WO2018230625A1 - Method for inspecting electromagnetic wave transparency, and electromagnetic wave transparent structure - Google Patents

Method for inspecting electromagnetic wave transparency, and electromagnetic wave transparent structure Download PDF

Info

Publication number
WO2018230625A1
WO2018230625A1 PCT/JP2018/022664 JP2018022664W WO2018230625A1 WO 2018230625 A1 WO2018230625 A1 WO 2018230625A1 JP 2018022664 W JP2018022664 W JP 2018022664W WO 2018230625 A1 WO2018230625 A1 WO 2018230625A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
inspection
metal film
crack
image
Prior art date
Application number
PCT/JP2018/022664
Other languages
French (fr)
Japanese (ja)
Inventor
健 三科
吉岡 尚規
厚文 大岸
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Publication of WO2018230625A1 publication Critical patent/WO2018230625A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/57Measuring gloss
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome

Definitions

  • the present invention relates to an electromagnetic wave transmission structure having metallic luster and transmitting electromagnetic waves, and an inspection method for the electromagnetic wave transmission properties thereof.
  • a metal film is formed on the surface of a lightweight material such as a resin substrate to reduce weight and improve decorativeness.
  • electromagnetic waves such as millimeter waves are used to realize automatic braking and the like, but the electromagnetic waves cannot penetrate the metal film. For this reason, the member which permeate
  • Electromagnetic waves are transmitted through the metal film where cracks occur. For this reason, in order to use, for example, an emblem of an automobile manufacturer as a radome for storing a distance warning radar, a method of forming a thin indium thin film on a resin substrate has been disclosed (for example, see Patent Document 1).
  • an object of the present invention is to provide an electromagnetic wave transmission inspection method and an electromagnetic wave transmission structure capable of suppressing inspection time and inspection cost.
  • a permeability inspection method is provided.
  • the quantified crack fineness includes a substrate that transmits electromagnetic waves, and a metal film that is laminated on the substrate and has a metallic luster and intentionally generates cracks.
  • an electromagnetic wave transmission structure that is smaller than a judgment value set so that the metal film has a predetermined electromagnetic wave permeability with respect to the electromagnetic wave.
  • an electromagnetic wave transmission inspection method and an electromagnetic wave transmission structure that can suppress the inspection time and the inspection cost.
  • FIG. 5 (a) is an original image
  • FIG. 5 (b) is a binarized image
  • FIG. 5 (c) is a thinned image.
  • FIG. 6 (a) is an original image
  • FIG. 6 (b) is a binarized image
  • FIG. 6 (a) is an original image
  • FIG. 6 (b) is a binarized image
  • 6 (c) is a thinned image. It is. It is a graph which shows the relationship between the area of a crack, and electromagnetic wave loss. It is a graph which shows the relationship between the total length of a crack, and electromagnetic wave loss. It is a graph which shows the relationship between the average width of a crack, and electromagnetic wave loss. It is a table
  • the electromagnetic wave transmission inspection method is applied to the inspection of an electromagnetic wave transmission structure including a metal film in which a crack is generated.
  • step S10 for preparing an inspection object, step S20 for quantifying the fineness of the crack, and the quantified fineness of the crack are larger than the judgment value.
  • the quantified fineness of the crack is compared with a judgment value, and when the quantified fineness of the crack is smaller than the judgment value, it is judged that the electromagnetic wave transmission structure as the inspection object has a predetermined electromagnetic wave permeability. .
  • the inspection object is determined to be a non-defective product (step S40). That is, the determination value is set so that when the quantified fineness of the crack is equal to or greater than the determination value, the inspection object cannot be obtained with a predetermined electromagnetic wave permeability and is determined as a defective product (step S50). Yes.
  • the inspection object is an electromagnetic wave transmission structure having a laminated structure in which a base body that transmits electromagnetic waves is prepared (step S11), and a metal film intentionally generating cracks is disposed on the surface of the base body (step S12).
  • FIG. 2 shows an example of an electromagnetic wave transmission structure to which the inspection method shown in FIG. 1 is applied.
  • the electromagnetic wave transmission structure 1 shown in FIG. 2 has a structure in which a metal film 20 having a metallic luster is laminated on a substrate 10.
  • a lightweight material that transmits electromagnetic waves is preferably used for the substrate 10. Since a crack (not shown) penetrates from the upper surface to the lower surface of the metal film 20, the electromagnetic wave passes through the metal film 20.
  • the difference in linear thermal expansion coefficient between the base 10 and the metal film 20 can be used.
  • a base film 12 such as an organic film is formed on the upper surface of a substrate 11 such as a resin substrate.
  • the base 10 is prepared by applying the base film 12 to the upper surface of the substrate 11 by dipping or spraying. After the base film 12 is dried, a metal film 20 is formed on the surface of the base film 12 by sputtering or the like. Then, in order to intentionally generate a crack in the metal film 20, the substrate 10 on which the metal film 20 is formed is heated. For example, a crack is generated in the metal film 20 due to a difference in linear thermal expansion coefficient between the base film 12 and the metal film 20 due to heating at 80 ° C. By generating a mesh-like crack penetrating from the upper surface to the lower surface, the metal film 20 has electromagnetic wave permeability. Details of the configuration of the electromagnetic wave transmission structure 1 will be described later.
  • the electromagnetic wave transmission structure 1 shown in FIG. 2 is suitably used for a decorative member of an automobile equipped with an electromagnetic wave generator 2 that generates an electromagnetic wave E used in a collision prevention system.
  • the electromagnetic wave transmission structure 1 is used as a cover member of the electromagnetic wave generator 2 in a part of an exterior part of an automobile that requires a metallic luster such as an emblem.
  • a millimeter wave can be output to the outside of the exterior component as the electromagnetic wave E from the electromagnetic wave generation device 2 arranged inside the exterior component.
  • the inventors transmit electromagnetic waves in the metal film 20. It was found that there is a correlation between the rate and the size of the crack. That is, it was found that the smaller the size of the crack, that is, the smaller the area of the metal grain surrounded by the crack, the higher the electromagnetic wave transmittance in the metal film 20.
  • the fineness of cracks can be quantified by the total length of cracks in a certain region, the number of metal grains per unit area, the average area of metal grains, the number of cracks intersecting with an imaginary line, and the like.
  • the fineness of a crack is quantified by the total of the length of a crack, and the relationship between the fineness of a crack and the transmittance
  • step S21 of FIG. 3 an inspection image including a crack on the surface of the metal film 20 is acquired.
  • step S22 the inspection image is processed. That is, in step S221, the inspection image is binarized.
  • step S222 the binarized inspection image is thinned.
  • step S23 the fineness of the crack is quantified using the thinned inspection image. That is, the total length of cracks is calculated by binarization and thinning of the inspection image, and the fineness of cracks is quantified by the total length of cracks.
  • FIG. 4 schematically shows part of image data obtained by binarizing and thinning an inspection image including the metal grains 201 and the metal grains 202 separated by the cracks 210.
  • the length of the crack line 211 is calculated for the entire surface of the inspection image, and the total length of the crack line 211 is calculated.
  • FIGS. 5 (a) to 5 (c) and FIGS. 6 (a) to 6 (c) show examples of image processing.
  • a black part is a metal grain area and a white part is a crack area.
  • FIG. 5A is an original image of the first sample before image processing
  • FIG. 5B is an image obtained by binarizing the image of FIG.
  • FIG. 5C is an image obtained by thinning the image of FIG.
  • the image shown in FIG. 5 is a photomicrograph taken using a measuring microscope MM-800 manufactured by Nikon Corporation at a magnification of 100 times.
  • FIG. 6A is an original image of the second sample
  • FIG. 6B is an image obtained by binarizing the image of FIG. 6A
  • FIG. 6C is FIG. 6B. This is a thinned image.
  • the respective areas can be calculated such that the black portion indicating the metal particles is 427333 pixels and the white portion indicating the crack is 35032 pixels.
  • the ratio of the crack area to the metal grains is 8.2%.
  • the length of the crack can be calculated so that the length of the white portion where the crack is thinned is 13512 pixels.
  • the average width of a crack is 2.6 pixels from the area of a crack and the length of a crack.
  • a binarized image was obtained in which the black portion indicating the metal particles was 432465 pixels and the white portion indicating the cracks was 47734 pixels.
  • the ratio of the crack area to the metal grains is 11.0%.
  • the crack length was calculated as 11916 pixels.
  • the average width of cracks is 4.0 pixels.
  • the electromagnetic wave permeability was evaluated by electromagnetic wave loss (the same applies hereinafter). That is, as the negative value of the electromagnetic wave loss is larger, the electromagnetic wave is less likely to pass through the electromagnetic wave transmission structure 1.
  • the permeability of millimeter waves as electromagnetic waves was investigated.
  • FIG. 7 shows the relationship between the crack area obtained by binarizing the inspection image and the electromagnetic wave loss.
  • the area of a crack is shown as a ratio with respect to a metal grain.
  • FIG. 8 shows the relationship between the total length of cracks obtained by thinning the binarized inspection image and the electromagnetic wave loss.
  • FIG. 9 shows the relationship between the average width of cracks obtained from the area and length of cracks and electromagnetic wave loss.
  • the size of the inspection image is 700 ⁇ m ⁇ 525 ⁇ m.
  • FIG. 10 shows the measurement results for Examples 1 to 3 of the electromagnetic wave transmission structure 1 manufactured under different manufacturing conditions.
  • the thickness of the metal film 20 and the temperature at which the substrate 10 on which the metal film 20 is formed are changed in order to generate cracks.
  • the metal film 20 was a chromium (Cr) film formed by a sputtering method.
  • Cr chromium
  • a chromium film that is easily cracked due to a difference in linear thermal expansion coefficient from a resin or an organic film and has a metallic luster is preferably used for the metal film 20.
  • the numerical value of the item “electromagnetic wave loss” in FIG. 10 is a numerical value obtained by evaluating the electromagnetic wave loss at 79 GHz of each film using a network analyzer manufactured by Keysight Technology. From the measurement results of Example 1 and Example 2 shown in FIG. 10, the higher the heating temperature, the longer the total length of cracks and the smaller the electromagnetic wave loss. Further, from the measurement results of Example 2 and Example 3, the electromagnetic wave loss is smaller as the metal film 20 is made thinner.
