WO2018230484A1 - Control device for electromagnetic clutch of gas compression machine - Google Patents

Control device for electromagnetic clutch of gas compression machine Download PDF

Info

Publication number
WO2018230484A1
WO2018230484A1 PCT/JP2018/022151 JP2018022151W WO2018230484A1 WO 2018230484 A1 WO2018230484 A1 WO 2018230484A1 JP 2018022151 W JP2018022151 W JP 2018022151W WO 2018230484 A1 WO2018230484 A1 WO 2018230484A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
electromagnetic coil
compressor
rotor
voltage
Prior art date
Application number
PCT/JP2018/022151
Other languages
French (fr)
Japanese (ja)
Inventor
竜介 山田
洋介 大谷
雄基 黒川
Original Assignee
カルソニックカンセイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カルソニックカンセイ株式会社 filed Critical カルソニックカンセイ株式会社
Publication of WO2018230484A1 publication Critical patent/WO2018230484A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/06Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D27/10Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings
    • F16D27/108Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings with axially movable clutching members
    • F16D27/112Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings with axially movable clutching members with flat friction surfaces, e.g. discs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure

Definitions

  • the present invention relates to a control device for an electromagnetic clutch of a gas compressor.
  • a gas compressor of an air conditioning system (hereinafter referred to as an air conditioning system) mounted on a vehicle or the like operates by receiving power from a power source (engine or the like) of the vehicle or the like.
  • an electromagnetic clutch is used to connect and disconnect the power supply from the power source.
  • the electromagnetic clutch includes a rotor, an electromagnetic coil, and an armature. The rotor always rotates under the power of the power source, and the armature is connected to the rotating shaft of the gas compressor.
  • the armature does not rotate because it is separated from the rotating rotor by a certain gap, but when the electromagnetic coil generates a magnetic force by energization, the armature is attracted to the rotor by the magnetic force and connected. Thereby, the armature rotates integrally with the rotor, and the rotating shaft connected to the armature rotates. Note that an elastic force of a spring member or the like acts on the armature, and when the electromagnetic coil is de-energized, there is no magnetic force for attracting the armature, and the armature is returned to a state separated from the rotor by this elastic force.
  • the electromagnetic clutch is connected to and disconnected from the power source depending on whether or not voltage is applied to the electromagnetic coil.
  • the power source includes a load of the gas compressor. Takes suddenly.
  • the power source is an engine, for example, the engine is a drive source for driving a vehicle or the like, so that when a sudden load from the gas compressor is applied, the driving force for driving the vehicle is drastically reduced. The ride quality can be adversely affected.
  • the present invention has been made in view of the above circumstances, and suppresses a sudden load applied to the power source driving the electromagnetic clutch in the gas compressor and suppresses the wear of the electromagnetic clutch. It is an object of the present invention to provide a control device for an electromagnetic clutch of a gas compressor.
  • the present invention provides the electromagnetic coil, the rotor, and the electromagnetic of the electromagnetic clutch in the gas compressor having an armature that contacts the rotor by energizing the electromagnetic coil and leaves the rotor by stopping energization of the electromagnetic coil.
  • a power supply unit that supplies power to the coil; a reception unit that receives a start signal for supplying the power to the electromagnetic coil; and an energization control unit that controls the power supplied to the electromagnetic coil.
  • the unit applies (1) the electromagnetic coil as a voltage to be applied to the electromagnetic coil according to at least one of the rotational speed of the gas compressor and the discharge side pressure at the time of startup.
  • a first control that applies a relatively high voltage required to pass a relatively high current to the current, and (2) a current that is lower than the high current and is Mature that required to pass sufficient current to be linked to the rotor switches, and a second control applying a voltage lower than the high voltage, a control device for the electromagnetic clutch of the gas compressor.
  • the control device for an electromagnetic clutch of a gas compressor it is possible to prevent a load from being applied suddenly to a power source driving the electromagnetic clutch in the gas compressor. Furthermore, according to the control device for the electromagnetic clutch of the gas compressor according to the present invention, the voltage applied to the electromagnetic coil is relatively low according to at least one of the rotational speed of the gas compressor and the discharge side pressure at the time of startup. The acceleration of electromagnetic clutch wear that may occur when a voltage is applied can be suppressed.
  • FIG. 1 It is a block diagram which shows one Embodiment of the control apparatus with respect to the electromagnetic clutch of the gas compressor which concerns on this invention. It is sectional drawing which shows the vane rotary type compressor which is one Example of the target gas compressor controlled by the control apparatus shown in FIG. The voltage applied to the electromagnetic coil with respect to the passage of time when the first control is performed by the control device, and the current that has flowed through the electromagnetic coil due to the application of the voltage, and the clutch friction torque ( It is a diagram which shows a torque of a rotor and a compressor torque (torque of an armature).
  • FIG. 1 is a block diagram showing a control device 200 which is an embodiment of a control device for an electromagnetic clutch of a gas compressor according to the present invention.
  • FIG. 2 is a cross-sectional view showing a vane rotary type compressor 100 which is an embodiment of a target gas compressor controlled by the control device 200 shown in FIG.
  • a compressor 100 shown in FIG. 2 is mounted on a vehicle and is configured as a part of an air conditioning system (hereinafter simply referred to as an air conditioning system) that performs cooling using the heat of vaporization of a cooling medium.
  • an air conditioning system hereinafter simply referred to as an air conditioning system
  • the compressor 100 compresses the refrigerant gas G (gas) as a gaseous cooling medium taken from the evaporator of the air conditioning system, and supplies the compressed refrigerant gas to the condenser of the air conditioning system.
  • the condenser heat-exchanges the compressed refrigerant gas with ambient air or the like to dissipate heat from the refrigerant gas and liquefy it, and sends it to the expansion valve as a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant is reduced in pressure by the expansion valve and sent to the evaporator.
  • the low-pressure liquid refrigerant absorbs heat from the surrounding air and vaporizes in the evaporator, and cools the air around the evaporator by heat exchange accompanying the vaporization of the refrigerant.
  • the vaporized low-pressure refrigerant gas G returns to the compressor 100 and is compressed, and the above process is repeated thereafter.
  • the compressor 100 includes a compression mechanism 60 that sucks low-pressure refrigerant gas G into the interior, compresses and discharges the refrigerant gas G to high pressure, a housing 10 that houses the compression mechanism 60, and a compression mechanism. And an electromagnetic clutch 90 for connecting and disconnecting power supply from an external power source for driving the unit 60.
  • the housing 10 includes a case 11 whose one end is closed and a front head 12 which covers the opened end of the case 11.
  • a space for accommodating the compression mechanism 60 is formed inside the housing 10 with the front head 12 covering the end of the case 11.
  • the compression mechanism section 60 has a rotating shaft 51 lubricated with the refrigerating machine oil R. When the rotating shaft 51 rotates, the low-pressure refrigerant gas G is sucked into the interior, compressed to a high pressure, and discharged to the outside. To do.
  • one end 51a of the rotating shaft 51 is exposed to the outside of the housing 10. Specifically, in the state shown in FIG. 2, the left end 51 a of the rotating shaft 51 is exposed to the outside of the front head 12.
  • the electromagnetic clutch 90 includes a pulley 91, a rotor 92, an electromagnetic coil 93, and an armature 94.
  • the pulley 91 has an annular belt wound around an outer peripheral surface 91a extending in the circumferential direction and having a plurality of grooves each having a V-shaped cross section.
  • This belt is wound around a rotating shaft of the engine (rotating shaft or a shaft rotating in synchronization with the rotating shaft) so as to receive power from an engine (an example of a power source) of the vehicle on which the compressor 100 is mounted. It has been.
  • the rotor 92 is fixed to the front head 12 via a radial bearing, and is rotatable around the rotation axis O.
  • the rotor 92 is formed with a cylindrical coil housing space, and a cylindrical electromagnetic coil 93 is housed in the coil housing space.
  • the rotor 92 is integrated with the pulley 91. Accordingly, when the pulley 91 is supplied with power from the engine, the pulley 91 and the rotor 92 rotate around the axis O as a unit.
  • the electromagnetic coil 93 is fixed to the front head 12 via a yoke, does not rotate around the axis O, generates a magnetic force when energized, and disappears when the energization is stopped.
  • the armature 94 includes an inner ring 94b, an outer ring 94a, and a leaf spring 94c.
  • the inner ring 94 b is fastened by a screw 70 to the end 51 a of the rotating shaft 51 exposed from the front head 12.
  • the outer ring 94a is arranged to project outward in the radial direction from the inner ring 94b, and is formed of a material having a high friction coefficient.
  • the leaf spring 94c connects the inner ring 94b and the outer ring 94a so that the outer ring 94a can be displaced relative to the inner ring 94b by elastic deformation of the leaf spring 94c along the direction of the axis O. It has become.
  • the outer ring 94a is disposed through a slight gap from the side wall surface of the rotor 92 that is orthogonal to the axis O.
  • the outer ring 94a receives a magnetic force generated by energization of the electromagnetic coil 93, the elastic force of the leaf spring 94c. Against this, it is attracted to the electromagnetic coil 93.
  • the outer ring 94 a is displaced by this suction until there is no gap with the side wall surface of the rotor 92 (suction completion state)
  • the outer ring 94 a comes into contact with the side wall surface of the rotor 92.
  • the armature 94 starts to rotate with the rotating rotor 92 due to an increase in frictional force (dynamic friction torque).
  • control device 200 that controls the power supplied to the electromagnetic coil 93 will be described.
  • the control device 200 is configured separately from the compressor 100, but may be configured as a part of the compressor 100.
  • the control device 200 includes a power supply unit 230 that supplies power to the electromagnetic coil 93, a reception unit 210 that receives an instruction (startup) signal S to supply power to the electromagnetic coil 93, and an electromagnetic coil And an energization control unit 220 for controlling the power supplied to 93.
  • the power supply unit 230 relays the power supplied from the power source (vehicle battery or the like) of the vehicle on which the control device 200 is mounted together with the compressor 100.
  • the accepting unit 210 accepts an operation start instruction signal input to a switch or the like provided on the vehicle for operating the air conditioner as an instruction signal S for supplying electric power to the electromagnetic coil 93.
  • FIG. 3 shows the voltage V applied to the electromagnetic coil 93 over time and the current I flowing through the electromagnetic coil 93 due to the application of the voltage when the control device 200 performs the first control. It is a diagram which shows the clutch friction torque (torque of the rotor 92) and the compressor torque (torque of the armature 94) in the corresponding time passage.
  • FIG. 4 shows the voltage V applied to the electromagnetic coil 93 over time and the current I flowing in the electromagnetic coil 93 due to the application of the voltage when the control device 200 performs the second control.
  • FIG. 5 is a diagram showing a clutch friction torque (rotor 92 torque) and a compressor torque (armature 94 torque) over time. 3 and 4, the clutch friction torque is indicated by a solid line, and the compressor torque is indicated by a one-dot chain line.
