WO2018233585A1 - 一种激光封装装置及封装方法 - Google Patents

一种激光封装装置及封装方法 Download PDF

Info

Publication number
WO2018233585A1
WO2018233585A1 PCT/CN2018/091756 CN2018091756W WO2018233585A1 WO 2018233585 A1 WO2018233585 A1 WO 2018233585A1 CN 2018091756 W CN2018091756 W CN 2018091756W WO 2018233585 A1 WO2018233585 A1 WO 2018233585A1
Authority
WO
WIPO (PCT)
Prior art keywords
spot
segment
section
laser
laser beam
Prior art date
Application number
PCT/CN2018/091756
Other languages
English (en)
French (fr)
Inventor
蓝科
戈亚萍
Original Assignee
上海微电子装备(集团)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微电子装备(集团)股份有限公司 filed Critical 上海微电子装备(集团)股份有限公司
Priority to KR1020197038733A priority Critical patent/KR20200041836A/ko
Priority to JP2019568058A priority patent/JP6872042B2/ja
Publication of WO2018233585A1 publication Critical patent/WO2018233585A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/206Laser sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0626Energy control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0732Shaping the laser spot into a rectangular shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • H10K71/421Thermal treatment, e.g. annealing in the presence of a solvent vapour using coherent electromagnetic radiation, e.g. laser annealing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants

Definitions

  • the present invention relates to the field of optoelectronic semiconductors, and in particular to a laser packaging device and a packaging method.
  • Photoelectric semiconductor devices have been widely used in various fields of life.
  • OLED Organic Light-Emitting Diode
  • the electrodes and organic layers in OLED devices are very sensitive to oxygen and moisture. Oxygen and moisture penetrating into the OLED device from the external environment can seriously shorten the life of the OLED device. Therefore, it is very important to provide an effective hermetic seal for OLED devices.
  • hermetic sealing of OLED devices There are the following requirements for hermetic sealing of OLED devices:
  • the hermetic seal shall provide a barrier to oxygen (10 -3 cm 3 /m 2 /day) and water (10 -6 g / m 2 /day);
  • the size of the hermetic seal should be as small as possible (eg, ⁇ 2 mm) so that it does not adversely affect the size of the OLED display;
  • the temperature generated during the sealing process should not damage the materials in the OLED display (eg, electrodes and organic layers, etc.);
  • the gas released during the sealing process should not contaminate the substances in the OLED display
  • the hermetic seal should allow point-connected components, such as thin-film chrome electrodes, to enter the OLED display.
  • the present invention provides a laser packaging device that irradiates a laser beam onto a package substrate and forms a spot on the package substrate, the spot including the first near the edge of the spot. a segment and a second segment near the center of the spot, each of the first segment and the second segment exhibiting a decrease in light intensity along a direction of the spot edge toward a center of the spot, the light intensity reduction ratio of the first segment being less than a light intensity reduction ratio of the second segment, and a boundary position of the first segment and the second segment is defined as a first inflection point.
  • the energy distribution of the spot formed by the laser beam is symmetrically distributed with respect to the direction of the laser beam travel path.
  • the light at the center of the spot is greater than 95% of the light intensity at the first inflection point.
  • the first segment includes a near-central segment that gradually decreases in intensity near a center of the spot, and a descending velocity near the edge of the spot is greater than a near-edge segment of the near-center segment.
  • a boundary position between the near center section and the near edge section is defined as a second inflection point.
  • the second inflection point is symmetrically distributed with respect to a center of the spot.
  • the first segment is a curved segment in which the descending ratio is gradually decreased or a straight segment in which the descending ratio is fixed.
  • the first inflection point is symmetrically distributed with respect to a center of the spot.
  • the spot further includes a third section with uniform light intensity, the third section being located outside the first section.
  • the light spot further includes a third section in which the light intensity is lowered from the inside to the outside, the third section is located outside the first section, and the light intensity reduction ratio of the third section is greater than The light intensity reduction ratio of the first segment is described.
  • the laser packaging device includes:
  • a light source assembly for providing a laser beam
  • a shaping component for shaping a spot shape of the laser beam
  • a scanning galvanometer for scanning the laser beam onto the package substrate
  • a light source assembly for providing the laser beam
  • a shaping assembly for shaping the spot shape of the laser beam
  • a scanning galvanometer for scanning the laser beam
  • Imaging lens set for laser beam imaging.
  • the scanning galvanometer is provided with an imaging mirror group, and the scanning galvanometer scans the laser beam onto the package substrate through the imaging mirror group.
  • the imaging mirror set is a telecentric field mirror.
  • the imaging lens set has a focal length ranging from 290 mm to 310 mm.
  • the laser packaging device further includes:
  • a beam expander group for zooming the laser beam
  • the beam expander lens group is located between the light source assembly and the shaping component.
  • the zooming lens group has a zoom range of 1 to 2 times.
  • the light source component is an infrared laser.
  • the infrared laser comprises a light source and a collimating mirror group, the light source emitting a laser beam, collimated by the collimating mirror group to form a parallel laser beam.
  • the shaping component is a diffractive optical element or a refractive optical element or a deformable mirror or a spatial light modulator.
  • the scanning galvanometer is a two-dimensional scanning galvanometer, and the scanning angle of the two-dimensional scanning galvanometer ranges from ⁇ 20°.
  • Another aspect of the present invention provides a packaging method of a package substrate, which uses a laser beam to illuminate a region to be packaged of the package substrate to package the package substrate, and includes the following steps:
  • the laser beam forms a spot on the package substrate, the spot including a first segment near the edge of the spot and near the a second segment of the center of the spot, each of the first segment and the second segment exhibiting a decrease in light intensity along a direction of the spot edge toward a center of the spot, the light intensity reduction ratio of the first segment being lower than the first a ratio of light intensity reduction of the two segments, the boundary position of the first segment and the second segment is defined as a first inflection point;
  • the laser beam travels along a package to be packaged area of the package substrate.
  • the energy distribution of the spot formed by the laser beam is symmetrically distributed with respect to the direction of the laser beam traveling route.
  • the light at the center of the spot is greater than 95% of the light intensity at the first inflection point.
  • the first segment includes a near-central segment that gradually decreases in intensity near a center of the spot, and a descending velocity near the edge of the spot is greater than a near-edge segment of the near-center segment.
  • a boundary position between the near center section and the near edge section is defined as a second inflection point.
  • the second inflection point is symmetrically distributed with respect to a center of the spot.
  • the first segment is a curved segment in which the descending ratio is gradually decreased or a straight segment in which the descending ratio is fixed.
  • the first inflection point is symmetrically distributed with respect to a center of the spot.
  • the spot further includes a third section with uniform light intensity, the third section being located outside the first section.
  • the light spot further includes a third section in which the light intensity is lowered from the inside to the outside, the third section is located outside the first section, and the light intensity reduction ratio of the third section is greater than The light intensity reduction ratio of the first segment is described.
