WO2018228261A1 - 多层永磁偏置磁悬浮单元、磁悬浮电机及家用空调 - Google Patents

多层永磁偏置磁悬浮单元、磁悬浮电机及家用空调 Download PDF

Info

Publication number
WO2018228261A1
WO2018228261A1 PCT/CN2018/090215 CN2018090215W WO2018228261A1 WO 2018228261 A1 WO2018228261 A1 WO 2018228261A1 CN 2018090215 W CN2018090215 W CN 2018090215W WO 2018228261 A1 WO2018228261 A1 WO 2018228261A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
magnetic
magnetizer
magnetic levitation
motor
Prior art date
Application number
PCT/CN2018/090215
Other languages
English (en)
French (fr)
Inventor
江华
张寅�
Original Assignee
深圳麦格动力技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦格动力技术有限公司 filed Critical 深圳麦格动力技术有限公司
Publication of WO2018228261A1 publication Critical patent/WO2018228261A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/09Structural association with bearings with magnetic bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/083Structural association with bearings radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N15/00Holding or levitation devices using magnetic attraction or repulsion, not otherwise provided for

Definitions

  • the invention relates to the field of magnetic levitation technology, in particular to a multi-layer permanent magnet bias magnetic levitation unit, a magnetic levitation motor and a household air conditioner.
  • the conventional motor mainly includes a stator part of the motor, a rotor part of the motor, a support bearing of the rotor, and a casing part.
  • the stator part of the motor and the rotor part of the motor are mechanically coupled or mechanically contacted, so there is mechanical friction during the movement of the electronic rotor.
  • the support of the existing magnetic suspension motor rotor shaft usually needs to be completed by a radial magnetic suspension bearing, a radial displacement sensor and a floating ring, and the radial magnetic suspension bearing, the radial displacement sensor and the floating ring are arranged side by side on the rotor shaft.
  • the permanent magnet bias radial magnetic bearing is a kind of radial magnetic suspension bearing with low power consumption.
  • the permanent magnet biased radial magnetic bearing needs to be provided with a certain width of permanent magnet between the two parallel magnetic plates, in order to reduce the size of the motor. Generally, the width of the permanent magnet is reduced, but the distance between the two magnetic conductive plates is too small to cause demagnetization of the permanent magnet and magnetic leakage of the magnetic bearing, and the excessive permanent magnet width significantly increases the overall volume of the magnetic suspension motor.
  • the technical problem to be solved by the present invention is to solve the problem that the permanent magnet bias radial magnetic suspension bearing and its accessories occupy a large axial space and increase the overall volume of the magnetic suspension motor in the prior art magnetic levitation motor.
  • the present invention provides a multilayer permanent magnet bias magnetic levitation unit comprising a permanent magnet bias radial magnetic bearing and a floating ring, the permanent magnetic bias radial magnetic bearing comprising at least two layers of parallel a conductive magnet, at least one of the magnetizers is provided with a plurality of first magnetic poles, each of the first magnetic poles is wound with a first excitation coil, and a permanent magnet is disposed between the two adjacent layers of the magnets.
  • the floating ring is located in a space formed by a permanent magnet between two adjacent layers of the magnetizer and two layers of the magnetizer.
  • the outer ring of the floating ring is connected to the permanent magnet
  • the inner ring of the floating ring is provided with a plurality of grooves, and each of the grooves is provided with a sensor probe, and the An end surface of the sensor probe facing the inside of the floating ring is located inside the groove.
  • the permanent magnet includes a plurality of permanent magnet blocks, the number of the permanent magnet blocks being the same as the number of the first magnetic poles, and a plurality of positions of the plurality of permanent magnet blocks on the circumference and the plurality of the first One magnetic pole corresponds one by one.
  • a radial displacement sensor is further disposed in a space formed by the adjacent permanent magnets between the two layers of the magnetizer and the two layers of the magnetizers, the radial displacement sensor including a sensor base and a sensor probe
  • the outer ring of the sensor base is connected to the permanent magnet
  • the floating ring is embedded in the inner ring of the sensor base
  • the sensor base is provided with a plurality of mounting blocks on a side of the magnet with the first magnetic pole.
  • the sensor probe is fixed to the mounting block, and each of the mounting blocks is located between two adjacent first magnetic poles.
  • the permanent magnet bias radial magnetic bearing comprises two layers of magnetizers arranged in parallel.
  • the two layers of the magnetizers are respectively a first magnetizer and a second magnetizer, and the first magnetizer is internally provided with a plurality of first magnetic poles, and the second magnetizer is a magnetic conductive plate.
  • a third magnetizer is connected to a side of the second magnetizer away from the first magnetizer, the second magnetizer and the third magnetizer form an annular space, and the annular space is provided a second exciting coil; the second magnetizer, the third magnetizer, and the second exciting coil form an axial magnetic bearing.
  • the present invention also provides a magnetic levitation motor comprising a motor stator core, a rotor shaft, two of the above-described multilayer permanent magnet bias magnetic levitation units, and an axial magnetic bearing, the rotor shaft sleeve being disposed on two of the plurality of layers a permanent magnet biasing magnetic levitation unit and a stator core of the motor, wherein the stator core of the motor is disposed between the two multi-layer permanent magnet biasing magnetic levitation units; and the axial axis is provided on the rotor shaft A bearing-fitted thrust disk; further comprising a radial displacement sensor for detecting a radial displacement of the rotor shaft and an axial displacement sensor for detecting an axial displacement of the rotor shaft.
  • the permanent magnet bias radial magnetic bearing of the multi-layer permanent magnet biasing magnetic levitation unit comprises two layers of the magnetizer, and the two layers of the magnetizer are respectively a first magnet and a second magnet.
  • the first magnet is internally provided with a plurality of first magnetic poles
  • the second magnetizer is a magnetic conductive plate; wherein the second magnetizer of one of the multi-layer permanent magnet biasing magnetic levitation units is away from the first guide a third magnetizer is connected to one side of the magnet, the second magnetizer and the third magnetizer form an annular space, and the second excitation coil is wound in the annular space; the second magnetizer and the third guide A magnet and the second exciting coil form the axial magnetic bearing.
  • the radial displacement sensor includes a plurality of sensor probes, an outer ring of the floating ring is coupled to the permanent magnet, and an inner ring of the floating ring is provided with a plurality of grooves, each of the The sensor probe is fixed in one of the grooves, and an end surface of the sensor probe facing the inside of the floating ring is located inside the groove.
