WO2018229856A1 - 半導体素子の駆動回路 - Google Patents

半導体素子の駆動回路 Download PDF

Info

Publication number
WO2018229856A1
WO2018229856A1 PCT/JP2017/021762 JP2017021762W WO2018229856A1 WO 2018229856 A1 WO2018229856 A1 WO 2018229856A1 JP 2017021762 W JP2017021762 W JP 2017021762W WO 2018229856 A1 WO2018229856 A1 WO 2018229856A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
semiconductor element
circuit
delay
voltage
Prior art date
Application number
PCT/JP2017/021762
Other languages
English (en)
French (fr)
Inventor
貴志 益原
堀口 剛司
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US16/605,219 priority Critical patent/US10917083B2/en
Priority to PCT/JP2017/021762 priority patent/WO2018229856A1/ja
Priority to DE112017007641.2T priority patent/DE112017007641T5/de
Priority to CN201780091742.1A priority patent/CN110741542B/zh
Priority to JP2017553273A priority patent/JP6301028B1/ja
Publication of WO2018229856A1 publication Critical patent/WO2018229856A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/0812Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit
    • H03K17/08128Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit in composite switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0826Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in bipolar transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/18Modifications for indicating state of switch

Definitions

  • the present invention relates to a drive circuit for a semiconductor element, and more particularly to a drive circuit having a function of determining a short circuit state of a semiconductor element.
  • a short circuit occurs, a large current flows and the semiconductor element may be thermally destroyed. Therefore, a function for determining the short-circuit state of the semiconductor element is required.
  • IGBT Insulated Gate Bipolar Transistor
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • Patent Document 1 The driving circuit described in Japanese Patent Laid-Open No. 2013-123329 (Patent Document 1) is used when the collector current of a semiconductor element is larger than a preset reference value and the gate current flowing through the semiconductor element is smaller than a preset reference value. It is determined that the semiconductor element is short-circuited.
  • the collector current flowing in the semiconductor element is detected from the voltage across the shunt resistor connected to the sense cell of the semiconductor element, a high voltage is applied between the positive terminal and the negative terminal of the semiconductor element. In this case, it is possible to determine the short circuit state without increasing the breakdown voltage of the circuit.
  • Patent Document 2 The drive circuit described in Japanese Patent Laying-Open No. 2009-225506 (Patent Document 2) detects the gate current flowing from the drive circuit to the semiconductor element, and within the short-circuit detection period from the moment when the gate current becomes larger than the positive reference value. When the gate current becomes smaller than the negative reference value, it is determined that the semiconductor element is short-circuited. When a large current such as a short circuit current flows through the semiconductor element, the gate voltage becomes higher than the voltage controlled by the drive circuit, and a current flows from the semiconductor element to the drive circuit. That is, a current flows in a direction opposite to the gate current for turning on. Therefore, it is possible to determine the short-circuit state by confirming whether the gate current at the time of turning on is positive or negative.
  • the present invention has been made to solve the above-described problems, and does not require a sense cell of a semiconductor element, can be applied to a wide range of semiconductor elements, and is a semiconductor element capable of easily and quickly determining a short-circuit state of a semiconductor element.
  • An object is to provide a driving circuit.
  • the semiconductor element drive circuit of the present invention includes a control unit, a gate voltage detection unit, a gate current detection unit, a signal generation circuit, a first comparator, a second comparator, and a short-circuit determination unit.
  • the control unit controls the open / close state of the semiconductor element based on a command received from the outside.
  • the gate voltage detection unit detects the gate voltage of the semiconductor element and generates a voltage detection signal indicating the detected gate voltage.
  • the gate current detection unit detects a current flowing into the gate electrode of the semiconductor element.
  • the signal generation circuit includes a first differential amplification signal of the voltage detection signal and the first delay signal of the voltage detection signal, a second differential amplification signal of the first delay signal and the second delay signal of the voltage detection signal, and a voltage One of the differential signals of the detection signals is generated as an output signal.
  • the first comparator compares the value of the output signal with the first reference value.
  • the second comparator compares the current detection value obtained by the gate current detection unit with the second reference value.
  • the short circuit determination unit determines whether or not the semiconductor element is in a short circuit state based on the comparison result of the first comparator and the comparison result of the second comparator, and generates a determination signal indicating the determination result.
  • a sense cell of a semiconductor element is not required, and it can be applied to a wide range of semiconductor elements, and the short-circuit state of the semiconductor element can be easily and quickly determined.
  • FIG. 1 is a diagram illustrating a configuration of a drive circuit for a semiconductor element according to a first embodiment. It is a figure which shows an example of a structure of a delay circuit. It is a figure which shows an example of a structure of a differential amplifier circuit. It is the schematic which shows the voltage detection signal Vg in the case of turning on a semiconductor element. It is the schematic which shows the time change of the voltage value E which shows the gate current value Ig in the case of turning on the semiconductor element 1.
  • FIG. It is the schematic which shows the voltage detection signal Vg produced
  • FIG. 4 is a diagram illustrating a configuration of a drive circuit according to a second embodiment.
  • FIG. 6 is a diagram illustrating a configuration of a drive circuit according to a third embodiment.
  • FIG. 6 is a diagram illustrating a configuration of a drive circuit according to a fourth embodiment. It is a figure which shows the differential signal Sdi with respect to the voltage detection signal Vg shown in FIG.
  • FIG. 10 is a circuit diagram illustrating a configuration of a gate current detection unit according to a fifth embodiment.
  • FIG. 10 is a circuit diagram illustrating a configuration of a gate current detection unit according to a sixth embodiment.
  • FIG. 10 is a circuit diagram illustrating a configuration of a gate current detection unit according to a seventh embodiment. It is a figure which shows the structure of the drive circuit which combined the differentiation circuit of Embodiment 4, and the gate current detection part of Embodiment 5.
  • FIG. 10 is a circuit diagram illustrating a configuration of a gate current detection unit according to a fifth embodiment.
  • FIG. 10 is a circuit diagram illustrating a configuration of a gate current detection unit according to a sixth embodiment.
  • FIG. 10 is a circuit diagram illustrating a configuration of a gate current detection unit according to a seventh embodiment. It is a figure which shows the structure of the drive circuit which combined the differentiation circuit of Embodiment 4, and the gate current detection part of Embodiment 5.
  • FIG. 1 is a diagram showing a configuration of a drive circuit 100 of the semiconductor element 1 according to the first embodiment.
  • the semiconductor element 1 is an IGBT, and a gate electrode is connected to the drive circuit 100.
  • the collector electrode of the semiconductor element 1 receives a positive voltage via the peripheral circuit and becomes a positive electrode.
  • the emitter electrode of the semiconductor element 1 is connected to the ground and becomes a negative electrode.
  • the semiconductor element 1 may be another power semiconductor element such as a power MOSFET.
  • the drive circuit 100 is connected to the gate electrode of the semiconductor element 1 and drives the semiconductor element 1.
  • the drive circuit 100 includes a gate voltage detection unit 2, a signal generation circuit 50, a gate current detection unit 5, comparators 6 a and 6 b, a short-circuit determination unit 8, a signal holding unit 9, and a control unit 10. .
  • the control unit 10 controls the open / close state of the semiconductor element 1 based on an input command received from the outside.
  • the control unit 10 When receiving an off command from the outside, the control unit 10 outputs an off-gate voltage for setting the semiconductor element 1 to an off state (open state) to the gate electrode of the semiconductor element 1. Further, when receiving an on command from the outside, the control unit 10 outputs an on-gate voltage for turning on the semiconductor element 1 (closed state) to the gate electrode of the semiconductor element 1.
  • the gate voltage detector 2 detects the gate voltage (gate electrode voltage) of the semiconductor element 1 and generates a voltage detection signal Vg indicating the detected gate voltage.
  • the voltage detection signal Vg is indicated by a change in voltage value.
  • the gate voltage detector 2 may generate the gate voltage value of the semiconductor element 1 as it is as the voltage detection signal Vg, or may generate a constant multiple of the gate voltage value as the voltage detection signal Vg.
  • the gate voltage detection unit 2 outputs the generated voltage detection signal Vg to the signal generation circuit 50.
  • the signal generation circuit 50 generates and outputs an output signal related to the gate voltage of the semiconductor element 1.
  • the signal generation circuit 50 generates a differential amplification signal Sa of the voltage detection signal Vg and the delay signal Sd1 of the voltage detection signal Vg as an output signal.
  • the signal generation circuit 50 includes a delay circuit 3a and a differential amplifier circuit 4a.
  • the delay circuit 3a receives the voltage detection signal Vg and generates a delay signal Sd1 of the voltage detection signal Vg.
  • the delay circuit 3a outputs the generated delay signal Sd1 to the differential amplifier circuit 4a.
  • FIG. 2 is a diagram showing an example of the configuration of the delay circuit 3a.
  • delay circuit 3a includes a resistor R0 and a capacitor C0, for example.
  • the resistor R0 is connected between the input terminal 31 and the output terminal 32 of the delay circuit 3a.
  • One end of the capacitor C0 is connected to the ground 15 and has the same potential as the emitter electrode that is the negative electrode of the semiconductor element 1.
  • the other end of the capacitor C0 is connected to the output terminal 32.
  • the configuration shown in FIG. 2 is generally known as a kind of filter.
  • the delayed signal A ′ output from the output terminal 32 with respect to the input signal A received by the input terminal 31 can be expressed as the following equation (1).
  • the resistance value of the resistor R0 is r0
  • the capacitance value of the capacitor C0 is c0
  • the time from the time when the input signal A is received is t.
  • the delay circuit 3a is not limited to the configuration shown in FIG. 2, and may be configured with a plurality of resistors and a plurality of capacitors.
  • the differential amplifier circuit 4a generates and generates a differential amplified signal Sa of the voltage detection signal Vg generated by the gate voltage detector 2 and the delayed signal Sd1 output from the delay circuit 3a.
  • the differential amplified signal Sa is output to the comparator 6a.
  • FIG. 3 is a diagram showing an example of the configuration of the differential amplifier circuit 4a.
  • the differential amplifier circuit 4a includes, for example, resistors R1 to R4, an operational amplifier 20, input terminals 41 and 42, and an output terminal 43.
  • the output terminal 43 is connected to the output terminal of the operational amplifier 20.
  • the resistor R1 is connected between the inverting input terminal of the operational amplifier 20 and the input terminal 41.
  • the resistor R ⁇ b> 2 is connected between the inverting input terminal of the operational amplifier 20 and the output terminal 43.
  • the resistor R3 is connected between the non-inverting input terminal of the operational amplifier 20 and the input terminal 42.
  • the resistor R4 is connected between the non-inverting input terminal of the operational amplifier 20 and the ground 15.
  • the voltage value Vc of the output terminal 43 is expressed by the following equation (3).
  • Sa can be obtained from the output terminal 43.