  • a numerical determination value obtained by quantifying the fineness of cracks is set based on desired electromagnetic wave permeability. For example, when the management value of “electromagnetic wave loss” is set to ⁇ 1 dB, Example 3 in FIG. 10 satisfies this management value. For this reason, the determination value of the total length of cracks is set to about 9.5 mm, and the electromagnetic wave transmission property of the electromagnetic wave transmission structure 1 is inspected.
  • the electromagnetic wave transmission structure 1 whose total length of cracks is longer than 5 mm was obtained with a desired electromagnetic wave transmission property. Therefore, when the inspection image size is 700 ⁇ m ⁇ 525 ⁇ m, the electromagnetic wave transmission inspection is performed by setting the determination value of the total length of the cracks to 5 mm, thereby obtaining the electromagnetic wave transmission structure 1 having desired electromagnetic wave transmission. .
  • the metal film 20 is often required to have a metallic luster.
  • the numerical value of the item “brightness (L)” in the table shown in FIG. 10 is a dimension L indicating lightness in the L * a * b * color space. That is, from the viewpoint of the metallic luster of the metal film 20, the larger the value of “brightness (L)”, the better. For example, when the management value of “brightness (L)” is set to 72, none of the first to third embodiments satisfies the management value.
  • the thickness of the metal film 20 is reduced, it is difficult to obtain a metallic luster.
  • the electromagnetic wave transmission structure 1 is selected based on the criterion that the total length of cracks in the case where the size of the inspection image is 700 ⁇ m ⁇ 525 ⁇ m is 5 mm or more and 200 mm or less. Thereby, the electromagnetic wave transmission structure 1 having desired electromagnetic wave transmission and appearance is obtained.
  • the manufacturing conditions of the electromagnetic wave transmission structure 1 are set according to the characteristics of the metal film 20 and the substrate 10. Is done. That is, depending on the film thickness of the metal film 20 and the difference in the linear thermal expansion coefficient between the base 10 and the metal film 20, the film forming conditions for forming the metal film 20, the heating temperature for generating cracks, etc. are appropriately set. Set.
  • FIG. 11 shows the measurement results when the magnitude of the sputtering power applied to the chromium target in the sputtering method for forming the metal film 20 is changed.
  • the standard power is 3 kW.
  • the larger the sputtering power the longer the total crack length and the smaller the electromagnetic wave loss. Furthermore, the value of brightness (L) can be increased as the sputtering power is increased. However, the base 10 is damaged as the sputtering power is increased. For this reason, it is necessary to set film-forming conditions, such as sputtering power, so that the metal luster of the metal film 20 is not uneven and the surface of the substrate 10 is not damaged.
  • the electromagnetic wave permeability inspection method described with reference to FIG. 1 can be executed by, for example, the inspection apparatus 30 shown in FIG.
  • the inspection device 30 includes an illumination device 31, an image acquisition device 32, an image processing device 33, and a determination device 34.
  • inspection apparatus 30 is demonstrated.
  • the image acquisition device 32 acquires an inspection image of the surface of the metal film 20 in a state in which the illumination light 31 is applied to the electromagnetic wave transmission structure 1 by the illumination device 31.
  • a CCD (charge coupled device) camera, a CMOS (complementary metal oxide semiconductor) camera, or the like can be used as the image acquisition device 32.
  • the image data D1 of the inspection image is transmitted from the image acquisition device 32 to the image processing device 33.
  • the image processing device 33 performs image processing on the image data D1 to generate determination data D2.
  • the determination data D2 is generated by binarization and thinning of the image data D1.
  • the determination data D2 is transmitted from the image processing device 33 to the determination device 34.
  • the determination device 34 quantifies the fineness of cracks generated in the metal film 20 using the determination data D2. For example, the fineness of the crack is quantified by the total length of the crack. Then, the determination device 34 determines whether or not the quantified crack fineness satisfies the determination criterion. That is, the quantified fineness of the crack is compared with a determination value, and when the quantified fineness of the crack is smaller than the determination value, it is determined that the electromagnetic wave transmission structure 1 has a predetermined electromagnetic wave transmission property as a non-defective product. . On the other hand, when the fineness of the crack does not satisfy the criterion, the electromagnetic wave transmission structure 1 is determined as a defective product.
  • the inspection device 30 by detecting the brightness of the reflected light from the metal film 20 from the inspection image by the inspection device 30, it is possible to inspect that the metal film 20 has a predetermined metallic luster. For example, it is determined whether or not the dimension L in the L * a * b * color space satisfies a predetermined determination value.
  • the inspection apparatus 30 can perform inspections other than electromagnetic wave inspection.
  • the appearance inspection of the electromagnetic wave transmission structure 1 by the inspection device 30 can also be performed. That is, by performing image processing on the inspection image acquired by the image acquisition device 32, it is possible to execute an appearance inspection on the surface color unevenness, reflectance, etc. simultaneously or continuously with the electromagnetic wave transmission inspection.
  • the electromagnetic wave transmission structure 1 is irradiated with inspection light of various frequencies from the illumination device 31, and reflected light is reflected by the image acquisition device 32. Acquire frequency-dependent image data.
  • inspection data such as color and reflectance can be acquired.
  • the types of defects appearing in the inspection image differ depending on the frequency of the inspection light, it is effective to change the frequency of the inspection light according to the inspection item. Reflection and absorption differ depending on the type of defect. Therefore, a defect that is easily reflected by red light (difficult to absorb) or a defect that is easily reflected by blue light (difficult to absorb) is detected in accordance with each. For example, by irradiating inspection light having a frequency that is easily absorbed by the electromagnetic wave transmission structure 1, foreign matter that reflects light having this frequency can be detected. In addition, blue light is preferably used for detecting dirt. Note that the inspection time can be shortened by simultaneously irradiating a plurality of inspection lights having different frequencies.
  • transmits the electromagnetic wave transmission structure 1 is irradiated from the back surface of the electromagnetic wave transmission structure 1.
  • FIG. The inspection image of the electromagnetic wave transmission structure 1 may be acquired using transmitted light. For example, scratches or defects inside the substrate 10 can be detected by inspection light transmitted through the inside of the substrate 10.
  • the electromagnetic wave transmission inspection according to the embodiment of the present invention can be performed simultaneously or continuously with the appearance inspection and the quality inspection of the electromagnetic wave transmission structure 1 using a common inspection apparatus. For this reason, the inspection time and inspection cost of the electromagnetic wave transmission structure 1 can be suppressed.
  • the inspection of electromagnetic wave permeability of a finished product assembled with the electromagnetic wave generator 2 and the electromagnetic wave transmission structure 1 that has been performed conventionally increases the inspection time and the inspection cost. Further, when it is detected that the electromagnetic wave permeability does not satisfy a predetermined characteristic at the stage of the finished product, the steps up to that point are wasted and the manufacturing cost is increased.
  • the electromagnetic wave transmission of the electromagnetic wave transmission structure 1 is inspected using the image data of the metal film 20. That is, the electromagnetic wave transmission structure 1 alone can be inspected without measuring the electromagnetic wave transmission in a state where the electromagnetic wave generator 2 and the electromagnetic wave transmission structure 1 are assembled. Therefore, an increase in manufacturing cost can be suppressed.
  • the manufacturing conditions of the electromagnetic wave transmission structure 1 can be found. Thereby, the yield of the electromagnetic wave transmission structure 1 can be improved.
  • any material that causes cracks can be used.
  • any material that causes cracks can be used.
  • the material of the metal film 20 can be selected. After the metal film 20 is formed on the surface of the substrate 10, cracks are generated on the entire surface of the metal film 20 so as to be distributed substantially uniformly in plan view.
  • insulating resin As the material of the substrate 11, insulating resin, ceramics, paper, glass, fiber, etc. are used.
  • insulating resin any of a thermoplastic insulating resin and a thermosetting insulating resin can be used.
  • polyester resin ABS (acrylonitrile-butadiene-styrene) resin, AES (acrylonitrile-ethylene-styrene) resin, polycarbonate resin, acrylic resin, polyolefin resin, etc. are suitable as materials having a large linear thermal expansion coefficient with the metal film 20. Used for.
  • these resins are strong and have good moldability, so that they are easy to use for automobile exterior parts and the like.
  • the base film 12 is laminated on the substrate 11.
  • the linear thermal expansion coefficient is lower than that of the metal film 20.
  • the base film 12 is preferably laminated on the substrate 11.
  • a material having a higher linear thermal expansion coefficient than the metal film 20 such as polyester resin is preferably used for the base film 12.
  • the adhesion between the substrate 11 and the metal film 20 can be improved by forming the base film 12 on the surface of the substrate 11. Thereby, fine cracks can be dispersed substantially uniformly over the entire surface of the metal film 20.
  • the metal film 20 may be directly disposed on the surface of the substrate 11 as long as cracks can be uniformly dispersed in the metal film 20.
  • the fineness of the crack is quantified by the total length of the cracks
  • the fineness of the crack may be quantified by other parameters.
  • the fineness of the cracks may be quantified based on the number of metal grains per unit area, the average area of the metal grains, the number of cracks intersecting the imaginary line having a certain length, and the like.
  • the thinning is not necessary when the fineness of the crack is quantified by the number of metal particles or the average area. . That is, the image processing for quantifying the fineness of the crack may be only binarization of the inspection image.
  • the electromagnetic wave transmission structure and the inspection method thereof according to the present invention can be used for a structure having metallic luster and transmitting electromagnetic waves.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Details Of Aerials (AREA)
  • Laminated Bodies (AREA)

Abstract

This method for inspecting electromagnetic wave transparency includes: a step (S10) of preparing, as an object to be inspected, an electromagnetic wave transparent structure in which a substrate through which electromagnetic waves are transmitted, and a metal film in which a crack has been generated are stacked on one another; a step (S20) of quantifying a crack fineness; a step (S30) of comparing the quantified crack fineness with a determining value; and a step (S40) of determining that the electromagnetic wave transparent structure has a prescribed electromagnetic wave transparency if the quantified crack fineness is smaller than the determining value.

