprend également une membrane imperméable 120 présentant une forme tronconique, la membrane, par exemple en silicone, étant apte à se déformer (s'allonger) sans se rompre sous l'effet de la pression du liquide de compactage. La membrane 120 est interposée entre la surface externe 131a du corps axisymétrique 131 de l'élément de moule mâle et la surface interne 111a de la paroi latérale 111 de l'élément de moule femelle 110. La membrane 120 est placée à proximité de la paroi externe 131a du corps axisymétrique 131 de l'élément de moule mâle 130. L'espace délimité entre la surface interne 111a de la paroi latérale 111 de l'élément de moule femelle 110 et la face 120a de la membrane en regard de la surface 111a correspond à une chambre d'imprégnation 140 dans laquelle est présente une préforme fibreuse 200 à imprégner (figure 3A). L'espace délimité entre la surface externe 131a du corps axisymétrique et la face 120b de la membrane 120 en regard de la surface 131a correspond à une chambre de compaction 150.
Dans l'exemple décrit ici, l'élément de moule femelle 110 comprend deux ports d'injection 115 et 116 présent sur le fond 113 de l'élément de moule femelle. Les ports d'injection 115 et 116 débouchent dans la chambre d'imprégnation 140 (figure 3A). Les ports d'injection 115 et 116 sont utilisés pour injecter une résine dans la chambre d'imprégnation lorsqu'elle contient une préforme fibreuse à imprégner. L'élément de moule mâle peut en outre comprendre des ports d'évacuation 117 disposés du côté opposé par rapport aux ports d'injection 115 et 116, ici placés au niveau de la bride 114 (figures 2 et 3C). Les ports d'évacuation 117 sont en communication avec la chambre d'imprégnation 140 et permettent de faciliter l'injection de la résine dans la chambre d'imprégnation en évacuant l'air présent dans la chambre d'imprégnation, les ports d'évacuation pouvant être éventuellement reliés à une pompe de tirage. Selon une variante de réalisation, l'élément de moule femelle peut ne comprendre qu'un seul port d'injection ou plus de deux ports d'injection.
Dans l'exemple décrit ici et comme représenté sur les figures 2 et 3A à 3C, le fond 113 de l'élément de moule femelle 110 peut comporter une rigole circulaire 1131 dans laquelle débouche directement les ports d'injection 115 et 116. La rigole 1131 permet de répartir la résine injectée via les ports d'injection 115 et 116 de manière uniforme au niveau du fond 113 et, par conséquent, au niveau du bord inférieur 201 de la préforme fibreuse 200 à imprégner.
Dans l'exemple décrit ici, l'élément de moule mâle 130 comprend un port d'injection 133 présent au niveau du fond 134 du corps axisymétrique 131, le port d'injection 133 débouchant dans la chambre de compaction 150. Le port d'injection 133 est utilisé pour injecter un fluide de compaction dans la chambre de compaction 150 comme décrit ci-après en détails. L'élément de moule mâle 130 peut comprendre en outre des ports d'évacuation 135 permettant de faciliter l'introduction du fluide de compaction dans la chambre de compaction 150 en évacuant l'air présent dans ladite chambre. Selon une variante de réalisation, plusieurs ports d'injection peuvent être présents sur l'élément de moule mâle 130. On peut également utiliser le port d'injection 133 et l'évent 135 pour faire circuler le fluide de compaction à une température permettant de contribuer à la polymérisation de la résine lors de la phase de cuisson de la pièce composite.
On décrit maintenant un procédé d'injection d'une résine dans une préforme fibreuse conformément à un mode de réalisation de l'invention. Le procédé requière des moyens de maintien tels qu'une presse (non représentée sur les figures 3A à 3C).
Comme illustré sur la figure 2, les éléments du moule mâle sont assemblés, à savoir les parties 114, 131, 132 ainsi que la membrane 120 et le matériau poreux 1140. La partie mâle ainsi équipée est fixée sous le plateau supérieur de la presse à l'aide des vis 1141. Une préforme fibreuse 200 est introduite ans la cavité 112 de l'élément de moule femelle 110 qui est équipée des joints 1114 et 1115. L'outillage est fermé par abaissement du plateau supérieur de la presse. Une fois l'outillage d'imprégnation fermé, une résine 10 est injectée dans la chambre d'imprégnation 140 entre la face exposée 200a de la préforme fibreuse et la face 120a de la membrane 120 en regard