  • the comparator 6a compares the value of the differential amplified signal Sa generated by the differential amplifier circuit 4a with the first reference voltage value Vref1, and generates a signal Sc1 indicating the comparison result.
  • the comparator 6a generates a high-level signal Sc1 when the value of the differential amplification signal Sa is larger than the first reference voltage value Vref1.
  • the comparator 6a generates a low-level signal Sc1 when the differential amplification signal Sa is equal to or lower than the first reference voltage value Vref1.
  • the comparator 6a outputs the generated signal Sc1 to the short circuit determination unit 8.
  • the gate current detection unit 5 detects a current (gate current) flowing from the control unit 10 to the gate electrode of the semiconductor element 1, and a voltage (voltage value E (current detection value)) corresponding to the detected gate current value Ig. Is output to the comparator 6b.
  • the comparator 6b compares the voltage value E received from the gate current detection unit 5 with the second reference voltage value Vref2, and generates a signal Sc2 according to the comparison result.
  • the comparator 6b generates a high-level signal Sc2 when the voltage value E is smaller than the second reference voltage value Vref2.
  • the comparator 6b generates a low-level signal Sc2 when the voltage value E is equal to or higher than the second reference voltage value Vref2.
  • the comparator 6b outputs the generated signal Sc2 to the short circuit determination unit 8.
  • the short circuit determination unit 8 determines whether or not the semiconductor element 1 is in a short circuit state by taking a logical product of the signal Sc1 received from the comparator 6a and the signal Sc2 received from the comparator 6b.
  • the “short circuit state” is a state in which the semiconductor element 1 is connected to the voltage source with a low resistance due to a failure or malfunction of peripheral components of the semiconductor element 1 and an excessive short circuit current flows.
  • the short circuit determination unit 8 determines that the semiconductor element 1 is in a short circuit state, and the high level The determination signal Sj is output.
  • the short circuit determination unit 8 outputs a low level determination signal Sj. In other words, when the value of the differential amplified signal Sa received from the differential amplifier circuit 4a is larger than the first reference voltage value Vref1, and the voltage value E received from the gate current detector 5 is smaller than the second reference voltage value Vref2. The short circuit determination unit 8 determines that the semiconductor element 1 is in a short circuit state.
  • the signal holding unit 9 holds the high-level determination signal Sj when the short circuit determination unit 8 determines that the semiconductor element 1 is in a short circuit state. Specifically, when the signal holding unit 9 receives a low-level determination signal Sj indicating that the semiconductor element 1 is not in a short circuit state from the short circuit determination unit 8, the signal holding unit 9 outputs the determination signal Sj to the control unit 10 as it is. When the signal holding unit 9 receives the high-level determination signal Sj indicating that the semiconductor element 1 is in the short-circuit state from the short-circuit determination unit 8, the signal holding unit 9 receives the high-level determination signal Sj until the reset command is received from the outside. The high-level determination signal Sj is output to the control unit 10.
  • the signal holding unit 9 When the signal holding unit 9 receives a reset command from the outside while holding the high level determination signal Sj, the signal holding unit 9 stops holding the high level determination signal Sj and receives the determination signal Sj received from the short circuit determination unit 8. Is output to the control unit 10 as it is.
  • the control unit 10 controls the open / close state of the semiconductor element 1 in response to an external input command while receiving the low-level determination signal Sj from the signal holding unit 9. While receiving the high-level determination signal Sj from the signal holding unit 9, the control unit 10 sets the off-gate voltage to the semiconductor in order to turn off the semiconductor element 1 regardless of an external input command. Output to the gate electrode of the element 1.
  • FIG. 4 is a schematic diagram showing the voltage detection signal Vg when the semiconductor element 1 is turned on.
  • FIG. 5 is a schematic diagram showing a time change of the voltage value E indicating the gate current value Ig when the semiconductor element 1 is turned on. 4 and 5, the waveform at normal time is indicated by a solid line, and the waveform when a short-circuit state occurs (hereinafter referred to as “at the time of short-circuit”) is indicated by a broken line.
  • the normal voltage detection signal Vg and voltage value E will be described.
  • the voltage detection signal Vg starts transition from the off gate voltage Vg_off to the on gate voltage Vg_on.
  • a gate current flows from the control unit 10 to the gate electrode of the semiconductor element 1.
  • a period in which the gate voltage becomes constant appears during the transition from the off-gate voltage Vg_off to the on-gate voltage Vg_on. In general, this period is called a mirror period, and the gate voltage in the mirror period is called a mirror voltage Vm.
  • the capacitance existing between the gate electrode and the positive collector electrode is called a feedback capacitance.
  • the potential of the gate electrode is higher than the collector electrode of the semiconductor element 1, so that a substantially constant gate current for charging the feedback capacitance is generated from the gate electrode to the semiconductor element 1 during the mirror period.
  • the length of the mirror period and the mirror voltage Vm vary depending on operating conditions such as the voltage between the positive electrode (here, the collector electrode) and the negative electrode (here, the emitter electrode) of the semiconductor element 1 and the conduction current.
  • the voltage detection signal Vg rises again and reaches the on-gate voltage Vg_on controlled by the control unit 10.
  • the on-gate voltage Vg_on is reached (that is, when the transition to the on-state is completed)
  • the voltage value E indicating the gate current value Ig converges to zero.
  • the voltage detection signal Vg and the voltage value E at the time of short circuit will be described.
  • the voltage detection signal Vg starts transition from the off gate voltage Vg_off to the on gate voltage Vg_on.
  • a gate current flows from the control unit 10 to the gate electrode of the semiconductor element 1.
  • the voltage detection signal Vg reaches the on-gate voltage Vg_on controlled by the controller 10 without the mirror period appearing.
  • a peripheral circuit connected to the positive electrode (here, the collector electrode) of the semiconductor element 1 is short-circuited, so that a large amount is provided between the positive electrode (here, the collector electrode) and the negative electrode (here, the emitter electrode) of the semiconductor element 1.
  • a voltage is applied.
  • the potential of the collector electrode of the semiconductor element 1 becomes higher than the potential of the gate electrode, and the feedback capacitor is not charged, so that the mirror period does not appear. Therefore, the gate current for charging the feedback capacitor does not flow, and the voltage value E indicating the gate current value Ig rises immediately after time t0, and then converges to zero at an earlier stage than normal.
  • FIG. 6 is a schematic diagram showing the voltage detection signal Vg generated by the gate voltage detector 2 and the delay signal Sd1 generated by the delay circuit 3a.
  • FIG. 7 is a schematic diagram showing the differential amplified signal Sa generated by the differential amplifier circuit 4a. 6 and 7, the waveform at normal time is indicated by a solid line, and the waveform at short circuit is indicated by a broken line. 6 and 7, the delay circuit 3a has the configuration shown in FIG. 2, the differential amplifier circuit 4a has the configuration shown in FIG. 3, and the delay signal Sd1 is applied to the input terminal 41 of the differential amplifier circuit 4a. And the voltage detection signal Vg is input to the input terminal 42 of the differential amplifier circuit 4a.
  • the voltage detection signal Vg rises monotonously and the difference between the voltage detection signal Vg and the delay signal Sd1 increases.
  • the rise of the voltage detection signal Vg is limited during the mirror period. Therefore, the difference between the voltage detection signal Vg and the delay signal Sd1 at the normal time is smaller than the difference between the voltage detection signal Vg and the delay signal Sd1 at the time of a short circuit.
  • the maximum value that can be taken by the differential amplification signal Sa at the time of the short circuit becomes larger than the maximum value that can be taken by the differential amplification signal Sa at the time of normal operation.
  • the voltage detection signal Vg and the delay signal Sd1 at the time of short circuit reach the on-gate voltage Vg_on controlled by the control unit 10 earlier than normal.
  • FIG. 8 is a diagram showing a time transition of the voltage value E and the value of the differential amplification signal Sa in a period from the time t0 when the ON command is received until the differential amplification signal Sa converges to zero.
  • the voltage value E and the differential amplification signal Sa are plotted on the horizontal axis and the vertical axis, respectively.
  • a graph in which the value of the amplified signal Sa is plotted is shown.
  • the time transition of the plot at the normal time is shown by a solid line
  • the time transition of the plot at the time of a short circuit is shown by a broken line.
  • the coordinate value of the vertical axis is the first reference voltage value Vref1
  • a straight line parallel to the horizontal axis is a first straight line L1.
  • a coordinate value on the horizontal axis is the second reference voltage value Vref2
  • a straight line parallel to the vertical axis is defined as a second straight line L2.
  • the short-circuit determination unit 8 determines that the semiconductor element 1 when the value of the differential amplification signal Sa is larger than the first reference voltage value Vref1 and the voltage value E indicating the gate current value Ig is smaller than the second reference voltage value Vref2. Can be easily determined to be in a short-circuit state.
  • the short circuit determination unit 8 determines that the semiconductor element 1 is in a short circuit state, and the semiconductor element 1 is controlled to be in an open state by the control unit 10 at high speed. Thereby, the semiconductor element 1 can be protected at high speed.
  • the drive circuit 100 includes the control unit 10, the gate voltage detection unit 2, the gate current detection unit 5, the signal generation circuit 50, and the comparator (first comparator) 6a. And a comparator (second comparator) 6b and a short circuit determination unit 8.
  • the signal generation circuit 50 generates a differential amplification signal (first differential amplification signal) Sa between the voltage detection signal Vg and a delay signal (first delay signal) Sd1 of the voltage detection signal Vg as an output signal.
  • the comparator 6a compares the value of the differential amplification signal Sa with the first reference voltage value (first reference value) Vref1.
  • the comparator 6b compares the voltage value (current detection value) E generated by the gate current detection unit 5 with the second reference voltage value (second reference value) Vref2.
  • the short circuit determination unit 8 determines whether or not the semiconductor element 1 is in a short circuit state based on the comparison results of the comparators 6a and 6b, and generates a determination signal Sj indicating the determination result.
  • the drive circuit 100 can also be applied to a semiconductor element to which a sense cell and a shunt resistor are not added. Furthermore, unlike the technique described in Japanese Patent Application Laid-Open No. 2009-225506, it is not necessary to set a short circuit detection period, so that the short circuit state of the semiconductor element 1 can be easily determined.
  • the drive circuit 100 does not require a sense cell of a semiconductor element, can be applied to a wide variety of semiconductor elements, and can easily and quickly determine the short-circuit state of the semiconductor element 1.
  • the signal generation circuit 50 receives the voltage detection signal Vg, receives a delay circuit (first delay circuit) 3a that generates the delay signal Sd1, and receives the voltage detection signal Vg and the delay signal Sd1, and generates a differential amplification signal Sa.
  • Differential amplifier circuit (first differential amplifier circuit) 4a As a result, the signal generation circuit 50 can easily generate the differential amplification signal Sa.