  • the rotor shaft is sleeved with the stator core of the motor to be provided with a main permanent magnet.
  • the outer side of the main permanent magnet is coated with a sheath.
  • the sheath is made of carbon fiber.
  • the present invention also provides a household air conditioner including a compressor in which the above-described magnetic levitation motor is provided.
  • the multi-layer permanent magnet bias magnetic suspension unit provided by the present invention has a floating ring disposed on two adjacent magnetrons of a permanent magnet bias radial magnetic bearing.
  • the space formed with the permanent magnets the space is utilized, and the floating ring and the permanent magnet biased radial magnetic bearing form a component, so that the structure of the magnetic levitation motor is more compact and easy to assemble.
  • the width of the permanent magnet is significantly increased compared to when the floating ring is externally disposed.
  • the rotor shaft can obtain a larger magnetic force, reducing magnetic flux leakage and demagnetization of the permanent magnet.
  • FIG. 1 is a three-dimensional structural diagram of a multi-layer permanent magnet bias magnetic levitation unit according to Embodiment 1 of the present invention
  • FIG. 2 is a cross-sectional view showing a multilayer permanent magnet bias magnetic levitation unit according to Embodiment 1 of the present invention
  • FIG. 3 is a cross-sectional view showing another structure of a multi-layer permanent magnet bias magnetic levitation unit according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic diagram of a three-dimensional structure of a multi-layer permanent magnet bias magnetic levitation unit according to Embodiment 2 of the present invention.
  • FIG. 5 is a cross-sectional view showing a multilayer permanent magnet bias magnetic levitation unit according to Embodiment 2 of the present invention.
  • FIG. 6 is a cross-sectional view showing another structure of a multi-layer permanent magnet bias magnetic levitation unit according to Embodiment 2 of the present invention.
  • FIG. 7 is a schematic structural view of a magnetic levitation motor according to a third embodiment of the present invention.
  • 1 permanent magnet bias radial magnetic bearing
  • 11 first magnetizer
  • 12 second magnetizer
  • 13 first magnetic pole
  • 14 first excitation coil
  • 2 floating ring
  • 22 slot
  • 3 sensor probe
  • 4 permanent magnet block
  • 5 third magnetizer
  • 6 second excitation coil
  • 7 sensor base
  • 71 mounting block
  • 8 motor stator core
  • 10 main permanent magnet
  • 101 axial sensor.
  • a multi-layer permanent magnet bias magnetic suspension unit provided by an embodiment of the present invention includes a permanent magnet bias radial magnetic bearing 1 and a floating ring 2, and a permanent magnet bias radial magnetic bearing.
  • 1 includes at least two layers of magnetizers arranged in parallel, and at least one of the magnetizers is provided with a plurality of first magnetic poles 13 each of which is wound with a first excitation coil 14 and between two adjacent layers of magnetizers.
  • There is a permanent magnet and the floating ring 2 is located in a space formed by the permanent magnets between the adjacent two layers of the magnetizer and the two layers of the magnetizer.
  • the float ring 2 can be a mechanical bearing, a graphite ring or a metal ring.
  • the inner diameter of the float ring 2 is smaller than the inner diameter of the magnetizer, and is used to assist the rotor shaft 9 when the motor is started up and the rotor shaft 9 when the motor is stopped, and serves as a support for protection when the rotor shaft 9 stops running.
  • the number of the first magnetic poles 13 in the present embodiment is four.
  • the multi-layer permanent magnet biasing magnetic levitation unit provided by the embodiment of the present invention sets the pontoon ring 2 in the space formed by the adjacent two magnetizers and permanent magnets of the permanent magnet bias radial magnetic bearing 1, and fully utilizes the space.
  • the floating ring 2 forms a component with the permanent magnet bias radial magnetic bearing 1, making the structure of the magnetic levitation motor more compact and easy to assemble.
  • the width of the permanent magnet is significantly increased compared to when the floating ring 2 is externally disposed.
  • the rotor shaft 9 can obtain a larger magnetic force, reducing magnetic flux leakage and demagnetization of the permanent magnet.
  • the outer ring of the floating ring 2 is connected with the permanent magnet, and the inner ring of the floating ring 2 is provided with a plurality of grooves 21, and each of the grooves 21 is provided with a sensor probe 3, and the sensor probe The end face 3 facing the inside of the floating ring 2 is located inside the groove 21.
  • the number of sensor probes 3 is four, and the four sensor probes 3 detect the displacement of the positive and negative directions of the rotor shaft 9X and the positive and negative directions of the Y-axis, respectively.
  • the sensor probe 3 is integrated on the floating ring 2, and the floating ring 2 serves as a sensor base 7 while supporting the protection of the rotor shaft 9.
  • the permanent magnet in the embodiment comprises a plurality of permanent magnet blocks 4, the number of the permanent magnet blocks 4 being the same as the number of the first magnetic poles 13, and the positions of the plurality of permanent magnet blocks 4 on the circumference and the plurality of first magnetic poles 13 One-to-one correspondence.
  • the permanent magnet is divided into a plurality of pieces and is disposed only at a position corresponding to the first magnetic pole 13, saving the permanent magnet material and facilitating the assembly of the permanent magnet.
  • the permanent magnet in this embodiment may also be provided in a ring shape. Specifically, in the embodiment, the outer ring of the floating ring 2 is provided with a slot 22, and the permanent magnet can be directly fixed in the slot 22 when the permanent magnet is fixed, and the structure is more stable.
  • the permanent magnet bias radial magnetic bearing in the embodiment comprises two layers of magnets arranged in parallel, a permanent magnet is connected between the two magnets, and the floating ring 2 is located in a space formed by two magnets and permanent magnets.
  • the two layers of the magnetizers are respectively the first magnetizer 11 and the second magnetizer 12.
  • the first magnetizer 11 is internally provided with a plurality of first magnetic poles 13, and the second magnetizer 12 is a magnetic conductive plate.
  • the second magnet 12 is selected from a magnetic conductive plate to reduce the volume of the magnetic levitation unit.
  • the third magnetizer 5 is connected to the side of the second magnetizer 12 away from the first magnetizer 11, and the second magnetizer 12 and the third magnetizer 5 form an annular space.
  • a second exciting coil 6 is wound in the annular space; the second magnetizing magnet 12, the third magnetizing magnet 5, and the second magnetic pole wound with the second exciting coil 6 form an axial magnetic bearing.
  • the axial magnetic bearing and the permanent magnet bias radial magnetic bearing 1 share the second magnetizer 12, thereby realizing the integration of the axial magnetic bearing and the permanent magnet bias radial magnetic bearing 1, further making the motor compact.
  • the second embodiment of the present embodiment is the same as that of the first embodiment.
  • the content disclosed in the first embodiment is also disclosed in the second embodiment.