Description

電磁波透過性の検査方法及び電磁波透過構造体Electromagnetic wave transmission inspection method and electromagnetic wave transmission structure
 本発明は、金属光沢を有し、且つ電磁波を透過する電磁波透過構造体及びその電磁波透過性の検査方法に関する。 The present invention relates to an electromagnetic wave transmission structure having metallic luster and transmitting electromagnetic waves, and an inspection method for the electromagnetic wave transmission properties thereof.
 自動車の外装部品などに、樹脂基板など軽量な材料の表面に金属膜を形成し、軽量化とともに装飾性を向上した製品が使用されている。一方、自動ブレーキなどを実現するためにミリ波などの電磁波が使用されているが、電磁波は金属膜を透過できない。このため、電磁波を透過し、且つ、金属光沢を有する部材が望まれている。 For automobile exterior parts, etc., products are used in which a metal film is formed on the surface of a lightweight material such as a resin substrate to reduce weight and improve decorativeness. On the other hand, electromagnetic waves such as millimeter waves are used to realize automatic braking and the like, but the electromagnetic waves cannot penetrate the metal film. For this reason, the member which permeate | transmits electromagnetic waves and has a metallic luster is desired.
 電磁波は、クラックが発生した金属膜を透過する。このため、例えば距離警告レーダを格納するレドームとして自動車メーカーのエンブレムなどを使用するために、インジウム薄膜を薄く樹脂基板に形成する方法が開示されている(例えば、特許文献1参照。)。 Electromagnetic waves are transmitted through the metal film where cracks occur. For this reason, in order to use, for example, an emblem of an automobile manufacturer as a radome for storing a distance warning radar, a method of forming a thin indium thin film on a resin substrate has been disclosed (for example, see Patent Document 1).
特開2000-49522号公報JP 2000-49522 A
 電磁波の透過率を測定する方法によって、金属膜を形成した部材が所望の電磁波透過性を有するか否かを検査することできる。しかしながら、この方法では専用の電磁波測定装置が必要であり、検査コストが高くなる。また、電磁波測定装置による検査では、検査時間が長くなる。このため、全数を検査することが困難である。しかし、抜き取り検査では、完成品した後に不良品であることが判明した場合に、それまでの工程に費やした費用や時間が無駄になる。 It is possible to inspect whether or not the member on which the metal film is formed has a desired electromagnetic wave transmission property by measuring the electromagnetic wave transmittance. However, this method requires a dedicated electromagnetic wave measuring device, which increases the inspection cost. Moreover, in the inspection by the electromagnetic wave measuring apparatus, the inspection time becomes long. For this reason, it is difficult to inspect all the numbers. However, in the sampling inspection, when it is determined that the product is defective after the finished product, the cost and time spent in the process up to that point are wasted.
 上記問題点に鑑み、本発明は、検査時間及び検査コストを抑制できる電磁波透過性の検査方法及び電磁波透過構造体を提供することを目的とする。 In view of the above problems, an object of the present invention is to provide an electromagnetic wave transmission inspection method and an electromagnetic wave transmission structure capable of suppressing inspection time and inspection cost.
 本発明の一態様によれば、電磁波を透過する基体とクラックを発生させた金属膜とを積層した電磁波透過構造体を検査対象物として準備するステップと、クラックの細かさを定量化するステップと、クラックの定量化した細かさを判定値と比較し、クラックの定量化した細かさが判定値よりも小さい場合に電磁波透過構造体が所定の電磁波透過性を有すると判定するステップとを含む電磁波透過性の検査方法が提供される。 According to one aspect of the present invention, a step of preparing an electromagnetic wave transmission structure in which an electromagnetic wave transmitting substrate and a cracked metal film are stacked as an inspection object, and a step of quantifying the fineness of the crack; Comparing the quantified fineness of the crack with a determination value, and determining that the electromagnetic wave transmission structure has a predetermined electromagnetic wave transmission property when the quantified fineness of the crack is smaller than the determination value. A permeability inspection method is provided.
 本発明の他の態様によれば、電磁波を透過する基体と、基体に積層され、金属光沢を有し且つクラックを意図的に発生させた金属膜とを備え、定量化したクラックの細かさが、電磁波に対して金属膜が所定の電磁波透過性を有するように設定された判定値よりも小さい電磁波透過構造体が提供される。 According to another aspect of the present invention, the quantified crack fineness includes a substrate that transmits electromagnetic waves, and a metal film that is laminated on the substrate and has a metallic luster and intentionally generates cracks. There is provided an electromagnetic wave transmission structure that is smaller than a judgment value set so that the metal film has a predetermined electromagnetic wave permeability with respect to the electromagnetic wave.
 本発明によれば、検査時間及び検査コストを抑制できる電磁波透過性の検査方法及び電磁波透過構造体を提供できる。 According to the present invention, it is possible to provide an electromagnetic wave transmission inspection method and an electromagnetic wave transmission structure that can suppress the inspection time and the inspection cost.
本発明の実施形態に係る電磁波透過性の検査方法を説明するためのフローチャートである。It is a flowchart for demonstrating the inspection method of the electromagnetic wave permeability which concerns on embodiment of this invention. 本発明の実施形態に係る電磁波透過構造体の構成を示す模式図である。It is a schematic diagram which shows the structure of the electromagnetic wave transmission structure which concerns on embodiment of this invention. 本発明の実施形態に係る電磁波透過性の検査方法によるクラックの細かさを定量化する方法を説明するためのフローチャートである。It is a flowchart for demonstrating the method to quantify the fineness of the crack by the inspection method of the electromagnetic wave permeability which concerns on embodiment of this invention. クラックの画像処理の例を示す模式図である。It is a schematic diagram which shows the example of the image processing of a crack. クラックの画像処理を説明するための画像であり、図5(a)は原画像であり、図5(b)は二値化した画像であり、図5(c)は細線化した画像である。FIG. 5 (a) is an original image, FIG. 5 (b) is a binarized image, and FIG. 5 (c) is a thinned image. . クラックの画像処理を説明するための他の画像であり、図6(a)は原画像であり、図6(b)は二値化した画像であり、図6(c)は細線化した画像である。FIG. 6 (a) is an original image, FIG. 6 (b) is a binarized image, and FIG. 6 (c) is a thinned image. It is. クラックの面積と電磁波損失の関係を示すグラフである。It is a graph which shows the relationship between the area of a crack, and electromagnetic wave loss. クラックの長さの総計と電磁波損失の関係を示すグラフである。It is a graph which shows the relationship between the total length of a crack, and electromagnetic wave loss. クラックの平均幅と電磁波損失の関係を示すグラフである。It is a graph which shows the relationship between the average width of a crack, and electromagnetic wave loss. 電磁波透過構造体の製造条件と電磁波透過性及び明るさとの関係を示す表である。It is a table | surface which shows the relationship between the manufacturing conditions of an electromagnetic wave transmission structure, electromagnetic wave permeability, and brightness. 電磁波透過構造体の他の製造条件と電磁波透過性及び明るさとの関係を示す表である。It is a table | surface which shows the relationship between the other manufacturing conditions of an electromagnetic wave transmission structure, electromagnetic wave permeability, and brightness. 本発明の実施形態に係る電磁波透過性の検査方法に使用可能な検査装置の構成の例を示す模式図である。It is a schematic diagram which shows the example of a structure of the test | inspection apparatus which can be used for the electromagnetic wave permeability test | inspection method which concerns on embodiment of this invention.
 図面を参照して、本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率などは現実のものとは異なることに留意すべきである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。 Embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between the thickness and the planar dimensions, the ratio of the thickness of each layer, and the like are different from the actual ones. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.
 また、以下に示す実施形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の実施形態は、構成部品の材質、形状、構造、配置などを下記のものに特定するものでない。この発明の実施形態は、請求の範囲において、種々の変更を加えることができる。 Further, the embodiments shown below exemplify apparatuses and methods for embodying the technical idea of the present invention, and the embodiments of the present invention are materials, shapes, structures, arrangements, etc. of components. Is not specified as follows. The embodiment of the present invention can be variously modified within the scope of the claims.
 本発明の実施形態に係る電磁波透過性の検査方法は、クラックを発生させた金属膜を備える電磁波透過構造体の検査に適用される。この電磁波透過性の検査方法は、図1に示すように、検査対象物を準備するステップS10と、クラックの細かさを定量化するステップS20と、定量化したクラックの細かさが判定値よりも小さいか否かを判定するステップS30とを含む。 The electromagnetic wave transmission inspection method according to the embodiment of the present invention is applied to the inspection of an electromagnetic wave transmission structure including a metal film in which a crack is generated. As shown in FIG. 1, in this electromagnetic wave permeability inspection method, step S10 for preparing an inspection object, step S20 for quantifying the fineness of the crack, and the quantified fineness of the crack are larger than the judgment value. Step S30 for determining whether or not it is smaller.
 クラックの定量化した細かさを判定値と比較し、クラックの定量化した細かさが判定値よりも小さい場合に、検査対象物である電磁波透過構造体が所定の電磁波透過性を有すると判定する。この場合は、検査対象物は良品と判定される(ステップS40)。つまり、判定値は、クラックの定量化した細かさが判定値以上である場合に、検査対象物について所定の電磁波透過性が得られず、不良品と判定する(ステップS50)ように設定されている。 The quantified fineness of the crack is compared with a judgment value, and when the quantified fineness of the crack is smaller than the judgment value, it is judged that the electromagnetic wave transmission structure as the inspection object has a predetermined electromagnetic wave permeability. . In this case, the inspection object is determined to be a non-defective product (step S40). That is, the determination value is set so that when the quantified fineness of the crack is equal to or greater than the determination value, the inspection object cannot be obtained with a predetermined electromagnetic wave permeability and is determined as a defective product (step S50). Yes.
 検査対象物は、電磁波を透過する基体を準備し(ステップS11)、この基体の表面にクラックを意図的に発生させた金属膜を配置した(ステップS12)積層構造の電磁波透過構造体である。 The inspection object is an electromagnetic wave transmission structure having a laminated structure in which a base body that transmits electromagnetic waves is prepared (step S11), and a metal film intentionally generating cracks is disposed on the surface of the base body (step S12).
 図2に、図1に示した検査方法を適用する電磁波透過構造体の例を示す。図2に示した電磁波透過構造体1は、金属光沢を有する金属膜20が基体10に積層された構造である。基体10には、電磁波を透過する軽量な材料が好適に使用される。金属膜20の上面から下面までクラック(図示略)が貫通していることにより、電磁波が金属膜20を透過する。金属膜20にクラックを発生させるには、基体10と金属膜20との線熱膨張係数の差を利用できる。 FIG. 2 shows an example of an electromagnetic wave transmission structure to which the inspection method shown in FIG. 1 is applied. The electromagnetic wave transmission structure 1 shown in FIG. 2 has a structure in which a metal film 20 having a metallic luster is laminated on a substrate 10. A lightweight material that transmits electromagnetic waves is preferably used for the substrate 10. Since a crack (not shown) penetrates from the upper surface to the lower surface of the metal film 20, the electromagnetic wave passes through the metal film 20. In order to generate a crack in the metal film 20, the difference in linear thermal expansion coefficient between the base 10 and the metal film 20 can be used.
 図2に示した基体10は、樹脂基板などの基板11の上面に有機膜などの下地膜12を形成した構成である。例えば、基板11の上面に、ディップやスプレーなどにより下地膜12を塗布して基体10を準備する。下地膜12を乾燥させた後、下地膜12の表面に、スパッタリング法などにより金属膜20を形成する。そして、金属膜20にクラックを意図的に発生させるために、金属膜20を形成した基体10を加熱する。例えば80℃の加熱により、下地膜12と金属膜20の線熱膨張係数の差によって金属膜20にクラックが発生する。上面から下面まで貫通する網目状のクラックが発生することにより、金属膜20が電磁波透過性を有するようになる。電磁波透過構造体1の構成の詳細については後述する。 2 has a configuration in which a base film 12 such as an organic film is formed on the upper surface of a substrate 11 such as a resin substrate. For example, the base 10 is prepared by applying the base film 12 to the upper surface of the substrate 11 by dipping or spraying. After the base film 12 is dried, a metal film 20 is formed on the surface of the base film 12 by sputtering or the like. Then, in order to intentionally generate a crack in the metal film 20, the substrate 10 on which the metal film 20 is formed is heated. For example, a crack is generated in the metal film 20 due to a difference in linear thermal expansion coefficient between the base film 12 and the metal film 20 due to heating at 80 ° C. By generating a mesh-like crack penetrating from the upper surface to the lower surface, the metal film 20 has electromagnetic wave permeability. Details of the configuration of the electromagnetic wave transmission structure 1 will be described later.