  • the drive circuit 100 further includes a signal holding unit 9 for holding the determination signal Sj when the short circuit determination unit 8 determines that the semiconductor element 1 is in a short circuit state. Thereby, even when the plot point of the voltage value E and the value of the differential amplification signal Sa changes from the inside of the divided area B1 to the outside of the divided area B1 shown in FIG. 8, the semiconductor element 1 is in a short-circuited state. Is held. As a result, the drive circuit 100 can more reliably determine the short circuit state of the semiconductor element 1.
  • the control unit 10 turns the semiconductor element 1 into an off state (open state). Thereby, when the semiconductor element 1 is in a short circuit state, the semiconductor element 1 can be protected.
  • FIG. 9 is a diagram illustrating a configuration of the drive circuit 101 according to the second embodiment. As shown in FIG. 9, the drive circuit 101 is different from the drive circuit 100 of the first embodiment in that the voltage of the first reference voltage value Vref1 is input to both the comparators 6a and 6b.
  • the second reference voltage value Vref2 used in the comparator 6b is the same as the first reference voltage value Vref1 used in the comparator 6a. That is, the reference voltage input to the comparator 6a and the comparator 6b is shared. Thereby, the circuit scale of the drive circuit 101 can be reduced. As a result, the drive circuit 101 can be realized at a lower cost and a smaller size as compared with the first embodiment.
  • the gate current detector 5 outputs the voltage value E obtained by multiplying the gate current value Ig by the proportional coefficient k. Therefore, the level of the voltage value E can be changed by adjusting the proportional coefficient k. Further, by adjusting the amplification factor of the differential amplifier circuit 4a or the delay time of the delay circuit 3a, the amplitude of the differential amplified signal Sa output from the differential amplifier circuit 4a can be changed. By appropriately adjusting at least one of the proportionality coefficient k, the amplification factor of the differential amplifier circuit 4a, and the delay time of the delay circuit 3a, the voltage of the common first reference voltage value Vref1 is input to the comparators 6a and 6b. Even if it does, it can be determined whether the semiconductor element 1 is a short circuit state.
  • FIG. 10 is a diagram illustrating a configuration of the drive circuit 102 according to the third embodiment.
  • the drive circuit 102 is different from the drive circuit 100 (see FIG. 1) of the first embodiment in that the drive circuit 102 includes a signal generation circuit 50 a instead of the signal generation circuit 50.
  • the signal generation circuit 50a is different from the signal generation circuit 50 of the first embodiment in that it further includes a delay circuit 3b.
  • the delay circuit 3b receives the voltage detection signal Vg output from the gate voltage detector 2, and generates a delay signal (second delay signal) Sd2 obtained by delaying the voltage detection signal Vg. Note that the delay time in the delay circuit 3b is different from the delay time in the delay circuit 3a.
  • the differential amplification circuit 4a generates a differential amplification signal Sa obtained by amplifying the difference between the delay signal Sd1 generated by the delay circuit 3a and the delay signal Sd2 generated by the delay circuit 3b.
  • the third embodiment by appropriately setting the delay time of the delay circuits 3a and 3b, noise resistance can be improved and the amplitude of the differential amplification signal Sa can be adjusted. As a result, it can be more easily determined whether or not the semiconductor element 1 is in a short circuit state. Further, another delay circuit may be added between the differential amplifier circuit 4a and the comparator 6a.
  • FIG. 11 is a diagram illustrating a configuration of the drive circuit 103 according to the fourth embodiment.
  • the drive circuit 103 is different from the drive circuit 100 (see FIG. 1) of the first embodiment in that the drive circuit 103 includes a signal generation circuit 50 b instead of the signal generation circuit 50.
  • the signal generation circuit 50b is different from the signal generation circuit 50 of the first embodiment in that a differential circuit 40 is provided instead of the delay circuit 3a and the differential amplifier circuit 4a.
  • the differentiation circuit 40 receives the voltage detection signal Vg from the gate voltage detector 2 and generates a differentiation signal Sdi of the voltage detection signal Vg.
  • the differentiation circuit 40 outputs the generated differential signal Sdi to the comparator 6a.
  • the comparator 6a compares the value of the differential signal Sdi with the first reference voltage value Vref1 instead of the differential amplification signal Sa. If the value of the differential signal Sdi is greater than the first reference voltage value Vref1, the high level signal Sc1 is output, and when the value of the differential signal Sdi is equal to or lower than the first reference voltage value Vref1, a low level signal Sc1 is output.
  • FIG. 12 is a diagram showing a differential signal Sdi with respect to the voltage detection signal Vg shown in FIG.
  • the waveform at normal time is indicated by a solid line
  • the waveform at short circuit is indicated by a broken line.
  • the voltage detection signal Vg at the time of short circuit increases monotonously and reaches the on-gate voltage Vg_on after time t ⁇ b> 0 when the on command is received. Therefore, as shown in FIG. 12, the differential signal Sdi of the voltage detection signal Vg at the time of a short circuit maintains a constant value immediately after time t0, and then converges to zero.
  • the differential signal Sdi of the voltage detection signal Vg at the normal time maintains a constant value from the time t0 to before the start of the mirror period, and then once becomes zero during the mirror period. Then, the differential signal DI rises again after the end of the mirror period and then converges to zero.
  • FIG. 13 is a diagram showing a time transition between the voltage value E and the value of the differential signal Sdi in the period from the time t0 when the ON command is received until the differential signal Sdi converges to zero.
  • the voltage value E and the differential signal Sdi are plotted on the horizontal axis and the value of the differential signal Sdi on the vertical axis.
  • a graph with values plotted is shown.
  • the time transition of the plot at the normal time is shown by a solid line
  • the time transition of the plot at the time of a short circuit is shown by a broken line.
  • the coordinate value of the vertical axis is the first reference voltage value Vref1
  • a straight line parallel to the horizontal axis is a first straight line L1.
  • a coordinate value on the horizontal axis is the second reference voltage value Vref2
  • a straight line parallel to the vertical axis is defined as a second straight line L2.
  • the short circuit determination unit 8 short-circuits the semiconductor element 1 when the value of the differential signal Sdi is larger than the first reference voltage value Vref1 and the voltage value E indicating the gate current value Ig is smaller than the second reference voltage value Vref2. It can be easily determined that it is in a state.
  • Embodiment 5 FIG.
  • the drive circuit according to the fifth embodiment is different from the drive circuit 100 according to the first embodiment in that a gate current detection unit 5a shown in FIG. FIG. 14 is a circuit diagram showing a configuration of the gate current detection unit 5a of the fifth embodiment.
  • the gate current detection unit 5a includes a gate resistor 11 connected between the control unit 10 and the gate electrode of the semiconductor element 1, and a differential amplifier circuit (second differential amplifier circuit) 4b.
  • a gate resistor 11 connected between the control unit 10 and the gate electrode of the semiconductor element 1
  • a differential amplifier circuit (second differential amplifier circuit) 4b With.
  • the differential amplifier circuit 4b receives a voltage across the gate resistor 11, and generates a differential amplification signal obtained by amplifying the voltage.
  • the differential amplifier circuit 4b outputs the generated differential amplification signal to the comparator 6b.
  • the gate current value flowing into the semiconductor element 1 is Ig
  • the resistance value of the gate resistor 11 is Rg_on
  • the amplification factor of the differential amplifier circuit 4b is h
  • the value of the amplified signal is Rg_on ⁇ h ⁇ Ig. That is, the value of the differential amplification signal generated by the differential amplifier circuit 4b can be used as a voltage value (current detection value) E indicating the gate current value Ig.
  • the differential amplification signal generated by the differential amplifier circuit 4b is used as the voltage value E representing the gate current value Ig flowing from the control unit 10 to the gate electrode of the semiconductor element 1.
  • the value of (third differential amplification signal) can be used.
  • FIG. 15 is a circuit diagram showing a configuration of the gate current detection unit 5b of the sixth embodiment. As shown in FIG. 15, the gate current detector 5b is different from the gate current detector 5a shown in FIG. 14 in that it further includes a delay circuit (third delay circuit) 3c.
  • the delay circuit 3c receives the differential amplification signal (third differential amplification signal) generated by the differential amplification circuit 4b, and generates a delay signal (third delay signal) obtained by delaying the differential amplification signal.
  • the delay circuit 3c outputs the generated delay signal to the comparator 6b.
  • the value of the differential amplified signal generated by the differential amplifier circuit 4b indicates the gate current value Ig.
  • the value of the delay signal obtained by delaying the differential amplification signal can be used as the voltage value E indicating the gate current value Ig.
  • the value of the delay signal generated by the delay circuit 3c can be used as the voltage value (current detection value) E representing the gate current value Ig.
  • the influence of noise can be suppressed, and the adjustment of the voltage value E according to the second reference voltage value Vref2 is facilitated so that it can be easily determined whether or not the semiconductor element 1 is in a short-circuit state.
  • Embodiment 7 FIG.
  • the drive circuit according to the seventh embodiment is different from the drive circuit according to the fifth embodiment in that a gate current detection unit 5c shown in FIG. 16 is provided instead of the gate current detection unit 5a.
  • FIG. 16 is a circuit diagram showing a configuration of the gate current detection unit 5c of the seventh embodiment. As shown in FIG. 16, the gate current detection unit 5c is different from the gate current detection unit 5a in that delay circuits 3d and 3e are further provided.
  • the delay circuit (fourth delay circuit) 3d receives a voltage signal at one end of the gate resistor 11 on the semiconductor element 1 side, and generates a delay signal (fourth delay signal) obtained by delaying the voltage signal.
  • the delay circuit (fifth delay circuit) 3e receives a voltage signal at the other end of the gate resistor 11 on the control unit 10 side, and generates a delay signal (fifth delay signal) obtained by delaying the voltage signal.
  • the differential amplifier circuit (second differential amplifier circuit) 4b receives the delay signal generated by the delay circuit 3d and the delay signal generated by the delay circuit 3e, and amplifies the difference between these delay signals. An amplified signal (third differential amplified signal) is generated.
  • the difference between the delay signal generated by the delay circuit 3d and the delay signal generated by the delay circuit 3e correlates with the voltage across the gate resistor 11, that is, the gate current value Ig. Therefore, the value of the differential amplification signal generated by the differential amplifier circuit 4b can be used as a voltage value (current detection value) E indicating the gate current value Ig.
  • the influence of noise can be further suppressed, and the second reference is made so that it can be easily determined whether or not the semiconductor element 1 is in a short circuit state.
  • the voltage value E can be easily adjusted according to the voltage value Vref2.
  • the delay circuit 3c may be connected to the subsequent stage of the differential amplifier circuit 4b.
  • FIG. 17 is a diagram illustrating a configuration of the drive circuit 104 in which the differentiation circuit 40 of the fourth embodiment and the gate current detection unit 5a of the fifth embodiment are combined.
  • the drive circuit 104 shown in FIG. 17 can also easily and quickly determine whether or not the semiconductor element 1 is in a short circuit state. Furthermore, the drive circuit 104 does not require a sense cell of a semiconductor element and can be applied to a wide range of semiconductor elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Power Conversion In General (AREA)
  • Electronic Switches (AREA)