de la face 200a de la préforme 200 (figure 3A). La résine 10 est injectée dans la chambre d'imprégnation 140 via les ports d'injection 115 et 116, c'est-à- dire au niveau du bord inférieur 201 de la préforme fibreuse 200. La résine 10 se répartit uniformément autour du bord inférieur 201 de la préforme 200 grâce à la rigole 1131 dans laquelle débouche les ports d'injection 115 et 116. Dans l'exemple décrit ici, les ports d'injection 115 et 116 sont positionnés de manière à déboucher dans un espace vide de la chambre d'imprégnation 140, c'est-à-dire un espace qui n'est pas occupé par la préforme fibreuse 200. Dans ce cas, la résine 10 est injectée dans cet espace libre pour être ultérieurement poussée à l'intérieur de la préforme comme expliqué ci-après. Selon une variante de réalisation, les ports d'injection 115 et 116 peuvent être positionnés de manière à déboucher au niveau du bord inférieur 201 de la préforme 200. Dans ce cas, la résine 10 est directement injectée dans la préforme.
De manière optionnelle, avant l'injection de la résine dans la chambre d'imprégnation 140, une dépression peut être préalablement appliquée dans la chambre de compaction 150, par exemple en reliant une pompe à vide au port d'injection 133 et aux ports d'évacuation 135. Cette dépression permet de s'assurer qu'un espace est bien présent entre la membrane et la préforme avant l'injection de la résine. Ainsi, lors de l'injection de la résine, celle-ci se répand préférentiellement dans l'espace libre et non dans la préforme qui présente une perméabilité plus faible vis- à-vis de l'espace libre.
La quantité de résine 10 introduite dans la chambre d'imprégnation 140 est déterminée en fonction du volume de la préforme 200 à imprégner et de son taux de fibres. Lorsque la quantité déterminée de résine 10 a été injectée dans la chambre d'imprégnation 140, les ports d'injection 115, 116 et les ports d'évacuation 117 sont fermés. Un fluide compaction 20 est alors introduit dans la chambre de compaction 150 via le port d'injection 133 présent au niveau du fond 134 du corps axisymétrique 131, un conduit 21 reliant le port d'injection 133 à l'entrée de l'outillage au niveau du couvercle 132 (figure 3B). Les ports d'évacuation 135 sont ouverts dans un premier temps pour permettre de 18 051468
10
chasser l'air repoussé par le fluide compaction 20, puis sont fermés dans un deuxième temps afin de permettre la mise sous pression du fluide de compaction.
L'injection du fluide de compaction 20 dans la chambre de compaction 20 a pour effet de repousser la membrane 120 vers la préforme fibreuse 200 dans des directions indiquées par les flèches représentées sur les figures 3B et 3C et de forcer la résine 10 à pénétrer dans la préforme200. Au fur et à mesure de l'injection du fluide compaction dans la chambre de compaction 150, la membrane 120 pousse à la fois la résine dans l'espace libre de la chambre d'imprégnation 130 et dans la préforme comme illustré sur les figures 3B et 3C. Par l'action du fluide de compaction 20 sur la membrane 120, la membrane exerce une pression de compaction sur la préforme, pression qui est appliquée depuis l'intérieur, c'est-à-dire sur la face interne 200a de la préforme, vers l'extérieur, c'est-à-dire vers la face externe 200b de la préforme fibreuse 200.
Le fluide compaction 20 est injecté de préférence à partir de la partie inférieure 151 de la chambre de compaction 150 située au voisinage du bord inférieur 201 de la préforme fibreuse 200, ce qui permet à la membrane 120 de repousser progressivement la résine 10 dans la préforme 200 et d'optimiser l'imprégnation de la préforme dans tout son volume.
On obtient alors une préforme fibreuse imprégnée d'un précurseur de matrice. La transformation du précurseur en matrice organique, à savoir sa polymérisation, est réalisée par traitement thermique, généralement par chauffage de l'outillage d'imprégnation, par exemple par circulation d'un fluide caloporteur dans des serpentins entourant l'outillage et dans la chambre de compaction, après élimination du solvant éventuel et réticulation du polymère. Lors de la polymérisation, une pression, dite « pression de polymérisation », est toujours appliquée par la membrane 120 sur la préforme fibreuse 200 car le fluide compaction exerce toujours lui-même une pression sur la membrane.