  • a novel spot is designed, including a first segment near the edge of the spot and a second segment near the center of the spot, the first segment and The second sections each exhibit a decrease in light intensity along a direction of the spot edge toward the center of the spot, the light intensity reduction ratio of the first section being lower than the light intensity reduction ratio of the second section, and the laser using the spot
  • the package of the package substrate can effectively improve the uniformity of the dose on the glass frit, and further improve the sealing property of the glass frit; in addition, the shaping of the laser beam spot is realized by using the light source assembly, the shaping element and the scanning galvanometer.
  • the desired spot shape is formed, and the bubble problem caused by the uniformity of the dose of the glass package is solved; and the spot shape and the spot size of different shapes can be realized by replacing the shaping element, and the spot diameter range can cover several tens of ⁇ m to several tens Mm, effectively improve process adaptability and save costs.
  • FIG. 1 is a schematic structural view of a laser package device according to an embodiment of the present invention.
  • FIG. 2 is a plan view of a glass package in accordance with an embodiment of the present invention.
  • FIG. 3 is a top plan view of an OLED display in accordance with an embodiment of the present invention.
  • FIG. 4 is a schematic view showing the shape of a two-dimensional spot generated in an embodiment of the present invention.
  • FIG. 5 is a schematic view showing the shape of a spot after integration of a spot generated by scanning according to an embodiment of the present invention
  • FIG. 6 is a block diagram of a frit packaging system in accordance with an embodiment of the present invention.
  • FIG. 7 is a comparison diagram of a non-scanning temperature profile and a conventional M-type spot in an example of the present invention.
  • Figure 10 is a cross-sectional view showing a slice of a glass frit packaged by a laser beam spot formed in an embodiment of the present invention.
  • 110-control system 111, 112, 113, 114, 115-laser packaging device; 1110-light source; 1111-collimating mirror group; 1112-beam expanding mirror group; 1113-shaping component; 1114-scanning galvanometer ;1115- telecentric field mirror; 120-glass substrate; 121-glass package; 1211-cover glass; 1212-glass frit; 1213-substrate glass; 1214-electrode; 1215-OLED layer; A-second section ; B - first section; C - third section.
  • the embodiment provides a laser packaging device, which can form a spot appearance on the package substrate as shown in FIG. 4 and FIG. 5 .
  • the light intensity distribution of the spot can be divided into the first. Section B and second section A, where the first section B is near the edge of the spot, the second section A is near the center of the spot, and the first section B and the second area A Connected.
  • first segment B and the second segment A each exhibit a decrease in light intensity along the edge of the spot toward the center of the spot, and the first segment B is lowered from the strongest light intensity I2 to I1, and the second Section A is abruptly dropped by 0-5% to I0 at I1, wherein the rate of decrease of the second section A from I1 to I0 is greater than that of the first section B from the strongest light intensity I2 to I1 Ratio, and a first inflection point is formed at I1.
  • FIG. 5 is a top view of the scanning spot after integration along the scanning direction. It can be seen from FIG.
  • the intensity of the center position of the scanning spot in the actual application scenario is lower than the surrounding area, since the area to be packaged is an approximately rectangular area,
  • the cumulative light intensity along the center of the scan path is consistent with the cumulative light intensity on both sides of the scan path to ensure uniformity of the package.
  • the energy distribution of the spot formed by the laser beam irradiating the substrate is symmetrically distributed with respect to the surface formed by the parallel traveling path of the laser beam (that is, the energy distribution of the spot formed by the laser beam is symmetrical with respect to the direction of the traveling path of the laser beam distributed).
  • the intensity I0 of the center point is greater than or equal to 95% of the light intensity I1 at the first inflection point, that is, I0 ⁇ I1*95%.
  • the first section falling from the strongest light intensity I2 to I1 may have various forms, and may be a straight section having a fixed decreasing ratio, a curved section gradually decreasing in a decreasing ratio, and a falling ratio.
  • the segmented reduced fold line segment, wherein the fold line segment can have one or more inflection points, and the inflection points are symmetrically distributed relative to the centerline of the spot.
  • the light spot may further include a third section C located outside the first section B, which may be a section in which the light intensity is evenly distributed, or may be the light intensity from inside to outside (along the center of the spot toward the edge of the spot)
  • the direction is a rapidly decreasing section located in the edge region of the spot where the laser beam is irradiated on the substrate to be packaged.
  • the third section C or participating in the package may not participate in the package, depending on the specific operating conditions.
  • a light source assembly including a light source 1110 and a collimating lens group 1111), a beam expander lens group 1112, a shaping component 1113, a scanning galvanometer 1114, and an imaging mirror group are included.
  • the light source component 1110 is an infrared laser, and includes a light source 1110 and a collimating lens group 1111.
  • the light source 1110 emits a diverging laser beam, and is collimated by the collimating lens group 1111 to form a parallel laser beam, wherein the collimating lens group 1111 It is used to collimate the laser beam output from the light source 1110.
  • the beam expander group 1112 is used to zoom the spot of the laser beam
  • the shaping component 1113 is used to shape the spot shape of the laser beam
  • the scanning galvanometer 1114 scans the laser beam to form a scanning laser.
  • the imaging lens is far away.
  • the cardioid mirror 1115, the telecentric field mirror 1115 images the formed scanning laser onto the glass package.
  • the light source 1110 emits a diverging laser beam to the collimating lens group 1111, and is collimated by the collimating lens group 1111 to form a parallel laser beam, reaching the beam expanding lens group 1112, and the beam expanding lens group 1112 doubles the laser beam spot.
  • the shaping component 1113 shapes the spot shape and then reaches the scanning galvanometer 1114.
  • the scanning galvanometer 1114 scans the laser beam and forms a scanning laser to reach the telecentric field lens 1115.
  • the telecentric field lens 1115 will The laser beam is imaged onto the glass package 121 to laser encapsulate the glass package 121.