Abstract

駆動回路(100)は、信号生成回路(50)と、比較器(6a)と、比較器(6b)と、短絡判定部(8)とを備える。信号生成回路(50)は、半導体素子(1)のゲート電圧を示す電圧検出信号(Vg)と電圧検出信号(Vg)の遅延信号(Sd1)との差動増幅信号(Sa)を出力信号として生成する。比較器(6a)は、差動増幅信号(Sa)の値と第1基準電圧値(Vref1)とを比較する。比較器(6b)は、ゲート電流を示す電圧値(E)と第2基準電圧値(Vref2)とを比較する。短絡判定部(8)は、比較器(6a,6b)の各々の比較結果に基づいて、半導体素子(1)が短絡状態か否かを判定し、判定結果を示す判定信号(Sj)を生成する。

Description

半導体素子の駆動回路
 本発明は、半導体素子の駆動回路に関し、特に半導体素子の短絡状態を判定する機能を備えた駆動回路に関する。
 IGBT(Insulated Gate Bipolar Transistor)やMOSFET(Metal Oxide Semiconductor Field Effect Transistor)などの電力用の半導体素子において、短絡状態が発生すると大電流が流れ、半導体素子が熱破壊する可能性がある。そのため、半導体素子の短絡状態を判定する機能が必要となる。
 特開2013-123329号公報(特許文献1)に記載の駆動回路は、半導体素子のコレクタ電流があらかじめ設定した基準値より大きく、かつ半導体素子に流れるゲート電流があらかじめ設定した基準値より小さい場合に、半導体素子が短絡していると判定する。特に、半導体素子に流れるコレクタ電流を、半導体素子のセンスセルに接続されたシャント抵抗の両端電圧から検出することにより、半導体素子の正極側の端子と負極側の端子との間に高電圧がかかる場合においても、回路の耐圧を上げずに短絡状態の判定が可能となる。
 特開2009-225506号公報(特許文献2)に記載の駆動回路は、駆動回路から半導体素子に流れるゲート電流を検出し、ゲート電流が正の基準値より大きくなった瞬間から短絡検知期間内に、ゲート電流が負の基準値より小さくなった場合に、半導体素子が短絡していると判定する。半導体素子に短絡電流のような大電流が流れると、ゲート電圧が駆動回路により制御された電圧より大きくなり、半導体素子から駆動回路へ電流が流れる。つまり、オンさせるためのゲート電流とは逆方向に電流が流れる。従って、オン時のゲート電流が正負に振れたかを確認することで短絡状態の判定が可能となる。
特開2013-123329号公報 特開2009-225506号公報
 しかしながら、特開2013-123329号公報に記載の駆動回路では、駆動回路の耐圧を上げずに半導体素子の短絡を判定するために、半導体素子のセンスセルおよびシャント抵抗を用いる。そのため、半導体素子にセンスセルが設けられていない場合には適用できない。
 特開2009-225506号公報に記載の駆動回路では、半導体素子に大電流が流れた場合に、オンさせるためのゲート電流とは逆方向に流れる電流が通常小さい。さらに、短絡検知期間内にゲート電流が負の基準値より小さくなったことを検出する必要がある。そのため、短絡状態の判定が困難である。
 本発明は、上記課題を解決するためになされたものであって、半導体素子のセンスセルを必要とせず、幅広い半導体素子に適用でき、半導体素子の短絡状態を容易かつ高速に判定可能な半導体素子の駆動回路を提供することを目的とする。
 本発明の半導体素子の駆動回路は、制御部と、ゲート電圧検出部と、ゲート電流検出部と、信号生成回路と、第1比較器と、第2比較器と、短絡判定部とを備える。制御部は、外部から受ける指令に基づいて半導体素子の開閉状態を制御する。ゲート電圧検出部は、半導体素子のゲート電圧を検出し、検出したゲート電圧を示す電圧検出信号を生成する。ゲート電流検出部は、半導体素子のゲート電極に流入する電流を検出する。信号生成回路は、電圧検出信号と電圧検出信号の第1遅延信号との第1差動増幅信号、第1遅延信号と電圧検出信号の第2遅延信号との第2差動増幅信号、および電圧検出信号の微分信号のいずれかを出力信号として生成する。第1比較器は、出力信号の値と第1基準値とを比較する。第2比較器は、ゲート電流検出部による電流検出値と第2基準値とを比較する。短絡判定部は、第1比較器の比較結果と第2比較器の比較結果とに基づいて、半導体素子が短絡状態か否かを判定し、判定結果を示す判定信号を生成する。
 本発明によれば、半導体素子のセンスセルを必要とせず、幅広い半導体素子に適用でき、半導体素子の短絡状態を容易かつ高速に判定することができる。
実施の形態1に係る半導体素子の駆動回路の構成を示す図である。 遅延回路の構成の一例を示す図である。 差動増幅回路の構成の一例を示す図である。 半導体素子をオンする場合における電圧検出信号Vgを示す概略図である。 半導体素子1をオンする場合におけるゲート電流値Igを示す電圧値Eの時間変化を示す概略図である。 ゲート電圧検出部により生成された電圧検出信号Vgと遅延回路により生成された遅延信号Sd1とを示す概略図である。 差動増幅回路により生成された差動増幅信号Saを示す概略図である。 オン指令を受けた時刻t0から差動増幅信号Saがゼロに収束するまでの期間における各時刻の電圧値Eと差動増幅信号Saの値との時間推移を示す図である。 実施の形態2に係る駆動回路の構成を示す図である。 実施の形態3に係る駆動回路の構成を示す図である。 実施の形態4に係る駆動回路の構成を示す図である。 図4に示す電圧検出信号Vgに対する微分信号Sdiを示す図である。 オン指令を受けた時刻t0から微分信号Sdiがゼロに収束するまでの期間における電圧値Eと微分信号Sdiの値との時間推移を示す図である。 実施の形態5のゲート電流検出部の構成を示す回路図である。 実施の形態6のゲート電流検出部の構成を示す回路図である。 実施の形態7のゲート電流検出部の構成を示す回路図である。 実施の形態4の微分回路と実施の形態5のゲート電流検出部とを組み合わせた駆動回路の構成を示す図である。
 本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一又は相当部分には同一符号を付してその説明は繰返さない。また、以下で説明する各実施の形態または変形例は、適宜組み合わされてもよい。
 実施の形態1.
 図1は、実施の形態1に係る半導体素子1の駆動回路100の構成を示す図である。半導体素子1は、IGBTであり、ゲート電極が駆動回路100に接続される。本実施の形態1では、半導体素子1のコレクタ電極は、周辺回路を介して正電圧を受け、正極となる。半導体素子1のエミッタ電極は、グランドに接続され、負極となる。なお、半導体素子1は、パワーMOSFETなどの他の電力用半導体素子であってもよい。
 駆動回路100は、半導体素子1のゲート電極に接続され、半導体素子1を駆動する。駆動回路100は、ゲート電圧検出部2と、信号生成回路50と、ゲート電流検出部5と、比較器6a,6bと、短絡判定部8と、信号保持部9と、制御部10とを備える。
 制御部10は、外部から受けた入力指令に基づいて、半導体素子1の開閉状態を制御する。外部からオフ指令を受けると、制御部10は、半導体素子1をオフ状態(開状態)とするためのオフゲート電圧を、半導体素子1のゲート電極に出力する。また、外部からオン指令を受けると、制御部10は、半導体素子1をオン状態(閉状態)とするためのオンゲート電圧を、半導体素子1のゲート電極に出力する。
 ゲート電圧検出部2は、半導体素子1のゲート電圧(ゲート電極の電圧)を検出し、検出したゲート電圧を示す電圧検出信号Vgを生成する。電圧検出信号Vgは、電圧値の変化により示される。ゲート電圧検出部2は、半導体素子1のゲート電圧の値をそのまま電圧検出信号Vgとして生成してもよいし、ゲート電圧の値の定数倍を電圧検出信号Vgとして生成してもよい。ゲート電圧検出部2は、生成した電圧検出信号Vgを信号生成回路50に出力する。
 信号生成回路50は、半導体素子1のゲート電圧に関連する出力信号を生成して出力する。本実施の形態では、信号生成回路50は、電圧検出信号Vgと電圧検出信号Vgの遅延信号Sd1との差動増幅信号Saを出力信号として生成する。信号生成回路50は、遅延回路3aと差動増幅回路4aとを含む。
 遅延回路3aは、電圧検出信号Vgを受け、電圧検出信号Vgの遅延信号Sd1を生成する。遅延回路3aは、生成した遅延信号Sd1を差動増幅回路4aに出力する。
 図2は、遅延回路3aの構成の一例を示す図である。図2に示されるように、遅延回路3aは、たとえば抵抗R0とコンデンサC0とを含む。抵抗R0は、遅延回路3aの入力端子31と出力端子32との間に接続される。コンデンサC0の一端は、グランド15に接続され、半導体素子1の負極であるエミッタ電極と同電位になる。コンデンサC0の他端は出力端子32に接続される。図2に示す構成は、一般にフィルタの一種として知られている。入力端子31が受けた入力信号Aに対し、出力端子32から出力される遅延信号A’は、以下の式(1)のように表すことができる。ここで、抵抗R0の抵抗値をr0、コンデンサC0の容量値をc0、入力信号Aを受けた時刻からの時間をtとする。
Figure JPOXMLDOC01-appb-M000001
 なお、遅延回路3aは、図2に示す構成に限定されず、複数の抵抗と複数のコンデンサで構成されていてもよい。
 図1に戻って、差動増幅回路4aは、ゲート電圧検出部2によって生成された電圧検出信号Vgと、遅延回路3aから出力された遅延信号Sd1との差動増幅信号Saを生成し、生成した差動増幅信号Saを比較器6aに出力する。
 図3は、差動増幅回路4aの構成の一例を示す図である。図3に示されるように、差動増幅回路4aは、たとえば抵抗R1~R4と、オペアンプ20と、入力端子41,42と、出力端子43とを含む。
 出力端子43は、オペアンプ20の出力端子に接続される。抵抗R1は、オペアンプ20の反転入力端子と入力端子41との間に接続される。抵抗R2は、オペアンプ20の反転入力端子と出力端子43との間に接続される。抵抗R3は、オペアンプ20の非反転入力端子と入力端子42との間に接続される。抵抗R4は、オペアンプの20の非反転入力端子とグランド15との間に接続される。入力端子41の電圧値をVa、入力端子42の電圧値をVbとするとき、出力端子43の電圧値Vcは、以下の式(2)で表される。ここで、抵抗R1~R4の抵抗値をそれぞれr1~r4とする。
Figure JPOXMLDOC01-appb-M000002
 さらに、抵抗R1と抵抗R3との抵抗値が同一で、抵抗R2と抵抗R4との抵抗値が同一の場合、出力端子43の電圧値Vcは、以下の式(3)で表される。
Figure JPOXMLDOC01-appb-M000003
 入力端子41に電圧検出信号Vgの遅延信号Sd1を入力し、入力端子42に電圧検出信号Vgを入力することで、電圧検出信号Vgから遅延信号Sd1を減算した差分を増幅させた差動増幅信号Saを出力端子43から得ることができる。
 比較器6aは、差動増幅回路4aが生成した差動増幅信号Saの値と、第1基準電圧値Vref1とを比較し、比較結果を示す信号Sc1を生成する。比較器6aは、差動増幅信号Saの値が第1基準電圧値Vref1より大きい場合、ハイレベルの信号Sc1を生成する。比較器6aは、差動増幅信号Saが第1基準電圧値Vref1以下の場合、ローレベルの信号Sc1を生成する。比較器6aは、生成した信号Sc1を短絡判定部8に出力する。
 ゲート電流検出部5は、制御部10から半導体素子1のゲート電極へ流入する電流(ゲート電流)を検出し、検出されたゲート電流値Igに対応する電圧(電圧値E(電流検出値))を比較器6bに出力する。ここで、電圧値Eは、比例係数kを用いて、E=k×Igと表すことができる。
 比較器6bは、ゲート電流検出部5から受けた電圧値Eと、第2基準電圧値Vref2とを比較し、比較結果に応じた信号Sc2を生成する。比較器6bは、電圧値Eが第2基準電圧値Vref2より小さい場合、ハイレベルの信号Sc2を生成する。比較器6bは、電圧値Eが第2基準電圧値Vref2以上の場合、ローレベルの信号Sc2を生成する。比較器6bは、生成した信号Sc2を短絡判定部8へ出力する。
 短絡判定部8は、比較器6aから受けた信号Sc1と、比較器6bから受けた信号Sc2との論理積をとることで、半導体素子1が短絡状態であるか否かを判定する。ここで、「短絡状態」とは、半導体素子1の周辺部品の故障や誤動作などの要因により、半導体素子1が電圧源に低抵抗で接続され、過大な短絡電流が流れる状態のことである。比較器6aから受けた信号Sc1がハイレベルであり、かつ比較器6bから受けた信号Sc2がハイレベルの場合、短絡判定部8は、半導体素子1が短絡状態であると判定し、ハイレベルの判定信号Sjを出力する。それ以外の場合、短絡判定部8は、ローレベルの判定信号Sjを出力する。言い換えると、差動増幅回路4aから受けた差動増幅信号Saの値が第1基準電圧値Vref1より大きく、ゲート電流検出部5から受けた電圧値Eが第2基準電圧値Vref2より小さい場合に、短絡判定部8は、半導体素子1が短絡状態であると判定する。
 信号保持部9は、半導体素子1が短絡状態であると短絡判定部8が判定したときに、ハイレベルの判定信号Sjを保持する。具体的には、信号保持部9は、半導体素子1が短絡状態でないことを示すローレベルの判定信号Sjを短絡判定部8から受けた場合、当該判定信号Sjをそのまま制御部10に出力する。信号保持部9は、半導体素子1が短絡状態であることを示すハイレベルの判定信号Sjを短絡判定部8から受けた場合、外部からリセット指令を受けるまでの間、ハイレベルの判定信号Sjを保持して、ハイレベルの判定信号Sjを制御部10に出力する。信号保持部9は、ハイレベルの判定信号Sjを保持している間に外部からリセット指令を受けた場合、ハイレベルの判定信号Sjの保持を停止し、短絡判定部8から受けた判定信号Sjをそのまま制御部10に出力する。
 制御部10は、信号保持部9からローレベルの判定信号Sjを受けている間、外部からの入力指令に応じて、半導体素子1の開閉状態を制御する。制御部10は、信号保持部9からハイレベルの判定信号Sjを受けている間、外部からの入力指令にかかわらず、半導体素子1をオフ状態(開状態)とするために、オフゲート電圧を半導体素子1のゲート電極に出力する。
 図4は、半導体素子1をオンする場合における電圧検出信号Vgを示す概略図である。図5は、半導体素子1をオンする場合におけるゲート電流値Igを示す電圧値Eの時間変化を示す概略図である。図4および図5において、正常時の波形を実線、短絡状態が生じている時(以下、「短絡時」という)の波形を破線で示す。
 まず、正常時の電圧検出信号Vgおよび電圧値Eについて説明する。外部から制御部10への入力指令がオフ指令からオン指令へ変化した時刻t0において、電圧検出信号Vgは、オフゲート電圧Vg_offからオンゲート電圧Vg_onへの遷移を開始する。このとき、制御部10から半導体素子1のゲート電極へゲート電流が流入する。半導体素子1が正常動作している場合、オフゲート電圧Vg_offからオンゲート電圧Vg_onへの遷移中にゲート電圧が一定となる期間が現れる。一般に、この期間はミラー期間と呼ばれ、ミラー期間におけるゲート電圧はミラー電圧Vmと呼ばれる。これは、半導体素子1のゲート電極と正極であるコレクタ電極との間に存在する容量を充電するための期間である。一般にゲート電極と正極であるコレクタ電極との間に存在する容量は、帰還容量と呼ばれる。半導体素子1が正常動作している場合、半導体素子1のコレクタ電極に対しゲート電極の電位が高いため、ミラー期間中は、帰還容量を充電する略一定のゲート電流が、ゲート電極から半導体素子1のコレクタ電極へ流れる。ミラー期間の長さおよびミラー電圧Vmは、半導体素子1の正極(ここではコレクタ電極)-負極(ここではエミッタ電極)間の電圧や導通電流などの動作条件によって変化する。帰還容量の充電が終了すると、電圧検出信号Vgは、再び上昇し、制御部10によって制御されたオンゲート電圧Vg_onに到達する。オンゲート電圧Vg_onに到達すると(つまり、オン状態への遷移が完了すると)、ゲート電流値Igを示す電圧値Eはゼロに収束する。
 次に、短絡時の電圧検出信号Vgおよび電圧値Eについて説明する。外部から制御部10への入力指令がオフ指令からオン指令へ変化した時刻t0において、電圧検出信号Vgは、オフゲート電圧Vg_offからオンゲート電圧Vg_onへの遷移を開始する。このとき、制御部10から半導体素子1のゲート電極へゲート電流が流入する。半導体素子1が短絡状態の場合、電圧検出信号Vgは、ミラー期間が現れることなく制御部10によって制御されたオンゲート電圧Vg_onに到達する。短絡状態の場合、半導体素子1の正極(ここではコレクタ電極)に接続された周辺回路が短絡することにより、半導体素子1の正極(ここではコレクタ電極)-負極(ここではエミッタ電極)間に大電圧が印加される。これにより、半導体素子1のコレクタ電極の電位がゲート電極の電位より大きくなり、帰還容量が充電されないため、ミラー期間が現れない。従って帰還容量を充電するためのゲート電流も流れず、ゲート電流値Igを示す電圧値Eは、時刻t0直後に上昇した後、正常時と比べて早い段階でゼロに収束する。
 図6は、ゲート電圧検出部2により生成された電圧検出信号Vgと遅延回路3aにより生成された遅延信号Sd1とを示す概略図である。図7は、差動増幅回路4aにより生成された差動増幅信号Saを示す概略図である。図6および図7において、正常時の波形を実線、短絡時の波形を破線で示す。図6および図7に示した波形は、遅延回路3aを図2で示した構成とし、差動増幅回路4aを図3で示した構成とし、差動増幅回路4aの入力端子41に遅延信号Sd1を入力し、差動増幅回路4aの入力端子42に電圧検出信号Vgを入力した場合の波形である。
 図6および図7に示したように、短絡時には、ミラー期間が現れないために、電圧検出信号Vgが単調に上昇し、電圧検出信号Vgと遅延信号Sd1との差が大きくなる。一方、正常時には、電圧検出信号Vgの上昇がミラー期間において制限される。そのため、正常時における電圧検出信号Vgと遅延信号Sd1との差は、短絡時における電圧検出信号Vgと遅延信号Sd1との差よりも小さくなる。これにより、短絡時の差動増幅信号Saが取り得る値の最大値は、正常時の差動増幅信号Saが取り得る値の最大値よりも大きくなる。さらに、短絡時の電圧検出信号Vgと遅延信号Sd1とは、正常時よりも早く制御部10によって制御されたオンゲート電圧Vg_onに到達する。
 図8は、オン指令を受けた時刻t0から差動増幅信号Saがゼロに収束するまでの期間における電圧値Eと差動増幅信号Saの値との時間推移を示す図である。図8には、電圧値Eを横軸、差動増幅信号Saの値を縦軸とし、時刻t0から差動増幅信号Saがゼロに収束するまでの期間における各時刻の電圧値Eと差動増幅信号Saの値とがプロットされたグラフが示される。図8において、正常時のプロットの時間推移を実線、短絡時のプロットの時間推移を破線で示す。
 図8に示されるように、ミラー期間の有無によって、正常時と短絡時とのプロットの時間推移に差異が現れる。具体的には、短絡時のプロットの時間推移で得られる破線は、正常時のプロットの時間推移で得られる実線から左上方向に突出する。ここで、縦軸の座標値が第1基準電圧値Vref1であり、かつ横軸に平行な直線を第1直線L1とする。さらに、横軸の座標値が第2基準電圧値Vref2であり、かつ縦軸に平行な直線を第2直線L2とする。このとき、第1直線L1と第2直線L2とによって4分割された座標平面の領域のうち、左上の分割領域B1には、短絡時のプロットが存在し、正常時のプロットが存在しない。そのため、短絡判定部8は、差動増幅信号Saの値が第1基準電圧値Vref1より大きく、かつゲート電流値Igを示す電圧値Eが第2基準電圧値Vref2より小さい場合に、半導体素子1が短絡状態であると容易に判定することができる。
 さらに、短絡時にはミラー期間が存在しないため、電圧値Eは、一旦上昇した後、即座にゼロに収束する。そのため、半導体素子1が短絡状態であることが短絡判定部8によって高速に判定され、半導体素子1は、制御部10によって高速に開状態に制御される。これにより、半導体素子1を高速に保護することができる。
 以上のように、本実施の形態1の駆動回路100は、制御部10と、ゲート電圧検出部2と、ゲート電流検出部5と、信号生成回路50と、比較器(第1比較器)6aと、比較器(第2比較器)6bと、短絡判定部8とを備える。信号生成回路50は、電圧検出信号Vgと電圧検出信号Vgの遅延信号(第1遅延信号)Sd1との差動増幅信号(第1差動増幅信号)Saを出力信号として生成する。比較器6aは、差動増幅信号Saの値と第1基準電圧値(第1基準値)Vref1とを比較する。比較器6bは、ゲート電流検出部5によって生成された電圧値(電流検出値)Eと第2基準電圧値(第2基準値)Vref2とを比較する。短絡判定部8は、比較器6a,6bの各々の比較結果に基づいて、半導体素子1が短絡状態か否かを判定し、判定結果を示す判定信号Sjを生成する。
 このように、差動増幅信号Saの値と第1基準電圧値Vref1との比較結果と、ゲート電流検出部5から受けた電圧値Eと第2基準電圧値Vref2との比較結果とに基づいて、半導体素子1が短絡状態か否かが判定できる。そのため、駆動回路100は、センスセルおよびシャント抵抗が付加されていない半導体素子に対しても適用できる。さらに、特開2009-225506号公報に記載の技術のように短絡検知期間の設定が不要であるため、半導体素子1の短絡状態を容易に判定することができる。さらに、半導体素子1が短絡している場合、半導体素子1をオンするときにミラー期間が存在しないため、差動増幅信号Saの値が第1基準電圧値Vref1よりも大きく、かつ電圧値Eが第2基準電圧値Vref2よりも小さくなる状態が即座に現れる。そのため、半導体素子1の短絡状態を高速に判定することができる。以上から、駆動回路100は、半導体素子のセンスセルを必要とせず、幅広い半導体素子に適用でき、半導体素子1の短絡状態を容易かつ高速に判定できる。
 信号生成回路50は、電圧検出信号Vgを受け、遅延信号Sd1を生成する遅延回路(第1遅延回路)3aと、電圧検出信号Vgと遅延信号Sd1とを受け、差動増幅信号Saを生成する差動増幅回路(第1差動増幅回路)4aとを含む。これにより、信号生成回路50は、差動増幅信号Saを容易に生成できる。
 駆動回路100は、半導体素子1が短絡状態であると短絡判定部8が判定したときに、判定信号Sjを保持するための信号保持部9をさらに備える。これにより、電圧値Eと差動増幅信号Saの値とのプロット点が図8に示す分割領域B1内から分割領域B1外に推移した場合であっても、半導体素子1が短絡状態であることを示す判定信号Sjが保持される。その結果、駆動回路100は、半導体素子1の短絡状態をより確実に判定することができる。
 さらに、制御部10は、半導体素子1が短絡状態であることを判定信号Sjが示している場合、半導体素子1をオフ状態(開状態)にする。これにより、半導体素子1が短絡状態である場合に半導体素子1を保護することができる。
 実施の形態2.
 図9を参照して、実施の形態2に係る半導体素子の駆動回路について説明する。図9は、実施の形態2に係る駆動回路101の構成を示す図である。図9に示されるように、駆動回路101は、比較器6a,6bの両方に第1基準電圧値Vref1の電圧を入力する点で実施の形態1の駆動回路100と相違する。
 本実施の形態2では、比較器6bで用いる第2基準電圧値Vref2は、比較器6aで用いる第1基準電圧値Vref1と同一となる。すなわち、比較器6aと比較器6bとに入力する基準電圧を共通化する。これにより、駆動回路101の回路規模を縮小することができる。その結果、実施の形態1と比較して、より低コストで小型である駆動回路101を実現できる。
 上述したように、ゲート電流検出部5は、ゲート電流値Igに比例係数kを乗算した電圧値Eを出力する。そのため、当該比例係数kを調整することにより、電圧値Eのレベルを変更することができる。また、差動増幅回路4aの増幅率または遅延回路3aの遅延時間を調整することにより、差動増幅回路4aから出力される差動増幅信号Saの振幅を変更することができる。比例係数k、差動増幅回路4aの増幅率および遅延回路3aの遅延時間の少なくとも1つを適宜調整することにより、比較器6a,6bに対して共通の第1基準電圧値Vref1の電圧を入力したとしても、半導体素子1が短絡状態か否かを判定することができる。
 実施の形態3.
 図10を参照して、実施の形態3に係る半導体素子の駆動回路について説明する。図10は、実施の形態3に係る駆動回路102の構成を示す図である。図10に示されるように、駆動回路102は、信号生成回路50の代わりに信号生成回路50aを備える点で実施の形態1の駆動回路100(図1参照)と相違する。信号生成回路50aは、遅延回路3bをさらに備える点で実施の形態1の信号生成回路50と相違する。
 遅延回路3bは、ゲート電圧検出部2から出力される電圧検出信号Vgを受け、電圧検出信号Vgを遅延させた遅延信号(第2遅延信号)Sd2を生成する。なお、遅延回路3bにおける遅延時間は、遅延回路3aにおける遅延時間と異なる。
 差動増幅回路4aは、遅延回路3aにより生成された遅延信号Sd1と、遅延回路3bにより生成された遅延信号Sd2との差分を増幅させた差動増幅信号Saを生成する。
 本実施の形態3によれば、遅延回路3a,3bの遅延時間を適宜設定することにより、耐ノイズ性を向上させることができるとともに、差動増幅信号Saの振幅調整が可能となる。その結果、半導体素子1が短絡状態であるか否かをより容易に判定することができる。なお、差動増幅回路4aと比較器6aとの間に更に別の遅延回路を追加してもよい。