L'application à la fois d'une pression de compaction lors de l'imprégnation de la préforme et d'une pression de polymérisation lors de la polymérisation de la résine dans la préforme provoque une diminution de l'épaisseur de celle-ci en même temps qu'une augmentation de son diamètre intérieur, ces déplacements étant limités par les déformations possibles de la préforme (compressibilité).
La matrice organique peut être notamment obtenue à partir de résines époxydes, telle que, par exemple, la résine époxyde à hautes performances, ou de précurseurs liquides de matrices carbone ou céramique.
Dans le cas de la formation d'une matrice carbone ou céramique, le traitement thermique consiste à pyrolyser le précurseur organique pour transformer la matrice organique en une matrice carbone ou céramique selon le précurseur utilisé et les conditions de pyrolyse. A titre d'exemple, des précurseurs liquides de carbone peuvent être des résines à taux de coke relativement élevé, telles que des résines phénoliques, tandis que des précurseurs liquides de céramique, notamment de SiC, peuvent être des résines de type polycarbosilane (PCS) ou polytitanocarbosilane (PTCS) ou polysilazane (PSZ).
Après la polymérisation, telle qu'illustrée sur la figure 4, on obtient une pièce 400 en matériau composite comprenant un renfort fibreux constitué de la préforme 200 densifié par une matrice formée par la résine imprégnée et polymérisée dans la préforme. Le démoulage de la pièce 400 est réalisé en retirant l'élément de moule mâle 130, la bride 114 et la membrane 120.
La préforme fibreuse 200 est réalisée de façon connue par tissage au moyen d'un métier à tisser de type jacquard sur lequel on a disposé un faisceau de fils de chaînes ou torons en une pluralité de couches, les fils de chaînes étant liés par des fils de trame ou inversement. La texture fibreuse peut être réalisée par empilement de strates ou plis obtenu par tissage bidimensionnel (2D). Par « tissage bidimensionnel », on entend ici un mode de tissage classique par lequel chaque fil de trame passe d'un côté à l'autre de fils d'une seule couche de chaîne ou inversement. La texture fibreuse peut être également réalisée directement en une seule pièce par tissage tridimensionnel (3D) ou multicouche. Par « tissage tridimensionnel » ou « tissage multicouche », on entend ici un mode de tissage par lequel certains au moins des fils de trame lient des fils de chaîne sur plusieurs couches de fils de chaîne ou inversement suivant un tissage correspondant à une armure de tissage qui peut être notamment choisie parmi une des armures suivantes : interlock, 68
12
multi-toile, multi-satin et multi-sergé. La préforme fibreuse peut encore être réalisée à partir de strates fibreuses unidirectionnelles aiguilletées entre elles.
Le procédé de l'invention est particulièrement adapté pour permettre l'introduction d'une composition liquide dans des textures fibreuses 2D (textures obtenues par empilement de strates ou plis 2D) ou 3D d'épaisseur importante, c'est-à-dire des structures fibreuses ayant une épaisseur d'au moins 90 mm avec un taux de fibres supérieur à 30%, par exemple 40%. Les textures 3D présentent en outre une géométrie complexe dans laquelle il est difficile d'introduire et de répartir de manière homogène des compositions liquides chargées ou non. Le procédé de l'invention est également très bien adapté pour l'introduction d'une composition liquide dans des textures fibreuses tissées 3D.
Les fils utilisés pour former la préforme fibreuse 200 et, par conséquent, le renfort fibreux de la pièce 400 en matériau composite peuvent être notamment formés de fibres constituées d'un des matériaux suivants: carbone, carbure de silicium, verre, l'alumine, mullite, aluminosilicate, borosilicate, ou un mélange de plusieurs de ces matériaux.
Le procédé de l'invention a été décrit précédemment en application à la fabrication d'une pièce de forme tronconique. Toutefois le procédé de fabrication et l'outillage d'imprégnation de l'invention s'appliquent également à la fabrication de pièces en matériau composite de forme cylindrique. Dans ce cas, la préforme, la paroi latérale délimitant la cavité de l'élément de moule femelle et la membrane imperméable et déformable présentent une forme cylindrique tandis que le corps axisymétrique de l'élément de moule mâle s'inscrit à l'intérieur d'un cylindre et présente une surface externe de forme concave.