  • the beam expanding mirror group 1112 functions to zoom the laser beam, and can control the size of the laser beam spot to control the laser power.
  • the beam expander group 1112 is located between the light source assembly and the scanning galvanometer 1114, and the beam expander lens group 1112 can achieve a 1 to 2 times magnification. By adjusting the beam expander group 1112 and the switching shaping component 1113, the change in spot size can be achieved.
  • the shaping component 1113 can select a DOE (Diffractive Optical Elements), a ROE (Refractive Optical Elements), a deformable mirror or a spatial light modulator, and the shaping spot diameter can be 650 ⁇ m.
  • the laser beam generated by the light source 1110 is an infrared Gaussian beam having a wavelength of 1064 nm.
  • the scanning galvanometer 1114 is a two-dimensional scanning galvanometer, and the scanning angle of the two-dimensional scanning galvanometer is ⁇ 20°.
  • the focal length of the telecentric field lens 1115 ranges from 290 to 310 mm, preferably 300 mm. According to the diffraction limit, the diameter of the laser beam spot incident on the shaping component 1113 can be calculated as follows:
  • is the wavelength of the laser beam incident on the shaping component
  • M 2 is the Gaussian beam quality factor
  • f is the field lens focal length of the shaping component
  • is the pi
  • D spot is the laser beam spot diameter incident on the shaping component 1113. It is calculated that the minimum diameter of the spot achievable by the present invention can be several tens of ⁇ m.
  • the two-dimensional contour of the spot formed in this embodiment is as shown in FIG. 4, and the contour is symmetrically distributed. After continuously decreasing from the highest spot intensity I2 to I1, the spot intensity is suddenly decreased by 5% to the lowest point I0.
  • the spot shape after integration is as shown in Fig. 5, and the I3 spot intensity is lower than the strongest spot intensity I4 by about 5%.
  • FIG. 2 a common form of the glass package processed by the technical solution of the present invention is shown in FIG. 2 .
  • a typical example of the glass substrate 120 is an OLED display, and the glass substrate 120 is covered with the same glass package 121 .
  • the single glass package 121 structure includes a cover glass 1211, a frit 1212, a substrate glass 1213, an OLED layer 1215, and an electrode 1214.
  • the laser package device can configure the number of the glass packages 121 according to the yield requirement.
  • the frit packaging system includes: a control system 110 and a laser packaging device provided in the first embodiment, and a control system 110 is connected to each of the laser packaging devices. It is used for controlling the laser packaging device to perform a frit packaging operation.
  • there are five laser packaging devices including laser packaging devices 111, 112, 113, 114, and 115.
  • control system 110 is coupled to the light source 1110 in the light source assembly, and the control system 110 can control the turning on and off of the light source 1110 and adjust the laser power of the laser beam emitted by the light source assembly.
  • the control system 110 is also coupled to a scanning galvanometer 1114 that controls the scanning galvanometer 1114 to form a scanning laser and matches the laser power of the source assembly to the scanning speed of the scanning galvanometer 1114.
  • the frit packaging system provided in this embodiment further includes a temperature measuring device connected to the control system 110, and the temperature measuring device is used for measuring the image into the glass package.
  • the real-time temperature of the spot on the body 121 and the real-time temperature of the spot is fed back to the control system 110.
  • the control system 110 includes a computer and a controller connected to the computer, and the controller controls the laser packaging device to perform a frit packaging operation and exchange data with the computer.
  • the embodiment further provides a packaging method of a package substrate, wherein the packaging method uses a laser beam to illuminate a region to be packaged of the package substrate to package the package substrate, including the following steps:
  • Step 1 establishing an area to be packaged of the package substrate
  • Step 2 irradiating the laser beam to a region to be packaged of the package substrate
  • the laser beam forms a spot
  • the intensity of the spot edge to the center of the spot gradually decreases on a surface perpendicular to a direction in which the laser beam travels, the spot including the edge near the edge of the spot a segment and a second segment near the center of the spot, a light intensity reduction ratio of the first segment being lower than a light intensity decrease ratio of the second segment, the first segment and the first segment
  • the boundary position of the two sections is the first inflection point;
  • Step 3 The laser beam is packaged along a region to be packaged of the package substrate.
  • Fig. 7 is a comparison diagram of the non-scanning temperature profile and the conventional M-type spot in the present embodiment, wherein the solid line is the topography of the conventional M-type spot, and the broken line is the spot shape in this embodiment.
  • FIG. 8 is an observation result of a packaged glass package in a microscope according to an embodiment of the present invention
  • FIG. 9 is a result of observation of a packaged glass package in a prior art under a microscope
  • FIG. 9 (ie, prior art)
  • the glass package packaged by the laser beam spot generated by the embodiment of the invention is obviously superior to the glass package packaged by the laser beam spot in the prior art.
  • 10 is a cross-sectional view of a glass frit packaged by a laser beam spot formed in an embodiment of the present invention. It can be seen that the laser package spot of the laser beam spot produced by the embodiment of the present invention has no obvious holes and has a good packaging effect.
  • a novel spot is designed, including a first segment near the edge of the spot and a second segment near the center of the spot,
  • the light intensity reduction ratio of the first section is lower than the light intensity reduction ratio of the second section, and the laser beam using the light spot encapsulates the package substrate to effectively improve the dose uniformity on the glass frit, further improving the glass
  • the light source assembly, the shaping element and the scanning galvanometer are used to shape the shape of the laser beam spot, forming the desired spot morphology, and solving the bubble problem caused by the uniformity of the dose of the glass package;
  • the shaping element the spot shape and the spot size of different shapes can be realized, and the spot diameter range can cover several tens of micrometers to several tens of millimeters, thereby effectively improving the process adaptability and saving cost.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Laser Beam Processing (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种激光封装装置及封装方法,激光封装装置将激光束照射至封装基底上并形成光斑,光斑包括靠近光斑边缘的第一区段(B)和靠近光斑中心的第二区段(A),第一区段(B)和第二区段(A)各自沿着光斑边缘向光斑中心的方向呈光强下降且第一区段(B)的光强下降比率小于第二区段(A)的光强下降比率,第一区段(B)与第二区段(A)的分界位置定义为第一拐点。

