WO2018230878A1 - 무선통신시스템에서 직교 또는 비직교 부호 다중 접속 기법을 사용하여 통신을 수행하는 방법 및 장치 - Google Patents

무선통신시스템에서 직교 또는 비직교 부호 다중 접속 기법을 사용하여 통신을 수행하는 방법 및 장치 Download PDF

Info

Publication number
WO2018230878A1
WO2018230878A1 PCT/KR2018/006440 KR2018006440W WO2018230878A1 WO 2018230878 A1 WO2018230878 A1 WO 2018230878A1 KR 2018006440 W KR2018006440 W KR 2018006440W WO 2018230878 A1 WO2018230878 A1 WO 2018230878A1
Authority
WO
WIPO (PCT)
Prior art keywords
codebook
terminal
follows
constellation
vector
Prior art date
Application number
PCT/KR2018/006440
Other languages
English (en)
French (fr)
Inventor
이호재
이상림
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/622,857 priority Critical patent/US11336343B2/en
Publication of WO2018230878A1 publication Critical patent/WO2018230878A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/0026Interference mitigation or co-ordination of multi-user interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/16Code allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation

Definitions

  • the present disclosure relates to wireless communication, and more particularly, to a method for performing communication using an orthogonal or non-orthogonal code multiple access scheme and a device using the same.
  • Wireless communication systems are widely deployed to provide various kinds of communication services such as voice and data.
  • the purpose of a wireless communication system is to allow a large number of terminals to perform reliable communication regardless of location and mobility.
  • a wireless communication system is a multiple access system capable of supporting communication with a plurality of terminals by sharing available radio resources.
  • radio resources include time, frequency, code, transmit power, and the like.
  • multiple access systems include time division multiple access (TDMA) systems, code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA). division multiple access) system.
  • TDMA time division multiple access
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • the present disclosure provides a method and apparatus for performing communication using an orthogonal or non-orthogonal code multiple access scheme in a wireless communication system.
  • the present specification proposes a method and apparatus for performing communication using a non-orthogonal code multiple access scheme in a wireless communication system.
  • the apparatus includes a transceiver for transmitting and receiving radio signals and a processor coupled to the transceiver.
  • the present embodiment assumes a wireless communication system environment using a non-orthogonal multiple access (NoMA) scheme that considers multidimensional modulation. That is, a non-orthogonal multiple access method is proposed as a method of overlapping and transmitting a signal for multiple users in the same time frequency resource.
  • the non-orthogonal multiple access scheme considering the multi-dimensional modulation may correspond to a NoMA scheme for spreading the encoded bit stream into a complex symbol vector based on the modulation scheme and the non-orthogonal codebook.
  • the terminal receives information on the terminal specific codebook from the base station.
  • the terminal specific codebook is included in a codebook for predefined multi-dimensional modulation.
  • the codebook for the predefined multi-dimensional modulation may be previously promised between the terminal and the base station, or may be received through RRC signaling (when the terminal is in the initial connection or the RRC phase).
  • the codebook for multi-dimensional modulation may be received with a terminal specific codebook index through control signaling.
  • the terminal generates a complex vector by performing multi-dimensional modulation based encoding on the information bits based on the terminal specific codebook.
  • the terminal may generate a transmission signal with a multidimensional modulation-based encoder.
  • the transmission signal is a time domain signal and may be composed of a complex modulation symbol and a zero symbol according to a terminal specific codebook.
  • the complex vector may be composed of four complex modulation symbols according to coding bits in which the information bits are channel coded.
  • the terminal generates a frequency signal by performing a Discrete Fourier Transform (DFT) on the complex vector based on the terminal specific codebook. That is, the terminal may convert the previously generated transmission signal into a frequency domain signal through the DFT.
  • DFT Discrete Fourier Transform
  • the terminal transmits uplink data generated by performing an inverse fast fourier transform (IFFT) on the frequency signal.
  • IFFT inverse fast fourier transform
  • the terminal may perform IFFT on the frequency domain signal again to convert the frequency domain signal into a time domain signal and transmit the same through a channel.
  • PAPR PAPR
  • SC-FDMA SC-FDMA of Legacy LTE.
  • PAPR performance can be optimized for cell-edge UEs where PAPR performance is important.
  • FIG. 1 illustrates a wireless communication system to which the present specification is applied.
  • FIG. 2 is a block diagram illustrating a radio protocol structure for a user plane.
  • FIG. 3 is a block diagram illustrating a radio protocol architecture for a control plane.
  • FIG. 4 is a diagram illustrating a NOMA based downlink transmission / reception (Tx / Rx) block diagram of a communication device.
  • FIG. 5 is a diagram illustrating a NOMA based uplink transmission / reception block diagram of a communication device.
  • FIG. 6 is a diagram exemplarily illustrating a downlink transmission / reception block based on a NOMA using a non-orthogonal spreading code of a communication device.
  • FIG. 7 is a diagram exemplarily illustrating an uplink transmission / reception block based on NOMA using a non-orthogonal spreading code of a communication device.
  • FIG 8 illustrates an example of a NOMA operation of a transmitter to which multi-dimensional modulation (MM) is applied according to the present embodiment.
  • FIG. 10 shows an example of a base constellation and a phase rotation for optimizing Rule 2.
  • FIG. 11 illustrates an example of a mother constellation configured by the base constellation and the phase rotation of FIG. 10.
  • FIG. 13 shows an example of base constellation and phase rotation for optimizing Rule 3.
  • FIG. 14 shows an example of a base constellation and a phase rotation for optimizing Rule 3.
  • FIG. 15 illustrates an example of a mother constellation configured by base constellations 1 and 2 and phase rotation in FIGS. 13 and 14.
  • 16 shows an example of a combination of superposition of constellation (i, j, k) according to Rule 3.
  • FIG. 18 shows an example of a mother constellation configured by symmetric base constellation and phase rotation in FIG. 17.
  • FIG. 19 shows an example of a single Asymmetric 2D Base Constellation and Phase Rotation for optimization of Rule 4.
  • FIG. 20 shows an example of a mother constellation configured by Asymmetric 2D Base Constellation and Phase Rotation of FIG. 19.
  • 21 is a graph showing the MPA decoder performance results according to Examples 1 to 4.
  • 22 is a flowchart for transmitting a UE specific Codebook Index through control signaling in a downlink MM based NoMA system.
  • 23 is a flowchart for transmitting a UE specific codebook index through control signaling in an uplink MM based NoMA system.
  • 24 is a flowchart for transmitting a UE specific Codebook Index and an MM based Codebook Set through control signaling in a downlink MM based NoMA system.
  • 25 is a flowchart for transmitting a UE specific Codebook Index and an MM based Codebook Set through control signaling in an uplink MM based NoMA system.
  • FIG. 26 is a flowchart illustrating UE specific Codebook allocation based contention based transmission in an MM based NoMA system.
  • FIG. 27 is a flowchart illustrating UE specific Codebook selection based contention based transmission in an MM based NoMA system.
  • 29 is a graph illustrating PAPR from a time sample perspective by comparing an unequal power case and an equal power case.
  • FIG. 30 shows an example of two base constellations and a phase rotation for optimizing Rule 6.
  • FIG. 31 shows an example of a mother constellation configured by the base constellation and the phase rotation of FIG. 30.
  • FIG. 32 shows an example of two base constellations and a phase rotation for optimizing Rule 6.
  • FIG. 33 shows an example of Mother Constellation configured by Base Constellation and Phase Rotation of FIG. 32.
  • FIG. 34 shows an example of two base constellations and a phase rotation for optimizing Rule 6.
  • FIG. 35 shows an example of a mother constellation configured by the base constellation and the phase rotation of FIG. 34.
  • FIG. 36 is a graph illustrating MPA decoder performance and PAPR performance results according to Examples 2 to 9.
  • FIG. 36 is a graph illustrating MPA decoder performance and PAPR performance results according to Examples 2 to 9.
  • FIG. 37 is a graph illustrating MPA decoder performance and PAPR performance results according to Examples 2 to 9.
  • FIG. 37 is a graph illustrating MPA decoder performance and PAPR performance results according to Examples 2 to 9.
  • 38 is a graph illustrating PAPR for each codebook set.
  • 39 is a graph illustrating PAPR for each codebook set.
  • 40 is a graph illustrating PAPR for each codebook set.
  • 41 is a graph illustrating PAPR for each codebook set.
  • 43 is a flowchart for transmitting a UE specific codebook index through control signaling in an uplink MM based NoMA system.
  • 44 is a flowchart for transmitting a UE specific Codebook Index and an MM based Codebook Set through control signaling in an uplink MM based NoMA system.
  • 45 is a flowchart illustrating UE specific Codebook allocation based contention based transmission in an MM based NoMA system.
  • 46 is a flowchart illustrating UE specific Codebook selection based contention based transmission in an MM based NoMA system.
  • 47 is a flowchart illustrating a procedure of transmitting uplink data using a non-orthogonal multiple access scheme according to the present embodiment.
  • 48 is a block diagram illustrating a device in which an embodiment of the present specification is implemented.
  • 49 is a block diagram illustrating an example of an apparatus included in a processor.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier-frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) is part of an Evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • 3GPP 3rd Generation Partnership Project
  • LTE long term evolution
  • E-UMTS Evolved UMTS
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • LTE Long Term Evolution
  • the E-UTRAN includes a base station (BS) 20 that provides a control plane and a user plane to a user equipment (UE).
  • the terminal 10 may be fixed or mobile and may be called by other terms such as a mobile station (MS), a user terminal (UT), a subscriber station (SS), a mobile terminal (MT), a wireless device (Wireless Device), and the like.
  • the base station 20 refers to a fixed station communicating with the terminal 10, and may be referred to by other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, and the like.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • access point and the like.
  • the base stations 20 may be connected to each other through an X2 interface.
  • the base station 20 is connected to a Serving Gateway (S-GW) through an MME (Mobility Management Entity) and an S1-U through an Evolved Packet Core (EPC) 30, more specifically, an S1-MME through an S1 interface.
  • S-GW Serving Gateway
  • MME Mobility Management Entity
  • EPC Evolved Packet Core
  • EPC 30 is composed of MME, S-GW and P-GW (Packet Data Network-Gateway).
  • the MME has information about the access information of the terminal or the capability of the terminal, and this information is mainly used for mobility management of the terminal.
  • S-GW is a gateway having an E-UTRAN as an endpoint
  • P-GW is a gateway having a PDN as an endpoint.
  • the radio interface between the terminal and the base station is called a Uu interface.
  • Layers of the radio interface protocol between the terminal and the network are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is widely known in communication systems.
  • OSI Open System Interconnection
  • L2 second layer
  • L3 third layer
  • the RRC Radio Resource Control
  • the RRC layer located in the third layer plays a role of controlling radio resources between the terminal and the network.
  • the RRC layer exchanges an RRC message between the terminal and the base station.
  • FIG. 2 is a block diagram illustrating a radio protocol architecture for a user plane.
  • 3 is a block diagram illustrating a radio protocol structure for a control plane.
  • the user plane is a protocol stack for user data transmission
  • the control plane is a protocol stack for control signal transmission.
  • a physical layer (PHY) layer provides an information transfer service to a higher layer using a physical channel.
  • the physical layer is connected to a medium access control (MAC) layer, which is an upper layer, through a transport channel. Data is moved between the MAC layer and the physical layer through the transport channel. Transport channels are classified according to how and with what characteristics data is transmitted over the air interface.
  • MAC medium access control
  • the physical channel may be modulated by an orthogonal frequency division multiplexing (OFDM) scheme and utilizes time and frequency as radio resources.
  • OFDM orthogonal frequency division multiplexing
  • the functions of the MAC layer include mapping between logical channels and transport channels and multiplexing / demultiplexing into transport blocks provided as physical channels on transport channels of MAC service data units (SDUs) belonging to the logical channels.
  • the MAC layer provides a service to a Radio Link Control (RLC) layer through a logical channel.
  • RLC Radio Link Control
  • RLC layer Functions of the RLC layer include concatenation, segmentation, and reassembly of RLC SDUs.
  • QoS Quality of Service
  • the RLC layer has a transparent mode (TM), an unacknowledged mode (UM), and an acknowledged mode (Acknowledged Mode).
  • TM transparent mode
  • UM unacknowledged mode
  • Acknowledged Mode acknowledged mode
  • AM Three modes of operation (AM).
  • AM RLC provides error correction through an automatic repeat request (ARQ).
  • PDCP Packet Data Convergence Protocol
  • Functions of the Packet Data Convergence Protocol (PDCP) layer in the user plane include delivery of user data, header compression, and ciphering.
  • the functionality of the Packet Data Convergence Protocol (PDCP) layer in the control plane includes the transfer of control plane data and encryption / integrity protection.
  • the RRC (Radio Resource Control) layer is defined only in the control plane.
  • the RRC layer is responsible for the control of logical channels, transport channels, and physical channels in connection with configuration, re-configuration, and release of RBs.
  • RB means a logical path provided by the first layer (PHY layer) and the second layer (MAC layer, RLC layer, PDCP layer) for data transmission between the terminal and the network.
  • the establishment of the RB means a process of defining characteristics of a radio protocol layer and a channel to provide a specific service, and setting each specific parameter and operation method.
  • RB can be further divided into SRB (Signaling RB) and DRB (Data RB).
  • the SRB is used as a path for transmitting RRC messages in the control plane
  • the DRB is used as a path for transmitting user data in the user plane.
  • the UE If there is an RRC connection between the RRC layer of the UE and the RRC layer of the E-UTRAN, the UE is in an RRC connected state, otherwise it is in an RRC idle state. do.
  • the downlink transmission channel for transmitting data from the network to the UE includes a BCH (Broadcast Channel) for transmitting system information and a downlink shared channel (SCH) for transmitting user traffic or control messages.
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transport channel for transmitting data from the terminal to the network includes a random access channel (RACH) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or control messages.
  • RACH random access channel
  • SCH uplink shared channel
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast traffic
  • FIG. 4 is a diagram illustrating a NOMA based downlink transmission / reception (Tx / Rx) block diagram of a communication device.
  • NOMA non-orthogonal multiple access
  • MUST Multiuser Superposition Transmission
  • the NOMA system is considered as an element technology of the next generation 5G system for the purpose of gaining transmission capacity gain or increasing the number of simultaneous connections compared to the LTE system by transmitting information for multiple terminals by overlapping the same time-frequency resources.
  • next generation 5G system's NOMA series technologies include MUST to distinguish terminals based on power level, Sparse Code Multiple Access (SCMA) using Sparse Complex Codebook-based modulation, and interleave using user-specific interleaver.
  • SCMA Sparse Code Multiple Access
  • IDMA Division Multiple Access
  • the power allocation of each symbol is different, or the multi-terminal data is hierarchically modulated and transmitted based on hierarchical modulation.
  • Demodulating data hereinafter referred to as multi-terminal data
  • MOD multi-user detection
  • the transmitting end of FIG. 4 replaces the forward error correction (FEC) encoder and the modulation process with respect to the multi-terminal data by using a previously promised Sparse Complex Codebook modulation scheme, and transmits the multi-terminal data through the MUD at the receiving end.
  • FEC forward error correction
  • the transmitter of FIG. 4 modulates and transmits FEC encoding information on the terminal data through a terminal-specific interleaver and demodulates the terminal data through the MUD.
  • Each system can demodulate multi-terminal data using various MUD methods, for example Maximum Likelihood (ML), Maximum joint A posteriori Probability (MAP), Message Passing Algorithm (MPA), Matched Filtering (MF), Successive Interference Cancellation (SIC), Parallel Interference Cancellation (PIC), Codeword Interference Cancellation (CWIC), and the like.
  • MUD methods for example Maximum Likelihood (ML), Maximum joint A posteriori Probability (MAP), Message Passing Algorithm (MPA), Matched Filtering (MF), Successive Interference Cancellation (SIC), Parallel Interference Cancellation (PIC), Codeword Interference Cancellation (CWIC), and the like.
  • ML Maximum Likelihood
  • MAP Maximum joint A posteriori Probability
  • MPA Message Passing Algorithm
  • MCA Matched Filtering
  • SIC Successive Interference Cancellation
  • PIC Parallel Interference Cancellation
  • CWIC Codeword Interference Cancellation
  • FIG. 5 is a diagram illustrating a NOMA based uplink transmission / reception block diagram of a communication device.
  • FIG. 5 illustrates a structure of a transmitter / receiver for uplink support of a NOMA series system in which multi-terminal information (hereinafter, referred to as multi-terminal information) is allocated to the same resource and transmitted.
  • multi-terminal information hereinafter, referred to as multi-terminal information
  • Each system may transmit and demodulate the multi-terminal data in the same manner as the description of the downlink structure of FIG.
  • NOMA series systems transmit multiple terminal signals over the same time-frequency resources, they have a higher decoding error rate than LTE systems, but can support higher frequency utilization efficiency or more connectivity.
  • NOMA Non-Orthogonal Multiple Access
  • Equation 1 the signal of the k-th receiver is simply expressed by Equation 1 below.
  • h k denotes a channel from a transmitter to a k-th receiver
  • s k denotes a data symbol to a k-th receiver
  • n k denotes signal noise.
  • K is the number of multiple terminals allocated to the same time-frequency resource.
  • Equation 2 The second term of the third equation of Equation 1 ) Denotes a multi-user interference signal (MUI) by data symbols to other receivers. Therefore, simply expressing the transmission capacity by the received signal is represented by the following equation (2).
  • MUI multi-user interference signal
  • Equation 2 As K increases in the transmission capacity in Equation 2, the number of R k added increases to increase C. However, as K increases, each R k may decrease due to an increase in MUI, resulting in a decrease in total transmission capacity C. According to the MUD technique, even if the data of each terminal can be demodulated while effectively reducing the MUI, the existence of the MUI essentially reduces the overall transmission capacity and requires a high complexity MUD. If MUI generation is minimized for data transmission of multiple terminals, higher transmission capacity can be expected. Or, if it is possible to quantitatively control the MUI generation for the data transmission of the multi-terminal, it is possible to plan higher transmission capacity by scheduling for data overlap of the multi-terminal.
  • FIG. 6 is a diagram illustrating a NOMA-based downlink transmission / reception block diagram using a non-orthogonal spreading code of a communication device
  • FIG. 7 is a diagram of a NOMA-based uplink transmission / receiving using a non-orthogonal spreading code of a communication device. Illustrates a receiving block diagram.
  • a series (eg SCMA, CDMA, etc.) based on a non-orthogonal codebook uses a non-orthogonal spreading code when the multi-user data is superimposed on the same time-frequency resource through a spreading scheme.
  • 6 and 7 illustrate a downlink and uplink transceiver structure of a NOMA system for overlapping transmission using UE specific spreading codes when allocating multi-user information to the same time-frequency resource.
  • UE specific spreading codes are used on the frequency axis, but may also be used on the time axis.
  • NoMA NoMA scheme that spreads encoded bit streams based on modulation and non-orthogonal codebooks into a complex symbol vector
  • the method is a multi-dimensional modulation (MM) based NoMA method based on NoMA, and sparsity may or may not exist.
  • MM multi-dimensional modulation
  • An example of the operation is as follows.
  • FIG 8 illustrates an example of a NOMA operation of a transmitter to which multi-dimensional modulation (MM) is applied according to the present embodiment.
  • the NoMA technology based on multi-dimensional modulation also performs encoding based on a terminal specific codeword (or codebook), and spreading is applied.
  • the operation of the multi-dimensional modulation based NoMA may be illustrated as shown in FIG. 10.
  • the k-th UE performing uplink transmission generates an information bit stream 810 based on the generated traffic, and converts the bit stream 820 encoded by channel coding. Then, the bit encoded by the multi-dimensional modulation-based encoder is converted into a complex vector 830 based on the terminal specific codebook (or codeword) k.
  • the encoded bit is [0 0]
  • it is converted to a complex vector [c 1, 1 , c 2 , 1 , c 3 , 1 , c 4 , 1 ] T.
  • the encoded bit is [0 1], it is converted to a complex vector [c 1, 2 , c 2 , 2 , c 3 , 2 , c 4 , 2 ] T. If the encoded bit is [1 1], it is converted to a complex vector [c 1, 3 , c 2 , 3 , c 3 , 3 , c 4 , 3 ] T. If the encoded bit is [1 0], it is converted to a complex vector [c 1,4 , c 2,4 , c 3,4 , c 4,4 ] T.
  • the transformed complex vector is IFFT and transmitted through resource mapping.
  • the above operation is similarly applied to a downlink transmission operation, and the receiving end is decoded into bits encoded through a MUD such as a message passing algorithm (MPA).
  • MPA message passing algorithm
  • the UE specific codebook may be applied to a multi-user overlapping access scheme according to codebook characteristics.
  • each coefficient of the transformed complex vector of another user acts as an interference during the decoding operation through MPA. Therefore, there is a need for a codebook design that can minimize interference from other users. Notation to explain the procedure of the method is as follows.
  • the codebook should be designed based on the following procedure.
  • Each coefficient in the UE specific codebook affects the amount of computation for the MPA operation. As the number of zeros in the coefficient increases, the complexity of the MPA behavior can be reduced.
  • the factor graph can be defined as follows to reduce the complexity of the MPA. .
  • UE 1 Based on the Factor Graph, UE 1 generates a UE specific codebook by a vector corresponding to the first column of the matrix. For example, UE specific codebook 1
  • the codebook as an MM based encoder can be designed as follows.
  • the MM based encoder Based on the distance between complex column vectors in the UE specific codebook, the MM based encoder must determine the mapping relationship between the encoded bits and the complex vector according to the Gray mapping rule. This is because, considering channel coding, the decoding performance is excellent when the Euclidean distance in the bit domain and the Euclidean distance between the complex symbol vectors are derived in the same manner. For example, if column vector 1 of the UE specific codebook has the farthest Euclidean distance from vector 4, vector 1 corresponds to encoded bits [0 0], vector 4 corresponds to encoded bits [1 1], and bit Euclidean distance can be maximized in domain. Similarly, if vector 2 and vector 3 have the furthest Euclidean distances, vector 2 corresponds to encoded bits [0 1], and vector 3 corresponds to encoded bits [1 0], thus maximizing Euclidean distance in the bit domain. have.
  • Euclidean distance between complex vectors in each user's UE specific codebook should be maximized. For example, when the number of vectors in the 2D plane is 3 or 4, it can be plotted as shown in FIG. 9 shows an example of a complex vector in a UE specific codebook in which Euclidean distance is maximum.
  • the constellation used by UE 1 is [a (1), a (2), a (3), a (4)], and the constellation used by UE 2 is [b (1), b (2), b (3).
  • the codebook design method mentioned above is a NP-hard problem as a non-convex optimization problem. Therefore, it is difficult to design an optimal codebook that satisfies all conditions. Therefore, through the following embodiments, a method of relaxing some rules to increase the decoding rate of the multi-user superimposed signal through the MPA of the receiver may be considered.
  • FIG. 11 illustrates an example of a mother constellation configured by the base constellation and the phase rotation of FIG. 10.
  • mapping the constellation to the UE specific codebook of each user is as follows.
  • the permutation matrix P allows the Euclidean distance between complex vectors in the UE specific codebook of each user to be maximized according to Rule 2.
  • the x axis is a real domain of superposition of constellation and the y axis is an imaginary domain of superposition of constellation.
  • the overall codebook is as follows.
  • P no is a normalized matrix (M ⁇ M) for power limitation. If P no is expressed as an expression, it is as follows. . At this time, to be.
  • FIG. 15 illustrates an example of a mother constellation configured by base constellations 1 and 2 and phase rotation in FIGS. 13 and 14.
  • mapping the constellation to the UE specific codebook of each user is as follows.
  • the permutation matrix P allows the Euclidean distance between complex vectors in the UE specific codebook of each user to be maximized according to Rule 2.
  • UE specific Codebooks 5 and 6 are optimized from the Rule 2 perspective. That is, UE specific codebooks 5 and 6 may be optimized for Rule 2, and UE specific codebooks 1 to 4 may not be optimized.
  • 16 shows an example of a combination of superposition of constellation (i, j, k) according to Rule 3.
  • the x-axis is the real domain of the superposition of constellation and the y-axis is the imaginary domain of the superposition of constellation.
  • the overall codebook is as follows.
  • P no is a normalized matrix (M ⁇ M) for power limitation. If P no is expressed as an expression, it is as follows. . At this time, to be.
  • FIG. 17 shows an example of a single Asymmetric Base Constellation and Phase Rotation for the optimization of Rule 4.
  • FIG. 18 shows an example of a mother constellation configured by symmetric base constellation and phase rotation in FIG. 17.
  • Euclidean distance of the mother constellations is optimized.
  • Euclidean distance is not optimized for the whole, but when constellation is obtained by ML approach, only Euclidean distance of the most dominant internal constellations is optimized.
  • Euclidean distance of constellation is optimized when constellation overlap does not occur in a single resource by multiple users.
  • mapping the constellation to the UE specific codebook of each user is as follows.
  • the permutation matrix P allows the Euclidean distance between complex vectors in the UE specific codebook of each user to be maximized according to Rule 2.
  • the column vectors in the codebook are vectors 1, 2, 3, and 4, then c (1) ⁇ -c (4), c (2) ⁇ -c (3), a (1) ⁇ -a (4) Since a (2) ⁇ -a (3), no phase inversion relationship exists between the vectors.
  • the overall codebook is as follows.
  • P no is a normalized matrix (M ⁇ M) for power limitation. If P no is expressed as an expression, it is as follows. . At this time, to be.
  • FIG. 20 shows an example of a mother constellation configured by Asymmetric 2D Base Constellation and Phase Rotation of FIG. 19.
  • Euclidean distance of the mother constellations is optimized. Unlike Example 3, Euclidean distance is optimized for the whole.
  • Euclidean distance of all constellations is optimized. Through this, Euclidean distance of constellation is optimized when constellation overlap does not occur in a single resource by multiple users.
  • mapping the constellation to the UE specific codebook of each user is as follows.
  • the permutation matrix P allows the Euclidean distance between complex vectors in the UE specific codebook of each user to be maximized according to Rule 2.
  • the column vectors in the codebook are vectors 1, 2, 3, and 4, then c (1) ⁇ -c (4), c (2) ⁇ -c (3), a (1) ⁇ -a (4) Since a (2) ⁇ -a (3), no phase inversion relationship exists between the vectors.
