WO2018228400A1 - 一种信息传输方法和装置 - Google Patents

一种信息传输方法和装置 Download PDF

Info

Publication number
WO2018228400A1
WO2018228400A1 PCT/CN2018/090913 CN2018090913W WO2018228400A1 WO 2018228400 A1 WO2018228400 A1 WO 2018228400A1 CN 2018090913 W CN2018090913 W CN 2018090913W WO 2018228400 A1 WO2018228400 A1 WO 2018228400A1
Authority
WO
WIPO (PCT)
Prior art keywords
ptrs
bpsk
modulated
phase
symbol
Prior art date
Application number
PCT/CN2018/090913
Other languages
English (en)
French (fr)
Inventor
张希
徐明慧
陈磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710920235.6A external-priority patent/CN109088840B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112019016641-6A priority Critical patent/BR112019016641B1/pt
Priority to KR1020217032486A priority patent/KR102364995B1/ko
Priority to CA3051285A priority patent/CA3051285C/en
Priority to KR1020197023347A priority patent/KR20190103343A/ko
Priority to JP2019545247A priority patent/JP6952785B2/ja
Priority to EP21177301.5A priority patent/EP3937447A1/en
Priority to EP18817009.6A priority patent/EP3573300B1/en
Publication of WO2018228400A1 publication Critical patent/WO2018228400A1/zh
Priority to US16/518,574 priority patent/US10715367B2/en
Priority to US16/922,692 priority patent/US11108608B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26134Pilot insertion in the transmitter chain, e.g. pilot overlapping with data, insertion in time or frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to an information transmission method and apparatus.
  • the transmitting device can insert a phase tracking reference signal (PTRS) into the data signal.
  • PTRS phase tracking reference signal
  • the receiving end device first estimates the phase error of the PTRS, and then obtains the phase error of the data signal by filtering and/or interpolation, thereby realizing phase error compensation for the data signal.
  • the uplink waveform can be a single carrier.
  • PAPR peak-to-average power ratio
  • the present application provides an information transmission method and apparatus, which contributes to the advantages of single carrier low PAPR.
  • the present application provides an information processing method and apparatus.
  • the present application provides an information processing method, where the execution body of the method may be a transmitting end device, wherein in the uplink direction, the transmitting end device is a terminal; in the downlink direction, the transmitting end device is Base station.
  • the method can include generating one or more orthogonal frequency division multiplexing (OFDM) symbols, wherein each of the partial or full OFDM symbols can include a pi/2 (two-part ⁇ ) binary Phase shift keying (BPSK) modulated data signal, and pi/2 BPSK modulated PTRS.
  • OFDM orthogonal frequency division multiplexing
  • BPSK binary Phase shift keying
  • PTRS in the OFDM symbol is a pi/2 BPSK modulated PTRS.
  • the PTRS is a QPSK modulated PTRS, and the PTRS is added. Randomness, in which the greater the randomness, the more stable the performance of the system, thus contributing to the good performance of single carrier low PAPR.
  • the method may further include: phase shifting the BPSK modulated PTRS to obtain a pi/2 BPSK modulated PTRS; wherein the PTRS includes one or more PTRS blocks, and each PTRS block includes One or more BPSK symbols are phase shifted according to the pi/2 increment rule for the BPSK symbols in each PTRS block.
  • the method may further include: phase shifting the BPSK modulated PTRS to obtain a pi/2 BPSK modulated PTRS; wherein the PTRS includes one or more PTRS blocks, and each PTRS block includes One or more BPSK symbols are phase shifted according to the pi/2 decreasing rule for the BPSK symbols in each PTRS block.
  • the PTRS after pi/2BPSK modulation can be obtained by, for example but not limited to, the PTRS after the pi/2 BPSK modulation is preset; or, in each PTRS block of a part of the PTRS blocks in the BPSK modulated PTRS.
  • Each BPSK is phase-shifted according to the pi/2 increment rule, and each BPSK in each PTRS block in another partial PTRS block is phase-shifted according to the pi/2 decreasing law.
  • each BPSK symbol in the PTRS block is phase-shifted in the order of 0, pi/2, pi, 3pi/2, ..., or 0, respectively, in the order of arrangement.
  • the phases of -pi/2, -pi, -3pi/2, ... are phase shifted.
  • the phase shift can be understood as: 0 phase shift of the BPSK symbol in the PTRS block, that is, no phase shift of the BPSK symbol in the PTRS block.
  • the phase shift of the BPSK symbols in each PTRS block according to the pi/2 increment rule may include: according to the order of the BPSK symbols in the sequence, in a pi/2 increment rule, A phase shift is performed on each BPSK symbol in the sequence, wherein the sequence is a sequence obtained by inserting a BPSK-modulated PTRS into a BPSK-modulated data signal.
  • the transmitting end device can learn the sequence of the BPSK symbols in the sequence before performing the BPSK-modulated PTRS into the BPSK-modulated data signal.
  • the present application does not limit the order in which the transmitting end device performs insertion and phase shifting. This possible design can be thought of as phase shifting the data signal and PTRS as a whole. In this way, the computational complexity of both the transmitting and receiving parties can be simplified.
  • the phase shift of the BPSK symbols in each PTRS block according to the pi/2 increment rule may include: pi/2 according to the order of the BPSK symbols in the BPSK modulated PTRS.
  • the law of incrementing phase shifts each BPSK symbol in the BPSK-modulated PTRS.
  • This possible design can be thought of as a separate phase shift between the data signal and the PTRS. In this way, the computational complexity of both the transmitting and receiving parties can be simplified.
  • the phase shift of the BPSK symbols in each PTRS block according to the pi/2 decreasing rule may include: according to the order of the BPSK symbols in the sequence, in a pi/2 decreasing law, A phase shift is performed on each BPSK symbol in the sequence, wherein the sequence is a sequence obtained by inserting a BPSK-modulated PTRS into a BPSK-modulated data signal.
  • This possible design can be thought of as phase shifting the data signal and PTRS as a whole. In this way, the computational complexity of both the transmitting and receiving parties can be simplified.
  • the phase shift of the BPSK symbols in each PTRS block according to the pi/2 decreasing rule may include: pi/2 according to the order of the BPSK symbols in the BPSK modulated PTRS.
  • the law of decrementing phase shifts each BPSK symbol in the BPSK-modulated PTRS.
  • This possible design can be thought of as a separate phase shift between the data signal and the PTRS. In this way, the computational complexity of both the transmitting and receiving parties can be simplified.
  • the method may further include inserting the BPSK modulated PTRS into the BPSK modulated data signal prior to phase shifting the BPSK modulated PTRS.
  • the method may further include: inserting the pi/2 BPSK modulated PTRS into the pi/2 BPSK modulated data signal after phase shifting the BPSK modulated PTRS.
  • the present application also provides an information processing apparatus, which can implement the information processing method of the first aspect.
  • the information processing device may be a chip (such as a baseband chip or a communication chip) or a transmitting device (such as a base station or a terminal).
  • the above method can be implemented by software, hardware or by executing corresponding software through hardware.
  • the information processing apparatus includes a processor and a memory.
  • the processor is configured to support the apparatus to perform corresponding functions in the above described information processing method.
  • the memory is coupled to the processor, which holds the programs (instructions) and data necessary for the device.
  • the information processing apparatus may further include a communication interface for supporting communication between the apparatus and other network elements.
  • the communication interface can be a transceiver.
  • the apparatus can include a processing unit.
  • the processing unit is configured to: generate one or more OFDM symbols, wherein each OFDM symbol in part or all of the OFDM symbols may include a pi/2 BPSK modulated data signal, and a pi/2 BPSK modulated PTRS.
  • the processing unit may be further configured to: phase shift the BPSK modulated PTRS to obtain a pi/2 BPSK modulated PTRS; wherein the PTRS includes one or more PTRS blocks, and each PTRS block Including one or more BPSK symbols, the BPSK symbols in each PTRS block are phase shifted according to the pi/2 increment rule.
  • the processing unit may be specifically configured to perform phase shifting on each BPSK symbol in the sequence according to an order of increasing BPSK symbols in the sequence, and the sequence is BPSK modulated. The sequence obtained by inserting the BPSK modulated data signal into the PTRS.
  • the processing unit may be configured to perform phase shift on each BPSK symbol in the BPSK modulated PTRS according to the order of the BPSK symbols in the BPSK modulated PTRS and in a pi/2 increment rule.
  • the processing unit may be further configured to: phase shift the BPSK modulated PTRS to obtain a pi/2 BPSK modulated PTRS; wherein the PTRS includes one or more PTRS blocks, and each PTRS block Including one or more BPSK symbols, the BPSK symbols in each PTRS block are phase shifted according to the pi/2 decreasing rule.
  • the processing unit may be specifically configured to perform phase shift on each BPSK symbol in the sequence according to a sequence of BPSK symbols in the sequence, in a pi/2 decreasing manner, where the sequence is BPSK modulated. The sequence obtained by inserting the BPSK modulated data signal into the PTRS.
  • the processing unit may be configured to perform phase shift on each BPSK symbol in the BPSK modulated PTRS according to the order of the BPSK symbols in the BPSK modulated PTRS by using a pi/2 decreasing rule.
  • the processing unit may be further configured to insert the BPSK modulated PTRS into the BPSK modulated data signal prior to phase shifting the BPSK modulated PTRS.
  • the processing unit may be further configured to insert the pi/2 BPSK modulated PTRS into the pi/2 BPSK modulated data signal after phase shifting the BPSK modulated PTRS.
  • the present application provides an information transmission method and apparatus.
  • the present application provides an information transmission method, and the execution body of the method may be a transmitting device.
  • the method can include generating one or more OFDM symbols, wherein each of the partial or full OFDM symbols can include a pi/2 BPSK modulated data signal, and a pi/2BPSK modulated PTRS. Then, the OFDM symbol is transmitted.
  • each of the partial or full OFDM symbols can include a pi/2 BPSK modulated data signal, and a pi/2BPSK modulated PTRS.
  • the OFDM symbol is transmitted.
  • the method may further include determining, according to a modulation and coding scheme (MCS), that the modulation mode of the data signal is pi/2 BPSK.
  • MCS modulation and coding scheme
  • the preset value is 4, 6, or 8.
  • the present application further provides an information transmission apparatus for implementing the information transmission method according to the second aspect.
  • the device can be implemented by software, or hardware, or by hardware to execute corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the apparatus includes a processor, a memory, and a communication interface; the processor is configured to support the apparatus to perform a corresponding function in the method of the second aspect described above.
  • the communication interface is used to support communication between the device and other network elements.
  • the memory is for coupling to a processor that holds the program instructions and data necessary for the device.
  • the communication interface may specifically be a transceiver.
  • the apparatus can include a processing unit and a transmitting unit.
  • the processing unit is configured to generate one or more OFDM symbols, wherein each OFDM symbol in part or all of the OFDM symbols may include a pi/2 BPSK modulated data signal, and a pi/2 BPSK modulated PTRS.
  • the transmitting unit is configured to transmit the OFDM symbol.
  • the processing unit is further configured to determine that the modulation mode of the data signal is pi/2 BPSK based on the MCS.
  • the MCS is greater than or equal to 0 and less than or equal to the preset value, determining that the modulation mode of the data signal is pi/2 BPSK; the preset value is 4, 6, or 8.
  • the present application also provides another information transmission method and apparatus.
  • the present application provides an information transmission method
  • the execution body of the method may be a receiving end device, wherein in the uplink direction, the receiving end device is a base station; in the downlink direction, the receiving end device is terminal.
  • the method can include receiving one or more OFDM symbols, wherein each OFDM symbol in a portion or all of the OFDM symbols includes a pi/2 BPSK modulated data signal, and a pi/2 BPSK modulated PTRS;
  • the pi/2 BPSK modulated PTRS demodulates the pi/2 BPSK modulated data signal.
  • demodulating the pi/2 BPSK modulated data signal according to the pi/2 BPSK modulated PTRS may include: phase shifting the pi/2 BPSK modulated PTRS, according to the phase shift PTRS demodulates pi/2 BPSK modulated data signals; wherein PTRS includes one or more PTRS blocks, each PTRS block includes one or more BPSK symbols, and pi/2 for each BPSK symbol in each PTRS block The phase shift is performed by increasing the law.
  • the phase shift of the BPSK symbols in each PTRS block according to the pi/2 increment rule may include: increasing the order by pi/2 according to the order of the BPSK symbols in the OFDM symbol. Phase shifting each BPSK symbol in the OFDM symbol;
  • the phase shift of the BPSK symbols in each PTRS block according to the pi/2 increment rule may include: according to the order of the BPSK symbols in the pi/2 BPSK modulated PTRS, The law of pi/2 incrementing phase shifts each BPSK symbol in the pi/2 BPSK modulated PTRS.
  • demodulating the pi/2 BPSK modulated data signal according to the pi/2 BPSK modulated PTRS may include: phase shifting the pi/2 BPSK modulated PTRS, according to the phase shift PTRS demodulates pi/2 BPSK modulated data signals; wherein PTRS includes one or more PTRS blocks, each PTRS block includes one or more BPSK symbols, and pi/2 for each BPSK symbol in each PTRS block The phase shift is performed by decreasing the law.
  • the phase shift of the BPSK symbols in each PTRS block according to the pi/2 decreasing rule may include: decreasing the order of pi/2 according to the order of the BPSK symbols in the OFDM symbol. Phase shifting each BPSK symbol in the OFDM symbol;
  • the phase shift of the BPSK symbols in each PTRS block according to the pi/2 decreasing rule may include: according to the order of the BPSK symbols in the pi/2 BPSK modulated PTRS, The law of pi/2 decrementing phase shifts each BPSK symbol in the pi/2 BPSK modulated PTRS.
  • phase shift performed by the receiving device is related to the phase shift performed by the transmitting device, and the related manner can be referred to the following specific implementation manner, and details are not described herein again.
  • the present application further provides an information transmission apparatus for implementing the information transmission method described in the third aspect.
  • the device can be implemented by software, or hardware, or by hardware to execute corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the apparatus includes a processor, a memory, and a communication interface; the processor is configured to support the apparatus to perform a corresponding function in the method of the third aspect above.
  • the communication interface is used to support communication between the device and other network elements.
  • the memory is for coupling to a processor that holds the program instructions and data necessary for the device.
  • the communication interface may specifically be a transceiver.
  • the apparatus can include: a receiving unit and a processing unit.
  • the receiving unit is configured to receive one or more OFDM symbols, where each OFDM symbol in part or all of the OFDM symbols includes a pi/2 BPSK modulated data signal, and a pi/2 BPSK modulated PTRS.
  • the processing unit is configured to demodulate the pi/2 BPSK modulated data signal and the pi/2 BPSK modulated PTRS.
  • the processing unit may be specifically configured to: phase shift the pi/2 BPSK modulated PTRS, and demodulate the pi/2 BPSK modulated data signal according to the phase shifted PTRS; the PTRS includes one or A plurality of PTRS blocks, each of which includes one or more BPSK symbols, and phase shifts the BPSK symbols in each PTRS block according to a pi/2 increment rule.
  • the processing unit may be specifically configured to: perform phase shifting on the BPSK symbol in each PTRS block according to a pi/2 increment rule, and may include: pi/2 according to an arrangement order of each BPSK symbol in the OFDM symbol. The law of incrementing phase shifts each BPSK symbol in the OFDM symbol.
  • the processor may be specifically configured to perform, according to the order of the BPSK symbols in the PTRS modulated by the pi/2 BPSK, in the pi/2 increment rule, perform the BPSK symbols in the pi/2 BPSK modulated PTRS. Phase shift.
  • the processing unit may be specifically configured to: phase shift the pi/2 BPSK modulated PTRS, and demodulate the pi/2 BPSK modulated data signal according to the phase shifted PTRS; the PTRS includes one or A plurality of PTRS blocks, each of which includes one or more BPSK symbols, and phase shifts the BPSK symbols in each PTRS block according to a pi/2 decreasing rule.
  • the processing unit may be specifically configured to: perform phase shifting on the BPSK symbol in each PTRS block according to a pi/2 decreasing rule, and may include: pi/2 according to an arrangement order of each BPSK symbol in the OFDM symbol. The law of decrementing phase shifts each BPSK symbol in the OFDM symbol.
  • the processor may be specifically configured to perform, according to the pi/2 decreasing rule, the BPSK symbols in the pi/2 BPSK modulated PTRS according to the order of the BPSK symbols in the pi/2 BPSK modulated PTRS. Phase shift.
  • the processing unit is further configured to: according to the MCS, determine that the modulation mode of the data signal is pi/2 BPSK.
  • the MCS is greater than or equal to 0 and less than or equal to the preset value, determining that the modulation mode of the data signal is pi/2 BPSK; the preset value is 4, 6, or 8.
  • the transmitting end generates an orthogonal frequency division multiplexing OFDM symbol, where the OFDM symbol includes a phase reference signal PTRS modulated by ⁇ pi/2 binary phase shift keying BPSK; the transmitting end transmits the OFDM symbol.
  • the method may further include performing phase shift on the BPSK modulated PTRS to obtain the pi/2 BPSK modulated PTRS; wherein the PTRS includes one or more PTRSs Block, each PTRS block includes one or more BPSK symbols, and the BPSK symbols in each PTRS block are phase shifted according to the pi/2 increment rule.
  • phase shifting the BPSK symbols in each PTRS block according to a pi/2 increment rule includes: phase shifting the PTRS according to a position of the PTRS symbol within the OFDM symbol; or, according to the PTRS symbol The position in the PTRS sequence phase shifts the PTRS.
  • the sending end may further perform power lifting on the PTRS symbol, and the sending end may determine a lifting power value according to a modulation mode of the data signal in the OFDM symbol.
  • the transmitting end may further determine a modulation mode of the data signal according to a modulation and coding scheme MCS.
  • the OFDM symbol is a discrete Fourier transform single carrier DFT-s-OFDM symbol.
  • the transmitting end may include a processing unit, configured to generate the orthogonal frequency division multiplexing OFDM symbol, and the sending end further includes a sending unit, configured to send the OFDM symbol.
  • the transmitting end may include a processor and a transmitter for generating an OFDM symbol and transmitting the OFDM symbol, respectively.
  • the transmitting device can be a chip or chip system.
  • phase shifting the pi/2 BPSK symbols in each PTRS block according to a pi/2 increment rule includes: phase shifting the PTRS according to a position of the PTRS symbol in the OFDM symbol; Alternatively, the PTRS is phase shifted according to the position of the PTRS symbol in the PTRS received signal.
  • an information transmission method includes: receiving, by a receiving end, an orthogonal frequency division multiplexing OFDM symbol, where the OFDM symbol includes a phase of ⁇ pi/2 binary phase shift keying BPSK modulation. a reference signal PTRS; the receiving end demodulates the data signal according to the pi/2 BPSK modulated PTRS.
  • the method further includes phase shifting the BPSK modulated PTRS sequence to obtain the pi/2 BPSK modulated PTRS sequence; wherein the PTRS includes one or more PTRS blocks, each PTRS The block includes one or more BPSK symbols, and the BPSK symbols in each PTRS block are phase shifted in accordance with the pi/2 increment rule.
  • the receiving end performs phase shifting on the rule that the BPSK symbol is incremented by pi/2 in each PTRS block, and may perform phase shifting on the PTRS according to the position of the PTRS symbol in the OFDM symbol; or Phase shifting of the PTRS according to the position of the PTRS symbol in the PTRS sequence.
  • the OFDM symbol is a discrete Fourier transform single carrier DFT-s-OFDM symbol.
  • the receiving end may include a receiving unit for receiving the OFDM symbol, and the receiving end may further include a processing unit for demodulating the data signal.
  • the receiving end may include a receiver and a processor for receiving OFDM symbols and demodulating data signals, respectively.
  • the transmitting device can be a chip or chip system.
  • the OFDM symbol may be, for example but not limited to, any one of the following: a DFT-s-OFDM symbol, a ZT-DFT-s-OFDM symbol, a UW-DFT-s-OFDM, etc. It can also be a symbol of DFT-s-OFDM variation or evolution waveform, etc., where DFT is the abbreviation of discrete fourier transformation, ZT is the abbreviation of zero tail, UW is unique The abbreviation of word (single word), s is the abbreviation of single carrier.
  • the application also provides a computer storage medium having stored thereon a computer program (instructions) that, when executed on a computer, cause the computer to perform the method of any of the above aspects.
  • the application also provides a computer program product, when run on a computer, causing the computer to perform the method of any of the above aspects.
  • FIG. 1 is a schematic diagram of a communication system to which the technical solution provided by the embodiment of the present application is applied;
  • FIG. 2 is a schematic diagram of a data signal and a PTRS according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of another data signal and PTRS according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of simulation comparison of PAPR under different technical solutions provided in the prior art