Description

一种激光封装装置及封装方法 技术领域
本发明涉及光电半导体领域,特别涉及一种激光封装装置及封装方法。
背景技术
光电半导体器件已广泛应用于生活的各个领域。其中,OLED(有机发光二极管,Organic Light-Emitting Diode)由于其良好的色彩比、宽视角、高响应速度等特点,成为了研究的热点,具有良好的应用前景。然而,OLED器件中的电极和有机层对氧和水分十分敏感。从外界环境渗透入OLED器件的氧和水分会严重缩短OLED器件的寿命。因此,为OLED器件提供有效的气密式密封显得非常重要。对于OLED器件的气密式密封有以下要求:
气密式密封应提供对氧(10 -3厘米 3/米 2/天)和水(10 -6克/米 2/天)的屏障;
气密式密封的尺寸应尽可能小(如,<2mm),从而使其不会对OLED显示器的尺寸产生不良的影响;
密封过程中产生的温度不应破坏OLED显示器中的材料(如,电极和有机层等);
密封过程中释放的气体不应对OLED显示器中的物质产生污染;
气密式密封应能使点连接部件(如薄膜铬电极)进入OLED显示器。
近年来,一种使用玻璃料辅助激光加热的密封方法被应用于OLED显示器的密封。然后在实际应用中,由于聚焦在玻璃料层的激光光斑的形状(圆形TOP-HAT)、均匀性差等特性约束,及封装图案的尺寸大小、扫描速度存在上限等因素的影响,传统的扫描封装技术已难以满足对OLED显示器封装的要求,例如:玻璃料在其内部和靠近边沿处形成密集的孔洞(气泡),对封装质量造成影响。
发明内容
有鉴于此,本发明的目的在于提供一种激光封装装置及封装方法,以解 决剥离封装体密封性差的问题。
为解决上述技术问题,本发明提供一种激光封装装置,所述激光封装装置将激光束照射至封装基底上,并在所述封装基底上形成一光斑,所述光斑包括靠近光斑边缘的第一区段和靠近光斑中心的第二区段,所述第一区段和第二区段各自沿着光斑边缘向光斑中心的方向呈现光强下降,所述第一区段的光强下降比率小于所述第二区段的光强下降比率,所述第一区段与所述第二区段的分界位置定义为第一拐点。
可选的,所述激光束所形成的光斑的能量分布相对于所述激光束行进路线的方向呈对称分布。
可选的,所述光斑中心处的光强大于等于所述第一拐点处光强的95%。
可选的,所述第一区段包括靠近所述光斑中心的光强慢慢下降的近中心区段,和靠近所述光斑边缘的下降速度大于所述近中心区段的近边缘区段,所述近中心区段与所述近边缘区段的分界位置定义为第二拐点。
可选的,所述第二拐点相对于所述光斑的中心对称分布。
可选的,所述第一区段为下降比率逐渐降低的曲线区段或为下降比率固定的直线区段。
可选的,所述第一拐点相对于所述光斑的中心对称分布。
可选的,所述光斑还包括光强均匀的第三区段,所述第三区段位于所述第一区段外。
可选的,所述光斑还包括光强由内至外降低的第三区段,所述第三区段位于所述第一区段外,所述第三区段的光强下降比率大于所述第一区段的光强下降比率。
可选的,所述激光封装装置包括:
光源组件,用于提供激光束;
整形组件,用于对所述激光束的光斑形貌进行整形;
扫描振镜,用于将所述激光束扫描至所述封装基底上;
用于提供所述激光束的光源组件,用于对所述激光束的所述光斑形貌进行整形的整形组件,用于使所述激光束进行扫描的扫描振镜,以及用于将所 述激光束成像的成像镜组。
可选的,所述扫描振镜上设置有成像镜组,所述扫描振镜通过所述成像镜组将所述激光束扫描至所述封装基底上。
可选的,所述成像镜组为远心场镜。
可选的,所述成像镜组的焦距范围为290mm~310mm。
可选的,所述激光封装装置还包括:
扩束镜组,用于对激光束进行变倍;
所述扩束镜组位于所述光源组件和所述整形组件之间。
可选的,所述扩束镜组的变倍范围为1~2倍。
可选的,所述光源组件为红外激光器。
可选的,所述红外激光器包括光源和准直镜组,所述光源发射激光束,经所述准直镜组准直,以形成平行的激光束。
可选的,所述整形组件为衍射光学元件或折射光学元件或可变形镜或空间光调制器。
可选的,所述扫描振镜为二维扫描振镜,所述二维扫描振镜的扫描角度范围为±20°。
本发明另一方面提供一种封装基底的封装方法,所述封装方法采用激光束照射至所述封装基底的待封装区域以对所述封装基底进行封装,包括以下步骤:
确立所述封装基底的待封装区域;
将所述激光束照射至所述封装基底的待封装区域,其中,所述激光束在所述封装基底上形成一光斑,所述光斑包括靠近所述光斑边缘的第一区段和靠近所述光斑中心的第二区段,所述第一区段和第二区段各自沿着光斑边缘向光斑中心的方向呈现光强下降,所述第一区段的光强下降比率低于所述第二区段的光强下降比率,所述第一区段与所述第二区段的分界位置定义为第一拐点;
所述激光束沿所述封装基底的待封装区域行进封装。
可选的,所述激光束所形成的光斑的能量分布相对于所述激光束行进路 线的方向呈对称分布。
可选的,所述光斑中心处的光强大于等于所述第一拐点处光强的95%。
可选的,所述第一区段包括靠近所述光斑中心的光强慢慢下降的近中心区段,和靠近所述光斑边缘的下降速度大于所述近中心区段的近边缘区段,所述近中心区段与所述近边缘区段的分界位置定义为第二拐点。
可选的,所述第二拐点相对于所述光斑的中心对称分布。
可选的,所述第一区段为下降比率逐渐降低的曲线区段或为下降比率固定的直线区段。
可选的,所述第一拐点相对于所述光斑的中心对称分布。
可选的,所述光斑还包括光强均匀的第三区段,所述第三区段位于所述第一区段外。
可选的,所述光斑还包括光强由内至外降低的第三区段,所述第三区段位于所述第一区段外,所述第三区段的光强下降比率大于所述第一区段的光强下降比率。
在本发明提供的激光封装装置及封装方法中,设计一种新型的光斑,包括靠近所述光斑边缘的第一区段和靠近所述光斑中心的第二区段,所述第一区段和第二区段各自沿着光斑边缘向光斑中心的方向呈现光强下降,所述第一区段的光强下降比率低于所述第二区段的光强下降比率,采用这种光斑的激光束对封装基底进行封装能有效提高照射到玻璃料上的剂量均匀性,进一步提高玻璃料的密封性;另外,利用光源组件、整形元件以及扫描振镜实现了对激光束光斑形貌的整形,形成了所需的光斑形貌,解决了玻璃封装体剂量均匀性导致的气泡问题;并通过更换整形元件可实现不同形状的光斑形貌和光斑尺寸,光斑直径范围可覆盖几十μm~几十mm,有效提高工艺适应性,节约成本。
附图说明
图1是本发明一实施例中激光封装装置的结构原理图;
图2是本发明一实施例中玻璃封装体的俯视图;
图3是本发明一实施例中OLED显示器的俯视图;
图4是本发明一实施例中所产生的二维光斑形貌示意图;
图5是本发明一实施例中所产生的光斑沿扫描向积分后的光斑形貌示意图;
图6是本发明一实施例中玻璃料封装***的模块图;
图7是本发明一实例在非扫描向温度曲线与常规M型光斑的对比图;
图8是本发明一实施例中封装的玻璃封装体在显微镜下的观测图像;
图9是现有技术中封装的玻璃封装体在显微镜下的观测图像;
图10是本发明一实施例中形成的激光束光斑所封装玻璃料的切片剖面图。
图中:110-控制***;111、112、113、114、115-激光封装装置;1110-光源;1111-准直镜组;1112-扩束镜组;1113-整形组件;1114-扫描振镜;1115-远心场镜;120-玻璃基板;121-玻璃封装体;1211-盖板玻璃;1212-玻璃料;1213-基板玻璃;1214-电极;1215-OLED层;A-第二区段;B-第一区段;C-第三区段。
具体实施方式
以下结合附图和具体实施例对本发明提出的激光封装装置及封装方法作进一步详细说明。根据权利要求书和下面说明,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