  • the second embodiment is another method for integrating the radial displacement sensor into the permanent magnet bias.
  • a radial displacement sensor is also disposed in the space formed by the permanent magnet between the two adjacent layers of the magnet and the two layers of the magnet.
  • the displacement sensor includes a sensor base 7 and a sensor probe 3.
  • the outer ring of the sensor base 7 is connected to the permanent magnet, the floating ring 2 is embedded in the inner ring of the sensor base 7, and the sensor base 7 faces the side of the magnet provided with the first magnetic pole 13.
  • a plurality of mounting blocks 71 are provided, and the sensor probes 3 are fixed to the mounting blocks 71, and each of the mounting blocks 71 is located between the adjacent two first magnetic poles 13.
  • the inner diameter of the float ring 2 is smaller than the inner diameter of the sensor base 7.
  • the sensor base 7 is arranged in a stepped shape, and the floating ring 2 is fixed on the step surface of the sensor base 7.
  • the sensor probe 3 is located between the magnetic poles and does not occupy the distance between the two magnets.
  • the width of the floating ring 2 is large, and the bearing capacity can be greater.
  • the multi-layer permanent magnet biasing magnetic levitation unit of the present embodiment is integrally provided with the permanent magnetic bias radial magnetic bearing 1 and the axial magnetic bearing, as shown in FIG. 6, the permanent magnetic bias radial magnetic bearing 1 and the axial direction.
  • the magnetic bearing shares the second magnetizer 12.
  • the present embodiment provides a magnetic levitation motor comprising a motor stator core 8, a rotor shaft 9, two multi-layer permanent magnet bias magnetic levitation units, and an axial magnetic bearing.
  • the multi-layer permanent magnet bias magnetic suspension unit comprises a permanent magnet bias radial magnetic bearing 1 and a floating ring 2, and the permanent magnet bias radial magnetic bearing 1 comprises at least two layers of parallel conducting magnets, at least one of the inner portions of the magnetizers
  • the rotor shaft 9 is sleeved in two multi-layer permanent magnet bias magnetic suspension units and the motor stator core 8, and the motor stator core 8 is disposed between two multi-layer permanent magnet bias magnetic suspension units; There is a thrust disk that cooperates with the axial magnetic bearing; a radial displacement sensor for detecting the radial displacement of the rotor shaft 9 and an axial displacement sensor for detecting the axial displacement of the rotor shaft 9 are also included.
  • the permanent magnetic bias radial magnetic bearing 1 of the magnetic levitation motor is integrated with the floating ring 2, and the internal space of the permanent magnetic bias radial magnetic bearing 1 is fully utilized, and the floating ring 2 and the permanent magnet offset diameter are used.
  • the assembly is formed to the magnetic bearing 1 so that the structure of the magnetic levitation motor is more compact and easy to assemble.
  • the width of the permanent magnet is significantly increased compared to when the floating ring 2 is externally disposed, and the rotor shaft 9 can obtain a larger magnetic force, reducing magnetic flux leakage and demagnetization of the permanent magnet.
  • the permanent magnet biased radial magnetic bearing of the multi-layer permanent magnet biasing magnetic levitation unit in the embodiment comprises two layers of magnetizers, and the two layers of the magnetizers are the first magnetizer 11 and the second magnetizer 12, respectively.
  • a plurality of first magnetic poles 13 are disposed inside the magnetic conductor 11 , and the second magnetic conductive body 12 is a magnetic conductive plate; wherein a second conductive magnet 12 of the multi-layer permanent magnet biasing magnetic levitation unit is connected to a side away from the first magnetic conductive body 11
  • the third magnetizer 5, the second magnetizer 12 and the third magnetizer 5 form an annular space, and the second excitation coil 6 is wound in the annular space; the second magnetizer 12, the third magnetizer 5, and the winding
  • the second magnetic pole of the second excitation coil 6 forms an axial magnetic bearing.
  • One side of the magnetic levitation motor adopts a permanent magnet bias magnetic levitation unit with one magnetic pole on one side, and the permanent magnetic bias magnetic levitation unit with a magnetic bearing and a permanent magnetic bias radial magnetic bearing 1 on the other side, and the overall structure is more compact.
  • the radial displacement sensor in the embodiment comprises a plurality of sensor probes 3, the outer ring of the floating ring 2 is connected with the permanent magnet, and the inner ring of the floating ring 2 is provided with a plurality of grooves 21, each of the sensor probes 3 It is fixed in a recess 21, and the distance between the end surface of the sensor probe 3 facing the inner side of the floating ring 2 and the bottom of the recess 21 is smaller than the distance between the opening of the recess 21 and the bottom of the recess 21.
  • the sensor probe 3 is integrated on the floating ring 2, and the floating ring 2 serves as a sensor base 7 while supporting the protection of the rotor shaft 9. The structure is more compact, and the overall volume of the magnetic levitation motor can be further reduced.
  • the rotor shaft 9 and the stator core 8 of the motor are provided with a main permanent magnet 10.
  • the main permanent magnet 10 and the rotor shaft 9 form a rotor assembly to rotate together, so that the motor becomes a permanent magnet motor.
  • the main permanent magnet 10 takes up less space and has a more compact structure.
  • the outer side of the main permanent magnet 10 is covered with a sheath. The sheath is disposed to prevent the main permanent magnet 10 from being broken under the centrifugal force, thereby increasing the service life of the main permanent magnet 10.
  • the sheath is made of a high-strength non-magnetic material such as carbon fiber, 3J40, GH4169.
  • the high-strength and low-density carbon fiber material ensures the weight reduction of the motor to a greater extent.
  • the axial sensor 101 is disposed at the non-output end of the rotor shaft 9, which saves the internal space of the magnetic levitation motor.
  • a household air conditioner including a compressor, and the magnetic levitation motor described in Embodiment 3 is provided in the compressor. Improve the service life of household air conditioners, reduce noise and improve system performance.
  • the multi-layer permanent magnet bias magnetic suspension unit provided by the invention has a floating ring disposed in a space formed by two adjacent magnetizers and permanent magnets of a permanent magnet bias radial magnetic bearing, fully utilizing space, lifting ring and The permanent magnet biased radial magnetic bearing forms the assembly, making the structure of the magnetic levitation motor more compact and easy to assemble.
  • the width of the permanent magnet is significantly larger than that when the floating ring is externally provided.
  • the rotor shaft can obtain a larger magnetic force, reducing magnetic flux leakage and demagnetization of the permanent magnet, and has a strong Industrial applicability.
  • the magnetic levitation motor and the household air conditioner provided by the invention all adopt the multi-layer permanent magnet bias magnetic levitation unit of the invention, and also have strong industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

