WO2018229849A1 - Temperature protection device of semiconductor element - Google Patents

Temperature protection device of semiconductor element Download PDF

Info

Publication number
WO2018229849A1
WO2018229849A1 PCT/JP2017/021743 JP2017021743W WO2018229849A1 WO 2018229849 A1 WO2018229849 A1 WO 2018229849A1 JP 2017021743 W JP2017021743 W JP 2017021743W WO 2018229849 A1 WO2018229849 A1 WO 2018229849A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
semiconductor element
unit
abnormality
protection device
Prior art date
Application number
PCT/JP2017/021743
Other languages
French (fr)
Japanese (ja)
Inventor
健太 大和田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/021743 priority Critical patent/WO2018229849A1/en
Priority to JP2019524582A priority patent/JP6765527B2/en
Publication of WO2018229849A1 publication Critical patent/WO2018229849A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries

Definitions

  • the present invention relates to a temperature protection device for a semiconductor element that performs overheat protection of the semiconductor element.
  • a semiconductor element used as a switching element or the like has a heat radiating fin thermally coupled via a heat radiating grease such as silicone in order to prevent a component failure due to heat generation. And the heat
  • a temperature sensor such as a thermistor and perform a protective operation of the semiconductor element at the time of overheating.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a temperature protection device for a semiconductor element capable of detecting an abnormality in a heat radiation path between the semiconductor element and the heat radiation fin.
  • the present invention provides a semiconductor element for driving a load, a drive unit for driving and controlling the semiconductor element, and heat dissipation for releasing heat generated from the semiconductor element.
  • a fin a radiating fin temperature detecting unit for detecting the actual temperature of the radiating fin, an ambient temperature detecting unit for detecting the ambient temperature of the radiating fin, and a current detecting unit for detecting a current value flowing from the semiconductor element to the load.
  • the present invention includes a loss calculation unit that calculates a loss of a semiconductor element from a current value, a radiation fin temperature estimation unit that calculates an estimated temperature that is an estimated value of the temperature of the radiation fin based on the loss and the ambient temperature, and an actual temperature Based on the difference between the temperature and the estimated temperature, it is determined whether or not an abnormality has occurred in the heat dissipation path between the heat dissipation fin and the semiconductor element. If it is determined that an abnormality has occurred, the drive unit is controlled. An abnormality determination unit.
  • the temperature protection device for a semiconductor element according to the present invention has an effect of being able to detect an abnormality in a heat radiation path between the semiconductor element and the heat radiation fin.
  • FIG. 1 is a configuration diagram showing an example of a cooling device 20 for a semiconductor element 2 according to the first embodiment of the present invention.
  • the semiconductor device 2 that is a heat generation source is provided with a cooling device 20.
  • the cooling device 20 is applied between the heat radiation fin 1 for cooling the semiconductor device 2 and between the heat radiation fin 1 and the semiconductor device 2.
  • a heat dissipating grease 3 The heat radiating fins 1 are provided to release heat generated from the semiconductor element 2 to the outside.
  • a specific example of the heat dissipating grease 3 is silicone for improving heat transfer.
  • the radiating fin 1 is provided with a radiating fin temperature sensor 4 connected to the radiating fin 1 in order to measure the actual temperature Tf of the radiating fin 1.
  • an ambient temperature sensor 5 for measuring the ambient temperature Ta near the heat radiating fin 1 is installed.
  • the radiating fin temperature sensor 4 and the ambient temperature sensor 5 are connected to the semiconductor element temperature protection unit 7.
  • the semiconductor element temperature protection unit 7 controls the drive unit 14 that controls the drive of the semiconductor element 2.
  • FIG. 2 is a diagram illustrating a configuration of the temperature protection device 100 for a semiconductor element according to the first embodiment.
  • the semiconductor element temperature protection device 100 includes a semiconductor element 2 that drives a load 15, a drive unit 14 that drives and controls the semiconductor element 2, a current sensor 6 that measures a current value flowing from the semiconductor element 2 to the load 15, and a drive
  • the semiconductor element temperature protection part 7 which controls the part 14, the radiation fin temperature sensor 4, and the ambient temperature sensor 5 are provided.
  • the semiconductor element 2 is driven by the drive unit 14 and drives a load 15 such as a motor.
  • the semiconductor device 2 is connected to a cooling device 20 including the heat dissipating fins 1 as shown in FIG. 1, but the description is omitted in FIG. 2.
  • the cooling device 20 is also included in the temperature protection device 100 for semiconductor elements.
  • the semiconductor element temperature protection unit 7 is connected to the current sensor 6 and detects a current value flowing from the semiconductor element 2 to the load 15.
  • the semiconductor element temperature protection unit 7 detects the loss Q of the semiconductor element 2 from the current value detected by the current detection unit 8.
  • a loss calculating unit 9 that calculates the temperature, an ambient temperature detecting unit 10 that is connected to the ambient temperature sensor 5 to detect the ambient temperature Ta of the radiating fin 1, and an actual temperature Tf of the radiating fin 1 that is connected to the radiating fin temperature sensor 4.
  • a radiating fin temperature detecting unit 12 for detecting.
  • the loss Q of the semiconductor element 2 calculated by the loss calculation unit 9 is an energy loss amount such as a heat generation amount of the semiconductor element 2.
  • the semiconductor element temperature protection unit 7 estimates the temperature of the radiation fin 1 from the loss Q of the semiconductor element 2 obtained by the loss calculation unit 9 and the ambient temperature Ta of the radiation fin 1 obtained by the ambient temperature detection unit 10.
  • a radiating fin temperature estimating unit 11 for calculating an estimated temperature Tfe as a value is provided.
  • the semiconductor element temperature protection unit 7 is based on the difference between the actual temperature Tf of the radiation fin 1 obtained by the radiation fin temperature detection unit 12 and the estimated temperature Tfe of the radiation fin 1 obtained by the radiation fin temperature estimation unit 11. And an abnormality determining unit 13 that determines whether or not an abnormality has occurred in the heat dissipation path between the radiation fin 1 and the semiconductor element 2 and controls the drive unit 14.
  • the semiconductor element temperature protection unit 7 further includes a storage unit 16.
  • FIG. 3 is a diagram illustrating a configuration of dedicated hardware of the semiconductor element temperature protection unit 7 according to the first embodiment.
  • each unit of the semiconductor element temperature protection unit 7 is configured by a processing circuit 50 which is dedicated hardware as shown in FIG.
  • the processing circuit 50 corresponds to a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof.
  • Each part of the semiconductor element temperature protection unit 7 may be realized by a plurality of separate processing circuits 50, or the functions of each part of the semiconductor element temperature protection part 7 may be realized by a single processing circuit 50. .
  • FIG. 4 is a diagram illustrating a hardware configuration when the semiconductor element temperature protection unit 7 according to the first embodiment is realized by a computer.