参阅图1,本实施例提供一种激光封装装置,该装置可以在封装基底上形成如图4、图5所示的光斑相貌,重点参阅图4,可以将光斑的光强分布分为第一区段B和第二区段A,在此,所述第一区段B靠近光斑边缘,所述第二区段A靠近光斑中心,并且所述第一区段B和所述第二区域A相连。进一步的,所述第一区段B和第二区段A各自沿着光斑边缘向光斑中心的方向呈现光强下降,第一区段B是从最强光强I2下降至I1处,第二区段A是由I1处突然下降0-5%至I0处,其中第二区段A由I1处下降至I0处的下降比率大于 第一区段B从最强光强I2下降至I1处的比率,且在I1处形成第一拐点。图5为扫描光斑沿扫描向积分后的形貌,由图5可以看出扫描光斑在实际应用场景下中心位置的强度是较低于四周的,由于待封装区域为近似矩形的区域,所以本实例中沿扫描路径中心的累积光强与扫描路径两边的累积光强一致,以此保障封装的均匀度。激光束照射基板所形成的光斑的能量分布相对于激光束平行行进路线形成的面呈对称分布(也即所述激光束所形成的光斑的能量分布相对于所述激光束行进路线的方向呈对称分布)。而中心点的光强I0大于等于第一拐点处的光强I1的95%,即I0≥I1*95%。从最强光强I2下降至I1处的第一区段可以有多种形式,可以是呈下降比率固定的直线区段,也可以呈一下降比率逐渐降低的曲线区段,还可以呈下降比率分段降低的折线区段,其中折线区段可以具有一个或多个拐点,且上述的拐点都相对于光斑的中心线呈对称分布。
上述光斑还可以包括第三区段C,该区段位于第一区段B的外侧,可以是光强均匀分布的区段,也可以是光强有内至外(沿着光斑中心向光斑边缘的方向)迅速降低的区段,该区段位于激光束在基板待封装区域照射出的光斑的边缘区域,所述第三区段C或参加封装,也可不参加封装,由具体工况决定。
参阅图1,在本实施例提供的激光封装装置中,包括:光源组件(包括光源1110和准直镜组1111)、扩束镜组1112、整形组件1113、扫描振镜1114以及成像镜组。其中,光源组件1110为红外激光器,包括光源1110和准直镜组1111,所述光源1110发射发散的激光束,经准直镜组1111准直,形成平行的激光束,其中准直镜组1111用于对光源1110输出的激光束进行准直。扩束镜组1112用于对激光束的光斑进行变倍,整形组件1113用于对激光束的光斑形貌进行整形,扫描振镜1114使激光束进行扫描,形成扫描激光,成像镜组为远心场镜1115,远心场镜1115将形成的扫描激光成像到玻璃封装体上。工作时,光源1110发出发散的激光束到达准直镜组1111,经准直镜组1111准直后形成平行的激光束,到达扩束镜组1112,扩束镜组1112对激光束光斑变倍调整后到达整形组件1113,整形组件1113对光斑形貌进行整形后到达扫 描振镜1114,扫描振镜1114使激光束进行扫描,并形成扫描激光到达远心场镜1115,远心场镜1115将激光束成像到玻璃封装体121上,从而对玻璃封装体121进行激光封装。
其中,扩束镜组1112起到对激光束变倍的作用,可控制激光束光斑的大小,以控制激光功率。扩束镜组1112位于光源组件和扫描振镜1114之间,扩束镜组1112可实现1~2倍的变倍。通过调整扩束镜组1112和切换整形组件1113,可实现光斑尺寸的变换。
其中,整形组件1113可选用DOE(衍射光学元件,Diffractive Optical Elements)、ROE(折射光学元件,Refractive Optical Elements)、可变形镜或空间光调制器,可实现的整形光斑直径为650μm。光源1110所产生的激光束为红外高斯光束,波长为1064nm。扫描振镜1114为二维扫描振镜,且该二维扫描振镜的扫描角度范围为±20°。远心场镜1115的焦距范围为290~310mm,优选为300mm。根据衍射极限,入射到整形组件1113上的激光束光斑直径可按下式计算:
D spot=4×λ×M 2×f/(π×D)
其中λ为入射到整形组件上的激光束波长,M 2为高斯光束质量因子,f为整形组件的场镜焦距,π为圆周率,D spot为入射到整形组件1113上的激光束光斑直径。经计算,本发明可实现的光斑最小直径可达几十μm。
本实施例中形成光斑的二维轮廓如图4所示,本轮廓呈对称分布,从最高光斑强度I2开始连续下降至I1后,光斑强度出现突降5%至最低处I0处。在本实施例中沿扫描向积分后的光斑形貌如图5所示,I3光斑强度低于最强光斑强度I4约为5%。
参考图2~3,本发明技术方案所加工的玻璃封装体的常见形式如图2所示,所述玻璃基板120的典型实例为OLED显示器,玻璃基板120上布满相同的玻璃封装体121,单个玻璃封装体121结构包括盖板玻璃1211、玻璃料1212、基板玻璃1213、OLED层1215以及电极1214。其中激光封装装置可根据产率需求配置玻璃封装体121数量。
本实施例提供一种玻璃料封装***,参阅图6,该玻璃料封装***包括: 控制***110和实施例一中提供的激光封装装置,控制***110与每个所述激光封装装置均连接,用于控制所述激光封装装置进行玻璃料封装作业。在本实施例中激光封装装置有5个,包括激光封装装置111、112、113、114、115。
具体的,控制***110与光源组件中的光源1110连接,控制***110可控制光源1110的开启与关闭,并调节光源组件发射的激光束的激光功率。控制***110还与扫描振镜1114连接,控制***110控制扫描振镜1114形成扫描激光,并使光源组件的激光功率与扫描振镜1114的扫描速度相匹配。
为了便于掌握激光扫描时玻璃封装体上光斑温度,在本实施例提供的玻璃料封装***还包括一温度测量装置,该温度测量装置与控制***110连接,温度测量装置用于测量成像到玻璃封装体121上光斑的实时温度,并将光斑的实时温度反馈至控制***110。
其中,控制***110包括一计算机和与所述计算机连接的控制器,所述控制器控制所述激光封装装置进行玻璃料封装作业,并与所述计算机进行数据交换。
本实施例还提供一种封装基底的封装方法,所述封装方法采用激光束照射至所述封装基底的待封装区域以对所述封装基底进行封装,包括以下步骤:
步骤一:确立所述封装基底的待封装区域;
步骤二:将所述激光束照射至所述封装基底的待封装区域;
其中,所述激光束形成一光斑,在与所述激光束行进路线的方向垂直的表面上所述光斑边缘至所述光斑中心的光强逐渐下降,所述光斑包括靠近所述光斑边缘的第一区段和靠近所述光斑中心的第二区段,所述第一区段的光强下降比率低于所述第二区段的光强下降比率,所述第一区段与所述第二区段的分界位置为第一拐点;
步骤三:所述激光束沿所述封装基底的待封装区域行进封装。
图7是本实施例中在非扫描向温度曲线与常规M型光斑的对比图,其中实线是常规M型光斑的形貌,虚线是本实施例中的光斑形貌。
如图8为本发明实施例中封装的玻璃封装体在显微镜下的观测结果,图9 为现有技术中所封装玻璃封装体在显微镜下的观测结果,可见,图9(即现有技术)所产生的孔洞较多,本发明实施例所产生的激光束光斑所封装玻璃封装体明显优于现有技术中激光束光斑所封装玻璃封装体。图10为本发明实施例中形成的激光束光斑所封装玻璃料的切片剖面图,可见本发明实施例所产生的激光束光斑所封装玻璃封装体无明显孔洞,封装效果较好。
综上所述,在本发明提供的激光封装装置及封装方法中,设计一种新型的光斑,包括靠近所述光斑边缘的第一区段和靠近所述光斑中心的第二区段,所述第一区段的光强下降比率低于所述第二区段的光强下降比率,采用这种光斑的激光束对封装基底进行封装有效提高照射到玻璃料上的剂量均匀性,进一步提高玻璃料的密封性;另外,利用光源组件、整形元件以及扫描振镜实现了对激光束光斑形貌的整形,形成了所需的光斑形貌,解决了玻璃封装体剂量均匀性导致的气泡问题;并通过更换整形元件可实现不同形状的光斑形貌和光斑尺寸,光斑直径范围可覆盖几十微米~几十毫米,有效提高工艺适应性,节约成本。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的***而言,由于与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。