  • the overall codebook is as follows.
  • P no is a normalized matrix (M ⁇ M) for power limitation. If P no is expressed as an expression, it is as follows. . At this time, to be.
  • a large size Bipartite matching factor graph can be used as J and K increase, and the decoding complexity of the receiving end can be linearly increased, but the Bipartite matching Factor Graph is expanded without loss of decoding performance. It is possible.
  • the above-mentioned codebook extension can be directly applied to Embodiments 1, 2, 3, and 4, and only a normalized value can be changed according to K value when configuring a normalized codebook set.
  • the entire codebook can be designed as follows through the base constellation and the phase rotation illustrated in the first and second embodiments.
  • P no is a normalized matrix (M ⁇ M) for power limitation. If P no is expressed as an expression, it is as follows. . At this time, to be.
  • the normalized codebook set may be equally applied to Embodiments 2, 3, and 4, and only a normalized value may be changed according to a K value when configuring a normalized codebook set.
  • FIG. 21 is a graph showing the MPA decoder performance results according to Examples 1 to 4. (Reference System-conventional codebook, A type-Example 1, B type-Example 2, C type-Example 3, D type-Example 4)
  • SER 21 shows the Symbol Error Rate (SER) of the AWGN environment in the multi-user overlapping access method through the Codebook according to the first and second, third and fourth embodiments.
  • the proposed codebooks have better SER performance than the published codebooks derived from computer simulation.
  • a codebook design may be performed based on Asymmetric Multiple Base Constellation by a combination of Asymmetric Base Constellation of Embodiment 3 and Multiple Base Constellation of Embodiment 2.
  • the codeword which is a column vector of the codebook used at the transmitting end is normalized by the transmission power.
  • 22 is a flowchart for transmitting a UE specific Codebook Index through control signaling in a downlink MM based NoMA system.
  • 23 is a flowchart for transmitting a UE specific codebook index through control signaling in an uplink MM based NoMA system.
  • the MM based Codebook Set information is present as a Set of UE specific Codebooks, and the embodiments proposed in Method 1 may be used. At this time, the method of having previously defined MM based Codebook Set information may vary. E.g,
  • the user may receive the entire MM based codebook set through RRC signaling in the initial access to the base station, RRC step, and the like.
  • the user may receive only a UE specific codebook index through control signaling (for example, xPDCCH or xPUCCH), and may use the corresponding UE specific codebook or the entire codebook for downlink signal decoding or uplink signal transmission.
  • control signaling for example, xPDCCH or xPUCCH
  • the UE specific codebook index and the entire MM based codebook set of each user may be received through control signaling.
  • 24 is a flowchart for transmitting a UE specific Codebook Index and an MM based Codebook Set through control signaling in a downlink MM based NoMA system.
  • 25 is a flowchart for transmitting a UE specific Codebook Index and an MM based Codebook Set through control signaling in an uplink MM based NoMA system.
  • a codebook index corresponding to a UE specific codebook to be used by each user is transmitted to the user as control information through fairness scheduling of the base station.
  • the user uses the UE Specific Codebook for modulation or demodulation via the received Codebook Index.
  • the number of codebooks assigned to each user may be one, or may be two or more.
  • J and K which determine the dimension of Codebook, can be changed according to the system environment. Codebooks with changes in J and K can be generated or predefined in the manner proposed in Method 1.
  • the base station is capable of resource management based on fairness scheduling, and determines the MCS level through the MUI value or the expected demodulation error rate based on codebook characteristics. Fairness Scheduling can be performed based on the determined MCS level.
  • FIG. 26 is a flowchart illustrating UE specific Codebook allocation based contention based transmission in an MM based NoMA system.
  • FIG. 27 is a flowchart illustrating UE specific Codebook selection based contention based transmission in an MM based NoMA system.
  • 26 and 27 show signal flows when a base station pre-assigns a UE specific codebook in a contention based transmission of an MM based NoMA system and when a user selects a UE specific codebook.
  • the user and the base station have previously defined MM based Codebook Set information.
  • the MM based Codebook Set information is present as a Set of UE specific Codebooks, and the embodiments proposed in Method 1 may be used.
  • the method of having previously defined MM based Codebook Set information may vary. E.g,
  • the user may receive the entire MM based codebook set through RRC signaling in the initial access to the base station, RRC step, and the like.
  • the user receives advance information for contention based transmission (MCS, contention resource zone, power control) for contention based transmission by RRC signaling or periodic control signaling.
  • MCS contention resource zone
  • the UE specific codebook index may be received and the user performs MM based encoding based on a pre-assigned UE specific codebook index to perform contention based transmission.
  • the UE specific codebook index is selected according to a predetermined rule to perform MM based encoding and contention based transmission.
  • the base station performs MUD with blind detection without knowing which user has transmitted to the contention zone, and decodes the received signal.
  • the user can be specified by the CRC check of the decoded signal and the C-RNTI information in the decoded data.
  • This method is described based on downlink, uplink, and contention based transmission of cellular system, but uses multi-user access method such as Machine Type Communication (MTC), Device-to-Device (D2D), Vehicle-to-Everything (V2X). Applicable to all systems that are obvious.
  • MTC Machine Type Communication
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • the codebook feature can be used not only for a multi-user access scheme, but also for a multi-antenna communication system using a multiple-input multiple-output feature, or a codebook for multi-layer / hierarchical layer transmission of broadcasting.
  • the design of the MM based encoder determines the decoding performance of the receiver.
  • MM based Encoder-based codebook design rules or optimized codebooks considering only receiver decoding performance are not designed considering PAPR of transmitter. Due to problems such as a user outside the cell or a power amp of the device, the PAPR issue of the transmitter may be an important design issue.
  • the present invention proposes a technique, a codebook design method, and an optimized codebook that can achieve PAPR reduction in the MM based Encoder-based codebook design method.
  • Transceiver Design for PAPR Reduction of the Multi-dimensional Modulation based NoMA method is shown in FIG. 28.
  • 28 shows an example of a transceiver design for PAPR reduction in an MM based NoMA system.
  • each transmitting UE Based on the UE Specific Codebook for PAPR reduction, each transmitting UE generates a transmission signal with an MM based Encoder.
  • the generated signal is a time domain signal, and a coded bit may be composed of a complex modulated symbol and a zero symbol according to a UE specific codebook.
  • the generated time domain signal is converted into frequency signal through DFT and mapped to each subcarrier through resource mapping. Then, the transmitter converts the time signal back through the IFFT according to the transmission bandwidth and transmits it through the channel.
  • the receiving end converts the received Time Domain signal into FFT, converts it into a signal, and compensates the channel effect through Channel Equalization (eg, MMSE, ZF,...) suitable for each transmitting end, and the Time Domain signal through IDFT Convert to Then, in order to estimate the transmission signal based on the interference between the time signals corresponding to each transmitter, the data transmitted from each transmitter is decoded through multiuser detection.
  • Channel Equalization eg, MMSE, ZF, etc.
  • the DFT size and the IFFT size may be different, and the FFT size and the IDFT size of the receiver may be reconverted to the size used in the transmitter.
  • MM based Encoder-based NoMA technology is applied in the Time Domain, and a UE-specific codebook considering DFT processing is proposed, and then, a method of transmitting by IFFT after DFT is proposed.
  • the terminal activates the DFT block and performs transmission.
  • Codebook design based on the following procedure is required for MM based NoMA type Codebook.
  • Mother Constellation refers to Coefficients except Zero Coefficient.
  • Unequal Power Case 1 is
  • ⁇ 2
  • ⁇ 2 0.3019
  • ⁇ 2
  • ⁇ 2 3.6981
  • Unequal Power Case 2 is
  • ⁇ 2
  • ⁇ 2 2.7692
  • ⁇ 2
  • ⁇ 2 1.2308.
  • ⁇ 2
  • ⁇ 2
  • ⁇ 2
  • ⁇ 2 1.
  • 29 is a graph illustrating PAPR from a time sample perspective by comparing an unequal power case and an equal power case. Referring to FIG. 29, it can be seen that in the case of an equal power case, the maximum peak value of the time sample is reduced than the unequal power case.
  • the codeword in the UE specific codebook according to Conventional Rules is [a (1); 0; c (1); 0], the phase of a (1) and the phase of c (1) are determined by the decoding performance of conventional rules.
  • the sum of the phase inversion of the sinusoid curve that determines the time sample of the transmitter This can be offset. That is, the size of the time sample may be uniform.
  • the codebook design method mentioned above is a NP-hard problem as a non-convex optimization problem. Therefore, it is difficult to design an optimal codebook that satisfies all conditions. Accordingly, through the following embodiments, a method of relaxing some rules to attenuate PAPR of a transmitter may be considered.
  • FIG. 31 shows an example of a mother constellation configured by the base constellation and the phase rotation of FIG. 30.
  • mapping the constellation to the UE specific codebook of each user is as follows.
  • the overall codebook is as follows.
  • a1 [1, 1, -1, -1]
  • a2 [1, -1, 1, -1]
  • b1 [1, 1, -1, -1] * exp (j * 1 / 3 ⁇ )
  • b2 [1, -1, 1, -1] * exp (j * 1 / 3 ⁇ )
  • c1 [1, 1, -1, -1] * exp (j * 2 / 3 ⁇ )
  • c2 [1, -1, 1, -1] * exp (j * 2 / 3 ⁇ )
  • P no is a normalized matrix (M ⁇ M) for power limitation. If P no is expressed as an expression, it is as follows. . At this time, to be.
  • FIG. 33 shows an example of Mother Constellation configured by Base Constellation and Phase Rotation of FIG. 32.
  • mapping the constellation to the UE specific codebook of each user is as follows.
  • the overall codebook is as follows.
  • a1 [1, i, -i, -1]
  • a2 [-1, -i, i, 1]
  • b1 [1, i, -i, -1] * exp (j * 1 / 3 ⁇ )
  • b2 [-1, -i, i, 1] * exp (j * 1 / 3 ⁇ )
  • c1 [1, i, -i, -1] * exp (j * 2 / 3 ⁇ )
  • c2 [-1, -i, i, 1] * exp (j * 2 / 3 ⁇ )
  • P no is a normalized matrix (M ⁇ M) for power limitation. If P no is expressed as a formula, it is as follows.
  • FIG. 35 shows an example of a mother constellation configured by the base constellation and the phase rotation of FIG. 34.
  • the overall codebook is as follows.
  • a1 [1, i, -i, -1]
  • a2 [i, -1, 1, -i]
  • b1 [1, i, -i, -1] * exp (j * 1 / 3 ⁇ )
  • b2 [i, -1, 1, -i] * exp (j * 1 / 3 ⁇ )
  • c1 [1, i, -i, -1] * exp (j * 2 / 3 ⁇ )
  • c2 [i, -1, 1, -i] * exp (j * 2 / 3 ⁇ )
  • P no is a normalized matrix (M ⁇ M) for power limitation. If P no is expressed as an expression, it is as follows. . At this time, to be.
  • Example 10 According to Examples 2 and 7,8, 9 MPA decoder performance and PAPR Performance results
  • the proposed codebooks are less than 1 ⁇ 2dB of BLER Performance for each codebook set compared to the published codebooks derived through computer simulation.
  • PAPR can bring a gain of 2 to 3 dB as shown in FIGS. 38 to 42 for each codebook set.
  • 38 to 42 are graphs showing PAPR for each codebook set.
  • a user performing an uplink at the cell center may transmit a smaller power from the viewpoint of power control for decoding at the receiver.
  • a user performing an uplink outside the cell may require a larger power to overcome the propagation loss from the power control point of view in order to decode the receiver.
  • PAPR can be a very important metric.
  • users outside the cell benefit from systems with low PAPR.
  • a cell outer user may use, select, or allocate a UE specific codebook having a low PAPR, and a cell-centric user may use, select, or allocate a UE specific codebook having a high PAPR.
  • a codebook design may be performed by combining a multiple base constellation of the second embodiment with a method of optimizing the PAPR based on the seventh, eighth, or nineth embodiments.
  • the codeword which is a column vector of the codebook used at the transmitting end is normalized by the transmission power.
  • 43 is a flowchart for transmitting a UE specific codebook index through control signaling in an uplink MM based NoMA system.
  • MM based Codebook Set information exists as a Set of UE specific Codebooks, and the embodiments proposed in Invention 2 may be used.
  • the method of having previously defined MM based Codebook Set information may vary. E.g,
  • the user may receive the entire MM based codebook set through RRC signaling in the initial access to the base station, RRC step, and the like.
  • the user may receive only a UE specific codebook index through control signaling (for example, xPDCCH or xPUCCH), and may use the corresponding UE specific codebook or the entire codebook for downlink signal decoding or uplink signal transmission.
  • control signaling for example, xPDCCH or xPUCCH
  • the UE specific codebook index and the entire MM based codebook set of each user may be received through control signaling.
  • 44 is a flowchart for transmitting a UE specific Codebook Index and an MM based Codebook Set through control signaling in an uplink MM based NoMA system.
  • a codebook index corresponding to a UE specific codebook to be used by each user is transmitted to the user as control information through fairness scheduling of the base station.
  • the user uses the UE Specific Codebook for modulation or demodulation via the received Codebook Index.
  • the number of codebooks assigned to each user may be one, or may be two or more.
  • J and K which determine the dimension of Codebook, can be changed according to the system environment. Codebook according to the change of J and K can be generated or predefined in the manner proposed in the second invention.
  • the base station is capable of resource management based on fairness scheduling, and determines the MCS level through the MUI value or the expected demodulation error rate based on codebook characteristics. Fairness Scheduling can be performed based on the determined MCS level.
  • 45 is a flowchart illustrating UE specific Codebook allocation based contention based transmission in an MM based NoMA system.
  • 46 is a flowchart illustrating UE specific Codebook selection based contention based transmission in an MM based NoMA system.
  • the MM based Codebook Set information exists as a Set of UE specific Codebooks, and the embodiments proposed in Invention 2 may be used.
  • the method of having previously defined MM based Codebook Set information may vary. E.g,
  • the user may receive the entire MM based codebook set through RRC signaling in the initial access to the base station, RRC step, and the like.
  • the user receives advance information for contention based transmission (MCS, contention resource zone, power control) for contention based transmission by RRC signaling or periodic control signaling.
  • MCS contention resource zone
  • the UE specific codebook index may be received and the user performs MM based encoding based on a pre-assigned UE specific codebook index to perform contention based transmission.
  • the UE specific codebook index is selected according to a predetermined rule to perform MM based encoding and contention based transmission.
  • the base station performs MUD with blind detection without knowing which user has transmitted to the contention zone, and decodes the received signal.
  • the user can be specified by the CRC check of the decoded signal and the C-RNTI information in the decoded data.
  • the DFT block when performing UL of a terminal based on a codebook set, the DFT block may be active / in-active.
  • the DFT operation may be tie.
  • the UE proposes a system that makes the DFT block active or inactive according to the UE-specific codebook set used, selected, or assigned.
  • the description is based on Uplink and Contention based Transmission of the cellular system, Applicable to all systems that use multi-user access method such as SPS environment, Machine Type Communication (MTC), Device-to-Device (D2D), Vehicle-to-Everything (V2X).
  • MTC Machine Type Communication
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • the codebook feature can be used not only for a multi-user access scheme, but also for a multi-antenna communication system using a multiple-input multiple-output feature, or a codebook for multi-layer / hierarchical layer transmission of broadcasting.
  • 47 is a flowchart illustrating a procedure of transmitting uplink data using a non-orthogonal multiple access scheme according to the present embodiment.
  • the present embodiment assumes a wireless communication system environment using a non-orthogonal multiple access (NoMA) scheme that considers multidimensional modulation. That is, a non-orthogonal multiple access method is proposed as a method of overlapping and transmitting a signal for multiple users in the same time frequency resource.
  • the non-orthogonal multiple access scheme considering the multi-dimensional modulation may correspond to a NoMA scheme for spreading the encoded bit stream into a complex symbol vector based on the modulation scheme and the non-orthogonal codebook.
  • the terminal receives information on the terminal specific codebook from the base station.
  • the terminal specific codebook is included in a codebook for predefined multi-dimensional modulation.
  • the codebook for the predefined multi-dimensional modulation may be previously promised between the terminal and the base station, or may be received through RRC signaling (when the terminal is in the initial connection or the RRC phase).
  • the codebook for multi-dimensional modulation may be received with a terminal specific codebook index through control signaling.
  • the terminal In step S4720, the terminal generates a complex vector by performing multidimensional modulation based encoding on the information bits based on the terminal specific codebook.
  • the terminal may generate a transmission signal with a multidimensional modulation-based encoder.
  • the transmission signal is a time domain signal and may be composed of a complex modulation symbol and a zero symbol according to a terminal specific codebook.
  • the complex vector may be composed of four complex modulation symbols according to coding bits in which the information bits are channel coded.
  • step S4730 the terminal generates a frequency signal by performing a Discrete Fourier Transform (DFT) on the complex vector based on the terminal specific codebook. That is, the terminal may convert the previously generated transmission signal into a frequency domain signal through the DFT.
  • DFT Discrete Fourier Transform
  • step S4740 the UE transmits uplink data generated by performing an inverse fast fourier transform (IFFT) on the frequency signal.
  • the terminal may perform IFFT on the frequency domain signal again to convert the frequency domain signal into a time domain signal and transmit the same through a channel.
  • IFFT inverse fast fourier transform
  • the terminal specific codebook may be determined as one of the first to sixth codebooks.
  • the first codebook is defined as follows,
  • the second codebook is defined as follows,
  • the third codebook is defined as follows,
  • the fourth codebook is defined as follows.
  • the fifth codebook is defined as follows.
  • the sixth codebook may be defined as follows.
  • the magnitude of each coefficient in the mother constellation used to construct the first to sixth codebook may be equal.
  • the peak value may be reduced in terms of time samples than in cases where the magnitudes of the coefficients are not equal, and thus may be advantageous in terms of PAPR. This may be a technique of optimizing Rule 6 described above.
  • the mother constellation may be a row vector of the first to sixth codebooks having non-zero coefficients. That is, according to the first embodiment, the size of the components of the row vectors of the first to sixth codebook may be equal. For example, it can be seen that the size of each component (each coefficient-> 1, 1, -1, -1) of the second row vector above the first codebook is all equal to one.
  • the codewords of the first to sixth codebooks may be column vectors of the first to sixth codebooks. At this time, some codewords of the codewords may be inverted in phase with each other and include adjacent non-zero coefficients. That is, not all codewords may be out of phase with each other and contain adjacent nonzero coefficients. This may be a technique for mitigating Rule 7 described above.
  • the second column vector and the third column vector from the left of the first codebook have a phase inverted relationship with each other because coefficients 1 and -1 are adjacent to each other.
  • the first column vector and the fourth column vector on the left side of the first codebook have the same phase because adjacent non-zero coefficients are 1 and 1, or -1 and -1.
  • the terminal specific codebook may be determined as one of the first to sixth codebooks.
  • the first codebook is defined as follows,
  • the second codebook is defined as follows,
  • the third codebook is defined as follows,
  • the fourth codebook is defined as follows.
  • the fifth codebook is defined as follows.
  • the sixth codebook may be defined as follows.
  • the magnitude of each coefficient in the mother constellation used to construct the first to sixth codebook may be equal.
  • the peak value may be reduced in terms of time samples than in cases where the magnitudes of the coefficients are not equal, and thus may be advantageous in terms of PAPR. This may be a technique of optimizing Rule 6 described above.
  • the mother constellation may be a row vector of the first to sixth codebooks having non-zero coefficients. That is, according to the first embodiment, the size of the components of the row vectors of the first to sixth codebook may be equal. For example, it can be seen that the size of each component (each coefficient-> 1, i, -i, -1) of the second row vector from the first codebook is all equal to one.
  • the codewords of the first to sixth codebooks may be column vectors of the first to sixth codebooks.
  • the codewords may be inverted in phase with each other and include adjacent non-zero coefficients. That is, all codewords may be phase inverted from each other and include adjacent nonzero coefficients. This may be a technique for optimizing Rule 7 described above.
  • the adjacent non-zero coefficients of each column vector of the first codebook are 1 and -1, i and -i, -i and i, and -1 and 1. have.
  • the terminal specific codebook may be determined as one of the first to sixth codebooks.
  • the first codebook is defined as follows,
  • the second codebook is defined as follows,
  • the third codebook is defined as follows,
  • the fourth codebook is defined as follows.
  • the fifth codebook is defined as follows.
  • the sixth codebook may be defined as follows.
  • the magnitude of each coefficient in mother constellation used to construct the first to sixth codebooks may be equal.
  • the peak value may be reduced in terms of time samples than in cases where the magnitudes of the coefficients are not equal, and thus may be advantageous in terms of PAPR. This may be a technique of optimizing Rule 6 described above.
  • the mother constellation may be a row vector of the first to sixth codebooks having non-zero coefficients. That is, according to the first embodiment, the size of the components of the row vectors of the first to sixth codebook may be equal. For example, it can be seen that the size of each component (each coefficient-> 1, i, -i, -1) of the second row vector from the first codebook is all equal to one.
  • the codewords of the first to sixth codebooks may be column vectors of the first to sixth codebooks.
  • the codewords may be rotated 90 degrees out of phase with each other and include adjacent non-zero coefficients. That is, all codewords can be rotated 90 degrees out of phase with each other and include adjacent nonzero coefficients. This may be a technique for mitigating Rule 7 described above.
  • adjacent non-zero coefficients of each column vector of the first codebook are 1 and i, i and -1, -i and 1, -1 and -i, so that the phases are rotated by 90 degrees. Able to know.
  • P no is a normalized M ⁇ M matrix for power limitation, and may be defined as follows.
  • P no, m may be defined as follows.
  • the terminal specific codebook may be determined as a codebook having a low value of Peak-to-Average Power Ratio (PAPR).
  • PAPR Peak-to-Average Power Ratio
  • the terminal specific codebook may be determined as a codebook having a high PAPR. Geometry in the cell of the terminals may vary. That is, in consideration of the feature that PAPR is more important than uplink communication at the cell center, it is possible to determine a codebook optimized for PAPR.
  • the DFT may be performed when the DFT block of the terminal is activated.
  • the DFT block of the terminal may be activated or deactivated according to the terminal specific codebook included in the predefined codebook for the multi-dimensional modulation. That is, the DFT operation and the codebook index may be tied to each other.
  • 48 is a block diagram illustrating a wireless device to which an embodiment can be applied.
  • the wireless device may be implemented as an AP or a non-AP STA as an STA capable of implementing the above-described embodiment.
  • the wireless device may correspond to the above-described user or may correspond to a transmission device for transmitting a signal to the user.
  • the wireless device of FIG. 48 includes a processor 4810, a memory 4820, and a transceiver 4830 as shown.
  • the processor 4810, the memory 4820, and the transceiver 4830 may be implemented as separate chips, or at least two blocks / functions may be implemented through one chip.
  • the transceiver 4830 is a device including a transmitter and a receiver. When a specific operation is performed, only one of the transmitter and the receiver may be performed, or both the transmitter and the receiver may be performed. Can be.
  • the transceiver 4830 may include one or more antennas for transmitting and / or receiving wireless signals.
  • the transceiver 4830 may include an amplifier for amplifying the reception signal and / or the transmission signal and a bandpass filter for transmission on a specific frequency band.
  • the processor 4810 may implement the functions, processes, and / or methods proposed herein.
  • the processor 4810 may perform an operation according to the above-described embodiment. That is, the processor 4810 may perform the operations disclosed in the embodiments of FIGS. 1 to 47.
  • the processor 4810 may include an application-specific integrated circuit (ASIC), another chipset, a logic circuit, a data processing device, and / or a converter for translating baseband signals and wireless signals.
  • the memory 4820 may include read-only memory (ROM), random access memory (RAM), flash memory, memory cards, storage media, and / or other storage devices.
  • FIG. 49 is a block diagram illustrating an example of an apparatus included in a processor. For convenience of description, an example of FIG. 49 is described based on a block for a transmission signal, but it is obvious that the reception signal can be processed using the block.
  • the illustrated data processor 4910 generates transmission data (control data and / or user data) corresponding to the transmission signal.
  • the output of the data processor 4910 may be input to the encoder 4920.
  • the encoder 4920 may perform coding through a binary convolutional code (BCC) or a low-density parity-check (LDPC) technique. At least one encoder 4920 may be included, and the number of encoders 4920 may be determined according to various information (eg, the number of data streams).
  • BCC binary convolutional code
  • LDPC low-density parity-check
  • the output of the encoder 4920 may be input to the interleaver 4930.
  • the interleaver 4930 performs an operation of distributing consecutive bit signals over radio resources (eg, time and / or frequency) to prevent burst errors due to fading or the like.
  • Radio resources eg, time and / or frequency
  • At least one interleaver 4930 may be included, and the number of interleaver 4930 may be determined according to various information (for example, the number of spatial streams).
  • the output of the interleaver 4930 may be input to a constellation mapper 4940.
  • the constellation mapper 4940 performs constellation mapping such as biphase shift keying (BPSK), quadrature phase shift keying (QPSK), quadrature amplitude modulation (n-QAM), and the like.
  • the output of the constellation mapper 4940 may be input to a spatial stream encoder 4950.
  • the spatial stream encoder 4950 performs data processing to transmit the transmission signal through at least one spatial stream.
  • the spatial stream encoder 4950 may perform at least one of space-time block coding (STBC), cyclic shift diversity (CSD) insertion, and spatial mapping on a transmission signal.
  • STBC space-time block coding
  • CSS cyclic shift diversity
  • the output of the spatial stream encoder 4950 may be input to an IDFT 4960 block.
  • the IDFT 4960 block performs an inverse discrete Fourier transform (IDFT) or an inverse fast fourier transform (IFFT).
  • IDFT inverse discrete Fourier transform
  • IFFT inverse fast fourier transform
  • the output of the IDFT 4960 block is input to a Guard Interval (GI) inserter 4970, and the output of the GI insert 4970 is input to the transceiver 4830 of FIG. 48.
  • GI Guard Interval