 図2に示した電磁波透過構造体1は、衝突防止システムに使用される電磁波Eを発生する電磁波発生装置2を搭載した自動車の装飾用部材などに、好適に使用される。例えば、エンブレムなどの金属光沢が要求される自動車の外装部品の一部に、電磁波発生装置2のカバー部材として電磁波透過構造体1を使用する。これにより、外装部品の内部に配置された電磁波発生装置2から、電磁波Eとして例えばミリ波を外装部品の外部に出力することができる。 The electromagnetic wave transmission structure 1 shown in FIG. 2 is suitably used for a decorative member of an automobile equipped with an electromagnetic wave generator 2 that generates an electromagnetic wave E used in a collision prevention system. For example, the electromagnetic wave transmission structure 1 is used as a cover member of the electromagnetic wave generator 2 in a part of an exterior part of an automobile that requires a metallic luster such as an emblem. Thereby, for example, a millimeter wave can be output to the outside of the exterior component as the electromagnetic wave E from the electromagnetic wave generation device 2 arranged inside the exterior component.
 本発明者らは、平面視でクラックに周囲を囲まれた複数の島状の領域(以下において、「金属粒」という。)に分割された金属膜20において、金属膜20での電磁波の透過率とクラックのサイズとの間に相関関係があることを見出した。即ち、クラックのサイズが細かいほど、即ち、クラックに囲まれた金属粒の面積が狭いほど、金属膜20での電磁波の透過率が高いという知見を得た。 In the metal film 20 divided into a plurality of island-like regions (hereinafter referred to as “metal particles”) surrounded by cracks in plan view, the inventors transmit electromagnetic waves in the metal film 20. It was found that there is a correlation between the rate and the size of the crack. That is, it was found that the smaller the size of the crack, that is, the smaller the area of the metal grain surrounded by the crack, the higher the electromagnetic wave transmittance in the metal film 20.
 クラックの細かさは、一定の領域におけるクラックの長さの総計、単位面積当たりの金属粒の個数、金属粒の平均面積、仮想線と交差するクラックの個数などによって、定量化することができる。以下では、クラックの長さの総計によってクラックの細かさを定量化して、クラックの細かさと金属膜での電磁波の透過率との関係について説明する。 The fineness of cracks can be quantified by the total length of cracks in a certain region, the number of metal grains per unit area, the average area of metal grains, the number of cracks intersecting with an imaginary line, and the like. Below, the fineness of a crack is quantified by the total of the length of a crack, and the relationship between the fineness of a crack and the transmittance | permeability of the electromagnetic wave in a metal film is demonstrated.
 以下に、図3のフローチャートを参照して、クラックの細かさを定量化することによって行う電磁波透過構造体1の検査方法を説明する。 Hereinafter, an inspection method of the electromagnetic wave transmission structure 1 performed by quantifying the fineness of cracks will be described with reference to the flowchart of FIG.
 先ず、図3のステップS21において、金属膜20の表面のクラックを含む検査画像を取得する。そして、ステップS22において、検査画像の画像処理を行う。即ち、ステップS221において、検査画像を二値化する。次いで、ステップS222において、二値化した検査画像を細線化する。 First, in step S21 of FIG. 3, an inspection image including a crack on the surface of the metal film 20 is acquired. In step S22, the inspection image is processed. That is, in step S221, the inspection image is binarized. Next, in step S222, the binarized inspection image is thinned.
 そして、ステップS23において、細線化した検査画像を用いて、クラックの細かさを定量化する。即ち、検査画像の二値化及び細線化によってクラックの長さの総計を算出し、クラックの長さの総計でクラックの細かさを定量化する。 In step S23, the fineness of the crack is quantified using the thinned inspection image. That is, the total length of cracks is calculated by binarization and thinning of the inspection image, and the fineness of cracks is quantified by the total length of cracks.
 例えば、図4に示した二値化した検査画像を細線化することにより、クラック210が細線化された幅が1ピクセルのクラック線211が得られる。なお、図4は、クラック210によって分離された金属粒201と金属粒202を含む検査画像を二値化及び細線化した画像データの一部を模式的に示している。画像処理によって、検査画像の全面についてクラック線211の長さを算出し、クラック線211の長さの総計を算出する。 For example, by thinning the binarized inspection image shown in FIG. 4, a crack line 211 having a width of 1 pixel and a width of the crack 210 is obtained. FIG. 4 schematically shows part of image data obtained by binarizing and thinning an inspection image including the metal grains 201 and the metal grains 202 separated by the cracks 210. By image processing, the length of the crack line 211 is calculated for the entire surface of the inspection image, and the total length of the crack line 211 is calculated.
 図5(a)~図5(c)及び図6(a)~図6(c)に、画像処理の例を示す。それぞれの図において、黒い部分が金属粒の領域であり、白い部分がクラックの領域である。図5(a)は画像処理する前の第1サンプルの原画像であり、図5(b)は図5(a)の画像を二値化した画像である。図5(c)は、図5(b)の画像を細線化した画像である。図5に示した画像は、ニコン社製の測定顕微鏡MM-800を使用し、倍率を100倍として撮影した顕微鏡写真である。一方、図6(a)は第2サンプルの原画像であり、図6(b)は図6(a)の画像を二値化した画像であり、図6(c)は図6(b)の画像を細線化した画像である。 FIGS. 5 (a) to 5 (c) and FIGS. 6 (a) to 6 (c) show examples of image processing. In each figure, a black part is a metal grain area and a white part is a crack area. FIG. 5A is an original image of the first sample before image processing, and FIG. 5B is an image obtained by binarizing the image of FIG. FIG. 5C is an image obtained by thinning the image of FIG. The image shown in FIG. 5 is a photomicrograph taken using a measuring microscope MM-800 manufactured by Nikon Corporation at a magnification of 100 times. On the other hand, FIG. 6A is an original image of the second sample, FIG. 6B is an image obtained by binarizing the image of FIG. 6A, and FIG. 6C is FIG. 6B. This is a thinned image.
 原画像の二値化により、金属粒の領域とクラックの領域が明確に識別可能になる。このため、画像処理の一例の結果として、金属粒を示す黒色部が427333ピクセルであり、クラックを示す白色部が35032ピクセルであるというように、それぞれの面積を算出することができる。この場合に、金属粒に対するクラックの面積の比率は8.2%である。そして、二値化した画像を細線化することにより、クラックを細線化した白色部の長さが13512ピクセルであるというように、クラックの長さを算出できる。また、クラックの面積とクラックの長さから、クラックの平均幅は2.6ピクセルである。 二 By binarizing the original image, it is possible to clearly identify the metal grain area and the crack area. Therefore, as a result of an example of image processing, the respective areas can be calculated such that the black portion indicating the metal particles is 427333 pixels and the white portion indicating the crack is 35032 pixels. In this case, the ratio of the crack area to the metal grains is 8.2%. Then, by thinning the binarized image, the length of the crack can be calculated so that the length of the white portion where the crack is thinned is 13512 pixels. Moreover, the average width of a crack is 2.6 pixels from the area of a crack and the length of a crack.
 他の画像処理の例として、金属粒を示す黒色部が432465ピクセルであり、クラックを示す白色部が47734ピクセルである二値化した画像を得た。金属粒に対するクラックの面積の比率は11.0%である。この画像を細線化することにより、クラックの長さが11916ピクセルとして算出された。また、クラックの平均幅は4.0ピクセルである。 As another example of image processing, a binarized image was obtained in which the black portion indicating the metal particles was 432465 pixels and the white portion indicating the cracks was 47734 pixels. The ratio of the crack area to the metal grains is 11.0%. By thinning this image, the crack length was calculated as 11916 pixels. The average width of cracks is 4.0 pixels.
 複数の電磁波透過構造体1について、電磁波透過性を測定した結果を図7~図9に示す。なお、電磁波透過性は、電磁波損失で評価した(以下において、同様。)。即ち、電磁波損失のマイナスの値が大きいほど、電磁波透過構造体1を電磁波が透過しにくい。なお、ここでは電磁波としてミリ波について透過性を調査した。 7 to 9 show the results of measuring the electromagnetic wave permeability of the plurality of electromagnetic wave transmission structures 1. The electromagnetic wave permeability was evaluated by electromagnetic wave loss (the same applies hereinafter). That is, as the negative value of the electromagnetic wave loss is larger, the electromagnetic wave is less likely to pass through the electromagnetic wave transmission structure 1. Here, the permeability of millimeter waves as electromagnetic waves was investigated.
 図7は、検査画像を二値化して得られるクラックの面積と電磁波損失との関係を示す。なお、クラックの面積を金属粒に対する比率として示している。図8は、二値化した検査画像を細線化して得られるクラックの長さの総計と電磁波損失との関係を示す。図9は、クラックの面積及び長さから得られるクラックの平均幅と電磁波損失との関係を示す。なお、検査画像のサイズは、700μm×525μmである。 FIG. 7 shows the relationship between the crack area obtained by binarizing the inspection image and the electromagnetic wave loss. In addition, the area of a crack is shown as a ratio with respect to a metal grain. FIG. 8 shows the relationship between the total length of cracks obtained by thinning the binarized inspection image and the electromagnetic wave loss. FIG. 9 shows the relationship between the average width of cracks obtained from the area and length of cracks and electromagnetic wave loss. The size of the inspection image is 700 μm × 525 μm.
 図8に示すように、クラックの長さの総計と電磁波損失には相関関係がある。即ち、クラックの長さの総計が長いほど、電磁波損失が小さい。これは、クラックの長さの総計が長いほどクラックが細かく、クラックが細かいほど金属膜20の電磁波透過性が高いためである。したがって、金属膜20のクラックの細かさをクラックの長さの総計によって定量化し、クラックの長さの総計を用いて電磁波透過構造体1の透過性を評価できる。 As shown in FIG. 8, there is a correlation between the total length of cracks and electromagnetic wave loss. That is, the longer the total length of cracks, the smaller the electromagnetic wave loss. This is because the longer the total length of cracks, the finer the cracks, and the finer the cracks, the higher the electromagnetic wave permeability of the metal film 20. Therefore, the fineness of cracks in the metal film 20 is quantified by the total length of cracks, and the permeability of the electromagnetic wave transmission structure 1 can be evaluated using the total length of cracks.
 クラックの細かさは、電磁波透過構造体1の製造条件に依存する。図10に、異なる製造条件で製造された電磁波透過構造体1の実施例1~実施例3についての測定結果を示す。実施例1~実施例3では、金属膜20の膜厚や、クラックを発生させるために金属膜20を形成した基体10を加熱する温度を変化させている。なお、金属膜20には、スパッタリング法によって形成されるクロム(Cr)膜を使用した。樹脂や有機膜との線熱膨張係数の差によってクラックが発生しやすく、且つ、金属光沢を有するクロム膜が、金属膜20に好適に使用される。 The fineness of the crack depends on the manufacturing conditions of the electromagnetic wave transmission structure 1. FIG. 10 shows the measurement results for Examples 1 to 3 of the electromagnetic wave transmission structure 1 manufactured under different manufacturing conditions. In Examples 1 to 3, the thickness of the metal film 20 and the temperature at which the substrate 10 on which the metal film 20 is formed are changed in order to generate cracks. The metal film 20 was a chromium (Cr) film formed by a sputtering method. A chromium film that is easily cracked due to a difference in linear thermal expansion coefficient from a resin or an organic film and has a metallic luster is preferably used for the metal film 20.
 図10の「電磁波損失」の項目の数値は、キーサイトテクノロジー社製ネットワークアナライザーを用いて、各膜の79GHzにおける電磁波損失を評価した数値である。図10に示した実施例1と実施例2の測定結果から、加熱する温度が高いほど、クラックの長さの総計が長く、電磁波損失が小さい。また、実施例2と実施例3の測定結果から、金属膜20の膜厚を薄くするほど電磁波損失が小さい。 The numerical value of the item “electromagnetic wave loss” in FIG. 10 is a numerical value obtained by evaluating the electromagnetic wave loss at 79 GHz of each film using a network analyzer manufactured by Keysight Technology. From the measurement results of Example 1 and Example 2 shown in FIG. 10, the higher the heating temperature, the longer the total length of cracks and the smaller the electromagnetic wave loss. Further, from the measurement results of Example 2 and Example 3, the electromagnetic wave loss is smaller as the metal film 20 is made thinner.