  • FIG. 6 is a schematic diagram of an information transmission method according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a process of information processing according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of another phase shift amount provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another process of information processing according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of another phase shift amount provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of simulation comparison of PAPR under different technical solutions according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of another information transmission method according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of another process of information processing according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic diagram of another process of information processing according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of an information transmission apparatus according to an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of another information transmission apparatus according to an embodiment of the present application.
  • the technical solution provided by the present application can be applied to various communication systems using single carrier transmission technologies, for example, a communication system using a single carrier transmission technology based on an existing communication system, a 5G communication system, a future evolution system, or multiple communication.
  • Converged systems and more. Can include a variety of application scenarios, such as machine to machine (M2M), D2M, macro communication, enhanced mobile broadband (eMBB), ultra high reliability and ultra low latency communication (ultra Reliable & low latency communication (uRLLC) and massive machine type communication (mMTC) scenarios.
  • M2M machine to machine
  • eMBB enhanced mobile broadband
  • uRLLC ultra high reliability and ultra low latency communication
  • mMTC massive machine type communication
  • These scenarios may include, but are not limited to, a communication scenario between the terminal and the terminal, a communication scenario between the base station and the base station, a communication scenario between the base station and the terminal, and the like.
  • the technical solution provided by the embodiment of the present application can also be applied to a scenario between a terminal and a terminal in a 5G communication system, or a communication between a base station and a base station.
  • the single carrier transmission may be uplink single carrier transmission or downlink single carrier transmission.
  • Figure 1 shows a schematic diagram of a communication system.
  • the communication system may include at least one base station 100 (only one shown) and one or more terminals 200 connected to the base station 100.
  • Base station 100 can be a device that can communicate with terminal 200.
  • the base station 100 can be a relay station or an access point or the like.
  • the base station 100 may be a base transceiver station (BTS) in a global system for mobile communication (GSM) or a code division multiple access (CDMA) network, or may be a wideband code.
  • the NB (NodeB) in the wideband code division multiple access (WCDMA) may also be an eNB or an eNodeB (evolutional NodeB) in LTE.
  • the base station 100 may also be a wireless controller in a cloud radio access network (CRAN) scenario.
  • CRAN cloud radio access network
  • the base station 100 may also be a network device in a 5G network or a network device in a future evolved network; it may also be a wearable device or an in-vehicle device or the like.
  • the base station 100 can also be a small station, a transmission reference point (TRP), or the like. Of course, no application is not limited to this.
  • the terminal 200 may be a user equipment (UE), an access terminal, a UE unit, a UE station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a UE terminal, a terminal, a wireless communication device, a UE proxy, or UE device, etc.
  • the access terminal may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication.
  • the process of phase error compensation is as follows: for each OFDM symbol in one or more OFDMs in the time domain, the transmitting device inserts the PTRS into the data signal, then DFT, resource mapping, fast Fourier The inverse fast fourier transform (IFFT) and the like are sent out. After receiving the signal, the receiving device obtains PTRS after fast Fourier transform (FFT), resource inverse mapping, and inverse discrete fourier transform (IDFT). PTRS) and data signals (ie received data signals). Then, based on the original PTRS and the received PTRS estimation, the phase error of the PTRS is obtained.
  • FFT fast Fourier transform
  • IDFT inverse discrete fourier transform
  • phase error of the data signal is obtained by filtering and/or interpolation, and the phase error of the received data signal is compensated by the phase error of the data signal. Finally, The data signal obtained by the phase error compensation is demodulated.
  • the phase error includes phase changes of signals caused by phase noise, carrier offset, Doppler, and the like.
  • the device at the transmitting end refers to a device that sends a data signal.
  • the device at the transmitting end can also send a reference signal or send other signals, which is not limited in this application.
  • the receiving end device refers to a device that receives a data signal.
  • the receiving end device can also receive a reference signal or receive other signals, which is not limited in this application.
  • the transmitting end device in the uplink direction, is a terminal, and the receiving end device is a base station.
  • the transmitting device is a base station, and the receiving device is a terminal.
  • the reference signal can be, for example but not limited to, a PTRS or the like.
  • PTRS is a signal known to both transceivers.
  • the PTRS reserved by both the transmitting and receiving parties is a modulated symbol sequence.
  • the modulation mode of the PTRS is, for example but not limited to, BPSK, pi/2 BPSK, quadrature phase shift keying (QPSK), and the like.
  • QPSK quadrature phase shift keying
  • PTRS refers to a BPSK symbol sequence
  • the BPSK symbol sequence includes one or more BPSK symbols (ie, BPSK modulation symbols).
  • the PTRS refers to a QPSK symbol sequence, and the QPSK symbol sequence includes one or more QPSK symbols (ie, QPSK modulation symbols).
  • QPSK modulation symbols ie, QPSK modulation symbols.
  • a PTRS may include one or more PTRS blocks (or pilot blocks or PTRS pilot blocks), each PTRS block including one or more modulation symbols.
  • the PTRS is illustrated by inserting a data signal into a sequence of BPSK symbols, and thus each PTRS block includes one or more BPSK symbols.
  • the data signal is a signal known to the transmitting device and unknown to the receiving device.
  • the data signal may be a bit sequence or a sequence of symbols obtained by modulating the bit sequence. Whether the data signal specifically indicates a bit sequence or a symbol sequence can be obtained according to a usage scenario and a context description.
  • the "data signal” in "modulating a data signal” is a bit sequence.
  • the “data signal” in "Insert PTRS into a data signal” is a symbol sequence. Other examples are not listed one by one.
  • the modulation mode of the data signal is, for example but not limited to, BPSK, pi/2 BPSK, QPSK, 16QAM, and the like. For example, if the modulation mode is BPSK or pi/2 BPSK, the modulated data signal is a BPSK symbol sequence.
  • the original PTRS refers to the PTRS that is sent and received by the dual-issue, and is the pre-stored PTRS.
  • the received PTRS can be understood as: the PTRS obtained after the original PTRS is transmitted through the channel.
  • the received data signal can be understood as the data signal obtained after the original data signal is transmitted through the channel.
  • the original data signal can be understood as a data signal sent by the transmitting device.
  • the received PTRS is often different from the original PTRS, and the received data signal is often different from the original data signal.
  • the concept of a first sequence is introduced.
  • the first sequence is a sequence obtained by inserting a BPSK-modulated PTRS into a BPSK-modulated data signal.
  • the second sequence is a sequence obtained by inserting the pi/2 BPSK modulated PTRS into the pi/2 BPSK modulated data signal.
  • inventions and PTRS do not limit the distribution of data signals and PTRS in the first sequence/second sequence.
  • Figures 2 and 3 show the distribution of data signals and PTRS.
  • two adjacent OFDM symbols mapped with PTRS are separated by one OFDM symbol without mapping PTRS, although the present application is not limited thereto.
  • one PTRS block is inserted every BPSK symbol of the data signal, and the number of BPSK symbols (ie, the BPSK symbol of the PTRS) included in any two PTRS blocks may be the same or different.
  • the number of BPSK symbols (ie, BPSK symbols of the data signal) between any two adjacent PTRS blocks may be the same or different.
  • the sequence formed by the PTRS and the data signal in each of the OFDM symbols mapped to the PTRS in FIG. 2 and FIG. 3 is a first sequence/second sequence.
  • FIG. 2 and FIG. 3 The difference between FIG. 2 and FIG. 3 is that, in FIG. 3, UWs of OFDM symbols mapped with PTRS are also mapped with UW for channel estimation.
  • FIG. 2 and FIG. 3 may be used in combination.
  • a signal distribution on an OFDM symbol mapped with a PTRS may be referred to FIG. 2
  • a signal distribution on an OFDM symbol mapped with a PTRS may be referred to FIG. 3.
  • M PTRS blocks are inserted between data signals, and each PTRS block includes N BPSK symbols as an example, wherein M and N are integers greater than or equal to 1.
  • the modulation mode of the data signal can be pi/2 BPSK.
  • the process of performing pi/2BPSK on the data signal may include: modulating the data signal with BPSK, and then phase shifting the BPSK symbol in the BPSK modulated data signal according to the pi/2 increment or decrement.
  • each small square in Figure 4 represents a BPSK symbol.
  • D 1 , D 2 ... D m , D m+1 ... D n , D n+1 ... D N shown in (a) of Fig. 4 are BPSK symbols in a BPSK-modulated data signal, P 1 P 2 ...
  • P k , P k+1 ... P t are BPSK symbols in the BPSK-modulated PTRS.
  • 1 ⁇ m ⁇ n ⁇ N, 1 ⁇ k ⁇ t, m, n, N, k and t are integers.
  • the number in each small square in (b) of Fig. 4 indicates the phase shift coefficient of the BPSK symbol directly above the small square.
  • the phase shift amount of the BPSK symbol is the product of the phase shift coefficient of the BPSK symbol and pi/2.
  • the sequence obtained in (b) of FIG. 4 can be considered as a sequence obtained by inserting BPSK-modulated PTRS between data signals after pi/2 BPSK modulation. As can be seen from (b) of FIG. 4, this destroys the pi/2 characteristic of the data signal and the low PAPR characteristic of pi/2 BPSK, resulting in an increase in the PAPR of the communication system. Moreover, the larger the PTRS block, the greater the impact on the PAPR of the communication system.
  • Figure 5 shows a simulation of the PAPR of the communication system when the BPSK-modulated PTRS and the PTRS are not inserted between the data signals when the data signal is pi/2 BPSK. In FIG.
  • the abscissa represents PAPR in units of dB; the ordinate represents a compensated cumulative distribution function (CCDF), wherein CCDF represents a probability that the statistic is greater than the corresponding point on the abscissa.
  • CCDF compensated cumulative distribution function
  • the PAPR of the communication system is increased by 0.5 dB when BPSK-modulated PTRS is inserted between the data signals (see the dotted line in Fig. 5) than when the PTRS is not inserted (see the solid line in Fig. 5). (decibel).
  • the modulation mode of the PTRS is generally QPSK, and in this case, an example of inserting the QPSK modulated PTRS between the BPSK modulated data signals can be obtained based on the above FIG. 4, where No longer.
  • first means for distinguishing different objects and do not limit their order.
  • second means for distinguishing different sequences, and the order is not limited.
  • FIG. 6 is a schematic diagram of an information transmission method provided by the present application.
  • the information processing process in the scenario where the transmitting end device performs the insertion step and then the phase shifting step is performed which specifically includes:
  • the transmitting end device determines a modulation mode of the data signal and a preset modulation mode of the PTRS.
  • the transmitting device is a terminal.
  • the terminal may determine the modulation mode of the data signal according to the received MCS sent by the base station and the mapping relationship between the pre-stored MCS and the modulation mode.
  • the transmitting device is a base station.
  • the base station may determine the MCS according to the current channel quality, and determine a modulation mode of the data signal according to a mapping relationship between the pre-stored MCS and the modulation mode.
  • the MCS is greater than or equal to 0 and less than or equal to a preset value
  • the modulation mode of the data signal is determined to be pi/2 BPSK; the preset value is 4, 6, or 8.
  • MCS is an integer greater than or equal to zero.
  • the transmitting device If the modulation mode of the data signal is pi/2 BPSK, and the modulation mode of the preset PTRS is BPSK, the transmitting device first performs BPSK modulation on the data signal, and inserts the BPSK modulated PTRS into the BPSK modulated data signal. In the first sequence, the S106 is performed.
  • the present application mainly solves the problem that the PAPR of the communication system increases due to the insertion of the BPSK-modulated PTRS when the modulation mode of the data signal is pi/2 BPSK. Therefore, if the modulation mode of the data signal is pi/2BPSK, the technical solution provided by the present application is executed. If the modulation mode of the data signal is not pi/2 BPSK, it can be processed according to the technical solution provided by the prior art, and the application is not limited thereto.
  • the transmitting device may perform pi/2 BPSK modulation on the data signal first, and pi/2 BPSK modulated The PTRS is inserted into the pi/2 BPSK modulated data signal to obtain a first signal. Then S108 is performed.
  • S106 The transmitting end device phase shifts each BPSK symbol in the first sequence to obtain a first signal.
  • the PTRS includes one or more PTRS blocks, and each PTRS block includes one or more BPSK symbols.
  • Phase shifting the PTRS may include phase shifting the BPSK symbols in each PTRS block according to a pi/2 increment or decrement. This application does not limit the phase shift law of BPSK symbols between PTRS blocks.
  • step S106 is optional, for example, but not limited to, implemented by the following manner 1 or mode 2:
  • Manner 1 The transmitting device phase shifts each BPSK symbol in the first sequence according to the order of the BPSK symbols in the first sequence, and obtains the first signal. Alternatively, according to the order of the BPSK symbols in the first sequence, each BPSK symbol in the first sequence is phase-shifted by a pi/2 decreasing law to obtain a first signal.
  • the mode 1 can be understood as that the transmitting end device phase shifts the data signal and the PTRS as a whole.
  • S106 is implemented by mode 1
  • the implementation process of this embodiment is as shown in FIG. 7.
  • the phase shift amount of the data signal and the phase shift amount of the PTRS are related to the relative positions of the data signal and the PTRS in the first sequence; it can also be understood as:
  • the amount of phase shift of each BPSK symbol in the first sequence is related to the position of the BPSK symbol in the first sequence.
  • Fig. 8 is a diagram showing the amount of phase shift of each BPSK symbol in the BPSK-modulated symbol sequence (in the first mode, that is, the first sequence).
  • the first mode that is, the first sequence.
  • (b) of FIG. 8 shows the amount of phase shift of the phase shift of each BPSK symbol in the BPSK-modulated symbol sequence by the law of increasing pi/2.
  • the transmitting end device phase shifts the data signal and the PTRS as a whole, that is, the PTRS is regarded as a part of the data signal, and then the data signal is pi/2 BPSK modulated. Therefore, the communication system in the mode
  • the PAPR is the same as the PAPR of the communication system when the PTRS is not inserted in the data signal.
  • Manner 2 The transmitting end device performs phase shift on each BPSK symbol in the PTRS according to the order of the BPSK symbols in the PTRS, in a pi/2 increment or decrement; and, in a pi/2 increment or decrement, Phase shifting each BPSK symbol in the BPSK modulated data signal to obtain a first signal.
  • This mode 2 can be understood as that the transmitting end device independently phase shifts the data signal and the PTRS.
  • the present application does not limit the phase shift of the PTRS by the transmitting end device and the phase shift of the phase shift of the data signal.
  • the implementation manner 1 in Table 1 illustrates that the transmitting end device performs phase shift on the PTRS according to the order of each BPSK symbol in the PTRS in increments of pi/2; and in the order of each BPSK symbol in the data signal, in pi/ 2
  • the law of incrementing phase shifts the data signal.
  • the explanation of other implementations will not be described one by one.
  • the phase shift amount of the BPSK symbol in the PTRS is independent of the relative position of the PTRS and the data signal, and is related to the relative position between the BPSK symbols in the PTRS.
  • the amount of phase shift of the data signal is independent of the relative position between the PTRS and the data signal, and is related to the relative position between the BPSK symbols in the data signal.
  • Fig. 10 is a diagram showing the amount of phase shift of each BPSK symbol in the symbol sequence after BPSK modulation in this mode.
  • (b) of FIG. 10 illustrates an example in which the phase shift amount of the data signal and the PTRS are independently phase-shifted (that is, the implementation mode 1 in Table 1) is increased by pi/2.
  • Other examples are not listed one by one.
  • phase shift amount mod (pi/2*k, 2 pi)
  • the number of BPSK symbols in the PTRS block and the BPSK symbol of the data signal between the PTRS blocks are both integer multiples of 2
  • the technical solutions in the phase shift direction are equivalent, for example, the above-described implementations 1 to 4 are equivalent.
  • FIG. 11 shows the simulation comparison of PAPR under different technical solutions. Among them, the abscissa indicates PAPR, and the unit is dB; the ordinate indicates CCDF.
  • FIG. 11 is a schematic diagram showing the simulation comparison of the PAPR in the technical solution in which the PTRS is not inserted in the data signal (see the dotted line corresponding to the w/o PTRS in FIG. 11) and the phase shift is performed in the above manner 1 or 2.
  • the dotted line which inserts a PTRS in the data signal and the dotted line which shows the 1st of FIG.
  • the transmitting end device performs DFT, resource mapping, IFFT, and the like on the first signal, and then sends the signal out.
  • the receiving end device receives the signal, and performs FFT, resource inverse mapping, IDFT and the like on the signal to obtain a second signal.
  • the second information can be understood as a signal obtained after the first signal is transmitted through the channel.
  • the second signal includes a pi/2BPSK modulated data signal and a pi/2 BPSK modulated PTRS.
  • the receiving end device performs phase shift on each BPSK symbol in the second signal. After executing S112, the obtained data signal is the received data signal, and the obtained PTRS is the received PTRS.
  • the receiving device is a base station.
  • the receiving device is a terminal.
  • the terminal may determine the modulation mode of the data signal according to the received MCS sent by the base station and the mapping relationship between the pre-stored MCS and the modulation mode.
  • the transmitting device uses phase 1 to phase shift the first sequence in S106, then in S110, the receiving device performs a phase shift in the opposite direction to the second signal according to mode 1. Specifically, if the transmitting device performs phase shifting on each BPSK symbol in the first sequence according to the order of each BPSK symbol in the first sequence, the receiving device follows the second signal. The order of each BPSK symbol is phase shifted for each BPSK symbol in the second signal by a pi/2 decreasing law. If the transmitting device performs phase shifting on each BPSK symbol in the first sequence according to the order of each BPSK symbol in the first sequence, the receiving device follows each BPSK symbol in the second signal.
  • each time domain symbol is phase shifted by the pi/2 increments for each BPSK symbol in the second signal.
  • the phase shift of the certain BPSK symbol in the first sequence by the transmitting device is theta
  • the phase shift of the corresponding BPSK symbol in the second signal by the receiving device is –theta.
  • the transmitting device uses phase 2 to phase shift the first sequence in S106; then, in S110, the receiving device performs a phase shift in the opposite direction to the second signal according to mode 2. Specifically, if the transmitting end device performs phase shift according to the implementation manner i in Table 1, the receiving end device performs phase shift according to the implementation manner ia in Table 2. Where 1 ⁇ i ⁇ 4, i is an integer. For example, if the transmitting device performs phase shift according to implementation 1 in Table 1, the receiving device can perform phase shift according to implementation 1a in Table 2.
  • the first sequence is phase-shifted by the transmitting device according to any implementation manner, including any one of the manners 1 and 2, which may be pre-agreed by the transmitting and receiving parties according to the protocol, or may be through signaling.
  • the peer is notified, so the receiving device can know which phase to phase shift the second signal.
  • the method may further include:
  • the receiving end device obtains a phase error of the PTRS according to the original PTRS and the received PTRS estimation, obtains a phase error of the data signal by filtering and/or interpolation, and performs phase error on the received data signal by using a phase error of the data signal. Compensation, finally demodulating the data signal obtained by phase error compensation.
  • This step can be understood as a specific implementation of the PT/2 BPSK modulated data signal by the receiving end device according to the pi/2 BPSK modulated PTRS in the received OFDM symbol.
  • first signal and the second signal may be understood as OFDM signals, and the OFDM signals may comprise one or more OFDM symbols.
  • the OFDM symbol transmitted by the transmitting end device includes a pi/2BPSK modulated data signal, and a pi/2 BPSK modulated PTRS, which includes QPSK modulation in the OFDM symbol in the prior art.
  • the randomness of the PTRS is increased. Among them, the greater the randomness, the more stable the performance of the system, thus contributing to the good performance of the single carrier low PAPR.
  • FIG. 12 is a schematic diagram showing another information transmission method provided by the present application.
  • the information processing process in the scenario of performing the phase shifting step and the step of performing the insertion step is performed, which specifically includes:
  • the transmitting end device inserts the phase shifted PTRS (ie, pi/2 BPSK modulated PTRS) into the pi/2BPSK modulated data signal to obtain a second sequence (ie, the first signal).
  • the phase shifted PTRS ie, pi/2 BPSK modulated PTRS
  • the step S204 is implemented by, for example but not limited to, the following manner 3 or mode 4:
  • Manner 3 The transmitting end device performs phase shift on each BPSK symbol in the first signal according to the order of the BPSK symbols in the first signal, in a pi/2 increment rule. Or, according to the order of the BPSK symbols in the first signal, the BPSK symbols in the first signal are phase-shifted by a pi/2 decreasing law.
  • This mode 3 can be understood as that the transmitting end device phase shifts the data signal and the PTRS as a whole.
  • S204 is implemented by mode 3
  • the implementation process of this embodiment is as shown in FIG.
  • a schematic diagram of the phase shift amount of the BPSK symbol in the first signal can be referred to FIG. 8 , and details are not described herein again.
  • the insertion position of each PTRS block in the BPSK sequence of the data signal can be known, so that the data signal and the PTRS can be phase-shifted as a whole before the insertion is performed. .
  • Manner 4 The transmitting end device performs phase shift on each BPSK symbol in the PTRS according to the order of the BPSK symbols in the PTRS, in a pi/2 increment or decrement; and the law of increasing or decreasing by pi/2, Each BPSK symbol in the BPSK modulated data signal is phase shifted to obtain a first signal (ie, a second sequence).
  • This mode 4 can be understood as that the transmitting end device independently phase shifts the data signal and the PTRS.
  • S204 is implemented by mode 4
  • the implementation process of this embodiment is as shown in FIG. 14.
  • a schematic diagram of the phase shift amount of the BPSK symbol in the first signal can be referred to FIG. 10, and details are not described herein again.
  • S208 to S210 Reference may be made to S108 to S110. Of course, the present application is not limited thereto.
  • the method may further include S211.
  • S211 can refer to S111, although the application is not limited thereto.
  • the modulation mode of the data signal may be QPSK or 16QAM or the like in addition to pi/2 BPSK.
  • the modulation mode of the preset PTRS may be, in addition to BPSK or pi/2 BPSK, QPSK or the like.
  • the modulation mode of the preset PTRS is BPSK.
  • the transmitting end device determines that the modulation mode of the data signal is pi/2 BPSK, phase shifting the BPSK-modulated PTRS to obtain a pi/2 BPSK-modulated PTRS, and the specific implementation process can refer to the above. If it is determined that the modulation mode of the data signal is not pi/2 BPSK, the BPSK-modulated PTRS is not phase-shifted.
  • the receiving device performs the steps corresponding to the transmitting device, and details are not described herein again.
  • Table 3 an actual example of the correspondence between the modulation mode of the data signal and the modulation mode of the PTRS is as shown in Table 3:
  • the modulation mode of the preset PTRS is QPSK.
  • the modulation mode of the PTRS is modified from QPSK to pi/2 BPSK, and then the QPSK symbol sequence of the PTRS is demodulated to obtain the PTRS.
  • the bit sequence extracts a part of the bit sequence from the bit sequence of the PTRS to form a new PTRS bit sequence, and performs pi/2 BPSK modulation on the bit sequence of the new PTRS.
  • the pi/2 BPSK modulation process can refer to the above.
  • the part of the bit sequence that is taken out from the PTRS bit sequence may be pre-defined by the transmitting and receiving parties, or may be configured by using a signaling method, which is not limited in this application. If the transmitting device determines that the modulation mode of the data signal is not pi/2 BPSK, the processing is performed in the manner of the prior art. Correspondingly, the receiving device performs the steps corresponding to the transmitting device, and details are not described herein again. In this case, an actual example of the correspondence between the modulation mode of the data signal and the modulation mode of the PTRS is shown in Table 4:
  • This embodiment includes an information transmission method, specifically:
  • the transmitting end generates an orthogonal frequency division multiplexing OFDM symbol, where the OFDM symbol includes a phase reference signal PTRS modulated by ⁇ pi/2 binary phase shift keying BPSK; and the transmitting end transmits the OFDM symbol.
  • the method may further include performing phase shift on the BPSK modulated PTRS to obtain the pi/2 BPSK modulated PTRS; wherein the PTRS includes one or more PTRS blocks, and each PTRS The block includes one or more BPSK symbols, and the BPSK symbols in each PTRS block are phase shifted in accordance with the pi/2 increment rule.
  • phase shifting the BPSK symbols in each PTRS block according to a pi/2 increment rule includes: phase shifting the PTRS according to a position of the PTRS symbol within the OFDM symbol; or, according to the PTRS symbol The position in the PTRS sequence phase shifts the PTRS.
  • the sending end may further perform power lifting on the PTRS symbol, and the sending end may determine a lifting power value according to a modulation mode of the data signal in the OFDM symbol.
  • the transmitting end may further determine a modulation mode of the data signal according to a modulation and coding scheme MCS.
  • the OFDM symbol is a discrete Fourier transform single carrier DFT-s-OFDM symbol.
  • the transmitting end may include a processing unit, configured to generate the orthogonal frequency division multiplexing OFDM symbol, and the sending end further includes a sending unit, configured to send the OFDM symbol.
  • the transmitting end may include a processor and a transmitter for generating an OFDM symbol and transmitting the OFDM symbol, respectively.
  • the transmitting device can be a chip or chip system.
  • the base station and/or the network device may also directly define the sequence of the PTRS as pi/2 BPSK, and this step may also be a signaling or Other configuration methods.
  • This definition can be used for scenes of all modulation modes.
  • the phase shift value of the PTRS may be independent of its position before the DFT, and may also be related to the position before the DFT.
  • the network side device and/or the terminal device increase or decrease the phase of the BPSK sequence. Or multiplying the BPSK sequence by an exponential signal corresponding to the phase value, such as exp(1j* phase shift value), to determine the PTRS sequence of the pi/2 BPSK:
  • phase shift value of the i-th PTRS may be ⁇ +(i-1)*pi/2, or ⁇ +i*pi/2, or ⁇ +(i+1)*pi/2, where ⁇ is the initial phase shift value of PTRS, which can be 0 by default;
  • the phase shift value of the ith PTRS can also be other methods, such as the phase between each PTRS block Shift independent, or the initial phase shift value of each PTRS block is independent, please refer to the above;
  • the phase shift value is related to its position in the modulation symbol before the DFT: the position of the PTRS in the modulation symbol/signal before the DFT can be determined first, for example, the total number of modulation symbols/signals before the DFT is N sym , number 0,1,...,N sym -1.
  • the phase shift value is ⁇ +I PTRS-i * Pi/2, or its phase shift value is ⁇ + (I PTRS-i -1) * pi / 2, or its phase shift value is ⁇ + (I PTRS - i +1) * pi / 2, where ⁇ is included
  • the initial phase shift value of all modulation symbols before the DFT of the data can be defaulted to zero.
  • the specific phase shift implementation process may refer to the above.
  • the modulation mode of the data or the Physical Uplink Sharing Channel is pi/2BPSK
  • the sequence of the PTRS is pi.
  • /2 BPSK otherwise QPSK, further phase shift or offset the QPSK modulated PTRS to reduce the PAPR effect. Determining a sequence of pi/2 QPSK according to a phase shift of pi/2 according to QPSK modulated symbols, or determining a phase shift of pi/4 according to QPSK modulated symbols to determine pi/4
  • the sequence of QPSK is
  • the network device and/or the terminal device determines a phase shift of the pi/2 corresponding to a configuration of a sequence of pi/2 QPSK. In still another embodiment, the network device and/or the terminal device may also It is a configuration in which the network device and/or the terminal device determines a phase shift of pi/4 corresponding to a sequence of pi/4 QPSK.
  • the modulation mode of the data or PUSCH is not the sequence of the PTRS corresponding to the QPSK, and may be a clockwise moving/rotating or counterclockwise moving/rotating QPSK modulation symbol, or the amplitude of the PTRS symbol is the same as the amplitude of the QPSK, and each The phase difference between two adjacent PTRS symbols is pi/2, or the amplitude of the PTRS symbol is the same as the amplitude of QPSK, and the phase difference between every two adjacent PTRS symbols is -pi/2, as shown in the following table. Show.
  • the initial phase value may be based on the UE configuration, such as different initial configuration values of different UE configurations, to increase the inter-UE PTRS sequence. Randomness; its initial phase value may also be related to the position of all PT symbols in the PTRS before the DFT, such as by adjusting the initial phase value, so that the PUSCH or data adjacent to the PTRS block is on the PTRS symbol adjacent to it.
  • the phase difference is not equal to an integer multiple of pi, or the phase difference between the two is reduced to reduce its effect on PAPR.
  • the QPSK symbol may be replaced by an Outer Most Constellation Point (OMCP) in a given modulation mode or modulation order, and the outermost constellation point refers to a given modulation mode or
  • OMCP Outer Most Constellation Point
  • the sequence of PTRS is pi/2BPSK
  • the amplitude of the PTRS is power-up (Power Boosting, regardless of the modulation mode or the modulation order).
  • PB power-up
  • the specific value of the power boost may be related to the modulation mode or modulation order or MCS. For a given modulation mode or modulation order, the power is raised to the same power as the outermost constellation point, as shown in the following table:
  • the data or the power of the PUSCH can be reduced. It can be understood that the data or the PUSCH needs to be reduced in power and PTRS.
  • the cost is related to the power value of the PTRS uplift. If the power of the PTRS is the same, the more the PTRS is, the more the data power is reduced. If the PTRS has the same overhead, the power value of the PTRS is increased. More, the more data power is reduced.
  • Table 6 can also be implemented by power lifting of Table 5, or the outermost constellation point can be realized by power lifting the QPSK constellation point, and the lifting power value is the same as Table 7.
  • the value of the power boost has a fixed value according to the modulation order.
  • the value of the power boost may also be configured by signaling, or may have a certain offset based on the value of Table 7.
  • the amount of offset in different modulation modes can be the same or different. If the power of the PTRS can be raised to a power smaller than the OMCP power value, it can be avoided or reduced because the power is raised to the same OMCP power as the given modulation mode, causing the PTRS to fall into the nonlinear region of the power amplifier or other hardware. Loss of performance. Next, another embodiment of the present invention will be described.
  • the receiving end may phase shift the received pi/2 BPSK PTRS signal to obtain a BPSK PTRS receiving signal, which is divided by BPSK.
  • the BPSK PTRS sequence may be phase shifted to obtain a pi /2 BPSK PTRS sequence, using the PTRS signal of the received pi/2 BPSK, dividing by the PTRS sequence of pi/2 BPSK, or multiplying the conjugate of the PTRS sequence of pi/2 BPSK to estimate the phase noise.
  • the phase noise is used to demodulate data.
  • the multiplication here can be a pointer multiplication operation, and the division can be a point division operation.
  • the phase shift value of the phase shift of the PTRS received signal and/or the PTRS may be determined by the position of the PTRS received signal and/or the sequence of the PTRS before the DFT, such as the modulation before the DFT.
  • phase shift value of the PTRS received signal for I PTRS-i is -( ⁇ + I PTRS - i * pi / 2), or its phase shift value is - ( ⁇ + (I PTRS - i -1) * pi / 2 ), or its phase shift value is -( ⁇ +(I PTRS-i +1)*pi/2), or the PTRS symbol phase shift value of position I PTRS-i in the PTRS sequence is ⁇ +I PTRS-i * Pi/2, or its phase shift value is ⁇ + (I PTRS-i -1) * pi / 2, or its phase shift value is ⁇ + (I PTRS - i +1) * pi / 2, where ⁇ is included
  • phase shift value of the phase shift of the PTRS received signal and/or the PTRS may be independent of the position of the PTRS received signal and/or the PTRS sequence before the DFT, and the signal is received by the PTRS.
  • the phase shift value of the ith PTRS received signal may be -( ⁇ +(i-1)*pi/2 ), or -( ⁇ +i*pi/2), or -( ⁇ +(i+1)*pi/2), or the phase shift value of the ith PTRS symbol in the PTRS sequence may be ⁇ +(i- 1) *pi/2, or ⁇ +i*pi/2, or ⁇ +(i+1)*pi/2, where ⁇ is the initial phase shift value of PTRS, which can be defaulted to 0; the phase of the ith PTRS
  • the value of the shift can also be other methods, such as the phase shift between each PTRS block is independent, or the initial phase shift value of each PTRS block is independent, as described above;
  • the processing of the received signal and/or PTRS sequence of the PTRS by the above two receiving ends can also be used for scenes in which the sequence of PTRS is other sequences, such as pi/2 QPSK, pi/4 QPSK, QPSK rotating clockwise or counterclockwise. , pi/2OMCP, pi/4OMCP, OMCP rotating clockwise or counterclockwise.
  • the embodiment includes an information transmission method, specifically, the method includes: receiving, by the receiving end, an orthogonal frequency division multiplexing OFDM symbol, where the OFDM symbol comprises a phase reference signal PTRS modulated by a ⁇ pi/2 binary phase shift keying BPSK; The receiving end demodulates the data signal according to the pi/2 BPSK modulated PTRS.
  • the method further includes phase shifting the BPSK modulated PTRS sequence to obtain the pi/2 BPSK modulated PTRS sequence; wherein the PTRS includes one or more PTRS blocks, each PTRS The block includes one or more BPSK symbols, and the BPSK symbols in each PTRS block are phase shifted in accordance with the pi/2 increment rule.
  • the receiving end performs phase shifting on the rule that the BPSK symbol is incremented by pi/2 in each PTRS block, and may perform phase shifting on the PTRS according to the position of the PTRS symbol in the OFDM symbol; or Phase shifting of the PTRS according to the position of the PTRS symbol in the PTRS sequence.
  • the OFDM symbol is a discrete Fourier transform single carrier DFT-s-OFDM symbol.
  • the receiving end may include a receiving unit for receiving the OFDM symbol, and the receiving end may further include a processing unit for demodulating the data signal.
  • the receiving end may include a receiver and a processor for receiving OFDM symbols and demodulating data signals, respectively.
  • the transmitting device can be a chip or chip system.
  • each network element such as a transmitting end device or a receiving end device.
  • each network element such as a transmitting end device or a receiving end device.
  • it includes hardware structures and/or software modules corresponding to the execution of the respective functions.
  • the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • the embodiment of the present application may perform the division of the function module on the transmitting end device or the receiving end device according to the foregoing method example.
  • each functional module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner. The following is an example of dividing each functional module by using corresponding functions.
  • the embodiment of the present application further provides an information transmission device, which may be a transmitting device.
  • the transmitting device can be used to perform the steps performed by the transmitting device in FIG. 6 or FIG.
  • the embodiment of the present application further provides an information transmission device, which may be a receiving device.
  • the receiving device can be used to perform the steps performed by the receiving device in FIG. 6 or FIG.
  • the transmitting device may be a terminal.
  • Figure 15 shows a simplified schematic diagram of the terminal structure. It is convenient for understanding and illustration.
  • the terminal uses a mobile phone as an example.
  • the terminal includes a processor, a memory, a radio frequency circuit, an antenna, and an input/output device.
  • the processor is mainly used for processing communication protocols and communication data, and controlling terminals, executing software programs, processing data of software programs, and the like.
  • Memory is primarily used to store software programs and data.
  • the RF circuit is mainly used for the conversion of the baseband signal and the RF signal and the processing of the RF signal.
  • the antenna is mainly used to transmit and receive RF signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are primarily used to receive user input data and output data to the user. It should be noted that some types of terminals may not have input and output devices.
  • the processor When the data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal, and then sends the radio frequency signal to the outside through the antenna in the form of electromagnetic waves.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • the memory may also be referred to as a storage medium or a storage device or the like.
  • the memory may be independent of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • the antenna and the radio frequency circuit having the transceiving function can be regarded as the transceiving unit of the terminal, and the processor having the processing function can be regarded as the processing unit of the terminal.
  • the terminal includes a transceiver unit 1501 and a processing unit 1502.
  • the transceiver unit can also be referred to as a transceiver, a transceiver, a transceiver, and the like.
  • the processing unit may also be referred to as a processor, a processing board, a processing module, a processing device, and the like.
  • the device for implementing the receiving function in the transceiver unit 1501 can be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 1501 is regarded as a sending unit, that is, the transceiver unit 1501 includes a receiving unit and a sending unit.
  • the transceiver unit may also be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may also be referred to as a receiver, a receiver, or a receiving circuit or the like.
  • the transmitting unit may also be referred to as a transmitter, a transmitter, or a transmitting circuit, and the like.
  • processing unit 1502 is configured to perform any one or more of steps S102-S106 of FIG. 6, and/or other steps in the application.
  • the transceiver unit 1502 performs the steps performed by the transmitting device in S108 of FIG. 6, and/or other steps in the present application.
  • processing unit 1502 is configured to perform any one or more of steps S202-S206 in FIG. 12, and/or other steps in the application.
  • the transceiver unit 1502 performs the steps performed by the transmitting device in S208 of FIG. 12, and/or other steps in the present application.
  • the receiving device may also be a base station.
  • Figure 16 shows a schematic diagram of a simplified base station structure.
  • the base station includes a 1601 part and a 1602 part.
  • the 1601 part is mainly used for the transmission and reception of radio frequency signals and the conversion of radio frequency signals and baseband signals; the 1602 part is mainly used for baseband processing and control of base stations.
  • Section 1601 can be generally referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver.
  • the portion 1602 is typically the control center of the base station and may be generally referred to as a processing unit for controlling the base station to perform the steps performed by the receiving end device in FIG. 6 or FIG. 12 above.
  • a processing unit for controlling the base station to perform the steps performed by the receiving end device in FIG. 6 or FIG. 12 above.
  • the transceiver unit of the 1601 part which may also be called a transceiver, or a transceiver, etc., includes an antenna and a radio frequency unit, wherein the radio frequency unit is mainly used for radio frequency processing.
  • the device for implementing the receiving function in the 1601 portion may be regarded as a receiving unit
  • the device for implementing the transmitting function may be regarded as a transmitting unit, that is, the 1601 portion includes a receiving unit and a transmitting unit.
  • the receiving unit may also be referred to as a receiver, a receiver, or a receiving circuit, etc.
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit or the like.
  • the 1602 portion may include one or more boards, each of which may include one or more processors and one or more memories for reading and executing programs in the memory to implement baseband processing functions and for base stations control. If multiple boards exist, the boards can be interconnected to increase processing power. As an optional implementation manner, multiple boards share one or more processors, or multiple boards share one or more memories, or multiple boards share one or more processes at the same time. Device.
  • the transceiver unit is operative to perform the steps performed by the receiving device in S108 of FIG. 6, and/or other steps in the application.
  • the processing unit is operative to perform any one or more of steps S110-S111 in FIG. 6, and/or other steps in the application.
  • the transceiver unit is operative to perform the steps performed by the receiving device in S208 of FIG. 12, and/or other steps in the application.
  • the processing unit is operative to perform any one or more of steps S110-S111 in FIG. 12, and/or other steps in the application.
  • the transmitting device may be a base station.
  • a simplified schematic diagram of the base station structure is shown in FIG.
  • the transceiver unit is operative to perform the steps performed by the transmitting device in S108 of FIG. 6, and/or other steps in the present application.
  • the processing unit is operative to perform any one or more of steps S102-S106 in FIG. 6, and/or other steps in the application.
  • the transceiver unit is operative to perform the steps performed by the transmitting device in S208 of FIG. 12, and/or other steps in the present application.
  • the processing unit is operative to perform any one or more of steps S202-S206 in FIG. 12, and/or other steps in the application.
  • the receiving device may be a terminal.
  • a simplified schematic diagram of the terminal structure is shown in FIG.
  • the transceiver unit is operative to perform the steps performed by the receiving device in S108 of FIG. 6, and/or other steps in the application.
  • the processing unit is operative to perform any one or more of steps S110-S111 in FIG. 6, and/or other steps in the application.
  • the transceiver unit is operative to perform the steps performed by the receiving device in S208 of FIG. 12, and/or other steps in the application.
  • the processing unit is configured to perform any one or more of steps S210-S211 in FIG. 12, and/or other steps in the application.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server or data center via wired (eg coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device that includes one or more servers, data centers, etc. that can be integrated with the media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)) or the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium such as a solid state disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本申请实施例公开了一种信息传输方法和装置,涉及通信技术领域,有助于很好地发挥单载波低PAPR的优势。该方法包括:生成OFDM符号,该OFDM符号包括pi/2 BPSK调制后的数据信号以及pi/2 BPSK调制后的PTRS;发送该OFDM符号。本申请可以应用于上行单载波传输场景中,也可以应用于下行单载波传输场景中。