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선통신시스템에서 비직교 부호 다중 접속 기법을 사용하여 상향링크 데이터를 전송하는 방법 및 기기가 제공된다. 구체적으로, 단말은 기지국으로부터 단말 특정 코드북에 대한 정보를 수신한다. 단말 특정 코드북은 기정의된 다차원 변조에 대한 코드북에 포함된다. 단말은 정보 비트에 대해 단말 특정 코드북을 기반으로 다차원 변조 기반 인코딩을 수행하여 복소 벡터를 생성한다. 단말은 복소 벡터에 대해 단말 특정 코드북을 기반으로 DFT를 수행하여 주파수 신호를 생성한다. 단말은 주파수 신호에 대해 IFFT를 수행하여 생성된 상향링크 데이터를 전송한다.

Description

무선통신시스템에서 직교 또는 비직교 부호 다중 접속 기법을 사용하여 통신을 수행하는 방법 및 장치
본 명세서는 무선 통신에 관한 것으로, 보다 상세하게는 직교 또는 비직교 부호 다중 접속 기법을 사용하여 통신을 수행하는 방법 및 이를 사용한 기기에 관한 것이다.
무선 통신 시스템은 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 무선 통신 시스템의 목적은 다수의 단말이 위치와 이동성에 관계없이 신뢰할 수 있는(reliable) 통신을 할 수 있도록 하는 것이다.
일반적으로 무선 통신 시스템은 가용한 무선 자원을 공유하여 다수의 단말과의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 무선 자원의 예로는 시간, 주파수, 코드, 전송 파워 등이 있다. 다중 접속 시스템의 예들로는 TDMA(time division multiple access) 시스템, CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.
차세대 무선 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스의 개수의 수용, 매우 낮은 E2E 레이턴시(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.
본 명세서는 무선통신시스템에서 직교 또는 비직교 부호 다중 접속 기법을 사용하여 통신을 수행하는 방법 및 장치를 제공한다.
본 명세서는 무선통신시스템에서 비직교 부호 다중 접속 기법을 사용하여 통신을 수행하는 방법 및 장치를 제안한다.
상기 장치는 무선신호를 전송 및 수신하는 트랜시버(transceiver) 및 상기 트랜시버에 연결되는 프로세서를 포함한다.
즉, 본 실시예는 다차원 변조를 고려하는 비직교 다중 접속(Non-orthogonal Multiple Access; NoMA) 방식을 사용하는 무선 통신 시스템 환경을 가정한다. 즉, 동일 시간 주파수 자원에 다중 사용자를 위한 신호를 중첩 전송하는 방식으로 비직교 다중 접속 방식을 제안한다. 상기 다차원 변조를 고려하는 비직교 다중 접속 방식은 변조 방식과 비직교 코드북을 기반으로 인코딩된 비트 스트림을 복소 심벌 벡터로 확산하는 NoMA 방식에 대응할 수 있다.
단말은 기지국으로부터 단말 특정 코드북에 대한 정보를 수신한다. 상기 단말 특정 코드북은 기정의된 다차원 변조(Multi-dimensional Modulation)에 대한 코드북에 포함된다. 상기 기정의된 다차원 변조에 대한 코드북은 단말과 기지국 간에 사전에 약속되어 있거나, RRC 시그널링(단말이 기지국에 초기 접속하는 단계에 있거나 RRC 단계에 있는 경우)을 통해 수신될 수 있다. 또는, 다차원 변조에 대한 코드북은 제어 시그널링을 통해 단말 특정 코드북 인덱스와 함께 수신될 수도 있다.
단말은 정보 비트에 대해 상기 단말 특정 코드북을 기반으로 다차원 변조 기반 인코딩을 수행하여 복소 벡터를 생성한다. 단말은 다차원 변조 기반 인코더로 송신 신호를 생성할 수 있다. 상기 송신 신호는 시간 영역 신호로써 단말 특정 코드북에 따라 복소 변조 심벌과 제로 심벌로 구성될 수 있다. 일례로, 상기 복소 벡터는 상기 정보 비트가 채널 코딩된 코딩 비트에 따라 네 개의 복소 변조 심벌로 구성될 수 있다.
단말은 상기 복소 벡터에 대해 상기 단말 특정 코드북을 기반으로 DFT(Discrete Fourier Transform)를 수행하여 주파수 신호를 생성한다. 즉, 단말은 앞서 생성된 송신 신호를 DFT를 통해 주파수 영역 신호로 변환할 수 있다.
단말은 상기 주파수 신호에 대해 IFFT(Inverse Fast Fourier Transform)를 수행하여 생성된 상향링크 데이터를 전송한다. 단말은 주파수 영역 신호를 다시 IFFT를 수행하여 시간 영역 신호로 변환하고 채널을 통해 전송할 수 있다.
제안하는 기법을 이용하면, Legacy LTE의 SC-FDMA 대비 PAPR의 성능이 개선 또는 유지될 수 있다. 이를 통해, PAPR 성능이 중요한 cell-edge UE 들에게는 PAPR 성능을 최적화할 수 있다.
도 1은 본 명세서가 적용되는 무선통신 시스템을 나타낸다.
도 2는 사용자 평면에 대한 무선 프로토콜 구조를 나타낸 블록도이다.
도 3은 제어 평면에 대한 무선 프로토콜 구조를 나타낸 블록도이다.
도 4는 통신 장치의 NOMA 기반 하향링크 전송/수신(Tx/Rx) 블록도를 예시한 도면이다.
도 5는 통신 장치의 NOMA 기반 상향링크 전송/수신 블록도를 예시한 도면이다.
도 6은 통신 장치의 비직교 확산 코드를 사용한 NOMA 기반의 하향링크 전송/수신 블록도를 예시적으로 도시한 도면이다.
도 7은 통신 장치의 비직교 확산 코드를 사용한 NOMA 기반의 상향링크 전송/수신 블록도를 예시적으로 도시한 도면이다.
도 8은 본 실시예에 따른 다차원 변조(MM)를 적용하는 송신단의 NOMA 동작의 일례를 나타낸 도면이다.
도 9는 Euclidean Distance가 최대가 되는 UE specific codebook 내의 complex vector의 일례를 나타낸다.
도 10은 Rule 2의 최적화를 위한 Base Constellation과 Phase Rotation의 일례를 나타낸다.
도 11은 도 10의 Base Constellation과 Phase Rotation에 의하여 구성된 Mother Constellation의 일례를 나타낸다.
도 12는 Rule 3에 따른 superposition of constellation(i, j, k)의 조합의 일례를 나타낸다.
도 13은 Rule 3을 최적화하기 위한 Base Constellation과 Phase Rotation의 일례를 나타낸다.
도 14는 Rule 3을 최적화하기 위한 Base Constellation과 Phase Rotation의 일례를 나타낸다.
도 15는 도 13 및 도 14의 Base Constellation 1, 2와 Phase Rotation에 의해 구성되는 Mother Constellation의 일례를 나타낸다.
도 16은 Rule 3에 따른 superposition of constellation(i, j, k)의 조합의 일례를 나타낸다.
도 17은 Rule 4의 최적화를 위한 단일 Asymmetric Base Constellation과 Phase Rotation의 일례를 나타낸다.
도 18은 도 17의 symmetric Base Constellation와 Phase Rotation에 의해 구성된 Mother Constellation의 일례를 나타낸다.
도 19는 Rule 4의 최적화를 위한 단일 Asymmetric 2D Base Constellation과 Phase Rotation의 일례를 나타낸다.
도 20은 도 19의 Asymmetric 2D Base Constellation 와 Phase Rotation에 의해 구성되는 Mother Constellation의 일례를 나타낸다.
도 21은 실시예 1 내지 4에 의한 MPA 디코더 성능 결과를 나타낸 그래프이다.
도 22는 하향링크 MM based NoMA 시스템에서 제어 시그널링을 통한 UE specific Codebook Index를 전송하는 흐름도이다.
도 23은 상향링크 MM based NoMA 시스템에서 제어 시그널링을 통한 UE specific Codebook Index를 전송하는 흐름도이다.
도 24는 하향링크 MM based NoMA 시스템에서 제어 시그널링을 통한 UE specific Codebook Index와 MM based Codebook Set을 전송하는 흐름도이다.
도 25는 상향링크 MM based NoMA 시스템에서 제어 시그널링을 통한 UE specific Codebook Index와 MM based Codebook Set을 전송하는 흐름도이다.
도 26은 MM based NoMA 시스템에서 UE specific Codebook 할당 기반 contention based 전송을 수행하는 흐름도이다.
도 27은 MM based NoMA 시스템에서 UE specific Codebook 선택 기반 contention based 전송을 수행하는 흐름도이다.
도 28은 MM based NoMA 시스템에서 PAPR Reduction을 위한 Transceiver Design의 일례를 나타낸다.
도 29는 Unequal Power Case와 Equal Power Case를 비교하여 Time Sample 관점의 PAPR을 나타낸 그래프이다.
도 30은 Rule 6의 최적화를 위한 두 개의 Base Constellation과 Phase Rotation의 일례를 나타낸다.
도 31은 도 30의 Base Constellation과 Phase Rotation에 의해 구성된 Mother Constellation의 일례를 나타낸다.
도 32는 Rule 6의 최적화를 위한 두 개의 Base Constellation과 Phase Rotation의 일례를 나타낸다.
도 33은 도 32의 Base Constellation과 Phase Rotation에 의해 구성되는 Mother Constellation의 일례를 나타낸다.
도 34는 Rule 6의 최적화를 위한 두 개의 Base Constellation과 Phase Rotation의 일례를 나타낸다.
도 35는 도 34의 Base Constellation과 Phase Rotation에 의해 구성된 Mother Constellation의 일례를 나타낸다.
도 36은 실시예 2 내지 9에 의한 MPA decoder 성능 및 PAPR 성능 결과를 나타낸 그래프이다.
도 37은 실시예 2 내지 9에 의한 MPA decoder 성능 및 PAPR 성능 결과를 나타낸 그래프이다.
도 38은 Codebook Set 별 PAPR을 나타낸 그래프이다.
도 39는 Codebook Set 별 PAPR을 나타낸 그래프이다.
도 40은 Codebook Set 별 PAPR을 나타낸 그래프이다.
도 41은 Codebook Set 별 PAPR을 나타낸 그래프이다.
도 42는 Codebook Set 별 PAPR을 나타낸 그래프이다.
도 43은 상향링크 MM based NoMA 시스템에서 제어 시그널링을 통한 UE specific Codebook Index를 전송하는 흐름도이다.
도 44는 상향링크 MM based NoMA 시스템에서 제어 시그널링을 통한 UE specific Codebook Index와 MM based Codebook Set을 전송하는 흐름도이다.
도 45는 MM based NoMA 시스템에서 UE specific Codebook 할당 기반 contention based 전송을 수행하는 흐름도이다.
도 46은 MM based NoMA 시스템에서 UE specific Codebook 선택 기반 contention based 전송을 수행하는 흐름도이다.
도 47은 본 실시예에 따른 비직교 다중 접속 기법을 사용하여 상향링크 데이터를 전송하는 절차를 나타낸 절차 흐름도이다.
도 48은 본 명세서의 실시예가 구현되는 기기를 나타낸 블록도이다.
도 49는 프로세서에 포함되는 장치의 일례를 나타내는 블록도이다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier-frequency division multiple access) 등과 같은 다양한 무선 통신 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸다. 이는 E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network), 또는 LTE(Long Term Evolution)/LTE-A 시스템이라고도 불릴 수 있다.
E-UTRAN은 단말(10; User Equipment, UE)에게 제어 평면(control plane)과 사용자 평면(user plane)을 제공하는 기지국(20; Base Station, BS)을 포함한다. 단말(10)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile station), UT(User Terminal), SS(Subscriber Station), MT(mobile terminal), 무선기기(Wireless Device) 등 다른 용어로 불릴 수 있다. 기지국(20)은 단말(10)과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
기지국(20)들은 X2 인터페이스를 통하여 서로 연결될 수 있다. 기지국(20)은 S1 인터페이스를 통해 EPC(Evolved Packet Core, 30), 보다 상세하게는 S1-MME를 통해 MME(Mobility Management Entity)와 S1-U를 통해 S-GW(Serving Gateway)와 연결된다.
EPC(30)는 MME, S-GW 및 P-GW(Packet Data Network-Gateway)로 구성된다. MME는 단말의 접속 정보나 단말의 능력에 관한 정보를 가지고 있으며, 이러한 정보는 단말의 이동성 관리에 주로 사용된다. S-GW는 E-UTRAN을 종단점으로 갖는 게이트웨이이며, P-GW는 PDN을 종단점으로 갖는 게이트웨이이다.
단말과 기지국간의 무선 인터페이스를 Uu 인터페이스라 한다. 단말과 네트워크 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속(Open System Interconnection; OSI) 기준 모델의 하위 3개 계층을 바탕으로 L1(제1계층), L2(제2계층), L3(제3계층)로 구분될 수 있는데, 이 중에서 제1계층에 속하는 물리계층은 물리채널(Physical Channel)을 이용한 정보전송서비스(Information Transfer Service)를 제공하며, 제3계층에 위치하는 RRC(Radio Resource Control) 계층은 단말과 네트워크 간에 무선자원을 제어하는 역할을 수행한다. 이를 위해 RRC 계층은 단말과 기지국간 RRC 메시지를 교환한다.
도 2는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이다. 도 3은 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다. 사용자 평면은 사용자 데이터 전송을 위한 프로토콜 스택(protocol stack)이고, 제어 평면은 제어신호 전송을 위한 프로토콜 스택이다.
도 2 및 3을 참조하면, 물리계층(PHY(physical) layer)은 물리채널(physical channel)을 이용하여 상위 계층에게 정보 전송 서비스(information transfer service)를 제공한다. 물리계층은 상위 계층인 MAC(Medium Access Control) 계층과는 전송채널(transport channel)을 통해 연결되어 있다. 전송채널을 통해 MAC 계층과 물리계층 사이로 데이터가 이동한다. 전송채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다.
서로 다른 물리계층 사이, 즉 송신기와 수신기의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 OFDM(Orthogonal Frequency Division Multiplexing) 방식으로 변조될 수 있으며, 시간과 주파수를 무선자원으로 활용한다.
MAC 계층의 기능은 논리채널과 전송채널간의 맵핑 및 논리채널에 속하는 MAC SDU(service data unit)의 전송채널 상으로 물리채널로 제공되는 전송블록(transport block)으로의 다중화/역다중화를 포함한다. MAC 계층은 논리채널을 통해 RLC(Radio Link Control) 계층에게 서비스를 제공한다.
RLC 계층의 기능은 RLC SDU의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)를 포함한다. 무선베어러(Radio Bearer; RB)가 요구하는 다양한 QoS(Quality of Service)를 보장하기 위해, RLC 계층은 투명모드(Transparent Mode, TM), 비확인 모드(Unacknowledged Mode, UM) 및 확인모드(Acknowledged Mode, AM)의 세 가지의 동작모드를 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류 정정을 제공한다.
사용자 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering)를 포함한다. 제어 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결정 보호(integrity protection)를 포함한다.
RRC(Radio Resource Control) 계층은 제어 평면에서만 정의된다. RRC 계층은 RB들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다.
RB는 단말과 네트워크간의 데이터 전달을 위해 제1 계층(PHY 계층) 및 제2 계층(MAC 계층, RLC 계층, PDCP 계층)에 의해 제공되는 논리적 경로를 의미한다. RB가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 과정을 의미한다. RB는 다시 SRB(Signaling RB)와 DRB(Data RB) 두가지로 나누어 질 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.
단말의 RRC 계층과 E-UTRAN의 RRC 계층 사이에 RRC 연결(RRC Connection)이 있을 경우, 단말은 RRC 연결 상태(RRC connected state)에 있게 되고, 그렇지 못할 경우 RRC 아이들 상태(RRC idle state)에 있게 된다.
네트워크에서 단말로 데이터를 전송하는 하향링크 전송채널로는 시스템정보를 전송하는 BCH(Broadcast Channel)과 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 하향링크 SCH(Shared Channel)이 있다. 하향링크 멀티캐스트 또는 브로드캐스트 서비스의 트래픽 또는 제어메시지의 경우 하향링크 SCH를 통해 전송될 수도 있고, 또는 별도의 하향링크 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향링크 전송채널로는 초기 제어메시지를 전송하는 RACH(Random Access Channel)와 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 상향링크 SCH(Shared Channel)가 있다.
전송채널 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast 트래픽 Channel) 등이 있다.
도 4는 통신 장치의 NOMA 기반 하향링크 전송/수신(Tx/Rx) 블록도를 예시한 도면이다.
다중 단말(혹은 다중 사용자) 정보를 동일 자원에 할당하여 전송하는 비직교 다중 접속 방식 (Non-orthogonal Multiple Aceess, NOMA)에 있어서, 도 4와 같이 하향링크 지원을 위한 송수신단 구조는 일반적이다. NOMA 시스템은 3GPP 표준화 작업에서는 Multiuser Superposition Transmission (MUST)로 불리우기도 한다. NOMA 시스템은 동일 시간-주파수 자원에 다수의 단말을 위한 정보를 중첩하여 전송함으로써, LTE 시스템 대비 전송 용량 이득을 얻거나 동시 접속 수를 증대하는 것을 목적으로 차세대 5G 시스템의 요소 기술로써 고려되고 있다. 차세대 5G 시스템의 NOMA 계열 기술로는 Power Level을 기반으로 단말을 구분하는 MUST와, Sparse Complex Codebook 기반 변조를 활용하는 Sparse Code Multiple Access (SCMA), 단말-특정 인터리버(User-specific Interleaver)를 이용하는 interleave Division Multiple Access (IDMA) 등이 있다.
MUST 시스템의 경우, 도 4의 송신단에서 다중 단말 데이터의 변조 이후에 각 심볼의 파워 할당을 다르게 하거나, 계층적 변조(Hierarchical Modulation)를 기반으로 다중 단말 데이터를 계층적 변조하여 전송하고, 수신단에서 다중 단말(혹은 다중 사용자) 검출(Multiuser Detection, MUD)를 통해 다중 단말의 데이터(이하 다중 단말 데이터라 칭함)를 복조 한다.
SCMA 시스템의 경우, 도 4의 송신단에서, 다중 단말 데이터에 대한 Forward Error Correction (FEC) Encoder와 변조 과정을 미리 약속된 Sparse Complex Codebook 변조 방식으로 대체하여 전송하고, 수신단에서 MUD를 통해 다중 단말 데이터를 복조한다.
IDMA 시스템의 경우, 도 4의 송신단에서 다중 단말 데이터에 대해 FEC Encoding 정보를 단말-특정 인터리버를 통해 변조하여 전송하고, 수신단에서 MUD를 통해 다중 단말 데이터를 복조한다.
상기 각 시스템은 다양한 MUD 방식으로 다중 단말 데이터를 복조 할 수 있으며, 예를 들어 Maximum Likelihood (ML), Maximum joint A posteriori Probability (MAP), Message Passing Algorithm (MPA), Matched Filtering (MF), Successive Interference Cancellation (SIC), Parallel Interference Cancellation (PIC), Codeword Interference Cancellation (CWIC) 등이 있다. 각 복조 방식에 따라 또는 반복 복조 시도 수에 따라, 복조 복잡도와 처리시간 지연에 차이가 있을 수 있다.
도 5는 통신 장치의 NOMA 기반 상향링크 전송/수신 블록도를 예시한 도면이다.
도 5는 다중 단말의 정보(이하 다중 단말 정보로 칭함)를 동일 자원에 할당하여 전송하는 NOMA 계열 시스템의 상향링크 지원을 위한 송수신단 구조를 도시하고 있다. 상기 각 시스템은 도 4의 하향링크 구조에 대한 설명과 같은 방식으로 다중 단말 데이터를 전송하고 수신단에서 복조 할 수 있다. NOMA 계열 시스템들은 동일 시간-주파수 자원에 다수 단말 신호를 중첩 전송하기 때문에, LTE 시스템과 비교하여 더 높은 복호 오류율을 가지지만, 더 높은 주파수 이용 효율이나 더 많은 Connectivity 를 지원할 수 있다. 비직교 다중 접속 방식(NOMA)은 시스템 환경에 따라, 부호율 제어를 통해 복호 오류율을 유지하면서, 더 높은 주파수 이용효율이나 더 많은 Connectivity 를 달성하는 것이 가능하다.
상기 NOMA 계열 시스템들은 동일 자원에 다수 단말의 데이터를 할당하기 때문에, 단일 단말 데이터를 할당하는 것과 비교하여 다중 단말의 데이터에 대한 간섭이 필연적으로 발생한다. 도 4의 NOMA 계열 시스템에서 k번째 수신단의 신호를 간단히 표현하면 다음 수학식 1과 같다.
Figure PCTKR2018006440-appb-M000001
여기서, hk는 송신단에서 k번째 수신단으로의 채널을 의미하고 sk는 k번째 수신단으로의 데이터 심볼, nk는 신호 잡음을 의미한다. K는 동일 시간-주파수 자원에 할당된 다중 단말의 수이다.
상기 수학식 1의 3번째 식의 2번째 항(
Figure PCTKR2018006440-appb-I000001
)은 다른 수신단으로의 데이터 심볼에 의한 다중 단말 간섭 신호 (Multiuser Interference, MUI)를 나타낸다. 따라서, 상기 수신 신호에 의한 전송 용량을 간단히 표현하면 다음 수학식 2와 같다.
Figure PCTKR2018006440-appb-M000002
상기 수학식 2에서의 전송 용량에서 K가 증가할수록 더해지는 Rk의 개수가 증가하여 C의 증대를 기대할 수 있다. 하지만, K가 증가할수록 MUI의 증가로 인해, 각 Rk가 감소하여 전체 전송 용량 C의 감소를 초래할 수 있다. MUD 기법에 따라, MUI를 효과적으로 감소시키면서 각 단말의 데이터를 복조 할 수 있다 하더라도, 근본적으로 MUI의 존재는 전체 전송 용량을 경감시키고, 높은 복잡도의 MUD를 요구하게 된다. 만약 다중 단말의 데이터 전송에 대한 MUI 발생을 최소화하면, 더 높은 전송 용량을 기대할 수 있다. 또는, 다중 단말의 데이터 전송에 대한 MUI 발생을 정량적으로 제어할 수 있으면, 다중 단말의 데이터 중첩에 대한 스케줄링으로 더 높은 전송 용량을 계획할 수 있다.
도 6은 통신 장치의 비직교 확산 코드를 사용한 NOMA 기반의 하향링크 전송/수신 블록도를 예시적으로 도시한 도면이고, 도 7은 통신 장치의 비직교 확산 코드를 사용한 NOMA 기반의 상향링크 전송/수신 블록도를 예시적으로 도시한 도면이다.
상기 NOMA 기술 중, Non-orthogonal Codebook을 기반으로 하는 계열(e.g. SCMA, CDMA 등)은 Spreading 방식을 통해 동일 시주파수 자원에 다중 사용자 Data를 중첩 전송할 때, Non-orthogonal Spreading Code를 사용하는 다중 접속 방식을 가정한다. 도 6과 7은 다중 사용자 정보를 동일 시주파수 자원에 할당할 때, UE Specific Spreading Code를 사용하여 중첩 전송하는 NOMA 시스템의 하향링크와 상향링크 송수신단 구조이다. 도 6과 7에서는 UE Specific Spreading Code가 주파수 축에서 사용되었으나, 시간 축에서 사용될 수도 있다.
또 다른 NoMA 방식 중에서, 변조와 비직교 코드북을 기반으로 인코딩된 비트 스트림(Encoded Bits Stream)을 복소 심벌 벡터(Complex Symbol Vector)로 확산하는 NoMA 방식 또한 고려해 볼 수 있다. 상기 방식은 NoMA를 기반으로 한 다차원 변조(Multi-dimensional Modulation (MM) based NoMA) 방식으로써, Sparsity는 존재할 수도 존재하지 않을 수도 있다. 상기 동작에 대한 예시는 다음과 같다.
도 8은 본 실시예에 따른 다차원 변조(MM)를 적용하는 송신단의 NOMA 동작의 일례를 나타낸 도면이다.
확산 기반 다중 접속 기술 중, 다차원 변조(Multi-dimensional Modulation; MM)를 기반으로 하는 NoMA 기술도 단말 특정 코드워드(또는 코드북)을 기반으로 인코딩을 수행하고, 확산이 적용된다. 다차원 변조 기반 NoMA의 동작은 도 10와 같이 예시될 수 있다.
도 8을 참조하면, 상향링크 전송을 수행하는 k번째 UE는 발생된 트래픽에 의한 정보 비트 스트림(810)이 생성되고, 채널 코딩에 의해 인코딩된 비트 스트림(820)으로 변환된다. 그리고 나서, 다차원 변조 기반 인코더에 의해 인코딩된 비트를 단말 특정 코드북(또는 코드워드) k을 기준으로 복소 벡터(complex vector, 830)로 변환한다. 도 8의 예시에서는 2 비트의 인코딩된 비트가 4개의 복소 심벌(complex symbol)로 구성된 복소 벡터로 변환된다고 할 수 있다. 예를 들어, 인코딩된 비트가 [0 0]이면, 복소 벡터 [c1, 1,c2 , 1,c3 , 1,c4 , 1]T으로 변환된다. 인코딩된 비트가 [0 1]이면, 복소 벡터 [c1, 2,c2 , 2,c3 , 2,c4 , 2]T으로 변환된다. 인코딩된 비트가 [1 1]이면, 복소 벡터 [c1, 3,c2 , 3,c3 , 3,c4 , 3]T으로 변환된다. 인코딩된 비트가 [1 0]이면, 복소 벡터 [c1,4,c2,4,c3,4,c4,4]T으로 변환된다.
변환된 복소 벡터는 자원 매핑을 거쳐 IFFT되어 송신된다. 상기 동작은 하향링크 전송 동작에서도 유사하게 적용되며, 수신단에서는 Message Passing Algorithm (MPA)등의 MUD를 통해 인코딩된 비트로 복호된다.
상기 동작에서 UE specific Codebook은 Codebook 특성에 따라 다중 사용자 중첩 접속 방식에 적용될 수 있다. 이 경우, MPA를 통한 복호 동작시 다른 사용자의 변환된 complex vector의 각 coefficient는 간섭으로 작용한다. 따라서, 다른 사용자로부터의 간섭을 최소화 할 수 있는 codebook design이 필요하다. 방법의 절차를 설명하기 위한 notation은 아래와 같다.
J: Cardinality of Codewords (or Expected connected UEs) = The number of Function Nodes
K: Dimension of Codeword (or the number of resources) = The number of Variable Nodes
M: Order of Multi-dimensional Modulation (for log2(M) bits transmission)
dv: Sparsity of Codeword (or the number of Non-zero coefficients)
df: The number of Superposed coefficients (or the number of UEs connected to the same resource)
OF: Overloading Factor = J/K
Multi-dimensional Modulation based NoMA 방식의 MM based Encoder를 위한 UE specific codebook의 전체 Codebook Set의 설계 방식 및 최적화 Codebook Set과 Codebook 정보 교환 방식 및 Signaling 방식은 다음과 같다.
방법 1. Codebook Design for MM based Encoder
상기 언급된 MM based NoMA 방식의 Codebook 을 위해서는 아래의 절차를 기반으로 Codebook 설계가 되어야 한다.
1. (Rule 1) MPA의 complexity 감소를 위한 Bipartite Matching Rule 설계
A. UE specific codebook의 각 coefficient는 MPA 동작을 위한 연산량에 영향을 미친다. Coefficient중에 0의 개수가 많아질수록, MPA의 동작에 대한 complexity를 감소 시킬 수 있다.
B. (Rule 1-1) Complete Bipartite Matching은 다음과 같이 정의된다.
Figure PCTKR2018006440-appb-I000002
C. 이 때, dv=K이고, df=J이다. MPA의 complexity는 dv와 df에 의해 영향을 받으므로, dv와 df를 줄이면서 복호 성능을 보장할 수 있어야 한다.
예를 들어, 4개의 complex coefficient (K=4)를 통해 6명의 다중 사용자 중첩 접속을 지원 (J=6)하는 경우, MPA의 complexity를 줄이기 위해 다음과 같이 Factor Graph를 정의할 수도 있다.
Figure PCTKR2018006440-appb-I000003
. 이 경우, dv=2이고, df=3이므로, complete bipartite matching 대비 낮은 complexity를 기대할 수 있다.
D. (Rule 1-2) 즉, 상기 Factor Graph를 기준으로 할 때, UE 1은 상기 matrix의 첫 번째 column에 해당하는 vector에 의해 UE specific codebook이 생성된다. 예를 들어, UE specific codebook 1은
Figure PCTKR2018006440-appb-I000004
에 의해 설정되고, Modulation order M=4일 때, MM based Encoder로써의 codebook은 다음과 같이 설계될 수 있다.
Figure PCTKR2018006440-appb-I000005
A. (Rule 1-3) UE specific Codebook 내의 complex column vector들 사이의 distance를 기준으로 MM based encoder는 Gray mapping rule에 따라, encoded bits과 complex vector의 mapping 관계를 결정해야 한다. Channel coding을 고려하면, bit domain 에서의 Euclidean distance와 complex symbol vector 사이의 Euclidean distance가 같은 방식으로 유도 되어야 복호 성능이 뛰어나기 때문이다. 예를 들어, UE specific Codebook의 column vector 1이 vector 4와 가장 먼 Euclidean distance를 가진다면, vector 1은 encoded bits [0 0]에 대응되고, vector 4는 encoded bits [1 1]에 대응되어, bit domain에서도 Euclidean distance를 최대화 할 수 있다. 마찬가지로 vector 2와 vector 3이 가장 먼 Euclidean distance를 가진다면, vector 2은 encoded bits [0 1]에 대응되고, vector 3는 encoded bits [1 0]에 대응되어, bit domain에서도 Euclidean distance를 최대화 할 수 있다.