  • the connection state of the electromagnetic clutch 90 is maintained. However, the supply of the current I is stopped, or the current I is less than a certain value (the armature 94 is rotated by If the current is reduced to less than a current sufficient to be coupled to 92, the outer ring 94a moves away from the side wall surface of the rotor 92, and the electromagnetic clutch 90 is disconnected.
  • the first control described above by the energization control unit 220 is specifically the control shown in the following (1).
  • (1) When an activation signal is input from the accepting unit 210, according to the rotation speed E of the compressor 100 and the discharge-side pressure of the compressor 100 (for example, the pressure of the high-pressure refrigerant gas G discharged from the compressor 100) P
  • a voltage to be applied to the electromagnetic coil 93 As a voltage to be applied to the electromagnetic coil 93, a relatively high voltage V1 necessary for flowing a relatively high current I1 through the electromagnetic coil 93 is applied.
  • the energization control unit 220 calculates the rotation speed E of the compressor 100 based on the input engine rotation speed.
  • the first control is a control in which a relatively high constant voltage V1 for flowing a relatively high current I1 is continuously applied to the electromagnetic coil 93 from the start to the end of connection. .
  • the second control described above by the energization control unit 220 is specifically the control shown in the following (2).
  • (2) When an activation signal is input from the reception unit 210, the voltage applied to the electromagnetic coil 93 is applied to the electromagnetic coil 93 according to the rotation speed E of the compressor 100 and the discharge-side pressure P of the compressor 100 at the time of activation.
  • a relatively low voltage V2 (V1) is applied which is a relatively low current and is necessary to pass a current I2 sufficient to couple the outer ring 94a of the armature 94 to the rotor 92.
  • the second control is a relatively high constant voltage V1 for causing a relatively high current I1 to flow through the electromagnetic coil 93 from the start of the electromagnetic clutch 90 to the completion of suction (when the time t1 has elapsed). Is applied.
  • This relatively high voltage V1 is the same voltage as the voltage V1 in the first control.
  • the electromagnetic coil 93 is supplied with a current I2 that is lower than the initial high current I1 and sufficient to connect the armature 94 to the rotor 92.
  • the required relatively low voltage V2 ( ⁇ V1) is applied.
  • the current I2 flowing through the electromagnetic coil 93 is lower than the current I2 flowing through the electromagnetic coil 93 in the first control.
  • the magnetic force generated by the electromagnetic coil 93 during the period from the completion of the suction by the second control to the completion of the connection is lower than the magnetic force generated by the electromagnetic coil 93 during the period from the completion of the suction by the first control to the completion of the connection. It becomes.
  • the time t2 from the completion of suction by the second control to the completion of connection is longer than the time t2 from the completion of suction by the first control to the completion of connection.
  • the voltage V applied to the electromagnetic coil 93 is switched to a relatively high voltage V3.
  • This voltage V3 is the same as the first relatively high voltage (voltage in the first control) V1.
  • the time t2 until the connection is completed is obtained experimentally in advance, and the time obtained experimentally in advance in consideration of each error and the like.
  • a time (t2 + ⁇ t) obtained by adding a time ⁇ t that can absorb an error or the like to t2 is stored in the energization control unit 220, and it is estimated that the connection is completed when the time (t2 + ⁇ t) elapses.
  • the applied voltage V is switched from V2 to V3.
  • FIG. 5 is a diagram illustrating the rotational speed E of the compressor 100 and the discharge-side pressure P of the compressor 100 that the energization control unit 220 switches between the first control and the second control.
  • the energization control unit 220 receives the rotation speed E of the compressor 100 and the discharge side pressure P of the compressor 100 at the time of activation. Then, the energization control unit 220 performs the first control corresponding to the regions A, B, and C shown in FIG. 5 according to the input rotation speed E of the compressor 100 and the discharge side pressure P of the compressor 100. And the second control.
  • a region A shown in FIG. 5 is a normal use region of the compressor 100 and is a region where the operation of the compressor 100 is guaranteed. Specifically, this is a region in the range of the rotation speed E2 of the compressor 100 to the rotation speed E3 (> E2) and the range of the discharge side pressure P1 of the compressor 100 to the discharge side pressure P3.
  • the rotation speed E3 is an example of a preset rotation speed
  • the discharge side pressure P3 is an example of a preset pressure.
  • the energization control unit 220 switches to the second control.
  • the rotational speed E3 is, for example, 4000-5000 [rpm] in terms of the rotational speed of the engine.
  • the discharge side pressure P3 is 2 [MPa], for example.
  • a region B shown in FIG. 5 is an operation limit region of the compressor 100, and is generally used in an endurance test or the like of the compressor 100, and is used instantaneously in a normal use state.
  • the compressor 100 is in a high-load region that is not continuously used.
  • the energization control unit 220 switches to the first control.
  • the rotation speed E5 that is the upper limit of the region B is, for example, 8000-8500 [rpm] in terms of the engine rotation speed.
  • the discharge side pressure P4 that is the upper limit of the region B is, for example, 3-3.5 [MPa].
  • a region C shown in FIG. 5 is an idling region where the rotational speed of the compressor 100 corresponds to the idling state of the vehicle on which the engine is mounted, and the vehicle is stopped.
  • This region C is a region defined only by the rotational speed of the compressor 100, and specifically, is a region that is in a range of the rotational speed E1 to the rotational speed E2 of the compressor 100.
  • the energization control unit 220 switches to the first control.
  • the rotation speed E1 to the rotation speed E2 is, for example, 800-1000 [rpm] in terms of the engine rotation speed.
  • the normal use region (FIG. 5) defined according to the rotational speed E of the compressor 100 and the discharge side pressure P of the compressor 100.
  • the voltage V2 applied to the electromagnetic coil 93 is set to a lower voltage during the period from the completion of suction to the completion of connection compared to the areas other than the normal use area (see FIG. 4). Accordingly, in the normal use region, the period from the completion of suction to the completion of connection is longer than in the region other than the normal use region, and the engine at the time of starting the compressor 100 is abruptly applied to the engine serving as the power source. Can be suppressed.
  • the operating limit region defined by the rotational speed E and the discharge side pressure P when the compressor 100 is started (region B in FIG. 5).
  • the relatively high voltage V1 applied to the electromagnetic coil 93 at the start is maintained during the period from the completion of suction to the completion of connection (see FIG. 3). ). Therefore, in the operation limit region and the idling region, the period from the completion of suction to the completion of connection does not become longer as in the normal use region.
  • the operation limit region is a region where the rotational speed of the compressor 100 is higher than the preset rotational speed E3, or a region where the discharge side pressure of the compressor 100 is higher than the preset discharge side pressure P3. Since it is not a normal use area, even if it is temporarily used, its use is temporary, and normally it is not used continuously for a certain time or more. For this reason, even if the load at the start of the compressor 100 is suddenly applied to the engine as the power source in the region of the operation limit, there is no situation in which the load is suddenly repeated. Therefore, it is more practical to give priority to suppressing the wear of the electromagnetic clutch 90 in the operating limit region.
  • the idling region may be determined based on the rotation speed E of the compressor 100 as described above, but may be determined based on the vehicle speed (zero speed). Good. In this case, a vehicle speed signal detected by the vehicle speed sensor may be input to the energization control unit 220.
  • the energization control unit 220 applies a relatively high voltage and a relatively low voltage to the electromagnetic coil 93 according to the rotation speed E and the discharge side pressure P. Therefore, it is possible to perform appropriate activation according to the state of the compressor 100 corresponding to the rotation speed E and the discharge side pressure P.
  • the energization control unit 220 switches between the first control and the second control according to both the rotation speed E of the compressor 100 and the discharge side pressure P of the compressor 100.
  • the energization control unit 220 may switch between the first control and the second control according to only the rotational speed E of the compressor 100, or only according to the discharge side pressure P of the compressor 100.
  • the energization control unit 220 may switch between the first control and the second control.
  • the energization control unit 220 switches between the first control and the second control according to both the rotational speed E of the compressor 100 and the discharge side pressure P of the compressor 100.
  • the energization control unit 220 may switch between the first control and the second control according to only the rotational speed E of the compressor 100, or according to only the discharge side pressure P of the compressor 100, The energization control unit 220 may switch between the first control and the second control, and in this case as well, the same operations and effects as in the above-described embodiment can be obtained.
  • the energization control unit 220 applies the voltage V applied to the electromagnetic coil 93 after the connection between the armature 94 and the rotor 92 is completed in the second control, before the connection is completed.
  • the timing at which the armature 94 is completely sucked can be detected by monitoring the current flowing through the electromagnetic coil 93 with a sensor or the like. That is, at the timing when the armature 94 is completely sucked, the value of the current flowing through the electromagnetic coil 93 is minimized as described above. Therefore, the timing at which the armature 94 is completely sucked can be strictly detected by detecting the timing at which the current value is minimized by a sensor such as a current sensor.
  • the timing at which the current value flowing through the electromagnetic coil becomes minimum can be associated with the elapsed time from the start of the electromagnetic clutch.
  • the energization control unit 220 stores the elapsed time from the start of the electromagnetic clutch so determined, and the energization control unit 220 indicates the time when the stored elapsed time has elapsed since the start of the electromagnetic clutch. By making the determination by measuring the time with the provided timer, the time when the stored elapsed time has passed can be set as the timing when the armature 94 has been sucked without using the sensor.
  • the timing obtained in this manner may be used as the timing for switching the manner in which the voltage applied to the electromagnetic coil 93 is applied.
  • the compressor 100 of the present embodiment is a vane rotary type gas compressor, but the gas compressor to be controlled by the control device according to the present invention may be a gas compressor provided with an electromagnetic clutch. A gas compressor other than the rotary type may be controlled. Therefore, the control device according to the present invention is also applied to a control device that controls a swash plate type gas compressor, a scroll type gas compressor, or the like other than the vane rotary type.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

The purpose of the invention is to suppress sudden application of a load on a motive power source that drives an electromagnetic clutch. This control device (200) comprises an electric power supply unit (230), an acceptance unit (210), and a current passage control unit (220). When a signal (S) is input from the acceptance unit (210), the current passage control unit (220) switches, in accordance with the rotation speed E and/or discharge-side pressure (P) of a compressor (100) upon startup, between [1] a first control for applying a relatively high voltage necessary for passing a relatively high current through an electromagnetic coil (93) and [2] a second control for applying a voltage lower than the high voltage in [1] and necessary for passing a current that is lower than the high current in [1] and that is sufficient for coupling an armature (94) to a rotor (92), as the voltage to be applied to the electromagnetic coil (93).