  • the semiconductor element temperature protection unit 7 is realized by a CPU (Central Processing Unit) 51 and a memory 52 as shown in FIG. 4 provided in the temperature protection device 100 for semiconductor elements. That is, the current detection unit 8, the loss calculation unit 9, the ambient temperature detection unit 10, the radiating fin temperature estimation unit 11, the radiating fin temperature detection unit 12, and the abnormality determination unit 13 of the semiconductor element temperature protection unit 7 may be software, firmware, or Realized by a combination of software and firmware. Software or firmware is described as a program and stored in the memory 52.
  • a CPU Central Processing Unit
  • the CPU 51 realizes the functions of the above-described units of the semiconductor element temperature protection unit 7 by reading and executing the program stored in the memory 52.
  • the semiconductor element temperature protection unit 7 includes a memory 52 for storing a program in which a step of executing the operation of each unit is executed as a result when the function of each unit is executed by the computer. Yes.
  • These programs can also be said to cause a computer to execute the procedures or methods of the above-described units of the semiconductor element temperature protection unit 7.
  • the memory 52 is nonvolatile such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory). Or a volatile semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, and DVD (Digital Versatile Disk) correspond.
  • the storage unit 16 of the semiconductor element temperature protection unit 7 is realized by a memory 52 provided in a microcomputer or the like, and a specific example thereof is an EEPROM or the like.
  • each part of the semiconductor element temperature protection unit 7 may be realized by dedicated hardware, and a part may be realized by software or firmware.
  • each part of the semiconductor element temperature protection part 7 can implement
  • the current sensor 6 and the current detection unit 8 may be regarded as a current detection unit.
  • the ambient temperature sensor 5 and the ambient temperature detection unit 10 may be regarded as the ambient temperature detection unit.
  • FIG. 5 is a diagram illustrating a relationship between temperature and thermal resistance in the semiconductor element 2 and the cooling device 20 according to the first embodiment.
  • the variables shown in FIG. 5 are defined as follows, including those already described.
  • Tj Junction temperature of semiconductor element 2
  • Tc Case temperature of semiconductor element 2
  • Tf Actual temperature of radiation fin 1
  • Tfe Estimated temperature of radiation fin 1
  • Ta Radiation fin 1
  • Rjc Thermal resistance value between junction of semiconductor element 2 and case
  • Rcf Thermal resistance value between case of semiconductor element 2 and radiation fin 1
  • Rfa Radiation fin Thermal resistance value between 1 and ambient temperature Q ... Loss of semiconductor element 2
  • the junction temperature Tj of the semiconductor element 2 can be calculated by the following formula (1).
  • Tj Q ⁇ (Rjc + Rcf + Rfa) + Ta (1)
  • the estimated temperature Tfe of the radiating fin 1 can be calculated by the following formula (2).
  • Tfe Q ⁇ (Rjc + Rcf) + Tj (2)
  • the radiating fin temperature estimation unit 11 can obtain the estimated temperature Tfe of the radiating fin 1 using Equation (3).
  • FIG. 6 is a graph showing a state where the estimated temperature Tfe of the radiating fin 1 is higher than the actual temperature Tf in the first embodiment.
  • the temperature protection operation by the semiconductor element temperature protection unit 7 in this case will be described below.
  • the memory unit 16 stores a threshold value K, which is a predetermined heat radiation abnormality threshold value, for use in determining whether there is an abnormality in the heat radiation path between the heat radiation fin 1 and the semiconductor element 2.
  • the abnormality determination unit 13 determines abnormality from the normal state when the value obtained by subtracting the actual temperature Tf of the radiating fin 1 from the estimated temperature Tfe of the radiating fin 1 exceeds a threshold value K, that is, Tfe ⁇ Tf> K. Transition to a grace state.
  • an abnormality determination delay time td is determined in advance. After the transition to the abnormality determination grace state, when the state where the value obtained by subtracting the actual temperature Tf from the estimated temperature Tfe of the radiating fin 1 exceeds the threshold K (Tfe ⁇ Tf> K) continues for the abnormality determination grace time td.
  • the abnormality determination unit 13 determines that an abnormality has occurred in the heat dissipation path. If the abnormality determination unit 13 determines that an abnormality has occurred in the heat dissipation path, the abnormality determination unit 13 performs a temperature protection operation that controls the driving unit 14 to stop the operation of the semiconductor element 2.
  • the abnormality determination unit 13 cancels the abnormality determination postponement state and returns to the normal state.
  • the abnormality determination unit 13 As soon as the value obtained by subtracting the actual temperature Tf from the estimated temperature Tfe of the radiating fin 1 exceeds the threshold value K (Tfe ⁇ Tf> K), the abnormality determination unit 13 generates an abnormality in the radiating path.
  • the temperature protection operation for stopping the operation of the semiconductor element 2 by controlling the drive unit 14 may be performed.
  • FIG. 7 is a graph showing a state where the actual temperature Tf of the radiating fin 1 is higher than the estimated temperature Tfe in the first embodiment.
  • the temperature protection operation by the semiconductor element temperature protection unit 7 in this case will be described below.
  • the abnormality determination unit 13 does not determine that an abnormality has occurred in the heat dissipation path.
  • the storage unit 16 further stores a threshold value Tt that is a predetermined overheat abnormality threshold value for use in determining whether or not an overheat abnormality has occurred in the semiconductor element 2.
  • the abnormality determination unit 13 determines that an overheating abnormality has occurred in the semiconductor element 2 and controls the drive unit 14. Thus, the temperature protection operation for stopping the operation of the semiconductor element 2 is performed.
  • the temperature protection device 100 for a semiconductor element includes the value of the current flowing through the semiconductor element 2 and the radiation fin 1 without adding a temperature detection location, a large-scale detection circuit, or a new part.
  • Means for calculating an estimated temperature Tfe which is an estimated value of the radiating fin 1 based on the ambient temperature Ta, and means for comparing the actual temperature Tf of the radiating fin 1 with the estimated temperature Tfe.
  • the temperature protection device 100 for a semiconductor element can prevent thermal destruction of the semiconductor element 2 at a low cost even when an abnormality occurs in the heat dissipation path between the semiconductor element 2 and the heat dissipation fin 1. Thereby, it is possible to prevent a component failure due to heat radiation abnormality.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

A temperature protection device (100) of a semiconductor element is provided with: a semiconductor element (2) for driving a load (15); a drive unit (14) that drives and controls the semiconductor element (2); a heat dissipation fin for dissipating heat generated by the semiconductor element (2); a heat dissipation fin temperature detection unit (12) that detects the actual temperature of the heat dissipation fin; a surrounding temperature detection unit (10) that detects the temperature surrounding the heat dissipation fin; a current detection unit (8) that detects a current value of a current flowing from the semiconductor element (2) to the load (15); a loss calculation unit (9) that calculates the loss of the semiconductor element (2) according to the current value; a heat dissipation fin temperature estimation unit (11) that calculates the estimated temperature that is an estimated value of the temperature of the heat dissipation fin on the basis of the loss and the surrounding temperature; and an anomaly determination unit (13) that determines whether an anomaly has occurred in the heat dissipation path between the heat dissipation fin and the semiconductor element (2) on the basis of the difference between the actual temperature and the estimated temperature, and controls the drive unit (14) if it is determined that an anomaly has occurred.