 図1に示した検査方法のステップS30に使用される、クラックの細かさを定量化した数値の判定値は、所望の電磁波透過性に基づいて設定される。例えば、「電磁波損失」の管理値を-1dBとする場合には、図10の実施例3はこの管理値を満たす。このため、クラックの長さの総計の判定値を9.5mm程度として、電磁波透過構造体1の電磁波透過性の検査を行う。 1 is used for step S30 of the inspection method shown in FIG. 1, and a numerical determination value obtained by quantifying the fineness of cracks is set based on desired electromagnetic wave permeability. For example, when the management value of “electromagnetic wave loss” is set to −1 dB, Example 3 in FIG. 10 satisfies this management value. For this reason, the determination value of the total length of cracks is set to about 9.5 mm, and the electromagnetic wave transmission property of the electromagnetic wave transmission structure 1 is inspected.
 本発明者らが検討を重ねた結果、検査画像のサイズが700μm×525μmの場合にクラックの長さの総計が5mmよりも長い電磁波透過構造体1について、所望の電磁波透過性が得られた。したがって、検査画像のサイズが700μm×525μmの場合におけるクラックの長さの総計の判定値を5mmとして電磁波透過性の検査を行うことにより、所望の電磁波透過性を有する電磁波透過構造体1が得られる。 As a result of repeated investigations by the present inventors, when the size of the inspection image is 700 μm × 525 μm, the electromagnetic wave transmission structure 1 whose total length of cracks is longer than 5 mm was obtained with a desired electromagnetic wave transmission property. Therefore, when the inspection image size is 700 μm × 525 μm, the electromagnetic wave transmission inspection is performed by setting the determination value of the total length of the cracks to 5 mm, thereby obtaining the electromagnetic wave transmission structure 1 having desired electromagnetic wave transmission. .
 上記のように、クラックを発生させるための加熱の温度が高いほど、クラックが細かくなる。このため、基体10の耐熱性の範囲でクラックを発生させる温度を高くすることが好ましい。 As described above, the higher the heating temperature for generating cracks, the finer the cracks. For this reason, it is preferable to raise the temperature which generates a crack within the heat resistance range of the substrate 10.
 なお、自動車の外装部品などの用途では、金属膜20に金属光沢が要求される場合が多い。図10に示した表の「明るさ(L)」の項目の数値は、L***色空間において明度を示す次元Lである。即ち、金属膜20の金属光沢の観点からは、「明るさ(L)」の数値が大きいほど好ましい。例えば、「明るさ(L)」の管理値を72とする場合には、実施例1~実施例3はいずれも管理値を満たさない。 In applications such as automobile exterior parts, the metal film 20 is often required to have a metallic luster. The numerical value of the item “brightness (L)” in the table shown in FIG. 10 is a dimension L indicating lightness in the L * a * b * color space. That is, from the viewpoint of the metallic luster of the metal film 20, the larger the value of “brightness (L)”, the better. For example, when the management value of “brightness (L)” is set to 72, none of the first to third embodiments satisfies the management value.
 図10に示したように、金属膜20の膜厚が薄いほど、クラックを細かくできる。しかし、金属膜20の膜厚を薄くすると、金属光沢を得ることが難しくなる。このため、金属膜20について金属光沢が得られる膜厚を維持し、且つ、所望の電磁波透過性を得られる条件によってクラックを発生させる必要がある。即ち、電磁波透過性の検査と併せて、金属膜20が一定の金属光沢を有することの検査を行う。 As shown in FIG. 10, the thinner the metal film 20 is, the more cracks can be made. However, when the thickness of the metal film 20 is reduced, it is difficult to obtain a metallic luster. For this reason, it is necessary to generate cracks under the condition that the metal film 20 has a film thickness capable of obtaining a metallic luster and can obtain a desired electromagnetic wave permeability. That is, in conjunction with the electromagnetic wave transmission inspection, the metal film 20 is inspected to have a certain metallic luster.
 クラックに囲まれた金属粒の面積が狭いほど金属膜20での電磁波の透過率が高いため、クラックの長さの総計が長いほど電磁波透過性は良好である。しかし、クラックの長さの総計が長くなると、外観についての所定の仕様が得られない場合がある。例えば、金属膜20の表面の金属光沢が失われたり、滑らかさが減少したりする。このため、クラックの長さの総計について、所望の電磁波透過性を得られる範囲で上限を設けてもよい。例えば、検査画像のサイズが700μm×525μmの場合におけるクラックの長さの総計が5mm以上且つ200mm以下であることを判定基準として、電磁波透過構造体1を選別する。これにより、所望の電磁波透過性と外観を有する電磁波透過構造体1が得られる。 Since the transmittance of electromagnetic waves through the metal film 20 is higher as the area of the metal particles surrounded by the cracks is smaller, the electromagnetic wave permeability is better as the total length of cracks is longer. However, when the total length of cracks becomes longer, a predetermined specification for the appearance may not be obtained. For example, the metallic luster on the surface of the metal film 20 is lost or the smoothness is reduced. For this reason, you may provide an upper limit about the total of the length of a crack in the range which can obtain desired electromagnetic wave permeability. For example, the electromagnetic wave transmission structure 1 is selected based on the criterion that the total length of cracks in the case where the size of the inspection image is 700 μm × 525 μm is 5 mm or more and 200 mm or less. Thereby, the electromagnetic wave transmission structure 1 having desired electromagnetic wave transmission and appearance is obtained.
 上記のように、金属膜20が電磁波を透過し、且つ、金属光沢を有するようにクラックを発生させるために、金属膜20や基体10の特性に応じて電磁波透過構造体1の製造条件が設定される。即ち、金属膜20の膜厚や、基体10と金属膜20の線熱膨張係数の差などに応じて、金属膜20を形成する成膜条件やクラックを発生させるための加熱の温度などを適宜設定する。 As described above, in order to generate cracks so that the metal film 20 transmits electromagnetic waves and has a metallic luster, the manufacturing conditions of the electromagnetic wave transmission structure 1 are set according to the characteristics of the metal film 20 and the substrate 10. Is done. That is, depending on the film thickness of the metal film 20 and the difference in the linear thermal expansion coefficient between the base 10 and the metal film 20, the film forming conditions for forming the metal film 20, the heating temperature for generating cracks, etc. are appropriately set. Set.
 図11に、金属膜20を形成するスパッタリング法における、クロムターゲットに印加するスパッタリング電力の大きさを変化させた場合の測定結果を示す。なお、基準の電力は3kWである。 FIG. 11 shows the measurement results when the magnitude of the sputtering power applied to the chromium target in the sputtering method for forming the metal film 20 is changed. The standard power is 3 kW.
 図11に示すように、スパッタリング電力が大きいほど、クラックの長さの総計は長くなり、電磁波損失は小さい。更に、スパッタリング電力が大きいほど、明るさ(L)の値を大きくできる。ただし、スパッタリング電力を高くするほど、基体10がダメージを受ける。このため、金属膜20の金属光沢にムラが発生したり、基体10の表面に損傷が生じたりしないように、スパッタリング電力などの成膜条件を設定する必要がある。 As shown in FIG. 11, the larger the sputtering power, the longer the total crack length and the smaller the electromagnetic wave loss. Furthermore, the value of brightness (L) can be increased as the sputtering power is increased. However, the base 10 is damaged as the sputtering power is increased. For this reason, it is necessary to set film-forming conditions, such as sputtering power, so that the metal luster of the metal film 20 is not uneven and the surface of the substrate 10 is not damaged.
 図1を参照して説明した電磁波透過性の検査方法は、例えば図12示す検査装置30によって実行可能である。検査装置30は、照明装置31、画像取得装置32、画像処理装置33、判定装置34を備える。以下に、検査装置30を用いた電磁波透過構造体1の電磁波透過性の検査方法の例を説明する。 The electromagnetic wave permeability inspection method described with reference to FIG. 1 can be executed by, for example, the inspection apparatus 30 shown in FIG. The inspection device 30 includes an illumination device 31, an image acquisition device 32, an image processing device 33, and a determination device 34. Below, the example of the inspection method of the electromagnetic wave permeability | transmittance of the electromagnetic wave transmission structure 1 using the test | inspection apparatus 30 is demonstrated.
 照明装置31によって照明光Lが電磁波透過構造体1に照射された状態で、画像取得装置32が金属膜20の表面の検査画像を取得する。画像取得装置32には、CCD(電荷結合素子)カメラやCMOS(相補型金属酸化膜半導体)カメラなどを使用可能である。検査画像の画像データD1は、画像取得装置32から画像処理装置33に送信される。 The image acquisition device 32 acquires an inspection image of the surface of the metal film 20 in a state in which the illumination light 31 is applied to the electromagnetic wave transmission structure 1 by the illumination device 31. As the image acquisition device 32, a CCD (charge coupled device) camera, a CMOS (complementary metal oxide semiconductor) camera, or the like can be used. The image data D1 of the inspection image is transmitted from the image acquisition device 32 to the image processing device 33.
 画像処理装置33は、画像データD1を画像処理して判定用データD2を生成する。例えば、画像データD1の二値化及び細線化により判定用データD2を生成する。判定用データD2は、画像処理装置33から判定装置34に送信される。 The image processing device 33 performs image processing on the image data D1 to generate determination data D2. For example, the determination data D2 is generated by binarization and thinning of the image data D1. The determination data D2 is transmitted from the image processing device 33 to the determination device 34.
 判定装置34は、判定用データD2を用いて、金属膜20に発生したクラックの細かさを定量化する。例えば、クラックの長さの総計でクラックの細かさを定量化する。そして、判定装置34は、定量化したクラックの細かさが判定基準を満たすか否かを判定する。即ち、クラックの定量化した細かさを判定値と比較し、クラックの定量化した細かさが判定値よりも小さい場合に電磁波透過構造体1が所定の電磁波透過性を有するとして、良品と判定する。一方、クラックの細かさが判定基準を満たさない場合は、電磁波透過構造体1を不良品と判定する。 The determination device 34 quantifies the fineness of cracks generated in the metal film 20 using the determination data D2. For example, the fineness of the crack is quantified by the total length of the crack. Then, the determination device 34 determines whether or not the quantified crack fineness satisfies the determination criterion. That is, the quantified fineness of the crack is compared with a determination value, and when the quantified fineness of the crack is smaller than the determination value, it is determined that the electromagnetic wave transmission structure 1 has a predetermined electromagnetic wave transmission property as a non-defective product. . On the other hand, when the fineness of the crack does not satisfy the criterion, the electromagnetic wave transmission structure 1 is determined as a defective product.
 なお、検査装置30によって、検査画像から金属膜20からの反射光の明るさを検出することにより、金属膜20が所定の金属光沢を有することの検査を併せて行うことができる。例えば、L***色空間における次元Lが予め設定した判定値を満足するか否かを判定する。 In addition, by detecting the brightness of the reflected light from the metal film 20 from the inspection image by the inspection device 30, it is possible to inspect that the metal film 20 has a predetermined metallic luster. For example, it is determined whether or not the dimension L in the L * a * b * color space satisfies a predetermined determination value.
 ところで、検査装置30によって、電磁波透過性の検査以外の検査も可能である。例えば、検査装置30による電磁波透過構造体1の外観検査も行える。即ち、画像取得装置32によって取得された検査画像を画像処理することにより、表面の色むらや反射率などに関する外観検査を、電磁波透過性の検査と同時若しくは連続的に実行することができる。 By the way, the inspection apparatus 30 can perform inspections other than electromagnetic wave inspection. For example, the appearance inspection of the electromagnetic wave transmission structure 1 by the inspection device 30 can also be performed. That is, by performing image processing on the inspection image acquired by the image acquisition device 32, it is possible to execute an appearance inspection on the surface color unevenness, reflectance, etc. simultaneously or continuously with the electromagnetic wave transmission inspection.
 例えば、金属膜20の表面のクラックを含む検査画像を取得するのと同様にして、照明装置31から種々の周波数の検査光を電磁波透過構造体1に照射し、画像取得装置32によって反射光について周波数依存性の画像データを取得する。これらの画像データを画像処理装置33によって画像処理することにより、色や反射率などの検査用データを取得できる。 For example, in the same manner as acquiring an inspection image including a crack on the surface of the metal film 20, the electromagnetic wave transmission structure 1 is irradiated with inspection light of various frequencies from the illumination device 31, and reflected light is reflected by the image acquisition device 32. Acquire frequency-dependent image data. By performing image processing on these image data by the image processing device 33, inspection data such as color and reflectance can be acquired.