Description

一种信息传输方法和装置 技术领域
本申请实施例涉及通信技术领域,尤其涉及一种信息传输方法和装置。
背景技术
多普勒效应、中心频率偏移(central frequency offset,CFO),以及相位噪声等因素会给通信***中的数据信号的接收引入相位误差,导致通信***的性能下降,甚至无法工作。为了解决该技术问题,发射端设备可以在数据信号中***相位跟踪参考信号(phase tracking reference signal,PTRS)。接收端设备先估计得到PTRS的相位误差,然后通过滤波和/或插值等操作得到数据信号的相位误差,从而实现对数据信号的相位误差补偿。
在通信***中,因单载波的峰均功率比(peak to average power ratio,PAPR)较低,因此上行波形可采用单载波。但是,在利用单载波传输数据信号时,若在数据信号中***PTRS,则会增加通信***的PAPR,从而不能很好地发挥单载波的优势。
发明内容
本申请提供一种信息传输方法和装置,有助于很好地发挥单载波低PAPR的优势。
第一方面,本申请提供了一种信息处理方法和装置。
在一种可能的设计中,本申请提供了一种信息处理方法,该方法的执行主体可以是发射端设备,其中,在上行方向上,发射端设备是终端;在下行方向上,发射端设备是基站。该方法可以包括:生成一个或多个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,其中,部分或全部OFDM符号中的每一OFDM符号可以包括pi/2(二分之π)二进制相移键控(binary phase shift keying,BPSK)调制后的数据信号,以及pi/2 BPSK调制后的PTRS。该技术方案可以应用于单载波传输场景中,该技术方案中,OFDM符号中的PTRS是pi/2 BPSK调制后的PTRS,相比现有技术中PTRS是QPSK调制后的PTRS,增加了PTRS的随机性,其中,随机性越大,***的性能越稳定,因此有助于很好地发挥单载波低PAPR的特性。
在一种可能的设计中,该方法还可以包括:对BPSK调制后的PTRS进行相移,得到pi/2 BPSK调制后的PTRS;其中,PTRS包括一个或多个PTRS块,每一PTRS块包括一个或多个BPSK符号,对每一PTRS块中的BPSK符号按照pi/2递增的规律进行相移。
在一种可能的设计中,该方法还可以包括:对BPSK调制后的PTRS进行相移,得到pi/2 BPSK调制后的PTRS;其中,PTRS包括一个或多个PTRS块,每一PTRS块包括一个或多个BPSK符号,对每一PTRS块中的BPSK符号按照pi/2递减的规律进行相移。
上述提供了两种生成pi/2 BPSK调制后的PTRS的技术方案,这两个技术方案均不对PTRS块间的相移规律进行限定。另外,可以例如但不限于通过以下方式得到pi/2BPSK调制后的PTRS:pi/2 BPSK调制后的PTRS是预设的;或者,BPSK调制后的PTRS中的一部分PTRS块的每一PTRS块中的各BPSK按照pi/2递增的规律进行相 移,另一部分PTRS块中的每一PTRS块中的各BPSK按照pi/2递减的规律进行相移。
需要说明的是,一般地,PTRS块中的各BPSK符号是按照排列顺序分别以0、pi/2、pi、3pi/2……的顺序进行相移的,或者是按照排列顺序分别以0、-pi/2、-pi、-3pi/2……的顺序进行相移的。当然不限于此。因此,若某一PTRS块中包括一个BPSK符号,则对该PTRS块中的BPSK符号进行pi/2递增的规律进行相移,以及对该PTRS块中的BPSK符号进行pi/2递减的规律进行相移,均可以理解为:对该PTRS块中的BPSK符号进行0相移,即不对该PTRS块中的BPSK符号进行相移。
在一种可能的设计中,对每一PTRS块中的BPSK符号按照pi/2递增的规律进行相移,可以包括:按照序列中的各BPSK符号的排列顺序,以pi/2递增的规律,对该序列中的各BPSK符号进行相移,其中,该序列是将BPSK调制后的PTRS***BPSK调制后的数据信号得到的序列。其中,发射端设备在执行将BPSK调制后的PTRS***BPSK调制后的数据信号之前,可以获知该序列中各BPSK符号的先后顺序。本申请对发射端设备执行***和相移的先后顺序不进行限定。该可能的设计可以认为是将数据信号和PTRS作为一个整体进行相移。这样,能够简化收发双方的计算复杂度。
在一种可能的设计中,对每一PTRS块中的BPSK符号按照pi/2递增的规律进行相移,可以包括:按照BPSK调制后的PTRS中的各BPSK符号的排列顺序,以pi/2递增的规律,对BPSK调制后的PTRS中的各BPSK符号进行相移。该可能的设计可以认为是对数据信号和PTRS独立进行相移。这样,能够简化收发双方的计算复杂度。
在一种可能的设计中,对每一PTRS块中的BPSK符号按照pi/2递减的规律进行相移,可以包括:按照序列中的各BPSK符号的排列顺序,以pi/2递减的规律,对该序列中的各BPSK符号进行相移,其中,该序列是将BPSK调制后的PTRS***BPSK调制后的数据信号得到的序列。该可能的设计可以认为是将数据信号和PTRS作为一个整体进行相移。这样,能够简化收发双方的计算复杂度。
在一种可能的设计中,对每一PTRS块中的BPSK符号按照pi/2递减的规律进行相移,可以包括:按照BPSK调制后的PTRS中的各BPSK符号的排列顺序,以pi/2递减的规律,对BPSK调制后的PTRS中的各BPSK符号进行相移。该可能的设计可以认为是对数据信号和PTRS独立进行相移。这样,能够简化收发双方的计算复杂度。
在一种可能的设计中,该方法还可以包括:在对BPSK调制后的PTRS进行相移之前,将BPSK调制后的PTRS***BPSK调制后的数据信号。
在一种可能的设计中,该方法还可以包括:在对BPSK调制后的PTRS进行相移之后,将pi/2 BPSK调制后的PTRS***pi/2 BPSK调制后的数据信号。
相应地,本申请还提供了一种信息处理装置,可以实现第一方面的信息处理方法。例如该信息处理装置可以是芯片(如基带芯片或通信芯片等)或者发射端设备(如基站或终端等)。可以通过软件、硬件或者通过硬件执行相应的软件实现上述方法。
在一种可能的设计中,该信息处理装置包括处理器、存储器。该处理器被配置为支持该装置执行上述信息处理方法中相应的功能。存储器用于与处理器耦合,其保存 该装置必要的程序(指令)和数据。可选的,该信息处理装置还可以包括通信接口,用于支持该装置与其他网元之间的通信。该通信接口可以是收发器。
在一种可能的设计中,该装置可以包括:处理单元。处理单元用于:生成一个或多个OFDM符号,其中,部分或全部OFDM符号中的每一OFDM符号可以包括pi/2 BPSK调制后的数据信号,以及pi/2 BPSK调制后的PTRS。
在一种可能的设计中,处理单元还可以用于:对BPSK调制后的PTRS进行相移,得到pi/2 BPSK调制后的PTRS;其中,PTRS包括一个或多个PTRS块,每一PTRS块包括一个或多个BPSK符号,对每一PTRS块中的BPSK符号按照pi/2递增的规律进行相移。可选的,处理单元具体可以用于:按照序列中的各BPSK符号的排列顺序,以pi/2递增的规律,对该序列中的各BPSK符号进行相移,该序列是将BPSK调制后的PTRS***BPSK调制后的数据信号得到的序列。或者,处理单元具体可以用于:按照BPSK调制后的PTRS中的各BPSK符号的排列顺序,以pi/2递增的规律,对BPSK调制后的PTRS中的各BPSK符号进行相移。
在一种可能的设计中,处理单元还可以用于:对BPSK调制后的PTRS进行相移,得到pi/2 BPSK调制后的PTRS;其中,PTRS包括一个或多个PTRS块,每一PTRS块包括一个或多个BPSK符号,对每一PTRS块中的BPSK符号按照pi/2递减的规律进行相移。可选的,处理单元具体可以用于:按照序列中的各BPSK符号的排列顺序,以pi/2递减的规律,对该序列中的各BPSK符号进行相移,该序列是将BPSK调制后的PTRS***BPSK调制后的数据信号得到的序列。或者,处理单元具体可以用于:按照BPSK调制后的PTRS中的各BPSK符号的排列顺序,以pi/2递减的规律,对BPSK调制后的PTRS中的各BPSK符号进行相移。
在一种可能的设计中,处理单元还可以用于:在对BPSK调制后的PTRS进行相移之前,将BPSK调制后的PTRS***BPSK调制后的数据信号。
在一种可能的设计中,处理单元还可以用于:在对BPSK调制后的PTRS进行相移之后,将pi/2 BPSK调制后的PTRS***pi/2 BPSK调制后的数据信号。
第二方面,本申请提供了一种信息传输方法和装置。
在一种可能的设计中,本申请提供了一种信息传输方法,该方法的执行主体可以是发射端设备。该方法可以包括:生成一个或多个OFDM符号,其中,部分或全部OFDM符号中的每一OFDM符号可以包括pi/2 BPSK调制后的数据信号,以及pi/2BPSK调制后的PTRS。然后,发送该OFDM符号。其中,关于生成pi/2 BPSK调制后的数据信号的具体实现方式及有益效果均可以参考上述第一方面中对应的技术方案,此处不再赘述。
在一种可能的设计中,该方法还可以包括:根据调制编码方案(modulation and coding scheme,MCS),确定数据信号的调制模式是pi/2 BPSK。可选的,当MCS大于等于0且小于等于预设值,确定数据信号的调制模式是pi/2 BPSK;预设值是4、6或8。
相应的,本申请还提供了一种信息传输装置,用以实现第二方面所述的信息传输方法。该装置可以通过软件,或者硬件,或者通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。
在一种可能的实现方式中,该装置的结构中包括处理器、存储器和通信接口;该处理器被配置为支持该装置执行上述第二方面方法中相应的功能。该通信接口用于支持该装置与其他网元之间的通信。该存储器用于与处理器耦合,其保存该装置必要的程序指令和数据。该通信接口具体可以是收发器。
在一种可能的设计中,该装置可以包括:处理单元和发送单元。其中,处理单元用于生成一个或多个OFDM符号,其中,部分或全部OFDM符号中的每一OFDM符号可以包括pi/2 BPSK调制后的数据信号,以及pi/2 BPSK调制后的PTRS。发送单元用于发送该OFDM符号。其中,关于处理单元的功能可以参考上述第一方面中对应的技术方案,此处不再赘述。
在一种可能的设计中,处理单元还用于根据MCS,确定数据信号的调制模式是pi/2 BPSK。可选的,当MCS大于等于0且小于等于预设值,确定数据信号的调制模式是pi/2 BPSK;预设值是4、6或8。
第三方面,本申请还提供了另一种信息传输方法和装置。
在一种可能的设计中,本申请提供了一种信息传输方法,该方法的执行主体可以是接收端设备,其中,在上行方向上,接收端设备是基站;在下行方向上,接收端设备是终端。该方法可以包括:接收一个或多个OFDM符号,其中,部分或全部OFDM符号中的每一OFDM符号包括pi/2 BPSK调制后的数据信号,以及pi/2 BPSK调制后的PTRS;然后,根据pi/2 BPSK调制后的PTRS,解调pi/2 BPSK调制后的数据信号。
在一种可能的设计中,根据pi/2 BPSK调制后的PTRS,解调pi/2 BPSK调制后的数据信号,可以包括:对pi/2 BPSK调制后的PTRS进行相移,根据相移后的PTRS解调pi/2 BPSK调制后的数据信号;其中,PTRS包括一个或多个PTRS块,每一PTRS块包括一个或多个BPSK符号,对每一PTRS块中的BPSK符号按照pi/2递增的规律进行相移。
在一种可能的设计中,对每一PTRS块中的BPSK符号按照pi/2递增的规律进行相移,可以包括:按照OFDM符号中的各BPSK符号的排列顺序,以pi/2递增的规律,对OFDM符号中的各BPSK符号进行相移;
在一种可能的设计中,对每一PTRS块中的BPSK符号按照pi/2递增的规律进行相移,可以包括:按照pi/2 BPSK调制后的PTRS中的各BPSK符号的排列顺序,以pi/2递增的规律,对pi/2 BPSK调制后的PTRS中的各BPSK符号进行相移。
在一种可能的设计中,根据pi/2 BPSK调制后的PTRS,解调pi/2 BPSK调制后的数据信号,可以包括:对pi/2 BPSK调制后的PTRS进行相移,根据相移后的PTRS解调pi/2 BPSK调制后的数据信号;其中,PTRS包括一个或多个PTRS块,每一PTRS块包括一个或多个BPSK符号,对每一PTRS块中的BPSK符号按照pi/2递减的规律进行相移。
在一种可能的设计中,对每一PTRS块中的BPSK符号按照pi/2递减的规律进行相移,可以包括:按照OFDM符号中的各BPSK符号的排列顺序,以pi/2递减的规律,对OFDM符号中的各BPSK符号进行相移;
在一种可能的设计中,对每一PTRS块中的BPSK符号按照pi/2递减的规律进行相移,可以包括:按照pi/2 BPSK调制后的PTRS中的各BPSK符号的排列顺序,以 pi/2递减的规律,对pi/2 BPSK调制后的PTRS中的各BPSK符号进行相移。
可以理解的,接收端设备执行的相移与发射端设备执行的相移相关,其相关方式可参考下文具体实施方式,此处不再赘述。
相应的,本申请还提供了一种信息传输装置,用以实现第三方面所述的信息传输方法。该装置可以通过软件,或者硬件,或者通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。
在一种可能的实现方式中,该装置的结构中包括处理器、存储器和通信接口;该处理器被配置为支持该装置执行上述第三方面方法中相应的功能。该通信接口用于支持该装置与其他网元之间的通信。该存储器用于与处理器耦合,其保存该装置必要的程序指令和数据。该通信接口具体可以是收发器。
在一种可能的设计中,该装置可以包括:接收单元和处理单元。其中,接收单元用于接收一个或多个OFDM符号,其中,部分或全部OFDM符号中的每一OFDM符号包括pi/2 BPSK调制后的数据信号,以及pi/2 BPSK调制后的PTRS。处理单元用于解调pi/2 BPSK调制后的数据信号以及pi/2 BPSK调制后的PTRS。
在一种可能的设计中,处理单元具体可以用于:对pi/2 BPSK调制后的PTRS进行相移,根据相移后的PTRS解调pi/2 BPSK调制后的数据信号;PTRS包括一个或多个PTRS块,每一PTRS块包括一个或多个BPSK符号,对每一PTRS块中的BPSK符号按照pi/2递增的规律进行相移。可选的,处理单元具体可以用于:对每一PTRS块中的BPSK符号按照pi/2递增的规律进行相移,可以包括:按照OFDM符号中的各BPSK符号的排列顺序,以pi/2递增的规律,对OFDM符号中的各BPSK符号进行相移。或者,处理器具体可以用于:按照pi/2 BPSK调制后的PTRS中的各BPSK符号的排列顺序,以pi/2递增的规律,对pi/2 BPSK调制后的PTRS中的各BPSK符号进行相移。
在一种可能的设计中,处理单元具体可以用于:对pi/2 BPSK调制后的PTRS进行相移,根据相移后的PTRS解调pi/2 BPSK调制后的数据信号;PTRS包括一个或多个PTRS块,每一PTRS块包括一个或多个BPSK符号,对每一PTRS块中的BPSK符号按照pi/2递减的规律进行相移。可选的,处理单元具体可以用于:对每一PTRS块中的BPSK符号按照pi/2递减的规律进行相移,可以包括:按照OFDM符号中的各BPSK符号的排列顺序,以pi/2递减的规律,对OFDM符号中的各BPSK符号进行相移。或者,处理器具体可以用于:按照pi/2 BPSK调制后的PTRS中的各BPSK符号的排列顺序,以pi/2递减的规律,对pi/2 BPSK调制后的PTRS中的各BPSK符号进行相移。
在一种可能的设计中,处理单元还用于:根据MCS,确定数据信号的调制模式是pi/2 BPSK。可选的,当MCS大于等于0且小于等于预设值,确定数据信号的调制模式是pi/2 BPSK;预设值是4、6或8。
在一中可能的设计中,发送端生成正交频分复用OFDM符号,所述OFDM符号包括二分之πpi/2二进制相移键控BPSK调制后的相位参考信号PTRS;发送端发送所述OFDM符号。
在上述可能涉及中的实施方式中,所述方法还可以进一步包括对BPSK调制后 的PTRS进行相移,得到所述pi/2 BPSK调制后的PTRS;其中,所述PTRS包括一个或多个PTRS块,每一PTRS块包括一个或多个BPSK符号,对每一PTRS块中的BPSK符号按照pi/2递增的规律进行相移。一个实施例中,对每一PTRS块中的BPSK符号按照pi/2递增的规律进行相移,包括:按照PTRS符号在所述OFDM符号内的位置对PTRS进行相移;或者,按照PTRS符号在PTRS序列中的位置对PTRS进行相移。可选的,所述发送端还可以对所述PTRS符号进行功率抬升,所述发送端可以根据所述OFDM符号中数据信号的调制模式确定抬升功率值。所述发送端还可以根据调制编码方案MCS,确定所述数据信号的调制模式。又一个实施例中,所述OFDM符号为离散傅里叶变换单载波DFT-s-OFDM符号。所述发送端可以包含一个处理单元,用于生成所述正交频分复用OFDM符号;所述发送端还包含一个发送单元,用于发送所述OFDM符号。又一个实施例中,所述发送端可以包含一个处理器,和一个发送器,分别用于生成OFDM符号和发送所述OFDM符号。又一个实施例中,发送端装置可以是一个芯片或芯片***。
在上述可能设计中的实施方式中,对所述pi/2 BPSK调制后的PTRS接收信号进行相移,得到所述BPSK调制后的PTRS接收信号;其中,所述PTRS接收信号包括一个或多个PTRS块,每一PTRS块包括一个或多个pi/2 BPSK符号,对每一PTRS块中的pi/2 BPSK符号按照pi/2递增的规律进行相移。作为一种可能的实施方式,对每一PTRS块中的pi/2 BPSK符号按照pi/2递增的规律进行相移,包括:按照PTRS符号在所述OFDM符号内的位置对PTRS进行相移;或者,按照PTRS符号在PTRS接收信号中的位置对PTRS进行相移。
在一中可能的设计中,包括一种信息传输方法,具体包括:接收端接收正交频分复用OFDM符号,所述OFDM符号包括二分之πpi/2二进制相移键控BPSK调制后的相位参考信号PTRS;所述接收端根据所述pi/2 BPSK调制后的PTRS,解调数据信号。一个实施例中,所述方法还包括对BPSK调制后的PTRS序列进行相移,得到所述pi/2 BPSK调制后的PTRS序列;其中,所述PTRS包括一个或多个PTRS块,每一PTRS块包括一个或多个BPSK符号,对每一PTRS块中的BPSK符号按照pi/2递增的规律进行相移。作为一个实施例,所述接收端对每一PTRS块中的被BPSK符号按照pi/2递增的规律进行相移,可以是按照PTRS符号在所述OFDM符号内的位置对PTRS进行相移;或者,按照PTRS符号在PTRS序列中的位置对PTRS进行相移。所述OFDM符号为离散傅里叶变换单载波DFT-s-OFDM符号。所述接收端可以包含一个接收单元,用于接收所述OFDM符号,所述接收端还可以包含一个处理单元,用于解调数据信号。又一个实施例中,所述接收端可以包含一个接收器和一个处理器,分别用于用于接收OFDM符号和解调数据信号。一个实施例中,发送端装置可以是一个芯片或芯片***。
上文提供的任一种可能的设计中,OFDM符号可以例如但不限于以下任一种:DFT-s-OFDM符号,ZT-DFT-s-OFDM符号,UW-DFT-s-OFDM等,另外也可以是DFT-s-OFDM变化或演变波形的符号等,其中,DFT是离散傅里叶变换(discrete fourier transformation)的英文缩写,ZT是zero tail(零拖尾)的英文缩写,UW是unique word(单一字)的英文缩写,s是单载波(single carrier)的英文缩写。
本申请还提供了一种计算机存储介质,其上储存有计算机程序(指令),当该程序(指令)在计算机上运行时,使得计算机执行上述任一方面所述的方法。
本申请还提供了一种计算机程序产品,当其在计算机上运行时,使得计算机执行上述任一方面所述的方法。
可以理解地,上述提供的任一种装置或计算机存储介质或计算机程序产品均用于执行上文所提供的对应的方法,上文提供的方法所能达到的有益效果均可参考下文上具体实施方式中对应的方案的有益效果,此处不再赘述。
附图说明
图1为本申请实施例提供的技术方案所适用的一种通信***的示意图;
图2为本申请实施例提供的一种数据信号和PTRS的分布示意图;
图3为本申请实施例提供的另一种数据信号和PTRS的分布示意图;
图4为现有技术提供的一种相移量的示意图;
图5为现有技术中提供的一种不同技术方案下PAPR的仿真对比示意图;
图6为本申请实施例提供的一种信息传输方法的示意图;
图7为本申请实施例提供的一种信息处理的过程示意图;
图8为本申请实施例提供的另一种相移量的示意图;
图9为本申请实施例提供的另一种信息处理的过程示意图;
图10为本申请实施例提供的另一种相移量的示意图;
图11为本申请实施例提供的一种不同技术方案下PAPR的仿真对比示意图;
图12为本申请实施例提供的另一种信息传输方法的示意图;
图13为本申请实施例提供的另一种信息处理的过程示意图;
图14为本申请实施例提供的另一种信息处理的过程示意图;
图15为本申请实施例提供的一种信息传输装置的结构示意图;
图16为本申请实施例提供的另一种信息传输装置的结构示意图。
具体实施方式
本申请提供的技术方案可以应用于各种使用单载波传输技术的通信***,例如,在现有通信***基础上使用了单载波传输技术的通信***,5G通信***,未来演进***或者多种通信融合***等等。可以包括多种应用场景,例如,机器对机器(machine to machine,M2M)、D2M、宏微通信、增强型移动互联网(enhance mobile broadband,eMBB)、超高可靠性与超低时延通信(ultra reliable&low latency communication,uRLLC)以及海量物联网通信(massive machine type communication,mMTC)等场景。这些场景可以包括但不限于:终端与终端之间的通信场景,基站与基站之间的通信场景,基站与终端之间的通信场景等。本申请实施例提供的技术方案也可以应用于5G通信***中的终端与终端之间的通信,或基站与基站之间的通信等场景中。其中,单载波传输可以是上行单载波传输,也可以是下行单载波传输。
图1给出了一种通信***示意图。该通信***可以包括至少一个基站100(仅示出1个)以及与基站100连接的一个或多个终端200。
基站100可以是能和终端200通信的设备。基站100可以是中继站或接入点等。基站100可以是全球移动通信***(global system for mobile communication,GSM) 或码分多址(code division multiple access,CDMA)网络中的基站收发信台(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)中的NB(NodeB),还可以是LTE中的eNB或eNodeB(evolutional NodeB)。基站100还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。基站100还可以是5G网络中的网络设备或未来演进网络中的网络设备;还可以是可穿戴设备或车载设备等。基站100还可以是小站,传输节点(transmission reference point,TRP)等。当然不申请不限于此。
终端200可以是用户设备(user equipment,UE)、接入终端、UE单元、UE站、移动站、移动台、远方站、远程终端、移动设备、UE终端、终端、无线通信设备、UE代理或UE装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端或者未来演进的PLMN网络中的终端等。当然不申请不限于此。
在通信***中,相位误差补偿的过程如下:对于时域上的一个或多个OFDM中的每一OFDM符号,发射端设备将PTRS***数据信号中,然后经DFT、资源映射、快速傅里叶反变换(inverse fast fourier transform,IFFT)等操作后发送出去。接收端设备接收到信号后,经快速傅里叶变换(fast fourier transform,FFT)、资源逆映射、离散傅里叶反变换(inverse discrete fourier transform,IDFT)等操作后,得到PTRS(即接收到的PTRS)以及数据信号(即接收到的数据信号)。然后,根据原始PTRS和接收到的PTRS估计得到PTRS的相位误差,接着,通过滤波和/或插值得到数据信号的相位误差,利用数据信号的相位误差对接收到的数据信号进行相位误差补偿,最后对相位误差补偿得到的数据信号进行解调。其中,相位误差包括相位噪声、载波偏移、多普勒等引起的信号的相位变化。
下面对本文中涉及的部分术语和相关技术进行解释,以方便理解:
1)、发射端设备,接收端设备
发射端设备是指发送数据信号的设备,当然发射端设备还可以发送参考信号,或者发送其他信号,本申请对此不进行限定。
接收端设备是指接收数据信号的设备,当然接收端设备还可以接收参考信号,或者接收其他信号,本申请对此不进行限定。
其中,在上行方向上,发射端设备是终端,接收端设备是基站。在下行方向上,发射端设备是基站,接收端设备是终端。参考信号可以例如但不限于PTRS等。
2)、PTRS,数据信号
PTRS是收发双方均已知的信号。一般地,收发双方预约的PTRS是调制后的符号序列。PTRS的调制模式例如但不限于BPSK,pi/2 BPSK,正交相移键控(quadrature phase shift keyin,QPSK)等。例如,若调制模式是BPSK或pi/2 BPSK,则PTRS是指BPSK符号序列,BPSK符号序列包括一个或多个BPSK符号(即BPSK调制符号)。若调制模式是QPSK,则PTRS是指QPSK符号序列,QPSK符号序列包括一个或多个QPSK符号(即QPSK调制符号)。为了更清楚地描述本申请提供的技术方案,本 文中涉及了“BPSK调制后的PTRS”以及“pi/2 BPSK调制后的PTRS”等术语。
PTRS可以包括一个或多个PTRS块(或导频块或PTRS导频块),每一PTRS块包括一个或多个调制符号。在本申请的一些实施例中,PTRS是以BPSK符号序列***数据信号为例进行说明的,因此每一PTRS块包括一个或多个BPSK符号。
数据信号是发射端设备已知,且接收端设备未知的信号。数据信号可以是比特序列,也可以是比特序列经调制后得到的符号序列。数据信号具体表示比特序列还是符号序列可根据使用场景和上下文描述得到,例如,“对数据信号进行调制”中的“数据信号”是比特序列。“将PTRS***数据信号”中的“数据信号”是符号序列。其他示例不再一一列举。数据信号的调制模式例如但不限于BPSK、pi/2 BPSK、QPSK、16QAM等。例如若调制模式是BPSK或pi/2 BPSK,则调制后的数据信号是BPSK符号序列。
原始PTRS,是指收发双发约定好的PTRS,是收发双发预存的PTRS。
接收到的PTRS,可以理解为:原始PTRS经信道传输后得到的PTRS。
接收到的数据信号,可以理解为:原始数据信号经信道传输后得到的数据信号。其中,原始数据信号可以理解为发射端设备发送的数据信号。
需要说明的是,由于信号在信道传输过程中会受到噪声等因素的影响,因此接收到的PTRS与原始PTRS往往不同,接收到的数据信号与原始数据信号往往不同。
4)、第一序列,第二序列
在本申请的一些实施例中,引入了第一序列的概念。第一序列是将BPSK调制后的PTRS***BPSK调制后的数据信号得到的序列。
在本申请的一些实施例中,引入了第二序列的概念。第二序列是将pi/2 BPSK调制后的PTRS***pi/2 BPSK调制后的数据信号得到的序列。
本申请对第一序列/第二序列中数据信号和PTRS的分布不进行限定。图2和图3给出了数据信号和PTRS的分布示意图。
在图2和图3中,相邻两个映射有PTRS的OFDM符号间隔一个没有映射PTRS的OFDM符号,当然本申请不限于此。映射有PTRS的OFDM符号上,每隔若干个数据信号的BPSK符号***一个PTRS块,其中,任意两个PTRS块中包含的BPSK符号(即PTRS的BPSK符号)的个数可以相同也可以不同,任意相邻两个PTRS块之间的BPSK符号(即数据信号的BPSK符号)的个数可以相同也可以不同。图2和图3中的每一映射有PTRS的OFDM符号中的PTRS和数据信号构成的序列即为一个第一序列/第二序列。
图2和图3的区别在于,图3中,映射有PTRS的OFDM符号的两端还映射有UW,用于进行信道估计。需要说明的是,图2和图3可以结合使用,例如一部分映射有PTRS的OFDM符号上的信号分布情况可参考图2,另外一部分映射有PTRS的OFDM符号上的信号分布情况可参考图3。另外,图2和图3中均是数据信号之间***了M个PTRS块,每一PTRS块包括N个BPSK符号为例进行说明的,其中,M和N均是大于或等于1的整数。
5)、pi/2(即二分之π)BPSK
为了实现低PAPR,数据信号的调制模式可以是pi/2 BPSK。对数据信号进行pi/2BPSK的过程可以包括:采用BPSK对数据信号进行调制,然后,按照pi/2递增或递 减的规律,对BPSK调制后的数据信号中的BPSK符号进行相移。
当PTRS的调制模式是BPSK时,在BPSK调制后的数据信号之间***BPSK调制后的PTRS,得到第一序列,如图4的(a)所示。由于现有技术中不对PTRS进行相移。因此,执行相移操作时第一序列中的各BPSK符号的相移量的大小如图4的(b)所示。其中,图4中的每一小方格表示一个BPSK符号。图4的(a)所示的D 1、D 2……D m、D m+1……D n、D n+1……D N为BPSK调制后的数据信号中的BPSK符号,P 1、P 2……P k、P k+1……P t为BPSK调制后的PTRS中的BPSK符号。其中,1≤m<n≤N,1≤k<t,m、n、N、k和t均为整数。图4的(b)中的每一小方格中的数字表示该小方格正上方的BPSK符号的相移系数。BPSK符号的相移量为BPSK符号的相移系数与pi/2的乘积。例如,图4的(b)中的第2个小方格中的1,表示D 2的相移系数为1,其相移量为1*pi/2=pi/2。
图4的(b)中得到的序列可以认为是:在pi/2 BPSK调制后的数据信号之间***BPSK调制后的PTRS后得到的序列。由图4的(b)可知,这会破坏数据信号的pi/2特性和pi/2 BPSK的低PAPR的特性,导致通信***的PAPR增大。并且,PTRS块越大,对通信***的PAPR的影响越大。图5给出了数据信号是pi/2 BPSK时,在数据信号之间***BPSK调制后的PTRS和不***PTRS时,通信***的PAPR的仿真示意图。图5中,横坐标表示PAPR,单位为dB;纵坐标表示补偿累积分布函数(complementary cumulative distribution function,CCDF),其中,CCDF表示统计量大于横坐标上对应点的概率。例如,横坐标PAPR=3时,纵坐标CCDF约为0.03,表示PAPR>3dB的概率为0.03。由图5可知,相比不***PTRS(见图5中的实线),在数据信号之间***BPSK调制后的PTRS(见图5中的虚线)时,通信***的PAPR增大了0.5dB(分贝)。
需要说明的是,现有技术中,PTRS的调制模式一般是QPSK,并且,该情况下,在BPSK调制后的数据信号之间***QPSK调制后的PTRS的示例可基于上述图4得到,此处不再赘述。
6)、其他术语
本文中的术语“多个”是指两个或两个以上。
本文中的术语“第一”、“第二”等仅是为了区分不同的对象,并不限定其先后顺序。例如,第一序列和第二序列仅仅是为了区分不同的序列,并不限定其先后顺序。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系;在公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
下面从信息传输方法的角度对本申请提供的技术方案进行描述。需要说明的是,下文中均是以一个映射有PTRS的OFDM符号上的信号的处理过程为例进行说明的。
图6给出了本申请提供的一种信息传输方法的示意图。本实施例中主要描述了发射端设备先执行***步骤再执行相移步骤场景下的信息处理过程,具体包括:
S102:发射端设备确定数据信号的调制模式和预设的PTRS的调制模式。
在上行单载波传输场景中,发射端设备是终端。终端可以根据接收到的基站发送 的MCS,以及预存的MCS与调制模式之间的映射关系,确定数据信号的调制模式。在下行单载波传输场景中,发射端设备是基站。基站可以根据当前信道质量确定MCS,并根据预存的MCS与调制模式之间的映射关系,确定数据信号的调制模式。在本申请的一些实施例中,MCS大于等于0且小于等于预设值,确定数据信号的调制模式是pi/2 BPSK;预设值是4、6或8。其中,MCS是大于等于0的整数。
S104:若数据信号的调制模式是pi/2 BPSK,预设的PTRS的调制模式是BPSK,则发射端设备先对数据信号进行BPSK调制,并将BPSK调制后的PTRS***BPSK调制后的数据信号中,得到第一序列,然后执行S106。
本申请主要解决数据信号的调制模式是pi/2 BPSK时,因***BPSK调制后的PTRS而导致的通信***的PAPR增大的问题。因此若数据信号的调制模式是pi/2BPSK,则执行本申请提供的技术方案。若数据信号的调制模式不是pi/2 BPSK,则可按照现有技术提供的技术方案处理,本申请不限于此。
在S102之后,若数据信号的调制模式和预设的PTRS的调制模式均是pi/2 BPSK,则发射端设备可以先对数据信号进行pi/2 BPSK调制,并将pi/2 BPSK调制后的PTRS***pi/2 BPSK调制后的数据信号,得到第一信号。然后执行S108。
S106:发射端设备对第一序列中的各BPSK符号进行相移,得到第一信号。
其中,PTRS包括一个或多个PTRS块,每一PTRS块包括一个或多个BPSK符号。对PTRS进行相移,可以包括:对每一PTRS块中的BPSK符号按照pi/2递增或递减的规律进行相移。本申请不对PTRS块之间的BPSK符号的相移规律进行限定。为了简化收发双方的计算复杂度,可选的,步骤S106例如但不限于通过以下方式1或方式2实现:
方式1:发射端设备按照第一序列中的各BPSK符号的排列顺序,以pi/2递增的规律,对第一序列中的各BPSK符号进行相移,得到第一信号。或者,按照第一序列中的各BPSK符号的排列顺序,以pi/2递减的规律,对第一序列中的各BPSK符号进行相移,得到第一信号。
该方式1可以理解为,发射端设备将数据信号和PTRS作为一个整体进行相移。当S106通过方式1实现时,本实施例的实现过程如图7所示。该方式中,由于数据信号和PTRS作为一个整体进行相移,因此数据信号的相移量和PTRS的相移量,与数据信号和PTRS在第一序列中的相对位置有关;也可以理解为:第一序列中的每一BPSK符号的相移量,与该BPSK符号在第一序列中的位置有关。
图8给出了BPSK调制后的符号序列(在方式1即第一序列)中的各BPSK符号的相移量的示意图。图8的(a)和(b)中相关内容的解释可参考上述对图4中相关内容的解释。需要说明的是,图8的(b)表示以pi/2递增的规律,对BPSK调制后的符号序列中的各BPSK符号进行相移的相移量。在一种实现方式中,相移量可以表示为mod((pi/2)*k,2pi),该情况下,假设m=3,那么,P 1的相移量为(pi/2)*3=3pi/2,发射端设备对P 1进行相移后得到P 1*exp(1j*3pi/2)=-j*P 1。假设n=8,k=2,那么,P k+1的相移量为mod(pi/2*(8+2),2pi)=pi,发射端设备对P k+1进行相移后得到P k+1*exp(1j*pi)=-P k+1。其他示例不再一一列举。
可以理解的,若发射端设备以pi/2递减的规律,对第一序列中的各BPSK符号进 行相移,则,将图8的(b)中的pi/2修改为-pi/2后得到的示例,即为BPSK调制后的符号序列中的各BPSK符号的一种示例。
该方式1中,发射端设备将数据信号和PTRS作为一个整体进行相移,即可以认是将PTRS作为数据信号的一部分,然后对数据信号进行pi/2 BPSK调制,因此,该方式中通信***的PAPR与不在数据信号中***PTRS时通信***的PAPR相同。
方式2:发射端设备按照PTRS中的各BPSK符号的排列顺序,以pi/2递增或递减的规律,对PTRS中的各BPSK符号进行相移;以及,以pi/2递增或递减的规律,对BPSK调制后的数据信号中的各BPSK符号进行相移,得到第一信号。
该方式2可以理解为,发射端设备对数据信号和PTRS独立进行相移。本申请对发射端设备对PTRS进行相移,以及对数据信号进行相移的执行顺序不进行限定。当S106通过方式2实现时,本实施例的实现过程如图9所示。
该方式的几种实现方式如表1所示:
表1
实现方式 数据信号的相移规律 PTRS的相移规律
实现方式1 pi/2递增 pi/2递增
实现方式2 pi/2递增 pi/2递减
实现方式3 pi/2递减 pi/2递增
实现方式4 pi/2递减 pi/2递减
表1中的实现方式1说明:发射端设备按照PTRS中的各BPSK符号的顺序,以pi/2递增的规律对PTRS进行相移;且按照数据信号中的各BPSK符号的顺序,以pi/2递增的规律对数据信号进行相移。其他实现方式的解释不再一一描述。
该方式2中,PTRS中的BPSK符号的相移量与PTRS和数据信号的相对位置无关,与PTRS中的BPSK符号之间的相对位置有关。数据信号的相移量与PTRS和数据信号之间的相对位置无关,与数据信号中的BPSK符号之间的相对位置有关。
图10给出了该方式下BPSK调制后的符号序列中的各BPSK符号的相移量的示意图。图10的(a)和(b)中相关内容的解释可参考上述对图4或图8中相关内容的解释。需要说明的是,图10的(b)表示以pi/2递增的规律,对数据信号和PTRS独立进行相移(即表1中的实现方式1)的相移量为例进行说明的。在图10中,P 1的相移量为0;k=2时,P k的相移量为pi/2,P k+1的相移量为pi。其他示例不再一一列举。
相比方式1,在方式2中,由于数据信号的相移量和PTRS的相移量,均与数据信号和PTRS之间的相对位置均无关,因此复杂度较低。
可以理解的,根据图8和图10可知,若相移量为mod(pi/2*k,2pi),则当PTRS块中的BPSK符号的个数,以及PTRS块间的数据信号的BPSK符号的个数均是4的整数倍时,图8提供的技术方案和图10提供的技术方案等价。另外,若相移量为mod(pi/2*k,pi),则PTRS块包含的BPSK符号的个数和PTRS块间的数据信号的BPSK符号的个数均是2的整数倍时,两种相移方向(即递增pi/2和递减pi/2)下的技术方案等价,例如上述的实现方式1~4等价。
图11给出了不同技术方案下PAPR的仿真对比示意图。其中,横坐标表示PAPR, 单位为dB;纵坐标表示CCDF。图11中示出了不在数据信号中***PTRS(见图11中的w/o PTRS对应的虚线),以及按照上述方式1或方式2进行相移的技术方案下PAPR的仿真对比示意图。需要说明的是,在图11中,表示不在数据信号中***PTRS的虚线与表示方式1的虚线重叠,形成了图11中的点画线。
S108:发射端设备对第一信号进行DFT、资源映射、IFFT等操作后,发送出去。接收端设备接收信号,并对该信号进行FFT、资源逆映射、IDFT等操作后,得到第二信号。第二信息可以理解为第一信号经信道传输后得到的信号。第二信号包括pi/2BPSK调制后的数据信号,以及pi/2 BPSK调制后的PTRS。
S110:接收端设备对第二信号中的各BPSK符号进行相移。执行S112之后,得到的数据信号即为接收的数据信号,得到的PTRS即为接收的PTRS。
在上行单载波传输场景中,接收端设备是基站。在下行单载波传输场景中,接收端设备是终端。终端可以根据接收到的基站发送的MCS,以及预存的MCS与调制模式之间的映射关系,确定数据信号的调制模式。
若在S106中发射端设备使用方式1对第一序列进行相移;则,在S110中接收端设备按照方式1对第二信号进行反方向的相移。具体的:若发射端设备按照第一序列中的各BPSK符号的顺序,以pi/2递增的规律,对第一序列中的各BPSK符号进行相移;则接收端设备按照第二信号中的各BPSK符号的顺序,以pi/2递减的规律,对第二信号中的各BPSK符号进行相移。若发射端设备按照第一序列中的各BPSK符号的顺序,以pi/2递减的规律,对第一序列中的各BPSK符号进行相移;则接收端设备按照第二信号中的各BPSK符号的各时域符号的顺序,以pi/2递增的规律,对第二信号中的各BPSK符号进行相移。换言之,若发射端设备对第一序列中的某一BPSK符号的相移为theta,那么接收端设备对第二信号中的对应的BPSK符号的相移为–theta。
若在S106中发射端设备使用方式2对第一序列进行相移;则,在S110中接收端设备按照方式2对第二信号进行反方向的相移。具体的,若发射端设备按照表1中的实现方式i进行相移,则接收端设备按照表2中的实现方式ia进行相移。其中,1≤i≤4,i是整数。例如,若发射端设备按照表1中的实现方式1进行相移,则接收端设备可以按照表2中的实现方式1a进行相移。
表2
实现方式 数据信号的相移规律 PTRS的相移规律
实现方式1a pi/2递减 pi/2递减
实现方式2a pi/2递减 pi/2递增
实现方式3a pi/2递增 pi/2递减
实现方式4a pi/2递增 pi/2递增
可以理解的,发射端设备按照哪种实现方式(包括方式1和方式2中的任一实现方式)对第一序列进行相移,可以是收发双方根据协议预先约定的,也可以是通过信令通知对端的,因此接收端设备可以获知按照哪种实现方式对第二信号进行相移。
可选的,在S110之后,该方法还可以包括:
S111:接收端设备根据原始PTRS和接收到的PTRS估计得到PTRS的相位误差,通过滤波和/或插值等操作得到数据信号的相位误差,利用数据信号的相位误差对接收 到的数据信号进行相位误差补偿,最后对相位误差补偿得到的数据信号进行解调。该步骤可以理解为:接收端设备根据接收到的OFDM符号中的pi/2 BPSK调制后的PTRS,解调pi/2 BPSK调制后的数据信号,的具体实现。
可以理解的,第一信号和第二信号可以理解为OFDM信号,OFDM信号可以包括一个或多个OFDM符号。
本申请实施例提供的信息传输方法,发射端设备发送的OFDM符号中包括pi/2BPSK调制后的数据信号,以及pi/2 BPSK调制后的PTRS,相比现有技术中OFDM符号中包括QPSK调制后的PTRS,增加了PTRS的随机性,其中,随机性越大,***的性能越稳定,因此有助于很好地发挥单载波低PAPR的特性。
图12给出了本申请提供的另一种信息传输方法的示意图。本实施例中主要描述了发射端设备先执行相移步骤再执行***步骤场景下的信息处理过程,具体包括:
S202:可参考上述S102,当然本申请不限于此。
S204:若数据信号的调制模式是pi/2 BPSK,预设的PTRS的调制模式是BPSK,则发射端设备对BPSK调制后的PTRS和BPSK调制后的数据信号进行相移。
S206:发射端设备将相移后的PTRS(即pi/2 BPSK调制后的PTRS)***pi/2BPSK调制后的数据信号,得到第二序列(即第一信号)。
该步骤S204例如但不限于通过以下方式3或方式4实现:
方式3:发射端设备按照第一信号中的各BPSK符号的排列顺序,以pi/2递增的规律,对第一信号中的各BPSK符号进行相移。或者,按照第一信号中的各BPSK符号的排列顺序,以pi/2递减的规律,对第一信号中的各BPSK符号进行相移。
该方式3可以理解为,发射端设备将数据信号和PTRS作为一个整体进行相移。当S204通过方式3实现时,本实施例的实现过程如图13所示。该方式中相关内容的解释可参考上文。另外,该情况下,第一信号中的BPSK符号的相移量的示意图可参考图8,此处不再赘述。
需要说明的是,发射端设备在执行***之前,即可获知每一PTRS块在数据信号的BPSK序列中的***位置,因此在执行***之前,即可将数据信号和PTRS作为一个整体进行相移。
方式4:发射端设备按照PTRS中的各BPSK符号的排列顺序,以pi/2递增或递减的规律,对PTRS中的各BPSK符号进行相移;以及以pi/2递增或递减的规律,对BPSK调制后的数据信号中的各BPSK符号进行相移,得到第一信号(即第二序列)。
该方式4可以理解为,发射端设备对数据信号和PTRS独立进行相移。当S204通过方式4实现时,本实施例的实现过程如图14所示。该方式中相关内容的解释可参考上文。另外,该情况下,第一信号中的BPSK符号的相移量的示意图可参考图10,此处不再赘述。
S208~S210:可参考S108~S110,当然本申请不限于此。
可选的,该方法还可以包括S211。S211可参考S111,当然本申请不限于此。
数据信号的调制模式除了可以是pi/2 BPSK之外,还可以是QPSK或16QAM等。预设的PTRS的调制模式除了可以是BPSK或pi/2 BPSK之外,还可以是QPSK等。
在本申请的一些实施例中,预设的PTRS的调制模式是BPSK。该情况下,发射端设备若确定数据信号的调制模式是pi/2 BPSK,则对BPSK调制后的PTRS进行相移,得到pi/2 BPSK调制后的PTRS,其具体实现过程可参考上文。若确定数据信号的调制模式不是pi/2 BPSK,则不对BPSK调制后的PTRS进行相移。接收端设备执行与发射端设备对应的步骤,此处不再赘述。该情况下,实际的,数据信号的调制模式和PTRS的调制模式的对应关系的一种示例如表3所示:
表3
数据信号的调制模式 PTRS的调制模式
pi/2 BPSK pi/2 BPSK
BPSK BPSK
QPSK BPSK
16QAM BPSK
在本申请的一些实施例中,预设的PTRS的调制模式是QPSK。该情况下,发射端设备若确定数据信号的调制模式是pi/2 BPSK,则将PTRS的调制模式从QPSK修改为pi/2 BPSK,然后,对PTRS的QPSK符号序列进行解调,得到PTRS的比特序列,从该PTRS的比特序列中取出一部分比特序列形成新的PTRS比特序列,并对新的PTRS的比特序列进行pi/2 BPSK调制。其中,pi/2 BPSK调制过程可参考上文。另外,从PTRS比特序列中取出哪一部分比特序列可以是收发双方预先约定好的,也可以是通过信令方式配置的,本申请对此不进行限定。发射端设备若确定数据信号的调制模式不是pi/2 BPSK,则按照现有技术中的方式进行处理。相应的,接收端设备执行与发射端设备对应的步骤,此处不再赘述。该情况下,实际的,数据信号的调制模式和PTRS的调制模式的对应关系的一种示例表4所示:
表4
数据信号的调制模式 PTRS的调制模式
pi/2 BPSK pi/2 BPSK
BPSK QPSK
QPSK QPSK
16QAM QPSK
下面将介绍本发明的又一个实施例。该实施例包括一种信息传输方法,具体的:
发送端生成正交频分复用OFDM符号,所述OFDM符号包括二分之πpi/2二进制相移键控BPSK调制后的相位参考信号PTRS;发送端发送所述OFDM符号。作为一个实施例,所述方法还可以进一步包括对BPSK调制后的PTRS进行相移,得到所述pi/2 BPSK调制后的PTRS;其中,所述PTRS包括一个或多个PTRS块,每一PTRS块包括一个或多个BPSK符号,对每一PTRS块中的BPSK符号按照pi/2递增的规律进行相移。一个实施例中,对每一PTRS块中的BPSK符号按照pi/2递增的规律进行相移,包括:按照PTRS符号在所述OFDM符号内的位置对PTRS进行相移;或者,按照PTRS符号在PTRS序列中的位置对PTRS进行相移。可选的,所述发送端还可以对所述PTRS符号进行功率抬升,所述发送端可以根 据所述OFDM符号中数据信号的调制模式确定抬升功率值。所述发送端还可以根据调制编码方案MCS,确定所述数据信号的调制模式。又一个实施例中,所述OFDM符号为离散傅里叶变换单载波DFT-s-OFDM符号。所述发送端可以包含一个处理单元,用于生成所述正交频分复用OFDM符号;所述发送端还包含一个发送单元,用于发送所述OFDM符号。又一个实施例中,所述发送端可以包含一个处理器,和一个发送器,分别用于生成OFDM符号和发送所述OFDM符号。又一个实施例中,发送端装置可以是一个芯片或芯片***。
在又一些实施例中,为简化PTRS序列对协议的影响,所述基站和/所述网络设备也可以直接预定义PTRS的序列为pi/2 BPSK,这一步骤也可以是一个信令通知或其它的配置方式。该定义方式可用于所有调制模式的场景。其中,PTRS的相移值可与其在DFT之前的位置无关,也可以与DFT之前的位置有关,一个实施例中,网络侧设备和/或终端设备,对BPSK序列的相位增加或减少所述相位,或对BPSK序列乘以所述相位值对应的指数信号,如exp(1j*相移值),确定所述pi/2 BPSK的PTRS序列:
(1)相移值与其在DFT之前的调制符号中的位置无关:第i个PTRS的相移值可以为Δθ+(i-1)*pi/2,或Δθ+i*pi/2,或Δθ+(i+1)*pi/2,其中Δθ为PTRS的初始相移值,可默认为0;第i个PTRS的相移值还可以为其他方法,如每个PTRS块之间的相移独立,或每个PTRS块的初始相移值独立,具体可参考上文;
(2)相移值与其在DFT之前的调制符号中的位置有关:可以先确定PTRS在DFT之前的调制符号/信号中的位置,如DFT之前的调制符号/信号总的数量为N sym,编号为0,1,…,N sym-1,若DFT之前PTRS的位置为集合S PTRS={I PTRS-1,I PTRS-2,…},则其相移值为Δθ+I PTRS-i*pi/2,或其相移值为Δθ+(I PTRS-i-1)*pi/2,或其相移值为Δθ+(I PTRS-i+1)*pi/2,其中Δθ为包括数据的DFT之前的所有调制符号的初始相移值,可默认为0。
在所述终端设备和/或网络设备确定相移值的基础上,具体的相移实现过程可参考上文。
在本申请的又一些实施例中,还可以在根据调制模式选择PTRS的序列之后,如数据或上行共享信道(Physical Uplink Sharing Channel,PUSCH)的调制模式为pi/2BPSK对应的PTRS的序列为pi/2 BPSK,否则为QPSK,进一步对QPSK调制的PTRS进行相位旋转或偏移,达到降低PAPR的效果。如所述终端设备和/或网络设备根据QPSK调制后的符号进行pi/2的相移确定pi/2 QPSK的序列,或根据对QPSK调制后的符号进行pi/4的相移确定pi/4 QPSK的序列。
一个实施例中,所述网络设备和/或终端设备确定所述pi/2的相移对应pi/2 QPSK的序列的配置,又一个实施例中,所述网络设备和/或终端设备也可以是所述网络设备和/或终端设备确定pi/4的相移对应pi/4 QPSK的序列的配置。
具体相移值的确定可参考上文。
一个实施例中,数据或PUSCH的调制模式不是QPSK对应的PTRS的序列还可以是顺时针移动/旋转或逆时针移动/旋转的QPSK调制符号,或PTRS符号的幅度与QPSK的幅度相同,且每两个相邻的PTRS符号间相位差均为pi/2,或PTRS符号的幅度与QPSK的幅度相同,且每两个相邻的PTRS符号间的相位差均为-pi/2,如下表所 示。
表5
数据信号的调制模式 PTRS的调制模式/序列
pi/2 BPSK pi/2 BPSK
BPSK {pi/2 QPSK,pi/4 QPSK,顺时针或逆时针移动的QPSK}
QPSK {pi/2 QPSK,pi/4 QPSK,顺时针或逆时针移动的QPSK}
16QAM {pi/2 QPSK,pi/4 QPSK,顺时针或逆时针移动的QPSK}
64QAM {pi/2 QPSK,pi/4 QPSK,顺时针或逆时针移动的QPSK}
一个实施例中,若PTRS的序列为顺时针移动或逆时针移动的QPSK时,其初始相位取值可以基于UE配置,如不同的UE配置不同的初始相位取值,以增加UE间PTRS序列的随机性;其初始相位取值还可以与PTRS在DFT之前所有调制符号中的位置有关,如通过调整初始相位取值,使得与PTRS块相邻的PUSCH或数据与其所相邻的PTRS符号上的相位差不等于pi的整数倍,或减小二者的相位差,以减小其对PAPR的影响。
又一个实施例中,上述QPSK符号还可以替换为给定调制模式或调制阶数下的最外层星座点的符号(Outer Most Constellation Point,OMCP),最外层星座点指给定调制模式或调制阶数下,幅度值最大的星座点,如下表所示:
表6
数据信号的调制模式 PTRS的调制模式/序列
pi/2 BPSK pi/2 BPSK
BPSK {pi/2 OMCP,pi/4 OMCP,顺时针或逆时针移动的OMCP}
QPSK {pi/2 OMCP,pi/4 OMCP,顺时针或逆时针移动的OMCP}
16QAM {pi/2 OMCP,pi/4 OMCP,顺时针或逆时针移动的OMCP}
64QAM {pi/2 OMCP,pi/4 OMCP,顺时针或逆时针移动的OMCP}
在本申请的又一些实施例中,可在前一些实施例的基础上,如PTRS的序列为pi/2BPSK,且与调制模式或调制阶数无关,对PTRS的幅度进行功率抬升(Power Boosting,PB),以提高PTRS的估计准确度。其中功率抬升的具体取值可以与调制模式或调制阶数或MCS有关,如给定调制模式或调制阶数下,功率抬升至与最外层星座点的功率相同,如下表所示:
表7
数据信号的调制模式 PTRS的PB值
pi/2 BPSK 0dB
BPSK 0dB
QPSK 0dB
16QAM 2.5527dB=10*lg((3+3j)^2/10)
64QAM 3.6798dB=10*lg((7+7j)^2/42)
256QAM 4.2276dB=10*lg((15+15j)^2/170)
一个实施例中,为了保证DFT-s-OFDM符号的整体功率不发生变化,对PTRS进 行功率抬升后,可以降低数据或PUSCH的功率,可以理解的是,数据或PUSCH需降低的功率与PTRS的开销有关和/或PTRS抬升的功率值有关,如PTRS抬升的功率相同的情况下,PTRS的开销越大,数据功率降低的越多;如PTRS的开销相同的情况下,PTRS抬升的功率值越多,数据功率降低的越多。
又一个实施例中,表6也可以通过对表5进行功率抬升实现,或最外层星座点可以通过对QPSK星座点进行功率抬升实现,抬升功率值与表7同。
需理解的是,功率抬升的值根据调制阶数有固定的值仅为举例示意,一个实施例中,功率抬升的值还可以是信令配置的,或基于表7的值有一定的偏移量,不同调制模式下的偏移量可相同或不同。如可将PTRS的功率抬升至比OMCP功率值小的功率上,可避免或减少因为功率抬升至与给定调制模式下OMCP功率相同,导致PTRS落入功率放大器或其他硬件的非线性区域引入的性能损失。下面将介绍本发明的又一个实施例。接收端接收到包含pi/2 BPSK的PTRS的正交频分复用信号后,可以对所述接收到的pi/2 BPSK的PTRS信号进行相移,得到BPSK的PTRS接收信号,除以BPSK的PTRS序列,或乘以BPSK的PTRS序列的共轭,以估计出相位噪声,所述相位噪声用于解调数据;又一个实施例中,可以对所述BPSK的PTRS序列进项相移,得到pi/2 BPSK的PTRS序列,用接收到的pi/2 BPSK的PTRS信号,除以pi/2 BPSK的PTRS序列,或乘以pi/2 BPSK的PTRS序列的共轭,以估计出相位噪声,所述相位噪声用于解调数据。这里的乘以可以至指点乘运算,除以可以是指点除运算。
一个实施例中,对所述PTRS接收信号和/或PTRS的序列相移的相移值,可以由PTRS接收信号和/或PTRS的序列中PTRS符号在DFT之前的位置决定,如DFT之前的调制符号/信号总的数量为N sym,编号为0,1,…,N sym-1,若DFT之前PTRS的位置为集合S PTRS={I PTRS-1,I PTRS-2,…},则位置为I PTRS-i的PTRS接收信号的相移值为-(Δθ+I PTRS-i*pi/2),或其相移值为-(Δθ+(I PTRS-i-1)*pi/2),或其相移值为-(Δθ+(I PTRS-i+1)*pi/2),或PTRS序列中位置为I PTRS-i的PTRS符号相移值为Δθ+I PTRS-i*pi/2,或其相移值为Δθ+(I PTRS-i-1)*pi/2,或其相移值为Δθ+(I PTRS-i+1)*pi/2,其中Δθ为包括数据的DFT之前的所有调制符号的初始相移值,可默认为0。
又一个实施例中,对所述PTRS接收信号和/或PTRS的序列相移的相移值,可以与PTRS接收信号和/或PTRS的序列中PTRS符号在DFT之前的位置无关,由PTRS接收信号和/或PTRS的序列中PTRS符号在PTRS接收信号和/或PTRS的序列中的位置决定,如第i个PTRS接收信号的相移值可以为-(Δθ+(i-1)*pi/2),或-(Δθ+i*pi/2),或-(Δθ+(i+1)*pi/2),或PTRS序列中第i个PTRS符号的相移值可以为Δθ+(i-1)*pi/2,或Δθ+i*pi/2,或Δθ+(i+1)*pi/2,其中Δθ为PTRS的初始相移值,可默认为0;第i个PTRS的相移值还可以为其他方法,如每个PTRS块之间的相移独立,或每个PTRS块的初始相移值独立,具体可参考上文;
上述两种接收端对PTRS的接收信号和/或PTRS序列的处理,也可用于PTRS的序列为其他序列的场景,如pi/2 QPSK,pi/4 QPSK,顺时针旋转或逆时针旋转的QPSK,pi/2OMCP,pi/4OMCP,顺时针旋转或逆时针旋转的OMCP。
下面将介绍本发明的又一个实施例。该实施例包括一种信息传输方法,具体包 括:接收端接收正交频分复用OFDM符号,所述OFDM符号包括二分之πpi/2二进制相移键控BPSK调制后的相位参考信号PTRS;所述接收端根据所述pi/2 BPSK调制后的PTRS,解调数据信号。一个实施例中,所述方法还包括对BPSK调制后的PTRS序列进行相移,得到所述pi/2 BPSK调制后的PTRS序列;其中,所述PTRS包括一个或多个PTRS块,每一PTRS块包括一个或多个BPSK符号,对每一PTRS块中的BPSK符号按照pi/2递增的规律进行相移。作为一个实施例,所述接收端对每一PTRS块中的被BPSK符号按照pi/2递增的规律进行相移,可以是按照PTRS符号在所述OFDM符号内的位置对PTRS进行相移;或者,按照PTRS符号在PTRS序列中的位置对PTRS进行相移。所述OFDM符号为离散傅里叶变换单载波DFT-s-OFDM符号。所述接收端可以包含一个接收单元,用于接收所述OFDM符号,所述接收端还可以包含一个处理单元,用于解调数据信号。又一个实施例中,所述接收端可以包含一个接收器和一个处理器,分别用于用于接收OFDM符号和解调数据信号。一个实施例中,发送端装置可以是一个芯片或芯片***。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如发射端设备或者接收端设备。为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
本申请实施例还提供一种信息传输装置,该信息传输装置可以是发射端设备。该发射端设备可以用于执行图6或图12中发射端设备所执行的步骤。
本申请实施例还提供一种信息传输装置,该信息传输装置可以是接收端设备。该接收端设备可以用于执行图6或图12中接收端设备所执行的步骤。
在上行单载波传输场景中,发射端设备可以是终端。图15示出了一种简化的终端结构示意图。便于理解和图示方便,图15中,终端以手机作为例子。如图15所示,终端包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输 出数据。需要说明的是,有些种类的终端可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图15中仅示出了一个存储器和处理器。在实际的终端产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端的收发单元,将具有处理功能的处理器视为终端的处理单元。如图15所示,终端包括收发单元1501和处理单元1502。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1501中用于实现接收功能的器件视为接收单元,将收发单元1501中用于实现发送功能的器件视为发送单元,即收发单元1501包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
例如,在一种实现方式中,处理单元1502,用于执行图6中的S102~S106中的任一个或多个步骤,和/或本申请中的其他步骤。收发单元1502执行图6中的S108中发射端设备所执行的步骤,和/或本申请中的其他步骤。又如,在一种实现方式中,处理单元1502,用于执行图12中的S202~S206中的任一个或多个步骤,和/或本申请中的其他步骤。收发单元1502执行图12中的S208中发射端设备所执行的步骤,和/或本申请中的其他步骤。
在上行单载波传输场景中,接收端设备也可以是基站。图16示出了一种简化基站结构示意图。基站包括1601部分以及1602部分。1601部分主要用于射频信号的收发以及射频信号与基带信号的转换;1602部分主要用于基带处理,对基站进行控制等。1601部分通常可以称为收发单元、收发机、收发电路、或者收发器等。1602部分通常是基站的控制中心,通常可以称为处理单元,用于控制基站执行上述图6或图12中关于接收端设备所执行的步骤。具体可参见上述相关部分的描述。
1601部分的收发单元,也可以称为收发机,或收发器等,其包括天线和射频单元,其中射频单元主要用于进行射频处理。可选的,可以将1601部分中用于实现接收功能的器件视为接收单元,将用于实现发送功能的器件视为发送单元,即1601部分包括接收单元和发送单元。接收单元也可以称为接收机、接收器、或接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
1602部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器,处理器用于读取和执行存储器中的程序以实现基带处理功能以及对基站的控制。若存在多个单板,各个单板之间可以互联以增加处理能力。作为一中可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一种实现方式中,收发单元用于执行图6中的S108中接收端设备所执行的步骤,和/或本申请中的其他步骤。处理单元用于执行图6中的S110~S111中的任一个或多个步骤,和/或本申请中的其他步骤。又如,在一种实现方式中,收发单元用于执行图12中的S208中接收端设备所执行的步骤,和/或本申请中的其他步骤。处理单元用于执行图12中的S110~S111中的任一个或多个步骤,和/或本申请中的其他步骤。
在下行单载波传输场景中,发射端设备可以是基站。简化基站结构示意图如图16所示。其相关解释可参考上文。例如,在一种实现方式中,收发单元用于执行图6中的S108中发射端设备所执行的步骤,和/或本申请中的其他步骤。处理单元用于执行图6中的S102~S106中的任一个或多个步骤,和/或本申请中的其他步骤。又如,在一种实现方式中,收发单元用于执行图12中的S208中发射端设备所执行的步骤,和/或本申请中的其他步骤。处理单元用于执行图12中的S202~S206中的任一个或多个步骤,和/或本申请中的其他步骤。
在下行单载波传输场景中,接收端设备可以是终端。简化终端结构示意图如图15所示。其相关解释可参考上文。例如,在一种实现方式中,收发单元用于执行图6中的S108中接收端设备所执行的步骤,和/或本申请中的其他步骤。处理单元用于执行图6中的S110~S111中的任一个或多个步骤,和/或本申请中的其他步骤。例如,在一种实现方式中,收发单元用于执行图12中的S208中接收端设备所执行的步骤,和/或本申请中的其他步骤。处理单元用于执行图12中的S210~S211中的任一个或多个步骤,和/或本申请中的其他步骤。
上述提供的任一种通信装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其 他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (61)

  1. 一种信息传输方法,其特征在于,包括:
    生成正交频分复用OFDM符号,所述OFDM符号包括二分之πpi/2二进制相移键控BPSK调制后的数据信号,以及pi/2 BPSK调制后的相位参考信号PTRS;
    发送所述OFDM符号。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    对BPSK调制后的PTRS进行相移,得到所述pi/2 BPSK调制后的PTRS;
    其中,所述PTRS包括一个或多个PTRS块,每一PTRS块包括一个或多个BPSK符号,对每一PTRS块中的BPSK符号按照pi/2递增的规律并对pi求模后进行相移。
  3. 根据权利要求2所述的方法,其特征在于,对每一PTRS块中的BPSK符号按照pi/2递增的规律并对pi求模后进行相移,包括:
    按照序列中的各BPSK符号的排列顺序,以mod(pi/2*k,pi)对所述序列中的各BPSK符号进行相移,k为BPSK符号在序列中的位置;
    其中,所述序列是将BPSK调制后的PTRS***BPSK调制后的数据信号得到的序列;或者,所述序列是按BPSK调制后得到的PTRS序列。
  4. 根据权利要求2所述的方法,其特征在于,对每一PTRS块中的BPSK符号按照pi/2递增的规律并对pi求模后进行相移,包括:
    按照序列中的各BPSK符号的排列顺序,以pi/2递增的规律,并对pi求模后,对所述序列中的各BPSK符号进行相移,其中,所述序列是将BPSK调制后的PTRS***BPSK调制后的数据信号得到的序列;
    或者,按照BPSK调制后的PTRS中的各BPSK符号的排列顺序,以pi/2递增的规律,并对pi求模后,对所述BPSK调制后的PTRS中的各BPSK符号进行相移。
  5. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    对BPSK调制后的PTRS进行相移,得到所述pi/2 BPSK调制后的PTRS;
    其中,所述PTRS包括一个或多个PTRS块,每一PTRS块包括一个或多个BPSK符号,对每一PTRS块中的BPSK符号按照pi/2递减的规律进行相移。
  6. 根据权利要求5所述的方法,其特征在于,对每一PTRS块中的BPSK符号按照pi/2递减的规律进行相移,包括:
    按照序列中的各BPSK符号的排列顺序,以pi/2递减的规律,对所述序列中的各BPSK符号进行相移,其中,所述序列是将BPSK调制后的PTRS***BPSK调制后的数据信号得到的序列;
    或者,按照BPSK调制后的PTRS中的各BPSK符号的排列顺序,以pi/2递减的规律,对所述BPSK调制后的PTRS中的各BPSK符号进行相移。
  7. 根据权利要求2至6任一项所述的方法,其特征在于,所述方法还包括:
    在对BPSK调制后的PTRS进行相移之前,将所述BPSK调制后的PTRS***BPSK调制后的数据信号;
    或者,在对BPSK调制后的PTRS进行相移之后,将所述pi/2 BPSK调制后的PTRS***所述pi/2 BPSK调制后的数据信号。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,所述方法还包括:
    根据调制编码方案MCS,确定所述数据信号的调制模式为pi/2 BPSK。
  9. 根据权利要求8所述的方法,其特征在于,根据MCS,确定所述数据信号的调制模式为pi/2 BPSK,包括:
    当所述MCS大于等于0且小于等于预设值,确定所述数据信号的调制模式是pi/2 BPSK。
  10. 根据权利要求1至9任一项所述的方法,其特征在于,所述OFDM符号为离散傅里叶变换单载波DFT-s-OFDM符号。
  11. 一种信息传输方法,其特征在于,包括:
    接收正交频分复用OFDM符号,所述OFDM符号包括二分之πpi/2二进制相移键控BPSK调制后的数据信号,以及pi/2 BPSK调制后的相位参考信号PTRS;
    根据所述pi/2 BPSK调制后的PTRS,解调所述pi/2 BPSK调制后的数据信号。
  12. 根据权利要求11所述的方法,其特征在于,根据所述pi/2 BPSK调制后的PTRS,解调所述pi/2 BPSK调制后的数据信号,包括:
    对所述pi/2 BPSK调制后的PTRS进行相移;其中,所述PTRS包括一个或多个PTRS块,每一PTRS块包括一个或多个BPSK符号,对每一PTRS块中的BPSK符号按照pi/2递增的规律进行相移;
    根据相移后的PTRS,解调所述pi/2 BPSK调制后的数据信号。
  13. 根据权利要求12所述的方法,其特征在于,对每一PTRS块中的BPSK符号按照pi/2递增的规律进行相移,包括:
    按照所述OFDM符号中的各BPSK符号的排列顺序,以pi/2递增的规律,对所述OFDM符号中的各BPSK符号进行相移;
    或者,按照所述pi/2 BPSK调制后的PTRS中的各BPSK符号的排列顺序,以pi/2递增的规律,对所述pi/2 BPSK调制后的PTRS中的各BPSK符号进行相移。
  14. 根据权利要求11所述的方法,其特征在于,根据所述pi/2 BPSK调制后的PTRS,解调所述pi/2 BPSK调制后的数据信号,包括:
    对所述pi/2 BPSK调制后的PTRS进行相移;其中,所述PTRS包括一个或多个PTRS块,每一PTRS块包括一个或多个BPSK符号,对每一PTRS块中的BPSK符号按照pi/2递减的规律进行相移;
    根据相移后的PTRS,解调所述pi/2 BPSK调制后的数据信号。
  15. 根据权利要求14所述的方法,其特征在于,对每一PTRS块中的BPSK符号按照pi/2递减的规律进行相移,包括:
    按照所述OFDM符号中的各BPSK符号的排列顺序,以pi/2递减的规律,对所述OFDM符号中的各BPSK符号进行相移;
    或者,按照所述pi/2 BPSK调制后的PTRS中的各BPSK符号的排列顺序,以pi/2递减的规律,对所述pi/2 BPSK调制后的PTRS中的各BPSK符号进行相移。
  16. 根据权利要求11至15任一项所述的方法,其特征在于,所述方法还包括:
    根据调制编码方案MCS,确定所述数据信号的调制模式为是pi/2 BPSK。
  17. 根据权利要求16所述的方法,其特征在于,根据MCS,确定所述数据信号的调制模式是pi/2 BPSK,包括:
    当所述MCS是大于等于0且小于等于预设值,确定所述数据信号的调制模式是 pi/2 BPSK;其中,所述预设值是4、6或8。
  18. 根据权利要求11至17任一项所述的方法,其特征在于,所述OFDM符号为离散傅里叶变换单载波DFT-s-OFDM符号。
  19. 一种信息传输装置,其特征在于,包括:
    处理单元,用于生成正交频分复用OFDM符号,所述OFDM符号包括二分之πpi/2二进制相移键控BPSK调制后的数据信号,以及pi/2 BPSK调制后的相位参考信号PTRS;
    发送单元,用于发送所述OFDM符号。
  20. 根据权利要求19所述的装置,其特征在于,所述处理单元还用于:对BPSK调制后的PTRS进行相移,得到所述pi/2 BPSK调制后的PTRS;其中,所述PTRS包括一个或多个PTRS块,每一PTRS块包括一个或多个BPSK符号,对每一PTRS块中的BPSK符号按照pi/2递增的规律并对pi求模后进行相移。
  21. 根据权利要求20所述的装置,其特征在于,所述处理单元具体用于:
    按照序列中的各BPSK符号的排列顺序,以mod(pi/2*k,pi)对所述序列中的各BPSK符号进行相移,k为BPSK符号在序列中的位置;
    其中,所述序列是将BPSK调制后的PTRS***BPSK调制后的数据信号得到的序列;或者,所述序列是按BPSK调制后得到的PTRS序列。
  22. 根据权利要求20所述的装置,其特征在于,所述处理单元具体用于:
    按照序列中的各BPSK符号的排列顺序,以pi/2递增的规律,并对pi求模后,对所述序列中的各BPSK符号进行相移,其中,所述序列是将BPSK调制后的PTRS***BPSK调制后的数据信号得到的序列;
    或者,按照BPSK调制后的PTRS中的各BPSK符号的排列顺序,以pi/2递增的规律,并对pi求模后,对所述BPSK调制后的PTRS中的各BPSK符号进行相移。
  23. 根据权利要求19所述的装置,其特征在于,所述处理单元还用于:对BPSK调制后的PTRS进行相移,得到所述pi/2 BPSK调制后的PTRS;其中,所述PTRS包括一个或多个PTRS块,每一PTRS块包括一个或多个BPSK符号,对每一PTRS块中的BPSK符号按照pi/2递减的规律进行相移。
  24. 根据权利要求23所述的装置,其特征在于,所述处理单元具体用于:
    按照序列中的各BPSK符号的排列顺序,以pi/2递减的规律,对所述序列中的各BPSK符号进行相移,其中,所述序列是将BPSK调制后的PTRS***BPSK调制后的数据信号得到的序列;
    或者,按照BPSK调制后的PTRS中的各BPSK符号的排列顺序,以pi/2递减的规律,对所述BPSK调制后的PTRS中的各BPSK符号进行相移。
  25. 根据权利要求20至24任一项所述的装置,其特征在于,所述处理单元还用于:
    在对BPSK调制后的PTRS进行相移之前,将所述BPSK调制后的PTRS***BPSK调制后的数据信号;
    或者,在对BPSK调制后的PTRS进行相移之后,将所述pi/2 BPSK调制后的PTRS***所述pi/2 BPSK调制后的数据信号。
  26. 根据权利要求19至25任一项所述的装置,其特征在于,所述处理单元还用 于:根据调制编码方案MCS,确定所述数据信号的调制模式是pi/2 BPSK。
  27. 根据权利要求26所述的装置,其特征在于,所述处理单元具体用于:当所述MCS大于等于0且小于等于预设值,确定所述数据信号的调制模式是pi/2 BPSK;其中,所述预设值是4、6或8。
  28. 根据权利要求19至27任一项所述的装置,其特征在于,所述OFDM符号为离散傅里叶变换单载波DFT-s-OFDM符号。
  29. 一种信息传输装置,其特征在于,包括:
    接收单元,用于接收正交频分复用OFDM符号,所述OFDM符号包括二分之πpi/2二进制相移键控BPSK调制后的数据信号,以及pi/2 BPSK调制后的相位参考信号PTRS;
    处理单元,用于根据所述pi/2 BPSK调制后的PTRS,解调所述pi/2 BPSK调制后的数据信号。
  30. 根据权利要求29所述的装置,其特征在于,所述处理单元具体用于:对所述pi/2 BPSK调制后的PTRS进行相移;根据相移后的PTRS,解调所述pi/2 BPSK调制后的数据信号;其中,所述PTRS包括一个或多个PTRS块,每一PTRS块包括一个或多个BPSK符号,对每一PTRS块中的BPSK符号按照pi/2递增的规律进行相移。
  31. 根据权利要求30所述的装置,其特征在于,所述处理单元具体用于:
    按照所述OFDM符号中的各BPSK符号的排列顺序,以pi/2递增的规律,对所述OFDM符号中的各BPSK符号进行相移;
    或者,按照所述pi/2 BPSK调制后的PTRS中的各BPSK符号的排列顺序,以pi/2递增的规律,对所述pi/2 BPSK调制后的PTRS中的各BPSK符号进行相移。
  32. 根据权利要求29所述的装置,其特征在于,所述处理单元具体用于:对所述pi/2 BPSK调制后的PTRS进行相移;根据相移后的PTRS,解调所述pi/2 BPSK调制后的数据信号;其中,所述PTRS包括一个或多个PTRS块,每一PTRS块包括一个或多个BPSK符号,对每一PTRS块中的BPSK符号按照pi/2递减的规律进行相移。
  33. 根据权利要求32所述的装置,其特征在于,所述处理单元具体用于:
    按照所述OFDM符号中的各BPSK符号的排列顺序,以pi/2递减的规律,对所述OFDM符号中的各BPSK符号进行相移;
    或者,按照所述pi/2 BPSK调制后的PTRS中的各BPSK符号的排列顺序,以pi/2递减的规律,对所述pi/2 BPSK调制后的PTRS中的各BPSK符号进行相移。
  34. 根据权利要求29至33任一项所述的装置,其特征在于,所述处理单元还用于:根据调制编码方案MCS,确定所述数据信号的调制模式是pi/2 BPSK。
  35. 根据权利要求29至34任一项所述的装置,其特征在于,所述OFDM符号为离散傅里叶变换单载波DFT-s-OFDM符号。
  36. 一种信息传输方法,其特征在于,包括:
    生成正交频分复用OFDM符号,所述OFDM符号包括二分之πpi/2二进制相移键控BPSK调制后的相位参考信号PTRS;
    发送所述OFDM符号。
  37. 根据权利要求36所述的方法,其特征在于,所述方法还包括:
    对BPSK调制后的PTRS进行相移,得到所述pi/2 BPSK调制后的PTRS;
    其中,所述PTRS包括一个或多个PTRS块,每一PTRS块包括一个或多个BPSK符号,对每一PTRS块中的BPSK符号按照pi/2递增的规律进行相移。
  38. 根据权利要求37所述的方法,其特征在于,对每一PTRS块中的BPSK符号按照pi/2递增的规律进行相移,包括:
    按照PTRS符号在所述OFDM符号内的位置对PTRS进行相移;
    或者,按照PTRS符号在PTRS序列中的位置对PTRS进行相移。
  39. 根据权利要求36至38任一项所述的方法,其特征在于,对所述PTRS符号进行功率抬升,所述对所述PTRS符号进行功率抬升包括:
    根据所述OFDM符号中数据信号的调制模式确定抬升功率值。
  40. 根据权利要求39所述的方法,其特征在于,所述方法还包括:
    根据调制编码方案MCS,确定所述数据信号的调制模式。
  41. 根据权利要求36至40任一项所述的方法,其特征在于,所述OFDM符号为离散傅里叶变换单载波DFT-s-OFDM符号。
  42. 一种信息传输方法,其特征在于,包括:
    接收正交频分复用OFDM符号,所述OFDM符号包括二分之πpi/2二进制相移键控BPSK调制后的相位参考信号PTRS;
    根据所述pi/2 BPSK调制后的PTRS,解调数据信号。
  43. 根据权利要求42所述的方法,其特征在于,所述方法还包括:
    对BPSK调制后的PTRS序列进行相移,得到所述pi/2 BPSK调制后的PTRS序列;
    其中,所述PTRS序列包括一个或多个PTRS块,每一PTRS块包括一个或多个BPSK符号,对每一PTRS块中的BPSK符号按照pi/2递增的规律进行相移。
  44. 根据权利要求43所述的方法,其特征在于,对每一PTRS块中的BPSK符号按照pi/2递增的规律进行相移,包括:
    按照PTRS符号在所述OFDM符号内的位置对PTRS进行相移;
    或者,按照PTRS符号在PTRS序列中的位置对PTRS进行相移。
  45. 根据权利要求42所述的方法,其特征在于,所述方法还包括:
    对所述pi/2 BPSK调制后的PTRS接收信号进行相移,得到所述BPSK调制后的PTRS接收信号;
    其中,所述PTRS接收信号包括一个或多个PTRS块,每一PTRS块包括一个或多个pi/2 BPSK符号,对每一PTRS块中的pi/2 BPSK符号按照pi/2递增的规律进行相移。
  46. 根据权利要求45所述的方法,其特征在于,对每一PTRS块中的pi/2 BPSK符号按照pi/2递增的规律进行相移,包括:
    按照PTRS符号在所述OFDM符号内的位置对PTRS进行相移;
    或者,按照PTRS符号在PTRS接收信号中的位置对PTRS进行相移。
  47. 根据权利要求42至46任一项所述的方法,其特征在于,所述OFDM符号为离散傅里叶变换单载波DFT-s-OFDM符号。
  48. 一种信息传输装置,其特征在于,包括:
    处理单元,用于生成正交频分复用OFDM符号,所述OFDM符号包括二分之πpi/2二进制相移键控BPSK调制后的相位参考信号PTRS;
    发送单元,用于发送所述OFDM符号。
  49. 根据权利要求48所述的装置,其特征在于,所述处理单元具体用于:
    对BPSK调制后的PTRS进行相移,得到所述pi/2 BPSK调制后的PTRS;
    其中,所述PTRS包括一个或多个PTRS块,每一PTRS块包括一个或多个BPSK符号,对每一PTRS块中的BPSK符号按照pi/2递增的规律进行相移。
  50. 根据权利要求49所述的装置,其特征在于,处理单元用于对每一PTRS块中的BPSK符号按照pi/2递增的规律进行相移,包括:
    所述处理单元按照PTRS符号在所述OFDM符号内的位置对PTRS进行相移;
    或者,所述处理单元按照PTRS符号在PTRS序列中的位置对PTRS进行相移。
  51. 根据权利要求48至50任一项所述的装置,其特征在于,所述处理单元用于对所述PTRS符号进行功率抬升,所述处理单元用于对所述PTRS符号进行功率抬升包括:
    所述处理单元根据所述OFDM符号中数据信号的调制模式确定抬升功率值。
  52. 根据权利要求51所述的装置,其特征在于,所述处理单元还用于根据调制编码方案MCS,确定所述数据信号的调制模式。
  53. 根据权利要求48至52任一项所述的装置,其特征在于,所述OFDM符号为离散傅里叶变换单载波DFT-s-OFDM符号。
  54. 一种信息传输装置,其特征在于,包括:
    接收单元,用于接收正交频分复用OFDM符号,所述OFDM符号包括二分之πpi/2二进制相移键控BPSK调制后的相位参考信号PTRS;
    处理单元,用于根据所述pi/2 BPSK调制后的PTRS,解调数据信号。
  55. 根据权利要求54所述的装置,其特征在于,所述处理单元,还用于对BPSK调制后的PTRS进行相移,得到所述pi/2 BPSK调制后的PTRS;
    其中,所述PTRS包括一个或多个PTRS块,每一PTRS块包括一个或多个BPSK符号,所述处理单元还用于对每一PTRS块中的BPSK符号按照pi/2递增的规律进行相移。
  56. 根据权利要求55所述的装置,其特征在于,所述处理单元还用于对每一PTRS块中的BPSK符号按照pi/2递增的规律进行相移,包括:
    所述处理单元还用于按照PTRS符号在所述OFDM符号内的位置对PTRS进行相移;
    或者,所述处理单元还用于按照PTRS符号在PTRS序列中的位置对PTRS进行相移。
  57. 根据权利要求54所述的装置,其特征在于,所述处理单元,还用于对pi/2 BPSK调制后的PTRS接收信号进行相移,得到所述BPSK调制后的PTRS的接收信号;
    其中,所述PTRS接收信号包括一个或多个PTRS块,每一PTRS块包括一个或多个pi/2 BPSK符号,所述处理单元还用于对每一PTRS块中的pi/2 BPSK符号按照 pi/2递增的规律进行相移。
  58. 根据权利要求57所述的装置,其特征在于,所述处理单元还用于对每一PTRS块中的pi/2 BPSK符号按照pi/2递增的规律进行相移,包括:
    所述处理单元还用于按照PTRS符号在所述OFDM符号内的位置对PTRS进行相移;
    或者,所述处理单元还用于按照PTRS符号在PTRS接收信号中的位置对PTRS进行相移。
  59. 根据权利要求54至58任一项所述的装置,其特征在于,所述OFDM符号为离散傅里叶变换单载波DFT-s-OFDM符号。
  60. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时,使得如权利要求1至18或36至47任一项所述的方法被执行。
  61. 一种计算机程序产品,当其在计算机上运行时,使得所述计算机执行如权利要求1至18或36至47任一项所述的方法。
PCT/CN2018/090913 2017-06-13 2018-06-12 一种信息传输方法和装置 WO2018228400A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
BR112019016641-6A BR112019016641B1 (pt) 2017-06-13 2018-06-12 Método e aparelho de transmissão de informações
KR1020217032486A KR102364995B1 (ko) 2017-06-13 2018-06-12 정보 전송 방법 및 장치
CA3051285A CA3051285C (en) 2017-06-13 2018-06-12 Information transmission method and apparatus
KR1020197023347A KR20190103343A (ko) 2017-06-13 2018-06-12 정보 전송 방법 및 장치
JP2019545247A JP6952785B2 (ja) 2017-06-13 2018-06-12 情報送信方法および装置
EP21177301.5A EP3937447A1 (en) 2017-06-13 2018-06-12 Information transmission method and apparatus
EP18817009.6A EP3573300B1 (en) 2017-06-13 2018-06-12 Method and apparatus for transmitting information
US16/518,574 US10715367B2 (en) 2017-06-13 2019-07-22 Information transmission method and apparatus
US16/922,692 US11108608B2 (en) 2017-06-13 2020-07-07 Information transmission method and apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710444084 2017-06-13
CN201710444084.1 2017-06-13
CN201710920235.6 2017-09-30
CN201710920235.6A CN109088840B (zh) 2017-06-13 2017-09-30 一种信息传输方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/518,574 Continuation US10715367B2 (en) 2017-06-13 2019-07-22 Information transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2018228400A1 true WO2018228400A1 (zh) 2018-12-20

Family

ID=64660400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090913 WO2018228400A1 (zh) 2017-06-13 2018-06-12 一种信息传输方法和装置

Country Status (1)

Country Link
WO (1) WO2018228400A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100124291A1 (en) * 2008-11-17 2010-05-20 Tarik Muharemovic Receivers for Embedded ACK/NAK in CQI Reference Signals in Wireless Networks
CN102882825A (zh) * 2007-06-14 2013-01-16 Lg电子株式会社 在无线通信***中接收控制信号的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102882825A (zh) * 2007-06-14 2013-01-16 Lg电子株式会社 在无线通信***中接收控制信号的方法
US20100124291A1 (en) * 2008-11-17 2010-05-20 Tarik Muharemovic Receivers for Embedded ACK/NAK in CQI Reference Signals in Wireless Networks

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IITH; CEWIT; IITM; TEJAS NETWORKS: "Next Steps for pi/2 BPSK with spectrum shaping", 3GPP TSG RAN WG1 MEETING #89 R1-1708222, no. R1-1708222, 5 May 2017 (2017-05-05), Hangzhou, China, XP051261522 *
INTEL CORPORATION: "On PT-RS for DFT-s-OFDM", 3GPP TSG RAN WG1 MEETING #89 R1-1707367, no. R1-1707667, 6 May 2017 (2017-05-06), Hangzhou, China, XP051263026 *

Similar Documents

Publication Publication Date Title
CN112995083B (zh) 一种信息传输方法和装置
CN109245844B (zh) 无线通信方法、装置及***
US11496262B2 (en) Reference signal transmission method and apparatus
WO2018059488A1 (zh) 一种参考信号传输方法和装置
WO2019079936A1 (zh) 一种选择波形的方法及设备
CN110710174A (zh) 用于无线通信波形生成的方法和装置
US11109365B2 (en) Communication method, terminal, and network device for repeating uplink control information to obtain data segment
WO2018228400A1 (zh) 一种信息传输方法和装置
US11563612B2 (en) Transmission method and first communication device
WO2022205017A1 (zh) 一种信号处理方法及通信装置
CN111147215B (zh) 无线通信方法、装置及***
JP2023142237A (ja) 通信装置、及び、通信方法
CN116800574A (zh) 一种安全ltf序列确定方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18817009

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3051285

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20197023347

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019545247

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019016641

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018817009

Country of ref document: EP

Effective date: 20190823

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112019016641

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190812