Claims

REVENDICATIONS
1. Procédé de fabrication d'une pièce de forme tronconique (400) ou cylindrique en matériau composite comprenant les étapes suivantes :
- placement d'une préforme fibreuse de forme tronconique (200) ou cylindrique dans un élément de moule femelle (110) d'un outillage d'imprégnation (100), l'élément de moule femelle (110) comportant une cavité (112) délimitée par une paroi latérale (111) présentant une surface interne de forme tronconique (111a) ou cylindrique, la préforme fibreuse (200) étant placée contre la surface interne (111a) de ladite paroi latérale (111),
- placement d'une membrane imperméable et déformable (120) en regard de la face exposée (200a) de la préforme fibreuse (200), la membrane (120) présentant une forme tronconique ou cylindrique, l'espace délimité entre la surface interne de forme tronconique (111a) ou cylindrique de la paroi latérale (111) de l'élément de moule femelle (110) et la membrane (120) correspondant à une chambre d'imprégnation (140) dans laquelle la préforme fibreuse (200) est présente,
- assemblage d'un élément de moule mâle (130) avec l'élément de moule femelle (110), l'élément de moule mâle (130) comprenant un corps axisymétrique (131) logé dans la cavité (112) de l'élément de moule femelle (110), la surface externe (131a) du corps axisymétrique (131) étant placée en regard et à une distance déterminée de la surface interne de forme tronconique (111a) ou cylindrique de la paroi latérale (111) de l'élément de moule femelle (110), la membrane (120) étant interposée entre la paroi externe du corps axisymétrique (131a) de l'élément de moule mâle (130) et la surface interne de forme tronconique (111a) ou cylindrique de la paroi latérale (111) de l'élément de moule femelle (110), l'espace délimité entre la surface externe (131a) du corps axisymétrique (131) et la membrane (120) correspondant à une chambre de compaction (150),
- injection d'une résine (10) dans la chambre d'imprégnation
(HO),
- injection d'un fluide de compaction (20) dans la chambre de compaction (150), le fluide de compaction (20) exerçant une pression sur la membrane (120) pour forcer la résine (10) à imprégner la préforme fibreuse (200),
- polymérisation de la résine de manière à obtenir une pièce en matériau composite (400) comprenant un renfort fibreux densifié par une matrice.
2. Procédé selon la revendication 1, dans lequel la résine (10) est injectée au niveau du bord inférieur (201) de la préforme fibreuse (200), le fluide compaction (20) étant injecté à partir de la partie inférieure (151) de la chambre de compaction (150) située au voisinage du bord inférieur (201) de la préforme fibreuse (200).
3. Procédé selon la revendication 2, dans lequel la résine (10) est injectée dans une rigole circulaire (1131) présente sur le fond (113) de l'élément de moule femelle (110).
4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel, avant l'injection de la résine (10) dans la chambre d'imprégnation (140), une dépression est appliquée dans la chambre de compaction (150).
5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel la préforme fibreuse (200) est obtenue par tissage tridimensionnel ou multicouche.
6. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel la préforme fibreuse (200) est obtenue par empilement de strates fibreuses obtenues par tissage bidimensionnel.
7. Procédé selon l'une quelconque des revendications 1 à 6, dans lequel les fils de la préforme fibreuse (200) sont formés de fibres constituées d'un ou plusieurs des matériaux suivants : carbone, carbure de silicium, verre, l'alumine, mullite, aluminosilicate, borosilicate, ou d'un mélange de plusieurs de ces matériaux.
8. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel la résine (10) est choisie parmi au moins une des résines suivantes : résine époxyde, résine précurseur de carbone et résine précurseur de carbure de silicium.
9. Outillage d'imprégnation (100) pour une préforme fibreuse de forme tronconique (200) ou cylindrique, l'outillage comprenant :
- un élément de moule femelle (110) comportant une cavité (112) délimitée par une paroi latérale (111) présentant une surface interne de forme tronconique (111a) ou cylindrique,
- un élément de moule mâle (130) comprenant un corps axisymétrique (131) logé dans la cavité (112) de l'élément de moule femelle (110), la surface externe (131a) du corps axisymétrique (131) étant placée en regard et à une distance déterminée de la surface interne de forme tronconique (111a) ou cylindrique de la paroi latérale (111) de l'élément de moule femelle (110),
- une membrane imperméable et déformable (120) présentant une forme tronconique ou cylindrique, la membrane étant placée en vis-à- vis de la paroi externe (131a) du corps axisymétrique (131) de l'élément de moule mâle (130), l'espace délimité entre la surface interne de forme tronconique (111a) ou cylindrique de la paroi latérale (111) de l'élément de moule femelle (110) et la membrane (120) correspondant à une chambre d'imprégnation (140), l'espace délimité entre la surface externe (131a) du corps axisymétrique (131) et la membrane (120) correspondant à une chambre de compaction (150),
- l'élément de moule femelle (110) comprenant au moins un port d'injection (115) de résine débouchant dans la chambre d'imprégnation (140),
- l'élément de moule mâle (130) comprenant au moins un port d'injection (133) d'un fluide de compaction débouchant dans la chambre de compaction (150).
10. Outillage selon la revendication 9, dans lequel chaque port d'injection (115) de résine débouche dans la chambre d'imprégnation (140) au niveau d'un fond (113) de l'élément de moule femelle (110), ledit fond comportant une rigole circulaire (1131) dans laquelle débouchent le ou les ports d'injection (115) de résine.
PCT/FR2018/051468 2017-06-19 2018-06-19 Procédé de réalisation d'une pièce de forme tronconique ou cylindrique en matériau composite et outillage d'imprégnation d'une préforme fibreuse de forme tronconique ou cylindrique WO2018234686A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA2,971,336 2017-06-19
CA2971336A CA2971336A1 (fr) 2017-06-19 2017-06-19 Procede de realisation d'une piece de forme tronconique ou cylindrique en materiau composite et outillage d'impregnation d'une preforme fibreuse de forme tronconique ou cylindrique