一种多层永磁偏置磁悬浮单元、磁悬浮电机及家用空调。多层永磁偏置磁悬浮单元包括永磁偏置径向磁轴承(1)以及起浮环(2),所述永磁偏置径向磁轴承(1)包括至少两层平行设置的导磁体,至少一个所述导磁体的内部设有多个第一磁极(13),每个第一磁极(13)均绕制有第一激磁线圈(14),相邻两层所述导磁体之间设有永磁体,所述起浮环(2)位于相邻两层所述导磁体与两层所述导磁体之间的永磁体共同形成的空间内。多层永磁偏置磁悬浮单元将起浮环(2)设置在永磁偏置径向磁轴承(1)的相邻两个导磁体与永磁体形成的空间内,充分利用空间,起浮环(2)与永磁偏置径向磁轴承(1)形成组件,使得磁悬浮电机的结构更加紧凑,并且便于装配。

Description

多层永磁偏置磁悬浮单元、磁悬浮电机及家用空调
本申请要求于2017年06月15日提交中国专利局、申请号为2017104537917、发明名称为“多层永磁偏置磁悬浮单元、磁悬浮电机及家用空调”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及磁悬浮技术领域,尤其涉及多层永磁偏置磁悬浮单元、磁悬浮电机及家用空调。
背景技术
小型电动机是最常见的将电能转化为机械能的形式,在家用电器和工业领域具有广泛的应用。传统的电动机主要包括电机定子部分、电机转子部分、转子支撑轴承以及机壳部分,电机定子部分与电机转子部分之间通过机械轴承联接或存在机械接触,因此电子转子运动过程中存在机械摩擦。机械摩擦不仅增加转子的摩擦阻力,使运动部件磨损,产生机械振动和噪声,而且会造成部件发热,使润滑剂性能变差,严重的会使电机气隙不均匀,绕组发热,温升增大,从而降低电机效能,最终缩短电机使用寿命。而且机械轴承需要润滑油来维持,这样既影响电机寿命又不利于设备的清洁,因此,为了实现超高转速运行和设备的长寿命、清洁无油必须在电动机中采用非接触式支撑方式,即磁悬浮支撑方式。
现有的磁悬浮电机转子轴的支撑通常需要径向磁悬浮轴承、径向位移传感器以及起浮环共同完成,径向磁悬浮轴承、径向位移传感器以及起浮环并列分布在转子轴上。永磁偏置径向磁轴承是一类消耗功率较低的径向磁悬浮轴承,永磁偏置径向磁轴承的两并列导磁板之间需要设置一定宽度的永磁体,为了减小电机尺寸,通常会减小永磁体的宽度,但是两块导磁板之间的距离太小会引起永磁体退磁以及磁轴 承的漏磁,过大的永磁体宽度会显著增大磁悬浮电机的整体体积。
发明内容
(一)要解决的技术问题
本发明要解决的技术问题是解决现有技术磁悬浮电机中永磁偏置径向磁悬浮轴承及其配件占用轴向空间大、增大磁悬浮电机整体体积问题。
(二)技术方案
为了解决上述技术问题,本发明提供了一种多层永磁偏置磁悬浮单元,包括永磁偏置径向磁轴承以及起浮环,所述永磁偏置径向磁轴承包括至少两层平行设置的导磁体,至少一个所述导磁体的内部设有多个第一磁极,每个第一磁极均绕制有第一激磁线圈,相邻两层所述导磁体之间设有永磁体,所述起浮环位于相邻两层所述导磁体与两层所述导磁体之间的永磁体共同形成的空间内。
根据本发明,所述起浮环的外圈与所述永磁体连接,所述起浮环的内圈设置有多个凹槽,每个所述凹槽内均设置有传感器探头,且所述传感器探头朝向所述起浮环内侧的端面位于所述凹槽内部。
根据本发明,所述永磁体包括多个永磁块,所述永磁块与所述第一磁极的个数相同,且多个所述永磁块在圆周上的位置与多个所述第一磁极一一对应。
根据本发明,相邻两层所述导磁体与两层所述导磁体之间的所述永磁体形成的空间内还设有径向位移传感器,所述径向位移传感器包括传感器底座以及传感器探头,所述传感器底座的外圈与所述永磁体连接,所述起浮环嵌于所述传感器底座内圈,所述传感器底座朝向设有第一磁极的导磁体一侧设有多个安装块,所述传感器探头固定于安装块上,且所述每个所述安装块均位于相邻两个第一磁极之间。
根据本发明,所述永磁偏置径向磁轴承包括两层平行设置的导磁体。
根据本发明,两层所述导磁体分别为第一导磁体和第二导磁体,所述第一导磁体内部设有多个第一磁极,所述第二导磁体为导磁板。
根据本发明,所述第二导磁体远离所述第一导磁体的一侧连接有第三导磁体,所述第二导磁体与第三导磁体形成环形空间,且所述环形空间内设有第二激磁线圈;所述第二导磁体、第三导磁体以及所述第二激磁线圈形成轴向磁轴承。
本发明还提供了一种磁悬浮电机,包括电机定子铁芯、转子轴、两个上述的多层永磁偏置磁悬浮单元以及轴向磁轴承,所述转子轴套设在两个所述多层永磁偏置磁悬浮单元以及电机定子铁芯内,且所述电机定子铁芯设置在两个所述多层永磁偏置磁悬浮单元之间;所述转子轴上设有与所述轴向磁轴承配合的推力盘;还包括用于检测所述转子轴径向位移的径向位移传感器以及用于检测所述转子轴轴向位移的轴向位移传感器。