2. (Rule 2) 각 사용자의 UE specific Codebook 복호 성능 증대를 위한 Base Constellation의 설계
A. MPA를 통한 복호 수행시 전송된 encoded bits을 복호 하기 위해서 complex vector를 통해 검출을 수행해야 한다. 따라서, 각 사용자의 UE specific codebook 내의 complex vector들 간의 Euclidean Distance가 최대가 되어야 한다. 예를 들어, 2D 평면에서 vector의 개수가 3개 또는 4개인 경우, 도 9와 같이 도식화 할 수 있다. 도 9는 Euclidean Distance가 최대가 되는 UE specific codebook 내의 complex vector의 일례를 나타낸다.
B. 예를 들어, Rule 1에서 예시된 UE specific codebook 1(=[C1 C2 C3 C4])의 Euclidean Distance를 최대화 하기 위해서는
Figure PCTKR2018006440-appb-I000006
을 만족해야 한다. 즉, 2D 평면에서는 vector 1과 vector 2는 orthogonal 하면서, vector 1과 vector 4, vector 2와 vector 3는 phase 반전의 관계를 가질 때, Euclidean Distance가 최대가 될 수 있다. 예를 들어, UE specific codebook 1=
Figure PCTKR2018006440-appb-I000007
이라면, vector 1과 vector 2는 orthogonal 하면서, vector 1과 vector 4, vector 2와 vector 3는 phase 반전의 관계를 가질 수 있다. 상기 조건을 만족하는 vector set은 무한히 많으며, 다른 design rule과 결합되어야 함은 자명하다.
2. (Rule 3) 다중 사용자간 간섭 제어를 위한 Mother Constellation의 설계
A. 다중 사용자는 UE specific codebook에 의해 서로 다른 complex coefficient를 전송한다. 따라서, 상기 bipartite matching에 따른 df-1개의 간섭이 존재한다. 간섭 최소화 및 MPA의 복호 성능 증대를 위해서는 complex coefficient간의 Euclidean Distance가 최대가 되어야 한다. 예를 들어, Rule 1에서 예시된 bipartite matching에 대한 factor graph,
Figure PCTKR2018006440-appb-I000008
을 고려할 때, UE 1은 상기 matrix의 첫 번째 column에 해당하는 vector에 의해 UE specific codebook이 생성된다. 그러면,
Figure PCTKR2018006440-appb-I000009
에 의해 UE specific codebook 이 생성될 때, 2번째 row에 complex coefficient가 존재하는 다른 사용자로부터의 간섭이 존재한다.
Figure PCTKR2018006440-appb-I000010
따라서, 다중 사용자의 각 UE specific codebook의 complex coefficient 들 간의 Euclidean distance를 최대화 하는 constellation design이 필요하다. 예를 들어, 상기 예시된 df=3이고, M = 4인 경우, 3명의 UE가 하나의 resource에서 complex coefficient를 전송한다. 이 때, 각 UE는 M에 의해 4개의 constellation을 구성하고 있으므로, 총 12개의 complex coefficient가 존재할 수 있다. UE 1이 사용하는 constellation이 [a(1), a(2), a(3), a(4)], UE 2이 사용하는 constellation이 [b(1), b(2), b(3), b(4)], UE 3이 사용하는 constellation이 [c(1), c(2), c(3), c(4)] 라고 할 때, 하나의 resource에 중첩된 complex symbol은 다음과 같은 형태를 나타낼 수 있다: superposition of constellation(i, j, k) = a(i) + b(j) + c(k), where i, j, k=1, …, M. 그러면, superposition of constellation(i, j, k)는 총 M^(df)개 (43 = 64개)의 조합이 나타날 수 있으며, 다중 사용자간 간섭을 최소화 (또는 중첩된 신호의 복호화)를 위해서는 superposition of constellation 간의 Euclidean distance를 최대화 하는 constellation design을 수행해야 한다.
3. (Rule 4) Contention based transmission 동작을 고려한 Mother Constellation의 설계
A. 상기 Rule 3의 경우, Scheduling 등에 의해서 중첩 전송을 수행할 때, 다른 모든 사용자로부터의 간섭을 최적화 한다. 하지만 Contention based transmission의 경우, 모든 사용자가 송신을 수행하지는 않을 수 있다. 이 경우, 하나의 Resource에서 다수 complex symbol이 중첩 전송되지 않을 수 있어, 하나의 Resource에서 전송될 수 있는 constellation의 Euclidean distance 최적화가 복호 성능에 영향을 줄 수 있다. 따라서, 하나의 resource에 표현될 수 있는 constellation의 Euclidean distance를 최적화하여 Constellation design을 수행해야 한다.
B. 즉, Rule 1에서 결정된 Bipartite Matching에 대해서, Rule 2를 최적화 하면서 사용되는 모든 Mother constellation 간의 Euclidean distance를 최대화 한다.
4. (Rule 5) 높은 connectivity 제공을 위한 Bipartite matching Rule Extension 방식의 설계
A. 상기 언급된 Rule 1에서 Rule 2와 3, 4을 동시에 만족하는 codebook design은 Non-convex optimization 문제로 NP-hard Problem 이다. 따라서, J와 K에 증가에 따른 Codebook design은 매우 어려운 문제이다. 이를 간소화 하기 위해 Bipartite matching Rule Extension 방식을 제안한다.
B. Rule 1에서 Rule 3에 의해 Bipartite Matching의 최소단위 F(K=4, J=6)이 설계되었다고 가정하자. 그러면, Identity matrix와 설계된 F(K=4, J=6)의 Cartesian Product로 Bipartite matching pattern을 extension 할 수 있다.
Figure PCTKR2018006440-appb-I000011
C. 일반화하면 다음과 같다:
Figure PCTKR2018006440-appb-I000012
상기 언급된 Codebook 설계 방식은 Non-convex optimization 문제로 NP-hard Problem이다. 따라서, 모든 조건은 만족시키는 최적 Codebook 설계는 어려운 일이다. 따라서, 다음의 실시 예들을 통해, 일부 Rule을 Relaxation 시켜, 수신단의 MPA를 통해 다중 사용자 중첩 신호의 복호율을 증대 시키는 방법을 고려할 수 있다.
실시 예 1. Rule 1, 2의 최적화와 Rule 3의 Relaxation (Single Base Constellation based Codebook Design)
본 실시 예에서는 Rule 1은 상기 언급된
Figure PCTKR2018006440-appb-I000013
dv=2이고, df=3인 경우에 대해서 최적화 되었다. 상기 제시된 Factor Graph에서 각 column vector 또는 row vector의 linear combination에 의해 변환되더라도 특성이 변하지 않음은 자명하다.
우선, Rule 2의 최적화를 위하여, 하기의 단일 Base Constellation과 Phase Rotation을 제안한다. 도 10은 Rule 2의 최적화를 위한 Base Constellation과 Phase Rotation의 일례를 나타낸다.
Base Constellation: B = [B1, B2, B3, B4], where B1 = -3, B2 = -1, B3 = 1, B4 = 3.
Phase Rotation:
Figure PCTKR2018006440-appb-I000014
그러면, 상기 Base Constellation과 Phase Rotation에 의하여, 하기와 같은 Mother Constellation을 구성할 수 있다. 도 11은 도 10의 Base Constellation과 Phase Rotation에 의하여 구성된 Mother Constellation의 일례를 나타낸다.
Mother Constellation 1: a = B*exp(j*θ1)=B=[a(1), a(2), a(3), a(4)]
Mother Constellation 2: b = B*exp(j*θ2)=B*exp(j*1/3π)=[b(1), b(2), b(3), b(4)]
Mother Constellation 3: c = B*exp(j*θ3)=B*exp(j*2/3π)=[c(1), c(2), c(3), c(4)]
Rule 2의 최적화를 위해, 각 사용자의 UE specific Codebook에 상기 Constellation을 mapping 하면 다음과 같다.
Figure PCTKR2018006440-appb-I000015
상기에서 Permutation matrix P는 각 사용자의 UE specific Codebook 복호 성능 증대를 위해, Rule 2에 따라, 각 사용자의 UE specific codebook 내의 complex vector들 간의 Euclidean Distance가 최대가 되도록 해준다. 예를 들어,
Figure PCTKR2018006440-appb-I000016
이므로, Codebook 내의 column vector들을 vector 1, 2, 3, 4라고 한다면, c(1) = -c(4), c(2) = -c(3), a(1) = -a(4), a(2) = -a(3) 이기 때문에, vector 1과 vector 4, vector 2와 3은 phase 반전 관계 이다. 또한, conjugate(c(2))*c(4) + conjugate(a(1))*a(2) = 0 이기 때문에, vector 1과 vector 2는 orthogonal 관계 이다. 상기 vector들의 관계는 모든 UE specific codebook에 동일하게 적용되므로, Rule 2가 최적화 된다.
이를 Rule 1에서 얻어진 bipartite matching에 대한 Factor Graph에 정리하면 다음과 같다:
Figure PCTKR2018006440-appb-I000017
반면에, Rule 3의 경우, superposition of constellation(i, j, k)는 총 M^(df)개 (43 = 64개)의 조합이 도 12와 같이 도시될 수 있다. 도 12는 Rule 3에 따른 superposition of constellation(i, j, k)의 조합의 일례를 나타낸다. (도 12에서 x축은 superposition of constellation의 real domain, y축은 superposition of constellation의 imaginary domain이다.)
상기 도시된 superposition of constellation pattern에 의해, 일부 constellation의 중첩을 확인할 수 있다. 즉, Rule 3의 경우, 각 사용자의 발생 traffic 조합에 따라 최적화 되지 않을 수 있다.
전체 codebook을 정리하면 다음과 같다.
Figure PCTKR2018006440-appb-I000018
Figure PCTKR2018006440-appb-I000019
UE specific Codebook k = k th column of F matrix (e.g., UE specific Codebook 1 = 1st column of F matrix =
Figure PCTKR2018006440-appb-I000020
)
Normalized Codebook Sets
Figure PCTKR2018006440-appb-I000021
여기서, Pno은 전력 제한을 위한 정규화된 행렬 (M×M)이다. Pno을 수식으로 표현하면 다음과 같다.
Figure PCTKR2018006440-appb-I000022
. 이때,
Figure PCTKR2018006440-appb-I000023
이다.
실시 예 2. Rule 1, 3의 최적화와 Rule 2의 Relaxation (Multiple Base Constellation based Codebook Design)
본 실시 예에서는 Rule 1은 상기 언급된
Figure PCTKR2018006440-appb-I000024
dv=2이고, df=3인 경우에 대해서 최적화 되었다. 상기 제시된 Factor Graph에서 각 column vector 또는 row vector의 linear combination에 의해 변환되더라도 특성이 변하지 않음은 자명하다.
우선, Rule 3의 최적화를 위하여, 하기의 두 개의 Base Constellation과 Phase Rotation을 제안한다. 도 13 및 도 14는 Rule 3을 최적화하기 위한 Base Constellation과 Phase Rotation의 일례를 나타낸다.
Base Constellation 1: B1 = [B11, B12, B13, B14], where B11 = -3, B12 = -1, B13 = 1, B14 = 3.
Base Constellation 2: B2 = [B21, B22, B23, B24], where B21 = -3*
Figure PCTKR2018006440-appb-I000025
, B22 = -1*
Figure PCTKR2018006440-appb-I000026
, B23 = 1*
Figure PCTKR2018006440-appb-I000027
, B24 = 3*
Figure PCTKR2018006440-appb-I000028
.
Phase Rotation:
Figure PCTKR2018006440-appb-I000029
그러면, 상기 Base Constellation 1, 2와 Phase Rotation에 의하여, 도 15와 같은 Mother Constellation을 구성할 수 있다. 도 15는 도 13 및 도 14의 Base Constellation 1, 2와 Phase Rotation에 의해 구성되는 Mother Constellation의 일례를 나타낸다.
Mother Constellation 1: a = B1*exp(j*θ1)=B1=[a(1), a(2), a(3), a(4)]
Mother Constellation 2: b = B2*exp(j*θ2)=B2*exp(j*1/3π)=[b(1), b(2), b(3), b(4)]
Mother Constellation 3: c = B2*exp(j*θ3)=B2*exp(j*2/3π)=[c(1), c(2), c(3), c(4)]
Rule 2의 최적화를 위해, 각 사용자의 UE specific Codebook에 상기 Constellation을 mapping 하면 다음과 같다.
Figure PCTKR2018006440-appb-I000030
상기에서 Permutation matrix P는 각 사용자의 UE specific Codebook 복호 성능 증대를 위해, Rule 2에 따라, 각 사용자의 UE specific codebook 내의 complex vector들 간의 Euclidean Distance가 최대가 되도록 해준다. 예를 들어,
Figure PCTKR2018006440-appb-I000031
이므로, Codebook 내의 column vector들을 vector 1, 2, 3, 4라고 한다면, c(1) = -c(4), c(2) = -c(3), a(1) = -a(4), a(2) = -a(3) 이기 때문에, vector 1과 vector 4, vector 2와 3은 phase 반전 관계 이다. 반면에, 실시 예 1과는 달리 conjugate(c(2))*c(4) + conjugate(a(1))*a(2) ≠ 0 이기 때문에, vector 1과 vector 2는 non-orthogonal 관계 이다. 단, conjugate(c(2))*c(4) + conjugate(b(1))*b(2) = 0이므로, UE specific Codebook 5와 6은 Rule 2 관점에서 최적화 된다. 즉, UE specific Codebook 5와 6은 Rule 2에 대해서 최적화 되고, UE specific codebook 1에서 4는 최적화 되지 않을 수 있다.
따라서, UL에서 상기 Codebook을 통한 NoMA service가 수행될 때, UE specific Codebook 5와 6을 사용자에게 먼저 할당하고, 나머지 UE specific codebook 1에서 4를 할당하는 Codebook 할당 Rule을 제안한다. 상기 동작을 통해, 수신단의 복호 성능을 더 증대시킬 수 있다.
이를 Rule 1에서 얻어진 bipartite matching에 대한 Factor Graph에 정리하면 다음과 같다:
Figure PCTKR2018006440-appb-I000032
상기 Mother Constellation과 bipartite matching에 의해, Rule 3의 경우, superposition of constellation(i, j, k)는 총 M^(df)개 (43 = 64개)의 조합이 도 16과 같이 도시될 수 있다. 도 16은 Rule 3에 따른 superposition of constellation(i, j, k)의 조합의 일례를 나타낸다. (도 16에서 x축은 superposition of constellation의 real domain, y축은 superposition of constellation의 imaginary domain이다.)
도 16에서 도시된 superposition of constellation pattern에 의해, 64개의 모든 constellation이 중첩 없이 일정 Euclidean Distance를 가짐을 확인할 수 있다. 즉, Rule 3의 경우, 각 사용자의 발생 traffic 조합에 상관없이 Euclidean Distance를 최적에 가깝게 설계할 수 있다.
전체 codebook을 정리하면 다음과 같다.
Figure PCTKR2018006440-appb-I000033
Figure PCTKR2018006440-appb-I000034
UE specific Codebook k = kth column of F matrix (e.g., UE specific Codebook 1 = 1st column of F matrix =
Figure PCTKR2018006440-appb-I000035
)
Normalized Codebook Sets
Figure PCTKR2018006440-appb-I000036
여기서, Pno은 전력 제한을 위한 정규화된 행렬 (M×M)이다. Pno을 수식으로 표현하면 다음과 같다.
Figure PCTKR2018006440-appb-I000037
. 이때,
Figure PCTKR2018006440-appb-I000038
이다.
실시 예 3. Rule 1, 4의 최적화와 Rule 2, 3의 Relaxation (Asymmetric Base Constellation based Codebook Design)
본 실시 예에서는 Rule 1은 상기 언급된
Figure PCTKR2018006440-appb-I000039
dv=2이고, df=3인 경우에 대해서 최적화 되었다. 상기 제시된 Factor Graph에서 각 column vector 또는 row vector의 linear combination에 의해 변환되더라도 특성이 변하지 않음은 자명하다.
우선, Rule 4의 최적화를 위하여, 도 17의 단일 Asymmetric Base Constellation과 Phase Rotation을 제안한다. 도 17은 Rule 4의 최적화를 위한 단일 Asymmetric Base Constellation과 Phase Rotation의 일례를 나타낸다.
Asymmetric Base Constellation: B = [B1, B2, B3, B4], where B1 = -4 B2 = -1, B3 = 2, B4 = 5.
Phase Rotation:
Figure PCTKR2018006440-appb-I000040
그러면, 상기 Asymmetric Base Constellation와 Phase Rotation에 의하여, 하기와 같은 Mother Constellation을 구성할 수 있다. 도 18은 도 17의 symmetric Base Constellation와 Phase Rotation에 의해 구성된 Mother Constellation의 일례를 나타낸다.
Mother Constellation 1: a = B*exp(j*θ1)=B=[a(1), a(2), a(3), a(4)]
Mother Constellation 2: b = B*exp(j*θ2)=B*exp(j*2/3π)=[b(1), b(2), b(3), b(4)]
Mother Constellation 3: c = B*exp(j*θ3)=B*exp(j*4/3π)=[c(1), c(2), c(3), c(4)]
즉, 상기 Mother constellation 들의 Euclidean distance가 최적화 된다. 단, Euclidean distance가 전체에 대해서 최적화 된 것은 아니고, ML approach로 constellation을 구할 때, 가장 dominant한 내부 constellation들의 Euclidean distance만이 최적화 되었다. 이를 통해, 다중 사용자에 의해 단일 resource에서 constellation 중첩이 일어나지 않을 때, constellation의 Euclidean distance가 최적화 되었다고 할 수 있다.
Rule 2의 최적화를 위해, 각 사용자의 UE specific Codebook에 상기 Constellation을 mapping 하면 다음과 같다.
Figure PCTKR2018006440-appb-I000041
상기에서 Permutation matrix P는 각 사용자의 UE specific Codebook 복호 성능 증대를 위해, Rule 2에 따라, 각 사용자의 UE specific codebook 내의 complex vector들 간의 Euclidean Distance가 최대가 되도록 해준다. 예를 들어,
Figure PCTKR2018006440-appb-I000042
이므로, Codebook 내의 column vector들을 vector 1, 2, 3, 4라고 한다면, c(1) ≠ -c(4), c(2) ≠ -c(3), a(1) ≠ -a(4), a(2) ≠ -a(3) 이기 때문에, vector 들 사이에 phase 반전 관계는 성립하지 않는다. 또한, 실시 예 1과는 달리 conjugate(c(2))*c(4) + conjugate(a(1))*a(2) ≠ 0 이기 때문에, vector 1과 vector 2는 non-orthogonal 관계 이다. 즉, UE specific codebook 들은 최적화 되지 않을 수 있다. 단, 각 vector들은 near-orthogonal 관계와 Phase 반전 관계에 가까운 Euclidean distance를 가진다.
이를 Rule 1에서 얻어진 bipartite matching에 대한 Factor Graph에 정리하면 다음과 같다:
Figure PCTKR2018006440-appb-I000043
상기 Mother Constellation과 bipartite matching에 의해, Rule 3의 경우, superposition of constellation(i, j, k)는 총 M^(df)개 (43 = 64개)의 조합이 발생한다. 이는 실시 예 1에서처럼 최적화되지 않을 수 있다.
전체 codebook을 정리하면 다음과 같다.
Figure PCTKR2018006440-appb-I000044
Figure PCTKR2018006440-appb-I000045
UE specific Codebook k = k th column of F matrix (e.g., UE specific Codebook 1 = 1st column of F matrix =
Figure PCTKR2018006440-appb-I000046
)
Normalized Codebook Sets
Figure PCTKR2018006440-appb-I000047
여기서, Pno은 전력 제한을 위한 정규화된 행렬 (M×M)이다. Pno을 수식으로 표현하면 다음과 같다.
Figure PCTKR2018006440-appb-I000048
. 이때,
Figure PCTKR2018006440-appb-I000049
이다.
실시 예 4. Rule 1, 4의 최적화와 Rule 2, 3의 Relaxation (Asymmetric 2D Base Constellation based Codebook Design)
본 실시 예에서는 Rule 1은 상기 언급된
Figure PCTKR2018006440-appb-I000050
dv=2이고, df=3인 경우에 대해서 최적화 되었다. 상기 제시된 Factor Graph에서 각 column vector 또는 row vector의 linear combination에 의해 변환되더라도 특성이 변하지 않음은 자명하다.
우선, Rule 4의 최적화를 위하여, 하기의 단일 Asymmetric 2D Base Constellation과 Phase Rotation을 제안한다. 도 19는 Rule 4의 최적화를 위한 단일 Asymmetric 2D Base Constellation과 Phase Rotation의 일례를 나타낸다.
Asymmetric 2D Base Constellation: B = [B1, B2, B3, B4], 여기서,
Figure PCTKR2018006440-appb-I000051
.
Phase Rotation:
Figure PCTKR2018006440-appb-I000052
.
그러면, 상기 Asymmetric 2D Base Constellation 와 Phase Rotation에 의하여, 하기와 같은 Mother Constellation을 구성할 수 있다. 도 20은 도 19의 Asymmetric 2D Base Constellation 와 Phase Rotation에 의해 구성되는 Mother Constellation의 일례를 나타낸다.
Mother Constellation 1: a = B*exp(j*θ1)=B=[a(1), a(2), a(3), a(4)]
Mother Constellation 2: b = B*exp(j*θ2)=B*exp(j*2/3π)=[b(1), b(2), b(3), b(4)]
Mother Constellation 3: c = B*exp(j*θ3)=B*exp(j*4/3π)=[c(1), c(2), c(3), c(4)]
즉, 상기 Mother constellation 들의 Euclidean distance가 최적화 된다. 실시 예 3과 달리, Euclidean distance가 전체에 대해서 최적화 된 형태 이다. ML approach로 constellation을 구할 때, 모든 constellation들의 Euclidean distance이 최적화 되었다. 이를 통해, 다중 사용자에 의해 단일 resource에서 constellation 중첩이 일어나지 않을 때, constellation의 Euclidean distance가 최적화 되었다고 할 수 있다.
Rule 2의 최적화를 위해, 각 사용자의 UE specific Codebook에 상기 Constellation을 mapping 하면 다음과 같다.
Figure PCTKR2018006440-appb-I000053
상기에서 Permutation matrix P는 각 사용자의 UE specific Codebook 복호 성능 증대를 위해, Rule 2에 따라, 각 사용자의 UE specific codebook 내의 complex vector들 간의 Euclidean Distance가 최대가 되도록 해준다. 예를 들어,
Figure PCTKR2018006440-appb-I000054
이므로, Codebook 내의 column vector들을 vector 1, 2, 3, 4라고 한다면, c(1) ≠ -c(4), c(2) ≠ -c(3), a(1) ≠ -a(4), a(2) ≠ -a(3) 이기 때문에, vector 들 사이에 phase 반전 관계는 성립하지 않는다. 또한, 실시 예 1과는 달리 conjugate(c(2))*c(4) + conjugate(a(1))*a(2) ≠ 0 이기 때문에, vector 1과 vector 2는 non-orthogonal 관계 이다. 즉, UE specific codebook 들은 최적화 되지 않을 수 있다. 단, 각 vector들은 non-orthogonal 관계이나 Phase 반전 관계에 가까운 Euclidean distance를 가진다.
이를 Rule 1에서 얻어진 bipartite matching에 대한 Factor Graph에 정리하면 다음과 같다:
Figure PCTKR2018006440-appb-I000055
상기 Mother Constellation과 bipartite matching에 의해, Rule 3의 경우, superposition of constellation(i, j, k)는 총 M^(df)개 (43 = 64개)의 조합이 발생한다. 이는 실시 예 1에서처럼 최적화되지 않을 수 있다.
전체 codebook을 정리하면 다음과 같다.
Figure PCTKR2018006440-appb-I000056
Figure PCTKR2018006440-appb-I000057
UE specific Codebook k = k th column of F matrix (e.g., UE specific Codebook 1 = 1st column of F matrix =
Figure PCTKR2018006440-appb-I000058
)
Normalized Codebook Sets
Figure PCTKR2018006440-appb-I000059
여기서, Pno은 전력 제한을 위한 정규화된 행렬 (M×M)이다. Pno을 수식으로 표현하면 다음과 같다.
Figure PCTKR2018006440-appb-I000060
. 이때,
Figure PCTKR2018006440-appb-I000061
이다.
실시 예 5. Rule 5를 통한 Codebook Extension
더 높은 connectivity 제공을 위해, Bipartite matching Rule을 Extension하는 경우를 예시한다. Rule 5에서 언급한 바와 같이 실시 예 1, 2, 3 또는 4을 통해 도출된 Bipartite matching의 Factor Graph를 Identity matrix와 Cartesian Product로 확장한다.
예를 들어,
Figure PCTKR2018006440-appb-I000062
이므로,
Figure PCTKR2018006440-appb-I000063
으로 확장 할 수 있다.
같은 방식으로
Figure PCTKR2018006440-appb-I000064
으로 확장 할 수 있다.
상기 동작을 통해, J와 K에 증가에 따른 큰 사이즈의 Bipartite matching의 Factor Graph를 사용할 수 있으며, 수신단의 복호 복잡도가 선형적으로 증가할 수 있으나, 복호 성능의 손해 없이 Bipartite matching의 Factor Graph가 확장 가능하다.
상기 언급된 Codebook Extension은 실시 예 1, 2, 3, 4에 직접 적용될 수 있으며, Normalized Codebook Set 구성시 K 값에 따라 Normalized 값만 변화할 수 있다.
실시 예 6. 실시 예 1, 2, 3 또는 4에 의한 K=6, J=9의 Codebook 설계
상기에서 제안하는 Codebook 설계는 K 값 증가에 따라,
Figure PCTKR2018006440-appb-I000065
dv=2이고, df=3 인 경우에서도 상기의 실시 예 1, 2, 3이 동일하게 적용될 수 있다. 단, K= 6일 때, dv=2를 유지하는 최대크기의 Factor Graph는
Figure PCTKR2018006440-appb-I000066