Description

気体圧縮機の電磁クラッチに対する制御装置Control device for electromagnetic clutch of gas compressor
 本発明は、気体圧縮機の電磁クラッチに対する制御装置に関する。 The present invention relates to a control device for an electromagnetic clutch of a gas compressor.
 車両等に搭載されている空気調和システム(以下、空調システムという。)の気体圧縮機は、車両等の動力源(エンジン等)から動力を受けて動作する。この場合、動力源からの動力の供給を断接するために、電磁クラッチが用いられる。電磁クラッチは、ロータと電磁コイルとアーマチュアとを備えている。ロータは、動力源の動力を受けて常に回転し、アーマチュアは、気体圧縮機の回転軸に連結している。 A gas compressor of an air conditioning system (hereinafter referred to as an air conditioning system) mounted on a vehicle or the like operates by receiving power from a power source (engine or the like) of the vehicle or the like. In this case, an electromagnetic clutch is used to connect and disconnect the power supply from the power source. The electromagnetic clutch includes a rotor, an electromagnetic coil, and an armature. The rotor always rotates under the power of the power source, and the armature is connected to the rotating shaft of the gas compressor.
 アーマチュアは、回転しているロータに対して一定のギャップを介して離れているため回転しないが、通電によって電磁コイルが磁力を発生すると、その磁力によりアーマチュアがロータに吸引されて連結する。これにより、アーマチュアはロータと一体的に回転し、アーマチュアに連結された回転軸が回転する。なお、アーマチュアにはばね部材等の弾性力が作用していて、電磁コイルへの通電が無くなるとアーマチュアを吸引する磁力が無くなり、アーマチュアはこの弾性力によってロータから離れた状態に戻される。 The armature does not rotate because it is separated from the rotating rotor by a certain gap, but when the electromagnetic coil generates a magnetic force by energization, the armature is attracted to the rotor by the magnetic force and connected. Thereby, the armature rotates integrally with the rotor, and the rotating shaft connected to the armature rotates. Note that an elastic force of a spring member or the like acts on the armature, and when the electromagnetic coil is de-energized, there is no magnetic force for attracting the armature, and the armature is returned to a state separated from the rotor by this elastic force.
 このように、電磁クラッチは、電磁コイルへの電圧の印加の有無により、動力源との断接が行われるが、アーマチュアがロータに接して連結したとき、動力源には、気体圧縮機の負荷が急激に掛る。動力源が例えばエンジンの場合、エンジンは車両等を駆動する駆動源であるため、気体圧縮機からの急激な負荷が作用すると、車両の駆動のための駆動力が急激に低下し、車両等の乗り心地に悪影響が生じ得る。 As described above, the electromagnetic clutch is connected to and disconnected from the power source depending on whether or not voltage is applied to the electromagnetic coil. When the armature is connected in contact with the rotor, the power source includes a load of the gas compressor. Takes suddenly. When the power source is an engine, for example, the engine is a drive source for driving a vehicle or the like, so that when a sudden load from the gas compressor is applied, the driving force for driving the vehicle is drastically reduced. The ride quality can be adversely affected.
 ここで、気体圧縮機の起動前に冷却ファンを作動させることで、気体圧縮機の起動時のトルクを低下させる技術が提案されている(例えば、特許文献1参照)。この技術によれば、気体圧縮機の起動時のトルクが低下するため、動力源に作用する負荷を低減することができる。 Here, a technique for reducing the torque at the time of starting the gas compressor by operating the cooling fan before starting the gas compressor has been proposed (see, for example, Patent Document 1). According to this technique, since the torque at the time of starting of a gas compressor falls, the load which acts on a motive power source can be reduced.
特開2002-307938号公報JP 2002-307938 A
 しかし、上述した先行技術文献で提案されている技術は、気体圧縮機の単体で、負荷が急激に掛ることに対処する技術ではない。 However, the technology proposed in the above-mentioned prior art documents is not a technology for dealing with a sudden load on a single gas compressor.
 本発明は上記事情に鑑みなされたものであって、気体圧縮機における電磁クラッチを駆動している動力源に対して、負荷が急激に掛るのを抑制するとともに、電磁クラッチの摩耗を抑制することができる、気体圧縮機の電磁クラッチに対する制御装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and suppresses a sudden load applied to the power source driving the electromagnetic clutch in the gas compressor and suppresses the wear of the electromagnetic clutch. It is an object of the present invention to provide a control device for an electromagnetic clutch of a gas compressor.
 本発明は、電磁コイル、ロータ、及び前記電磁コイルへの通電により前記ロータに接し、前記電磁コイルへの通電を停止することにより前記ロータから離れるアーマチュアを有する、気体圧縮機における電磁クラッチの前記電磁コイルに電力を供給する電力供給部と、前記電磁コイルに前記電力を供給する起動の信号を受け付ける受付部と、前記電磁コイルに供給する電力を制御する通電制御部と、を備え、前記通電制御部は、前記受付部から前記信号が入力されると、起動時の気体圧縮機の回転数及び吐出側圧力の少なくとも一方に応じて、前記電磁コイルに印加する電圧として、(1)前記電磁コイルに相対的に高い電流を流すのに必要な相対的に高い電圧を適用する第1の制御と、(2)前記高い電流よりも低い電流であって前記アーマチュアを前記ロータに連結させるのに十分な電流を流すのに必要な、前記高い電圧よりも低い電圧を適用する第2の制御と、を切り替える、気体圧縮機の電磁クラッチに対する制御装置である。 The present invention provides the electromagnetic coil, the rotor, and the electromagnetic of the electromagnetic clutch in the gas compressor having an armature that contacts the rotor by energizing the electromagnetic coil and leaves the rotor by stopping energization of the electromagnetic coil. A power supply unit that supplies power to the coil; a reception unit that receives a start signal for supplying the power to the electromagnetic coil; and an energization control unit that controls the power supplied to the electromagnetic coil. When the signal is input from the reception unit, the unit applies (1) the electromagnetic coil as a voltage to be applied to the electromagnetic coil according to at least one of the rotational speed of the gas compressor and the discharge side pressure at the time of startup. A first control that applies a relatively high voltage required to pass a relatively high current to the current, and (2) a current that is lower than the high current and is Mature that required to pass sufficient current to be linked to the rotor switches, and a second control applying a voltage lower than the high voltage, a control device for the electromagnetic clutch of the gas compressor.
 本発明に係る気体圧縮機の電磁クラッチに対する制御装置によれば、気体圧縮機における電磁クラッチを駆動している動力源に対して、負荷が急激に掛るのを抑制することができる。さらに、本発明に係る気体圧縮機の電磁クラッチに対する制御装置によれば、起動時の気体圧縮機の回転数及び吐出側圧力の少なくとも一方に応じて、電磁コイルに印加する電圧として相対的に低い電圧を適用した場合に起こり得る電磁クラッチの摩耗の促進を抑制することができる。 According to the control device for an electromagnetic clutch of a gas compressor according to the present invention, it is possible to prevent a load from being applied suddenly to a power source driving the electromagnetic clutch in the gas compressor. Furthermore, according to the control device for the electromagnetic clutch of the gas compressor according to the present invention, the voltage applied to the electromagnetic coil is relatively low according to at least one of the rotational speed of the gas compressor and the discharge side pressure at the time of startup. The acceleration of electromagnetic clutch wear that may occur when a voltage is applied can be suppressed.
本発明に係る気体圧縮機の電磁クラッチに対する制御装置の一実施形態を示すブロック図である。It is a block diagram which shows one Embodiment of the control apparatus with respect to the electromagnetic clutch of the gas compressor which concerns on this invention. 図1に示した制御装置によって制御される対象の気体圧縮機の一実施例であるベーンロータリ形式のコンプレッサを示す断面図である。It is sectional drawing which shows the vane rotary type compressor which is one Example of the target gas compressor controlled by the control apparatus shown in FIG. 制御装置により第1の制御が行われたときの、時間経過に対する電磁コイルに印加された電圧と、その電圧の印加によって電磁コイルに流れた電流を示すとともに、対応する時間経過におけるクラッチ摩擦トルク(ロータのトルク)とコンプレッサトルク(アーマチュアのトルク)とを示す線図である。The voltage applied to the electromagnetic coil with respect to the passage of time when the first control is performed by the control device, and the current that has flowed through the electromagnetic coil due to the application of the voltage, and the clutch friction torque ( It is a diagram which shows a torque of a rotor and a compressor torque (torque of an armature). 制御装置により第2の制御が行われたときの、時間経過に対する電磁コイルに印加された電圧と、その電圧の印加によって電磁コイルに流れた電流を示すとともに、対応する時間経過におけるクラッチ摩擦トルク(ロータのトルク)とコンプレッサトルク(アーマチュアのトルク)とを示す線図である。When the second control is performed by the control device, the voltage applied to the electromagnetic coil with respect to the passage of time and the current flowing through the electromagnetic coil due to the application of the voltage are shown, and the clutch friction torque ( It is a diagram which shows a torque of a rotor and a compressor torque (torque of an armature). 通電制御部が第1の制御と第2の制御とを切り替える、コンプレッサの回転数及びコンプレッサの吐出側圧力を示す図である。It is a figure which shows the rotation speed of a compressor and the discharge side pressure of a compressor which an electricity supply control part switches between 1st control and 2nd control.
 以下、本発明に係る気体圧縮機の電磁クラッチに対する制御装置の実施形態について、図面を参照して説明する。図1は本発明に係る気体圧縮機の電磁クラッチに対する制御装置の一実施形態である制御装置200を示すブロック図である。また、図2は図1に示した制御装置200によって制御される対象の気体圧縮機の一実施例であるベーンロータリ形式のコンプレッサ100を示す断面図である。 Hereinafter, embodiments of a control device for an electromagnetic clutch of a gas compressor according to the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a control device 200 which is an embodiment of a control device for an electromagnetic clutch of a gas compressor according to the present invention. FIG. 2 is a cross-sectional view showing a vane rotary type compressor 100 which is an embodiment of a target gas compressor controlled by the control device 200 shown in FIG.
 <コンプレッサ>
 図2に示したコンプレッサ100は、車両に搭載され、冷却媒体の気化熱を利用して冷却を行なう空気調和システム(以下、単に空調システムという。)の一部として構成され、この空調システムの他の構成要素である凝縮器、膨張弁、蒸発器等とともに、冷却媒体の循環経路上に設けられている。
<Compressor>
A compressor 100 shown in FIG. 2 is mounted on a vehicle and is configured as a part of an air conditioning system (hereinafter simply referred to as an air conditioning system) that performs cooling using the heat of vaporization of a cooling medium. A condenser, an expansion valve, an evaporator, and the like, which are constituent elements of the above, are provided on the cooling medium circulation path.
 コンプレッサ100は、空調システムの蒸発器から取り入れた気体状の冷却媒体としての冷媒ガスG(気体)を圧縮し、この圧縮された冷媒ガスを空調システムの凝縮器に供給する。凝縮器は、圧縮された冷媒ガスを周囲の空気等との間で熱交換することにより冷媒ガスから放熱させて液化させ、高圧で液状の冷媒として膨張弁に送出する。高圧で液状の冷媒は、膨張弁で低圧化され、蒸発器に送出される。低圧の液状の冷媒は、蒸発器において周囲の空気から吸熱して気化し、この冷媒の気化に伴う熱交換により蒸発器の周囲の空気を冷却する。気化した低圧の冷媒ガスGは、コンプレッサ100に戻って圧縮され、以下、上記行程を繰り返す。 The compressor 100 compresses the refrigerant gas G (gas) as a gaseous cooling medium taken from the evaporator of the air conditioning system, and supplies the compressed refrigerant gas to the condenser of the air conditioning system. The condenser heat-exchanges the compressed refrigerant gas with ambient air or the like to dissipate heat from the refrigerant gas and liquefy it, and sends it to the expansion valve as a high-pressure liquid refrigerant. The high-pressure liquid refrigerant is reduced in pressure by the expansion valve and sent to the evaporator. The low-pressure liquid refrigerant absorbs heat from the surrounding air and vaporizes in the evaporator, and cools the air around the evaporator by heat exchange accompanying the vaporization of the refrigerant. The vaporized low-pressure refrigerant gas G returns to the compressor 100 and is compressed, and the above process is repeated thereafter.
 コンプレッサ100は、図2に示すように、低圧の冷媒ガスGを内部に吸入し、高圧に圧縮して吐出する圧縮機構部60と、圧縮機構部60を内部に収容するハウジング10と、圧縮機構部60を駆動するための外部の動力源からの動力の供給を断接する電磁クラッチ90と、を備えている。 As shown in FIG. 2, the compressor 100 includes a compression mechanism 60 that sucks low-pressure refrigerant gas G into the interior, compresses and discharges the refrigerant gas G to high pressure, a housing 10 that houses the compression mechanism 60, and a compression mechanism. And an electromagnetic clutch 90 for connecting and disconnecting power supply from an external power source for driving the unit 60.