Claims (28)

  1. 一种激光封装装置,其特征在于,所述激光封装装置将激光束照射至封装基底上,并在所述封装基底上形成一光斑,所述光斑包括靠近光斑边缘的第一区段和靠近光斑中心的第二区段,所述第一区段和第二区段各自沿着光斑边缘向光斑中心的方向呈现光强下降,所述第一区段的光强下降比率小于所述第二区段的光强下降比率,所述第一区段与所述第二区段的分界位置定义为第一拐点。
  2. 如权利要求1所述的激光封装装置,其特征在于,所述激光束所形成的光斑的能量分布相对于所述激光束行进路线的方向呈对称分布。
  3. 如权利要求1所述的激光封装装置,其特征在于,所述光斑中心处的光强大于等于所述第一拐点处光强的95%。
  4. 如权利要求1所述的激光封装装置,其特征在于,所述第一区段包括靠近所述光斑中心的光强慢慢下降的近中心区段,和靠近所述光斑边缘的下降速度大于所述近中心区段的近边缘区段,所述近中心区段与所述近边缘区段的分界位置定义为第二拐点。
  5. 如权利要求4所述的激光封装装置,其特征在于,所述第二拐点相对于所述光斑的中心对称分布。
  6. 如权利要求1所述的激光封装装置,其特征在于,所述第一区段为下降比率逐渐降低的曲线区段或为下降比率固定的直线区段。
  7. 如权利要求1所述的激光封装装置,其特征在于,所述第一拐点相对于所述光斑的中心对称分布。
  8. 如权利要求1所述的激光封装装置,其特征在于,所述光斑还包括光强均匀的第三区段,所述第三区段位于所述第一区段外。
  9. 如权利要求1所述的激光封装装置,其特征在于,所述光斑还包括光强由内至外降低的第三区段,所述第三区段位于所述第一区段外,所述第三区段的光强下降比率大于所述第一区段的光强下降比率。
  10. 如权利要求1-9任意一项所述的激光封装装置,其特征在于,所述激 光封装装置包括:
    光源组件,用于提供激光束;
    整形组件,用于对所述激光束的光斑形貌进行整形;
    扫描振镜,用于将所述激光束扫描至所述封装基底上;
  11. 如权利要求10所述的激光封装装置,其特征在于,所述扫描振镜上设置有成像镜组,所述扫描振镜通过所述成像镜组将所述激光束扫描至所述封装基底上。
  12. 如权利要求11所述的激光封装装置,其特征在于,所述成像镜组为远心场镜。
  13. 如权利要求11所述的激光封装装置,其特征在于,所述成像镜组的焦距范围为290mm~310mm。
  14. 如权利要求10所述的激光封装装置,其特征在于,还包括:
    扩束镜组,用于对激光束进行变倍;
    所述扩束镜组位于所述光源组件和所述整形组件之间。
  15. 如权利要求14所述的激光封装装置,其特征在于,所述扩束镜组的变倍范围为1~2倍。
  16. 如权利要求10所述的激光封装装置,其特征在于,所述光源组件为红外激光器。
  17. 如权利要求16所述的激光封装装置,其特征在于,所述红外激光器包括光源和准直镜组,所述光源发射激光束,经所述准直镜组准直,以形成平行的激光束。
  18. 如权利要求10所述的激光封装装置,其特征在于,所述整形组件为衍射光学元件或折射光学元件或可变形镜或空间光调制器。
  19. 如权利要求10所述的激光封装装置,其特征在于,所述扫描振镜为二维扫描振镜,所述二维扫描振镜的扫描角度范围为±20°。
  20. 一种封装基底的封装方法,所述封装方法采用激光束照射至所述封装基底的待封装区域以对所述封装基底进行封装,包括以下步骤:
    确立所述封装基底的待封装区域;
    将所述激光束照射至所述封装基底的待封装区域,其中,所述激光束在所述封装基底上形成一光斑,所述光斑包括靠近所述光斑边缘的第一区段和靠近所述光斑中心的第二区段,所述第一区段和第二区段各自沿着光斑边缘向光斑中心的方向呈现光强下降,所述第一区段的光强下降比率低于所述第二区段的光强下降比率,所述第一区段与所述第二区段的分界位置定义为第一拐点;
    所述激光束沿所述封装基底的待封装区域行进封装。
  21. 如权利要求20所述的封装方法,其特征在于,所述激光束所形成的光斑的能量分布相对于所述激光束行进路线的方向呈对称分布。
  22. 如权利要求20所述的封装方法,其特征在于,所述光斑中心处的光强大于等于所述第一拐点处光强的95%。
  23. 如权利要求20所述的封装方法,其特征在于,所述第一区段包括靠近所述光斑中心的光强慢慢下降的近中心区段,和靠近所述光斑边缘的下降速度大于所述近中心区段的近边缘区段,所述近中心区段与所述近边缘区段的分界位置定义为第二拐点。
  24. 如权利要求23所述的封装方法,其特征在于,所述第二拐点相对于所述光斑的中心对称分布。
  25. 如权利要求20所述的封装方法,其特征在于,所述第一区段为下降比率逐渐降低的曲线区段或为下降比率固定的直线区段。
  26. 如权利要求20所述的封装方法,其特征在于,所述第一拐点相对于所述光斑的中心对称分布。
  27. 如权利要求20所述的封装方法,其特征在于,所述光斑还包括光强均匀的第三区段,所述第三区段位于所述第一区段外。
  28. 如权利要求20所述的封装方法,其特征在于,所述光斑还包括光强由内至外降低的第三区段,所述第三区段位于所述第一区段外,所述第三区段的光强下降比率大于所述第一区段的光强下降比率。
PCT/CN2018/091756 2017-06-20 2018-06-19 一种激光封装装置及封装方法 WO2018233585A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197038733A KR20200041836A (ko) 2017-06-20 2018-06-19 레이저 캡슐화 장치 및 캡슐화 방법
JP2019568058A JP6872042B2 (ja) 2017-06-20 2018-06-19 レーザーパッケージング装置及びパッケージング方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710470990.9 2017-06-20
CN201710470990.9A CN109093251B (zh) 2017-06-20 2017-06-20 一种激光封装装置及封装方法

Publications (1)

Publication Number Publication Date
WO2018233585A1 true WO2018233585A1 (zh) 2018-12-27

Family

ID=64737443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091756 WO2018233585A1 (zh) 2017-06-20 2018-06-19 一种激光封装装置及封装方法

Country Status (5)