Publications (1)

Publication Number Publication Date
WO2018234686A1 true WO2018234686A1 (fr) 2018-12-27

Family

ID=62948259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2018/051468 WO2018234686A1 (fr) 2017-06-19 2018-06-19 Procédé de réalisation d'une pièce de forme tronconique ou cylindrique en matériau composite et outillage d'imprégnation d'une préforme fibreuse de forme tronconique ou cylindrique

Country Status (2)

Country Link
CA (1) CA2971336A1 (fr)
WO (1) WO2018234686A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111421858A (zh) * 2020-05-18 2020-07-17 北京玻钢院复合材料有限公司 一种复合材料发射箱及其制备方法
CN111605228A (zh) * 2020-04-20 2020-09-01 航天材料及工艺研究所 一种轻型柔性预制体增强复合材料维形成型模具及成型方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA676309A (en) * 1963-12-17 Structural Fibers Manufacture of fiber-reinforced plastic tanks
GB2066144A (en) * 1979-12-20 1981-07-08 Nava Pier Luigi Method and apparatus to mould reinforced resin articles
FR2828130A1 (fr) * 2001-08-06 2003-02-07 Pole De Plasturgie De L Est Methode de fabrication d'une piece en materiaux composites a haut taux de renfort obtenue par le procede rtm et outillage pour sa mise en oeuvre
DE102011009506A1 (de) * 2011-01-26 2012-07-26 Institut Für Verbundwerkstoffe Gmbh Vorrichtung und Verfahren zur Herstellung hohler Formbauteile aus einem Faserverbundwerkstoff