 ハウジング10は、一方の端部が閉じたケース11とケース11の開放された端部を覆うフロントヘッド12とを備えている。フロントヘッド12がケース11の端部を覆った状態で、ハウジング10の内部に、圧縮機構部60を収容する空間が形成される。圧縮機構部60は、冷凍機油Rで潤滑された回転軸51を有していて、この回転軸51が回転することにより低圧の冷媒ガスGを内部に吸入し、高圧に圧縮して外部に吐出する。 The housing 10 includes a case 11 whose one end is closed and a front head 12 which covers the opened end of the case 11. A space for accommodating the compression mechanism 60 is formed inside the housing 10 with the front head 12 covering the end of the case 11. The compression mechanism section 60 has a rotating shaft 51 lubricated with the refrigerating machine oil R. When the rotating shaft 51 rotates, the low-pressure refrigerant gas G is sucked into the interior, compressed to a high pressure, and discharged to the outside. To do.
 ここで、回転軸51は、一方の端部51aが、ハウジング10の外部に露出している。具体的には、図2に示した状態で、回転軸51の左側の端部51aが、フロントヘッド12の外部に露出している。 Here, one end 51a of the rotating shaft 51 is exposed to the outside of the housing 10. Specifically, in the state shown in FIG. 2, the left end 51 a of the rotating shaft 51 is exposed to the outside of the front head 12.
 <電磁クラッチ>
 電磁クラッチ90は、プーリ91とロータ92と電磁コイル93とアーマチュア94とを備えた構成である。プーリ91は、図2に示すように、周方向に沿って延びる、断面がV字状の溝が複数形成された外周面91aに環状のベルトが巻き掛けられる。このベルトは、コンプレッサ100が搭載された車両のエンジン(動力源の一例)から動力の供給を受けるように、エンジンの回転軸等(回転軸又は回転軸と同期して回転する軸)に巻き掛けられている。
<Electromagnetic clutch>
The electromagnetic clutch 90 includes a pulley 91, a rotor 92, an electromagnetic coil 93, and an armature 94. As shown in FIG. 2, the pulley 91 has an annular belt wound around an outer peripheral surface 91a extending in the circumferential direction and having a plurality of grooves each having a V-shaped cross section. This belt is wound around a rotating shaft of the engine (rotating shaft or a shaft rotating in synchronization with the rotating shaft) so as to receive power from an engine (an example of a power source) of the vehicle on which the compressor 100 is mounted. It has been.
 ロータ92はラジアルベアリングを介してフロントヘッド12に固定されていて、回転の軸心O回りに回転可能となっている。ロータ92には、円筒状のコイル収容空間が形成されていて、このコイル収容空間に円筒状の電磁コイル93が収容されている。ロータ92はプーリ91と一体化されている。したがって、プーリ91にエンジンからの動力の供給を受けると、プーリ91及びロータ92は一体に軸心O回りに回転する。 The rotor 92 is fixed to the front head 12 via a radial bearing, and is rotatable around the rotation axis O. The rotor 92 is formed with a cylindrical coil housing space, and a cylindrical electromagnetic coil 93 is housed in the coil housing space. The rotor 92 is integrated with the pulley 91. Accordingly, when the pulley 91 is supplied with power from the engine, the pulley 91 and the rotor 92 rotate around the axis O as a unit.
 電磁コイル93はヨークを介してフロントヘッド12に固定されていて、軸心O回りに回転することはなく、通電によって磁力を発生し、通電の停止によって磁力を消失する。アーマチュア94は、内リング94bと外リング94aと板バネ94cとを備えている。内リング94bは、フロントヘッド12から露出した回転軸51の端部51aに、ねじ70によって締結されている。 The electromagnetic coil 93 is fixed to the front head 12 via a yoke, does not rotate around the axis O, generates a magnetic force when energized, and disappears when the energization is stopped. The armature 94 includes an inner ring 94b, an outer ring 94a, and a leaf spring 94c. The inner ring 94 b is fastened by a screw 70 to the end 51 a of the rotating shaft 51 exposed from the front head 12.
 外リング94aは、内リング94bよりも半径方向の外方に張り出して配置されており摩擦係数の高い材料で形成されている。板バネ94cは、内リング94bと外リング94aとを連結していて、板バネ94cの、軸心O方向に沿っての弾性変形で、内リング94bに対して外リング94aが変位できるようになっている。 The outer ring 94a is arranged to project outward in the radial direction from the inner ring 94b, and is formed of a material having a high friction coefficient. The leaf spring 94c connects the inner ring 94b and the outer ring 94a so that the outer ring 94a can be displaced relative to the inner ring 94b by elastic deformation of the leaf spring 94c along the direction of the axis O. It has become.
 外リング94aは、ロータ92の、軸心Oに直交する側壁面とわずかな隙間を介して配置されているが、電磁コイル93への通電によって発生した磁力を受けると、板バネ94cの弾性力に逆らって電磁コイル93に吸引される。この吸引により、ロータ92の側壁面との隙間が無くなるまで外リング94aが変位する(吸引完了の状態)と、外リング94aがロータ92の側壁面に接触する。外リング94aとロータ92の側壁面とが接触後、摩擦力(動摩擦トルク)の増大によって、アーマチュア94は、回転するロータ92に連れ回り始める。 The outer ring 94a is disposed through a slight gap from the side wall surface of the rotor 92 that is orthogonal to the axis O. When the outer ring 94a receives a magnetic force generated by energization of the electromagnetic coil 93, the elastic force of the leaf spring 94c. Against this, it is attracted to the electromagnetic coil 93. When the outer ring 94 a is displaced by this suction until there is no gap with the side wall surface of the rotor 92 (suction completion state), the outer ring 94 a comes into contact with the side wall surface of the rotor 92. After contact between the outer ring 94a and the side wall surface of the rotor 92, the armature 94 starts to rotate with the rotating rotor 92 due to an increase in frictional force (dynamic friction torque).
 外リング94aとロータ92の側壁面との動摩擦トルクが増加するにしたがって、外リング94aとロータ92との速度差(トルク差)は小さくなり、やがて速度差がゼロになって両者は同期した回転となる連結状態(連結完了した状態)。これにより、アーマチュア94に回転軸51が連結されていたコンプレッサ100の圧縮機構部60は駆動される。 As the dynamic friction torque between the outer ring 94a and the side wall surface of the rotor 92 increases, the speed difference (torque difference) between the outer ring 94a and the rotor 92 decreases, and eventually the speed difference becomes zero and the two rotate synchronously. Connected state (consolidated state). Thereby, the compression mechanism 60 of the compressor 100 in which the rotary shaft 51 is connected to the armature 94 is driven.
 一方、電磁コイル93への通電を停止すると、電磁コイル93が発していた磁力は消失し、この結果、ロータ92の側壁面に接触していた外リング94aは、板バネ94cの弾性力によって、ロータ92の側壁面から離れて元の位置に戻される。これにより、アーマチュア94は停止し、コンプレッサ100の圧縮機構部60も停止する。 On the other hand, when the energization to the electromagnetic coil 93 is stopped, the magnetic force generated by the electromagnetic coil 93 disappears. As a result, the outer ring 94a that has been in contact with the side wall surface of the rotor 92 is caused by the elastic force of the leaf spring 94c. The rotor 92 is returned to the original position away from the side wall surface. Thereby, the armature 94 stops and the compression mechanism part 60 of the compressor 100 also stops.
 <制御装置>
 次に、電磁コイル93に通電する電力を制御する制御装置200について説明する。制御装置200は、コンプレッサ100とは別体の構成であるが、コンプレッサ100の一部として構成されてもよい。制御装置200は、図1に示すように、電磁コイル93に電力を供給する電力供給部230と、電磁コイル93に電力を供給する指示(起動)の信号Sを受け付ける受付部210と、電磁コイル93に供給する電力を制御する通電制御部220と、を備えている。
<Control device>
Next, the control device 200 that controls the power supplied to the electromagnetic coil 93 will be described. The control device 200 is configured separately from the compressor 100, but may be configured as a part of the compressor 100. As shown in FIG. 1, the control device 200 includes a power supply unit 230 that supplies power to the electromagnetic coil 93, a reception unit 210 that receives an instruction (startup) signal S to supply power to the electromagnetic coil 93, and an electromagnetic coil And an energization control unit 220 for controlling the power supplied to 93.
 ここで、電力供給部230は、制御装置200がコンプレッサ100とともに搭載されている車両の電源(車載バッテリ等)から供給された電力を中継している。受付部210は、車両に設けられた、空気調和装置を運転するスイッチ等に入力された運転開始の指示の信号を、電磁コイル93に電力を供給する指示の信号Sとして受け付ける。 Here, the power supply unit 230 relays the power supplied from the power source (vehicle battery or the like) of the vehicle on which the control device 200 is mounted together with the compressor 100. The accepting unit 210 accepts an operation start instruction signal input to a switch or the like provided on the vehicle for operating the air conditioner as an instruction signal S for supplying electric power to the electromagnetic coil 93.
 図3は、制御装置200により第1の制御が行われたときの、時間経過に対する電磁コイル93に印加された電圧Vと、その電圧の印加によって電磁コイル93に流れた電流Iを示すとともに、対応する時間経過におけるクラッチ摩擦トルク(ロータ92のトルク)とコンプレッサトルク(アーマチュア94のトルク)とを示す線図である。また、図4は、制御装置200により第2の制御が行われたときの、時間経過に対する電磁コイル93に印加された電圧Vと、その電圧の印加によって電磁コイル93に流れた電流Iを示すとともに、対応する時間経過におけるクラッチ摩擦トルク(ロータ92のトルク)とコンプレッサトルク(アーマチュア94のトルク)とを示す線図である。なお、図3,4ともに、クラッチ摩擦トルクを実線で示し、コンプレッサトルクを一点鎖線で示している。 FIG. 3 shows the voltage V applied to the electromagnetic coil 93 over time and the current I flowing through the electromagnetic coil 93 due to the application of the voltage when the control device 200 performs the first control. It is a diagram which shows the clutch friction torque (torque of the rotor 92) and the compressor torque (torque of the armature 94) in the corresponding time passage. FIG. 4 shows the voltage V applied to the electromagnetic coil 93 over time and the current I flowing in the electromagnetic coil 93 due to the application of the voltage when the control device 200 performs the second control. FIG. 5 is a diagram showing a clutch friction torque (rotor 92 torque) and a compressor torque (armature 94 torque) over time. 3 and 4, the clutch friction torque is indicated by a solid line, and the compressor torque is indicated by a one-dot chain line.
 アーマチュア94の外リング94aがロータ92から離れた状態(コンプレッサ100の起動前の状態)から、電磁コイル93に電圧V1を印加する(図3,4におけるクラッチ起動)と、電圧V1が一定であっても電磁コイル93に流れる電流I1の電流値が時間の経過とともに増大してゆき、その後、電磁コイル93のインダクタンス変化により、流れる電流I1の電流値は減少してゆく。そして、電磁クラッチ90の起動から時間t1の経過後に、外リング94aがロータ92の側壁面に接触し始めた吸引完了の状態となる。なお、吸引完了の状態は、外リング94aとロータ92の側壁面との間で滑りが生じているため、両者が連結完了した状態には至っていない。 When the voltage V1 is applied to the electromagnetic coil 93 from the state where the outer ring 94a of the armature 94 is separated from the rotor 92 (the state before the compressor 100 is started) (clutch activation in FIGS. 3 and 4), the voltage V1 is constant. However, the current value of the current I1 flowing through the electromagnetic coil 93 increases with time, and then the current value of the current I1 flowing through the inductance change of the electromagnetic coil 93 decreases. Then, after the elapse of time t <b> 1 from the start of the electromagnetic clutch 90, the suction is completed when the outer ring 94 a starts to contact the side wall surface of the rotor 92. Note that the suction completion state has not reached a state where the connection between the outer ring 94a and the side wall surface of the rotor 92 has been completed because the slip has occurred.
 吸引完了のときからは、アーマチュア94をロータ92に連結させるのに十分な電流I2が電磁コイル93に供給され続けることで、時間tの経過に従って外リング94aとロータ92の側壁面との間の滑りが減ってゆき、これに伴って、クラッチ摩擦トルク(ロータ92のトルク)とコンプレッサトルク(アーマチュア94のトルク)は上昇する。吸引完了から時間t2経過後に、外リング94aとロータ92の側壁面との間の滑りが無くなって、両者の回転が一致(同期)した連結完了した状態では、クラッチ摩擦トルクとコンプレッサトルクは一致する。 From the time when the suction is completed, the current I2 sufficient to connect the armature 94 to the rotor 92 is continuously supplied to the electromagnetic coil 93, so that the time between the outer ring 94a and the side wall surface of the rotor 92 increases as time passes. As the slippage decreases, the clutch friction torque (rotor 92 torque) and the compressor torque (armature 94 torque) increase. After a time t2 has elapsed from the completion of the suction, when the coupling between the outer ring 94a and the side wall surface of the rotor 92 is eliminated and the rotations of the two match (synchronize), the clutch friction torque and the compressor torque match. .
 連結完了した後も、電磁コイル93に電流Iを供給し続けることで、電磁クラッチ90の連結状態は維持されるが、電流Iの供給が停止したり、電流Iが一定以下(アーマチュア94をロータ92に連結させるのに十分な電流未満)に低下したりすると、外リング94aがロータ92の側壁面から離れて、電磁クラッチ90は切断された状態となる。 Even after the connection is completed, by continuing to supply the current I to the electromagnetic coil 93, the connection state of the electromagnetic clutch 90 is maintained. However, the supply of the current I is stopped, or the current I is less than a certain value (the armature 94 is rotated by If the current is reduced to less than a current sufficient to be coupled to 92, the outer ring 94a moves away from the side wall surface of the rotor 92, and the electromagnetic clutch 90 is disconnected.
 通電制御部220による上述した第1の制御は、具体的には、下記(1)に示す制御である。(1)受付部210から起動の信号が入力されると、コンプレッサ100の回転数E及びコンプレッサ100の吐出側圧力(例えば、コンプレッサ100から吐出された高圧の冷媒ガスGの圧力)Pに応じて、電磁コイル93に印加する電圧として、電磁コイル93に相対的に高い電流I1を流すのに必要な相対的に高い電圧V1を適用する。 The first control described above by the energization control unit 220 is specifically the control shown in the following (1). (1) When an activation signal is input from the accepting unit 210, according to the rotation speed E of the compressor 100 and the discharge-side pressure of the compressor 100 (for example, the pressure of the high-pressure refrigerant gas G discharged from the compressor 100) P As a voltage to be applied to the electromagnetic coil 93, a relatively high voltage V1 necessary for flowing a relatively high current I1 through the electromagnetic coil 93 is applied.
 なお、コンプレッサ100は、起動の瞬間の回転数Eはゼロであるため、電磁クラッチ90の連結完了の状態でコンプレッサ100の回転数と対応関係のあるエンジンの回転数が通電制御部220に入力されて、通電制御部220が、入力されたエンジンの回転数に基づいてコンプレッサ100の回転数Eを算出するものとする。以下、第2の制御においても同様である。 Note that, since the rotation speed E at the moment of start-up of the compressor 100 is zero, the rotation speed of the engine corresponding to the rotation speed of the compressor 100 is input to the energization control unit 220 when the electromagnetic clutch 90 is connected. Thus, the energization control unit 220 calculates the rotation speed E of the compressor 100 based on the input engine rotation speed. Hereinafter, the same applies to the second control.
 つまり、第1の制御は、電磁コイル93に、相対的に高い電流I1を流すための相対的に高い一定の電圧V1を、起動時から連結完了後まで継続的に印加し続けた制御である。 That is, the first control is a control in which a relatively high constant voltage V1 for flowing a relatively high current I1 is continuously applied to the electromagnetic coil 93 from the start to the end of connection. .
 通電制御部220による上述した第2の制御は、具体的には、下記(2)に示す制御である。(2)受付部210から起動の信号が入力されると、起動時のコンプレッサ100の回転数E及びコンプレッサ100の吐出側圧力Pに応じて、電磁コイル93に印加する電圧として、電磁コイル93に相対的に低い電流であって、アーマチュア94の外リング94aをロータ92に連結させるのに十分な電流I2を流すのに必要な相対的に低い電圧V2(V1)を適用する。 The second control described above by the energization control unit 220 is specifically the control shown in the following (2). (2) When an activation signal is input from the reception unit 210, the voltage applied to the electromagnetic coil 93 is applied to the electromagnetic coil 93 according to the rotation speed E of the compressor 100 and the discharge-side pressure P of the compressor 100 at the time of activation. A relatively low voltage V2 (V1) is applied which is a relatively low current and is necessary to pass a current I2 sufficient to couple the outer ring 94a of the armature 94 to the rotor 92.
 第2の制御は、詳細には、電磁クラッチ90の起動から吸引完了(時間t1経過時)までは、電磁コイル93に、相対的に高い電流I1を流すための相対的に高い一定の電圧V1を印加する。この相対的に高い電圧V1は、第1の制御における電圧V1と同じ電圧である。 Specifically, the second control is a relatively high constant voltage V1 for causing a relatively high current I1 to flow through the electromagnetic coil 93 from the start of the electromagnetic clutch 90 to the completion of suction (when the time t1 has elapsed). Is applied. This relatively high voltage V1 is the same voltage as the voltage V1 in the first control.
 その後の吸引完了から連結完了(時間t2経過)までは、電磁コイル93に、最初の高い電流I1よりも低い電流であってアーマチュア94をロータ92に連結させるのに十分な電流I2を流すのに必要な相対的に低い電圧V2(<V1)を印加する。このとき、電磁コイル93に流れる電流I2は、第1の制御において、電磁コイル93に流れる電流I2よりも低い値となる。 From the completion of the subsequent suction to the completion of connection (time t2 elapses), the electromagnetic coil 93 is supplied with a current I2 that is lower than the initial high current I1 and sufficient to connect the armature 94 to the rotor 92. The required relatively low voltage V2 (<V1) is applied. At this time, the current I2 flowing through the electromagnetic coil 93 is lower than the current I2 flowing through the electromagnetic coil 93 in the first control.
 したがって、第2の制御による吸引完了から連結完了までの期間において電磁コイル93の発生する磁力は、第1の制御による吸引完了から連結完了までの期間において電磁コイル93の発生する磁力よりも低い磁力となる。この結果、図3,4に示すように、第2の制御による吸引完了から連結完了までの時間t2は、第1の制御による吸引完了から連結完了までの時間t2よりも長くなる。 Therefore, the magnetic force generated by the electromagnetic coil 93 during the period from the completion of the suction by the second control to the completion of the connection is lower than the magnetic force generated by the electromagnetic coil 93 during the period from the completion of the suction by the first control to the completion of the connection. It becomes. As a result, as shown in FIGS. 3 and 4, the time t2 from the completion of suction by the second control to the completion of connection is longer than the time t2 from the completion of suction by the first control to the completion of connection.
 さらに、第2の制御では、アーマチュア94とロータ92とが一体に回転する連結状態となった後は、電磁コイル93に印加する電圧Vを、相対的に高い電圧V3に切り替える。この電圧V3は、最初の相対的に高い電圧(第1の制御における電圧)V1と同じである。なお、連結完了の状態をその都度、正確に検出するのではなく、連結完了に至った時間t2を予め実験的に求め、さらに都度の誤差等を考慮して、予め実験的に求められた時間t2に誤差等を吸収しうる時間Δtを加えた時間(t2+Δt)を通電制御部220に記憶させておき、この時間(t2+Δt)が経過したときに連結完了したと推定して、電磁コイル93に印加する電圧VをV2からV3に切り替えるものとする。 Furthermore, in the second control, after the armature 94 and the rotor 92 are connected to rotate integrally, the voltage V applied to the electromagnetic coil 93 is switched to a relatively high voltage V3. This voltage V3 is the same as the first relatively high voltage (voltage in the first control) V1. In addition, instead of accurately detecting the connection completion state each time, the time t2 until the connection is completed is obtained experimentally in advance, and the time obtained experimentally in advance in consideration of each error and the like. A time (t2 + Δt) obtained by adding a time Δt that can absorb an error or the like to t2 is stored in the energization control unit 220, and it is estimated that the connection is completed when the time (t2 + Δt) elapses. The applied voltage V is switched from V2 to V3.
 図5は、通電制御部220が第1の制御と第2の制御とを切り替える、コンプレッサ100の回転数E及びコンプレッサ100の吐出側圧力Pを示す図である。通電制御部220には、起動時のコンプレッサ100の回転数E及びコンプレッサ100の吐出側圧力Pが入力されている。そして、通電制御部220は、これら入力されているコンプレッサ100の回転数E及びコンプレッサ100の吐出側圧力Pに応じて、図5に示す領域A,B,Cに対応して、第1の制御と第2の制御とを切り替える。 FIG. 5 is a diagram illustrating the rotational speed E of the compressor 100 and the discharge-side pressure P of the compressor 100 that the energization control unit 220 switches between the first control and the second control. The energization control unit 220 receives the rotation speed E of the compressor 100 and the discharge side pressure P of the compressor 100 at the time of activation. Then, the energization control unit 220 performs the first control corresponding to the regions A, B, and C shown in FIG. 5 according to the input rotation speed E of the compressor 100 and the discharge side pressure P of the compressor 100. And the second control.
 ここで、図5に示す領域Aは、コンプレッサ100の通常の使用領域であり、コンプレッサ100の動作が保証されている領域である。具体的には、コンプレッサ100の回転数E2から回転数E3(>E2)の範囲で、かつコンプレッサ100の吐出側圧力P1から吐出側圧力P3の範囲となる領域である。回転数E3は予め設定された回転数の一例であり、吐出側圧力P3は予め設定された圧力の一例である。この領域Aでは、通電制御部220は、第2の制御に切り替える。回転数E3は、エンジンの回転数に換算して例えば4000-5000[rpm]である。また、吐出側圧力P3は、例えば2[MPa]である。 Here, a region A shown in FIG. 5 is a normal use region of the compressor 100 and is a region where the operation of the compressor 100 is guaranteed. Specifically, this is a region in the range of the rotation speed E2 of the compressor 100 to the rotation speed E3 (> E2) and the range of the discharge side pressure P1 of the compressor 100 to the discharge side pressure P3. The rotation speed E3 is an example of a preset rotation speed, and the discharge side pressure P3 is an example of a preset pressure. In this area A, the energization control unit 220 switches to the second control. The rotational speed E3 is, for example, 4000-5000 [rpm] in terms of the rotational speed of the engine. Moreover, the discharge side pressure P3 is 2 [MPa], for example.
 また、図5に示す領域Bは、コンプレッサ100の作動限界の領域であり、一般的にはコンプレッサ100の耐久試験等で使用される領域で、通常の使用状態では、瞬間的に使用されることはあっても継続的に使用されることがない、コンプレッサ100にとって高負荷の領域にある。具体的には、コンプレッサ100の回転数E3よりも高い回転数の範囲と、コンプレッサ100の吐出側圧力P3よりも高い吐出側圧力の範囲となる領域とである。この領域Bでは、通電制御部220は、第1の制御に切り替える。なお、領域Bの上限となる回転数E5は、エンジンの回転数に換算して例えば8000-8500[rpm]である。また、領域Bの上限となる吐出側圧力P4は、例えば3-3.5[MPa]である。 A region B shown in FIG. 5 is an operation limit region of the compressor 100, and is generally used in an endurance test or the like of the compressor 100, and is used instantaneously in a normal use state. However, the compressor 100 is in a high-load region that is not continuously used. Specifically, there are a range of the rotational speed higher than the rotational speed E3 of the compressor 100 and a region where the discharge side pressure is higher than the discharge side pressure P3 of the compressor 100. In this region B, the energization control unit 220 switches to the first control. The rotation speed E5 that is the upper limit of the region B is, for example, 8000-8500 [rpm] in terms of the engine rotation speed. Further, the discharge side pressure P4 that is the upper limit of the region B is, for example, 3-3.5 [MPa].
 また、図5に示す領域Cは、コンプレッサ100の回転数が、エンジンが搭載された車両のアイドリング状態に対応したアイドリング領域であり、車両が停止している領域である。この領域Cは、コンプレッサ100の回転数のみで規定される領域であり、具体的には、コンプレッサ100の回転数E1以上回転数E2以下の範囲となる領域である。この領域Cでは、通電制御部220は、第1の制御に切り替える。なお、回転数E1から回転数E2は、エンジンの回転数に換算して例えば800-1000[rpm]である。 Further, a region C shown in FIG. 5 is an idling region where the rotational speed of the compressor 100 corresponds to the idling state of the vehicle on which the engine is mounted, and the vehicle is stopped. This region C is a region defined only by the rotational speed of the compressor 100, and specifically, is a region that is in a range of the rotational speed E1 to the rotational speed E2 of the compressor 100. In this region C, the energization control unit 220 switches to the first control. The rotation speed E1 to the rotation speed E2 is, for example, 800-1000 [rpm] in terms of the engine rotation speed.
 以上のように構成された実施形態のコンプレッサ100の電磁クラッチ90に対する制御装置200によれば、コンプレッサ100の回転数E及びコンプレッサ100の吐出側圧力Pに応じて規定される通常の使用領域(図5の領域A)では、通常の使用領域以外の領域に比べて、吸引完了から連結完了までの期間、電磁コイル93に印加する電圧V2を低い電圧に設定する(図4参照)。したがって、通常の使用領域では、通常の使用領域以外の領域に比べて、吸引完了から連結完了までの期間が長くなり、動力源となるエンジンに、コンプレッサ100の起動時の負荷が急激に掛るのを抑制することができる。 According to the control device 200 for the electromagnetic clutch 90 of the compressor 100 according to the embodiment configured as described above, the normal use region (FIG. 5) defined according to the rotational speed E of the compressor 100 and the discharge side pressure P of the compressor 100. In the area A) of FIG. 5, the voltage V2 applied to the electromagnetic coil 93 is set to a lower voltage during the period from the completion of suction to the completion of connection compared to the areas other than the normal use area (see FIG. 4). Accordingly, in the normal use region, the period from the completion of suction to the completion of connection is longer than in the region other than the normal use region, and the engine at the time of starting the compressor 100 is abruptly applied to the engine serving as the power source. Can be suppressed.