Description

半導体素子の温度保護装置Temperature protection device for semiconductor elements
 本発明は、半導体素子の過熱保護を行う半導体素子の温度保護装置に関する。 The present invention relates to a temperature protection device for a semiconductor element that performs overheat protection of the semiconductor element.
 従来、スイッチング素子などとして用いられる半導体素子には、発熱による部品故障を防ぐために、シリコーンなどの放熱グリースを介して放熱フィンが熱的に結合されている。そして、半導体素子が発生する熱を放熱フィンで外部に放出することにより、半導体素子の冷却が行われている(例えば、特許文献1参照)。 Conventionally, a semiconductor element used as a switching element or the like has a heat radiating fin thermally coupled via a heat radiating grease such as silicone in order to prevent a component failure due to heat generation. And the heat | fever which a semiconductor element generate | occur | produces is discharged | emitted by the radiation fin outside, and the semiconductor element is cooled (for example, refer patent document 1).
 また、上記したような半導体素子の発熱に起因する部品故障を防ぐために、放熱フィンの温度をサーミスタといった温度センサで測定し、過熱時に半導体素子の保護動作を行うことが一般的に実行されている。 Further, in order to prevent a component failure due to heat generation of the semiconductor element as described above, it is generally performed to measure the temperature of the radiating fin with a temperature sensor such as a thermistor and perform a protective operation of the semiconductor element at the time of overheating. .
特開2004-200428号公報JP 2004-200428 A
 しかしながら、半導体素子の温度変化を要因とした放熱グリースのポンピングアウト現象、半導体素子と放熱フィンとの取り付け不良、放熱グリースの塗り忘れ、といった半導体素子と放熱フィンとの間の放熱経路に異常が発生した場合または発生している場合は、半導体素子の温度が上昇したとしても放熱フィンの温度が上昇しなくなる。そのため、従来のように放熱フィンの温度のみに基づいた温度保護制御では、半導体素子の適確な保護を行うことができず、半導体素子が故障してしまうという問題点があった。 However, there is an abnormality in the heat dissipation path between the semiconductor element and the heat dissipation fin, such as pumping out phenomenon of the heat dissipation grease due to the temperature change of the semiconductor element, improper mounting of the semiconductor element and the heat dissipation fin, or forgetting to apply the heat dissipation grease. If it occurs or occurs, the temperature of the radiating fin does not increase even if the temperature of the semiconductor element increases. For this reason, the conventional temperature protection control based only on the temperature of the heat dissipating fins has a problem in that the semiconductor element cannot be properly protected and the semiconductor element fails.
 本発明は、上記に鑑みてなされたものであって、半導体素子と放熱フィンとの間の放熱経路の異常を検出することができる半導体素子の温度保護装置を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a temperature protection device for a semiconductor element capable of detecting an abnormality in a heat radiation path between the semiconductor element and the heat radiation fin.
 上述した課題を解決し、目的を達成するために、本発明は、負荷を駆動するための半導体素子と、半導体素子を駆動制御する駆動部と、半導体素子から発生する熱を放出するための放熱フィンと、放熱フィンの実温度を検出する放熱フィン温度検出部と、放熱フィンの周囲温度を検出する周囲温度検出部と、半導体素子から負荷へ流れる電流値を検出する電流検出部と、を備える。さらに本発明は、電流値から半導体素子の損失を算出する損失算出部と、損失および周囲温度に基づいて放熱フィンの温度の推定値である推定温度を算出する放熱フィン温度推定部と、実温度と推定温度との差に基づいて放熱フィンと半導体素子との間の放熱経路に異常が発生しているか否かを判定して、異常が発生していると判定した場合は駆動部を制御する異常判定部と、を備えることを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention provides a semiconductor element for driving a load, a drive unit for driving and controlling the semiconductor element, and heat dissipation for releasing heat generated from the semiconductor element. A fin, a radiating fin temperature detecting unit for detecting the actual temperature of the radiating fin, an ambient temperature detecting unit for detecting the ambient temperature of the radiating fin, and a current detecting unit for detecting a current value flowing from the semiconductor element to the load. . Furthermore, the present invention includes a loss calculation unit that calculates a loss of a semiconductor element from a current value, a radiation fin temperature estimation unit that calculates an estimated temperature that is an estimated value of the temperature of the radiation fin based on the loss and the ambient temperature, and an actual temperature Based on the difference between the temperature and the estimated temperature, it is determined whether or not an abnormality has occurred in the heat dissipation path between the heat dissipation fin and the semiconductor element. If it is determined that an abnormality has occurred, the drive unit is controlled. An abnormality determination unit.
 本発明にかかる半導体素子の温度保護装置は、半導体素子と放熱フィンとの間の放熱経路の異常を検出することができるという効果を奏する。 The temperature protection device for a semiconductor element according to the present invention has an effect of being able to detect an abnormality in a heat radiation path between the semiconductor element and the heat radiation fin.
本発明の実施の形態1にかかる半導体素子の冷却装置の一例を示す構成図The block diagram which shows an example of the cooling device of the semiconductor element concerning Embodiment 1 of this invention. 実施の形態1にかかる半導体素子の温度保護装置の構成を示す図The figure which shows the structure of the temperature protection apparatus of the semiconductor element concerning Embodiment 1. FIG. 実施の形態1にかかる半導体素子温度保護部の専用のハードウェアによる構成を示す図The figure which shows the structure by the hardware for exclusive use of the semiconductor element temperature protection part concerning Embodiment 1. FIG. 実施の形態1にかかる半導体素子温度保護部をコンピュータで実現する場合のハードウェア構成を示す図The figure which shows the hardware constitutions in the case of implement | achieving the semiconductor element temperature protection part concerning Embodiment 1 with a computer. 実施の形態1にかかる半導体素子および冷却装置における温度と熱抵抗の関係を示す図The figure which shows the relationship between the temperature in the semiconductor element and cooling device concerning Embodiment 1, and thermal resistance. 実施の形態1において放熱フィンの推定温度Tfeが実温度Tfより高くなる場合の様子を示すグラフThe graph which shows a mode in case the estimated temperature Tfe of a radiation fin becomes higher than actual temperature Tf in Embodiment 1. 実施の形態1において放熱フィンの実温度Tfが推定温度Tfeより高くなる場合の様子を示すグラフThe graph which shows a mode in case the actual temperature Tf of a radiation fin becomes higher than estimated temperature Tfe in Embodiment 1.