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA676309A (en) * 1963-12-17 Structural Fibers Manufacture of fiber-reinforced plastic tanks
GB2066144A (en) * 1979-12-20 1981-07-08 Nava Pier Luigi Method and apparatus to mould reinforced resin articles
FR2828130A1 (fr) * 2001-08-06 2003-02-07 Pole De Plasturgie De L Est Methode de fabrication d'une piece en materiaux composites a haut taux de renfort obtenue par le procede rtm et outillage pour sa mise en oeuvre
DE102011009506A1 (de) * 2011-01-26 2012-07-26 Institut Für Verbundwerkstoffe Gmbh Vorrichtung und Verfahren zur Herstellung hohler Formbauteile aus einem Faserverbundwerkstoff

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111605228A (zh) * 2020-04-20 2020-09-01 航天材料及工艺研究所 一种轻型柔性预制体增强复合材料维形成型模具及成型方法
CN111605228B (zh) * 2020-04-20 2022-05-24 航天材料及工艺研究所 一种轻型柔性预制体增强复合材料维形成型模具及成型方法
CN111421858A (zh) * 2020-05-18 2020-07-17 北京玻钢院复合材料有限公司 一种复合材料发射箱及其制备方法

Also Published As

Publication number Publication date
CA2971336A1 (fr) 2018-12-19

Similar Documents

Publication Publication Date Title
EP1824664B1 (fr) Densification de structures fibreuses pour la realisation de pieces epaisses en materiau composite
FR3050454B1 (fr) Procede de fabrication d'une piece en materiau composite par injection d'une barbotine chargee dans une texture fibreuse
EP3359506B1 (fr) Procédé de fabrication d'une pièce en matériau composite céramique par injection sous pression d'une barbotine chargée dans un moule poreux
EP3077183B1 (fr) Procédé d'imprégnation d'une préforme fibreuse
EP2326486B1 (fr) Procede de fabrication d'une piece en materiau composite et dispositif associe
EP3768405B1 (fr) Procédé de fabrication d'une pièce en matériau composite céramique par injection de poudre dans un renfort fibreux avec drainage par strate de filtration composite
WO2010007308A1 (fr) Procede de realisation d'une tuyere ou d'un divergent de tuyere en materiau composite
EP0385089A1 (fr) Procédé d'assemblage dans un module d'un élément rigide à membrane de séparation, de filtration, ou de transformation catalytique
WO2018234686A1 (fr) Procédé de réalisation d'une pièce de forme tronconique ou cylindrique en matériau composite et outillage d'imprégnation d'une préforme fibreuse de forme tronconique ou cylindrique
WO2018234669A1 (fr) Procede de fabrication d'une piece en materiau composite presentant une ou plusieurs variations locales d'epaisseur
WO2018234687A1 (fr) Outillage et procédé d'imprégnation d'une préforme fibreuse de révolution
FR2970898A1 (fr) Piece en materiau composite comportant des elements de bossage
EP3996889B1 (fr) Procede de fabrication d'une piece en materiau composite par injection d'une barbotine chargee dans une texture fibreuse
FR3098433A1 (fr) Procédé de fabrication d’une pièce en matériau composite par injection d’une barbotine chargée dans une texture fibreuse
FR3004732A1 (fr) Outillage de maintien, chargement et installation pour la densification de preformes poreuses de revolution
WO2022079379A1 (fr) Texture fibreuse non tissee avec embuvage
WO2024062178A1 (fr) Membrane drainante pour la fabrication de materiaux composites
WO2023194673A1 (fr) Procede de densification d'une texture fibreuse par injection de barbotine.
WO2018234688A1 (fr) Procede de fabrication d'une piece en materiau composite par injection et polymerisation d'une resine dans une texture fibreuse
FR3114990A1 (fr) Texture fibreuse comprenant des plis unidirectionnels avec des mèches espacées
WO2022263741A1 (fr) Procede d'injection de poudres ceramiques avec filtre cree in situ dans la preforme fibreuse
FR3063674A1 (fr) Dispositif d'application de pression mecanique, procede d'impregnation et procede de collage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18742534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18742534

Country of ref document: EP

Kind code of ref document: A1