 また、実施形態のコンプレッサ100の電磁クラッチ90に対する制御装置200によれば、コンプレッサ100の起動時の回転数E及び吐出側圧力Pに応じて規定される作動限界の領域(図5の領域B)とコンプレッサ100の起動時のアイドリング領域(図5の領域C)とでは、吸引完了から連結完了までの期間も、起動時に電磁コイル93に印加した相対的に高い電圧V1を維持する(図3参照)。したがって、作動限界の領域とアイドリング領域とでは、通常の使用領域のように、吸引完了から連結完了までの期間が長くなることがない。 Further, according to the control device 200 for the electromagnetic clutch 90 of the compressor 100 according to the embodiment, the operating limit region defined by the rotational speed E and the discharge side pressure P when the compressor 100 is started (region B in FIG. 5). In the idling region (region C in FIG. 5) at the start of the compressor 100, the relatively high voltage V1 applied to the electromagnetic coil 93 at the start is maintained during the period from the completion of suction to the completion of connection (see FIG. 3). ). Therefore, in the operation limit region and the idling region, the period from the completion of suction to the completion of connection does not become longer as in the normal use region.
 よって、作動限界の領域とアイドリング領域とでは、吸引完了から連結完了までの期間において電磁クラッチ90のアーマチュア94とロータ92とが相対的に滑っている状態を抑制することができ、通常の使用領域よりも電磁クラッチ90の摩耗を抑制することができる。 Therefore, in the operation limit region and the idling region, it is possible to suppress the state in which the armature 94 of the electromagnetic clutch 90 and the rotor 92 are relatively slipping during the period from the completion of the suction to the completion of the connection. Thus, the wear of the electromagnetic clutch 90 can be suppressed.
 ここで、作動限界の領域は、コンプレッサ100の回転数が予め設定された回転数E3よりも高い領域であったり、コンプレッサ100の吐出側圧力が予め設定された吐出側圧力P3よりも高い領域であったりして、通常の使用領域では無いため、仮に使用されたとしても、その使用は一時的であって、通常は一定以上の時間継続して使用されることは無い。このため、作動限界の領域で、動力源となるエンジンにコンプレッサ100の起動時の負荷が急激に掛かったとしても、負荷が急激に掛る状況が繰り返し生じる事態は無い。よって、作動限界の領域では、電磁クラッチ90の摩耗を抑制することを優先した方が実用的である。 Here, the operation limit region is a region where the rotational speed of the compressor 100 is higher than the preset rotational speed E3, or a region where the discharge side pressure of the compressor 100 is higher than the preset discharge side pressure P3. Since it is not a normal use area, even if it is temporarily used, its use is temporary, and normally it is not used continuously for a certain time or more. For this reason, even if the load at the start of the compressor 100 is suddenly applied to the engine as the power source in the region of the operation limit, there is no situation in which the load is suddenly repeated. Therefore, it is more practical to give priority to suppressing the wear of the electromagnetic clutch 90 in the operating limit region.
 また、アイドリング領域は車両が停止している状態であるため、そのアイドリング領域で、動力源となるエンジンにコンプレッサ100の起動時の負荷が急激に掛かったとしても、その急激な負荷を車両の走行状態の変化として運転者に感じさせることがない。よって、アイドリング領域では、電磁クラッチ90の摩耗を抑制することを優先した方が実用的である。なお、アイドリング領域であることは、上述したように、通電制御部220が、コンプレッサ100の回転数Eに基づいて判定してもよいが、車両の速度(速度ゼロ)に基づいて判定してもよい。この場合、車速センサで検出された車速の信号を通電制御部220に入力すればよい。 Further, since the vehicle is stopped in the idling region, even if the engine at the start of the compressor 100 is suddenly applied to the engine serving as the power source in the idling region, the rapid load is applied to the engine. The driver does not feel as a change of state. Therefore, in the idling region, it is more practical to give priority to suppressing wear of the electromagnetic clutch 90. Note that the idling region may be determined based on the rotation speed E of the compressor 100 as described above, but may be determined based on the vehicle speed (zero speed). Good. In this case, a vehicle speed signal detected by the vehicle speed sensor may be input to the energization control unit 220.
 このように、本実施形態の制御装置200は、通電制御部220が、回転数E及び吐出側圧力Pに応じて、電磁コイル93に印加する電圧を相対的に高い電圧と相対的に低い電圧とに切り替えるため、回転数E及び吐出側圧力Pに対応するコンプレッサ100の状態に応じた適切な起動を行うことができる。 As described above, in the control device 200 of the present embodiment, the energization control unit 220 applies a relatively high voltage and a relatively low voltage to the electromagnetic coil 93 according to the rotation speed E and the discharge side pressure P. Therefore, it is possible to perform appropriate activation according to the state of the compressor 100 corresponding to the rotation speed E and the discharge side pressure P.
 なお、本実施形態の制御装置200は、コンプレッサ100の回転数Eとコンプレッサ100の吐出側圧力Pとの両方に応じて、通電制御部220が第1の制御と第2の制御とを切り替えるが、制御装置200は、コンプレッサ100の回転数Eのみに応じて、通電制御部220が第1の制御と第2の制御とを切り替えてもよいし、又はコンプレッサ100の吐出側圧力Pのみに応じて、通電制御部220が第1の制御と第2の制御とを切り替えてもよい。 In the control device 200 of the present embodiment, the energization control unit 220 switches between the first control and the second control according to both the rotation speed E of the compressor 100 and the discharge side pressure P of the compressor 100. In the control device 200, the energization control unit 220 may switch between the first control and the second control according to only the rotational speed E of the compressor 100, or only according to the discharge side pressure P of the compressor 100. Thus, the energization control unit 220 may switch between the first control and the second control.
 本実施形態の制御装置200は、コンプレッサ100の回転数Eとコンプレッサ100の吐出側圧力Pとの両方に応じて、通電制御部220が第1の制御と第2の制御とを切り替えるが、制御装置200は、コンプレッサ100の回転数Eのみに応じて、通電制御部220が第1の制御と第2の制御とを切り替えてもよいし、又はコンプレッサ100の吐出側圧力Pのみに応じて、通電制御部220が第1の制御と第2の制御とを切り替えてもよく、この場合も、上述した実施形態と同様の作用、効果を得ることができる。 In the control device 200 of the present embodiment, the energization control unit 220 switches between the first control and the second control according to both the rotational speed E of the compressor 100 and the discharge side pressure P of the compressor 100. In the apparatus 200, the energization control unit 220 may switch between the first control and the second control according to only the rotational speed E of the compressor 100, or according to only the discharge side pressure P of the compressor 100, The energization control unit 220 may switch between the first control and the second control, and in this case as well, the same operations and effects as in the above-described embodiment can be obtained.
 本実施形態の制御装置200は、通電制御部220が、第2の制御で、アーマチュア94とロータ92との連結完了の後、電磁コイル93に印加する電圧Vを、連結完了前に印加していた低い電圧V2よりも高い電圧V3(=V1)に切り替える。したがって、電磁コイル93は、アーマチュア94に作用する磁力を、連結完了の前の期間の磁力よりも強くするため、エンジンにより回転しているロータ92の回転変動等でトルク変動が生じても、アーマチュア94とロータ92との間で滑りが発生するのを抑制又は防止することができる。 In the control device 200 of the present embodiment, the energization control unit 220 applies the voltage V applied to the electromagnetic coil 93 after the connection between the armature 94 and the rotor 92 is completed in the second control, before the connection is completed. The voltage is switched to a voltage V3 (= V1) higher than the lower voltage V2. Therefore, since the electromagnetic coil 93 makes the magnetic force acting on the armature 94 stronger than the magnetic force in the period before the completion of the connection, even if torque fluctuation occurs due to rotational fluctuation of the rotor 92 rotating by the engine, the armature 94 It is possible to suppress or prevent the occurrence of slipping between 94 and the rotor 92.
 上述した実施形態において、アーマチュア94の吸引完了したタイミングは、電磁コイル93に流れる電流をセンサ等で監視することにより検出することができる。すなわち、アーマチュア94の吸引完了したタイミングでは、上述したように電磁コイル93を流れる電流値が最小となる。したがって、この電流値が最小となるタイミングを電流センサ等何らかのセンサで検出することにより、アーマチュア94の吸引完了したタイミングを厳密に検出することができる。 In the embodiment described above, the timing at which the armature 94 is completely sucked can be detected by monitoring the current flowing through the electromagnetic coil 93 with a sensor or the like. That is, at the timing when the armature 94 is completely sucked, the value of the current flowing through the electromagnetic coil 93 is minimized as described above. Therefore, the timing at which the armature 94 is completely sucked can be strictly detected by detecting the timing at which the current value is minimized by a sensor such as a current sensor.
 なお、電磁コイル93を流れる電流値を監視することなく、一定の時間経過により、アーマチュア94の吸引完了したタイミングとみなしてもよい。つまり、特定の型式のコンプレッサは、アーマチュアとロータとの隙間の寸法や、印加される電圧の第1の電圧値は常に一定であるため、予め実験等により、電磁コイルを流れる電流値が最小となるタイミングを予め実験等で求めておくことができる。 In addition, you may consider that the attraction | suction completion of the armature 94 is completed by progress of fixed time, without monitoring the electric current value which flows through the electromagnetic coil 93. FIG. That is, in a specific type of compressor, the dimension of the gap between the armature and the rotor and the first voltage value of the applied voltage are always constant. Can be obtained in advance through experiments or the like.
 したがって、電磁コイルを流れる電流値が最小となるタイミングを、電磁クラッチの起動からの経過時間に対応づけることができる。そのように求められた、電磁クラッチの起動からの経過時間を通電制御部220が記憶しておき、電磁クラッチが起動してから、記憶された経過時間が経過した時点を、通電制御部220が備えたタイマによる時間の計測で判定することにより、センサを用いることなく、その記憶された経過時間が経過した時点を、アーマチュア94の吸引完了したタイミングとして設定することができる。 Therefore, the timing at which the current value flowing through the electromagnetic coil becomes minimum can be associated with the elapsed time from the start of the electromagnetic clutch. The energization control unit 220 stores the elapsed time from the start of the electromagnetic clutch so determined, and the energization control unit 220 indicates the time when the stored elapsed time has elapsed since the start of the electromagnetic clutch. By making the determination by measuring the time with the provided timer, the time when the stored elapsed time has passed can be set as the timing when the armature 94 has been sucked without using the sensor.
 そして、そのようにして得られたタイミングを以て、電磁コイル93に印加する電圧の掛け方を切り替えるタイミングとすればよい。 The timing obtained in this manner may be used as the timing for switching the manner in which the voltage applied to the electromagnetic coil 93 is applied.
 本実施形態のコンプレッサ100は、ベーンロータリ形式の気体圧縮機であるが、本発明に係る制御装置が制御の対象とする気体圧縮機は、電磁クラッチを備えた気体圧縮機であればよく、ベーンロータリ形式以外の形式の気体圧縮機を制御の対象とするものでもよい。したがって、ベーンロータリ形式以外の斜板式の気体圧縮機、スクロール形式の気体圧縮機等を制御の対象とする制御装置も本発明に係る制御装置が適用される。 The compressor 100 of the present embodiment is a vane rotary type gas compressor, but the gas compressor to be controlled by the control device according to the present invention may be a gas compressor provided with an electromagnetic clutch. A gas compressor other than the rotary type may be controlled. Therefore, the control device according to the present invention is also applied to a control device that controls a swash plate type gas compressor, a scroll type gas compressor, or the like other than the vane rotary type.
関連出願の相互参照Cross-reference of related applications
 本出願は、2017年6月15日に日本国特許庁に出願された特願2017-117519に基づいて優先権を主張し、その全ての開示は完全に本明細書で参照により組み込まれる。 This application claims priority based on Japanese Patent Application No. 2017-117519 filed with the Japan Patent Office on June 15, 2017, the entire disclosure of which is fully incorporated herein by reference.

Claims (5)

  1.  電磁コイル、ロータ、及び前記電磁コイルへの通電により前記ロータに接し、前記電磁コイルへの通電を停止することにより前記ロータから離れるアーマチュアを有する、気体圧縮機における電磁クラッチの前記電磁コイルに電力を供給する電力供給部と、
     前記電磁コイルに前記電力を供給する起動の信号を受け付ける受付部と、
     前記電磁コイルに供給する電力を制御する通電制御部と、を備え、
     前記通電制御部は、前記受付部から前記信号が入力されると、起動時の気体圧縮機の回転数及び吐出側圧力の少なくとも一方に応じて、前記電磁コイルに印加する電圧として、(1)前記電磁コイルに相対的に高い電流を流すのに必要な相対的に高い電圧を適用する第1の制御と、(2)前記高い電流よりも低い電流であって前記アーマチュアを前記ロータに連結させるのに十分な電流を流すのに必要な、前記高い電圧よりも低い電圧を適用する第2の制御と、を切り替える、気体圧縮機の電磁クラッチに対する制御装置。
    An electric power is supplied to the electromagnetic coil of the electromagnetic clutch in the gas compressor having an armature that contacts the rotor by energizing the electromagnetic coil, the rotor, and the electromagnetic coil, and has an armature separated from the rotor by stopping the energization to the electromagnetic coil. A power supply unit to supply;
    A reception unit that receives an activation signal for supplying the electric power to the electromagnetic coil;
    An energization control unit that controls electric power supplied to the electromagnetic coil,
    When the signal is input from the reception unit, the energization control unit is configured as (1) a voltage to be applied to the electromagnetic coil according to at least one of the rotational speed of the gas compressor and the discharge side pressure at the time of activation. A first control that applies a relatively high voltage required to cause a relatively high current to flow through the electromagnetic coil; and (2) a current that is lower than the high current and connects the armature to the rotor. A control device for the electromagnetic clutch of the gas compressor, which switches between the second control that applies a voltage lower than the high voltage, which is necessary for flowing a sufficient current.
  2.  前記第2の制御は、前記アーマチュアと前記ロータとが一体に回転する連結状態となった後は、前記電磁コイルに印加する電圧を、前記第1の制御における前記高い電圧に切り替える請求項1に記載の、気体圧縮機の電磁クラッチに対する制御装置。 The said 2nd control switches the voltage applied to the said electromagnetic coil to the said high voltage in the said 1st control after it will be in the connection state which the said armature and the said rotor rotate integrally. The control apparatus with respect to the electromagnetic clutch of a gas compressor of description.
  3.  前記通電制御部は、前記吐出側圧力が予め設定された圧力よりも高いときは前記第1の制御を行い、前記吐出側圧力が予め設定された圧力よりも低いときは前記第2の制御を行う請求項1又は2に記載の、気体圧縮機の電磁クラッチに対する制御装置。 The energization control unit performs the first control when the discharge side pressure is higher than a preset pressure, and performs the second control when the discharge side pressure is lower than a preset pressure. The control apparatus with respect to the electromagnetic clutch of the gas compressor of Claim 1 or 2 to perform.
  4.  前記通電制御部は、前記回転数が予め設定された回転数よりも高いときは前記第1の制御を行い、前記回転数が予め設定された回転数よりも低いときは前記第2の制御を行う請求項1又は2に記載の、気体圧縮機の電磁クラッチに対する制御装置。 The energization control unit performs the first control when the rotational speed is higher than a preset rotational speed, and performs the second control when the rotational speed is lower than the preset rotational speed. The control apparatus with respect to the electromagnetic clutch of the gas compressor of Claim 1 or 2 to perform.
  5.  前記通電制御部は、前記回転数が、前記気体圧縮機が搭載された車両のアイドリング状態に対応した回転数の範囲では前記第1の制御を行う請求項1又は2に記載の、気体圧縮機の電磁クラッチに対する制御装置。 3. The gas compressor according to claim 1, wherein the energization control unit performs the first control in a range of the rotation speed corresponding to an idling state of a vehicle on which the gas compressor is mounted. Control device for electromagnetic clutch.
PCT/JP2018/022151 2017-06-15 2018-06-11 Control device for electromagnetic clutch of gas compression machine WO2018230484A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017117519A JP2019002340A (en) 2017-06-15 2017-06-15 Controller for electromagnetic clutch of gas compressor
JP2017-117519 2017-06-15

Publications (1)

Publication Number Publication Date
WO2018230484A1 true WO2018230484A1 (en) 2018-12-20

Family

ID=64659889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022151 WO2018230484A1 (en) 2017-06-15 2018-06-11 Control device for electromagnetic clutch of gas compression machine

Country Status (2)

Country Link
JP (1) JP2019002340A (en)
WO (1) WO2018230484A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11300165B2 (en) * 2017-11-28 2022-04-12 Dana Graziano S.R.L. Electromagnetically-operated coupling device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5888027U (en) * 1981-12-09 1983-06-15 厚木自動車部品株式会社 Control device for electromagnetic clutch for car cooler
JPH0668295B2 (en) * 1984-02-17 1994-08-31 ダナ・コーポレーション Device and method for controlling winding of electromagnetic coupling
JPH07286632A (en) * 1994-04-18 1995-10-31 Tochigi Fuji Ind Co Ltd Electromagnetic clutch and differential device
JP2002250293A (en) * 2001-02-21 2002-09-06 Seiko Instruments Inc Gas compressor
JP2003240025A (en) * 2002-02-19 2003-08-27 Sanden Corp Power transmission controller

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5888027U (en) * 1981-12-09 1983-06-15 厚木自動車部品株式会社 Control device for electromagnetic clutch for car cooler
JPH0668295B2 (en) * 1984-02-17 1994-08-31 ダナ・コーポレーション Device and method for controlling winding of electromagnetic coupling
JPH07286632A (en) * 1994-04-18 1995-10-31 Tochigi Fuji Ind Co Ltd Electromagnetic clutch and differential device
JP2002250293A (en) * 2001-02-21 2002-09-06 Seiko Instruments Inc Gas compressor
JP2003240025A (en) * 2002-02-19 2003-08-27 Sanden Corp Power transmission controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11300165B2 (en) * 2017-11-28 2022-04-12 Dana Graziano S.R.L. Electromagnetically-operated coupling device

Also Published As

Publication number Publication date
JP2019002340A (en) 2019-01-10

Similar Documents

Publication Publication Date Title
JP2000265949A (en) Variable capacity compressor
US9022748B2 (en) Screw compressor
WO2014156062A1 (en) Clutch mechanism
JP2000199479A (en) Variable capacity compressor
US20080058148A1 (en) Wheel-And-Disc Drive
US20100307884A1 (en) Electromagnetic clutch
WO2018230484A1 (en) Control device for electromagnetic clutch of gas compression machine
WO2001073307A1 (en) Power transmission mechanism
WO2018088343A1 (en) Control device for electromagnetic clutch in gas compressor
JP5913889B2 (en) Electromagnetic clutch and compressor equipped with electromagnetic clutch
JP2019002342A (en) Controller for electromagnetic clutch of gas compressor
EP1039164A2 (en) Method of controlling electromagnetic clutch and compressor system
WO2018230485A1 (en) Control device for electromagnetic clutch of gas compression machine
CN110073123B (en) Power transmission device
JP2019002341A (en) Engine control device
JP2018080830A (en) Control device to electromagnetic clutch of gas compressor
JP2004278316A (en) Control device of hybrid compressor
JP6373051B2 (en) Electromagnetic clutch and gas compressor
JP2008014435A (en) Gas compressor
WO2018110168A1 (en) Motive power transmission device
JP6465718B2 (en) Control device for gas compressor
JP2006250436A (en) Engine-driven heat pump
JP2018087519A (en) Scroll compressor
JP2020106110A (en) Torque limiter structure of power transmission mechanism, and compressor for on-vehicle air conditioning
JP2018096508A (en) Control device for electromagnetic clutch of gas compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18818313

Country of ref document: EP

Kind code of ref document: A1