 以下に、本発明の実施の形態にかかる半導体素子の温度保護装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a temperature protection device for a semiconductor element according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、本発明の実施の形態1にかかる半導体素子2の冷却装置20の一例を示す構成図である。発熱源である半導体素子2には冷却装置20が設けられており、冷却装置20は、半導体素子2を冷却するための放熱フィン1と、放熱フィン1と半導体素子2との間に塗布された放熱グリース3と、を有する。放熱フィン1は、半導体素子2から発生する熱を外部に放出するために設けられている。放熱グリース3の具体例は、伝熱性を向上させるためのシリコーンである。そして、放熱フィン1には、放熱フィン1の実温度Tfを測定するために放熱フィン1に接続された放熱フィン温度センサ4が備えられている。さらに、放熱フィン1の傍の周囲温度Taを測定するための周囲温度センサ5が設置されている。放熱フィン温度センサ4および周囲温度センサ5は、半導体素子温度保護部7に接続されている。半導体素子温度保護部7は、半導体素子2を駆動制御する駆動部14を制御する。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram showing an example of a cooling device 20 for a semiconductor element 2 according to the first embodiment of the present invention. The semiconductor device 2 that is a heat generation source is provided with a cooling device 20. The cooling device 20 is applied between the heat radiation fin 1 for cooling the semiconductor device 2 and between the heat radiation fin 1 and the semiconductor device 2. And a heat dissipating grease 3. The heat radiating fins 1 are provided to release heat generated from the semiconductor element 2 to the outside. A specific example of the heat dissipating grease 3 is silicone for improving heat transfer. The radiating fin 1 is provided with a radiating fin temperature sensor 4 connected to the radiating fin 1 in order to measure the actual temperature Tf of the radiating fin 1. Further, an ambient temperature sensor 5 for measuring the ambient temperature Ta near the heat radiating fin 1 is installed. The radiating fin temperature sensor 4 and the ambient temperature sensor 5 are connected to the semiconductor element temperature protection unit 7. The semiconductor element temperature protection unit 7 controls the drive unit 14 that controls the drive of the semiconductor element 2.
 図2は、実施の形態1にかかる半導体素子の温度保護装置100の構成を示す図である。半導体素子の温度保護装置100は、負荷15を駆動する半導体素子2と、半導体素子2を駆動制御する駆動部14と、半導体素子2から負荷15へ流れる電流値を測定する電流センサ6と、駆動部14を制御する半導体素子温度保護部7と、放熱フィン温度センサ4と、周囲温度センサ5と、を備える。半導体素子2は、駆動部14によって駆動され、モータ等の負荷15を駆動する。半導体素子2には図1に示すような放熱フィン1を含んだ冷却装置20が接続されているが、図2では記載を省いてある。冷却装置20も半導体素子の温度保護装置100に含まれる。 FIG. 2 is a diagram illustrating a configuration of the temperature protection device 100 for a semiconductor element according to the first embodiment. The semiconductor element temperature protection device 100 includes a semiconductor element 2 that drives a load 15, a drive unit 14 that drives and controls the semiconductor element 2, a current sensor 6 that measures a current value flowing from the semiconductor element 2 to the load 15, and a drive The semiconductor element temperature protection part 7 which controls the part 14, the radiation fin temperature sensor 4, and the ambient temperature sensor 5 are provided. The semiconductor element 2 is driven by the drive unit 14 and drives a load 15 such as a motor. The semiconductor device 2 is connected to a cooling device 20 including the heat dissipating fins 1 as shown in FIG. 1, but the description is omitted in FIG. 2. The cooling device 20 is also included in the temperature protection device 100 for semiconductor elements.
 半導体素子温度保護部7は、電流センサ6に接続されて半導体素子2から負荷15へ流れる電流値を検出する電流検出部8と、電流検出部8が検出した電流値から半導体素子2の損失Qを算出する損失算出部9と、周囲温度センサ5に接続されて放熱フィン1の周囲温度Taを検出する周囲温度検出部10と、放熱フィン温度センサ4に接続されて放熱フィン1の実温度Tfを検出する放熱フィン温度検出部12と、を備える。ここで、損失算出部9が算出する半導体素子2の損失Qとは、半導体素子2の発熱量といったエネルギー損失量である。 The semiconductor element temperature protection unit 7 is connected to the current sensor 6 and detects a current value flowing from the semiconductor element 2 to the load 15. The semiconductor element temperature protection unit 7 detects the loss Q of the semiconductor element 2 from the current value detected by the current detection unit 8. A loss calculating unit 9 that calculates the temperature, an ambient temperature detecting unit 10 that is connected to the ambient temperature sensor 5 to detect the ambient temperature Ta of the radiating fin 1, and an actual temperature Tf of the radiating fin 1 that is connected to the radiating fin temperature sensor 4. And a radiating fin temperature detecting unit 12 for detecting. Here, the loss Q of the semiconductor element 2 calculated by the loss calculation unit 9 is an energy loss amount such as a heat generation amount of the semiconductor element 2.
 また、半導体素子温度保護部7は、損失算出部9が求めた半導体素子2の損失Qと、周囲温度検出部10が求めた放熱フィン1の周囲温度Taとから、放熱フィン1の温度の推定値である推定温度Tfeを算出する放熱フィン温度推定部11を備える。 Further, the semiconductor element temperature protection unit 7 estimates the temperature of the radiation fin 1 from the loss Q of the semiconductor element 2 obtained by the loss calculation unit 9 and the ambient temperature Ta of the radiation fin 1 obtained by the ambient temperature detection unit 10. A radiating fin temperature estimating unit 11 for calculating an estimated temperature Tfe as a value is provided.
 さらに、半導体素子温度保護部7は、放熱フィン温度検出部12が求めた放熱フィン1の実温度Tfと、放熱フィン温度推定部11が求めた放熱フィン1の推定温度Tfeとの差に基づいて、放熱フィン1と半導体素子2との間の放熱経路に異常が発生しているか否かを判定して駆動部14を制御する異常判定部13を備える。半導体素子温度保護部7は、さらに記憶部16を備える。 Furthermore, the semiconductor element temperature protection unit 7 is based on the difference between the actual temperature Tf of the radiation fin 1 obtained by the radiation fin temperature detection unit 12 and the estimated temperature Tfe of the radiation fin 1 obtained by the radiation fin temperature estimation unit 11. And an abnormality determining unit 13 that determines whether or not an abnormality has occurred in the heat dissipation path between the radiation fin 1 and the semiconductor element 2 and controls the drive unit 14. The semiconductor element temperature protection unit 7 further includes a storage unit 16.
 図3は、実施の形態1にかかる半導体素子温度保護部7の専用のハードウェアによる構成を示す図である。半導体素子温度保護部7を専用のハードウェアで構成する場合、半導体素子温度保護部7の各部のそれぞれは、図3に示すように専用のハードウェアである処理回路50で構成される。処理回路50は、単一回路、複合回路、プログラム化したプロセッサー、並列プログラム化したプロセッサー、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものが該当する。半導体素子温度保護部7の各部のそれぞれを別々の複数の処理回路50で実現してもよいし、半導体素子温度保護部7の各部の機能をまとめて一つの処理回路50で実現してもよい。 FIG. 3 is a diagram illustrating a configuration of dedicated hardware of the semiconductor element temperature protection unit 7 according to the first embodiment. When the semiconductor element temperature protection unit 7 is configured by dedicated hardware, each unit of the semiconductor element temperature protection unit 7 is configured by a processing circuit 50 which is dedicated hardware as shown in FIG. The processing circuit 50 corresponds to a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof. Each part of the semiconductor element temperature protection unit 7 may be realized by a plurality of separate processing circuits 50, or the functions of each part of the semiconductor element temperature protection part 7 may be realized by a single processing circuit 50. .