 実施の形態4.
 図11を参照して、実施の形態4に係る半導体素子の駆動回路について説明する。図11は、実施の形態4に係る駆動回路103の構成を示す図である。図11に示されるように、駆動回路103は、信号生成回路50の代わりに信号生成回路50bを備える点で実施の形態1の駆動回路100(図1参照)と相違する。信号生成回路50bは、遅延回路3aおよび差動増幅回路4aの代わりに微分回路40を備える点で実施の形態1の信号生成回路50と相違する。
 微分回路40は、ゲート電圧検出部2から電圧検出信号Vgを受け、電圧検出信号Vgの微分信号Sdiを生成する。微分回路40は、生成した微分信号Sdiを比較器6aに出力する。
 比較器6aは、差動増幅信号Saの代わりに微分信号Sdiの値と第1基準電圧値Vref1とを比較し、微分信号Sdiの値が第1基準電圧値Vref1より大きい場合、ハイレベルの信号Sc1を出力し、微分信号Sdiの値が第1基準電圧値Vref1以下の場合、ローレベルの信号Sc1を出力する。
 図12は、図4に示す電圧検出信号Vgに対する微分信号Sdiを示す図である。図12において、正常時の波形を実線、短絡時の波形を破線で示す。短絡時の電圧検出信号Vgは、図4に示されるように、オン指令を受けた時刻t0の後、単調に増大して、オンゲート電圧Vg_onに到達する。そのため、図12に示されるように、短絡時における電圧検出信号Vgの微分信号Sdiは、時刻t0の直後から一定の値を保ち、その後にゼロに収束する。
 一方、正常時の電圧検出信号Vgにはミラー期間が見られる(図4参照)。そのため、正常時における電圧検出信号Vgの微分信号Sdiは、時刻t0からミラー期間の開始前まで一定の値を維持した後、ミラー期間中に一旦ゼロになる。それから、微分信号DIは、ミラー期間終了後に再度上昇してからゼロに収束する。
 図13は、オン指令を受けた時刻t0から微分信号Sdiがゼロに収束するまでの期間における電圧値Eと微分信号Sdiの値との時間推移を示す図である。図13には、電圧値Eを横軸、微分信号Sdiの値を縦軸とし、時刻t0から差動増幅信号Saがゼロに収束するまでの期間における各時刻の電圧値Eと微分信号Sdiの値とがプロットされたグラフが示される。図13において、正常時のプロットの時間推移を実線、短絡時のプロットの時間推移を破線で示す。
 図13に示されるように、ミラー期間の有無によって、正常時と短絡時とのプロットの時間推移に差異が現れる。具体的には、短絡時のプロットの時間推移で得られる破線は、正常時のプロットの時間推移で得られる実線から左上方向に突出する。ここで、縦軸の座標値が第1基準電圧値Vref1であり、かつ横軸に平行な直線を第1直線L1とする。さらに、横軸の座標値が第2基準電圧値Vref2であり、かつ縦軸に平行な直線を第2直線L2とする。このとき、第1直線L1と第2直線L2とによって4分割された座標平面の領域のうち、左上の分割領域B2には、短絡時のプロットが存在し、正常時のプロットが存在しない。そのため、短絡判定部8は、微分信号Sdiの値が第1基準電圧値Vref1より大きく、かつゲート電流値Igを示す電圧値Eが第2基準電圧値Vref2より小さい場合に、半導体素子1が短絡状態であると容易に判定することができる。
 実施の形態5.
 本実施の形態5に係る駆動回路は、実施の形態1の駆動回路100と比較して、ゲート電流検出部5の代わりに図14に示すゲート電流検出部5aを備える点で相違する。図14は、実施の形態5のゲート電流検出部5aの構成を示す回路図である。
 図14に示されるように、ゲート電流検出部5aは、制御部10と半導体素子1のゲート電極との間に接続されたゲート抵抗11と、差動増幅回路(第2差動増幅回路)4bとを備える。
 差動増幅回路4bは、ゲート抵抗11の両端間の電圧を受け、当該電圧を増幅した差動増幅信号を生成する。差動増幅回路4bは、生成した差動増幅信号を比較器6bに出力する。ここで、半導体素子1に流れ込むゲート電流値をIgとし、ゲート抵抗11の抵抗値をRg_onとし、差動増幅回路4bの増幅率をhとするとき、差動増幅回路4bによって生成された差動増幅信号の値は、Rg_on×h×Igとなる。すなわち、差動増幅回路4bによって生成された差動増幅信号の値は、ゲート電流値Igを示す電圧値(電流検出値)Eとして使用できる。
 このように、本実施の形態5によれば、制御部10から半導体素子1のゲート電極に流入するゲート電流値Igを表す電圧値Eとして、差動増幅回路4bによって生成された差動増幅信号(第3差動増幅信号)の値を用いることができる。
 実施の形態6.
 本実施の形態6に係る駆動回路は、実施の形態5の駆動回路と比較して、ゲート電流検出部5aの代わりに図15に示すゲート電流検出部5bを備える点で相違する。図15は、実施の形態6のゲート電流検出部5bの構成を示す回路図である。図15に示されるように、ゲート電流検出部5bは、図14に示すゲート電流検出部5aと比較して、遅延回路(第3遅延回路)3cをさらに備える点で相違する。
 遅延回路3cは、差動増幅回路4bにより生成された差動増幅信号(第3差動増幅信号)を受け、当該差動増幅信号を遅延させた遅延信号(第3遅延信号)を生成する。遅延回路3cは、生成した遅延信号を比較器6bに出力する。上述したように、差動増幅回路4bにより生成された差動増幅信号の値は、ゲート電流値Igを示す。そのため、当該差動増幅信号を遅延させただけの遅延信号の値は、ゲート電流値Igを示す電圧値Eとして使用できる。
 このように、本実施の形態6によれば、ゲート電流値Igを表す電圧値(電流検出値)Eとして、遅延回路3cによって生成される遅延信号の値を用いることができる。これにより、ノイズの影響を抑制できるとともに、半導体素子1が短絡状態であるか否かの判定を行ないやすいように、第2基準電圧値Vref2に応じた電圧値Eの調整が容易となる。
 実施の形態7.
 本実施の形態7に係る駆動回路は、実施の形態5の駆動回路と比較して、ゲート電流検出部5aの代わりに図16に示すゲート電流検出部5cを備える点で相違する。図16は、本実施の形態7のゲート電流検出部5cの構成を示す回路図である。図16に示されるように、ゲート電流検出部5cは、ゲート電流検出部5aと比較して、遅延回路3d,3eをさらに備える点で相違する。
 遅延回路(第4遅延回路)3dは、ゲート抵抗11の半導体素子1側の一端の電圧信号を受け、当該電圧信号を遅延させた遅延信号(第4遅延信号)を生成する。遅延回路(第5遅延回路)3eは、ゲート抵抗11の制御部10側の他端の電圧信号を受け、当該電圧信号を遅延させた遅延信号(第5遅延信号)を生成する。
 差動増幅回路(第2差動増幅回路)4bは、遅延回路3dにより生成された遅延信号と、遅延回路3eにより生成された遅延信号とを受け、これら遅延信号の差分を増幅させた差動増幅信号(第3差動増幅信号)を生成する。遅延回路3dにより生成された遅延信号と遅延回路3eにより生成された遅延信号との差分は、ゲート抵抗11の両端間の電圧、つまりゲート電流値Igと相関する。そのため、差動増幅回路4bによって生成される差動増幅信号の値は、ゲート電流値Igを示す電圧値(電流検出値)Eとして使用できる。
 本実施の形態7によれば、遅延回路3d,3eを備えることにより、ノイズの影響をさらに抑制できるとともに、半導体素子1が短絡状態であるか否かの判定を行ないやすいように、第2基準電圧値Vref2に応じた電圧値Eの調整が容易となる。
 なお、実施の形態6と同様に、差動増幅回路4bの後段に遅延回路3cが接続されてもよい。
 以上のように各実施の形態について説明を行なったが、上述の各実施の形態の構成を適宜組み合わせたり、様々に変形してもよい。たとえば、図17は、実施の形態4の微分回路40と実施の形態5のゲート電流検出部5aとを組み合わせた駆動回路104の構成を示す図である。図17に示す駆動回路104によっても、半導体素子1が短絡状態か否かの判定を容易かつ高速に行なうことができる。さらに、駆動回路104は、半導体素子のセンスセルを必要とせず、幅広い半導体素子に適用できる。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 1 半導体素子、2 ゲート電圧検出部、3a~3e 遅延回路、4a,4b 差動増幅回路、5,5a~5c ゲート電流検出部、6a,6b 比較器、8 短絡判定部、9 信号保持部、10 制御部、11 ゲート抵抗、15 グランド、20 オペアンプ、31,41,42 入力端子、32,43 出力端子、40 微分回路、50,50a,50b 信号生成回路、100~104 駆動回路、C0 コンデンサ、R0~R4 抵抗。

Claims (10)

  1.  外部から受ける指令に基づいて半導体素子の開閉状態を制御するための制御部と、
     前記半導体素子のゲート電圧を検出し、検出したゲート電圧を示す電圧検出信号を生成するためのゲート電圧検出部と、
     前記半導体素子のゲート電極に流入する電流を検出するためのゲート電流検出部と、
     前記電圧検出信号と前記電圧検出信号の第1遅延信号との第1差動増幅信号、前記第1遅延信号と前記電圧検出信号の第2遅延信号との第2差動増幅信号、および前記電圧検出信号の微分信号のいずれかを出力信号として生成するための信号生成回路と、
     前記出力信号の値と第1基準値とを比較するための第1比較器と、
     前記ゲート電流検出部による電流検出値と第2基準値とを比較するための第2比較器と、
     前記第1比較器の比較結果と前記第2比較器の比較結果とに基づいて、前記半導体素子が短絡状態か否かを判定し、判定結果を示す判定信号を生成するための短絡判定部とを備える、半導体素子の駆動回路。
  2.  前記信号生成回路は、
     前記電圧検出信号を受け、前記第1遅延信号を生成する第1遅延回路と、
     前記電圧検出信号と前記第1遅延信号とを受け、前記第1差動増幅信号を生成する第1差動増幅回路とを含む、請求項1に記載の半導体素子の駆動回路。
  3.  前記信号生成回路は、
     前記電圧検出信号を受けて前記第1遅延信号を出力する第1遅延回路と、
     前記電圧検出信号を受けて前記第2遅延信号を出力する第2遅延回路と、
     前記第1遅延信号と前記第2遅延信号とを受け、前記第2差動増幅信号を生成する第1差動増幅回路とを含む、請求項1に記載の半導体素子の駆動回路。
  4.  前記信号生成回路は、前記電圧検出信号を受けて前記微分信号を生成する微分回路を含む、請求項1に記載の半導体素子の駆動回路。
  5.  前記ゲート電流検出部は、
     前記制御部と前記ゲート電極との間に接続されたゲート抵抗と、
     前記ゲート抵抗の両端間の電圧を増幅することにより第3差動増幅信号を生成する第2差動増幅回路とを含み、
     前記電流検出値は第3差動増幅信号の値である、請求項1~4のいずれか1項に記載の半導体素子の駆動回路。
  6.  前記ゲート電流検出部は、
     前記制御部と前記半導体素子のゲート電極との間に接続されたゲート抵抗と、
     前記ゲート抵抗の両端間の電圧を増幅することにより第3差動増幅信号を生成する第2差動増幅回路と、
     前記第3差動増幅信号を受け、当該第3差動増幅信号を遅延させた第3遅延信号を生成する第3遅延回路とを含み、
     前記電流検出値は前記第3遅延信号の値である、請求項1~4のいずれか1項に記載の半導体素子の駆動回路。
  7.  前記ゲート電流検出部は、
     前記制御部と前記半導体素子のゲート電極との間に接続されたゲート抵抗と、
     前記ゲート抵抗における前記半導体素子側の一端の電圧信号を受け、当該電圧信号を遅延させた第4遅延信号を生成する第4遅延回路と、
     前記ゲート抵抗における前記制御部側の他端の電圧信号を受け、当該電圧信号を遅延させた第5遅延信号を生成する第5遅延回路と、
     前記第4遅延信号と前記第5遅延信号とを受け、前記第4遅延信号と前記第5遅延信号との差分を増幅することにより第3差動増幅信号を生成する第2差動増幅回路とを含み、
     前記電流検出値は前記第3差動増幅信号の値である、請求項1~4のいずれか1項に記載の半導体素子の駆動回路。
  8.  前記半導体素子が短絡状態であると前記短絡判定部が判定したときに、前記判定信号を保持するための信号保持部をさらに備える、請求項1~7のいずれか1項に記載の半導体素子の駆動回路。
  9.  前記制御部は、前記半導体素子が短絡状態であることを前記判定信号が示している場合、前記半導体素子を開状態にする、請求項1~8のいずれか1項に記載の半導体素子の駆動回路。
  10.  前記第1基準値は、前記第2基準値と同一である、請求項1~9のいずれか1項に記載の半導体素子の駆動回路。
PCT/JP2017/021762 2017-06-13 2017-06-13 半導体素子の駆動回路 WO2018229856A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/605,219 US10917083B2 (en) 2017-06-13 2017-06-13 Drive circuit for semiconductor element
PCT/JP2017/021762 WO2018229856A1 (ja) 2017-06-13 2017-06-13 半導体素子の駆動回路
DE112017007641.2T DE112017007641T5 (de) 2017-06-13 2017-06-13 Treiberschaltung für ein halbleiterelement
CN201780091742.1A CN110741542B (zh) 2017-06-13 2017-06-13 半导体元件的驱动电路
JP2017553273A JP6301028B1 (ja) 2017-06-13 2017-06-13 半導体素子の駆動回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/021762 WO2018229856A1 (ja) 2017-06-13 2017-06-13 半導体素子の駆動回路

Publications (1)

Publication Number Publication Date
WO2018229856A1 true WO2018229856A1 (ja) 2018-12-20

Family

ID=61756585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021762 WO2018229856A1 (ja) 2017-06-13 2017-06-13 半導体素子の駆動回路

Country Status (5)

Country Link
US (1) US10917083B2 (ja)
JP (1) JP6301028B1 (ja)
CN (1) CN110741542B (ja)
DE (1) DE112017007641T5 (ja)
WO (1) WO2018229856A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022091264A1 (ja) * 2020-10-28 2022-05-05 三菱電機株式会社 電力用半導体素子の駆動回路、半導体装置および電力変換装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019008817A1 (ja) * 2017-07-03 2019-01-10 三菱電機株式会社 半導体スイッチング素子の短絡保護回路
WO2019021590A1 (ja) * 2017-07-28 2019-01-31 三菱電機株式会社 電力用半導体素子の駆動回路
JP6958499B2 (ja) * 2018-07-09 2021-11-02 三菱電機株式会社 半導体装置および電力変換装置
US11183835B2 (en) * 2019-07-16 2021-11-23 Infineon Technologies Austria Ag Short circuit detection and protection for a gate driver circuit and methods of detecting the same using logic analysis
US11362646B1 (en) * 2020-12-04 2022-06-14 Skyworks Solutions, Inc. Variable current drive for isolated gate drivers
JP2022093994A (ja) * 2020-12-14 2022-06-24 株式会社東芝 電力変換装置
US11641197B2 (en) 2021-04-28 2023-05-02 Skyworks Solutions, Inc. Gate driver output protection circuit
FR3138588A1 (fr) * 2022-07-27 2024-02-02 Safran Dispositif de commande, de protection et de surveillance de l’etat de sante d’un transistor de puissance
CN117572288B (zh) * 2024-01-15 2024-04-16 安徽大学 一种短路故障检测电路与检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06120787A (ja) * 1992-10-09 1994-04-28 Mitsubishi Electric Corp パワーデバイスの過電流保護回路及び半導体集積回路装置
JPH11214972A (ja) * 1998-01-26 1999-08-06 Mitsubishi Electric Corp 半導体回路装置及びレシーバ回路
JP2003143833A (ja) * 2001-11-01 2003-05-16 Hitachi Ltd 半導体スイッチング素子のゲート駆動装置
WO2014128951A1 (ja) * 2013-02-25 2014-08-28 株式会社 日立製作所 電力変換装置
WO2016203937A1 (ja) * 2015-06-16 2016-12-22 三菱電機株式会社 電力用半導体素子の駆動制御回路

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4740320B2 (ja) 2006-04-06 2011-08-03 三菱電機株式会社 半導体素子の駆動回路
JP2009225506A (ja) 2008-03-13 2009-10-01 Toshiba Corp 電力変換器
CN102200558A (zh) * 2010-03-25 2011-09-28 鸿富锦精密工业(深圳)有限公司 开/关机检测电路
JP5721137B2 (ja) * 2011-05-18 2015-05-20 国立大学法人九州工業大学 半導体装置の短絡保護装置
JP5780145B2 (ja) 2011-12-12 2015-09-16 トヨタ自動車株式会社 スイッチング素子駆動回路及びそれを備える駆動装置
JP6076223B2 (ja) * 2013-09-05 2017-02-08 三菱電機株式会社 電力用半導体素子の駆動回路
CN204835517U (zh) * 2015-06-20 2015-12-02 南京飞洋汽车电子有限责任公司 一种汽车电动压缩机控制器电流保护电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06120787A (ja) * 1992-10-09 1994-04-28 Mitsubishi Electric Corp パワーデバイスの過電流保護回路及び半導体集積回路装置
JPH11214972A (ja) * 1998-01-26 1999-08-06 Mitsubishi Electric Corp 半導体回路装置及びレシーバ回路
JP2003143833A (ja) * 2001-11-01 2003-05-16 Hitachi Ltd 半導体スイッチング素子のゲート駆動装置
WO2014128951A1 (ja) * 2013-02-25 2014-08-28 株式会社 日立製作所 電力変換装置
WO2016203937A1 (ja) * 2015-06-16 2016-12-22 三菱電機株式会社 電力用半導体素子の駆動制御回路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022091264A1 (ja) * 2020-10-28 2022-05-05 三菱電機株式会社 電力用半導体素子の駆動回路、半導体装置および電力変換装置

Also Published As

Publication number Publication date
JP6301028B1 (ja) 2018-03-28
DE112017007641T5 (de) 2020-04-02
US20200127657A1 (en) 2020-04-23
CN110741542A (zh) 2020-01-31
US10917083B2 (en) 2021-02-09
CN110741542B (zh) 2021-12-14
JPWO2018229856A1 (ja) 2019-06-27

Similar Documents

Publication Publication Date Title
JP6301028B1 (ja) 半導体素子の駆動回路
JP6482665B2 (ja) 電力用半導体素子の駆動制御回路
JP5157959B2 (ja) D級増幅器
EP1393443B1 (en) Overcurrent detection and protection apparatus for switching element
JP2020036530A (ja) スイッチング素子の駆動制御装置
JP6076223B2 (ja) 電力用半導体素子の駆動回路
JP6264379B2 (ja) 半導体装置
JP6089599B2 (ja) 絶縁ゲート型半導体素子の駆動装置
JP2010191885A (ja) ボルテージレギュレータ
JP2008206348A (ja) 半導体装置
US10651841B2 (en) Ring amplitude measurement and mitigation
WO2017107267A1 (zh) 一种反馈控制电路及电源管理模块
WO2018211840A1 (ja) 制御装置及び半導体装置
US11334102B2 (en) Power supply circuitry
US7053674B1 (en) Track-and-hold peak detector circuit
WO2021124644A1 (ja) ゲート駆動回路
JP2001161025A (ja) 電流制限装置
JP2008011585A (ja) スイッチングレギュレータ
US20220094309A1 (en) Signal detection circuit
JP6330364B2 (ja) 増幅回路の保護回路
JP2004282959A (ja) 電圧制御型駆動素子の駆動装置
US7939851B2 (en) Electronic device with an amplifier output stage and an over-current detection means
JP6642074B2 (ja) スイッチング素子の駆動装置
JP6024498B2 (ja) 半導体駆動装置
US20230208274A1 (en) Gate driving circuit for power semiconductor element

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017553273

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17913743

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17913743

Country of ref document: EP

Kind code of ref document: A1