WO2018230301A1 - Epitaxial wafer production method - Google Patents

Epitaxial wafer production method Download PDF

Info

Publication number
WO2018230301A1
WO2018230301A1 PCT/JP2018/020091 JP2018020091W WO2018230301A1 WO 2018230301 A1 WO2018230301 A1 WO 2018230301A1 JP 2018020091 W JP2018020091 W JP 2018020091W WO 2018230301 A1 WO2018230301 A1 WO 2018230301A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
gas
epitaxial
atomic layer
oxygen
Prior art date
Application number
PCT/JP2018/020091
Other languages
French (fr)
Japanese (ja)
Inventor
大槻 剛
康 水澤
鈴木 克佳
石崎 順也
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to KR1020197031426A priority Critical patent/KR102482578B1/en
Priority to CN201880034863.7A priority patent/CN110678964A/en
Publication of WO2018230301A1 publication Critical patent/WO2018230301A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/20Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/02444Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/02447Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/02452Group 14 semiconducting materials including tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02499Monolayers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02634Homoepitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections

Definitions

  • the present invention relates to a method for manufacturing an epitaxial wafer.
  • a silicon substrate on which a semiconductor element such as a solid-state imaging element or other transistor is formed is required to have a function of gettering elements that detract from element characteristics such as heavy metals.
  • gettering there is a method of forming a polycrystalline silicon (Poly-Si) layer on the back of the silicon substrate, forming a layer damaged by blasting, utilizing the high-concentration boron of the silicon substrate, Various methods have been proposed and put into practical use. In gettering by oxygen precipitation, gettering is performed by incorporating a metal having a large ionization tendency (small electronegativity) with respect to oxygen having a large electronegativity.
  • proximity gettering in which a gettering layer is formed in the vicinity of the active region of the element has been proposed.
  • a substrate obtained by epitaxially growing silicon on a substrate into which carbon is ion-implanted.
  • the element needs to diffuse to the gettering site (the energy of the entire system is reduced by bonding or clustering at the site rather than the metal being present as a single element).
  • Proximity gettering methods have been proposed in consideration of the fact that the diffusion coefficient of metal elements contained in silicon varies from element to element, and that metals cannot diffuse to the gettering site due to recent process low temperatures.
  • oxygen can be used for proximity gettering
  • a silicon substrate having a very powerful gettering layer is considered.
  • an epitaxial wafer having an oxygen atomic layer in the middle of an epitaxial layer can reliably getter metal impurities even in recent low-temperature processes.
  • the gettering of metal impurities has been mainly described.
  • an effect of oxygen an effect of preventing autodoping during epitaxial growth is known by forming a CVD oxide film on the back surface.
  • group IV group 14
  • gettering effect due to carbon application to optical devices in combination with silicon oxide film in Ge, Sn grows Ge etc. on silicon
  • other than group IV, other than group IV various effects of combinations of silicon and other elements such as improvement of strength by promoting precipitation are expected and applied in nitrogen.
  • Patent Document 1 is a method of forming a thin layer of oxygen on silicon and further growing silicon. This method is based on ALD (“Atomic layer deposition”, “Atomic layer deposition method”).
  • ALD is a method to adsorb molecules containing target atoms and then dissociate and desorb unnecessary atoms (molecules) in the molecule. It uses surface bonding, has high accuracy, has good reaction controllability, and is widely used. Although it is used, there is a weak point that impurities that are unnecessary and unintentional for forming an atomic layer are generated by eliminating unnecessary molecules. Actually, since the ALD method uses molecules containing carbon to form an oxygen layer, there is a concern about the influence of carbon (unnecessary carbon).
  • Patent Document 2 is a technology related to a reactor for realizing a substrate similar to that of Patent Document 1, but this assumes MOVPE (metal organic chemical vapor deposition) as a source gas / method.
  • MOVPE metal organic chemical vapor deposition
  • An organic metal is used to be MOVPE.
  • reaction control is easy, there is a concern of unnecessary impurity metals when forming the oxygen atomic layer. In particular, there is a concern about metal contamination when applied to the silicon substrate itself.
  • Patent Documents 1 and 2 are performed based on respective techniques of ALD or MOVPE.
  • Patent Documents 3 and 4 show that by introducing a plurality of oxygen atom layers into a silicon substrate, device characteristics (mobility) can be improved, but no specific growth method is mentioned. Absent.
  • Patent Document 5 describes delta doping, which is disclosed as a basic technique for embedding a dopant in a linear shape, but it is considered difficult to spread the entire surface of the wafer.
  • an object of the present invention is to provide an epitaxial wafer manufacturing method capable of stably introducing an atomic layer such as oxygen into an epitaxial layer.
  • the present invention provides an epitaxial wafer manufacturing method for forming an epitaxial layer on a silicon substrate, wherein oxygen, carbon, nitrogen, germanium, tin, boron and phosphorus are contained in the epitaxial layer.
  • An epitaxial wafer manufacturing method is provided.
  • an atomic layer made of atoms of elements such as oxygen can be stably formed in the epitaxial layer.
  • the formation of an epitaxial layer in contact with an atomic layer made of atoms of elements such as oxygen is performed using SiH 4 gas having no chlorine atom in the molecule, etching of the atomic layer such as oxygen can be prevented.
  • the atomic layer can be formed as a single atomic layer.
  • an atomic layer of oxygen or the like can be formed as a single atomic layer as described above. Even when such a single atomic layer is formed, the single atomic layer can be stably formed by the method of the present invention.
  • a region in contact with the atomic layer and at least 5 nm from the atomic layer is formed using SiH 4 gas.
  • the atomic layer such as oxygen is formed more stably. be able to.
  • a plurality of the atomic layers can be formed in the epitaxial layer.
  • a plurality of atomic layers such as oxygen can be formed in the epitaxial layer. Moreover, such a structure can be formed stably.
  • a region other than a region formed using the SiH 4 gas among the regions of the epitaxial layer is formed using a SiH 2 Cl 2 gas or a SiHCl 3 gas.
  • the epitaxial layer by forming with SiH 2 Cl 2 gas or SiHCl 3 gas other than the region formed by using a SiH 4 gas, the epitaxial layer in areas away from the atoms of oxygen, such as layer It can be formed thick. As a result, the entire epitaxial layer can be formed in a shorter time, which contributes to productivity and cost.
  • the atomic layer is formed by oxygen gas when forming an oxygen atomic layer, CH 4 gas when forming a carbon atomic layer, NH 3 gas when forming a nitrogen atomic layer, and a germanium atomic layer.
  • oxygen gas when forming an oxygen atomic layer
  • CH 4 gas when forming a carbon atomic layer
  • NH 3 gas when forming a nitrogen atomic layer
  • germanium atomic layer is formed by oxygen gas when forming an oxygen atomic layer
  • an organometallic gas containing Ge is formed
  • an organometallic gas containing Sn is formed when a tin atomic layer is formed
  • B 2 H 6 gas is formed when a boron atomic layer is formed
  • a phosphorus atomic layer is formed.
  • PH 3 gas can be used.
  • An atomic layer such as oxygen can be formed by using these gases.
  • an atomic layer such as oxygen can be stably introduced into the epitaxial layer in the silicon epitaxial wafer employed in the advanced device.
  • a proximity gettering substrate having a proximity gettering effect by an oxygen atomic layer and a functional substrate having a composite function using a group IV element, nitrogen, a dopant, and the like.
  • the present invention is an epitaxial wafer manufacturing method for forming an epitaxial layer on a silicon substrate.
  • one element selected from the group consisting of oxygen, carbon, nitrogen, germanium, tin, boron and phosphorus is used.
  • the epitaxial layer in contact with the atomic layer is further formed using SiH 4 gas.
  • an atomic layer formed of atoms of one element among oxygen, carbon, nitrogen, germanium, tin, boron and phosphorus formed in the epitaxial layer is simply referred to as “atomic layer”.
  • FIG. 1 shows a schematic cross-sectional view of an epitaxial wafer 100 having an oxygen atomic layer, which can be manufactured by the epitaxial wafer manufacturing method of the present invention.
  • an epitaxial layer 50 is formed on a silicon substrate 10, and an atomic layer (oxygen atomic layer) 31 made of oxygen atoms and having a thickness of 5 nm or less is formed in the epitaxial layer 50.
  • a silicon epitaxial layer 21 made of silicon is formed between the silicon substrate 10 and the oxygen atomic layer 31.
  • An oxygen atomic layer 31 is formed on the silicon epitaxial layer 21, and a silicon epitaxial layer 22 is formed on the oxygen atomic layer 31.
  • an epitaxial layer 50 including a silicon epitaxial layer 21, an oxygen atom layer 31, and a silicon epitaxial layer 22 is formed.
  • the manufacturing method for forming the oxygen atomic layer 31 is as follows. Epitaxial growth is performed on the silicon substrate 10 to first form a silicon epitaxial layer 21. An oxygen atomic layer 31 is grown on the silicon epitaxial layer 21. Further, silicon is epitaxially grown on the oxygen atom layer 31 to form the silicon epitaxial layer 22. Thereby, the entire epitaxial layer 50 having the oxygen atomic layer 31 is formed, and the epitaxial wafer 100 is formed.
  • FIG. 1 there is one oxygen atom layer, but it is also possible to repeat the oxygen atom layer and silicon epitaxial growth to form a plurality of oxygen atom layers.
  • An epitaxial wafer having a plurality of oxygen atom layers formed in the epitaxial layer is shown in FIG. That is, when the epitaxial wafer 200 shown in FIG. 2 is manufactured, it can be manufactured as follows. First, the silicon epitaxial layer 21 is formed on the silicon substrate 10. An oxygen atom layer 31 is formed on the silicon epitaxial layer 21. Further, the silicon epitaxial layer 22 is formed on the oxygen atom layer 31. The process up to this point is the same as that of FIG. 1, but in the aspect of FIG.
  • the oxygen atom layer 32, silicon epitaxial layer 23, oxygen atom layer 33, silicon epitaxial layer 24, oxygen atom layer 34, silicon epitaxial layer 25 are further provided.
  • an oxygen atom layer 35 and a silicon epitaxial layer 26 are formed.
  • the epitaxial layer 60 in which the structure 40 in which five sets of the silicon epitaxial layer and the oxygen atom layer are repeated is formed can be formed.
  • an epitaxial wafer having a better gettering effect can be obtained.
  • it is sufficient that the oxygen atom layer is 10 layers at the maximum.
  • SiH 4 gas containing no chlorine atom is used as a raw material for silicon epitaxial growth when an epitaxial layer in contact with the atomic layer is formed. This is because chlorine atoms are included in the epitaxial growth gas, so that even if an oxygen atomic layer is formed, the gas is etched by chlorine.
  • the oxygen atomic layer needs to be 5 nm or less, and is preferably as thin as possible, and it is preferable to introduce an amount sufficient to adsorb a single atom. If the oxygen atomic layer is too thick, the silicon layer is oxidized, and the second silicon epitaxial layer cannot be deposited on the oxygen atomic layer. Precisely, even if silicon epitaxial growth is performed on such an oxygen atomic layer, it is not epitaxial growth but becomes amorphous silicon or is polycrystallized.
  • the oxygen atomic layer only needs to be able to deposit one Langmuir layer using the principle of isothermal adsorption.
  • One skilled in the art can deposit one Langmuir layer. Although it depends on the chamber size of the furnace, it can be solved by flowing an oxygen gas of about 10 L / min (for example, 5 L / min to 15 L / min). Further, for example, the pressure and time conditions can be about 1 ⁇ 10 ⁇ 8 Torr (1.33 ⁇ 10 ⁇ 6 Pa) and about 100 seconds. It can be 10 ⁇ 500 ⁇ 6 Torr or more and 1 ⁇ 10 ⁇ 9 Torr or less and 10 to 500 seconds.
  • the temperature can be in a range not exceeding the epitaxial growth temperature.
  • the growth rate is preferably 0.005 nm / second or less.
  • the manufacturing method of an epitaxial wafer is demonstrated more concretely.
  • SiH 4 gas not containing chlorine as a source gas
  • SiH 4 gas is introduced as a source gas from a position at least 5 nm away from the position where the oxygen atomic layer 31 is formed, and the silicon epitaxial layer 21 is grown with a gas not containing chlorine.
  • oxygen gas is introduced to grow an oxygen atomic layer 31 having a thickness of 5 nm or less.
  • SiH 4 gas is introduced as a raw material gas to a position at least 5 nm away from the position where the oxygen atomic layer 31 is formed, and the silicon epitaxial layer 22 is grown with a gas not containing chlorine.
  • FIG. 3 shows the supply image of each gas.
  • the oxygen atomic layer is preferably formed as a single atomic layer.
  • Oxygen can be grown in a single atom (delta dope) by setting conditions so that 1 Langmuir (isothermal monoatomic adsorption) amount is introduced so that oxygen is in an atomic layer adsorption.
  • the formation of the epitaxial layer in contact with the oxygen atomic layer 31 may be performed using SiH 4 gas.
  • a region other than a region formed using SiH 4 gas can be formed using SiH 2 Cl 2 gas or SiHCl 3 gas.
  • the oxygen atomic layer 31 is completely covered with SiH 4 , so that the epitaxial layer in the region separated by more than 5 nm from the oxygen atomic layer is formed.
  • SiH 4 containing no chlorine gas is formed, may be used SiH 2 Cl 2 or SiHCl 3.
  • the epitaxial layer When the epitaxial layer is formed thick in a region away from the oxygen atomic layer, the epitaxial layer can be formed in a shorter time by using SiH 2 Cl 2 or SiHCl 3 . Since the growth rate when SiH 4 gas is used is slow, for example, when an epitaxial layer having a thickness of 100 nm or more is formed, it is preferable to switch to SiH 2 Cl 2 or SiHCl 3 in the middle. Thereby, high productivity and low cost can be achieved.
  • the growth temperature of the silicon epitaxial layer is preferably in the range of 500 ° C. or higher and 800 ° C. or lower.
  • a silicon epitaxial wafer having an oxygen atomic layer manufactured by the method of the present invention can be expected to have a proximity gettering effect and an improvement in device yield.
  • the epitaxial wafer 100 having the above-described epitaxial layer 50 having an oxygen atomic layer is used except that a carbon atomic layer is employed as the atomic layer 31 instead of the oxygen atomic layer. The same.
  • a silicon epitaxial wafer having a carbon atom layer manufactured by the method of the present invention can be expected to have a proximity gettering effect and an improvement in device yield. Furthermore, since carbon has a smaller atomic radius than silicon, it has the effect of distorting the silicon layer grown on the carbon atomic layer, and can also be expected to improve the carrier mobility of the device.
  • the epitaxial wafer 100 having the above-described epitaxial layer 50 having the oxygen atomic layer, except that a nitrogen atomic layer is employed as the atomic layer 31 instead of the oxygen atomic layer, The same.
  • a gas not containing chlorine atoms but containing nitrogen atoms is introduced to grow a nitrogen atom layer 31 having a thickness of 5 nm or less.
  • NH 3 gas ammonia gas
  • epitaxial growth is performed using SiH 4 gas as a raw material.
  • the supply amount (growth recipe) of each gas is the same as that of oxygen gas. That is, during the growth of the silicon epitaxial layer, NH 3 gas is introduced for a short time, that is, delta doping is performed.
  • an epitaxial wafer having improved silicon substrate strength by promoting oxygen precipitation by nitrogen is obtained.
  • the nitrogen atom layer is 10 layers at the maximum.
  • the effect of stopping the slip of the silicon layer grown on the atomic layer can also be expected by the nitrogen atomic layer.
  • the epitaxial wafer 100 having the epitaxial layer 50 having the oxygen atomic layer described above is used except that a germanium atomic layer is employed as the atomic layer 31 instead of the oxygen atomic layer. The same.
  • epitaxial growth using SiH 4 gas as a raw material is performed.
  • the supply amount (growth recipe) of each gas is the same as that of oxygen gas. That is, during the growth of the silicon epitaxial layer, tetramethyl germanium gas is introduced for a short time, that is, delta doping is performed.
  • silicone mutually can be obtained.
  • silicon is more easily oxidized than Ge. Therefore, it becomes possible to form a stacked structure of Ge / SiO 2 / Ge / SiO 2 , which can be applied to optical devices. An expected substrate can be obtained.
  • the silicon epitaxial layer 21 is formed.
  • the SiH 4 gas was purged by introducing a gas containing tin atoms containing no chlorine atoms, to grow less tin atoms layer 31 thickness of 5 nm.
  • This gas is particularly preferably an organometallic gas containing tin (such as tetramethyltin). In the following description, a case where tetramethyltin gas is used will be described.
  • the supply amount (growth recipe) of each gas is the same as that of oxygen gas. That is, during the growth of the silicon epitaxial layer, tetramethyltin gas is introduced for a short time, that is, delta doping is performed.
  • Sn As a practical method of using Sn, it can be used as a surface modification when various elements such as Ge are grown on silicon. For this purpose, it is possible to grow Ge by the same method after growing Sn by this method.
  • the epitaxial wafer 100 of the aspect shown in FIG. 1 was manufactured as follows. First, a first epitaxial growth was performed using a silicon substrate 10 having a resistivity of 10 ⁇ ⁇ cm and boron doping and a diameter of 200 mm (silicon epitaxial layer 21). The silicon source gas was grown as SiH 4 at 550 ° C. Although the time for flowing the silicon source gas is set according to the film thickness, since the slower growth rate is better, it is set to 0.05 nm / second, and the thickness of the silicon epitaxial layer 21 is set to 10 nm.
  • the temperature was raised to 600 ° C. to increase the growth rate to grow a 3 ⁇ m silicon epitaxial layer, and an epitaxial wafer 100 having an oxygen atomic layer 31 in the epitaxial layer 50 was manufactured.
  • the epitaxial wafer 200 of the aspect shown in FIG. 2 was manufactured as follows. First, a first epitaxial growth was performed using a silicon substrate 10 having a resistivity of 10 ⁇ ⁇ cm and boron doping and a diameter of 200 mm (silicon epitaxial layer 21). The silicon source gas was grown as SiH 4 at 550 ° C. Although the time for flowing the silicon source gas is set in accordance with the film thickness, since a slower growth rate is better, it is set to 0.05 nm / second, and the thickness of the first silicon epitaxial layer 21 is set to 10 nm.
  • oxygen gas 6 L / min was introduced into the reactor at 1 ⁇ 10 ⁇ 8 Torr for 100 seconds to grow the oxygen atomic layer 31 by one atomic layer.
  • a silicon source gas was introduced under the same conditions as those for the first silicon epitaxial layer 21 to form a second silicon epitaxial layer 22 having a thickness of 10 nm.
  • an oxygen atomic layer 32 was deposited on the second silicon epitaxial layer 22 under the same conditions as the oxygen atomic layer 31, and a third silicon epitaxial layer 23 was further deposited under the same conditions as the first silicon epitaxial layer 21.
  • oxygen atom layers (33, 34, 35) and silicon epitaxial layers (24, 25, 26) are alternately deposited under the same conditions, so that the oxygen atom layer / silicon epitaxial layer has a set 40 of five layers.
  • An epitaxial wafer 200 including the epitaxial layer 60 was manufactured.
  • SiH 2 Cl 2 was grown as a part of the 3 ⁇ m epitaxial layer 26 as a raw material.
  • a diffusion region of about 1 ⁇ m may be formed as an active region for manufacturing an actual device.
  • the silicon source gas was introduced under the same conditions as the first epitaxial layer to try to form the second epitaxial layer.
  • the oxygen atomic layer was thick, and epitaxial growth was not possible, resulting in polycrystalline silicon. It was. Thus, it can be seen that when the oxygen atomic layer is thick, the second silicon epitaxial layer does not become a single crystal.
  • the epitaxial wafer 100 having the aspect shown in FIG. 1 and having the carbon atom layer 31 as an atomic layer in the epitaxial layer was manufactured as follows. First, a first epitaxial growth was performed using a silicon substrate 10 having a resistivity of 10 ⁇ ⁇ cm and boron doping and a diameter of 200 mm (silicon epitaxial layer 21). The silicon source gas was grown as SiH 4 at 550 ° C. Although the time for flowing the silicon source gas is set according to the film thickness, since the slower growth rate is better, it is set to 0.05 nm / second, and the thickness of the silicon epitaxial layer 21 is set to 10 nm.
  • the temperature was raised to 600 ° C. to increase the growth rate, and a 3 ⁇ m-thick silicon epitaxial layer was grown to manufacture an epitaxial wafer 100 having the carbon atom layer 31 in the epitaxial layer 50.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

Abstract

The present invention is an epitaxial wafer production method in which an epitaxial layer is formed on a silicon substrate. The epitaxial wafer production method includes a step of forming, in the epitaxial layer, an atomic layer comprising atoms of at least one type of element selected from the group consisting of oxygen, carbon, nitrogen, germanium, tin, boron and phosphorus and having a thickness of 5 nm or less. An epitaxial layer adjacent to the atomic layer is formed using SiH4 gas. Due to this configuration, provided is an epitaxial wafer production in which an atomic layer of oxygen or the like can be stably introduced into an epitaxial layer.

Description

エピタキシャルウェーハの製造方法Epitaxial wafer manufacturing method
 本発明は、エピタキシャルウェーハの製造方法に関する。 The present invention relates to a method for manufacturing an epitaxial wafer.
 固体撮像素子やその他のトランジスタをはじめとした半導体素子を形成するシリコン基板には、重金属をはじめとした素子特性を狂わせる元素をゲッタリングする機能を持つことが求められる。ゲッタリングにはシリコン基板裏面に多結晶シリコン(Poly-Si)層を持たせたり、ブラスト加工によりダメージを持たせた層を形成する方法や、シリコン基板の高濃度ボロンを利用したり、析出物を形成させたりとさまざまな手法が提案、実用化されている。酸素析出によるゲッタリングは電気陰性度が大きい酸素に対して、イオン化傾向が大きい(電気陰性度が小さい)金属を取り込むことでゲッタリングする。 A silicon substrate on which a semiconductor element such as a solid-state imaging element or other transistor is formed is required to have a function of gettering elements that detract from element characteristics such as heavy metals. For gettering, there is a method of forming a polycrystalline silicon (Poly-Si) layer on the back of the silicon substrate, forming a layer damaged by blasting, utilizing the high-concentration boron of the silicon substrate, Various methods have been proposed and put into practical use. In gettering by oxygen precipitation, gettering is performed by incorporating a metal having a large ionization tendency (small electronegativity) with respect to oxygen having a large electronegativity.
 また素子の活性領域近傍にゲッタリング層を形成する、いわゆる近接ゲッタリングも提案されている。例えば、炭素をイオン注入した基板の上にシリコンをエピタキシャル成長させた基板などがある。ゲッタリングは、ゲッタリングサイト(金属が単元素で存在するよりもサイトで結合やクラスタリングすることで系全体のエネルギーが低下する)まで元素が拡散する必要がある。シリコン中に含まれる金属元素の拡散係数は元素により異なり、また近年のプロセス低温化によりゲッタリングサイトまで金属が拡散することが出来なくなることを考慮して近接ゲッタリングの手法が提案されている。 Also, so-called proximity gettering in which a gettering layer is formed in the vicinity of the active region of the element has been proposed. For example, there is a substrate obtained by epitaxially growing silicon on a substrate into which carbon is ion-implanted. In the gettering, the element needs to diffuse to the gettering site (the energy of the entire system is reduced by bonding or clustering at the site rather than the metal being present as a single element). Proximity gettering methods have been proposed in consideration of the fact that the diffusion coefficient of metal elements contained in silicon varies from element to element, and that metals cannot diffuse to the gettering site due to recent process low temperatures.
 近接ゲッタリングに酸素を用いることが出来れば、非常に有力なゲッタリング層をもったシリコン基板となると考えられる。特に、エピタキシャル層の途中に酸素原子層を有するエピタキシャルウェーハであれば、近年の低温プロセスにおいても確実に金属不純物をゲッタリングすることができる。 If oxygen can be used for proximity gettering, a silicon substrate having a very powerful gettering layer is considered. In particular, an epitaxial wafer having an oxygen atomic layer in the middle of an epitaxial layer can reliably getter metal impurities even in recent low-temperature processes.
 以上、金属不純物をゲッタリングすることを中心に述べてきたが、例えば、酸素の効果としては、CVD酸化膜を裏面に形成することでエピタキシャル成長時のオートドープを防ぐ効果が知られている。 As described above, the gettering of metal impurities has been mainly described. For example, as an effect of oxygen, an effect of preventing autodoping during epitaxial growth is known by forming a CVD oxide film on the back surface.
 さらに酸素以外では、シリコンと同じIV族(14族)の炭素においては、炭素によるゲッタリング効果、Geではシリコン酸化膜との組み合わせによる光デバイスへの応用、SnはGe等をシリコン上に成長する際の、表面改質の効果、IV族以外では、窒素では析出促進による強度の向上など、シリコンと他元素の組み合わせによるいろいろな効果が期待され応用されている。 In addition to oxygen, in the same group IV (group 14) carbon as silicon, gettering effect due to carbon, application to optical devices in combination with silicon oxide film in Ge, Sn grows Ge etc. on silicon At the same time, other than group IV, other than group IV, various effects of combinations of silicon and other elements such as improvement of strength by promoting precipitation are expected and applied in nitrogen.
 先行技術について言及する。特許文献1は、構造としてはシリコンの上に酸素の薄い層を形成しさらにシリコンを成長させる方法である。この方法は、ALD(「Atomic layer deposition」、「原子層堆積法」)をベースとした技術である。ALDは対象原子を含む分子を吸着させ、その後分子中の不要な原子(分子)を乖離・脱離させる方法であり、表面結合を利用し非常に精度よくまた、反応制御性が良好であり幅広く用いられているが、不要分子を脱離させることで、原子層形成に不要かつ意図しない挙動を示す不純物を生成するという弱点がある。実際に、ALD法では、酸素層を形成するために炭素を含む分子を利用するので、炭素(不要な炭素)の影響が懸念される。 Refer to the prior art. Patent Document 1 is a method of forming a thin layer of oxygen on silicon and further growing silicon. This method is based on ALD (“Atomic layer deposition”, “Atomic layer deposition method”). ALD is a method to adsorb molecules containing target atoms and then dissociate and desorb unnecessary atoms (molecules) in the molecule. It uses surface bonding, has high accuracy, has good reaction controllability, and is widely used. Although it is used, there is a weak point that impurities that are unnecessary and unintentional for forming an atomic layer are generated by eliminating unnecessary molecules. Actually, since the ALD method uses molecules containing carbon to form an oxygen layer, there is a concern about the influence of carbon (unnecessary carbon).
 特許文献2は、特許文献1と同様の基板を実現するためのリアクタに関する技術であるが、こちらは原料ガス・手法としてMOVPE(有機金属気相成長法)を想定している。MOVPEであるために有機金属を利用する。反応制御は容易であるが、酸素原子層を形成する際に不要な不純物金属の懸念がある。特にシリコン基板そのものへの適用には金属汚染が懸念される。 Patent Document 2 is a technology related to a reactor for realizing a substrate similar to that of Patent Document 1, but this assumes MOVPE (metal organic chemical vapor deposition) as a source gas / method. An organic metal is used to be MOVPE. Although reaction control is easy, there is a concern of unnecessary impurity metals when forming the oxygen atomic layer. In particular, there is a concern about metal contamination when applied to the silicon substrate itself.
 以上のように、これら特許文献1、2の技術はALDないしは、MOVPEというそれぞれの技術に基づいて行われている。 As described above, the techniques of Patent Documents 1 and 2 are performed based on respective techniques of ALD or MOVPE.
 特許文献3、4は、シリコン基板に酸素原子層を複数導入することで、デバイス特性の改善(移動度)向上が可能になることを示しているが、具体的な成長方法には言及していない。 Patent Documents 3 and 4 show that by introducing a plurality of oxygen atom layers into a silicon substrate, device characteristics (mobility) can be improved, but no specific growth method is mentioned. Absent.
 酸素以外の原子層をシリコン基板に導入する先行技術としては、たとえば特許文献5に記載のように、シリコンの表面に急峻なビスマスのプロファイルを作りこむ方法が開示されている。特許文献5ではデルタドープと記載されており、線状にドーパントを埋め込む基礎技術として開示されているが、ウェーハ全面に展開することは困難であると考えられる。 As a prior art for introducing an atomic layer other than oxygen into a silicon substrate, a method of creating a steep bismuth profile on the surface of silicon as disclosed in, for example, Patent Document 5 is disclosed. Patent Document 5 describes delta doping, which is disclosed as a basic technique for embedding a dopant in a linear shape, but it is considered difficult to spread the entire surface of the wafer.
特開2014-165494号公報JP 2014-165494 A 特開2013-197291号公報JP 2013-197291 A 米国特許第7,153,763号明細書US Pat. No. 7,153,763 米国特許第7,265,002号明細書US Pat. No. 7,265,002 特開2000-003877号公報JP 2000-003877 A
 上述の問題点に鑑み、本発明は、酸素等の原子層をエピタキシャル層に安定的に導入することができるエピタキシャルウェーハの製造方法を提供することを目的とする。 In view of the above problems, an object of the present invention is to provide an epitaxial wafer manufacturing method capable of stably introducing an atomic layer such as oxygen into an epitaxial layer.
 上記目的を達成するために、本発明は、シリコン基板上にエピタキシャル層を形成するエピタキシャルウェーハの製造方法であって、前記エピタキシャル層中に、酸素、炭素、窒素、ゲルマニウム、スズ、ホウ素及びリンからなる群から選ばれる1種の元素の原子からなり、厚さが5nm以下である原子層を形成する工程を有し、前記原子層に接するエピタキシャル層の形成を、SiHガスを用いて行うことを特徴とするエピタキシャルウェーハの製造方法を提供する。 In order to achieve the above object, the present invention provides an epitaxial wafer manufacturing method for forming an epitaxial layer on a silicon substrate, wherein oxygen, carbon, nitrogen, germanium, tin, boron and phosphorus are contained in the epitaxial layer. A step of forming an atomic layer made of atoms of one element selected from the group and having a thickness of 5 nm or less, and forming an epitaxial layer in contact with the atomic layer using SiH 4 gas An epitaxial wafer manufacturing method is provided.
 このようなエピタキシャルウェーハの製造方法であれば、エピタキシャル層中に、酸素等の元素の原子からなる原子層を安定的に形成することができる。特に、酸素等の元素の原子からなる原子層に接するエピタキシャル層の形成を、分子中に塩素原子を有しないSiHガスを用いて行うため、酸素等の原子層のエッチングを防止できる。 With such an epitaxial wafer manufacturing method, an atomic layer made of atoms of elements such as oxygen can be stably formed in the epitaxial layer. In particular, since the formation of an epitaxial layer in contact with an atomic layer made of atoms of elements such as oxygen is performed using SiH 4 gas having no chlorine atom in the molecule, etching of the atomic layer such as oxygen can be prevented.
 本発明のエピタキシャルウェーハの製造方法では、この場合、前記原子層を、1原子層として形成することができる。 In the epitaxial wafer manufacturing method of the present invention, in this case, the atomic layer can be formed as a single atomic layer.
 本発明では、このように、酸素等の原子層を1原子層として形成することもできる。また、そのような1原子層を形成する場合でも、本発明の方法であれば、安定して1原子層を形成することができる。 In the present invention, an atomic layer of oxygen or the like can be formed as a single atomic layer as described above. Even when such a single atomic layer is formed, the single atomic layer can be stably formed by the method of the present invention.
 また、前記エピタキシャル層の領域のうち、前記原子層に接し、少なくとも該原子層から5nmまでの領域を、SiHガスを用いて形成することが好ましい。 In addition, it is preferable that, of the region of the epitaxial layer, a region in contact with the atomic layer and at least 5 nm from the atomic layer is formed using SiH 4 gas.