根据本发明,所述多层永磁偏置磁悬浮单元的永磁偏置径向磁轴承包括两层所述导磁体,两层所述导磁体分别为第一导磁体和第二导磁体,所述第一导磁体内部设有多个第一磁极,所述第二导磁体为导磁板;其中一个所述多层永磁偏置磁悬浮单元的所述第二导磁体远离所述第一导磁体的一侧连接有第三导磁体,所述第二导磁体与第三导磁体形成环形空间,且所述环形空间内绕制有第二激磁线圈;所述第二导磁体、第三导磁体以及所述第二激磁线圈形成所述轴向磁轴承。
根据本发明,所述径向位移传感器包括多个传感器探头,所述起浮环的外圈与所述永磁体连接,所述起浮环的内圈设置有多个凹槽,每个所述传感器探头固定于一个所述凹槽内,且所述传感器探头朝向所述起浮环内侧的端面位于所示凹槽内部。
根据本发明,所述转子轴与所述电机定子铁芯配合处套设有主永磁体。
根据本发明,所述主永磁体的外侧包覆有护套。
根据本发明,所述护套采用碳纤维材质。
本发明还提供了一种家用空调,包括压缩机,所述压缩机内设有上述的磁悬浮电机。
(三)有益效果
本发明的上述技术方案与现有技术相比具有如下优点:本发明提供的多层永磁偏置磁悬浮单元将起浮环设置在永磁偏置径向磁轴承的相邻的两个导磁体与永磁体形成的空间内,充分利用空间,起浮环与永磁偏置径向磁轴承形成组件,使得磁悬浮电机的结构更加紧凑,并且便于装配。整体体积不变的情况下,永磁体的宽度相较于起浮环设在外部时明显增大,使用时转子轴可以得到更大的磁力,减少漏磁以及永磁体的退磁。
附图说明
图1是本发明实施例一提供的多层永磁偏置磁悬浮单元的三维结构示意图;
图2是本发明实施例一提供的多层永磁偏置磁悬浮单元的剖视图;
图3是本发明实施例一提供的多层永磁偏置磁悬浮单元的另一结构剖视图;
图4是本发明实施例二提供的多层永磁偏置磁悬浮单元的三维结构示意图;
图5是本发明实施例二提供的多层永磁偏置磁悬浮单元的剖视图;
图6是本发明实施例二提供的多层永磁偏置磁悬浮单元的另一结构剖视图;
图7是本发明实施例三提供的磁悬浮电机的结构示意图。
图中:1:永磁偏置径向磁轴承;11:第一导磁体;12:第二导磁体;13:第一磁极;14:第一激磁线圈;2:起浮环;21:凹槽;22:嵌槽;3:传感器探头;4:永磁块;5:第三导磁体;6:第二激磁线圈;7:传感器底座;71:安装块;8:电机定子铁芯;9:转子轴;10:主永磁体;101:轴向传感器。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
如图1和图2所示,本发明实施例提供的一种多层永磁偏置磁悬浮单元,包括永磁偏置径向磁轴承1以及起浮环2,永磁偏置径向磁轴承1包括至少两层平行设置的导磁体,至少一个导磁体的内部设有多个第一磁极13,每个第一磁极均绕制有第一激磁线圈14,相邻两层导磁体之间设有永磁体,起浮环2位于相邻两层导磁体与两层导磁体之间的永磁体共同形成的空间内。起浮环2可以为机械轴承、石墨环或金属环。起浮环2的内径小于导磁体的内径,用于辅助电机启动时转子轴9浮起以及支撑电机停止时的转子轴9,在转子轴9停止运转落下时起到支撑保护的作用。具体地,本实施例中第一磁极13的个数为4个。本发明实施例提供的多层永磁偏置磁悬浮单元将起浮环2设置在永磁偏置径向磁轴承1的相邻两个导磁体与永磁体形成的空间内,充分利用空间,起浮环2与永磁偏置径向磁轴承1形成组件,使得磁悬浮电机的结构更加紧凑,并且便于装配。整体体积不变的情况下,永磁体的宽度相较于起浮环2设在外部时明显增大,使用时转子轴9可以得到更大的磁力,减少漏磁以及永磁体的退磁。
优选地,本实施例中起浮环2的外圈与永磁体连接,起浮环2的内圈设置有多个凹槽21,每个凹槽21内均设置有传感器探头3,且传感器探头3朝向起浮环2内侧的端面位于凹槽21内部。具体地,传感器探头3的数量为4个,4个传感器探头3分别检测转子轴9X正负方 向以及Y轴正负方向的位移。将传感器探头3集成在起浮环2上,起浮环2起支撑保护转子轴9作用的同时可以作为传感器底座7,结构更加紧凑,可以进一步减小磁悬浮电机的整体体积。优选地,本实施例中永磁体包括多个永磁块4,永磁块4与第一磁极13的个数相同,且多个永磁块4在圆周上的位置与多个第一磁极13一一对应。永磁体分成多块且仅设置仅在与第一磁极13对应的位置,节省了永磁体材料,并且有利于永磁体的装配。需要说明的是,本实施例中永磁体也可以设置为环状。具体地,本实施例中将起浮环2的外圈设置了嵌槽22,永磁体固定时可以直接固定在嵌槽22内,结构更加稳固。
优选地,本实施例中永磁偏置径向磁轴承包括两层平行设置的导磁体,两个导磁体之间连接有永磁体,起浮环2位于两个导磁体与永磁体形成的空间内。具体地,本实施例中两层导磁体分别为第一导磁体11和第二导磁体12,第一导磁体11内部设有多个第一磁极13,第二导磁体12为导磁板。第二导磁体12选用导磁板可以减小磁悬浮单元的体积。优选地,如图3所示,本实施例中第二导磁体12远离第一导磁体11的一侧连接有第三导磁体5,第二导磁体12与第三导磁体5形成环形空间,且环形空间内绕制有第二激磁线圈6;第二导磁体12、第三导磁体5以及绕制有第二激磁线圈6的第二磁极形成轴向磁轴承。轴向磁轴承与永磁偏置径向磁轴承1共用第二导磁体12,实现轴向磁轴承与永磁偏置径向磁轴承1的一体化,进一步使得电机结构紧凑。