으로 df=5이다. 따라서, F(K=6, J=15)에서 df=3이 되도록 column vector 9개를 선택하는 경우의 수는 다양할 수 있다. 하지만, 어떤 조합의 column vector를 선택하든 상기 실시 예 1, 2, 3, 4에 동일하게 적용될 수 있음은 자명하다.
Figure PCTKR2018006440-appb-I000067
로 Codebook 설계를 수행한다고 하면, 실시 예 1과 2에서 예시된 Base Constellation과 Phase Rotation을 통해 아래와 같이 전체 Codebook을 설계할 수 있다.
Figure PCTKR2018006440-appb-I000068
실시 예 1의 방식:
Figure PCTKR2018006440-appb-I000069
실시 예 2의 방식:
Figure PCTKR2018006440-appb-I000070
실시 예 3의 방식:
Figure PCTKR2018006440-appb-I000071
실시 예 4의 방식:
Figure PCTKR2018006440-appb-I000072
UE specific Codebook k = kth column of F matrix (e.g., UE specific Codebook 1 = 1st column of F matrix =
Figure PCTKR2018006440-appb-I000073
)
Normalized Codebook Sets (실시 예 1의 경우)
Figure PCTKR2018006440-appb-I000074
Figure PCTKR2018006440-appb-I000075
여기서, Pno은 전력 제한을 위한 정규화된 행렬 (M×M)이다. Pno을 수식으로 표현하면 다음과 같다.
Figure PCTKR2018006440-appb-I000076
. 이때,
Figure PCTKR2018006440-appb-I000077
이다.
상기 Normalized Codebook Set은 실시 예 2, 3, 4에도 동일하게 적용될 수 있으며, Normalized Codebook Set 구성시 K 값에 따라 Normalized 값만 변화할 수 있다.
실시 예 7. 실시 예 1과 2, 3, 4에 의한 MPA decoder 성능 결과
도 21은 실시예 1 내지 4에 의한 MPA 디코더 성능 결과를 나타낸 그래프이다. (Reference System - conventional codebook, A type - 실시 예 1, B type - 실시 예 2, C type - 실시 예 3, D type - 실시 예 4)
도 21의 결과는 실시 예 1과 2, 3, 4에 의한 Codebook을 통한 다중 사용자 중첩 접속 방식에 있어서, AWGN 환경의 Symbol Error Rate(SER)을 나타낸다. 제안하는 codebook 들은 computer simulation을 통해 도출되는 기 발표된 codebook 들 보다 뛰어난 SER 성능을 가진다.
상기의 모든 실시 예는 단일 Codebook으로써 뿐만 아니라 실시 예간의 결합을 통해서도 Codebook을 생성할 수 있음은 자명하다. 예를 들어, 실시 예 3의 Asymmetric Base Constellation과 실시 예 2의 Multiple Base Constellation의 조합으로 Asymmetric Multiple Base Constellation 을 기반으로 Codebook 설계가 이루어질 수 있다.
상기 모든 방법 및 예시에서, 송신단에서 사용되는 Codebook의 column vector인 codeword는 송신 파워에 의해 Normalize됨은 자명하다.
상기 모든 방법 및 예시에서 제안하는 Codebook 설계 기법은 상기 예시에 국한되지 않음은 자명하다. 통상의 지식을 지닌 자가 동일 설계 방식으로 다른 조합 결과(Factor Graph의 Linear Combination, 또는 Mother Constellation의 Linear Scaling 등)을 도출할 수 있음은 자명하다.
방법 2. Signal Flow for Multi-dimensional Modulation based NoMA
방법 1의 수행을 위해, Multi-dimensional Modulation based NoMA를 위한 Codebook 정보 교환의 방식과 Signaling이 필요하다. 본 방법에서는 방법 1에서 제시한 Multi-dimensional Modulation based NoMA 수행을 위한 Codebook 정보 교환 방식과 Signaling을 제시한다.
2.1. Scheduling based Transmission
도 22는 하향링크 MM based NoMA 시스템에서 제어 시그널링을 통한 UE specific Codebook Index를 전송하는 흐름도이다. 도 23은 상향링크 MM based NoMA 시스템에서 제어 시그널링을 통한 UE specific Codebook Index를 전송하는 흐름도이다.
도 22 및 도 23은 MM based NoMA 시스템의 Downlink와 Uplink Signal Flow를 나타낸다. 사용자와 기지국은 사전에 정의된 MM based Codebook Set 정보를 가지고 있다. 여기서 MM based Codebook Set 정보는 UE specific Codebook들의 Set으로써 존재하며, 방법 1에서 제안된 실시 예들이 사용될 수 있다. 이 때, 사전에 정의된 MM based Codebook Set 정보를 가지는 방법은 다양할 수 있다. 예를 들어,
1. Offline으로 사전에 약속된 MM based Codebook Set 전체에 대해서 저장하고 있다.
2. 사용자는 기지국에 초기 접속하는 단계, RRC 단계 등에서 RRC Signaling을 통해, MM based Codebook Set 전체를 수신할 수 있다.
상기 경우, 사용자는 Control Signaling (예를 들어, xPDCCH 또는 xPUCCH 등)을 통해서 UE specific Codebook Index만을 수신하여, Downlink 신호 decoding 또는 Uplink 신호 전송을 위해, 해당 UE specific Codebook 또는 전체 Codebook을 사용할 수 있다.
또는 도 24 및 도 25와 같이, Downlink 또는 Uplink 수행 시 Control Signaling을 통해, 각 사용자의 UE specific Codebook Index와 MM based Codebook Set 전체를 수신할 수 있다. 도 24는 하향링크 MM based NoMA 시스템에서 제어 시그널링을 통한 UE specific Codebook Index와 MM based Codebook Set을 전송하는 흐름도이다. 도 25는 상향링크 MM based NoMA 시스템에서 제어 시그널링을 통한 UE specific Codebook Index와 MM based Codebook Set을 전송하는 흐름도이다.
즉, DL 또는 UL 정보 전송 요구가 발생하면, 기지국의 Fairness Scheduling을 통해 각 사용자가 사용할 UE Specific Codebook에 해당하는 Codebook Index를 사용자에게 Control 정보로써 전송한다. 사용자는 수신된 Codebook Index를 통해 UE Specific Codebook을 변조 또는 복조에 사용한다. 이 때, 각 사용자에게 할당되는 Codebook의 수는 1개일 수도 있고, 2개 이상일 수도 있다. 즉, 높은 Data Rate이 요구되는 사용자의 경우, 2개 이상의 Codebook을 통해 2개 이상의 Symbol을 동시에 전송하여, 수신 단에서 2개 이상의 Symbol을 복조 할 수 있음은 자명하다. 또한, Codebook의 차원을 결정하는 J와 K는 시스템 환경에 따라 변경이 가능하다. J와 K의 변화에 따른 Codebook은 방법 1에서 제안된 방식으로 생성 또는 사전 정의가 가능하다.
기지국은 Fairness Scheduling을 기반으로 Resource Management가 가능하며, Codebook 특성에 의한 MUI 값 또는 expected 복조 오류율을 통해 MCS Level을 결정한다. 결정된 MCS Level을 기반으로 Fairness Scheduling을 수행할 수 있다.
2.2. Contention based Transmission
도 26은 MM based NoMA 시스템에서 UE specific Codebook 할당 기반 contention based 전송을 수행하는 흐름도이다. 도 27은 MM based NoMA 시스템에서 UE specific Codebook 선택 기반 contention based 전송을 수행하는 흐름도이다.
도 26 및 도 27은 MM based NoMA 시스템의 Contention based transmission에서 UE specific Codebook을 기지국이 사전에 할당해 놓는 경우와 사용자가 UE specific Codebook을 선택하는 경우에 대한 Signal Flow를 나타낸다. 이 때, 사용자와 기지국은 사전에 정의된 MM based Codebook Set 정보를 가지고 있다. 여기서 MM based Codebook Set 정보는 UE specific Codebook들의 Set으로써 존재하며, 방법 1에서 제안된 실시 예들이 사용될 수 있다. 이 때, 사전에 정의된 MM based Codebook Set 정보를 가지는 방법은 다양할 수 있다. 예를 들어,
1. Offline으로 사전에 약속된 MM based Codebook Set 전체에 대해서 저장하고 있다.
2. 사용자는 기지국에 초기 접속하는 단계, RRC 단계 등에서 RRC Signaling을 통해, MM based Codebook Set 전체를 수신할 수 있다.
상기 경우, 사용자는 RRC Signaling 또는 Periodic Control Signaling 등에 의해 Contention based transmission을 위한 사전 정보 (Contention based Transmission을 위한 MCS, Contention Resource Zone, Power Control)를 수신 받는다. 이 때, UE specific Codebook Index를 수신할 수 있으며, 사용자는 사전에 할당된 UE specific Codebook Index를 기반으로 MM based Encoding을 수행하여, Contention based Transmission을 수행한다. 반면에, UE specific Codebook Index를 사전에 할당 받지 않는 경우, 사전에 정해진 rule에 따라 UE specific Codebook Index를 선택하여 MM based Encoding을 수행하고, Contention based Transmission을 수행한다. UE specific Codebook Index를 선택하는 방법은, (1) Randomly Selection, (2) UE specific Codebook Index(k) = mod(C-RNTI(k), Maximum Codebook Index), 등으로 다양할 수 있다. 기지국은 Contention Zone으로 어느 사용자가 전송을 했는지 모른채, Blind Detection으로 MUD를 수행하여, 수신된 신호를 복호한다. 이 때, 복호된 신호의 CRC check와 복호된 data 내의 C-RNTI 정보로 사용자를 특정 지을 수 있다.
본 방법에서는 Cellular 시스템의 Downlink와 Uplink, Contention based Transmission을 기반으로 설명하였으나, Machine Type Communication (MTC), Device-to-Device (D2D), Vehicle-to-Everything (V2X) 등 다중 사용자 접속 방식을 사용하는 모든 시스템에 적용이 가능함은 자명하다. 또한, 상기 Codebook 특성은 다중 사용자 접속 방식뿐만 아니라, Multiple Input Multiple Output 특성을 이용하는 다중 안테나 통신 시스템, 또는 Broadcasting의 Multi-Layer/Hierarchical Layer 전송을 위한 Codebook으로 활용될 수 있음 또한 자명하다.
Multi-dimensional Modulation based NoMA 방식은 MM based Encoder의 설계가 수신단의 복호 성능을 결정한다. 하지만, 수신단 복호 성능만을 고려한 MM based Encoder 기반 Codebook 설계 규칙이나 최적화된 codebook은 송신단의 PAPR을 고려하고 설계되지 않았다. 셀 외곽 사용자 또는 device의 Power amp등의 문제로 인하여, 송신단의 PAPR issue는 중요한 설계 issue일 수 있다.
따라서, 본 발명에서는 MM based Encoder 기반 Codebook 설계 방식에서 PAPR reduction을 달성할 수 있는 기법과 Codebook 설계방식, 최적화 Codebook을 제시한다.
발명 1. Transceiver Design of MM based NoMA for PAPR Reduction
Multi-dimensional Modulation based NoMA 방식의 PAPR Reduction을 위한 Transceiver Design은 도 28과 같다. 도 28은 MM based NoMA 시스템에서 PAPR Reduction을 위한 Transceiver Design의 일례를 나타낸다.
도 28에서, PAPR 감소를 위한 UE Specific Codebook을 기반으로, 각 송신단(UE)는 MM based Encoder로 송신 신호를 생성한다. 생성된 신호는 Time Domain 신호로써 Coded bit이 UE Specific Codebook에 따라 Complex Modulated Symbol과 Zero Symbol로 구성될 수 있다. 생성된 Time Domain 신호는 DFT를 통해 Frequency 신호로 변환되어 Resource Mapping을 통해 각 Subcarrier에 Mapping 된다. 그러면, 송신기에서 송신 Bandwidth에 맞춰 IFFT를 통해 다시 Time 신호로 변환되어 Channel을 통해 전송된다.
수신단(기지국)은 수신된 Time Domain 신호를 FFT 변환하여, Frequency로 신호로 변환하여 각 송신단에 적합한 Channel Equalization (e.g., MMSE, ZF, …)을 통해 채널 효과를 보상하고, IDFT를 통해 Time Domain 신호로 변환한다. 그러면, 각 송신단에 해당하는 Time 신호들 간의 간섭을 기반으로 송신 신호를 추정하기 위해 Multiuser Detection을 통해 각 송신단에서 전송한 data를 복호한다.
상기에서, DFT size와 IFFT size는 다를 수 있으며, 수신단의 FFT size와 IDFT size는 송신단에서 사용된 size로 재 변환할 수 있다.
본 발명에서는, PAPR 감쇠 효과를 위하여, Time Domain에서 MM based Encoder 기반의 NoMA 기술을 적용하고, DFT Processing을 고려한 UE specific Codebook을 사용하여, DFT 후 IFFT하여 송신하는 방식을 제안한다.
또한, DFT Processing을 고려한 UE specific Codebook이 Indication되거나 할당되면, 단말은 DFT Block을 Active하여, 송신을 수행한다.
발명 2. Codebook Design of MM based NoMA for PAPR Reduction
UE specific codebook의 전체 Codebook Set의 설계 방식 및 최적화 Codebook Set과 Codebook 정보 교환 방식 및 Signaling 방식은 다음과 같다. MM based NoMA 방식의 Codebook 을 위해서는 아래의 절차를 기반으로 Codebook 설계가 되어야 한다.
1. (Conventional Rules) MM based NoMA의 복호 성능 및 복호 복잡도, Contention based MA 동작을 고려한 Rule에 의해 Codebook 생성
A. 상기 언급된 (Rule 1)에서 (Rule5)를 따른다.
B. 단, 상기 모든 조건을 만족하는 것은 NP-hard Problem이므로, 일부 Rule을 Relaxation 시켜, 수신단의 ML 또는 MPA를 통해 다중 사용자 중첩 신호의 복호율을 증대 시키는 방법을 고려할 수 있다.
2. (Additional Rules for PAPR Reduction)
A. (Rule 6) DFT 특성을 이용한 Mother Constellation의 크기 균일화
i. UE specific Codebook을 구성하기 위해 사용되는 모든 Mother Constellation의 Coefficient의 크기를 하나로 하여 (e.g., |coefficient i| = |coefficient j|, for all i, j), 송신단의 Time Sample의 크기의 변동폭을 한정한다.
1. 여기서, Mother Constellation은 Zero Coefficient를 제외한 Coefficient들을 지칭한다.
2. 여기서, |x|는 x의 magnitude를 의미한다.
예를 들어, Conventional Rules에 의한 Mother Constellation이 [a(1) a(2) a(3) a(4)]라고 할 때, a(1)과 a(2)의 크기가 다를 수 있다. PAPR Reduction을 위한 Mother Constellation design을 위해 |a(1)|^2=|a(2)|^2=|a(3)|^2=|a(4)|^2으로 구성한다. 하기의 그림에서, Unequal Power Case 1은 |a(1)|^2=|a(4)|^2=0.3019, |a(2)|^2=|a(3)|^2=3.6981이고, Unequal Power Case 2은 |a(1)|^2=|a(4)|^2=2.7692, |a(2)|^2=|a(3)|^2=1.2308이다. 반면에, Equal Power Coefficient의 경우, |a(1)|^2=|a(2)|^2=|a(3)|^2=|a(4)|^2=1이다. 이를 통해, 송신단의 Time Sample 관점의 PAPR특성은 도 29와 같은 특성으로 나타날 수 있다. 도 29는 Unequal Power Case와 Equal Power Case를 비교하여 Time Sample 관점의 PAPR을 나타낸 그래프이다. 도 29를 참조하면, Equal Power Case의 경우 Time Sample의 최대 peak 값이 Unequal Power Case보다 감소함을 알 수 있다.
B. (Rule 7) UE specific Codebook의 각 Codeword에서 Coefficient의 Phase 반전을 이용한 Time Sample 상쇄
i. Time Domain Signal의 Codeword내에서 가장 가까운 Coefficient끼리 Phase 반전 형태를 기반으로, Time Sample의 Peak Power를 줄이는 방식을 제안한다.
1. 예를 들어, 4개의 coefficient가 존재하는 경우, [1; -1; 1; -1] 일 수 있다.
ii. 예를 들어, Conventional Rules에 의한 UE specific Codebook 내 Codeword가 [a(1); 0; c(1); 0]라고 할 때, a(1)의 phase와 c(1)의 phase는 conventional rules의 복호 성능에 의해 결정된다. a(1)의 phase와 c(1)의 phase가 180°관계 (Phase 반전 관계, a(1) = -c(1))일 때, 송신단의 Time Sample을 결정하는 Sinusoid 곡선의 phase 반전의 sum이 상쇄될 수 있다. 즉, Time Sample의 크기가 균일한 형태가 될 수 있다.
iii. 상기 Rule은 UE specific Codebook 내의 Codeword간 orthogonality를 위해 relaxation될 수 있다. 예를 들어, a(1)의 phase와 c(1)의 phase가 90°관계 (a(1) = c(1)*exp(-j*pi/2)) 일 수 있다.
상기 언급된 Codebook 설계 방식은 Non-convex optimization 문제로 NP-hard Problem이다. 따라서, 모든 조건은 만족시키는 최적 Codebook 설계는 어려운 일이다. 따라서, 다음의 실시 예들을 통해, 일부 Rule을 Relaxation 시켜, 송신단의 PAPR을 감쇄 시키는 방법을 고려할 수 있다.
실시 예 7. Rule 6의 최적화와 Rule 7의 Relaxation (Set 1)
본 실시 예에서는 Rule 1은 상기 언급된
Figure PCTKR2018006440-appb-I000078
dv=2이고, df=3인 경우에 대해서 최적화 되었다. 상기 제시된 Factor Graph에서 각 column vector 또는 row vector의 linear combination에 의해 변환되더라도 특성이 변하지 않음은 자명하다.
우선, Rule 6의 최적화를 위하여, 하기 두 개의 Base Constellation과 Phase Rotation을 제안한다. 도 30은 Rule 6의 최적화를 위한 두 개의 Base Constellation과 Phase Rotation의 일례를 나타낸다.
Base Constellation: B1 = [B11, B12, B13, B14], where B11 = 1, B12 = 1, B13 = -1, B14 = -1.
Base Constellation: B2 = [B21, B22, B23, B24], where B21 = 1, B22 = -1, B23 = 1, B24 = -1.
Phase Rotation:
Figure PCTKR2018006440-appb-I000079
그러면, 상기 Base Constellation과 Phase Rotation에 의하여, 하기와 같은 Mother Constellation을 구성할 수 있다. 도 31은 도 30의 Base Constellation과 Phase Rotation에 의해 구성된 Mother Constellation의 일례를 나타낸다.
Mother Constellation 1: a1 = B1*exp(j*θ1)=B1=[a1(1), a1(2), a1(3), a1(4)]
Mother Constellation 2: a2 = B2*exp(j*θ1)=B2=[a2(1), a2(2), a2(3), a2(4)]
Mother Constellation 3: b1 = B1*exp(j*θ2)=B1*exp(j*1/3π)=[b1(1), b1(2), b1(3), b1(4)]
Mother Constellation 4: b2 = B2*exp(j*θ2)=B2*exp(j*1/3π)=[b2(1), b2(2), b2(3), b2(4)]
Mother Constellation 5: c1 = B1*exp(j*θ3)=B1*exp(j*2/3π)=[c1(1), c1(2), c1(3), c1(4)]
Mother Constellation 6: c2 = B2*exp(j*θ3)=B2*exp(j*2/3π)=[c2(1), c2(2), c2(3), c2(4)]
Rule 2의 최적화를 위해, 각 사용자의 UE specific Codebook에 상기 Constellation을 mapping 하면 다음과 같다.
Figure PCTKR2018006440-appb-I000080
상기에서 각 사용자의 UE specific Codebook 복호 성능 증대를 위해, Rule 2에 따라, 각 사용자의 UE specific codebook 내의 complex vector들 간의 Euclidean Distance가 최대가 되도록 해준다. 예를 들어,
Figure PCTKR2018006440-appb-I000081
이므로, Codebook 내의 column vector들을 vector 1, 2, 3, 4라고 한다면, a1(1) = -a1(4), a1(2) = -a1(3), a2(1) = -a2(4), a2(2) = -a2(3) 이기 때문에, vector 1과 vector 4, vector 2와 3은 phase 반전 관계 이다. 또한, conjugate(a1(1))*a1(2) + conjugate(a2(1))*a2(2) = 0 이기 때문에, vector 1과 vector 2는 orthogonal 관계 이다. 또한, a1(2) = -a2(2), a1(3) = -a2(3)으로 Rule 7이 최적화되지만, a1(1) = a2(1), a1(4) = a2(4)으로 일부 vector에서는 Rule 7이최적화 되지 않는다. 상기 vector들의 관계는 모든 UE specific codebook에 동일하게 적용되므로, Rule 2가 최적화 된다.
이를 Rule 1에서 얻어진 bipartite matching에 대한 Factor Graph에 정리하면 다음과 같다:
Figure PCTKR2018006440-appb-I000082
반면에, Rule 3의 경우, superposition of constellation(i, j, k)는 총 M^(df)개 (43 = 64개)의 조합이, 각 사용자의 발생 traffic 조합에 따라 최적화 되지 않을 수 있다.
전체 codebook을 정리하면 다음과 같다.
Figure PCTKR2018006440-appb-I000083
a1 = [1, 1, -1, -1], a2 = [1, -1, 1, -1]
b1 = [1, 1, -1, -1]*exp(j*1/3π), b2 = [1, -1, 1, -1]*exp(j*1/3π)
c1 = [1, 1, -1, -1]*exp(j*2/3π), c2 = [1, -1, 1, -1]*exp(j*2/3π)
UE specific Codebook k = k th column of F matrix (e.g., UE specific Codebook 1 = 1st column of F matrix =
Figure PCTKR2018006440-appb-I000084
)
Normalized Codebook Sets
Figure PCTKR2018006440-appb-I000085
여기서, Pno은 전력 제한을 위한 정규화된 행렬 (M×M)이다. Pno을 수식으로 표현하면 다음과 같다.
Figure PCTKR2018006440-appb-I000086
. 이때,
Figure PCTKR2018006440-appb-I000087
이다.
실시 예 8. Rule 6, 7의 최적화와 Rule 2의 Relaxation (Set 2)
본 실시 예에서는 Rule 1은 상기 언급된
Figure PCTKR2018006440-appb-I000088
dv=2이고, df=3인 경우에 대해서 최적화 되었다. 상기 제시된 Factor Graph에서 각 column vector 또는 row vector의 linear combination에 의해 변환되더라도 특성이 변하지 않음은 자명하다.
우선, Rule 6의 최적화를 위하여, 하기 두 개의 Base Constellation과 Phase Rotation을 제안한다. 도 32는 Rule 6의 최적화를 위한 두 개의 Base Constellation과 Phase Rotation의 일례를 나타낸다.
Base Constellation: B1 = [B11, B12, B13, B14], where B11 = 1, B12 = i, B13 = -i, B14 = -1.
Base Constellation: B2 = [B21, B22, B23, B24], where B21 = -1, B22 = -i, B23 = i, B24 = 1.
Phase Rotation:
Figure PCTKR2018006440-appb-I000089
그러면, 상기 Base Constellation과 Phase Rotation에 의하여, 하기와 같은 Mother Constellation을 구성할 수 있다. 도 33은 도 32의 Base Constellation과 Phase Rotation에 의해 구성되는 Mother Constellation의 일례를 나타낸다.
Mother Constellation 1: a1 = B1*exp(j*θ1)=B1=[a1(1), a1(2), a1(3), a1(4)]
Mother Constellation 2: a2 = B2*exp(j*θ1)=B2=[a2(1), a2(2), a2(3), a2(4)]
Mother Constellation 3: b1 = B1*exp(j*θ2)=B1*exp(j*1/3π)=[b1(1), b1(2), b1(3), b1(4)]
Mother Constellation 4: b2 = B2*exp(j*θ2)=B2*exp(j*1/3π)=[b2(1), b2(2), b2(3), b2(4)]
Mother Constellation 5: c1 = B1*exp(j*θ3)=B1*exp(j*2/3π)=[c1(1), c1(2), c1(3), c1(4)]
Mother Constellation 6: c2 = B2*exp(j*θ3)=B2*exp(j*2/3π)=[c2(1), c2(2), c2(3), c2(4)]
Rule 2의 최적화를 위해, 각 사용자의 UE specific Codebook에 상기 Constellation을 mapping 하면 다음과 같다.
Figure PCTKR2018006440-appb-I000090
상기에서 각 사용자의 UE specific Codebook 복호 성능 증대를 위해, Rule 2에 따라, 각 사용자의 UE specific codebook 내의 complex vector들 간의 Euclidean Distance가 최대가 되도록 해준다. 예를 들어,
Figure PCTKR2018006440-appb-I000091
이므로, Codebook 내의 column vector들을 vector 1, 2, 3, 4라고 한다면, a1(1) = -a1(4), a1(2) = -a1(3), a2(1) = -a2(4), a2(2) = -a2(3) 이기 때문에, vector 1과 vector 4, vector 2와 3은 phase 반전 관계 이다. 또한, conjugate(a1(1))*a1(2) + conjugate(a2(1))*a2(2) = 2i 이기 때문에, vector 1과 vector 2는 non-orthogonal 관계 이다 (Rule 2가 최적화되지 않는다). 또한, a1(1) = -a2(1), a1(2) = -a2(2), a1(3) = -a2(3), a1(4) = -a2(4)으로 Rule 7이 최적화된다. 상기 vector들의 관계는 모든 UE specific codebook에 동일하게 적용되므로, Rule 7이 최적화 된다.
이를 Rule 1에서 얻어진 bipartite matching에 대한 Factor Graph에 정리하면 다음과 같다:
Figure PCTKR2018006440-appb-I000092
반면에, Rule 3의 경우, superposition of constellation(i, j, k)는 총 M^(df)개 (43 = 64개)의 조합이, 각 사용자의 발생 traffic 조합에 따라 최적화 되지 않을 수 있다.
전체 codebook을 정리하면 다음과 같다.
Figure PCTKR2018006440-appb-I000093
a1 = [1, i, -i, -1], a2 = [-1, -i, i, 1]
b1 = [1, i, -i, -1]*exp(j*1/3π), b2 = [-1, -i, i, 1]*exp(j*1/3π)
c1 = [1, i, -i, -1]*exp(j*2/3π), c2 = [-1, -i, i, 1]*exp(j*2/3π)
UE specific Codebook k = kth column of F matrix (e.g., UE specific Codebook 1 = 1st column of F matrix =
Figure PCTKR2018006440-appb-I000094
)
Normalized Codebook Sets
Figure PCTKR2018006440-appb-I000095
여기서, Pno은 전력 제한을 위한 정규화된 행렬 (M×M)이다. Pno을 수식으로 표현하면 다음과 같다
실시 예 9. Rule 6의 최적화와 Rule 7의 Relaxation (Set 3)
본 실시 예에서는 Rule 1은 상기 언급된
Figure PCTKR2018006440-appb-I000096
dv=2이고, df=3인 경우에 대해서 최적화 되었다. 상기 제시된 Factor Graph에서 각 column vector 또는 row vector의 linear combination에 의해 변환되더라도 특성이 변하지 않음은 자명하다.
우선, Rule 6의 최적화를 위하여, 하기 두 개의 Base Constellation과 Phase Rotation을 제안한다. 도 34는 Rule 6의 최적화를 위한 두 개의 Base Constellation과 Phase Rotation의 일례를 나타낸다.
Base Constellation: B1 = [B11, B12, B13, B14], where B11 = 1, B12 = i, B13 = -i, B14 = -1.
Base Constellation: B2 = [B21, B22, B23, B24], where B21 = i, B22 = -1, B23 = 1, B24 = -i.
Phase Rotation:
Figure PCTKR2018006440-appb-I000097
그러면, 상기 Base Constellation과 Phase Rotation에 의하여, 하기와 같은 Mother Constellation을 구성할 수 있다. 도 35는 도 34의 Base Constellation과 Phase Rotation에 의해 구성된 Mother Constellation의 일례를 나타낸다.
Mother Constellation 1: a1 = B1*exp(j*θ1)=B1=[a1(1), a1(2), a1(3), a1(4)]
Mother Constellation 2: a2 = B2*exp(j*θ1)=B2=[a2(1), a2(2), a2(3), a2(4)]
Mother Constellation 3: b1 = B1*exp(j*θ2)=B1*exp(j*1/3π)=[b1(1), b1(2), b1(3), b1(4)]
Mother Constellation 4: b2 = B2*exp(j*θ2)=B2*exp(j*1/3π)=[b2(1), b2(2), b2(3), b2(4)]
Mother Constellation 5: c1 = B1*exp(j*θ3)=B1*exp(j*2/3π)=[c1(1), c1(2), c1(3), c1(4)]
Mother Constellation 6: c2 = B2*exp(j*θ3)=B2*exp(j*2/3π)=[c2(1), c2(2), c2(3), c2(4)]
상기에서 각 사용자의 UE specific Codebook 복호 성능 증대를 위해, Rule 2에 따라, 각 사용자의 UE specific codebook 내의 complex vector들 간의 Euclidean Distance가 최대가 되도록 해준다. 예를 들어,
Figure PCTKR2018006440-appb-I000098
이므로, Codebook 내의 column vector들을 vector 1, 2, 3, 4라고 한다면, a1(1) = -a1(4), a1(2) = -a1(3), a2(1) = -a2(4), a2(2) = -a2(3) 이기 때문에, vector 1과 vector 4, vector 2와 3은 phase 반전 관계 이다. 또한, conjugate(a1(1))*a1(2) + conjugate(a2(1))*a2(2) = 0 이기 때문에, vector 1과 vector 2는 orthogonal 관계 이다. 또한, a1(1) = a2(1)*exp(j*1/4π), a1(2) = a2(2)*exp(j*1/4π) a1(3) = a2(3)*exp(j*1/4π), a1(4) = a2(4)*exp(j*1/4π)으로 Rule 7이 최적화되지 않으나, Phase 90도 회전의 효과를 얻는다. 상기 vector들의 관계는 모든 UE specific codebook에 동일하게 적용되므로, Rule 2가 최적화 된다.
이를 Rule 1에서 얻어진 bipartite matching에 대한 Factor Graph에 정리하면 다음과 같다:
Figure PCTKR2018006440-appb-I000099
반면에, Rule 3의 경우, superposition of constellation(i, j, k)는 총 M^(df)개 (43 = 64개)의 조합이, 각 사용자의 발생 traffic 조합에 따라 최적화 되지 않을 수 있다.
전체 codebook을 정리하면 다음과 같다.
Figure PCTKR2018006440-appb-I000100
a1 = [1, i, -i, -1], a2 = [i, -1, 1, -i]
b1 = [1, i, -i, -1]*exp(j*1/3π), b2 = [i, -1, 1, -i]*exp(j*1/3π)
c1 = [1, i, -i, -1]*exp(j*2/3π), c2 = [i, -1, 1, -i]*exp(j*2/3π)
UE specific Codebook k = kth column of F matrix (e.g., UE specific Codebook 1 = 1st column of F matrix =
Figure PCTKR2018006440-appb-I000101
)
Normalized Codebook Sets
Figure PCTKR2018006440-appb-I000102
여기서, Pno은 전력 제한을 위한 정규화된 행렬 (M×M)이다. Pno을 수식으로 표현하면 다음과 같다.
Figure PCTKR2018006440-appb-I000103
. 이때,
Figure PCTKR2018006440-appb-I000104
이다.
실시 예 10. 실시 예 2과 7,8, 9에 의한 MPA decoder 성능 및 PAPR 성능 결과
도 36 및 도 37은 실시예 2 내지 9에 의한 MPA decoder 성능 및 PAPR 성능 결과를 나타낸 그래프이다. (Reference System - conventional codebook, B type - 실시 예 2, Set 1 - 실시 예 7, Set 2 - 실시 예 8, Set 3 - 실시 예 9)
도 36 및 도 37의 결과는 실시 예 2과 7, 8, 9에 의한 Codebook을 통한 다중 사용자 중첩 접속 방식에 있어서, TDL-C 300ns, 3km/h 환경의 Block Error Rate(BLER)을 나타낸다. 제안하는 codebook 들은 computer simulation을 통해 도출되는 기 발표된 codebook 대비 Codebook Set 별로 BLER Performance 1~2dB이하 이다.
반면에, PAPR은 Codebook Set 별로 도 38 내지 도 42와 같이 2~3dB 이득을 가져올 수 있다. 도 38 내지 도 42는 Codebook Set 별 PAPR을 나타낸 그래프이다.
도 38 내지 도 42의 결과에서 확인할 수 있듯이, 제안하는 MM based NoMA의 Codebook Set을 통해, Legacy LTE의 SC-FDMA 대비 PAPR의 성능이 개선 또는 유지될 수 있다. 이를 통해, PAPR 성능이 중요한 cell-edge UE 들에게는 PAPR 성능을 최적화할 수 있다. 상기 결과들을 통하여 MM based NoMA의 UE specific Codebook에 따라 송신단의 PAPR의 차이를 확인할 수 있다. 특정 Codebook은 Reference 대비 좋은 PAPR을 가지는 반면, 특정 Codebook은 Reference 대비 안 좋은 PAPR을 가진다. 다중 사용자 중첩 접속 방식은 동일한 시주파수 자원에서 다수 사용자가 각자의 UE specific Codebook을 통해 동시 전송을 수행하므로, 사용자들의 셀 내 Geometry가 다양할 수 있다. PAPR은 셀 외곽에서 Uplink를 수행할 때, 셀 중심에서 Uplink를 수행하는 것보다 더 중요하다. 셀 중심에서 Uplink를 수행하는 사용자는 수신단의 복호를 위한 Power Control 관점에서 더 작은 Power로 전송해도 될 수 있다. 반면에 셀 외곽에서 Uplink를 수행하는 사용자는 수신단의 복호를 위해 Power Control 관점에서 Propagation Loss를 극복할 수 있도록 더 큰 Power가 요구될 수 있다. 하지만, 단말의 Maximum Transmit Power Constraint가 존재하므로, 또는 Energy Efficiency 측면에서 Power를 올려 주는 데는 한계가 있다. 또한, 송신단의 Power Amp 성능에 따라 PAPR은 매우 주요한 Metric 일 수 있다. 따라서, 셀 외곽 사용자는 낮은 PAPR을 갖는 시스템이 유리하다.
상기 특성을 기반으로, 셀 외곽 사용자는 낮은 PAPR을 가지는 UE specific Codebook을 사용, 선택 또는 할당 받고, 셀 중심 사용자는 높은 PAPR을 가지는 UE specific Codebook을 사용, 선택 또는 할당 받는 시스템을 제안한다.
상기의 모든 실시 예는 단일 Codebook으로써 뿐만 아니라 실시 예간의 결합을 통해서도 Codebook을 생성할 수 있음은 자명하다. 예를 들어, 실시 예 2의 Multiple Base Constellation과 실시 예 7, 8 또는 9를 기반으로 PAPR을 최적화하는 방식을 조합하여 Codebook 설계가 이루어질 수 있다.
상기 모든 방법 및 예시에서, 송신단에서 사용되는 Codebook의 column vector인 codeword는 송신 파워에 의해 Normalize됨은 자명하다.
상기 모든 방법 및 예시에서 제안하는 Codebook 설계 기법 및 Codebook의 row 혹은 column domain에서의vector간 Permutation으로 변환된 Codebook을 포괄함은 자명하다.
상기 모든 방법 및 예시에서 제안하는 Codebook 설계 기법은 상기 예시에 국한되지 않음은 자명하다. 통상의 지식을 지닌 자가 동일 설계 방식으로 다른 조합 결과(Factor Graph의 Linear Combination, 또는 Mother Constellation의 Linear Scaling 등)을 도출할 수 있음은 자명하다.
발명 3. Signal Flow for Multi-dimensional Modulation based NoMA for PAPR Reduction
발명 2 기반의 Codebook Set을 기반으로 발명 1의 수행을 위해, Multi-dimensional Modulation based NoMA를 위한 Codebook 정보 교환의 방식과 Signaling이 필요하다. 본 발명에서는 발명 2에서 제시한 Multi-dimensional Modulation based NoMA 수행을 위한 Codebook 정보 교환 방식과 Signaling을 제시한다.
3.1. Scheduling based Transmission
도 43은 상향링크 MM based NoMA 시스템에서 제어 시그널링을 통한 UE specific Codebook Index를 전송하는 흐름도이다.
도 43은 MM based NoMA 시스템의 Uplink Signal Flow를 나타낸다. 사용자와 기지국은 사전에 정의된 MM based Codebook Set 정보를 가지고 있다. 여기서 MM based Codebook Set 정보는 UE specific Codebook들의 Set으로써 존재하며, 발명 2에서 제안된 실시 예들이 사용될 수 있다. 이 때, 사전에 정의된 MM based Codebook Set 정보를 가지는 방법은 다양할 수 있다. 예를 들어,
1. Offline으로 사전에 약속된 MM based Codebook Set 전체에 대해서 저장하고 있다.
2. 사용자는 기지국에 초기 접속하는 단계, RRC 단계 등에서 RRC Signaling을 통해, MM based Codebook Set 전체를 수신할 수 있다.
상기 경우, 사용자는 Control Signaling (예를 들어, xPDCCH 또는 xPUCCH 등)을 통해서 UE specific Codebook Index만을 수신하여, Downlink 신호 decoding 또는 Uplink 신호 전송을 위해, 해당 UE specific Codebook 또는 전체 Codebook을 사용할 수 있다.
또는 도 44와 같이, Downlink 또는 Uplink 수행 시 Control Signaling을 통해, 각 사용자의 UE specific Codebook Index와 MM based Codebook Set 전체를 수신할 수 있다. 도 44는 상향링크 MM based NoMA 시스템에서 제어 시그널링을 통한 UE specific Codebook Index와 MM based Codebook Set을 전송하는 흐름도이다.
즉, UL 정보 전송 요구가 발생하면, 기지국의 Fairness Scheduling을 통해 각 사용자가 사용할 UE Specific Codebook에 해당하는 Codebook Index를 사용자에게 Control 정보로써 전송한다. 사용자는 수신된 Codebook Index를 통해 UE Specific Codebook을 변조 또는 복조에 사용한다. 이 때, 각 사용자에게 할당되는 Codebook의 수는 1개일 수도 있고, 2개 이상일 수도 있다. 즉, 높은 Data Rate이 요구되는 사용자의 경우, 2개 이상의 Codebook을 통해 2개 이상의 Symbol을 동시에 전송하여, 수신 단에서 2개 이상의 Symbol을 복조 할 수 있음은 자명하다. 또한, Codebook의 차원을 결정하는 J와 K는 시스템 환경에 따라 변경이 가능하다. J와 K의 변화에 따른 Codebook은 발명 2에서 제안된 방식으로 생성 또는 사전 정의가 가능하다.
기지국은 Fairness Scheduling을 기반으로 Resource Management가 가능하며, Codebook 특성에 의한 MUI 값 또는 expected 복조 오류율을 통해 MCS Level을 결정한다. 결정된 MCS Level을 기반으로 Fairness Scheduling을 수행할 수 있다.
3.2. Contention based Transmission
도 45는 MM based NoMA 시스템에서 UE specific Codebook 할당 기반 contention based 전송을 수행하는 흐름도이다. 도 46은 MM based NoMA 시스템에서 UE specific Codebook 선택 기반 contention based 전송을 수행하는 흐름도이다.
도 45 및 도 46은 MM based NoMA 시스템의 Contention based transmission에서 UE specific Codebook을 기지국이 사전에 할당해 놓는 경우와 사용자가 UE specific Codebook을 선택하는 경우에 대한 Signal Flow를 나타낸다. 이 때, 사용자와 기지국은 사전에 정의된 MM based Codebook Set 정보를 가지고 있다. 여기서 MM based Codebook Set 정보는 UE specific Codebook들의 Set으로써 존재하며, 발명 2에서 제안된 실시 예들이 사용될 수 있다. 이 때, 사전에 정의된 MM based Codebook Set 정보를 가지는 방법은 다양할 수 있다. 예를 들어,
1. Offline으로 사전에 약속된 MM based Codebook Set 전체에 대해서 저장하고 있다.
2. 사용자는 기지국에 초기 접속하는 단계, RRC 단계 등에서 RRC Signaling을 통해, MM based Codebook Set 전체를 수신할 수 있다.
상기 경우, 사용자는 RRC Signaling 또는 Periodic Control Signaling 등에 의해 Contention based transmission을 위한 사전 정보 (Contention based Transmission을 위한 MCS, Contention Resource Zone, Power Control)를 수신 받는다. 이 때, UE specific Codebook Index를 수신할 수 있으며, 사용자는 사전에 할당된 UE specific Codebook Index를 기반으로 MM based Encoding을 수행하여, Contention based Transmission을 수행한다. 반면에, UE specific Codebook Index를 사전에 할당 받지 않는 경우, 사전에 정해진 rule에 따라 UE specific Codebook Index를 선택하여 MM based Encoding을 수행하고, Contention based Transmission을 수행한다. UE specific Codebook Index를 선택하는 방법은, (1) Randomly Selection, (2) UE specific Codebook Index(k) = mod(C-RNTI(k), Maximum Codebook Index), 등으로 다양할 수 있다. 기지국은 Contention Zone으로 어느 사용자가 전송을 했는지 모른채, Blind Detection으로 MUD를 수행하여, 수신된 신호를 복호한다. 이 때, 복호된 신호의 CRC check와 복호된 data 내의 C-RNTI 정보로 사용자를 특정 지을 수 있다.
3.2. Codebook Set 기반 DFT Block의 Mode Selection
상기 3.1 또는 3.2 제안 방식에서, Codebook Set을 기반으로 단말의 UL 수행시, DFT Block을 Active/In-active 할 수 있다. 예를 들어, 하기와 같이 Codebook Set에 따라, DFT 동작이 Tie 될 수 있다.
Indicated or Selected or Allocated Codebook Set Index DFT Block
Codebook Set 1, 2, 3, 4 (e.g., Type A, B, C, D) In-active
Codebook Set 5, 6, 7, 8 (e.g., Set 1, 2, 3) Active
즉, 단말은 사용, 선택 또는 할당 받은 UE specific Codebook Set에 따라, DFT Block을 Active 또는 In-active하는 시스템을 제안한다.본 방법에서는 Cellular 시스템의 Uplink와 Contention based Transmission을 기반으로 설명하였으나, Downlink와SPS 환경, Machine Type Communication (MTC), Device-to-Device (D2D), Vehicle-to-Everything (V2X) 등 다중 사용자 접속 방식을 사용하는 모든 시스템에 적용이 가능함은 자명하다. 또한, 상기 Codebook 특성은 다중 사용자 접속 방식뿐만 아니라, Multiple Input Multiple Output 특성을 이용하는 다중 안테나 통신 시스템, 또는 Broadcasting의 Multi-Layer/Hierarchical Layer 전송을 위한 Codebook으로 활용될 수 있음 또한 자명하다.
도 47은 본 실시예에 따른 비직교 다중 접속 기법을 사용하여 상향링크 데이터를 전송하는 절차를 나타낸 절차 흐름도이다.
즉, 본 실시예는 다차원 변조를 고려하는 비직교 다중 접속(Non-orthogonal Multiple Access; NoMA) 방식을 사용하는 무선 통신 시스템 환경을 가정한다. 즉, 동일 시간 주파수 자원에 다중 사용자를 위한 신호를 중첩 전송하는 방식으로 비직교 다중 접속 방식을 제안한다. 상기 다차원 변조를 고려하는 비직교 다중 접속 방식은 변조 방식과 비직교 코드북을 기반으로 인코딩된 비트 스트림을 복소 심벌 벡터로 확산하는 NoMA 방식에 대응할 수 있다.
단계 S4710에서, 단말은 기지국으로부터 단말 특정 코드북에 대한 정보를 수신한다. 상기 단말 특정 코드북은 기정의된 다차원 변조(Multi-dimensional Modulation)에 대한 코드북에 포함된다. 상기 기정의된 다차원 변조에 대한 코드북은 단말과 기지국 간에 사전에 약속되어 있거나, RRC 시그널링(단말이 기지국에 초기 접속하는 단계에 있거나 RRC 단계에 있는 경우)을 통해 수신될 수 있다. 또는, 다차원 변조에 대한 코드북은 제어 시그널링을 통해 단말 특정 코드북 인덱스와 함께 수신될 수도 있다.
단계 S4720에서, 단말은 정보 비트에 대해 상기 단말 특정 코드북을 기반으로 다차원 변조 기반 인코딩을 수행하여 복소 벡터를 생성한다. 단말은 다차원 변조 기반 인코더로 송신 신호를 생성할 수 있다. 상기 송신 신호는 시간 영역 신호로써 단말 특정 코드북에 따라 복소 변조 심벌과 제로 심벌로 구성될 수 있다. 일례로, 상기 복소 벡터는 상기 정보 비트가 채널 코딩된 코딩 비트에 따라 네 개의 복소 변조 심벌로 구성될 수 있다.
단계 S4730에서, 단말은 상기 복소 벡터에 대해 상기 단말 특정 코드북을 기반으로 DFT(Discrete Fourier Transform)를 수행하여 주파수 신호를 생성한다. 즉, 단말은 앞서 생성된 송신 신호를 DFT를 통해 주파수 영역 신호로 변환할 수 있다.
단계 S4740에서, 단말은 상기 주파수 신호에 대해 IFFT(Inverse Fast Fourier Transform)를 수행하여 생성된 상향링크 데이터를 전송한다. 단말은 주파수 영역 신호를 다시 IFFT를 수행하여 시간 영역 신호로 변환하고 채널을 통해 전송할 수 있다.
또한, 다차원 변조 기반 비직교 다중 접속 방식에서 사용되는 단말 특정 코드북을 설계하고 결정하는 방법을 제안할 수 있다.
제1 실시예로, 상기 단말 특정 코드북은 제1 내지 제6 코드북 중 하나로 결정될 수 있다. 구체적으로, 상기 제1 코드북은 다음과 같이 정의되고,
Figure PCTKR2018006440-appb-I000105
상기 제2 코드북은 다음과 같이 정의되고,
Figure PCTKR2018006440-appb-I000106
상기 제3 코드북은 다음과 같이 정의되고,
Figure PCTKR2018006440-appb-I000107
상기 제4 코드북은 다음과 같이 정의되고,
Figure PCTKR2018006440-appb-I000108
상기 제5 코드북은 다음과 같이 정의되고,
Figure PCTKR2018006440-appb-I000109
상기 제6 코드북은 다음과 같이 정의될 수 있다.
Figure PCTKR2018006440-appb-I000110
상기 제1 실시예에 따르면, 상기 제1 내지 제6 코드북을 구성하기 위해 사용되는 마더 컨스텔레이션(mother constellation) 내 각 계수의 크기는 균등할 수 있다. 이로써, 각 계수의 크기가 균등하지 않을 때보다 Time Sample 관점에서 최대 peak 값이 감소하여 PAPR 측면에서 유리할 수 있다. 이는, 앞서 기술한 Rule 6을 최적화한 기법일 수 있다.
이때, 상기 마더 컨스텔레이션은 0이 아닌 계수(non-zero coefficient)를 가지는 상기 제1 내지 제6 코드북의 행 벡터(row vector)일 수 있다. 즉, 상기 제1 실시예에 따르면, 상기 제1 내지 제6 코드북의 행 벡터의 구성 요소의 크기가 균등할 수 있다. 예를 들어, 상기 제1 코드북의 위에서 두 번째 행 벡터의 각 구성 요소(각 계수-> 1, 1, -1, -1)의 크기는 모두 1로 균등한 것을 알 수 있다.
또한, 상기 제1 내지 제6 코드북의 코드워드는 상기 제1 내지 제6 코드북의 열 벡터(column vector)일 수 있다. 이때, 상기 코드워드 중 일부 코드워드는 서로 위상이 반전되고 인접한 0이 아닌 계수를 포함할 수 있다. 즉, 모든 코드워드가 서로 위상이 반전되고 인접한 0이 아닌 계수를 포함하는 것은 아닐 수 있다. 이는, 앞서 기술한 Rule 7을 완화한 기법일 수 있다.
예를 들어, 상기 제1 코드북의 왼쪽에서 두 번째 열 벡터와 세 번째 열 벡터는 인접한 0이 아닌 계수가 1과 -1이므로 서로 위상이 반전된 관계를 가짐을 알 수 있다. 그러나, 상기 제1 코드북의 왼쪽에서 첫 번째 열 벡터와 네 번째 열 벡터는 인접한 0이 아닌 계수가 1과 1, 또는 -1과 -1이므로 서로 동일한 위상을 가짐을 알 수 있다.
제2 실시예로, 상기 단말 특정 코드북은 제1 내지 제6 코드북 중 하나로 결정될 수 있다. 구체적으로, 상기 제1 코드북은 다음과 같이 정의되고,
Figure PCTKR2018006440-appb-I000111
상기 제2 코드북은 다음과 같이 정의되고,
Figure PCTKR2018006440-appb-I000112
상기 제3 코드북은 다음과 같이 정의되고,
Figure PCTKR2018006440-appb-I000113
상기 제4 코드북은 다음과 같이 정의되고,
Figure PCTKR2018006440-appb-I000114
상기 제5 코드북은 다음과 같이 정의되고,
Figure PCTKR2018006440-appb-I000115
상기 제6 코드북은 다음과 같이 정의될 수 있다.
Figure PCTKR2018006440-appb-I000116
상기 제2 실시예에 따르면, 상기 제1 내지 제6 코드북을 구성하기 위해 사용되는 마더 컨스텔레이션(mother constellation) 내 각 계수의 크기는 균등할 수 있다. 이로써, 각 계수의 크기가 균등하지 않을 때보다 Time Sample 관점에서 최대 peak 값이 감소하여 PAPR 측면에서 유리할 수 있다. 이는, 앞서 기술한 Rule 6을 최적화한 기법일 수 있다.
이때, 상기 마더 컨스텔레이션은 0이 아닌 계수(non-zero coefficient)를 가지는 상기 제1 내지 제6 코드북의 행 벡터(row vector)일 수 있다. 즉, 상기 제1 실시예에 따르면, 상기 제1 내지 제6 코드북의 행 벡터의 구성 요소의 크기가 균등할 수 있다. 예를 들어, 상기 제1 코드북의 위에서 두 번째 행 벡터의 각 구성 요소(각 계수 -> 1, i, -i, -1)의 크기는 모두 1로 균등한 것을 알 수 있다.
또한, 상기 제1 내지 제6 코드북의 코드워드는 상기 제1 내지 제6 코드북의 열 벡터(column vector)일 수 있다. 이때, 상기 코드워드는 서로 위상이 반전되고 인접한 0이 아닌 계수를 포함할 수 있다. 즉, 모든 코드워드가 서로 위상이 반전되고 인접한 0이 아닌 계수를 포함할 수 있다. 이는, 앞서 기술한 Rule 7을 최적화한 기법일 수 있다.
예를 들어, 상기 제1 코드북의 각 열 벡터의 인접한 0이 아닌 계수는 1과 -1, i와 -i, -i와 i, -1과 1이므로 서로 위상이 반전된 관계를 가짐을 알 수 있다.
제3 실시예로, 상기 단말 특정 코드북은 제1 내지 제6 코드북 중 하나로 결정될 수 있다. 구체적으로, 상기 제1 코드북은 다음과 같이 정의되고,
Figure PCTKR2018006440-appb-I000117
상기 제2 코드북은 다음과 같이 정의되고,
Figure PCTKR2018006440-appb-I000118
상기 제3 코드북은 다음과 같이 정의되고,
Figure PCTKR2018006440-appb-I000119
상기 제4 코드북은 다음과 같이 정의되고,
Figure PCTKR2018006440-appb-I000120
상기 제5 코드북은 다음과 같이 정의되고,
Figure PCTKR2018006440-appb-I000121
상기 제6 코드북은 다음과 같이 정의될 수 있다.
Figure PCTKR2018006440-appb-I000122
상기 제3 실시예에 따르면, 상기 제1 내지 제6 코드북을 구성하기 위해 사용되는 마더 컨스텔레이션(mother constellation) 내 각 계수의 크기는 균등할 수 있다. 이로써, 각 계수의 크기가 균등하지 않을 때보다 Time Sample 관점에서 최대 peak 값이 감소하여 PAPR 측면에서 유리할 수 있다. 이는, 앞서 기술한 Rule 6을 최적화한 기법일 수 있다.
이때, 상기 마더 컨스텔레이션은 0이 아닌 계수(non-zero coefficient)를 가지는 상기 제1 내지 제6 코드북의 행 벡터(row vector)일 수 있다. 즉, 상기 제1 실시예에 따르면, 상기 제1 내지 제6 코드북의 행 벡터의 구성 요소의 크기가 균등할 수 있다. 예를 들어, 상기 제1 코드북의 위에서 두 번째 행 벡터의 각 구성 요소(각 계수 -> 1, i, -i, -1)의 크기는 모두 1로 균등한 것을 알 수 있다.
또한, 상기 제1 내지 제6 코드북의 코드워드는 상기 제1 내지 제6 코드북의 열 벡터(column vector)일 수 있다. 이때, 상기 코드워드는 서로 위상이 90도로 회전되고 인접한 0이 아닌 계수를 포함할 수 있다. 즉, 모든 코드워드가 서로 위상이 90도로 회전되고 인접한 0이 아닌 계수를 포함할 수 있다. 이는, 앞서 기술한 Rule 7을 완화한 기법일 수 있다.
예를 들어, 상기 제1 코드북의 각 열 벡터의 인접한 0이 아닌 계수는 1과 i, i와 -1, -i와 1, -1과 -i이므로 서로 위상이 90도로 회전된 관계를 가짐을 알 수 있다.
상기 Pno은 전력 제한을 위한 정규화된 M×M 행렬이고, 다음과 같이 정의되될 수 있다.
.
Figure PCTKR2018006440-appb-I000123
상기 Pno,m은 다음과 같이 정의될 수 있다.
Figure PCTKR2018006440-appb-I000124
또한, 상기 단말이 셀 외곽에 위치하는 경우, 상기 단말 특정 코드북은 PAPR(Peak-to-Average Power Ratio)이 낮은 값을 가지는 코드북으로 결정될 수 있다. 상기 단말이 셀 중심에 위치하는 경우, 상기 단말 특정 코드북은 PAPR이 높은 값을 가지는 코드북으로 결정될 수 있다. 단말들의 셀 내 지오메트리(geometry)는 다양할 수 있다. 즉, PAPR이 셀 외곽에서 상향링크 통신을 수행할 때가 셀 중심에서 상향링크 통신을 수행할 때보다 중요하다는 특징을 고려하여, PAPR에 최적화된 코드북을 결정할 수 있다.
또한, 상기 DFT는 상기 단말의 DFT 블록(block)이 활성화되는 경우 수행될 수 있다. 상기 단말의 DFT 블록은 상기 다차원 변조에 대한 기정의된 코드북에 포함된 단말 특정 코드북에 따라 활성화되거나 또는 비활성화될 수 있다. 즉, DFT 동작과 코드북 인덱스가 서로 결속(tie)될 수 있다.
도 48은 본 실시예가 적용될 수 있는 무선 장치를 나타내는 블록도이다.
도 48을 참조하면, 무선 장치는 상술한 실시예를 구현할 수 있는 STA로서, AP 또는 non-AP STA로 동작할 수 있다. 또한, 상기 무선 장치는 상술한 사용자(user)에 대응되거나, 상기 사용자에 신호를 송신하는 송신 장치에 대응될 수 있다.
도 48의 무선장치는, 도시된 바와 같이 프로세서(4810), 메모리(4820) 및 트랜시버(4830)를 포함한다. 도시된 프로세서(4810), 메모리(4820) 및 트랜시버(4830)는 각각 별도의 칩으로 구현되거나, 적어도 둘 이상의 블록/기능이 하나의 칩을 통해 구현될 수 있다.
상기 트랜시버(transceiver, 4830)는 송신기(transmitter) 및 수신기(receiver)를 포함하는 장치이며, 특정한 동작이 수행되는 경우 송신기 및 수신기 중 어느 하나의 동작만이 수행되거나, 송신기 및 수신기 동작이 모두 수행될 수 있다. 상기 트랜시버(4830)는 무선 신호를 전송 및/또는 수신하는 하나 이상의 안테나를 포함할 수 있다. 또한, 상기 트랜시버(4830)는 수신 신호 및/또는 송신 신호의 증폭을 위한 증폭기와 특정한 주파수 대역 상으로의 송신을 위한 밴드패스필터를 포함할 수 있다.
상기 프로세서(4810)는 본 명세서에서 제안된 기능, 과정 및/또는 방법을 구현할 수 있다. 예를 들어, 프로세서(4810)는 전술한 본 실시예에 따른 동작을 수행할 수 있다. 즉, 프로세서(4810)는 도 1 내지 47의 실시예에서 개시된 동작을 수행할 수 있다.
프로세서(4810)는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로, 데이터 처리 장치 및/또는 베이스밴드 신호 및 무선 신호를 상호 변환하는 변환기를 포함할 수 있다. 메모리(4820)는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다.
도 49는 프로세서에 포함되는 장치의 일례를 나타내는 블록도이다. 설명의 편의를 위해, 도 49의 일례는 송신 신호를 위한 블록을 기준으로 설명되어 있으나, 해당 블록을 이용하여 수신 신호를 처리할 수 있다는 점은 자명하다.
도시된 데이터 처리부(4910)는 송신 신호에 대응되는 송신 데이터(제어 데이터 및/또는 사용자 데이터)를 생성한다. 데이터 처리부(4910)의 출력은 인코더(4920)로 입력될 수 있다. 상기 인코더(4920)는 BCC(binary convolutional code)나 LDPC(low-density parity-check) 기법 등을 통해 코딩을 수행할 수 있다. 상기 인코더(4920)는 적어도 1개 포함될 수 있고, 인코더(4920)의 개수는 다양한 정보(예를 들어, 데이터 스트림의 개수)에 따라 정해질 수 있다.
상기 인코더(4920)의 출력은 인터리버(4930)로 입력될 수 있다. 인터리버(4930)는 페이딩 등에 의한 연집 에러(burst error)를 방지하기 위해 연속된 비트 신호를 무선 자원(예를 들어, 시간 및/또는 주파수) 상에서 분산시키는 동작을 수행한다. 상기 인터리버(4930)는 적어도 1개 포함될 수 있고, 인터리버(4930)의 개수는 다양한 정보(예를 들어, 공간 스트림의 개수)에 따라 정해질 수 있다.
상기 인터리버(4930)의 출력은 성상 맵퍼(constellation mapper, 4940)로 입력될 수 있다. 상기 성상 맵퍼(4940)는 BPSK(biphase shift keying), QPSK(Quadrature Phase Shift Keying), n-QAM(quadrature amplitude modulation) 등의 성상 맵핑을 수행한다.
상기 성상 맵퍼(4940)의 출력은 공간 스트림 인코더(4950)로 입력될 수 있다. 상기 공간 스트림 인코더(4950)는 송신 신호를 적어도 하나의 공간 스티림을 통해 송신하기 위해 데이터 처리를 수행한다. 예를 들어, 상기 공간 스트림 인코더(4950)는 송신 신호에 대한 STBC(space-time block coding), CSD(Cyclic shift diversity) 삽입, 공간 매핑(spatial mapping) 중 적어도 하나를 수행할 수 있다.
상기 공간 스트림 인코더(4950)의 출력은 IDFT(4960) 블록에 입력될 수 있다. 상기 IDFT(4960) 블록은 IDFT(inverse discrete Fourier transform) 또는 IFFT(inverse Fast Fourier transform)을 수행한다.
상기 IDFT(4960) 블록의 출력은 GI(Guard Interval) 삽입기(4970)에 입력되고, 상기 GI 삽입기(4970)의 출력은 도 48의 트랜시버(4830)에 입력된다.

Claims (13)

  1. 무선통신시스템에서 비직교 다중 접속(Non-orthogonal Multiple Access; NoMA)을 사용하여 상향링크 데이터를 전송하는 방법에 있어서,
    단말이, 기지국으로부터 단말 특정 코드북에 대한 정보를 수신하되, 상기 단말 특정 코드북은 기정의된 다차원 변조(Multi-dimensional Modulation)에 대한 코드북에 포함되는, 단계;
    상기 단말이, 정보 비트에 대해 상기 단말 특정 코드북을 기반으로 다차원 변조 기반 인코딩을 수행하여 복소 벡터를 생성하는 단계;
    상기 단말이, 상기 복소 벡터에 대해 상기 단말 특정 코드북을 기반으로 DFT(Discrete Fourier Transform)를 수행하여 주파수 신호를 생성하는 단계; 및
    상기 단말이, 상기 주파수 신호에 대해 IFFT(Inverse Fast Fourier Transform)를 수행하여 생성된 상향링크 데이터를 전송하는 단계를 포함하는
    방법.
  2. 제1항에 있어서,
    상기 단말 특정 코드북은 제1 내지 제6 코드북 중 하나로 결정되고,
    상기 제1 코드북은 다음과 같이 정의되고,
    Figure PCTKR2018006440-appb-I000125
    상기 제2 코드북은 다음과 같이 정의되고,
    Figure PCTKR2018006440-appb-I000126
    상기 제3 코드북은 다음과 같이 정의되고,
    Figure PCTKR2018006440-appb-I000127
    상기 제4 코드북은 다음과 같이 정의되고,
    Figure PCTKR2018006440-appb-I000128
    상기 제5 코드북은 다음과 같이 정의되고,
    Figure PCTKR2018006440-appb-I000129
    상기 제6 코드북은 다음과 같이 정의되고,
    Figure PCTKR2018006440-appb-I000130
    상기 Pno은 전력 제한을 위한 정규화된 M×M 행렬이고, 다음과 같이 정의되고,
    Figure PCTKR2018006440-appb-I000131
    상기 Pno,m은 다음과 같이 정의되는
    Figure PCTKR2018006440-appb-I000132
    방법.
  3. 제2항에 있어서,
    상기 제1 내지 제6 코드북을 구성하기 위해 사용되는 마더 컨스텔레이션(mother constellation) 내 각 계수의 크기는 균등하고,
    상기 마더 컨스텔레이션은 0이 아닌 계수(non-zero coefficient)를 가지는 상기 제1 내지 제6 코드북의 행 벡터(row vector)인
    방법.
  4. 제2항에 있어서,
    상기 제1 내지 제6 코드북의 코드워드는 상기 제1 내지 제6 코드북의 열 벡터(column vector)이고,
    상기 코드워드 중 일부 코드워드는 서로 위상이 반전되고 인접한 0이 아닌 계수를 포함하는
    방법.
  5. 제1항에 있어서,
    상기 단말 특정 코드북은 제1 내지 제6 코드북 중 하나로 결정되고,
    상기 제1 코드북은 다음과 같이 정의되고,
    Figure PCTKR2018006440-appb-I000133
    상기 제2 코드북은 다음과 같이 정의되고,
    Figure PCTKR2018006440-appb-I000134
    상기 제3 코드북은 다음과 같이 정의되고,
    Figure PCTKR2018006440-appb-I000135
    상기 제4 코드북은 다음과 같이 정의되고,
    Figure PCTKR2018006440-appb-I000136
    상기 제5 코드북은 다음과 같이 정의되고,
    Figure PCTKR2018006440-appb-I000137
    상기 제6 코드북은 다음과 같이 정의되고,
    Figure PCTKR2018006440-appb-I000138
    상기 Pno은 전력 제한을 위한 정규화된 M×M 행렬이고, 다음과 같이 정의되고,
    Figure PCTKR2018006440-appb-I000139
    상기 Pno,m은 다음과 같이 정의되는
    Figure PCTKR2018006440-appb-I000140
    방법.
  6. 제5항에 있어서,
    상기 제1 내지 제6 코드북을 구성하기 위해 사용되는 마더 컨스텔레이션(mother constellation) 내 각 계수의 크기는 균등하고,
    상기 마더 컨스텔레이션은 0이 아닌 계수(non-zero coefficient)를 가지는 상기 제1 내지 제6 코드북의 행 벡터(row vector)인
    방법.
  7. 제5항에 있어서,
    상기 제1 내지 제6 코드북의 코드워드는 상기 제1 내지 제6 코드북의 열 벡터(column vector)이고,
    상기 코드워드는 서로 위상이 반전되고 인접한 0이 아닌 계수를 포함하는
    방법.
  8. 제1항에 있어서,
    상기 단말 특정 코드북은 제1 내지 제6 코드북 중 하나로 결정되고,
    상기 제1 코드북은 다음과 같이 정의되고,
    Figure PCTKR2018006440-appb-I000141
    상기 제2 코드북은 다음과 같이 정의되고,
    Figure PCTKR2018006440-appb-I000142
    상기 제3 코드북은 다음과 같이 정의되고,
    Figure PCTKR2018006440-appb-I000143
    상기 제4 코드북은 다음과 같이 정의되고,
    Figure PCTKR2018006440-appb-I000144
    상기 제5 코드북은 다음과 같이 정의되고,
    Figure PCTKR2018006440-appb-I000145
    상기 제6 코드북은 다음과 같이 정의되고,
    Figure PCTKR2018006440-appb-I000146
    상기 Pno은 전력 제한을 위한 정규화된 M×M 행렬이고, 다음과 같이 정의되고,
    Figure PCTKR2018006440-appb-I000147
    상기 Pno,m은 다음과 같이 정의되는
    Figure PCTKR2018006440-appb-I000148
    방법.
  9. 제8항에 있어서,
    상기 제1 내지 제6 코드북을 구성하기 위해 사용되는 마더 컨스텔레이션(mother constellation) 내 각 계수의 크기는 균등하고,
    상기 마더 컨스텔레이션은 0이 아닌 계수(non-zero coefficient)를 가지는 상기 제1 내지 제6 코드북의 행 벡터(row vector)인
    방법.
  10. 제8항에 있어서,
    상기 제1 내지 제6 코드북의 코드워드는 상기 제1 내지 제6 코드북의 열 벡터(column vector)이고,
    상기 코드워드는 서로 위상이 90도로 회전되고 인접한 0이 아닌 계수를 포함하는
    방법.
  11. 제1항에 있어서,
    상기 단말이 셀 외곽에 위치하는 경우, 상기 단말 특정 코드북은 PAPR(Peak-to-Average Power Ratio)이 낮은 값을 가지는 코드북으로 결정되고, 및
    상기 단말이 셀 중심에 위치하는 경우, 상기 단말 특정 코드북은 PAPR이 높은 값을 가지는 코드북으로 결정되는
    방법.
  12. 제1항에 있어서,
    상기 DFT는 상기 단말의 DFT 블록(block)이 활성화되는 경우 수행되고,
    상기 단말의 DFT 블록은 상기 다차원 변조에 대한 기정의된 코드북에 포함된 단말 특정 코드북에 따라 활성화되거나 또는 비활성화되는
    방법.
  13. 무선통신시스템에서 비직교 다중 접속(Non-orthogonal Multiple Access; NoMA) 기법을 사용하여 상향링크 데이터를 전송하는 단말에 있어서,
    무선신호를 전송 및 수신하는 트랜시버(transceiver); 및
    상기 트랜시버에 연결되는 프로세서를 포함하되, 상기 프로세서는
    기지국으로부터 단말 특정 코드북에 대한 정보를 수신하되, 상기 단말 특정 코드북은 기정의된 다차원 변조(Multi-dimensional Modulation)에 대한 코드북에 포함되고,
    정보 비트에 대해 상기 단말 특정 코드북을 기반으로 다차원 변조 기반 인코딩을 수행하여 복소 벡터를 생성하고,
    상기 복소 벡터에 대해 상기 단말 특정 코드북을 기반으로 DFT(Discrete Fourier Transform)를 수행하여 주파수 신호를 생성하고, 및
    상기 주파수 신호에 대해 IFFT(Inverse Fast Fourier Transform)를 수행하여 생성된 상향링크 데이터를 전송하는
    단말.
PCT/KR2018/006440 2017-06-13 2018-06-07 무선통신시스템에서 직교 또는 비직교 부호 다중 접속 기법을 사용하여 통신을 수행하는 방법 및 장치 WO2018230878A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/622,857 US11336343B2 (en) 2017-06-13 2018-06-07 Method and device for performing communication using orthogonal or nonorthogonal code multiple access scheme in wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762519140P 2017-06-13 2017-06-13
US62/519,140 2017-06-13

Publications (1)

Publication Number Publication Date
WO2018230878A1 true WO2018230878A1 (ko) 2018-12-20

Family

ID=64659619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/006440 WO2018230878A1 (ko) 2017-06-13 2018-06-07 무선통신시스템에서 직교 또는 비직교 부호 다중 접속 기법을 사용하여 통신을 수행하는 방법 및 장치

Country Status (2)

Country Link
US (1) US11336343B2 (ko)
WO (1) WO2018230878A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108242972B (zh) * 2016-12-26 2020-12-15 华为技术有限公司 非正交传输数据的方法和设备
US12003290B2 (en) * 2020-04-16 2024-06-04 Qualcomm Incorporated Techniques for switching orthogonal and non-orthogonal sequence based noncoherent uplink control transmissions

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160021652A1 (en) * 2010-01-28 2016-01-21 Lg Electronics Inc. Method and apparatus for transmitting uplink control information in a wireless communication system
KR20160091286A (ko) * 2015-01-23 2016-08-02 삼성전자주식회사 무선 통신 시스템에서 필터 뱅크를 기반으로 하여 신호들을 생성, 전송 및 수신하는 방법 및 장치
WO2017026700A1 (ko) * 2015-08-07 2017-02-16 엘지전자 주식회사 비직교 다중 접속 방식에 기초하여 신호를 송수신하기 위한 방법 및 이를 위한 장치
KR101719969B1 (ko) * 2012-11-16 2017-03-24 후아웨이 테크놀러지 컴퍼니 리미티드 희소 코드 다중 액세스를 위한 시스템 및 방법
KR20170041896A (ko) * 2014-08-15 2017-04-17 후아웨이 테크놀러지 컴퍼니 리미티드 파형을 생성하기 위한 시스템과 방법 및 그 사용방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107294643B (zh) * 2016-03-31 2021-07-02 中兴通讯股份有限公司 一种信道状态信息反馈和配置的方法和装置
EP3456016A1 (en) * 2016-05-11 2019-03-20 IDAC Holdings, Inc. Code-domain non-orthogonal multiple access schemes
CN108282322A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种配置参考信号的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160021652A1 (en) * 2010-01-28 2016-01-21 Lg Electronics Inc. Method and apparatus for transmitting uplink control information in a wireless communication system
KR101719969B1 (ko) * 2012-11-16 2017-03-24 후아웨이 테크놀러지 컴퍼니 리미티드 희소 코드 다중 액세스를 위한 시스템 및 방법
KR20170041896A (ko) * 2014-08-15 2017-04-17 후아웨이 테크놀러지 컴퍼니 리미티드 파형을 생성하기 위한 시스템과 방법 및 그 사용방법
KR20160091286A (ko) * 2015-01-23 2016-08-02 삼성전자주식회사 무선 통신 시스템에서 필터 뱅크를 기반으로 하여 신호들을 생성, 전송 및 수신하는 방법 및 장치
WO2017026700A1 (ko) * 2015-08-07 2017-02-16 엘지전자 주식회사 비직교 다중 접속 방식에 기초하여 신호를 송수신하기 위한 방법 및 이를 위한 장치

Also Published As

Publication number Publication date
US20200212973A1 (en) 2020-07-02
US11336343B2 (en) 2022-05-17

Similar Documents

Publication Publication Date Title
WO2017135799A1 (en) Multiple access method, and corresponding transmission method, receiver and transmitter
WO2020167019A1 (en) Method, terminal device, base station, computer readable medium for measuring cross-link interference, and methods and apparatuses for random access preamble allocation, determination, and data transmission
WO2018203726A1 (en) Method and apparatus for communicating reference signal for broadcast channel
WO2020204491A1 (en) Apparatus and method for semi-persistent scheduling
WO2019199121A1 (en) Method and apparatus for transmitting and receiving signal in wireless communication system
WO2018203682A1 (ko) 무선 통신 시스템에서 단말과 기지국의 신호 송수신 방법 및 이를 지원하는 장치
EP3602945A1 (en) Method and apparatus for transmitting and receiving demodulation reference signal
WO2018143537A1 (ko) 무선 통신 시스템에서 위상 잡음을 추정하기 위한 방법 및 이를 위한 장치
WO2011099811A2 (en) Method for indicating a dm-rs antenna port in a wireless communication system
WO2010147435A2 (en) Method and system for indicating method used to scramble dedicated reference signals
WO2017204471A1 (ko) 비직교 다중 접속 기법이 적용되는 무선통신시스템에서 경쟁 기반으로 상향링크 데이터를 전송하는 방법 및 장치
WO2011090353A2 (ko) 다중입출력 무선 통신 시스템에서 하향링크 제어정보를 제공하는 방법 및 장치
WO2017007240A1 (ko) 이동 통신 시스템에서 채널을 측정하는 방법 및 장치
WO2018174649A1 (ko) 무선 통신 시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치
WO2020166946A1 (en) Remote interference management method, gnb, electronic device, and readable storage medium
WO2019031856A1 (ko) 무선 통신 시스템에서 참조 신호를 송수신하기 위한 방법 및 이를 위한 장치
WO2010056079A2 (ko) 무선 통신 시스템에서 정보 전송 방법 및 장치
WO2018182150A1 (ko) 무선 통신 시스템에서 참조 신호를 송수신하기 위한 방법 및 이를 위한 장치
WO2019098800A1 (ko) 무선 통신 시스템에서 사운딩 참조 신호를 전송하는 방법 및 이를 위한 장치
WO2017039384A1 (ko) 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 이를 위한 장치
WO2017171365A2 (ko) 6ghz 이하 대역을 지원하는 무선 통신 시스템에서 신호를 송수신하기 위한 방법 및 이를 위한 장치
WO2019027180A1 (ko) 통신 시스템에서 동기 신호의 송수신 방법
WO2021177664A1 (en) Method and apparatus for processing signals in a communication system
WO2022154528A1 (en) Method for transmitting and receiving uplink control information
WO2019235868A1 (ko) Nr 시스템에서 v2x를 위한 dmrs 관련 정보 지시 방법 및 그 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818801

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18818801

Country of ref document: EP

Kind code of ref document: A1