Country Link
JP (1) JP6872042B2 (zh)
KR (1) KR20200041836A (zh)
CN (1) CN109093251B (zh)
TW (1) TWI674691B (zh)
WO (1) WO2018233585A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108908995A (zh) * 2018-06-28 2018-11-30 胡智晶 一种生活垃圾压缩设备
TWI765337B (zh) * 2019-12-13 2022-05-21 旺矽科技股份有限公司 雷射晶片檢測方法及設備
CN111055018B (zh) * 2019-12-29 2020-11-17 中国科学院西安光学精密机械研究所 一种减阻微结构加工方法
CN112630984A (zh) * 2020-12-30 2021-04-09 南京理工大学 可改变激光焦点位置光斑大小及形貌的激光扫描装置与扫描方法
CN113843499A (zh) * 2021-09-10 2021-12-28 深圳市海目星激光智能装备股份有限公司 激光开膜方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5864430A (en) * 1996-09-10 1999-01-26 Sandia Corporation Gaussian beam profile shaping apparatus, method therefor and evaluation thereof
CN102185115A (zh) * 2010-01-07 2011-09-14 三星移动显示器株式会社 激光束照射装置、基板密封及制造有机发光显示器的方法
CN105023880A (zh) * 2014-04-15 2015-11-04 上海微电子装备有限公司 玻璃封装体的密封装置
CN105336877A (zh) * 2014-07-29 2016-02-17 上海微电子装备有限公司 激光扫描密封玻璃封装体的***和方法
CN106159112A (zh) * 2015-03-26 2016-11-23 上海微电子装备有限公司 一种激光封装设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2668695B2 (ja) * 1988-02-19 1997-10-27 株式会社ニコン ビーム平坦化装置
US6884962B2 (en) * 2002-03-18 2005-04-26 Hitachi Via Mechanics, Ltd. Beam or wave front
CN2847319Y (zh) * 2005-11-04 2006-12-13 北京工业大学 一种用于获得大面积均匀方形光斑的激光均束装置
CN100538438C (zh) * 2007-01-30 2009-09-09 深圳市大族激光科技股份有限公司 激光光场分布整形光学镜头
CN201373947Y (zh) * 2009-03-11 2009-12-30 深圳市大族激光科技股份有限公司 紫外激光光束整形装置
JP5567319B2 (ja) * 2009-11-25 2014-08-06 浜松ホトニクス株式会社 ガラス溶着方法及びガラス層定着方法
CN101826591B (zh) * 2010-04-23 2012-03-28 广东聚科照明股份有限公司 一种led封装工艺
KR102034252B1 (ko) * 2012-12-21 2019-10-21 삼성디스플레이 주식회사 레이저 빔 조사 장치 및 기판 밀봉 방법
CN103246067B (zh) * 2013-05-23 2015-04-15 上海交通大学 高斯激光束整形为能量均匀分布的矩形光束的方法及应用
CN104795511A (zh) * 2014-01-20 2015-07-22 上海微电子装备有限公司 一种激光封装设备及其封装方法
CN105226204A (zh) * 2014-05-30 2016-01-06 上海微电子装备有限公司 一种激光封装设备及封装方法
CN204154995U (zh) * 2014-10-24 2015-02-11 北京润和微光科技有限公司 一种激光光斑形状调整装置
CN106199782B (zh) * 2016-09-13 2019-08-02 山东镭泽智能科技有限公司 用于激光高斯光束整形的单非球面透镜
CN106449439B (zh) * 2016-09-27 2018-11-02 华中科技大学 一种玻璃芯片封装方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5864430A (en) * 1996-09-10 1999-01-26 Sandia Corporation Gaussian beam profile shaping apparatus, method therefor and evaluation thereof
CN102185115A (zh) * 2010-01-07 2011-09-14 三星移动显示器株式会社 激光束照射装置、基板密封及制造有机发光显示器的方法
CN105023880A (zh) * 2014-04-15 2015-11-04 上海微电子装备有限公司 玻璃封装体的密封装置
CN105336877A (zh) * 2014-07-29 2016-02-17 上海微电子装备有限公司 激光扫描密封玻璃封装体的***和方法
CN106159112A (zh) * 2015-03-26 2016-11-23 上海微电子装备有限公司 一种激光封装设备

Also Published As

Publication number Publication date
JP2020524400A (ja) 2020-08-13
CN109093251A (zh) 2018-12-28
TWI674691B (zh) 2019-10-11
CN109093251B (zh) 2020-08-04
KR20200041836A (ko) 2020-04-22
TW201906213A (zh) 2019-02-01
JP6872042B2 (ja) 2021-05-19

Similar Documents

Publication Publication Date Title
WO2018233585A1 (zh) 一种激光封装装置及封装方法
TWI412419B (zh) 用以封合基板之雷射照射裝置、基板封合方法及使用該裝置製造有機發光二極體顯示器之方法
TWI332682B (en) Beam homogenizer and laser irradiation apparatus and method of manufacturing semiconductor device
JP6374093B2 (ja) レーザーパッケージングシステム及び方法
TWI544522B (zh) 光纖雷射之雷射尖峰退火系統及其方法
US10515832B2 (en) Laser processing apparatus and method for manufacturing the same
JP2010541162A (ja) 可変レーザビームによるフリット封止
JP5906115B2 (ja) 光走査装置及びレーザ加工装置
KR20130037482A (ko) 레이저를 이용한 마스크 제조방법
TW201134594A (en) Laser beam irradiation apparatus for substrate sealing, substrate sealing method, and method of manufacturing organic light emitting display device using the same
JP2017056469A (ja) レーザ加工方法及びレーザ加工装置
CN106607645A (zh) 一种激光封装***及激光封装过程中温度控制的方法
JP2019107692A (ja) 除膜処理方法、及び装置
KR20130134703A (ko) 레이저 가공 시스템 및 방법
CN104761132B (zh) 一种双光束耦合的激光辅助玻璃料封装***和方法
JP2011189408A (ja) マーキング機能を有するレーザスクライビング装置及びこれを用いた太陽電池加工方法
CN103848392B (zh) 一种微结构周期可控的大面积黑硅的制造方法
US9201245B2 (en) Optical system and substrate sealing method
US20050247923A1 (en) Semiconductor nano-structure and method of forming the same
CN107785286A (zh) 激光封装方法
CN107331590A (zh) 准同步激光封装***及方法
Kuna et al. Femtosecond laser processing as a versatile tool for advanced solid state lighting sources: From efficacy enhancement to colour temperature control
KR101606674B1 (ko) Led 패키지의 봉지재 에칭 시스템
CN113511625B (zh) 一种胖瘦条纹结构及其制备方法
CN109935532B (zh) 激光热处理装置和处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18821491

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019568058

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18821491

Country of ref document: EP

Kind code of ref document: A1