实施例二
本实施例二与实施例一相同的技术内容不重复描述,实施例一公开的内容也属于本实施例二公开的内容,本实施例二是另一种将径向位移传感器集成入永磁偏置磁悬浮单元的组合结构:
如图4和图5所示,本实施例中永磁偏置径向磁轴承相邻两层导磁体与两层导磁体之间的永磁体形成的空间内还设有径向位移传感器,径向位移传感器包括传感器底座7以及传感器探头3,传感器底座7的外圈与永磁体连接,起浮环2嵌于传感器底座7内圈,传感器底座 7朝向设有第一磁极13的导磁体一侧设有多个安装块71,传感器探头3固定于安装块71上,且每个安装块71均位于相邻两个第一磁极13之间。起浮环2的内径小于传感器底座7的内径。具体地,本实施例中传感器底座7的设置为阶梯状,起浮环2固定于传感器底座7的阶梯面上。传感器探头3位于磁极之间不占用两导磁体之间的距离,起浮环2的宽度较大,能够起到的承载力更大。本实施例的多层永磁偏置磁悬浮单元为永磁偏置径向磁轴承1与轴向磁轴承一体式设置时,如图6所示,永磁偏置径向磁轴承1与轴向磁轴承共用第二导磁体12。
实施例三
如图7所示,本实施例提供了一种磁悬浮电机,包括电机定子铁芯8、转子轴9、两个多层永磁偏置磁悬浮单元以及轴向磁轴承。多层永磁偏置磁悬浮单元包括永磁偏置径向磁轴承1以及起浮环2,永磁偏置径向磁轴承1包括至少两层平行设置的导磁体,至少一个导磁体的内部设有多个第一磁极13,每个第一磁极均绕制有第一激磁线圈14,相邻两层导磁体之间设有永磁体,起浮环2位于相邻两层导磁体与两层导磁体之间的永磁体共同形成的空间内。转子轴9套设在两个多层永磁偏置磁悬浮单元以及电机定子铁芯8内,且电机定子铁芯8设置在两个多层永磁偏置磁悬浮单元之间;转子轴9上设有与轴向磁轴承配合的推力盘;还包括用于检测转子轴9径向位移的径向位移传感器以及用于检测转子轴9轴向位移的轴向位移传感器。本实施例中磁悬浮电机永磁偏置径向磁轴承1与起浮环2集成在一起,充分利用了永磁偏置径向磁轴承1的内部空间,起浮环2与永磁偏置径向磁轴承1形成组件,使得磁悬浮电机的结构更加紧凑,并且便于装配。磁悬浮整体体积不变的情况下,永磁体的宽度相较于起浮环2设在外部时明显增大,转子轴9可以得到更大的磁力,减少漏磁以及永磁体的退磁。
优选地,本实施例中多层永磁偏置磁悬浮单元的永磁偏置径向磁轴承包括两层导磁体,两层导磁体分别为第一导磁体11和第二导磁体12,第一导磁体11内部设有多个第一磁极13,第二导磁体12为导磁 板;其中一个多层永磁偏置磁悬浮单元的第二导磁体12远离第一导磁体11的一侧连接有第三导磁体5,第二导磁体12与第三导磁体5形成环形空间,且环形空间内绕制有第二激磁线圈6;第二导磁体12、第三导磁体5以及绕制有第二激磁线圈6的第二磁极形成轴向磁轴承。磁悬浮电机的一侧采用仅一侧设置磁极的永磁偏置磁悬浮单元,另一侧采用轴承磁轴承与永磁偏置径向磁轴承1结合的永磁偏置磁悬浮单元,整体结构更加紧凑。
优选地,本实施例中径向位移传感器包括多个传感器探头3,起浮环2的外圈与永磁体连接,起浮环2的内圈设置有多个凹槽21,每个传感器探头3固定于一个凹槽21内,且传感器探头3朝向起浮环2内侧的端面与凹槽21底部之间的距离小于凹槽21开口与凹槽21底部之间的距离。将传感器探头3集成在起浮环2上,起浮环2起支撑保护转子轴9作用的同时可以作为传感器底座7,结构更加紧凑,可以进一步减小磁悬浮电机的整体体积。
优选地,本实施例中转子轴9与电机定子铁芯8配合处设有主永磁体10。主永磁体10与转子轴9形成转子组件共同转动,使该电机成为永磁电机,相较于普通电机,主永磁体10占用空间小,结构更加紧凑。进一步地,本实施例中主永磁体10的外侧包覆有护套。设置护套避免主永磁体10在离心力作用下破裂,提高主永磁体10的使用寿命。优选地,本实施例中护套采用高强度不导磁材料如碳纤维,3J40,GH4169。采用高强度低密度的碳纤维材质更大程度上保证了电机的轻量化。
优选地,本实施例中轴向传感器101设置在转子轴9的非输出端,节省磁悬浮电机内部空间。
实施例四
本实施例中提供了一种家用空调,包括压缩机,压缩机内设有入实施例三中所述的磁悬浮电机。提高了家用空调的使用寿命,降低了噪音,提高了***性能。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
工业实用性
本发明提供的多层永磁偏置磁悬浮单元将起浮环设置在永磁偏置径向磁轴承的相邻的两个导磁体与永磁体形成的空间内,充分利用空间,起浮环与永磁偏置径向磁轴承形成组件,使得磁悬浮电机的结构更加紧凑,并且便于装配。整体体积不变的情况下,永磁体的宽度相较于起浮环设在外部时明显增大,使用时转子轴可以得到更大的磁力,减少漏磁以及永磁体的退磁,具有很强的工业实用性。本发明提供的磁悬浮电机及家用空调均采用了本发明的多层永磁偏置磁悬浮单元,同样具有很强的工业实用性。