 図4は、実施の形態1にかかる半導体素子温度保護部7をコンピュータで実現する場合のハードウェア構成を示す図である。コンピュータの具体例はマイクロコンピュータである。この場合、半導体素子温度保護部7は、半導体素子の温度保護装置100に設けられた図4に示すようなCPU(Central Processing Unit)51およびメモリ52により実現される。すなわち、半導体素子温度保護部7の電流検出部8、損失算出部9、周囲温度検出部10、放熱フィン温度推定部11、放熱フィン温度検出部12および異常判定部13は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアまたはファームウェアはプログラムとして記述され、メモリ52に格納される。CPU51は、メモリ52に記憶されたプログラムを読み出して実行することにより、半導体素子温度保護部7の上記各部の機能を実現する。すなわち、半導体素子温度保護部7は、各部の機能がコンピュータにより実行されるときに、各部の動作を実施するステップが結果的に実行されることになるプログラムを格納するためのメモリ52を備えている。また、これらのプログラムは、半導体素子温度保護部7の上記各部の手順または方法をコンピュータに実行させるものであるともいえる。 FIG. 4 is a diagram illustrating a hardware configuration when the semiconductor element temperature protection unit 7 according to the first embodiment is realized by a computer. A specific example of the computer is a microcomputer. In this case, the semiconductor element temperature protection unit 7 is realized by a CPU (Central Processing Unit) 51 and a memory 52 as shown in FIG. 4 provided in the temperature protection device 100 for semiconductor elements. That is, the current detection unit 8, the loss calculation unit 9, the ambient temperature detection unit 10, the radiating fin temperature estimation unit 11, the radiating fin temperature detection unit 12, and the abnormality determination unit 13 of the semiconductor element temperature protection unit 7 may be software, firmware, or Realized by a combination of software and firmware. Software or firmware is described as a program and stored in the memory 52. The CPU 51 realizes the functions of the above-described units of the semiconductor element temperature protection unit 7 by reading and executing the program stored in the memory 52. In other words, the semiconductor element temperature protection unit 7 includes a memory 52 for storing a program in which a step of executing the operation of each unit is executed as a result when the function of each unit is executed by the computer. Yes. These programs can also be said to cause a computer to execute the procedures or methods of the above-described units of the semiconductor element temperature protection unit 7.
 ここで、メモリ52とは、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリー、EPROM(Erasable Programmable Read Only Memory)、EEPROM(登録商標)(Electrically Erasable Programmable Read Only Memory)といった不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disk)が該当する。半導体素子温度保護部7の記憶部16は、マイクロコンピュータなどに備えられたメモリ52により実現され、その具体例はEEPROMなどである。 Here, the memory 52 is nonvolatile such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory). Or a volatile semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, and DVD (Digital Versatile Disk) correspond. The storage unit 16 of the semiconductor element temperature protection unit 7 is realized by a memory 52 provided in a microcomputer or the like, and a specific example thereof is an EEPROM or the like.
 また、半導体素子温度保護部7の各部の各機能について、一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。このように半導体素子温度保護部7の各部は、ハードウェア、ソフトウェア、ファームウェア、またはこれらの組み合わせによって、上述した各機能を実現することができる。 Further, a part of each function of each part of the semiconductor element temperature protection unit 7 may be realized by dedicated hardware, and a part may be realized by software or firmware. Thus, each part of the semiconductor element temperature protection part 7 can implement | achieve each function mentioned above with hardware, software, firmware, or these combination.
 また、電流センサ6および電流検出部8を電流検出部とみなしてもよい。また、周囲温度センサ5および周囲温度検出部10を周囲温度検出部とみなしてもよい。また、放熱フィン温度センサ4および放熱フィン温度検出部12を放熱フィン温度検出部とみなしてもよい。 Further, the current sensor 6 and the current detection unit 8 may be regarded as a current detection unit. Further, the ambient temperature sensor 5 and the ambient temperature detection unit 10 may be regarded as the ambient temperature detection unit. Moreover, you may regard the radiation fin temperature sensor 4 and the radiation fin temperature detection part 12 as a radiation fin temperature detection part.
 図5は、実施の形態1にかかる半導体素子2および冷却装置20における温度と熱抵抗の関係を示す図である。図5に示した変数は、すでに説明したものも含めて下記の様に定義される。
 Tj・・・・半導体素子2のジャンクション温度
 Tc・・・・半導体素子2のケース温度
 Tf・・・・放熱フィン1の実温度
 Tfe・・・放熱フィン1の推定温度
 Ta・・・・放熱フィン1の周囲温度
 Rjc・・・半導体素子2のジャンクションとケースとの間の熱抵抗の値
 Rcf・・・半導体素子2のケースと放熱フィン1との間の熱抵抗の値
 Rfa・・・放熱フィン1と周囲温度との間の熱抵抗の値
 Q・・・・・半導体素子2の損失
FIG. 5 is a diagram illustrating a relationship between temperature and thermal resistance in the semiconductor element 2 and the cooling device 20 according to the first embodiment. The variables shown in FIG. 5 are defined as follows, including those already described.
Tj: Junction temperature of semiconductor element 2 Tc: Case temperature of semiconductor element 2 Tf: Actual temperature of radiation fin 1 Tfe: Estimated temperature of radiation fin 1 Ta: Radiation fin 1 Ambient temperature Rjc: Thermal resistance value between junction of semiconductor element 2 and case Rcf: Thermal resistance value between case of semiconductor element 2 and radiation fin 1 Rfa: Radiation fin Thermal resistance value between 1 and ambient temperature Q ... Loss of semiconductor element 2
 熱抵抗と損失との積が、熱を授受する物体間の温度差となるため、半導体素子2のジャンクション温度Tjは、以下の数式(1)で計算できる。
 Tj=Q×(Rjc+Rcf+Rfa)+Ta  ・・・(1)
Since the product of the thermal resistance and the loss is a temperature difference between the objects that transfer heat, the junction temperature Tj of the semiconductor element 2 can be calculated by the following formula (1).
Tj = Q × (Rjc + Rcf + Rfa) + Ta (1)
 同様に、放熱フィン1の推定温度Tfeは、以下の数式(2)で計算できる。
 Tfe=Q×(Rjc+Rcf)+Tj  ・・・(2)
Similarly, the estimated temperature Tfe of the radiating fin 1 can be calculated by the following formula (2).
Tfe = Q × (Rjc + Rcf) + Tj (2)
 数式(1)および数式(2)から、以下の数式(3)を得る。
 Tfe=Q×(2×(Rjc+Rcf)+Rfa)+Ta  ・・・(3)
From the formula (1) and the formula (2), the following formula (3) is obtained.
Tfe = Q × (2 × (Rjc + Rcf) + Rfa) + Ta (3)
 半導体素子温度保護部7の記憶部16に、予め求めておいた上記熱抵抗の値を記憶させておくことで、損失算出部9が求めた半導体素子2の損失Qと、周囲温度検出部10で求めた放熱フィン1の周囲温度Taとから、数式(3)を用いて、放熱フィン温度推定部11は放熱フィン1の推定温度Tfeを求めることができる。 By storing the thermal resistance value obtained in advance in the storage unit 16 of the semiconductor element temperature protection unit 7, the loss Q of the semiconductor element 2 obtained by the loss calculation unit 9 and the ambient temperature detection unit 10. From the ambient temperature Ta of the radiating fin 1 obtained in step 1, the radiating fin temperature estimation unit 11 can obtain the estimated temperature Tfe of the radiating fin 1 using Equation (3).
 図6は、実施の形態1において放熱フィン1の推定温度Tfeが実温度Tfより高くなる場合の様子を示すグラフである。この場合の、半導体素子温度保護部7による温度保護動作を以下に説明する。 FIG. 6 is a graph showing a state where the estimated temperature Tfe of the radiating fin 1 is higher than the actual temperature Tf in the first embodiment. The temperature protection operation by the semiconductor element temperature protection unit 7 in this case will be described below.
 記憶部16に、放熱フィン1と半導体素子2との間の放熱経路の異常の有無の判定に用いるために予め定められた放熱異常閾値である閾値Kが記憶されている。異常判定部13は、放熱フィン1の推定温度Tfeから放熱フィン1の実温度Tfを減じた値が閾値Kを超えた場合、すなわちTfe-Tf>Kとなった場合に、通常状態から異常判定猶予状態に移行する。 The memory unit 16 stores a threshold value K, which is a predetermined heat radiation abnormality threshold value, for use in determining whether there is an abnormality in the heat radiation path between the heat radiation fin 1 and the semiconductor element 2. The abnormality determination unit 13 determines abnormality from the normal state when the value obtained by subtracting the actual temperature Tf of the radiating fin 1 from the estimated temperature Tfe of the radiating fin 1 exceeds a threshold value K, that is, Tfe−Tf> K. Transition to a grace state.
 ここで、半導体素子2に流れる電流値の跳ね上がり、または各種温度検出部での瞬時的な誤検知による温度保護動作の発生を防ぐため、予め異常判定猶予時間tdを定めておく。異常判定猶予状態に移行後、放熱フィン1の推定温度Tfeから実温度Tfを減じた値が閾値Kを超えた状態(Tfe-Tf>K)が、異常判定猶予時間tdの間継続した場合に、異常判定部13は、上記放熱経路に異常が発生していると判定する。異常判定部13は、上記放熱経路に異常が発生していると判定すると、駆動部14を制御して半導体素子2の動作を停止させる温度保護動作を行う。 Here, in order to prevent a temperature protection operation from occurring due to a jump in the value of the current flowing through the semiconductor element 2 or an instantaneous erroneous detection in various temperature detection units, an abnormality determination delay time td is determined in advance. After the transition to the abnormality determination grace state, when the state where the value obtained by subtracting the actual temperature Tf from the estimated temperature Tfe of the radiating fin 1 exceeds the threshold K (Tfe−Tf> K) continues for the abnormality determination grace time td. The abnormality determination unit 13 determines that an abnormality has occurred in the heat dissipation path. If the abnormality determination unit 13 determines that an abnormality has occurred in the heat dissipation path, the abnormality determination unit 13 performs a temperature protection operation that controls the driving unit 14 to stop the operation of the semiconductor element 2.
 異常判定猶予状態に移行してから異常判定猶予時間tdが経過する前に、放熱フィン1の推定温度Tfeから実温度Tfを減じた値が閾値K以下、すなわちTfe-Tf≦Kとなった場合、異常判定部13は、異常判定猶予状態を解除して通常状態に戻る。 When the value obtained by subtracting the actual temperature Tf from the estimated temperature Tfe of the radiating fin 1 is equal to or less than a threshold value K, that is, Tfe−Tf ≦ K before the abnormality determination grace time td elapses after the transition to the abnormality determination grace state. The abnormality determination unit 13 cancels the abnormality determination postponement state and returns to the normal state.
 なお、放熱フィン1の推定温度Tfeから実温度Tfを減じた値が閾値Kを超えた状態(Tfe-Tf>K)になるとただちに、異常判定部13は、上記放熱経路に異常が発生していると判定して、駆動部14を制御して半導体素子2の動作を停止させる温度保護動作を行うようにしてもかまわない。 As soon as the value obtained by subtracting the actual temperature Tf from the estimated temperature Tfe of the radiating fin 1 exceeds the threshold value K (Tfe−Tf> K), the abnormality determination unit 13 generates an abnormality in the radiating path. The temperature protection operation for stopping the operation of the semiconductor element 2 by controlling the drive unit 14 may be performed.
 図7は、実施の形態1において放熱フィン1の実温度Tfが推定温度Tfeより高くなる場合の様子を示すグラフである。この場合の、半導体素子温度保護部7による温度保護動作を以下に説明する。 FIG. 7 is a graph showing a state where the actual temperature Tf of the radiating fin 1 is higher than the estimated temperature Tfe in the first embodiment. The temperature protection operation by the semiconductor element temperature protection unit 7 in this case will be described below.
 図7に示すように、放熱フィン1の実温度Tfが推定温度Tfeより高くなる場合、放熱フィン1の推定温度Tfeから実温度Tfを減じた値が閾値Kを超えた状態(Tfe-Tf>K)にはならない。したがって、異常判定部13は、放熱経路に異常が発生しているとは判定しない。しかし、記憶部16には、半導体素子2に過熱異常が発生しているか否かの判定に用いるために予め定められた過熱異常閾値である閾値Ttがさらに記憶されている。そして、放熱フィン温度1の実温度Tfが閾値Ttを超えた場合(Tf>Tt)、異常判定部13は、半導体素子2に過熱異常が発生していると判定し、駆動部14を制御して半導体素子2の動作を停止させる温度保護動作を行う。 As shown in FIG. 7, when the actual temperature Tf of the radiating fin 1 is higher than the estimated temperature Tfe, the value obtained by subtracting the actual temperature Tf from the estimated temperature Tfe of the radiating fin 1 exceeds the threshold value K (Tfe−Tf>). K) Therefore, the abnormality determination unit 13 does not determine that an abnormality has occurred in the heat dissipation path. However, the storage unit 16 further stores a threshold value Tt that is a predetermined overheat abnormality threshold value for use in determining whether or not an overheat abnormality has occurred in the semiconductor element 2. When the actual temperature Tf of the radiating fin temperature 1 exceeds the threshold Tt (Tf> Tt), the abnormality determination unit 13 determines that an overheating abnormality has occurred in the semiconductor element 2 and controls the drive unit 14. Thus, the temperature protection operation for stopping the operation of the semiconductor element 2 is performed.
 以上説明したように、実施の形態1にかかる半導体素子の温度保護装置100は、温度検出箇所、大がかりな検出回路または部品を新たに追加せずに、半導体素子2に流れる電流値および放熱フィン1の周囲温度Taに基づいて放熱フィン1の温度の推定値である推定温度Tfeを算出する手段と、放熱フィン1の実温度Tfと推定温度Tfeとを比較する手段とを備える。これにより、半導体素子の温度保護装置100は、半導体素子2と放熱フィン1との間の放熱経路に異常が発生した場合でも、安価に半導体素子2の熱破壊を防ぐことが可能となる。これにより、放熱異常による部品故障を未然に防ぐことができる。 As described above, the temperature protection device 100 for a semiconductor element according to the first exemplary embodiment includes the value of the current flowing through the semiconductor element 2 and the radiation fin 1 without adding a temperature detection location, a large-scale detection circuit, or a new part. Means for calculating an estimated temperature Tfe, which is an estimated value of the radiating fin 1 based on the ambient temperature Ta, and means for comparing the actual temperature Tf of the radiating fin 1 with the estimated temperature Tfe. As a result, the temperature protection device 100 for a semiconductor element can prevent thermal destruction of the semiconductor element 2 at a low cost even when an abnormality occurs in the heat dissipation path between the semiconductor element 2 and the heat dissipation fin 1. Thereby, it is possible to prevent a component failure due to heat radiation abnormality.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1 放熱フィン、2 半導体素子、3 放熱グリース、4 放熱フィン温度センサ、5 周囲温度センサ、6 電流センサ、7 半導体素子温度保護部、8 電流検出部、9 損失算出部、10 周囲温度検出部、11 放熱フィン温度推定部、12 放熱フィン温度検出部、13 異常判定部、14 駆動部、15 負荷、16 記憶部、20 冷却装置、50 処理回路、51 CPU、52 メモリ、100 半導体素子の温度保護装置。 1 heat dissipation fin, 2 semiconductor element, 3 heat dissipation grease, 4 heat dissipation fin temperature sensor, 5 ambient temperature sensor, 6 current sensor, 7 semiconductor element temperature protection unit, 8 current detection unit, 9 loss calculation unit, 10 ambient temperature detection unit, 11 Heat radiation fin temperature estimation unit, 12 Heat radiation fin temperature detection unit, 13 Abnormality determination unit, 14 Drive unit, 15 Load, 16 Storage unit, 20 Cooling device, 50 Processing circuit, 51 CPU, 52 Memory, 100 Semiconductor device temperature protection apparatus.

Claims (7)

  1.  負荷を駆動するための半導体素子と、
     前記半導体素子を駆動制御する駆動部と、
     前記半導体素子から発生する熱を放出するための放熱フィンと、
     前記放熱フィンの実温度を検出する放熱フィン温度検出部と、
     前記放熱フィンの周囲温度を検出する周囲温度検出部と、
     前記半導体素子から前記負荷へ流れる電流値を検出する電流検出部と、
     前記電流値から前記半導体素子の損失を算出する損失算出部と、
     前記損失および前記周囲温度に基づいて前記放熱フィンの温度の推定値である推定温度を算出する放熱フィン温度推定部と、
     前記実温度と前記推定温度との差に基づいて前記放熱フィンと前記半導体素子との間の放熱経路に異常が発生しているか否かを判定して、異常が発生していると判定した場合は前記駆動部を制御する異常判定部と、
     を備える
     ことを特徴とする半導体素子の温度保護装置。
    A semiconductor element for driving a load;
    A drive unit that drives and controls the semiconductor element;
    A radiation fin for releasing heat generated from the semiconductor element;
    A radiation fin temperature detector for detecting the actual temperature of the radiation fin;
    An ambient temperature detector for detecting the ambient temperature of the heat dissipating fins;
    A current detection unit for detecting a current value flowing from the semiconductor element to the load;
    A loss calculation unit for calculating a loss of the semiconductor element from the current value;
    A radiating fin temperature estimating unit that calculates an estimated temperature that is an estimated value of the temperature of the radiating fin based on the loss and the ambient temperature;
    When it is determined that an abnormality has occurred by determining whether an abnormality has occurred in the heat dissipation path between the radiating fin and the semiconductor element based on the difference between the actual temperature and the estimated temperature Is an abnormality determination unit that controls the drive unit;
    A temperature protection device for a semiconductor element, comprising:
  2.  予め求めた熱抵抗の値を記憶する記憶部をさらに備え、
     前記放熱フィン温度推定部は、前記熱抵抗の値、前記損失および前記周囲温度に基づいて前記推定温度を算出する
     ことを特徴とする請求項1に記載の半導体素子の温度保護装置。
    A storage unit for storing the value of the thermal resistance obtained in advance;
    The temperature radiating fin temperature estimation unit calculates the estimated temperature based on the value of the thermal resistance, the loss, and the ambient temperature. The temperature protection device for a semiconductor device according to claim 1, wherein:
  3.  予め定められた放熱異常閾値を記憶する記憶部をさらに備え、
     前記異常判定部は、前記推定温度から前記実温度を減じた値が前記放熱異常閾値を超えた場合に、前記異常が発生していると判定して前記駆動部を制御する
     ことを特徴とする請求項1に記載の半導体素子の温度保護装置。
    A storage unit for storing a predetermined heat release abnormality threshold;
    The abnormality determination unit determines that the abnormality has occurred and controls the drive unit when a value obtained by subtracting the actual temperature from the estimated temperature exceeds the heat radiation abnormality threshold value. The temperature protection device for a semiconductor element according to claim 1.
  4.  前記異常判定部は、前記推定温度から前記実温度を減じた値が前記放熱異常閾値を超えた状態が予め定めた異常判定猶予時間の間継続した場合に、前記異常が発生していると判定して前記駆動部を制御する
     ことを特徴とする請求項3に記載の半導体素子の温度保護装置。
    The abnormality determining unit determines that the abnormality has occurred when a value obtained by subtracting the actual temperature from the estimated temperature exceeds the heat radiation abnormality threshold for a predetermined abnormality determination grace period. The temperature protection device for a semiconductor element according to claim 3, wherein the drive unit is controlled.
  5.  前記異常判定部は、前記異常が発生していると判定すると、前記駆動部を制御して前記半導体素子の動作を停止させる
     ことを特徴とする請求項1から4のいずれか1つに記載の半導体素子の温度保護装置。
    The said abnormality determination part controls the said drive part, if it determines with the said abnormality having generate | occur | produced. The operation | movement of the said semiconductor element is stopped. The Claim 1 characterized by the above-mentioned. Temperature protection device for semiconductor elements.
  6.  予め定められた過熱異常閾値を記憶する記憶部をさらに備え、
     前記異常判定部は、前記実温度が前記過熱異常閾値を超えた場合に、前記半導体素子の過熱異常が発生していると判定し、前記駆動部を制御して前記半導体素子の動作を停止させる
     ことを特徴とする請求項1に記載の半導体素子の温度保護装置。
    A storage unit for storing a predetermined overheat abnormality threshold value;
    The abnormality determination unit determines that an overheating abnormality of the semiconductor element has occurred when the actual temperature exceeds the overheating abnormality threshold, and controls the driving unit to stop the operation of the semiconductor element. The temperature protection device for a semiconductor element according to claim 1.
  7.  前記半導体素子と前記放熱フィンとの間に伝熱性を向上させるための放熱グリースをさらに備える
     ことを特徴とする請求項1から6のいずれか1つに記載の半導体素子の温度保護装置。
    The temperature protection device for a semiconductor element according to any one of claims 1 to 6, further comprising a heat dissipating grease for improving heat transfer between the semiconductor element and the heat dissipating fin.
PCT/JP2017/021743 2017-06-13 2017-06-13 Temperature protection device of semiconductor element WO2018229849A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/021743 WO2018229849A1 (en) 2017-06-13 2017-06-13 Temperature protection device of semiconductor element
JP2019524582A JP6765527B2 (en) 2017-06-13 2017-06-13 Temperature protection device for semiconductor elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/021743 WO2018229849A1 (en) 2017-06-13 2017-06-13 Temperature protection device of semiconductor element

Publications (1)

Publication Number Publication Date
WO2018229849A1 true WO2018229849A1 (en) 2018-12-20

Family

ID=64659540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021743 WO2018229849A1 (en) 2017-06-13 2017-06-13 Temperature protection device of semiconductor element

Country Status (2)

Country Link
JP (1) JP6765527B2 (en)
WO (1) WO2018229849A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020208726A1 (en) * 2019-04-09 2020-10-15 三菱電機株式会社 Power conversion device
WO2022224341A1 (en) * 2021-04-20 2022-10-27 ファナック株式会社 Electronic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013254899A (en) * 2012-06-08 2013-12-19 Daikin Ind Ltd Cooling device and fluid pressure unit
JP2014187789A (en) * 2013-03-22 2014-10-02 Fanuc Ltd Motor drive device having abnormality detection function
JP2017022907A (en) * 2015-07-13 2017-01-26 株式会社デンソー Current sensor abnormality diagnosis device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7839201B2 (en) * 2005-04-01 2010-11-23 Raytheon Company Integrated smart power switch
CN102150353B (en) * 2008-09-11 2014-06-18 株式会社安川电机 Inverter apparatus, inverter control system, motor control system, and method of controlling inverter apparatus
JP6056121B2 (en) * 2011-07-05 2017-01-11 株式会社リコー Inkjet printing apparatus and overheat error detection method for inkjet printing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013254899A (en) * 2012-06-08 2013-12-19 Daikin Ind Ltd Cooling device and fluid pressure unit
JP2014187789A (en) * 2013-03-22 2014-10-02 Fanuc Ltd Motor drive device having abnormality detection function
JP2017022907A (en) * 2015-07-13 2017-01-26 株式会社デンソー Current sensor abnormality diagnosis device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020208726A1 (en) * 2019-04-09 2020-10-15 三菱電機株式会社 Power conversion device
JPWO2020208726A1 (en) * 2019-04-09 2021-11-25 三菱電機株式会社 Power converter
JP6999860B2 (en) 2019-04-09 2022-01-19 三菱電機株式会社 Power converter
WO2022224341A1 (en) * 2021-04-20 2022-10-27 ファナック株式会社 Electronic device

Also Published As

Publication number Publication date
JPWO2018229849A1 (en) 2019-11-07
JP6765527B2 (en) 2020-10-07

Similar Documents

Publication Publication Date Title
TWI364157B (en)
JP6430295B2 (en) Intelligent power module evaluation method
JP2017003342A5 (en)
JP2013229965A (en) Energization circuit protection device
WO2018229849A1 (en) Temperature protection device of semiconductor element
JP6524346B2 (en) Outdoor unit of air conditioner
JP6999860B2 (en) Power converter
US10340774B2 (en) Temperature estimating device of electric motor
JP5473399B2 (en) Overheat protection device
JP6299368B2 (en) Semiconductor device temperature estimation device
JP5287365B2 (en) Power conversion device and fan failure detection method thereof
JP6049506B2 (en) Power module protection device
WO2014129052A1 (en) Temperature estimation device and semiconductor device
JP2000228882A (en) Protective device for variable speed inverter
US9722514B2 (en) Motor drive and method of controlling a temperature of a motor drive
JP5920492B2 (en) Temperature estimation device and semiconductor device
JP2011146533A (en) Evaporation cooling device
JP7136090B2 (en) Motor drive device and electric power steering device
JP4872906B2 (en) Fuel pump control device
JP2014096886A (en) Power supply device
JP2018038194A (en) Electric power converter
JP7070062B2 (en) Equipment protection device and equipment protection method
JP2021048305A (en) Protection circuit, semiconductor device and method
JP6548698B2 (en) Power converter
JP7183374B1 (en) power converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17913137

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019524582

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17913137

Country of ref document: EP

Kind code of ref document: A1