 検査用データを用いて、膜質や膜厚の分布ばらつき、異物、傷、汚れなどの欠陥の検査が可能である。例えば、これらの欠陥について判定値を設定し、判定装置34による良否判定を行うことができる。即ち、膜質や膜厚の分布ばらつきの程度や、異物や傷、汚れの有無若しくは許容される個数や大きさについて、判定値を設定する。これにより、電磁波透過構造体1の外観検査が可能である。 欠 陥 Using inspection data, it is possible to inspect defects such as film quality and film thickness distribution variation, foreign matter, scratches, and dirt. For example, determination values can be set for these defects, and the determination device 34 can perform pass / fail determination. That is, determination values are set for the degree of variation in film quality and film thickness, the presence or absence of foreign matter, scratches, and dirt, or the allowable number and size. Thereby, the external appearance inspection of the electromagnetic wave transmission structure 1 is possible.
 なお、検査光の周波数の違いによって検査画像に現れる欠陥の種類が異なるため、検査項目に応じて検査光の周波数を変えることが有効である。欠陥の種類によって相関関係にある反射と吸収が異なるため、赤色光で反射しやすい(吸収しにくい)欠陥や青色光で反射しやすい(吸収しにくい)欠陥などを、それぞれに応じて検出する。例えば、電磁波透過構造体1で吸収されやすい周波数の検査光を照射することにより、この周波数の光を反射する異物を検出することができる。また、汚れの検出には、青色光が好適に使用される。なお、周波数の異なる複数の検査光を同時に照射することにより、検査時間を短縮することも可能である。 Note that since the types of defects appearing in the inspection image differ depending on the frequency of the inspection light, it is effective to change the frequency of the inspection light according to the inspection item. Reflection and absorption differ depending on the type of defect. Therefore, a defect that is easily reflected by red light (difficult to absorb) or a defect that is easily reflected by blue light (difficult to absorb) is detected in accordance with each. For example, by irradiating inspection light having a frequency that is easily absorbed by the electromagnetic wave transmission structure 1, foreign matter that reflects light having this frequency can be detected. In addition, blue light is preferably used for detecting dirt. Note that the inspection time can be shortened by simultaneously irradiating a plurality of inspection lights having different frequencies.
 また、上記では検査光の反射光を用いて電磁波透過構造体1の検査画像を取得する例を説明したが、電磁波透過構造体1を透過する検査光を電磁波透過構造体1の裏面から照射し、透過光を用いて電磁波透過構造体1の検査画像を取得してもよい。例えば、基体10の内部を透過した検査光によって、基体10の内部の傷や欠陥などを検出できる。 Moreover, although the example which acquires the test | inspection image of the electromagnetic wave transmission structure 1 using the reflected light of inspection light was demonstrated above, the test light which permeate | transmits the electromagnetic wave transmission structure 1 is irradiated from the back surface of the electromagnetic wave transmission structure 1. FIG. The inspection image of the electromagnetic wave transmission structure 1 may be acquired using transmitted light. For example, scratches or defects inside the substrate 10 can be detected by inspection light transmitted through the inside of the substrate 10.
 上記のように、本発明の実施形態に係る電磁波透過性の検査は、共通の検査装置を用いて、電磁波透過構造体1の外観検査や品質検査と同時若しくは連続的に実行可能である。このため、電磁波透過構造体1の検査時間や検査コストを抑制することができる。 As described above, the electromagnetic wave transmission inspection according to the embodiment of the present invention can be performed simultaneously or continuously with the appearance inspection and the quality inspection of the electromagnetic wave transmission structure 1 using a common inspection apparatus. For this reason, the inspection time and inspection cost of the electromagnetic wave transmission structure 1 can be suppressed.
 従来から行われていた、電磁波発生装置2と電磁波透過構造体1とを組み立てた完成品についての電磁波透過性の検査は、検査時間や検査コストが増大する。また、完成品の段階で電磁波透過性が所定の特性を満たさないことが検出された場合には、それまでの工程が無駄になり、製造コストが増大する。 Conventionally, the inspection of electromagnetic wave permeability of a finished product assembled with the electromagnetic wave generator 2 and the electromagnetic wave transmission structure 1 that has been performed conventionally increases the inspection time and the inspection cost. Further, when it is detected that the electromagnetic wave permeability does not satisfy a predetermined characteristic at the stage of the finished product, the steps up to that point are wasted and the manufacturing cost is increased.
 これに対し、本発明の実施形態に係る電磁波透過性の検査方法では、金属膜20の画像データを用いて、電磁波透過構造体1の電磁波透過性が検査される。つまり、電磁波発生装置2と電磁波透過構造体1とを組み立てた状態で電磁波透過性を測定することなく、電磁波透過構造体1単体での検査が可能である。したがって、製造コストの増大を抑制できる。 On the other hand, in the electromagnetic wave transmission inspection method according to the embodiment of the present invention, the electromagnetic wave transmission of the electromagnetic wave transmission structure 1 is inspected using the image data of the metal film 20. That is, the electromagnetic wave transmission structure 1 alone can be inspected without measuring the electromagnetic wave transmission in a state where the electromagnetic wave generator 2 and the electromagnetic wave transmission structure 1 are assembled. Therefore, an increase in manufacturing cost can be suppressed.
 更に、画像データのみを用いた検査であるため、実際に電磁波を測定する検査に比べて、検査コストや検査時間を大幅に抑制できる。したがって、電磁波透過構造体1の全数を検査することが容易である。このため、電磁波透過性の低い電磁波透過構造体1を使用した製品を製造することがなく、歩留まりを向上させるとともに製造コストを低減できる。 Furthermore, since this is an inspection using only image data, the inspection cost and inspection time can be greatly reduced compared to the inspection that actually measures electromagnetic waves. Therefore, it is easy to inspect the total number of electromagnetic wave transmission structures 1. For this reason, a product using the electromagnetic wave transmission structure 1 having a low electromagnetic wave transmission property is not manufactured, so that the yield can be improved and the manufacturing cost can be reduced.
 また、電磁波透過構造体1の製造条件と電磁波透過性の検査結果との相関データを取得することにより、所望の電磁波透過性を有するための製造条件を見出すことができる。これにより、電磁波透過構造体1の歩留まりを向上させることができる。 Further, by obtaining correlation data between the manufacturing conditions of the electromagnetic wave transmission structure 1 and the inspection result of the electromagnetic wave transmission characteristics, the manufacturing conditions for having desired electromagnetic wave transmission characteristics can be found. Thereby, the yield of the electromagnetic wave transmission structure 1 can be improved.
 以下に、図2に示した電磁波透過構造体1の構成について説明する。金属膜20には、クラックが発生する任意の材料を使用可能である。例えば、クロム、アルミニウム、ニッケル、チタン、銅、タンタル、銀、錫、金、プラチナ、パラジウム、シリコン、コバルト、ニオブ、インジウム、タングステン、及びそれぞれの合金、或いはステンレス合金、カーボン、炭素鋼などから、金属膜20の材料を選択可能である。金属膜20を基体10の表面に形成した後、金属膜20の全面に平面視で略均一に分布するようにクラックを発生させる。 Hereinafter, the configuration of the electromagnetic wave transmission structure 1 shown in FIG. 2 will be described. For the metal film 20, any material that causes cracks can be used. For example, from chromium, aluminum, nickel, titanium, copper, tantalum, silver, tin, gold, platinum, palladium, silicon, cobalt, niobium, indium, tungsten, and their respective alloys, or stainless alloys, carbon, carbon steel, etc. The material of the metal film 20 can be selected. After the metal film 20 is formed on the surface of the substrate 10, cracks are generated on the entire surface of the metal film 20 so as to be distributed substantially uniformly in plan view.
 基板11の材料には、絶縁性樹脂、セラミックス、紙、ガラス、繊維などが使用される。なお、絶縁性樹脂として、熱可塑性絶縁性樹脂及び熱硬化性絶縁性樹脂のいずれも使用できる。例えば、ポリエステル樹脂、ABS(アクリロニトリル‐ブタジエン‐スチレン)樹脂、AES(アクリロニトリル‐エチレン‐スチレン)樹脂、ポリカーボネート樹脂、アクリル樹脂、ポリオレフィン樹脂などが、金属膜20との線熱膨張係数が大きい材料として好適に使用される。また、これらの樹脂は、強固であり、成形性が良好であるため、自動車の外装部品などに使用しやすい。 As the material of the substrate 11, insulating resin, ceramics, paper, glass, fiber, etc. are used. As the insulating resin, any of a thermoplastic insulating resin and a thermosetting insulating resin can be used. For example, polyester resin, ABS (acrylonitrile-butadiene-styrene) resin, AES (acrylonitrile-ethylene-styrene) resin, polycarbonate resin, acrylic resin, polyolefin resin, etc. are suitable as materials having a large linear thermal expansion coefficient with the metal film 20. Used for. In addition, these resins are strong and have good moldability, so that they are easy to use for automobile exterior parts and the like.
 基板11と金属膜20との線熱膨張係数の差が、金属膜20にクラックを均一に発生させる程度に大きくない場合などは、基体10と金属膜20との線熱膨張係数の差を大きくするように下地膜12が基板11に積層される。例えば、セラミックス、ガラスなどの線熱膨張係数が低く、金属膜20と線熱膨張係数が同程度である材料を基板11に使用する場合には、金属膜20よりも線熱膨張係数の大きい下地膜12を基板11に積層することが好ましい。 When the difference in linear thermal expansion coefficient between the substrate 11 and the metal film 20 is not so large as to cause cracks in the metal film 20 uniformly, the difference in linear thermal expansion coefficient between the base 10 and the metal film 20 is increased. Thus, the base film 12 is laminated on the substrate 11. For example, when a material having a low linear thermal expansion coefficient such as ceramics or glass and having the same linear thermal expansion coefficient as that of the metal film 20 is used for the substrate 11, the linear thermal expansion coefficient is lower than that of the metal film 20. The base film 12 is preferably laminated on the substrate 11.
 この場合、下地膜12には、ポリエステル樹脂などの金属膜20よりも線熱膨張係数が高い材料が好適に使用される。また、下地膜12を基板11の表面に形成することにより、基板11と金属膜20との密着性を向上できる。これにより、金属膜20の全面に微細なクラックを略均一に分散させることができる。なお、金属膜20にクラックを均一に分散させて発生させることができれば、基板11の表面に金属膜20を直接に配置した構造であってもよい。 In this case, a material having a higher linear thermal expansion coefficient than the metal film 20 such as polyester resin is preferably used for the base film 12. In addition, the adhesion between the substrate 11 and the metal film 20 can be improved by forming the base film 12 on the surface of the substrate 11. Thereby, fine cracks can be dispersed substantially uniformly over the entire surface of the metal film 20. Note that the metal film 20 may be directly disposed on the surface of the substrate 11 as long as cracks can be uniformly dispersed in the metal film 20.
 (その他の実施形態)
 上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
(Other embodiments)
As mentioned above, although this invention was described by embodiment, it should not be understood that the description and drawing which form a part of this indication limit this invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.
 例えば、上記では、クラックの長さの総計でクラックの細かさを定量化する場合を説明したが、他のパラメータによってクラックの細かさを定量化してもよい。例えば、単位面積当たりの金属粒の個数、金属粒の平均面積、一定の長さの仮想線と交差するクラックの個数などによって、クラックの細かさを定量化してもよい。 For example, in the above description, the case where the fineness of the crack is quantified by the total length of the cracks has been described, but the fineness of the crack may be quantified by other parameters. For example, the fineness of the cracks may be quantified based on the number of metal grains per unit area, the average area of the metal grains, the number of cracks intersecting the imaginary line having a certain length, and the like.
 また、検査画像の画像処理において二値化した検査画像を細線化する場合を説明したが、金属粒の個数や平均面積でクラックの細かさを定量化する場合などでは、細線化は不要である。即ち、クラックの細かさを定量化するための画像処理は、検査画像の二値化だけでもよい。 In addition, although the case where the binarized inspection image is thinned in the image processing of the inspection image has been described, the thinning is not necessary when the fineness of the crack is quantified by the number of metal particles or the average area. . That is, the image processing for quantifying the fineness of the crack may be only binarization of the inspection image.
 このように、本発明はここでは記載していない様々な実施形態等を含むことはもちろんである。 Thus, it goes without saying that the present invention includes various embodiments not described herein.
 本発明の電磁波透過構造体及びその検査方法は、金属光沢を有し且つ電磁波を透過する構造体に利用可能である。 The electromagnetic wave transmission structure and the inspection method thereof according to the present invention can be used for a structure having metallic luster and transmitting electromagnetic waves.