Claims (14)

  1. 一种多层永磁偏置磁悬浮单元,其特征在于:包括永磁偏置径向磁轴承以及起浮环,所述永磁偏置径向磁轴承包括至少两层平行设置的导磁体,至少一个所述导磁体的内部设有多个第一磁极,每个第一磁极均绕制有第一激磁线圈,相邻两层所述导磁体之间设有永磁体,所述起浮环位于相邻两层所述导磁体与两层所述导磁体之间的永磁体共同形成的空间内。
  2. 根据权利要求1所述的多层永磁偏置磁悬浮单元,其特征在于:所述起浮环的外圈与所述永磁体连接,所述起浮环的内圈设置有多个凹槽,每个所述凹槽内均设置有传感器探头,且所述传感器探头朝向所述起浮环内侧的端面位于所述凹槽内部。
  3. 根据权利要求1所述的多层永磁偏置磁悬浮单元,其特征在于:所述永磁体包括多个永磁块,所述永磁块与所述第一磁极的个数相同,且多个所述永磁块在圆周上的位置与多个所述第一磁极一一对应。
  4. 根据权利要求1所述的多层永磁偏置磁悬浮单元,其特征在于:相邻两层所述导磁体与两层所述导磁体之间的所述永磁体形成的空间内还设有径向位移传感器,所述径向位移传感器包括传感器底座以及传感器探头,所述传感器底座的外圈与所述永磁体连接,所述起浮环嵌于所述传感器底座内圈,所述传感器底座朝向设有第一磁极的导磁体一侧设有多个安装块,所述传感器探头固定于安装块上,且所述每个所述安装块均位于相邻两个第一磁极之间。
  5. 根据权利要求1所述的多层永磁偏置磁悬浮单元,其特征在于:所述永磁偏置径向磁轴承包括两层平行设置的导磁体。
  6. 根据权利要求5所述的多层永磁偏置磁悬浮单元,其特征在于:两层所述导磁体分别为第一导磁体和第二导磁体,所述第一导磁体内部设有多个第一磁极,所述第二导磁体为导磁板。
  7. 根据权利要求6所述的多层永磁偏置磁悬浮单元,其特征在于: 所述第二导磁体远离所述第一导磁体的一侧连接有第三导磁体,所述第二导磁体与第三导磁体形成环形空间,且所述环形空间内绕制有第二激磁线圈;所述第二导磁体、第三导磁体以及第二激磁线圈形成轴向磁轴承。
  8. 一种磁悬浮电机,其特征在于:包括电机定子铁芯、转子轴、两个如权利要求1所述的多层永磁偏置磁悬浮单元以及轴向磁轴承,所述转子轴套设在两个所述多层永磁偏置磁悬浮单元以及电机定子铁芯内,且所述电机定子铁芯设置在两个所述多层永磁偏置磁悬浮单元之间;
    所述转子轴上设有与所述轴向磁轴承配合的推力盘;
    还包括用于检测所述转子轴径向位移的径向位移传感器以及用于检测所述转子轴轴向位移的轴向位移传感器。
  9. 根据权利要求8所述的磁悬浮电机,其特征在于:所述多层永磁偏置磁悬浮单元的永磁偏置径向磁轴承包括两层所述导磁体,两层所述导磁体分别为第一导磁体和第二导磁体,所述第一导磁体内部设有多个第一磁极,所述第二导磁体为导磁板;其中一个所述多层永磁偏置磁悬浮单元的所述第二导磁体远离所述第一导磁体的一侧连接有第三导磁体,所述第二导磁体与第三导磁体形成环形空间,且所述环形空间内设有第二激磁线圈;所述第二导磁体、第三导磁体以及所述第二激磁线圈形成所述轴向磁轴承。
  10. 根据权利要求8所述的磁悬浮电机,其特征在于:所述径向位移传感器包括多个传感器探头,所述起浮环的外圈与所述永磁体连接,所述起浮环的内圈设置有多个凹槽,每个所述传感器探头固定于一个所述凹槽内,且所述传感器探头朝向所述起浮环内侧的端面位于所示凹槽内部。
  11. 根据权利要求8所述的磁悬浮电机,其特征在于:所述转子轴与所述电机定子铁芯配合处设有主永磁体。
  12. 根据权利要求11所述的磁悬浮电机,其特征在于:所述主永 磁体的外侧包覆有护套。
  13. 根据权利要求12所述的磁悬浮电机,其特征在于:所述护套采用碳纤维材质。
  14. 一种家用空调,其特征在于:包括压缩机,所述压缩机内设有如权利要求8-13任一项所述的磁悬浮电机。
PCT/CN2018/090215 2017-06-15 2018-06-07 多层永磁偏置磁悬浮单元、磁悬浮电机及家用空调 WO2018228261A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710453791.7A CN107181359B (zh) 2017-06-15 2017-06-15 多层永磁偏置磁悬浮单元、磁悬浮电机及家用空调
CN201710453791.7 2017-06-15

Publications (1)

Publication Number Publication Date
WO2018228261A1 true WO2018228261A1 (zh) 2018-12-20

Family

ID=59835363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090215 WO2018228261A1 (zh) 2017-06-15 2018-06-07 多层永磁偏置磁悬浮单元、磁悬浮电机及家用空调

Country Status (2)

Country Link
CN (1) CN107181359B (zh)
WO (1) WO2018228261A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11174898B2 (en) 2017-11-03 2021-11-16 Gree Green Refrigeration Technology Center Co., Ltd. Of Zhuhai Wiring structure of magnetic suspension bearing, compressor and air conditioner
CN115046012A (zh) * 2022-07-12 2022-09-13 兰州理工大学 一种适用于飞行器的主动柱面密封结构
CN115898553A (zh) * 2022-11-11 2023-04-04 东方电气集团东方汽轮机有限公司 一种拆装方便的磁悬浮透平结构