 このように、エピタキシャル層の領域のうち、酸素等の原子層から5nmまでの領域を、塩素を含まないSiHガスを用いて形成することにより、酸素等の原子層をより安定して形成することができる。 Thus, by forming the region from the atomic layer such as oxygen to 5 nm in the region of the epitaxial layer using SiH 4 gas not containing chlorine, the atomic layer such as oxygen is formed more stably. be able to.
 また、前記原子層を、前記エピタキシャル層中に複数層形成することができる。 Also, a plurality of the atomic layers can be formed in the epitaxial layer.
 本発明では、酸素等の原子層をエピタキシャル層中に複数層形成することもできる。また、このような構成を安定して形成することができる。 In the present invention, a plurality of atomic layers such as oxygen can be formed in the epitaxial layer. Moreover, such a structure can be formed stably.
 また、前記エピタキシャル層の領域のうち、前記SiHガスを用いて形成する領域以外の領域を、SiHClガス又はSiHClガスを用いて形成することが好ましい。 In addition, it is preferable that a region other than a region formed using the SiH 4 gas among the regions of the epitaxial layer is formed using a SiH 2 Cl 2 gas or a SiHCl 3 gas.
 このように、エピタキシャル層のうち、SiHガスを用いて形成する領域以外をSiHClガス又はSiHClガスを用いて形成することにより、酸素等の原子層から離れた領域においてエピタキシャル層を厚く形成することができる。その結果、より短時間にエピタキシャル層全体を形成することができるので、生産性及びコストに資する。 Thus, among the epitaxial layer, by forming with SiH 2 Cl 2 gas or SiHCl 3 gas other than the region formed by using a SiH 4 gas, the epitaxial layer in areas away from the atoms of oxygen, such as layer It can be formed thick. As a result, the entire epitaxial layer can be formed in a shorter time, which contributes to productivity and cost.
 また、前記原子層の形成を、酸素原子層を形成する場合は酸素ガスを、炭素原子層を形成する場合はCHガスを、窒素原子層を形成する場合はNHガスを、ゲルマニウム原子層を形成する場合はGeを含む有機金属ガスを、スズ原子層を形成する場合はSnを含む有機金属ガスを、ホウ素原子層を形成する場合はBガスを、リン原子層を形成する場合はPHガスを、用いて行うことができる。 The atomic layer is formed by oxygen gas when forming an oxygen atomic layer, CH 4 gas when forming a carbon atomic layer, NH 3 gas when forming a nitrogen atomic layer, and a germanium atomic layer. Is formed, an organometallic gas containing Ge is formed, an organometallic gas containing Sn is formed when a tin atomic layer is formed, B 2 H 6 gas is formed when a boron atomic layer is formed, and a phosphorus atomic layer is formed. In some cases, PH 3 gas can be used.
 これらのガスを使用することにより、酸素等の原子層を形成することができる。 An atomic layer such as oxygen can be formed by using these gases.
 本発明により、先端デバイスで採用されるシリコンエピタキシャルウェーハにおいて、酸素等の原子層をエピタキシャル層に安定的に導入することができる。また、酸素原子層による近接ゲッタリング効果を有する近接ゲッタリング基板や、IV族元素及び窒素、ドーパント等を用いた複合機能を有する機能性基板を製造することが可能となる。 According to the present invention, an atomic layer such as oxygen can be stably introduced into the epitaxial layer in the silicon epitaxial wafer employed in the advanced device. In addition, it is possible to manufacture a proximity gettering substrate having a proximity gettering effect by an oxygen atomic layer and a functional substrate having a composite function using a group IV element, nitrogen, a dopant, and the like.
本発明によって製造することができる、酸素等の原子層を有するエピタキシャルウェーハの一例を示す模式的な断面図である。It is typical sectional drawing which shows an example of the epitaxial wafer which has atomic layers, such as oxygen, which can be manufactured by this invention. 本発明によって製造することができる、酸素等の原子層を複数有するエピタキシャルウェーハの一例を示す模式的な断面図である。It is typical sectional drawing which shows an example of the epitaxial wafer which has a plurality of atomic layers, such as oxygen, which can be manufactured by this invention. 本発明のエピタキシャルウェーハを製造する成長レシピの概念図である。It is a conceptual diagram of the growth recipe which manufactures the epitaxial wafer of this invention.
 以下、本発明について、実施態様の一例として、図を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be described in detail as an example of an embodiment with reference to the drawings, but the present invention is not limited thereto.
 本発明は、シリコン基板上にエピタキシャル層を形成するエピタキシャルウェーハの製造方法であり、エピタキシャル層中に、酸素、炭素、窒素、ゲルマニウム、スズ、ホウ素及びリンからなる群から選ばれる1種の元素の原子からなり、厚さが5nm以下である原子層を形成する工程を有する。本発明においては、さらに、上記の原子層に接するエピタキシャル層の形成を、SiHガスを用いて行う。以降の説明では、エピタキシャル層中に形成する、酸素、炭素、窒素、ゲルマニウム、スズ、ホウ素及びリンのうち1種類の元素の原子からなる原子層を単に「原子層」と称する。 The present invention is an epitaxial wafer manufacturing method for forming an epitaxial layer on a silicon substrate. In the epitaxial layer, one element selected from the group consisting of oxygen, carbon, nitrogen, germanium, tin, boron and phosphorus is used. A step of forming an atomic layer made of atoms and having a thickness of 5 nm or less. In the present invention, the epitaxial layer in contact with the atomic layer is further formed using SiH 4 gas. In the following description, an atomic layer formed of atoms of one element among oxygen, carbon, nitrogen, germanium, tin, boron and phosphorus formed in the epitaxial layer is simply referred to as “atomic layer”.
[エピタキシャル層中に酸素原子層を導入する場合]
 まず、シリコン基板上のエピタキシャル層中に酸素原子層を導入する場合について説明する。
[When introducing an oxygen atom layer into the epitaxial layer]
First, a case where an oxygen atomic layer is introduced into an epitaxial layer on a silicon substrate will be described.
 図1に本発明のエピタキシャルウェーハの製造方法によって製造することができる、酸素原子層を有するエピタキシャルウェーハ100の模式的な断面図を示す。エピタキシャルウェーハ100は、シリコン基板10の上にエピタキシャル層50が形成されており、エピタキシャル層50中に、酸素原子からなり、厚さが5nm以下である原子層(酸素原子層)31が形成される。シリコン基板10と酸素原子層31の間には、シリコンからなるシリコンエピタキシャル層21が形成される。シリコンエピタキシャル層21の上に酸素原子層31が形成され、酸素原子層31の上にシリコンエピタキシャル層22が形成される。図1の例では、シリコンエピタキシャル層21、酸素原子層31、シリコンエピタキシャル層22からなるエピタキシャル層50が形成される。 FIG. 1 shows a schematic cross-sectional view of an epitaxial wafer 100 having an oxygen atomic layer, which can be manufactured by the epitaxial wafer manufacturing method of the present invention. In the epitaxial wafer 100, an epitaxial layer 50 is formed on a silicon substrate 10, and an atomic layer (oxygen atomic layer) 31 made of oxygen atoms and having a thickness of 5 nm or less is formed in the epitaxial layer 50. . A silicon epitaxial layer 21 made of silicon is formed between the silicon substrate 10 and the oxygen atomic layer 31. An oxygen atomic layer 31 is formed on the silicon epitaxial layer 21, and a silicon epitaxial layer 22 is formed on the oxygen atomic layer 31. In the example of FIG. 1, an epitaxial layer 50 including a silicon epitaxial layer 21, an oxygen atom layer 31, and a silicon epitaxial layer 22 is formed.
 上記のように、酸素原子層31を形成する場合の製造方法としては、以下の通りである。シリコン基板10上にエピタキシャル成長を行って、まず、シリコンエピタキシャル層21を形成する。そのシリコンエピタキシャル層21の上に酸素原子層31を成長させる。さらに酸素原子層31の上にシリコンをエピタキシャル成長してシリコンエピタキシャル層22を形成する。これにより、酸素原子層31を有するエピタキシャル層50全体を形成し、エピタキシャルウェーハ100を形成する。 As described above, the manufacturing method for forming the oxygen atomic layer 31 is as follows. Epitaxial growth is performed on the silicon substrate 10 to first form a silicon epitaxial layer 21. An oxygen atomic layer 31 is grown on the silicon epitaxial layer 21. Further, silicon is epitaxially grown on the oxygen atom layer 31 to form the silicon epitaxial layer 22. Thereby, the entire epitaxial layer 50 having the oxygen atomic layer 31 is formed, and the epitaxial wafer 100 is formed.
 図1では酸素原子層は1層であるが、酸素原子層、シリコンエピタキシャル成長を繰り返し、酸素原子層を複数形成することも可能である。エピタキシャル層中に酸素原子層を複数形成したエピタキシャルウェーハを図2に示した。すなわち、図2に示したエピタキシャルウェーハ200を製造する場合には、以下のようにして製造することができる。まず、シリコン基板10の上にシリコンエピタキシャル層21を形成する。シリコンエピタキシャル層21の上に、酸素原子層31を形成する。さらに、酸素原子層31の上に、シリコンエピタキシャル層22を形成する。ここまでは図1の態様と同様であるが、図2の態様では、さらに、酸素原子層32、シリコンエピタキシャル層23、酸素原子層33、シリコンエピタキシャル層24、酸素原子層34、シリコンエピタキシャル層25、酸素原子層35、シリコンエピタキシャル層26と形成していく。これにより、シリコンエピタキシャル層と酸素原子層の組が5組繰り返された構造40が形成された、エピタキシャル層60を形成することができる。このように、酸素原子層を複数形成することにより、より優れたゲッタリング効果を有するエピタキシャルウェーハが得られる。このとき、酸素原子層は最大でも10層あれば十分である。 In FIG. 1, there is one oxygen atom layer, but it is also possible to repeat the oxygen atom layer and silicon epitaxial growth to form a plurality of oxygen atom layers. An epitaxial wafer having a plurality of oxygen atom layers formed in the epitaxial layer is shown in FIG. That is, when the epitaxial wafer 200 shown in FIG. 2 is manufactured, it can be manufactured as follows. First, the silicon epitaxial layer 21 is formed on the silicon substrate 10. An oxygen atom layer 31 is formed on the silicon epitaxial layer 21. Further, the silicon epitaxial layer 22 is formed on the oxygen atom layer 31. The process up to this point is the same as that of FIG. 1, but in the aspect of FIG. 2, the oxygen atom layer 32, silicon epitaxial layer 23, oxygen atom layer 33, silicon epitaxial layer 24, oxygen atom layer 34, silicon epitaxial layer 25 are further provided. Then, an oxygen atom layer 35 and a silicon epitaxial layer 26 are formed. Thereby, the epitaxial layer 60 in which the structure 40 in which five sets of the silicon epitaxial layer and the oxygen atom layer are repeated is formed can be formed. Thus, by forming a plurality of oxygen atom layers, an epitaxial wafer having a better gettering effect can be obtained. At this time, it is sufficient that the oxygen atom layer is 10 layers at the maximum.
 本発明では、原子層に接するエピタキシャル層を形成するときのシリコンエピタキシャル成長の原料に、塩素原子を含まないSiHガスを利用する。エピタキシャル成長用ガスに塩素原子が含まれることで、酸素原子層を形成しても塩素によりエッチングされてしまうからである。 In the present invention, SiH 4 gas containing no chlorine atom is used as a raw material for silicon epitaxial growth when an epitaxial layer in contact with the atomic layer is formed. This is because chlorine atoms are included in the epitaxial growth gas, so that even if an oxygen atomic layer is formed, the gas is etched by chlorine.
 また酸素原子層は、5nm以下とすることが必要であり、また、できるだけ薄い方が好ましく、単原子吸着する程度の量を導入することが好ましい。酸素原子層が5nmより厚すぎるとシリコン層が酸化されてしまい、酸素原子層の上に第2のシリコンエピタキシャル層を堆積することが出来なくなる。正確には、そのような酸素原子層上にシリコンエピタキシャル成長を行おうとしても、エピタキシャル成長でなくアモルファスシリコンとなってしまったり、多結晶化(ポリ化)してしまう。 Also, the oxygen atomic layer needs to be 5 nm or less, and is preferably as thin as possible, and it is preferable to introduce an amount sufficient to adsorb a single atom. If the oxygen atomic layer is too thick, the silicon layer is oxidized, and the second silicon epitaxial layer cannot be deposited on the oxygen atomic layer. Precisely, even if silicon epitaxial growth is performed on such an oxygen atomic layer, it is not epitaxial growth but becomes amorphous silicon or is polycrystallized.
 酸素原子層は、等温吸着の原理を用いて、1ラングミュアー層の堆積が出来ればよい。当業者であれば、1ラングミュアー層の堆積を行うことが可能である。炉のチャンバーサイズにもよるが、10L/分程度(例えば、5L/分以上15L/分以下)の酸素ガスを流すことで解決できる。また、例えば、圧力及び時間の条件は、1×10-8Torr(1.33×10-6Pa)程度、100秒程度とすることができるが、必ずしもこのような条件でなくともよく、1×10-6Torr以上1×10-9Torr以下、10~500秒とすることができる。温度はエピタキシャル成長温度を超えない範囲とすることができる。成長レートは0.005nm/秒以下とすることが好ましい。 The oxygen atomic layer only needs to be able to deposit one Langmuir layer using the principle of isothermal adsorption. One skilled in the art can deposit one Langmuir layer. Although it depends on the chamber size of the furnace, it can be solved by flowing an oxygen gas of about 10 L / min (for example, 5 L / min to 15 L / min). Further, for example, the pressure and time conditions can be about 1 × 10 −8 Torr (1.33 × 10 −6 Pa) and about 100 seconds. It can be 10 × 500 −6 Torr or more and 1 × 10 −9 Torr or less and 10 to 500 seconds. The temperature can be in a range not exceeding the epitaxial growth temperature. The growth rate is preferably 0.005 nm / second or less.
 図1の態様に基づいて、より具体的にエピタキシャルウェーハの製造方法を説明する。シリコン基板10に酸素原子層31を導入するために、シリコン基板10上にエピタキシャル成長する際に、まず、原料ガスとして塩素を含まないSiHガスを用いたエピタキシャル成長を行い、シリコンエピタキシャル層21を形成する。好ましくは、酸素原子層31を形成する位置から少なくとも5nm離れた位置からは原料ガスとしてSiHガスを導入して塩素を含まないガスでシリコンエピタキシャル層21を成長させる。SiHガスをパージした後に酸素ガスを導入し、厚さ5nm以下の酸素原子層31を成長させる。次に、酸素ガスをパージした後にSiHガスを原料として所望の厚さまでエピタキシャル成長を行う。好ましくは、酸素原子層31を形成した位置から少なくとも5nm離れた位置まで原料ガスとしてSiHガスを導入して塩素を含まないガスでシリコンエピタキシャル層22を成長させる。図3に各ガスの供給イメージを示す。 Based on the aspect of FIG. 1, the manufacturing method of an epitaxial wafer is demonstrated more concretely. In order to introduce the oxygen atomic layer 31 into the silicon substrate 10, when epitaxial growth is performed on the silicon substrate 10, first, epitaxial growth using SiH 4 gas not containing chlorine as a source gas is performed to form a silicon epitaxial layer 21. . Preferably, SiH 4 gas is introduced as a source gas from a position at least 5 nm away from the position where the oxygen atomic layer 31 is formed, and the silicon epitaxial layer 21 is grown with a gas not containing chlorine. After purging the SiH 4 gas, oxygen gas is introduced to grow an oxygen atomic layer 31 having a thickness of 5 nm or less. Next, after purging oxygen gas, epitaxial growth is performed to a desired thickness using SiH 4 gas as a raw material. Preferably, SiH 4 gas is introduced as a raw material gas to a position at least 5 nm away from the position where the oxygen atomic layer 31 is formed, and the silicon epitaxial layer 22 is grown with a gas not containing chlorine. FIG. 3 shows the supply image of each gas.
 上記のように、酸素原子層は、1原子層として形成することが好ましい。酸素の導入は酸素が1原子層吸着になるように1Langmuir(等温単原子吸着)量を導入するように条件を設定することで、酸素を単原子成長可能となる(デルタドープ)。 As described above, the oxygen atomic layer is preferably formed as a single atomic layer. Oxygen can be grown in a single atom (delta dope) by setting conditions so that 1 Langmuir (isothermal monoatomic adsorption) amount is introduced so that oxygen is in an atomic layer adsorption.
 酸素原子層に接するエピタキシャル層を形成する際に、塩素(塩素原子)を含むガス(例えば、SiHClガス又はSiHClガス等のクロロシラン類)を使用すると、塩素によるエッチング効果にてシリコン中に堆積した酸素層が無くなってしまう。そのため、酸素原子層31に接するエピタキシャル層の形成を、SiHガスを用いて行うことが必要である。特に、エピタキシャル層50の領域のうち、酸素原子層31に接し、少なくとも酸素原子層31から5nmまでの領域(シリコンエピタキシャル層21、22のうち、酸素原子層31から5nmまでの領域)を、SiHガスを用いて形成することが好ましい。酸素原子層31に塩素を含むガスが直接触れないことで、酸素原子層31が塩素ガスによりエッチングされることを防ぐことが出来る。 When an epitaxial layer in contact with the oxygen atomic layer is formed, if a gas containing chlorine (chlorine atoms) (for example, chlorosilanes such as SiH 2 Cl 2 gas or SiHCl 3 gas) is used, the etching effect by chlorine causes silicon to The oxygen layer deposited on the surface disappears. Therefore, it is necessary to form an epitaxial layer in contact with the oxygen atomic layer 31 using SiH 4 gas. In particular, in the region of the epitaxial layer 50, the region in contact with the oxygen atomic layer 31 and at least from the oxygen atomic layer 31 to 5 nm (the region from the oxygen atomic layer 31 to 5 nm in the silicon epitaxial layers 21 and 22) is SiH. It is preferable to form using 4 gases. Since the gas containing chlorine is not in direct contact with the oxygen atom layer 31, the oxygen atom layer 31 can be prevented from being etched by the chlorine gas.
 すなわち、図1の酸素原子層31のエッチングを防止するためには、酸素原子層31に接するエピタキシャル層の形成を、SiHガスを用いて行えばよく、反対に、エピタキシャル層の領域のうち、SiHガスを用いて形成する領域以外の領域を、SiHClガス又はSiHClガスを用いて形成することができる。特に、少なくとも酸素原子層31から5nmまでSiHガスを用いて形成すれば、酸素原子層31がSiHで完全にカバーされるので、酸素原子層から5nmを超えて離れた領域のエピタキシャル層の形成では塩素ガスが含まれないSiHに限定されず、SiHClやSiHClを用いてもよい。酸素原子層から離れた領域においてエピタキシャル層を厚く形成する場合には、SiHClやSiHClを用いることで、より短時間にエピタキシャル層を形成することができる。SiHガスを用いた場合の成長速度は遅いので、例えば厚さが100nm以上のエピタキシャル層を形成する場合は途中でSiHClやSiHClに切り替えることが好ましい。これにより、高生産性、低コストとすることができる。シリコンエピタキシャル層の成長温度は500℃以上800℃以下の範囲が好ましい。 That is, in order to prevent the etching of the oxygen atomic layer 31 in FIG. 1, the formation of the epitaxial layer in contact with the oxygen atomic layer 31 may be performed using SiH 4 gas. A region other than a region formed using SiH 4 gas can be formed using SiH 2 Cl 2 gas or SiHCl 3 gas. In particular, if at least the oxygen atomic layer 31 is formed from SiH 4 gas to 5 nm using the SiH 4 gas, the oxygen atomic layer 31 is completely covered with SiH 4 , so that the epitaxial layer in the region separated by more than 5 nm from the oxygen atomic layer is formed. is not limited to SiH 4 containing no chlorine gas is formed, may be used SiH 2 Cl 2 or SiHCl 3. When the epitaxial layer is formed thick in a region away from the oxygen atomic layer, the epitaxial layer can be formed in a shorter time by using SiH 2 Cl 2 or SiHCl 3 . Since the growth rate when SiH 4 gas is used is slow, for example, when an epitaxial layer having a thickness of 100 nm or more is formed, it is preferable to switch to SiH 2 Cl 2 or SiHCl 3 in the middle. Thereby, high productivity and low cost can be achieved. The growth temperature of the silicon epitaxial layer is preferably in the range of 500 ° C. or higher and 800 ° C. or lower.
 これは、図2の態様でも同様であり、酸素原子層31、32、33、34、35の全てで、酸素原子層31に接するエピタキシャル層の形成を、SiHガスを用いて行うことが必要であり、また、これら酸素原子層から5nmまでの領域を、SiHガスを用いたエピタキシャル成長とすることが好ましい。 This is the same in the embodiment of FIG. 2, and it is necessary to form an epitaxial layer in contact with the oxygen atomic layer 31 by using SiH 4 gas in all of the oxygen atomic layers 31, 32, 33, 34, and 35. In addition, it is preferable that the region from the oxygen atomic layer to 5 nm is epitaxially grown using SiH 4 gas.
 本発明の方法で製造された、酸素原子層を有するシリコンエピタキシャルウェーハであれば、近接ゲッタリング効果を期待でき、素子歩留まりの向上も期待できる。 A silicon epitaxial wafer having an oxygen atomic layer manufactured by the method of the present invention can be expected to have a proximity gettering effect and an improvement in device yield.
[エピタキシャル層中に炭素原子層を導入する場合]
 次に、シリコン基板上のエピタキシャル層中に炭素原子層を導入する場合について説明する。基本的には、上記の酸素原子層を導入する場合と同様であるため、重複する記載は省略する。
[When carbon atom layer is introduced into the epitaxial layer]
Next, a case where a carbon atom layer is introduced into an epitaxial layer on a silicon substrate will be described. Since this is basically the same as the case where the oxygen atom layer is introduced, redundant description is omitted.
 エピタキシャルウェーハ100に炭素原子層を導入する場合も、原子層31として酸素原子層の代わりに炭素原子層が採用されること以外は、上記した酸素原子層を有するエピタキシャル層50を有するエピタキシャルウェーハ100と同じである。 Even when a carbon atomic layer is introduced into the epitaxial wafer 100, the epitaxial wafer 100 having the above-described epitaxial layer 50 having an oxygen atomic layer is used except that a carbon atomic layer is employed as the atomic layer 31 instead of the oxygen atomic layer. The same.
 この方法は、シリコン基板10に炭素原子層31を導入するために、シリコン基板10へエピタキシャル成長する際に、まず、原料ガスとして塩素を含まないSiHガスを用いたエピタキシャル成長を行い、シリコンエピタキシャル層21を形成する。SiHガスをパージした後に、塩素原子を含まず炭素原子を含むガスを導入し、厚さ5nm以下の炭素原子層31を成長させる。このガスとしては特にCHガス(メタンガス)が好ましい。以下の説明ではCHガスを用いる場合を説明する。次に、CHガスをパージした後にSiHガスを原料としたエピタキシャル成長を行う。各ガスの供給量(成長レシピ)は、酸素ガスの場合と同様である。すなわち、シリコンエピタキシャル層の成長の合間に、短時間CHガスを導入する、すなわちデルタドープを行うことになる。 In this method, in order to introduce the carbon atom layer 31 into the silicon substrate 10, when epitaxial growth is performed on the silicon substrate 10, first, epitaxial growth using SiH 4 gas containing no chlorine as a source gas is performed, and the silicon epitaxial layer 21 is formed. Form. After purging the SiH 4 gas, a gas not containing chlorine atoms but containing carbon atoms is introduced to grow a carbon atom layer 31 having a thickness of 5 nm or less. This gas is particularly preferably CH 4 gas (methane gas). In the following description, a case where CH 4 gas is used will be described. Next, after purging CH 4 gas, epitaxial growth is performed using SiH 4 gas as a raw material. The supply amount (growth recipe) of each gas is the same as that of oxygen gas. That is, between the growth of the silicon epitaxial layer, CH 4 gas is introduced for a short time, that is, delta doping is performed.
 本発明の方法で製造された炭素原子層を有するシリコンエピタキシャルウェーハであれば、近接ゲッタリング効果を期待でき、素子歩留まりの向上も期待できる。さらに、炭素はシリコンと比較して原子半径が小さいために、炭素原子層の上に成長されたシリコン層を歪ませる効果があり、デバイスのキャリア移動度向上も期待できる。 A silicon epitaxial wafer having a carbon atom layer manufactured by the method of the present invention can be expected to have a proximity gettering effect and an improvement in device yield. Furthermore, since carbon has a smaller atomic radius than silicon, it has the effect of distorting the silicon layer grown on the carbon atomic layer, and can also be expected to improve the carrier mobility of the device.
[エピタキシャル層中に窒素原子層を導入する場合]
 次に、シリコン基板上のエピタキシャル層中に窒素原子層を導入する場合について説明する。基本的には、上記の酸素原子層を導入する場合と同様であるため、重複する記載は省略する。
[When introducing a nitrogen atom layer into the epitaxial layer]
Next, the case where a nitrogen atom layer is introduced into the epitaxial layer on the silicon substrate will be described. Since this is basically the same as the case where the oxygen atom layer is introduced, redundant description is omitted.
 エピタキシャルウェーハ100に窒素原子層を導入する場合も、原子層31として酸素原子層の代わりに窒素原子層が採用されること以外は、上記した酸素原子層を有するエピタキシャル層50を有するエピタキシャルウェーハ100と同じである。 In the case where a nitrogen atomic layer is introduced into the epitaxial wafer 100, the epitaxial wafer 100 having the above-described epitaxial layer 50 having the oxygen atomic layer, except that a nitrogen atomic layer is employed as the atomic layer 31 instead of the oxygen atomic layer, The same.
 この方法は、シリコン基板10に窒素原子層31を導入するために、シリコン基板10へエピタキシャル成長する際に、まず、原料ガスとして塩素を含まないSiHガスを用いたエピタキシャル成長を行い、シリコンエピタキシャル層21を形成する。SiHガスをパージした後に、塩素原子を含まず窒素原子を含むガスを導入し、厚さ5nm以下の窒素原子層31を成長させる。このガスとしては特にNHガス(アンモニアガス)が好ましい。以下の説明ではNHガスを用いる場合を説明する。次に、NHガスをパージした後にSiHガスを原料としたエピタキシャル成長を行う。各ガスの供給量(成長レシピ)は、酸素ガスの場合と同様である。すなわち、シリコンエピタキシャル層の成長の合間に、短時間NHガスを導入する、すなわちデルタドープを行うことになる。 In this method, in order to introduce the nitrogen atomic layer 31 into the silicon substrate 10, when epitaxial growth is performed on the silicon substrate 10, first, epitaxial growth using SiH 4 gas containing no chlorine as a raw material gas is performed to obtain a silicon epitaxial layer 21. Form. After purging the SiH 4 gas, a gas not containing chlorine atoms but containing nitrogen atoms is introduced to grow a nitrogen atom layer 31 having a thickness of 5 nm or less. As this gas, NH 3 gas (ammonia gas) is particularly preferable. In the following description, a case where NH 3 gas is used will be described. Next, after purging NH 3 gas, epitaxial growth is performed using SiH 4 gas as a raw material. The supply amount (growth recipe) of each gas is the same as that of oxygen gas. That is, during the growth of the silicon epitaxial layer, NH 3 gas is introduced for a short time, that is, delta doping is performed.
 これにより、窒素による酸素析出が促進されシリコン基板強度が向上したエピタキシャルウェーハが得られる。このとき、窒素原子層は最大でも10層あれば十分である。窒素原子層により、前記原子層の上に成長されたシリコン層のスリップを止める効果も期待できる。 As a result, an epitaxial wafer having improved silicon substrate strength by promoting oxygen precipitation by nitrogen is obtained. At this time, it is sufficient that the nitrogen atom layer is 10 layers at the maximum. The effect of stopping the slip of the silicon layer grown on the atomic layer can also be expected by the nitrogen atomic layer.
[エピタキシャル層中にゲルマニウム原子層を導入する場合]
 次に、シリコン基板上のエピタキシャル層中にゲルマニウム原子層を導入する場合について説明する。基本的には、上記の酸素原子層を導入する場合と同様であるため、重複する記載は省略する。
[When a germanium atomic layer is introduced into the epitaxial layer]
Next, the case where a germanium atomic layer is introduced into the epitaxial layer on the silicon substrate will be described. Since this is basically the same as the case where the oxygen atom layer is introduced, redundant description is omitted.
 エピタキシャルウェーハ100にゲルマニウム原子層を導入する場合も、原子層31として酸素原子層の代わりにゲルマニウム原子層が採用されること以外は、上記した酸素原子層を有するエピタキシャル層50を有するエピタキシャルウェーハ100と同じである。 Even when a germanium atomic layer is introduced into the epitaxial wafer 100, the epitaxial wafer 100 having the epitaxial layer 50 having the oxygen atomic layer described above is used except that a germanium atomic layer is employed as the atomic layer 31 instead of the oxygen atomic layer. The same.
 この方法は、シリコン基板10にゲルマニウム原子層31を導入するために、シリコン基板10へエピタキシャル成長する際に、まず、原料ガスとして塩素を含まないSiHガスを用いたエピタキシャル成長を行い、シリコンエピタキシャル層21を形成する。SiHガスをパージした後に、塩素原子を含まずゲルマニウム原子を含むガスを導入し、厚さ5nm以下のゲルマニウム原子層31を成長させる。このガスとしては特にゲルマニウムを含む有機金属ガス(テトラメチルゲルマニウム等)が好ましい。以下の説明ではテトラメチルゲルマニウムガスを用いる場合を説明する。次に、テトラメチルゲルマニウムガスをパージした後にSiHガスを原料としたエピタキシャル成長を行う。各ガスの供給量(成長レシピ)は、酸素ガスの場合と同様である。すなわち、シリコンエピタキシャル層の成長の合間に、短時間テトラメチルゲルマニウムガスを導入する、すなわちデルタドープを行うことになる。 In this method, in order to introduce the germanium atomic layer 31 into the silicon substrate 10, when epitaxial growth is performed on the silicon substrate 10, first, epitaxial growth using SiH 4 gas containing no chlorine as a source gas is performed, and the silicon epitaxial layer 21 is formed. Form. The SiH 4 gas was purged by introducing a gas containing germanium atoms containing no chlorine atoms, to grow less germanium atoms layer 31 thickness of 5 nm. As this gas, an organometallic gas containing germanium (tetramethyl germanium or the like) is particularly preferable. In the following description, the case of using tetramethyl germanium gas will be described. Next, after purging the tetramethyl germanium gas, epitaxial growth using SiH 4 gas as a raw material is performed. The supply amount (growth recipe) of each gas is the same as that of oxygen gas. That is, during the growth of the silicon epitaxial layer, tetramethyl germanium gas is introduced for a short time, that is, delta doping is performed.
 これにより、Geとシリコンを相互に積層した基板を得ることが出来る。こののち酸化雰囲気に基板をさらすことで、シリコンがGeに比べて酸化されやすいことから、Ge/SiO/Ge/SiOの積層構造を形成することが可能になり、光デバイスへの応用が期待される基板を得ることが可能になる。 Thereby, the board | substrate which laminated | stacked Ge and silicon | silicone mutually can be obtained. After that, by exposing the substrate to an oxidizing atmosphere, silicon is more easily oxidized than Ge. Therefore, it becomes possible to form a stacked structure of Ge / SiO 2 / Ge / SiO 2 , which can be applied to optical devices. An expected substrate can be obtained.
[エピタキシャル層中にスズ原子層を導入する場合]
 次に、シリコン基板上のエピタキシャル層中にスズ原子層を導入する場合について説明する。基本的には、上記の酸素原子層を導入する場合と同様であるため、重複する記載は省略する。
[When introducing a tin atomic layer into the epitaxial layer]
Next, a case where a tin atomic layer is introduced into an epitaxial layer on a silicon substrate will be described. Since this is basically the same as the case where the oxygen atom layer is introduced, redundant description is omitted.
 エピタキシャルウェーハ100にスズ原子層を導入する場合も、原子層31として酸素原子層の代わりにスズ原子層が採用されること以外は、上記した酸素原子層を有するエピタキシャル層50を有するエピタキシャルウェーハ100と同じである。 Even when a tin atomic layer is introduced into the epitaxial wafer 100, the epitaxial wafer 100 having the above-described epitaxial layer 50 having an oxygen atomic layer, except that a tin atomic layer is adopted as the atomic layer 31 instead of the oxygen atomic layer, The same.
 この方法は、シリコン基板10にスズ原子層31を導入するために、シリコン基板10へエピタキシャル成長する際に、まず、原料ガスとして塩素を含まないSiHガスを用いたエピタキシャル成長を行い、シリコンエピタキシャル層21を形成する。SiHガスをパージした後に、塩素原子を含まずスズ原子を含むガスを導入し、厚さ5nm以下のスズ原子層31を成長させる。このガスとしては特にスズを含む有機金属ガス(テトラメチルスズ等)が好ましい。以下の説明ではテトラメチルスズガスを用いる場合を説明する。次に、テトラメチルスズガスをパージした後にSiHガスを原料としたエピタキシャル成長を行う。各ガスの供給量(成長レシピ)は、酸素ガスの場合と同様である。すなわち、シリコンエピタキシャル層の成長の合間に、短時間テトラメチルスズガスを導入する、すなわちデルタドープを行うことになる。 In this method, in order to introduce the tin atomic layer 31 into the silicon substrate 10, when epitaxial growth is performed on the silicon substrate 10, first, epitaxial growth using SiH 4 gas containing no chlorine as a source gas is performed, and the silicon epitaxial layer 21 is formed. Form. The SiH 4 gas was purged by introducing a gas containing tin atoms containing no chlorine atoms, to grow less tin atoms layer 31 thickness of 5 nm. This gas is particularly preferably an organometallic gas containing tin (such as tetramethyltin). In the following description, a case where tetramethyltin gas is used will be described. Next, after purging the tetramethyltin gas, epitaxial growth using SiH 4 gas as a raw material is performed. The supply amount (growth recipe) of each gas is the same as that of oxygen gas. That is, during the growth of the silicon epitaxial layer, tetramethyltin gas is introduced for a short time, that is, delta doping is performed.
 Snの実際的な使用方法としては、Geをはじめとする各種元素をシリコン上に成長させる際の表面改質としての利用が考えられる。この目的の場合であれば、Snを本法によって成長させたのち同じ方法にてGeを成長させることが可能である。 As a practical method of using Sn, it can be used as a surface modification when various elements such as Ge are grown on silicon. For this purpose, it is possible to grow Ge by the same method after growing Sn by this method.
[エピタキシャル層中にホウ素原子層又はリン原子層を導入する場合]
 次に、シリコン基板上のエピタキシャル層中にホウ素原子層又はリン原子層を導入する場合について説明する。基本的には、上記の酸素原子層を導入する場合と同様であるため、重複する記載は省略する。
[When introducing a boron atom layer or a phosphorus atom layer into the epitaxial layer]
Next, the case where a boron atom layer or a phosphorus atom layer is introduced into an epitaxial layer on a silicon substrate will be described. Since this is basically the same as the case where the oxygen atom layer is introduced, redundant description is omitted.
 エピタキシャルウェーハ100にホウ素原子層又はリン原子層を導入する場合も、原子層31として酸素原子層の代わりにホウ素原子層又はリン原子層が採用されること以外は、上記した酸素原子層を有するエピタキシャル層50を有するエピタキシャルウェーハ100と同じである。 Even when a boron atomic layer or a phosphorus atomic layer is introduced into the epitaxial wafer 100, an epitaxial having the oxygen atomic layer described above is used except that a boron atomic layer or a phosphorus atomic layer is employed instead of the oxygen atomic layer as the atomic layer 31. Same as epitaxial wafer 100 with layer 50.
 この方法は、シリコン基板10にホウ素原子層31又はリン原子層31を導入するために、シリコン基板10へエピタキシャル成長する際に、まず、原料ガスとして塩素を含まないSiHガスを用いたエピタキシャル成長を行い、シリコンエピタキシャル層21を形成する。SiHガスをパージした後に、塩素原子を含まずホウ素原子又はリン原子を含むガスを導入し、厚さ5nm以下のホウ素原子層31又はリン原子層31を成長させる。このガスとしては特にホウ素の場合はジボラン(B)、リンの場合はホスフィン(PH)ガスが好ましい。以下の説明ではこれらのドーパントガスを用いる場合を説明する。次に、これらのドーパントガスをパージした後にSiHガスを原料としたエピタキシャル成長を行う。各ガスの供給量(成長レシピ)は、酸素ガスの場合と同様である。すなわち、シリコンエピタキシャル層の成長の合間に、短時間ドーパントガスを導入する、すなわちデルタドープを行うことになる。 In this method, in order to introduce the boron atomic layer 31 or the phosphorus atomic layer 31 into the silicon substrate 10, when epitaxial growth is performed on the silicon substrate 10, first, epitaxial growth using SiH 4 gas containing no chlorine as a source gas is performed. Then, the silicon epitaxial layer 21 is formed. SiH 4 After the purge gas, and introducing a gas containing boron atoms or phosphorus atoms containing no chlorine atoms, to grow less boron atoms layer 31 or a phosphorus atom layer 31 thickness of 5 nm. This gas is preferably diborane (B 2 H 6 ) in the case of boron and phosphine (PH 3 ) gas in the case of phosphorus. In the following description, the case where these dopant gases are used will be described. Next, after purging these dopant gases, epitaxial growth is performed using SiH 4 gas as a raw material. The supply amount (growth recipe) of each gas is the same as that of oxygen gas. That is, during the growth of the silicon epitaxial layer, a dopant gas is introduced for a short time, that is, delta doping is performed.
 本法によることで、特許文献5ではビスマスに限定されていたドーパントの種類を拡張することが可能になる。 By this method, it becomes possible to expand the type of dopant limited to bismuth in Patent Document 5.
 以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples.
(実施例1)
 以下のようにして、図1に示す態様のエピタキシャルウェーハ100を製造した。抵抗率10Ω・cmのボロンドープ、直径200mmのシリコン基板10を材料として、まず、第1のエピタキシャル成長を行った(シリコンエピタキシャル層21)。シリコン原料ガスはSiHとして550℃で成長を行った。膜厚に応じてシリコン原料ガスを流す時間を設定するが、成長レートは遅い方がよいため、0.05nm/秒とし、シリコンエピタキシャル層21の厚さは10nmとした。次に酸素ガス10L/分を1×10-8Torrで360秒の時間だけリアクタに導入し、酸素原子層31をおよそ5nm成長させた。次に、また第1のシリコンエピタキシャル層21と同じ条件でシリコン原料ガスを導入し第2のシリコンエピタキシャル層22の一部を10nm形成した。
(Example 1)
The epitaxial wafer 100 of the aspect shown in FIG. 1 was manufactured as follows. First, a first epitaxial growth was performed using a silicon substrate 10 having a resistivity of 10 Ω · cm and boron doping and a diameter of 200 mm (silicon epitaxial layer 21). The silicon source gas was grown as SiH 4 at 550 ° C. Although the time for flowing the silicon source gas is set according to the film thickness, since the slower growth rate is better, it is set to 0.05 nm / second, and the thickness of the silicon epitaxial layer 21 is set to 10 nm. Next, 10 L / min of oxygen gas was introduced into the reactor at 1 × 10 −8 Torr for a time of 360 seconds, and the oxygen atomic layer 31 was grown to approximately 5 nm. Next, a silicon source gas was introduced under the same conditions as those for the first silicon epitaxial layer 21 to form a part of the second silicon epitaxial layer 22 with a thickness of 10 nm.
 こののち、温度を600℃に上げて成長速度を大きくして3μmのシリコンエピタキシャル層を成長させて、エピタキシャル層50中に酸素原子層31を有するエピタキシャルウェーハ100を製造した。 Thereafter, the temperature was raised to 600 ° C. to increase the growth rate to grow a 3 μm silicon epitaxial layer, and an epitaxial wafer 100 having an oxygen atomic layer 31 in the epitaxial layer 50 was manufactured.
(実施例2)
 以下のようにして、図2に示す態様のエピタキシャルウェーハ200を製造した。抵抗率10Ω・cmのボロンドープ、直径200mmのシリコン基板10を材料として、まず、第1のエピタキシャル成長を行った(シリコンエピタキシャル層21)。シリコン原料ガスはSiHとして550℃で成長を行った。膜厚に応じてシリコン原料ガスを流す時間を設定するが、成長レートは遅い方がよいため、0.05nm/秒とし、第1のシリコンエピタキシャル層21の厚さは10nmとした。次に酸素ガス6L/分を1×10-8Torrで100秒の時間だけリアクタに導入し、酸素原子層31を1原子層成長させた。また第1のシリコンエピタキシャル層21と同じ条件でシリコン原料ガスを導入し第2のシリコンエピタキシャル層22を10nm形成した。
(Example 2)
The epitaxial wafer 200 of the aspect shown in FIG. 2 was manufactured as follows. First, a first epitaxial growth was performed using a silicon substrate 10 having a resistivity of 10 Ω · cm and boron doping and a diameter of 200 mm (silicon epitaxial layer 21). The silicon source gas was grown as SiH 4 at 550 ° C. Although the time for flowing the silicon source gas is set in accordance with the film thickness, since a slower growth rate is better, it is set to 0.05 nm / second, and the thickness of the first silicon epitaxial layer 21 is set to 10 nm. Next, oxygen gas 6 L / min was introduced into the reactor at 1 × 10 −8 Torr for 100 seconds to grow the oxygen atomic layer 31 by one atomic layer. A silicon source gas was introduced under the same conditions as those for the first silicon epitaxial layer 21 to form a second silicon epitaxial layer 22 having a thickness of 10 nm.
 さらに、酸素原子層31と同じ条件で第2のシリコンエピタキシャル層22の上に酸素原子層32を堆積し、さらに第1のシリコンエピタキシャル層21と同じ条件で第3のシリコンエピタキシャル層23を堆積した上に、同条件で酸素原子層(33、34、35)とシリコンエピタキシャル層(24、25、26)を交互に堆積することで、酸素原子層/シリコンエピタキシャル層が5層の組40を有するエピタキシャル層60を含むエピタキシャルウェーハ200を製造した。 Further, an oxygen atomic layer 32 was deposited on the second silicon epitaxial layer 22 under the same conditions as the oxygen atomic layer 31, and a third silicon epitaxial layer 23 was further deposited under the same conditions as the first silicon epitaxial layer 21. On top of this, oxygen atom layers (33, 34, 35) and silicon epitaxial layers (24, 25, 26) are alternately deposited under the same conditions, so that the oxygen atom layer / silicon epitaxial layer has a set 40 of five layers. An epitaxial wafer 200 including the epitaxial layer 60 was manufactured.
 最後の成長後に3μmのエピタキシャル層26の一部として、SiHClを原料として成長させた。実際のデバイスを作製する活性領域として素子の種類にもよるがたいてい1μm程度の拡散領域が形成されることがあるため、この厚さとした。 After the final growth, SiH 2 Cl 2 was grown as a part of the 3 μm epitaxial layer 26 as a raw material. Depending on the type of element, a diffusion region of about 1 μm may be formed as an active region for manufacturing an actual device.
(比較例1)
 抵抗率10Ω・cmのボロンドープ、直径200mmシリコン基板を材料として、第1のエピタキシャル成長を行った。原料ガスはSiHとして550℃で成長を行った。膜厚に応じてシリコン原料ガスを流す時間を設定するが、成長レートは遅い方がよいため、0.05nm/秒とし、シリコンエピタキシャル層の厚さは10nmとした。次に酸素10L/分を 1×10-8Torrで720秒の時間だけリアクタに導入し、酸素原子層を10nm成長させた。次に、また第1のエピタキシャル層と同じ条件でシリコン原料ガスを導入し第2のエピタキシャル層を形成しようとしたが、酸素原子層が厚くなっており、エピタキシャル成長が出来ず、多結晶シリコンとなった。このように酸素原子層が厚いと第2のシリコンエピタキシャル層が単結晶にならないことがわかる。
(Comparative Example 1)
First epitaxial growth was performed using a boron-doped, 200 mm diameter silicon substrate having a resistivity of 10 Ω · cm as a material. The source gas was grown as SiH 4 at 550 ° C. Although the time for flowing the silicon source gas is set according to the film thickness, since a slower growth rate is better, it is set to 0.05 nm / second, and the thickness of the silicon epitaxial layer is set to 10 nm. Next, 10 L / min of oxygen was introduced into the reactor at 1 × 10 −8 Torr for a period of 720 seconds to grow an oxygen atomic layer by 10 nm. Next, the silicon source gas was introduced under the same conditions as the first epitaxial layer to try to form the second epitaxial layer. However, the oxygen atomic layer was thick, and epitaxial growth was not possible, resulting in polycrystalline silicon. It was. Thus, it can be seen that when the oxygen atomic layer is thick, the second silicon epitaxial layer does not become a single crystal.
(比較例2)
 抵抗率10Ω・cmのボロンドープ、直径200mmのシリコン基板を材料として、第1のエピタキシャル成長を行った。原料ガスはSiHClとして1100℃で成長を行った。膜厚に応じてシリコン原料ガスを流す時間を設定するが、成長レートは遅い方がよいため、0.05nm/秒とし、シリコンエピタキシャル層の厚さは10nmとした。次に酸素10L/分を1×10-8Torrで100秒の時間だけリアクタに導入し、酸素原子層を1層成長させた。次に、また第1のエピタキシャル層と同じ条件でシリコン原料ガスを導入し第2のエピタキシャル層を形成しようとしたが、原料ガスに塩素が含まれており、酸素原子層がエッチングされて消失してしまった。
(Comparative Example 2)
First epitaxial growth was performed using a boron-doped, 200 mm-diameter silicon substrate having a resistivity of 10 Ω · cm as a material. The source gas was grown as SiH 2 Cl 2 at 1100 ° C. Although the time for flowing the silicon source gas is set according to the film thickness, since a slower growth rate is better, it is set to 0.05 nm / second, and the thickness of the silicon epitaxial layer is set to 10 nm. Next, 10 L / min of oxygen was introduced into the reactor at 1 × 10 −8 Torr for a time of 100 seconds to grow one oxygen atom layer. Next, a silicon source gas was introduced under the same conditions as the first epitaxial layer to form a second epitaxial layer. However, the source gas contained chlorine, and the oxygen atomic layer was etched and disappeared. I have.
(実施例3)
 以下のようにして、図1に示す態様のエピタキシャルウェーハ100であって、原子層として炭素原子層31をエピタキシャル層中に有するものを製造した。抵抗率10Ω・cmのボロンドープ、直径200mmのシリコン基板10を材料として、まず、第1のエピタキシャル成長を行った(シリコンエピタキシャル層21)。シリコン原料ガスはSiHとして550℃で成長を行った。膜厚に応じてシリコン原料ガスを流す時間を設定するが、成長レートは遅い方がよいため、0.05nm/秒とし、シリコンエピタキシャル層21の厚さは10nmとした。次にCHガス10L/分を1×10-8Torrで360秒の時間だけリアクタに導入し、炭素原子層31をおよそ2nm成長させた。次に、また第1のシリコンエピタキシャル層21と同じ条件でシリコン原料ガスを導入し第2のシリコンエピタキシャル層22の一部を10nm形成した。
(Example 3)
The epitaxial wafer 100 having the aspect shown in FIG. 1 and having the carbon atom layer 31 as an atomic layer in the epitaxial layer was manufactured as follows. First, a first epitaxial growth was performed using a silicon substrate 10 having a resistivity of 10 Ω · cm and boron doping and a diameter of 200 mm (silicon epitaxial layer 21). The silicon source gas was grown as SiH 4 at 550 ° C. Although the time for flowing the silicon source gas is set according to the film thickness, since the slower growth rate is better, it is set to 0.05 nm / second, and the thickness of the silicon epitaxial layer 21 is set to 10 nm. Next, 10 L / min of CH 4 gas was introduced into the reactor at 1 × 10 −8 Torr for a time of 360 seconds, and the carbon atom layer 31 was grown to approximately 2 nm. Next, a silicon source gas was introduced under the same conditions as those for the first silicon epitaxial layer 21 to form a part of the second silicon epitaxial layer 22 with a thickness of 10 nm.
 こののち、温度を600℃に上げて成長速度を大きくして3μmのシリコンエピタキシャル層を成長させて、エピタキシャル層50中に炭素原子層31を有するエピタキシャルウェーハ100を製造した。 Thereafter, the temperature was raised to 600 ° C. to increase the growth rate, and a 3 μm-thick silicon epitaxial layer was grown to manufacture an epitaxial wafer 100 having the carbon atom layer 31 in the epitaxial layer 50.
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 Note that the present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

Claims (6)

  1.  シリコン基板上にエピタキシャル層を形成するエピタキシャルウェーハの製造方法であって、
     前記エピタキシャル層中に、酸素、炭素、窒素、ゲルマニウム、スズ、ホウ素及びリンからなる群から選ばれる1種の元素の原子からなり、厚さが5nm以下である原子層を形成する工程を有し、
     前記原子層に接するエピタキシャル層の形成を、SiHガスを用いて行うことを特徴とするエピタキシャルウェーハの製造方法。
    An epitaxial wafer manufacturing method for forming an epitaxial layer on a silicon substrate,
    A step of forming an atomic layer made of atoms of one element selected from the group consisting of oxygen, carbon, nitrogen, germanium, tin, boron, and phosphorus and having a thickness of 5 nm or less in the epitaxial layer; ,
    An epitaxial wafer manufacturing method comprising forming an epitaxial layer in contact with the atomic layer by using SiH 4 gas.
  2.  前記原子層を、1原子層として形成することを特徴とする請求項1に記載のエピタキシャルウェーハの製造方法。 The method for producing an epitaxial wafer according to claim 1, wherein the atomic layer is formed as a single atomic layer.
  3.  前記エピタキシャル層の領域のうち、前記原子層に接し、少なくとも該原子層から5nmまでの領域を、SiHガスを用いて形成することを特徴とする請求項1又は請求項2に記載のエピタキシャルウェーハの製造方法。 3. The epitaxial wafer according to claim 1, wherein, in the region of the epitaxial layer, a region that is in contact with the atomic layer and is at least 5 nm from the atomic layer is formed using SiH 4 gas. 4. Manufacturing method.
  4.  前記原子層を、前記エピタキシャル層中に複数層形成することを特徴とする請求項1から請求項3のいずれか1項に記載のエピタキシャルウェーハの製造方法。 The method for producing an epitaxial wafer according to any one of claims 1 to 3, wherein a plurality of the atomic layers are formed in the epitaxial layer.
  5.  前記エピタキシャル層の領域のうち、前記SiHガスを用いて形成する領域以外の領域を、SiHClガス又はSiHClガスを用いて形成することを特徴とする請求項1から請求項4のいずれか1項に記載のエピタキシャルウェーハの製造方法。 The region of the epitaxial layer other than the region formed using the SiH 4 gas is formed using a SiH 2 Cl 2 gas or a SiHCl 3 gas. The manufacturing method of the epitaxial wafer of any one of Claims.
  6.  前記原子層の形成を、
     酸素原子層を形成する場合は酸素ガスを、
     炭素原子層を形成する場合はCHガスを、
     窒素原子層を形成する場合はNHガスを、
     ゲルマニウム原子層を形成する場合はGeを含む有機金属ガスを、
     スズ原子層を形成する場合はSnを含む有機金属ガスを、
     ホウ素原子層を形成する場合はBガスを、
     リン原子層を形成する場合はPHガスを、
     用いて行うことを特徴とする請求項1から請求項5のいずれか1項に記載のエピタキシャルウェーハの製造方法。
    Forming the atomic layer,
    When forming an oxygen atomic layer, oxygen gas,
    When forming a carbon atomic layer, CH 4 gas is used.
    When forming a nitrogen atom layer, NH 3 gas is used.
    In the case of forming a germanium atomic layer, an organometallic gas containing Ge is used.
    In the case of forming a tin atomic layer, an organometallic gas containing Sn is used.
    In the case of forming a boron atomic layer, B 2 H 6 gas is used.
    When forming a phosphorus atomic layer, PH 3 gas is used.
    The method for producing an epitaxial wafer according to any one of claims 1 to 5, wherein the method is performed.
PCT/JP2018/020091 2017-06-15 2018-05-25 Epitaxial wafer production method WO2018230301A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197031426A KR102482578B1 (en) 2017-06-15 2018-05-25 Manufacturing method of epitaxial wafer
CN201880034863.7A CN110678964A (en) 2017-06-15 2018-05-25 Method for manufacturing epitaxial wafer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017117752A JP6702268B2 (en) 2017-06-15 2017-06-15 Epitaxial wafer manufacturing method
JP2017-117752 2017-06-15

Publications (1)

Publication Number Publication Date
WO2018230301A1 true WO2018230301A1 (en) 2018-12-20

Family

ID=64659856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020091 WO2018230301A1 (en) 2017-06-15 2018-05-25 Epitaxial wafer production method

Country Status (4)

Country Link
JP (1) JP6702268B2 (en)
KR (1) KR102482578B1 (en)
CN (1) CN110678964A (en)
WO (1) WO2018230301A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7247902B2 (en) 2020-01-10 2023-03-29 信越半導体株式会社 Epitaxial wafer manufacturing method
CN116685723A (en) 2021-01-25 2023-09-01 信越半导体株式会社 Method for manufacturing epitaxial wafer
JP7435516B2 (en) 2021-03-22 2024-02-21 信越半導体株式会社 Epitaxial wafer manufacturing method
JP2024007890A (en) * 2022-07-06 2024-01-19 信越半導体株式会社 Manufacturing method for epitaxial wafer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63291897A (en) * 1987-05-26 1988-11-29 Nec Corp Method for growing single crystal membrane
JPH01234394A (en) * 1988-03-15 1989-09-19 Nec Corp Crystal growth method
JPH05326418A (en) * 1992-05-15 1993-12-10 Fujitsu Ltd Manufacture of semiconductor device
JPH09278597A (en) * 1996-04-15 1997-10-28 Matsushita Electric Ind Co Ltd Mixed crystal semiconductor
JPH10297998A (en) * 1997-04-26 1998-11-10 Hoya Corp Silicon carbide and production of silicon carbide
JP2002083781A (en) * 2000-09-06 2002-03-22 Univ Tohoku Semiconductor device
JP2004259738A (en) * 2003-02-24 2004-09-16 Sharp Corp Process for producing nitride based iii-v group compound semiconductor and semiconductor device comprising it
JP2014165494A (en) * 2013-02-22 2014-09-08 Imec Oxygen monolayer on semiconductor

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5919312A (en) * 1982-07-23 1984-01-31 Hitachi Ltd Manufacture of semiconductor device
NL9000973A (en) * 1990-04-24 1991-11-18 Philips Nv METHOD FOR MANUFACTURING A SEMICONDUCTOR DEVICE
US5242858A (en) * 1990-09-07 1993-09-07 Canon Kabushiki Kaisha Process for preparing semiconductor device by use of a flattening agent and diffusion
US5268582A (en) * 1992-08-24 1993-12-07 At&T Bell Laboratories P-N junction devices with group IV element-doped group III-V compound semiconductors
JP2929004B1 (en) 1998-06-16 1999-08-03 工業技術院長 Semiconductor device doped with dopant and doping method thereof
JP3467430B2 (en) * 1999-03-17 2003-11-17 松下電器産業株式会社 Method and apparatus for forming dielectric film
JP3886085B2 (en) * 1999-05-14 2007-02-28 株式会社東芝 Manufacturing method of semiconductor epitaxial substrate
JP3707726B2 (en) * 2000-05-31 2005-10-19 Hoya株式会社 Silicon carbide manufacturing method, composite material manufacturing method
EP1373151A1 (en) * 2001-02-24 2004-01-02 Corning Incorporated Oxygen doping of silicon oxyfluoride glass
JP3461819B2 (en) 2001-06-14 2003-10-27 松下電器産業株式会社 Manufacturing method of semiconductor crystal film
KR20040054015A (en) * 2002-12-16 2004-06-25 주식회사 실트론 A silicon wafer and a method for increasing resistivity of silicon wafer
JP4883547B2 (en) * 2003-04-28 2012-02-22 住友化学株式会社 Compound semiconductor epitaxial substrate
WO2005018005A1 (en) 2003-06-26 2005-02-24 Rj Mears, Llc Semiconductor device including mosfet having band-engineered superlattice
US7153763B2 (en) 2003-06-26 2006-12-26 Rj Mears, Llc Method for making a semiconductor device including band-engineered superlattice using intermediate annealing
US8372697B2 (en) * 2006-05-08 2013-02-12 University Of South Carolina Digital oxide deposition of SiO2 layers on wafers
JP5343371B2 (en) * 2008-03-05 2013-11-13 株式会社Sumco Silicon substrate and manufacturing method thereof
CN101620991B (en) * 2008-07-02 2011-08-17 中芯国际集成电路制造(上海)有限公司 Growth of atomic layer deposition epitaxial silicon of TFT flash memory cell
JP4333820B1 (en) * 2009-01-19 2009-09-16 住友電気工業株式会社 Compound semiconductor substrate
DE102009030296B4 (en) * 2009-06-24 2013-05-08 Siltronic Ag Process for producing an epitaxially coated silicon wafer
CN102456551A (en) * 2010-10-21 2012-05-16 上海华虹Nec电子有限公司 Epitaxial growth method
JP2013197291A (en) 2012-03-19 2013-09-30 Toshiba Corp Deposition apparatus and deposition method
CN103489760B (en) * 2013-09-06 2016-10-05 西安电子科技大学 The method of SiC substrate homoepitaxy carbon silicon double-atomic-layer film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63291897A (en) * 1987-05-26 1988-11-29 Nec Corp Method for growing single crystal membrane
JPH01234394A (en) * 1988-03-15 1989-09-19 Nec Corp Crystal growth method
JPH05326418A (en) * 1992-05-15 1993-12-10 Fujitsu Ltd Manufacture of semiconductor device
JPH09278597A (en) * 1996-04-15 1997-10-28 Matsushita Electric Ind Co Ltd Mixed crystal semiconductor
JPH10297998A (en) * 1997-04-26 1998-11-10 Hoya Corp Silicon carbide and production of silicon carbide
JP2002083781A (en) * 2000-09-06 2002-03-22 Univ Tohoku Semiconductor device
JP2004259738A (en) * 2003-02-24 2004-09-16 Sharp Corp Process for producing nitride based iii-v group compound semiconductor and semiconductor device comprising it
JP2014165494A (en) * 2013-02-22 2014-09-08 Imec Oxygen monolayer on semiconductor

Also Published As

Publication number Publication date
KR20200017384A (en) 2020-02-18
CN110678964A (en) 2020-01-10
JP2019004050A (en) 2019-01-10
JP6702268B2 (en) 2020-05-27
KR102482578B1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
TWI692545B (en) Methods of forming highly p-type doped germanium tin films and structures and devices including the films
TWI751115B (en) Methods of forming silicon germanium tin films
KR102654856B1 (en) Cyclic conformal deposition/annealing/etching for SI gap filling
WO2018230301A1 (en) Epitaxial wafer production method
JP5090451B2 (en) Method for forming carbon-containing silicon epitaxial layer
US6391749B1 (en) Selective epitaxial growth method in semiconductor device
JP5741382B2 (en) Thin film forming method and film forming apparatus
US9633840B2 (en) Method of manufacturing silicon carbide semiconductor substrate and method of manufacturing silicon carbide semiconductor device
US7029995B2 (en) Methods for depositing amorphous materials and using them as templates for epitaxial films by solid phase epitaxy
JP5780981B2 (en) Method for forming germanium thin film
JP5854112B2 (en) Thin film forming method and film forming apparatus
JP6005361B2 (en) Method for selective deposition of semiconductor material
KR20230132455A (en) Method for manufacturing epitaxial wafers
US8158495B2 (en) Process for forming a silicon-based single-crystal portion
CN112136203A (en) Method for manufacturing SiC epitaxial substrate
JPS6298747A (en) Manufacture of semiconductor device
JPH09306844A (en) Semiconductor device and manufacture thereof
US20070254450A1 (en) Process for forming a silicon-based single-crystal portion
JP3112796B2 (en) Chemical vapor deposition method
JP2004193454A (en) Semiconductor device and method for manufacturing same
CN115074825A (en) Silicon carbide epitaxial structure, pulse type growth method and application thereof
JP2008235726A (en) Manufacturing method of semiconductor multilayer film
JPS61131434A (en) Manufacture of semiconductor device
JPS59155917A (en) Manufacture of semiconductor substrate
KR20060007877A (en) Method for manufacturing of semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818223

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197031426

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18818223

Country of ref document: EP

Kind code of ref document: A1