Claims (9)

  1.  電磁波を透過する基体とクラックを発生させた金属膜とを積層した電磁波透過構造体を検査対象物として準備するステップと、
     前記クラックの細かさを定量化するステップと、
     前記クラックの定量化した細かさを判定値と比較し、前記クラックの定量化した細かさが前記判定値よりも小さい場合に前記電磁波透過構造体が所定の電磁波透過性を有すると判定するステップと
     を含むことを特徴とする電磁波透過性の検査方法。
    Preparing an inspection object as an electromagnetic wave transmission structure in which a base body that transmits electromagnetic waves and a metal film that generates cracks are laminated;
    Quantifying the fineness of the crack;
    Comparing the quantified fineness of the crack with a determination value, and determining that the electromagnetic wave transmission structure has a predetermined electromagnetic wave permeability when the quantified fineness of the crack is smaller than the determination value; An electromagnetic wave permeability inspection method comprising:
  2.  前記金属膜の画像を画像処理することによって前記クラックの細かさを定量化することを特徴とする請求項1に記載の電磁波透過性の検査方法。 The electromagnetic wave permeability inspection method according to claim 1, wherein the fineness of the crack is quantified by performing image processing on an image of the metal film.
  3.  前記金属膜の画像の二値化及び細線化によって前記クラックの長さの総計を算出し、前記クラックの長さの総計で前記クラックの細かさを定量化することを特徴とする請求項2に記載の電磁波透過性の検査方法。 The total length of the cracks is calculated by binarization and thinning of the image of the metal film, and the fineness of the cracks is quantified by the total length of the cracks. The electromagnetic wave permeability inspection method described.
  4.  前記金属膜が一定の金属光沢を有することの検査を同時に行うことを特徴とする請求項1に記載の電磁波透過性の検査方法。 2. The electromagnetic wave permeability inspection method according to claim 1, wherein the inspection that the metal film has a certain metallic luster is performed at the same time.
  5.  前記金属膜の前記クラックを含む画像を取得する画像取得装置、及び前記クラックを含む画像を画像処理して前記クラックの細かさを定量化するためのデータを生成する画像処理装置を備える検査装置を用いて前記電磁波透過構造体の電磁波透過性の検査が行われ、
     前記画像取得装置によって取得される検査画像を前記画像処理装置によって画像処理して行われる前記電磁波透過構造体の欠陥の検査を、電磁波透過性の検査と同時若しくは連続的に行うことを特徴とする請求項1に記載の電磁波透過性の検査方法。
    An image acquisition device that acquires an image including the crack of the metal film, and an inspection device including an image processing device that performs image processing on the image including the crack and generates data for quantifying the fineness of the crack. The electromagnetic wave transmission inspection of the electromagnetic wave transmission structure is performed using,
    The inspection of defects of the electromagnetic wave transmission structure performed by image processing of the inspection image acquired by the image acquisition device by the image processing device is performed simultaneously or continuously with the inspection of electromagnetic wave transmission. The electromagnetic wave permeability inspection method according to claim 1.
  6.  電磁波を透過する基体と、
     前記基体に積層され、金属光沢を有し且つクラックを意図的に発生させた金属膜と
     を備え、
     定量化した前記クラックの細かさが、前記電磁波に対して前記金属膜が所定の電磁波透過性を有するように設定された判定値よりも小さいことを特徴とする電磁波透過構造体。
    A substrate that transmits electromagnetic waves;
    A metal film laminated on the substrate and having a metallic luster and intentionally generating cracks,
    An electromagnetic wave transmission structure characterized in that the quantified fineness of the crack is smaller than a judgment value set so that the metal film has a predetermined electromagnetic wave permeability with respect to the electromagnetic wave.
  7.  前記金属膜の画像を二値化及び細線化して得られる前記クラックの長さの総計が、前記判定値よりも長いことを特徴とする請求項6に記載の電磁波透過構造体。 The electromagnetic wave transmission structure according to claim 6, wherein the total length of the cracks obtained by binarizing and thinning the image of the metal film is longer than the determination value.
  8.  前記クラックの長さの総計に対する前記判定値が、前記金属膜の前記画像のサイズが700μm×525μmの場合に5mmであることを特徴とする請求項7に記載の電磁波透過構造体。 8. The electromagnetic wave transmission structure according to claim 7, wherein the determination value with respect to the total length of the cracks is 5 mm when the size of the image of the metal film is 700 μm × 525 μm.
  9.  前記金属膜の画像を二値化及び細線化して得られる前記クラックの長さの総計が、前記画像のサイズが700μm×525μmの場合に5mm以上且つ200mm以下であることを特徴とする請求項6に記載の電磁波透過構造体。 The total length of the cracks obtained by binarizing and thinning the image of the metal film is 5 mm or more and 200 mm or less when the size of the image is 700 μm × 525 μm. The electromagnetic wave transmission structure described in 1.
PCT/JP2018/022664 2017-06-14 2018-06-14 Method for inspecting electromagnetic wave transparency, and electromagnetic wave transparent structure WO2018230625A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017116573A JP2020128875A (en) 2017-06-14 2017-06-14 Electromagnetic wave transmission inspection method and electromagnetic wave transmissive structure
JP2017-116573 2017-06-14