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107181359B (zh) * 2017-06-15 2023-07-25 北京昆腾迈格技术有限公司 多层永磁偏置磁悬浮单元、磁悬浮电机及家用空调
CN107733289B (zh) * 2017-11-24 2023-12-22 北京昆腾迈格技术有限公司 一种磁悬浮电机及家用空调
CN108183571B (zh) * 2018-01-04 2024-03-26 北京昆腾迈格技术有限公司 一种磁悬浮电机机壳以及磁悬浮电机
CN108092446B (zh) * 2018-02-02 2023-12-12 北京昆腾迈格技术有限公司 叠片状电机机壳以及磁悬浮电机
CN108343671B (zh) * 2018-02-07 2020-09-01 北京昆腾迈格技术有限公司 一种磁轴承组件制备工艺
CN108843688B (zh) * 2018-06-20 2019-07-09 珠海格力电器股份有限公司 磁悬浮轴承
CN108980207A (zh) * 2018-08-07 2018-12-11 燕山大学 一种带有多孔介质的磁气双悬浮分断式锥形轴承
CN110131314B (zh) * 2019-06-12 2020-06-30 珠海格力电器股份有限公司 磁悬浮轴承、电机、压缩机和空调器
CN111197969B (zh) * 2020-01-07 2021-06-22 中车株洲电机有限公司 一种磁悬浮轴承转子位置检测装置
CN113594499A (zh) * 2021-09-06 2021-11-02 北京昆腾迈格技术有限公司 集成化氢燃料电池反应***
CN113606163A (zh) * 2021-09-06 2021-11-05 北京昆腾迈格技术有限公司 氢气循环泵

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110001379A1 (en) * 2009-07-02 2011-01-06 Steorn Limited Passive magnetic bearing
CN102072249A (zh) * 2011-01-13 2011-05-25 北京航空航天大学 一种大承载力径向磁轴承
CN103195806A (zh) * 2012-01-04 2013-07-10 珠海格力节能环保制冷技术研究中心有限公司 磁悬浮轴承定子、磁悬浮轴承、定子铁芯制作工装及方法
CN106369051A (zh) * 2016-09-26 2017-02-01 北京航空航天大学 一种磁悬浮轴承保护装置
CN107181359A (zh) * 2017-06-15 2017-09-19 深圳麦格动力技术有限公司 多层永磁偏置磁悬浮单元、磁悬浮电机及家用空调
CN206850593U (zh) * 2017-06-15 2018-01-05 深圳麦格动力技术有限公司 多层永磁偏置磁悬浮单元、磁悬浮电机及家用空调

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5202598A (en) * 1992-03-26 1993-04-13 Sundstrand Corporation Back-up bearing for permanent magnet biased magnetic bearing
CN100441892C (zh) * 2007-04-02 2008-12-10 北京航空航天大学 一种永磁偏置外转子径向磁轴承
JP2009097597A (ja) * 2007-10-16 2009-05-07 Saitama Univ 磁気軸受装置
CN102829709B (zh) * 2012-08-01 2014-10-15 北京海斯德电机技术有限公司 磁悬浮高速电机用径向磁轴承电涡流传感器一体化结构
CN106594072B (zh) * 2016-11-29 2017-11-14 北京航空航天大学 一种无推力盘径轴向一体化永磁偏置磁轴承

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110001379A1 (en) * 2009-07-02 2011-01-06 Steorn Limited Passive magnetic bearing
CN102072249A (zh) * 2011-01-13 2011-05-25 北京航空航天大学 一种大承载力径向磁轴承
CN103195806A (zh) * 2012-01-04 2013-07-10 珠海格力节能环保制冷技术研究中心有限公司 磁悬浮轴承定子、磁悬浮轴承、定子铁芯制作工装及方法
CN106369051A (zh) * 2016-09-26 2017-02-01 北京航空航天大学 一种磁悬浮轴承保护装置
CN107181359A (zh) * 2017-06-15 2017-09-19 深圳麦格动力技术有限公司 多层永磁偏置磁悬浮单元、磁悬浮电机及家用空调
CN206850593U (zh) * 2017-06-15 2018-01-05 深圳麦格动力技术有限公司 多层永磁偏置磁悬浮单元、磁悬浮电机及家用空调

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11174898B2 (en) 2017-11-03 2021-11-16 Gree Green Refrigeration Technology Center Co., Ltd. Of Zhuhai Wiring structure of magnetic suspension bearing, compressor and air conditioner
CN115046012A (zh) * 2022-07-12 2022-09-13 兰州理工大学 一种适用于飞行器的主动柱面密封结构
CN115898553A (zh) * 2022-11-11 2023-04-04 东方电气集团东方汽轮机有限公司 一种拆装方便的磁悬浮透平结构
CN115898553B (zh) * 2022-11-11 2024-06-04 东方电气集团东方汽轮机有限公司 一种拆装方便的磁悬浮透平结构

Also Published As

Publication number Publication date
CN107181359A (zh) 2017-09-19
CN107181359B (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
WO2018228261A1 (zh) 多层永磁偏置磁悬浮单元、磁悬浮电机及家用空调
CN100409545C (zh) 超高速大功率磁悬浮主轴电机
CN108518347B (zh) 一种一体化轴向悬浮永磁同步屏蔽泵
CN108716480B (zh) 一种磁悬浮结构及风机
CN106451991B (zh) 一种定子永磁型动铁芯式直线振荡电机
CN214479912U (zh) 一种应用于轴向磁通电机的第一磁钢内置式转子
CN109026999B (zh) 轴向磁悬浮轴承
CN107910979A (zh) 高速磁悬浮飞轮储能装置
CN112787443A (zh) 一种应用于轴向磁通电机的第一磁钢内置式转子
CN112160985A (zh) 不同磁极面的双片径向六极混合磁轴承支承的电主轴***
CN107093938B (zh) 磁悬浮电机及家用空调
CN113839516A (zh) 轴向悬浮用定子组件、磁悬浮电机及直线式电磁执行机构
CN109681525B (zh) 磁悬浮轴承及电机
CN108547868B (zh) 一种半自由度的径向充磁的混合型轴向磁轴承
CN108506343B (zh) 一种半自由度的轴向充磁的混合型轴向磁轴承
CN101975224B (zh) 一种混合磁路磁悬浮轴承
CN206850593U (zh) 多层永磁偏置磁悬浮单元、磁悬浮电机及家用空调
CN208380885U (zh) 一种一体化轴向悬浮永磁同步屏蔽泵
CN107093939B (zh) 一种磁悬浮电机及吸尘器
CN213575188U (zh) 永磁偏置型磁悬浮轴承及电机
CN211623964U (zh) 永磁偏置型磁悬浮轴承
WO2021114488A1 (zh) 一种永磁轴承
CN207053310U (zh) 磁悬浮电机及家用空调
WO2021135276A1 (zh) 磁悬浮轴承、压缩机、空调器
CN108953376B (zh) 一种永磁体在转子上的半自由度混合型轴向磁轴承

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18817084

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 05/02/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18817084

Country of ref document: EP

Kind code of ref document: A1