Publications (1)

Publication Number Publication Date
WO2018230625A1 true WO2018230625A1 (en) 2018-12-20

Family

ID=64660204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022664 WO2018230625A1 (en) 2017-06-14 2018-06-14 Method for inspecting electromagnetic wave transparency, and electromagnetic wave transparent structure

Country Status (2)

Country Link
JP (1) JP2020128875A (en)
WO (1) WO2018230625A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020102546A1 (en) 2020-02-03 2021-08-05 Audi Aktiengesellschaft Process and measuring device for foil metallization

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039951A (en) * 2000-07-25 2002-02-06 Mitsubishi Heavy Ind Ltd Automatic ceramic surface crack detecting device
JP2002135030A (en) * 2000-10-27 2002-05-10 Honda Motor Co Ltd Radio wave transmitting exterior component and its manufacturing method
JP2005055329A (en) * 2003-08-06 2005-03-03 Toyota Motor Corp Molding placed in beam course of radar device, and its manufacturing method
WO2013065845A1 (en) * 2011-11-04 2013-05-10 三恵技研工業株式会社 Metal coating for electromagnetic wave transmission, method for producing metal coating for electromagnetic wave transmission, and radome for vehicle radar device
WO2013172461A1 (en) * 2012-05-17 2013-11-21 日産自動車株式会社 Transparent dielectric film, heat-reflecting structure and manufacturing method therefor, as well as laminated glass using same
WO2016125823A1 (en) * 2015-02-03 2016-08-11 王子ホールディングス株式会社 Heat shielding film, and heat shielding laminated glass and method for manufacturing same
WO2016125212A1 (en) * 2015-02-03 2016-08-11 ソニー株式会社 Case component, electronic device and method for producing case component

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039951A (en) * 2000-07-25 2002-02-06 Mitsubishi Heavy Ind Ltd Automatic ceramic surface crack detecting device
JP2002135030A (en) * 2000-10-27 2002-05-10 Honda Motor Co Ltd Radio wave transmitting exterior component and its manufacturing method
JP2005055329A (en) * 2003-08-06 2005-03-03 Toyota Motor Corp Molding placed in beam course of radar device, and its manufacturing method
WO2013065845A1 (en) * 2011-11-04 2013-05-10 三恵技研工業株式会社 Metal coating for electromagnetic wave transmission, method for producing metal coating for electromagnetic wave transmission, and radome for vehicle radar device
WO2013172461A1 (en) * 2012-05-17 2013-11-21 日産自動車株式会社 Transparent dielectric film, heat-reflecting structure and manufacturing method therefor, as well as laminated glass using same
WO2016125823A1 (en) * 2015-02-03 2016-08-11 王子ホールディングス株式会社 Heat shielding film, and heat shielding laminated glass and method for manufacturing same
WO2016125212A1 (en) * 2015-02-03 2016-08-11 ソニー株式会社 Case component, electronic device and method for producing case component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020102546A1 (en) 2020-02-03 2021-08-05 Audi Aktiengesellschaft Process and measuring device for foil metallization
DE102020102546B4 (en) 2020-02-03 2024-03-07 Audi Aktiengesellschaft Process and measuring device for foil metallization

Also Published As

Publication number Publication date
JP2020128875A (en) 2020-08-27

Similar Documents

Publication Publication Date Title
JP6119926B1 (en) Metal body shape inspection apparatus and metal body shape inspection method
Daryabor et al. Image fusion of ultrasonic and thermographic inspection of carbon/epoxy patches bonded to an aluminum plate
Sfarra et al. Monitoring of jute/hemp fiber hybrid laminates by nondestructive testing techniques
US20230349836A1 (en) Surface inspection device, surface inspection method, and manufacturing method of metal strip
WO2018230625A1 (en) Method for inspecting electromagnetic wave transparency, and electromagnetic wave transparent structure
US10576684B2 (en) Three-dimensional shaping method
Wang et al. Pixel-based thermal sequence processing algorithm based on R2 fractile threshold of non-linear fitting in active infrared thermography
EP2899514B1 (en) Terahertz-wave detection element, production method therefor, joined body, and observation device
DE102017203765A1 (en) Method for the determination of mechanical stresses in substrates or circuit carriers, which are formed with a ceramic material
JP2011220810A (en) Method for detecting metal defect and defect detection device
EP3434392B1 (en) Three-dimensional shaping method
Palka et al. Terahertz detection of wavelength-size metal particles in pressboard samples
WO2018182530A1 (en) Reconfigurable laser stimulated lock-in thermography for micro-crack detection
Quast et al. All-electronic 3D terahertz imaging for the NDT of composites
Zhang et al. Effect of background subtraction on defect detection in thermographic signal reconstruction coefficient images
Petkie et al. Nondestructive terahertz imaging for aerospace applications
US11041798B2 (en) Arrangement for determining the achievable adhesive strength before forming a connection having material continuity to a surface of a joining partner
Chen Inspecting lens collars for defects using discrete cosine transformation based on an image restoration scheme
Gan et al. Statistical evaluation of damage size based on amplitude mapping of damage-induced ultrasonic wavefield
CN111429367A (en) Thermal image data processing method for composite material layered damage detection
Fukuchi et al. Improvement of Measurement Resolution of Depth Distribution in Cross‐Sectional Imaging Using Terahertz Wave
Minkevičius et al. Solar cell imaging and characterization by terahertz techniques
Mankovics et al. Dislocation‐related photoluminescence imaging of mc‐Si wafers at room temperature
US5907397A (en) Method of inspecting a defect on a translucid film
Gómez-Gómez et al. An advance towards the synthesis of Ag nanorod arrays with controlled surface roughness for SERS substrates

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18817681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18817681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP