WO2018228241A1 - 图像选择方法及相关产品 - Google Patents

图像选择方法及相关产品 Download PDF

Info

Publication number
WO2018228241A1
WO2018228241A1 PCT/CN2018/089976 CN2018089976W WO2018228241A1 WO 2018228241 A1 WO2018228241 A1 WO 2018228241A1 CN 2018089976 W CN2018089976 W CN 2018089976W WO 2018228241 A1 WO2018228241 A1 WO 2018228241A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
noise reduction
reduction processing
frame noise
images
Prior art date
Application number
PCT/CN2018/089976
Other languages
English (en)
French (fr)
Inventor
谭国辉
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP18817165.6A priority Critical patent/EP3627823B1/en
Publication of WO2018228241A1 publication Critical patent/WO2018228241A1/zh
Priority to US16/704,915 priority patent/US11363196B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/95Computational photography systems, e.g. light-field imaging systems
    • H04N23/951Computational photography systems, e.g. light-field imaging systems by using two or more images to influence resolution, frame rate or aspect ratio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6812Motion detection based on additional sensors, e.g. acceleration sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/144Movement detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion

Definitions

  • the present invention relates to the field of image processing technologies, and in particular, to an image selection method and related products.
  • Multi-frame noise reduction is an image processing technique that combines multiple identical images taken and obtains a less noisy image.
  • the premise of multi-frame noise reduction requires continuous shooting of multiple identical images.
  • the current mobile terminal takes a picture, it generally does not use a tripod to fix the shooting.
  • the user holds the mobile terminal to take multiple images, it is easy to shake, and the captured object may have a large offset in multiple images, resulting in the mobile terminal.
  • the image synthesized by the multi-frame noise reduction process has a large noise.
  • the embodiment of the invention provides an image selection method and related products, which can quickly and accurately select an image that satisfies the multi-frame noise reduction processing condition.
  • a first aspect of the embodiments of the present invention provides an image selection method, which is applied to a mobile terminal including a camera, and the method includes:
  • image information corresponding to the first image includes a first acceleration value of the mobile terminal when the camera captures the first image, where the first image is continuous for the camera Any one of at least two images taken;
  • a second aspect of the embodiments of the present invention provides a mobile terminal, including a camera and an application processor AP, where
  • the AP is configured to acquire image information corresponding to the first image, where the image information corresponding to the first image includes a first acceleration value of the mobile terminal when the camera captures the first image, the first
  • the image is any one of at least two images continuously captured by the camera;
  • the AP is further configured to determine whether the first acceleration value is less than a preset acceleration threshold
  • the AP is further configured to determine that the first image satisfies a multi-frame noise reduction processing condition when the first acceleration value is less than the preset acceleration threshold.
  • a third aspect of the embodiments of the present invention provides a mobile terminal, including a camera, an application processor AP, and a memory.
  • the memory is for storing one or more programs including instructions
  • the AP is configured to invoke an instruction stored in the memory to perform the method described in the first aspect of the embodiments of the present invention.
  • a fourth aspect of the embodiments of the present invention provides an image selection apparatus, which is applied to a mobile terminal including a camera, and the image selection apparatus includes:
  • An acquiring unit configured to acquire image information corresponding to the first image, where the image information corresponding to the first image includes a first acceleration value of the mobile terminal when the first image is captured by the camera, where the first image is at least two images continuously captured by the camera Any one of them;
  • a determining unit configured to determine whether the first acceleration value is less than a preset acceleration threshold
  • a determining unit configured to determine that the first image satisfies the multi-frame noise reduction processing condition when the determining unit determines that the result is YES.
  • the device has the function of realizing the behavior of the mobile terminal in the above method design.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • a fifth aspect of embodiments of the present invention provides a computer readable storage medium, wherein the computer readable storage medium stores a computer program for electronic data exchange, wherein the computer program causes a computer to execute an embodiment of the present invention
  • a sixth aspect of the embodiments of the present invention provides a computer program product, wherein the computer program product comprises a non-transitory computer readable storage medium storing a computer program, the computer program being operative to cause a computer to perform the present invention Some or all of the steps described in any of the methods of the first aspect.
  • the computer program product can be a software installation package.
  • the mobile terminal before performing the multi-frame noise reduction processing, may filter at least two images of the multi-frame noise reduction processing to select an image that satisfies the multi-frame noise reduction processing condition.
  • the image of the multi-frame noise reduction processing condition is screened by determining whether the acceleration of the mobile terminal is smaller than the preset acceleration threshold when at least two images are acquired, and the screening algorithm is simple, and the multi-frame can be quickly and accurately selected. Image of noise reduction processing conditions.
  • FIG. 1 is a schematic flow chart of an image selection method according to an embodiment of the present invention.
  • FIG. 2 is a schematic flow chart of another image selection method according to an embodiment of the present invention.
  • FIG. 3 is a schematic flow chart of another image selection method according to an embodiment of the present invention.
  • FIG. 4 is a schematic flow chart of another image selection method according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart diagram of another image selection method according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of multiple multi-frame noise reduction images disclosed in an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a mobile terminal according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another mobile terminal according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of an image selection apparatus according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of still another mobile terminal according to an embodiment of the present invention.
  • references to "an embodiment” herein mean that a particular feature, structure, or characteristic described in connection with the embodiments can be included in at least one embodiment of the invention.
  • the appearances of the phrases in various places in the specification are not necessarily referring to the same embodiments, and are not exclusive or alternative embodiments that are mutually exclusive. Those skilled in the art will understand and implicitly understand that the embodiments described herein can be combined with other embodiments.
  • the mobile terminal involved in the embodiments of the present invention may include various handheld devices, wireless devices, wearable devices, computing devices, or other processing devices connected to the wireless modem, and various forms of user devices.
  • UE User Equipment
  • MS mobile station
  • terminal device terminal device, and the like.
  • the devices mentioned above are collectively referred to as mobile terminals.
  • FIG. 1 is a schematic flowchart of an image selection method according to an embodiment of the present invention. As shown in FIG. 1, the image selection method includes the following steps.
  • the mobile terminal acquires image information corresponding to the first image, where the image information corresponding to the first image includes a first acceleration value of the mobile terminal when the camera captures the first image, where the first image is in at least two images continuously captured by the camera. Any one.
  • the mobile terminal may acquire image information corresponding to at least two images continuously captured by the camera stored in the memory of the mobile terminal.
  • the mobile terminal may also acquire image information corresponding to the at least two images immediately after the camera continuously captures at least two images.
  • the image information corresponding to the first image may include a storage space occupied by the first image, a shooting time of the first image, an acceleration value of the mobile terminal when the camera captures the first image, and the like.
  • the first image is any one of at least two images continuously captured by the camera of the mobile terminal.
  • the camera Before the step 101 is performed, the camera may continuously capture at least two images, and the mobile terminal may acquire image information corresponding to the at least two images when the camera captures the at least two images.
  • the acceleration value of the mobile terminal can be measured by a device such as a gyroscope or an acceleration sensor.
  • a device such as a gyroscope or an acceleration sensor.
  • the at least two images described above may include a first image, a second image, and the like.
  • the mobile terminal determines whether the first acceleration value is less than a preset acceleration threshold. If yes, go to step 103, otherwise go to step 104.
  • step 102 is used to determine whether the first image has jitter during the shooting process.
  • the preset acceleration threshold may be preset by the mobile terminal and stored in a non-volatile memory of the mobile terminal.
  • the acceleration threshold may be preset to be 1 cm/s 2 , and when the first acceleration value of the first image is less than 1 cm/s 2 , the mobile terminal considers that the first image does not shake during the shooting, and determines that the first image is satisfied.
  • the frame noise reduction processing condition when the first acceleration value of the first image is greater than or equal to 1 cm/s 2 , the mobile terminal considers that the first image is shaken during the shooting, and determines that the first image does not satisfy the multi-frame noise reduction processing condition . Since the first image is only one of the at least two images, all of the at least two images can be determined in the manner of step 102.
  • the mobile terminal determines that the first image satisfies a multi-frame noise reduction processing condition.
  • the mobile terminal determines that the first image does not satisfy the multi-frame noise reduction processing condition.
  • Multi-frame noise reduction is an image processing technique that combines multiple identical images taken and obtains a less noisy image.
  • the premise of multi-frame noise reduction requires continuous shooting of multiple identical images.
  • the camera continuously captures multiple images (for example, ten images) in a short time (for example, within one second), and performs multi-frame noise reduction processing on multiple images continuously shot. Since the plurality of images are taken in a short time, it is generally considered that the plurality of images are the same image.
  • there are blurred unclear images in multiple images continuously shot which leads to noise of the image synthesized by multi-frame noise reduction processing. Big.
  • the image selection method in the embodiment of the present invention filters at least two images continuously captured by the camera, and filters out an image in which the multi-frame noise reduction processing condition is satisfied, so as to satisfy the multi-frame drop in the multiple images continuously captured.
  • the image of the noise processing condition is subjected to multi-frame noise reduction processing.
  • the method shown in FIG. 1 is adopted to determine whether the acceleration of the mobile terminal is smaller than a preset acceleration threshold when at least two images captured by the camera are captured, and the image satisfying the multi-frame noise reduction processing condition is filtered, and the screening algorithm is simple. Quickly and accurately select images that meet the multi-frame noise reduction processing conditions.
  • FIG. 2 is a schematic flowchart diagram of another image selection method according to an embodiment of the present invention. As shown in FIG. 2, the image selection method includes the following steps.
  • the mobile terminal receives a continuous shooting instruction.
  • the mobile terminal controls the camera to continuously capture at least two images in response to the continuous shooting instruction, and measures the acceleration value and the acceleration direction of the mobile terminal through the gyroscope when the camera continuously captures at least two images.
  • the mobile terminal may perform image screening on at least two images continuously captured by the camera to select an image that satisfies the multi-frame noise reduction processing condition.
  • the image information corresponding to the at least two images is measured by a gyroscope when the camera continuously captures the at least two images.
  • step 202 may include:
  • the mobile terminal measures the first acceleration value and the first acceleration direction of the mobile terminal through the gyroscope while the camera is capturing the first image.
  • the mobile terminal may measure the first acceleration value and the first acceleration direction of the mobile terminal through the gyroscope when the camera opens the shutter.
  • the first acceleration value corresponds to the first acceleration direction
  • the first acceleration value of the mobile terminal is measured by the mobile terminal in the first acceleration direction.
  • the mobile terminal acquires image information corresponding to the first image, where the image information corresponding to the first image includes a first acceleration value of the mobile terminal when the camera captures the first image, where the first image is in at least two images continuously captured by the camera. Any one.
  • the mobile terminal determines whether the first acceleration value is less than a preset acceleration threshold. If yes, go to step 205, otherwise go to step 206.
  • step 204 may include:
  • the mobile terminal determines whether the first acceleration value is smaller than a preset acceleration threshold corresponding to the first acceleration direction.
  • different acceleration directions may correspond to different preset acceleration thresholds.
  • the effect of the jitter in different directions on the captured image is different.
  • a small jitter of the mobile terminal in a direction close to the object to be photographed or in a direction away from the object to be photographed may have a large noise influence on the effect of the captured image, and the mobile terminal is in a direction close to the object to be photographed.
  • the jitter occurring in the direction perpendicular to the lens has a relatively small effect on the noise of the effect of the captured image.
  • the acceleration direction of the mobile terminal and the acceleration value in the acceleration direction of the image are simultaneously measured by the gyroscope, so as to determine whether the image is in the process of shooting according to the acceleration value in the acceleration direction.
  • a strong jitter has occurred.
  • different preset acceleration thresholds are set in different acceleration directions, and the influence of the direction of the mobile terminal shaking on the shooting quality of the mobile terminal during image capturing is considered, according to different shaking directions of the mobile terminal (ie, the mobile terminal)
  • the acceleration direction is set to different acceleration thresholds, and images with relatively low noise values satisfying the multi-frame noise reduction processing condition can be screened according to relatively uniform criteria in different jitter directions, thereby further improving the accuracy of image screening.
  • the mobile terminal determines that the first image satisfies a multi-frame noise reduction processing condition.
  • the mobile terminal determines that the first image does not satisfy the multi-frame noise reduction processing condition.
  • the method shown in FIG. 2 is implemented to determine whether the image of the multi-frame noise reduction processing condition is filtered by determining whether the acceleration of the mobile terminal is less than the preset acceleration threshold when at least two images continuously captured by the camera are captured.
  • the screening algorithm is simple and can be fast. Accurately select images that meet the multi-frame noise reduction processing conditions.
  • FIG. 3 is a schematic flowchart diagram of another image selection method according to an embodiment of the present invention. As shown in FIG. 3, the image selection method includes the following steps.
  • the mobile terminal receives a continuous shooting instruction.
  • the mobile terminal controls the camera to continuously capture at least two images in response to the continuous shooting instruction, and measures the acceleration value and the acceleration direction of the mobile terminal through the gyroscope when the camera continuously captures at least two images.
  • the mobile terminal acquires image information corresponding to the first image, where the image information corresponding to the first image includes a first acceleration value of the mobile terminal when the camera captures the first image, where the first image is in at least two images continuously captured by the camera. Any one.
  • the mobile terminal determines whether the first acceleration value is less than a preset acceleration threshold. If yes, go to step 305, otherwise go to step 306.
  • the mobile terminal determines that the first image satisfies a multi-frame noise reduction processing condition.
  • the mobile terminal determines that the first image does not satisfy the multi-frame noise reduction processing condition.
  • the mobile terminal performs multi-frame noise reduction processing on the image that satisfies the multi-frame noise reduction processing condition in the at least two images.
  • step 307 may also be performed.
  • the image selection method in the embodiment of the present invention is to perform multi-frame noise reduction processing on an image that satisfies the multi-frame noise reduction processing condition from a plurality of images continuously captured by the camera.
  • the screening algorithm in the embodiment of the invention is simple, and can quickly and accurately select an image satisfying the multi-frame noise reduction processing condition, and reduce the noise of the image synthesized by the multi-frame noise reduction processing, and improve the display effect of the multi-frame noise reduction processing combined image. .
  • FIG. 4 is a schematic flowchart diagram of another image selection method according to an embodiment of the present invention. As shown in FIG. 4, the image selection method includes the following steps.
  • the mobile terminal receives a continuous shooting instruction.
  • the mobile terminal controls the camera to continuously capture at least two images in response to the continuous shooting instruction, and measures the acceleration value and the acceleration direction of the mobile terminal through the gyroscope when the camera continuously captures at least two images.
  • the mobile terminal acquires image information corresponding to the first image, where the image information corresponding to the first image includes a first acceleration value of the mobile terminal when the camera captures the first image, where the first image is in at least two images continuously captured by the camera. Any one.
  • the mobile terminal determines whether the first acceleration value is less than a preset acceleration threshold. If yes, go to step 405, otherwise go to step 406.
  • the mobile terminal determines that the first image satisfies a multi-frame noise reduction processing condition.
  • the mobile terminal determines that the first image does not satisfy the multi-frame noise reduction processing condition.
  • the mobile terminal determines whether the number of images satisfying the multi-frame noise reduction processing condition in the at least two images reaches a preset number. If yes, go to step 408; if no, go to step 409.
  • step 407 can also be performed.
  • the mobile terminal performs multi-frame noise reduction processing on the image that satisfies the multi-frame noise reduction processing condition in the at least two images.
  • the mobile terminal outputs prompt information, where the prompt information is used to indicate that the number of images used for the multi-frame noise reduction processing condition is too small, and the image with high quality cannot be synthesized.
  • the image effect synthesized by the multi-frame noise reduction processing is related to the number of images used for the multi-frame noise reduction processing.
  • the more the number of images processed by the multi-frame noise reduction the lower the image noise synthesized by the multi-frame noise reduction processing, and the better the effect. If the number of images used for multi-frame noise reduction processing is too small, the image effect of the multi-frame noise reduction processing is difficult to achieve the desired effect.
  • the preset number in the embodiment of the present invention may be set to a number of 2, 3, 4, 5, and the like. In general, in order to synthesize a relatively small noise image by multi-frame noise reduction processing, multi-frame noise reduction processing is required for four or more images, so the preset number can be set to four.
  • the image selection method in the embodiment of the present invention is to perform multi-frame noise reduction processing on an image that satisfies the multi-frame noise reduction processing condition from a plurality of images continuously captured by the camera.
  • step 401 to 406 in the embodiment of the present invention refer to step 201 to step 206 shown in FIG. 1 , and details are not described herein again.
  • the screening algorithm in the embodiment of the invention is simple, and can quickly and accurately select a preset number of images satisfying the multi-frame noise reduction processing condition, which can further reduce the noise of the image synthesized by the multi-frame noise reduction processing, and improve the multi-frame noise reduction processing.
  • the display effect of the composite image by determining whether at least two images continuously captured by the camera are smaller than a preset acceleration threshold when shooting, and filtering out an image satisfying the multi-frame noise reduction processing condition, and at least two of the above.
  • FIG. 5 is a schematic flowchart diagram of another image selection method according to an embodiment of the present invention. As shown in FIG. 5, the image selection method includes the following steps.
  • the mobile terminal receives a continuous shooting instruction.
  • the mobile terminal controls the camera to continuously capture at least two images in response to the continuous shooting instruction, and measures the acceleration value and the acceleration direction of the mobile terminal through the gyroscope when the camera continuously captures at least two images.
  • the mobile terminal acquires image information corresponding to the first image, where the image information corresponding to the first image includes a first acceleration value of the mobile terminal when the camera captures the first image, where the first image is in at least two images continuously captured by the camera. Any one.
  • the mobile terminal determines whether the first acceleration value is less than a preset acceleration threshold. If yes, go to step 505, otherwise go to step 506.
  • the mobile terminal determines that the first image satisfies a multi-frame noise reduction processing condition.
  • the mobile terminal determines that the first image does not satisfy the multi-frame noise reduction processing condition.
  • the mobile terminal determines whether the number of images satisfying the multi-frame noise reduction processing condition in the at least two images reaches a preset number. If yes, go to step 508; if no, go to step 511.
  • step 507 can also be performed.
  • the mobile terminal determines whether the same motion area exists in the image that satisfies the multi-frame noise reduction processing condition. If yes, step 509 is performed, and if no, step 510 is performed.
  • the mobile terminal performs multi-frame noise reduction processing on an area other than the motion area in the image that satisfies the multi-frame noise reduction processing condition.
  • the mobile terminal performs multi-frame noise reduction processing on the image that satisfies the multi-frame noise reduction processing condition in the at least two images.
  • the mobile terminal outputs prompt information, where the prompt information is used to indicate that the number of images used for the multi-frame noise reduction processing condition is too small, and the image with high quality cannot be synthesized.
  • the same motion area can be understood as an object having the same motion in multiple images satisfying the multi-frame noise reduction processing condition, and the same moving object is in each image satisfying the multi-frame noise reduction processing condition.
  • the positions are different, and therefore, the area in which the same moving object occupies each image satisfying the multi-frame noise reduction processing condition is defined as the same motion area.
  • FIG. 6 (a), (b), (c), and (d) in FIG. 6 are four images satisfying a plurality of noise reduction processing conditions, and an area 611 in the image (a)
  • the same object is captured in the area 621 in the image (b), the area 631 in the image (c), and the area 641 in the image (d).
  • region 611 is on the left side of image (a)
  • region 641 is on the right side of image (d).
  • multi-frame noise reduction processing is performed on a multi-frame image in which a moving object is photographed (that is, the same motion area appears in an image satisfying multi-frame noise reduction processing)
  • smear occurs in the area where the moving object is displayed, instead Reduce image synthesis.
  • the embodiment of the present invention does not perform multi-frame noise reduction processing on the same motion area (ie, the area displayed by the moving object during shooting), and can improve the image synthesis effect of the multi-frame noise reduction processing.
  • the image selection method in the embodiment of the present invention is to perform multi-frame noise reduction processing on an image that satisfies the multi-frame noise reduction processing condition from a plurality of images continuously captured by the camera.
  • Steps 501 to 506 in the embodiment of the present invention may refer to steps 201 to 206 shown in FIG. 1, and details are not described herein again.
  • the image in the image that satisfies the multi-frame noise reduction processing condition performs multi-frame noise reduction processing.
  • the screening algorithm in the embodiment of the invention is simple, and can quickly and accurately select a preset number of images satisfying the multi-frame noise reduction processing condition, which can further reduce the noise of the image synthesized by the multi-frame noise reduction processing, and improve the multi-frame noise reduction processing.
  • the display effect of the composite image is simple, and can quickly and accurately select a preset number of images satisfying the multi-frame noise reduction processing condition, which can further reduce the noise of the image synthesized by the multi-frame noise reduction processing, and improve the multi-frame noise reduction processing.
  • the embodiment of the present invention does not perform multi-frame noise reduction processing on the same motion area (ie, the area displayed by the moving object during shooting) in the image satisfying the multi-frame noise reduction processing, and can improve the image of the multi-frame noise reduction processing. Synthetic effect.
  • the mobile terminal includes corresponding hardware structures and/or software modules for performing various functions.
  • the present invention can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods for implementing the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present invention.
  • the embodiment of the present invention may divide the functional unit into the mobile terminal according to the foregoing method example.
  • each functional unit may be divided according to each function, or two or more functions may be integrated into one processing unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit. It should be noted that the division of the unit in the embodiment of the present invention is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 7 is a schematic structural diagram of a mobile terminal according to an embodiment of the present invention.
  • the mobile terminal 700 includes a camera 701 and an application processor AP702.
  • the camera 701 and the application processor AP702 can be connected by a bus 703.
  • the AP 702 is configured to acquire image information corresponding to the first image, where the image information corresponding to the first image includes a first acceleration value of the mobile terminal 700 when the first image is captured by the camera 701, and the first image is at least two consecutively captured by the camera 701. Any of the images.
  • the AP 702 is further configured to determine whether the first acceleration value is less than a preset acceleration threshold.
  • the AP 702 is further configured to determine that the first image satisfies the multi-frame noise reduction processing condition when the first acceleration value is less than the preset acceleration threshold.
  • the mobile terminal 700 further includes a gyroscope 704.
  • the AP 702 is also used to receive continuous shooting instructions.
  • the camera 701 is further configured to continuously capture at least two images in response to a continuous shooting instruction.
  • the gyro 704 is further configured to measure an acceleration value and an acceleration direction of the mobile terminal when the camera continuously captures at least two images.
  • the gyro 704 measures the acceleration value and the acceleration direction of the mobile terminal 700 when the camera 701 continuously captures at least two images, specifically:
  • the gyro 704 measures the first acceleration value and the first acceleration direction of the mobile terminal 700 at the time of capturing the first image by the camera 701.
  • the AP702 determines whether the first acceleration value is less than a preset acceleration threshold, specifically:
  • the AP 702 determines whether the first acceleration value is smaller than a preset acceleration threshold corresponding to the first acceleration direction.
  • the AP 702 is further configured to perform multi-frame noise reduction processing on the image that satisfies the multi-frame noise reduction processing condition in the at least two images after determining that the first image satisfies the multi-frame noise reduction processing condition.
  • the AP 702 is further configured to determine whether the number of the images satisfying the multi-frame noise reduction processing condition in the at least two images reaches a preset number.
  • the AP 702 is further configured to perform multi-frame noise reduction processing on the image that satisfies the multi-frame noise reduction processing condition in the at least two images when the number of the images satisfying the multi-frame noise reduction processing condition reaches a preset number in the at least two images.
  • the AP 702 is further configured to determine whether the same motion region exists in the image that meets the multi-frame noise reduction processing condition;
  • the AP 702 performs multi-frame noise reduction processing on the image that satisfies the multi-frame noise reduction processing condition in at least two images, specifically:
  • the AP 702 performs multi-frame noise reduction processing on an area other than the motion area in the image satisfying the multi-frame noise reduction processing condition.
  • the mobile terminal shown in FIG. 7 is implemented, and the mobile terminal selects an image that satisfies the multi-frame noise reduction processing condition by determining whether the acceleration of the mobile terminal at the time of shooting is less than a preset acceleration threshold by at least two images continuously captured by the camera. Simple, you can quickly and accurately select images that meet the multi-frame noise reduction processing conditions.
  • FIG. 8 is a schematic structural diagram of another mobile terminal according to an embodiment of the present invention.
  • the mobile terminal 800 includes a camera 801, an application processor AP802, and a memory 803.
  • the mobile terminal 800 may further include a bus 804.
  • the camera 801, the application processor AP802, and the memory 803 may be connected to each other through a bus 804.
  • the bus 804 may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus 804 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 8, but it does not mean that there is only one bus or one type of bus.
  • the memory 803 is configured to store one or more programs including instructions
  • the AP 802 is used to call an instruction stored in the memory 803 to perform the following operations:
  • the image information corresponding to the first image includes a first acceleration value of the mobile terminal 800 when the first image is captured by the camera 801, and the first image is any of the at least two images continuously captured by the camera 801.
  • the mobile terminal 800 further includes a gyroscope 805. Before the AP 802 acquires image information corresponding to the first image, the AP 802 is further configured to:
  • the continuous shooting command is received, and the camera 801 is continuously photographed in response to the continuous shooting command to continuously capture at least two images, and the acceleration value and the acceleration direction of the mobile terminal 800 are measured by the gyroscope 805 when the camera 801 continuously captures at least two images.
  • the AP 802 measures the acceleration value and the acceleration direction of the mobile terminal 800 by using the gyroscope 805 when the camera 801 continuously captures at least two images, specifically:
  • the first acceleration value and the first acceleration direction of the mobile terminal 800 are measured by the gyroscope 805;
  • the AP 802 is further configured to:
  • Multi-frame noise reduction processing is performed on an image satisfying the multi-frame noise reduction processing condition among at least two images.
  • the AP802 before the AP802 performs multi-frame noise reduction processing on the image that satisfies the multi-frame noise reduction processing condition in the at least two images, the AP 802 is further configured to:
  • the multi-frame noise reduction processing is performed on the image satisfying the multi-frame noise reduction processing condition in at least two images.
  • the AP802 before the AP802 performs multi-frame noise reduction processing on the image that satisfies the multi-frame noise reduction processing condition in the at least two images, the AP 802 is further configured to:
  • the AP 802 performs multi-frame noise reduction processing on the image that satisfies the multi-frame noise reduction processing condition in at least two images, specifically:
  • Multi-frame noise reduction processing is performed on an area other than the motion area in the image satisfying the multi-frame noise reduction processing condition.
  • the mobile terminal shown in FIG. 8 is implemented, and the mobile terminal selects an image that satisfies the multi-frame noise reduction processing condition by determining whether the acceleration of the mobile terminal at the time of shooting is less than a preset acceleration threshold value by at least two images continuously captured by the camera. Simple, you can quickly and accurately select images that meet the multi-frame noise reduction processing conditions.
  • FIG. 9 is a schematic structural diagram of an image selection apparatus according to an embodiment of the present invention.
  • the image selection device 900 is applied to a mobile terminal including a camera, and the image selection device 900 includes an acquisition unit 901, a first determination unit 902, and a determination unit 903.
  • the acquiring unit 901 is configured to acquire image information corresponding to the first image, where the image information corresponding to the first image includes a first acceleration value of the mobile terminal when the camera captures the first image, and the first image is at least two images continuously captured by the camera. Any one of them.
  • the first determining unit 902 is configured to determine whether the first acceleration value is less than a preset acceleration threshold.
  • the determining unit 903 is configured to determine that the first image satisfies the multi-frame noise reduction processing condition when the first determining unit 902 determines that the first acceleration value is less than the preset acceleration threshold.
  • the image selection device 900 further includes a receiving unit 904 and a photographing and measuring unit 905.
  • the receiving unit 904 is configured to receive a continuous shooting instruction.
  • the photographing and measuring unit 905 is configured to control the camera to continuously capture at least two images in response to the continuous shooting instruction, and measure the acceleration value and the acceleration direction of the mobile terminal by the gyroscope when the camera continuously captures at least two images.
  • the photographing and measuring unit 905 measures the acceleration value and the acceleration direction of the mobile terminal through the gyroscope when the camera continuously captures at least two images, specifically:
  • the photographing and measuring unit 905 measures the first acceleration value and the first acceleration direction of the mobile terminal through the gyroscope while the camera is photographing the first image.
  • the first determining unit 902 determines whether the first acceleration value is less than a preset acceleration threshold, and includes:
  • the first determining unit 902 determines whether the first acceleration value is smaller than a preset acceleration threshold corresponding to the first acceleration direction.
  • the image selection device 900 further includes a processing unit 906.
  • the processing unit 906 is further configured to perform multi-frame noise reduction processing on the image that satisfies the multi-frame noise reduction processing condition in the at least two images.
  • the first determining unit 902 is further configured to: before the processing unit 906 performs multi-frame noise reduction processing on the image that satisfies the multi-frame noise reduction processing condition in the at least two images, determine that the at least two images satisfy the multi-frame drop. Whether the number of images of the noise processing condition reaches a preset number;
  • the processing unit 906 is further configured to: when the first determining unit 902 determines that the number of the images satisfying the multi-frame noise reduction processing condition in the at least two images reaches a preset number, satisfying the multi-frame noise reduction processing condition in the at least two images The image is subjected to multi-frame noise reduction processing.
  • the image selecting apparatus 900 further includes a second determining unit 907.
  • the second determining unit 907 is configured to determine whether the same motion region exists in the image that satisfies the multi-frame noise reduction processing condition.
  • the processing unit 906 performs multi-frame noise reduction processing on the image that satisfies the multi-frame noise reduction processing condition in the at least two images, specifically:
  • the processing unit 906 performs multi-frame noise reduction processing on an area other than the motion area in the image satisfying the multi-frame noise reduction processing condition.
  • the image selection device shown in FIG. 9 is implemented.
  • the image selection device selects an image satisfying the multi-frame noise reduction processing condition by determining whether the acceleration of the mobile terminal at the time of shooting is less than a preset acceleration threshold value by determining at least two images continuously captured by the camera.
  • the screening algorithm is simple, and the image satisfying the multi-frame noise reduction processing condition can be quickly and accurately selected.
  • the embodiment of the present invention further provides another mobile terminal.
  • the mobile terminal can be any terminal device including a mobile phone, a tablet computer, a PDA (Personal Digital Assistant), a POS (Point of Sales), an in-vehicle computer, and the mobile terminal is used as a mobile phone as an example:
  • FIG. 10 is a block diagram showing a partial structure of a mobile phone related to a mobile terminal provided by an embodiment of the present invention.
  • the mobile phone includes: a radio frequency (RF) circuit 910, a memory 920, an input unit 930, a display unit 940, a sensor 950, an audio circuit 960, a wireless fidelity (WiFi) module 970, and a processor 980. And power supply 990 and other components.
  • RF radio frequency
  • the RF circuit 910 can be used for receiving and transmitting information.
  • RF circuit 910 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a Low Noise Amplifier (LNA), a duplexer, and the like.
  • LNA Low Noise Amplifier
  • RF circuitry 910 can also communicate with the network and other devices via wireless communication.
  • the above wireless communication may use any communication standard or protocol, including but not limited to Global System of Mobile communication (GSM), General Packet Radio Service (GPRS), Code Division Multiple Access (Code Division). Multiple Access (CDMA), Wideband Code Division Multiple Access (WCDMA), Long Term Evolution (LTE), E-mail, Short Messaging Service (SMS), and the like.
  • GSM Global System of Mobile communication
  • GPRS General Packet Radio Service
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • E-mail Short Messaging Service
  • the memory 920 can be used to store software programs and modules, and the processor 980 executes various functional applications and data processing of the mobile phone by running software programs and modules stored in the memory 920.
  • the memory 920 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function, and the like; the storage data area may store data created according to usage of the mobile phone, and the like.
  • memory 920 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the input unit 930 can be configured to receive input numeric or character information and to generate key signal inputs related to user settings and function controls of the handset.
  • the input unit 930 can include a fingerprint identification module 931 and other input devices 932.
  • the fingerprint identification module 931 can collect fingerprint data of the user.
  • the input unit 930 may also include other input devices 932.
  • other input devices 932 may include, but are not limited to, one or more of a touch screen, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, and the like.
  • the display unit 940 can be used to display information input by the user or information provided to the user as well as various menus of the mobile phone.
  • the display unit 940 can include a display screen 941.
  • the display screen 941 can be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the fingerprint recognition module 931 and the display screen 941 are used as two separate components to implement the input and input functions of the mobile phone, in some embodiments, the fingerprint recognition module 931 and the display screen 941 may be Integrated to achieve the input and playback functions of the phone.
  • the handset may also include at least one type of sensor 950, such as a light sensor, motion sensor, and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor, wherein the ambient light sensor may adjust the brightness of the display screen 941 according to the brightness of the ambient light, and the proximity sensor may turn off the display screen 941 and/or when the mobile phone moves to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in all directions (usually three axes). When it is stationary, it can detect the magnitude and direction of gravity.
  • the sensor 950 can also include a gyroscope 951 for measuring the instantaneous acceleration of the handset.
  • An audio circuit 960, a speaker 961, and a microphone 962 can provide an audio interface between the user and the handset.
  • the audio circuit 960 can transmit the converted electrical data of the received audio data to the speaker 961 for conversion to the sound signal by the speaker 961; on the other hand, the microphone 962 converts the collected sound signal into an electrical signal by the audio circuit 960. After receiving, it is converted into audio data, and then processed by the audio data playback processor 980, sent to the other mobile phone via the RF circuit 910, or played back to the memory 920 for further processing.
  • WiFi is a short-range wireless transmission technology
  • the mobile phone can help users to send and receive emails, browse web pages, and access streaming media through the WiFi module 970, which provides users with wireless broadband Internet access.
  • FIG. 10 shows the WiFi module 970, it can be understood that it does not belong to the essential configuration of the mobile phone, and may be omitted as needed within the scope of not changing the essence of the invention.
  • the processor 980 is the control center of the handset, which connects various portions of the entire handset using various interfaces and lines, by executing or executing software programs and/or modules stored in the memory 920, and invoking data stored in the memory 920, executing The phone's various functions and processing data, so that the overall monitoring of the phone.
  • the processor 980 may include one or more processing units; preferably, the processor 980 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, an application, and the like.
  • the modem processor primarily handles wireless communications. It will be appreciated that the above described modem processor may also not be integrated into the processor 980.
  • the handset also includes a power source 990 (such as a battery) that supplies power to the various components.
  • a power source 990 such as a battery
  • the power source can be logically coupled to the processor 980 through a power management system to manage functions such as charging, discharging, and power management through the power management system.
  • the handset can also include a camera 9100 for capturing images and video and transmitting the captured images and video to processor 980 for processing.
  • the mobile phone can also be a Bluetooth module, etc., and will not be described here.
  • each step method flow can be implemented based on the structure of the mobile phone.
  • the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores a computer program for electronic data exchange, the computer program causing the computer to execute part of any image selection method as described in the above method embodiment Or all steps.
  • Embodiments of the present invention also provide a computer program product comprising a non-transitory computer readable storage medium storing a computer program, the computer program being operative to cause a computer to perform the operations as recited in the above method embodiments Part or all of the steps of any image selection method.
  • the disclosed apparatus may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical or otherwise.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable memory. Based on such understanding, the technical solution of the present invention may contribute to the prior art or all or part of the technical solution may be embodied in the form of a software product stored in a memory. A number of instructions are included to cause a computer device (which may be a personal computer, server or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing memory includes: a U disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a removable hard disk, a magnetic disk, or an optical disk, and the like, which can store program codes.
  • ROM Read-Only Memory
  • RAM Random Access Memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Studio Devices (AREA)
  • Telephone Function (AREA)

Abstract

本发明实施例公开了一种图像选择方法及相关产品,该图像选择方法应用于包含摄像头的移动终端,该图像选择方法包括:获取第一图像对应的图像信息,第一图像对应的图像信息包括摄像头在拍摄第一图像时移动终端的第一加速度值,第一图像为摄像头连续拍摄的至少两张图像中的任一张;判断第一加速度值是否小于预设加速度阈值;若是,确定第一图像满足多帧降噪处理条件。本发明实施例可以快速准确选择满足多帧降噪处理条件的图像。

Description

图像选择方法及相关产品 技术领域
本发明涉及图像处理技术领域,具体涉及一种图像选择方法及相关产品。
背景技术
随着技术的发展,数码相机已经逐渐普及,智能手机、平板电脑的移动终端中也具备有拍摄功能。在拍摄图像时,为了获得更多的图像细节,往往使用多帧降噪的方式对拍摄的多个相同的图像进行处理。
多帧降噪,是对拍摄的多个相同的图像进行合成处理,并得到一张噪声较小的图像的图像处理技术,多帧降噪的前提是需要连续拍摄多张相同的图像。然而,在目前的移动终端拍照时,一般不会使用三脚架固定拍摄,用户手持移动终端拍摄多张图像时容易出现抖动,拍摄的物体在多张图像中会出现较大的偏移,导致移动终端采用多帧降噪处理合成的图像的噪声较大。
发明内容
本发明实施例提供了一种图像选择方法及相关产品,可以快速准确选择满足多帧降噪处理条件的图像。
本发明实施例第一方面提供一种图像选择方法,应用于包含摄像头的移动终端,所述方法包括:
获取第一图像对应的图像信息,所述第一图像对应的图像信息包括所述摄像头在拍摄所述第一图像时所述移动终端的第一加速度值,所述第一图像为所述摄像头连续拍摄的至少两张图像中的任一张;
判断所述第一加速度值是否小于预设加速度阈值;
若是,确定所述第一图像满足多帧降噪处理条件。
本发明实施例第二方面提供一种移动终端,包括摄像头和应用处理器AP,其中,
所述AP,用于获取第一图像对应的图像信息,所述第一图像对应的图像信息包括所述摄像头在拍摄所述第一图像时所述移动终端的第一加速度值,所述第一图像为所述摄像头连续拍摄的至少两张图像中的任一张;
所述AP,还用于判断所述第一加速度值是否小于预设加速度阈值;
所述AP,还用于当所述第一加速度值小于所述预设加速度阈值时,确定所述第一图像满足多帧降噪处理条件。
本发明实施例第三方面提供一种移动终端,包括摄像头、应用处理器AP和存储器;
所述存储器用于存储包含指令的一个或多个程序;
所述AP用于调用存储在所述存储器中的指令执行本发明实施例第一方面所描述的方法。
本发明实施例第四方面提供一种图像选择装置,应用于包含摄像头的移动终端,所述图像选择装置包括:
获取单元,用于获取第一图像对应的图像信息,第一图像对应的图像信息包括摄像头在拍摄第一图像时移动终端的第一加速度值,第一图像为摄像头连续拍摄的至少两张图像中的任一张;
判断单元,用于判断第一加速度值是否小于预设加速度阈值;
确定单元,用于当判断单元判断结果为是时,确定第一图像满足多帧降噪处理条件。
该装置具有实现上述方法设计中移动终端的行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
本发明实施例第五方面提供了一种计算机可读存储介质,其中,所述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如本发明实施例第一方面任一方法中所描述的部分或全部步骤。
本发明实施例第六方面提供了一种计算机程序产品,其中,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使计算机执行如本发明实施例第一方面任一方法中所描述的部分或全部步骤。该计算机程序产品可以为一个软件安装包。
本发明实施例中,移动终端在进行多帧降噪处理之前,可以对进行多帧降噪处理的至少两张图像进行筛选,选择出满足多帧降噪处理条件的图像。本发明实施例中,通过判断获取至少两张图像在拍摄时移动终端的加速度大小是否小于预设加速度阈值来筛选满足多帧降噪处理条件的图像,筛选算法简单,可以快速准确选择满足多帧降噪处理条件的图像。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例公开的一种图像选择方法的流程示意图;
图2是本发明实施例公开的另一种图像选择方法的流程示意图;
图3是本发明实施例公开的另一种图像选择方法的流程示意图;
图4是本发明实施例公开的另一种图像选择方法的流程示意图;
图5是本发明实施例公开的另一种图像选择方法的流程示意图;
图6是本发明实施例公开的多张多帧降噪图像的示意图;
图7是本发明实施例公开的一种移动终端的结构示意图;
图8是本发明实施例公开的另一种移动终端的结构示意图;
图9是本发明实施例公开的一种图像选择装置的结构示意图;
图10是本发明实施例公开的又一种移动终端的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、***、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本发明的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式 地理解的是,本文所描述的实施例可以与其它实施例相结合。
此外,本发明实施例所涉及到的移动终端可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile Station,MS),终端设备(terminal device)等等。为方便描述,上面提到的设备统称为移动终端。
下面对本发明实施例进行详细介绍。
请参阅图1,图1是本发明实施例公开的一种图像选择方法的流程示意图,如图1所示,该图像选择方法包括如下步骤。
101,移动终端获取第一图像对应的图像信息,第一图像对应的图像信息包括摄像头在拍摄第一图像时移动终端的第一加速度值,第一图像为摄像头连续拍摄的至少两张图像中的任一张。
本发明实施例中,移动终端可以获取存储在移动终端的存储器中的由摄像头连续拍摄的至少两张图像对应的图像信息。移动终端也可以在摄像头连续拍摄至少两张图像后立即获取上述至少两张图像对应的图像信息。第一图像对应的图像信息可以包括第一图像占用的存储空间、第一图像的拍摄时间、摄像头拍摄该第一图像时移动终端的加速度值等。第一图像为移动终端的摄像头连续拍摄的至少两张图像中的任一张。在执行步骤101之前,摄像头可以连续拍摄至少两张图像,移动终端可以在摄像头拍摄上述至少两张图像时获取上述至少两张图像对应的图像信息。例如,摄像头拍摄该第一图像时可以通过陀螺仪、加速度传感器等器件测量移动终端的加速度值。上述至少两张图像可以包括第一图像、第二图像等等。
102,移动终端判断第一加速度值是否小于预设加速度阈值。若是,则执行步骤103,若否则执行步骤104。
本发明实施例中,步骤102用于判断第一图像在拍摄过程中是否发生了抖动。预设加速度阈值可以由移动终端预先进行设定,并存储在移动终端的非易失性存储器中。例如,可以预先设定加速度阈值为1cm/s 2,当第一图像的第一加速度值小于1cm/s 2时,移动终端认为第一图像在拍摄过程中没有发生抖动,确定第一图像满足多帧降噪处理条件;当第一图像的第一加速度值大于或等于1cm/s 2时,移动终端认为第一图像在拍摄过程中发生了抖动,确定第一图像不满足多帧降噪处理条件。由于第一图像只是上述至少两张图像中的任一张,因此,对于上述至少两张图像中的所有图像,都可以采用步骤102的方式进行判断。
103,移动终端确定第一图像满足多帧降噪处理条件。
104,移动终端确定第一图像不满足多帧降噪处理条件。
多帧降噪,是对拍摄的多个相同的图像进行合成处理,并得到一张噪声较小的图像的图像处理技术,多帧降噪的前提是需要连续拍摄多张相同的图像。移动终端开启多帧降噪功能时,摄像头会短时间内(比如,一秒内)连续拍摄多张图像(比如,十张图像),并对连续拍摄的多张图像进行多帧降噪处理。由于这多张图像是短时间内拍摄的,一般认为这多张图像为相同的图像。然而,在实际拍摄过程中,由于用户在拍摄时会出现手抖等原因,导致连续拍摄的多张图像中存在模糊的不清楚的图像,进而导致采用多帧降噪处理合成的图像的噪声较大。因此,本发明实施例中的图像选择方法是对摄像头连续拍摄的至少两张图像进行筛选,筛选出其中满足多帧降噪处理条件的图像,以便对连续拍摄的多张图像中满足多帧降噪处理条件的图像进行多帧降噪处理。
实施图1所示的方法,通过判断获取摄像头连续拍摄的至少两张图像在拍摄时移动终端的加速度大小是否小于预设加速度阈值来筛选满足多帧降噪处理条件的图像,筛选算法简单,可以快速准确选择满足多帧降噪处理条件的图像。
请参阅图2,图2是本发明实施例公开的另一种图像选择方法的流程示意图,如图2 所示,该图像选择方法包括如下步骤。
201,移动终端接收连续拍摄指令。
202,移动终端响应连续拍摄指令控制摄像头连续拍摄至少两张图像,并在摄像头连续拍摄至少两张图像时通过陀螺仪测量移动终端的加速度值和加速度方向。
本发明实施例中,移动终端可以对摄像头连续拍摄的至少两张图像进行图像筛选,以筛选出满足多帧降噪处理条件的图像。上述至少两张图像对应的图像信息是在摄像头连续拍摄上述至少两张图像时通过陀螺仪测量的。
可选的,步骤202可以包括:
移动终端在摄像头在拍摄第一图像时,通过陀螺仪测量移动终端的第一加速度值和第一加速度方向。
具体的,移动终端可以在摄像头打开快门时通过陀螺仪测量移动终端的第一加速度值和第一加速度方向。第一加速度值和第一加速度方向相对应,移动终端的第一加速度值为移动终端在第一加速度方向上测得的。
203,移动终端获取第一图像对应的图像信息,第一图像对应的图像信息包括摄像头在拍摄第一图像时移动终端的第一加速度值,第一图像为摄像头连续拍摄的至少两张图像中的任一张。
204,移动终端判断第一加速度值是否小于预设加速度阈值。若是,则执行步骤205,若否则执行步骤206。
可选的,步骤204可以包括:
移动终端判断第一加速度值是否小于第一加速度方向对应的预设加速度阈值。
本发明实施例中,不同的加速度方向可以对应不同的预设加速度阈值。用户手持移动终端拍摄时,在不同的方向抖动对拍摄的图像造成的噪声影响不相同。例如,移动终端在靠近被拍摄物体的方向或者在远离被拍摄物体的方向发生较小的抖动就会对拍摄的图像的效果造成较大的噪声影响,而移动终端在与靠近被拍摄物体的方向相垂直的方向发生的抖动对拍摄的图像的效果的噪声影响相对较小。因此,在摄像头拍摄图像时,通过陀螺仪同时测量图像在拍摄时移动终端的加速度方向以及在该加速度方向上的加速度值,以便后续根据该加速度方向上的加速度值判断该图像在拍摄过程中是否发生了强烈的抖动。本发明实施例通过在不同的加速度方向设置不同的预设加速度阈值,考虑了移动终端在图像拍摄时移动终端抖动的方向对拍摄质量的影响的不同,根据移动终端不同的抖动方向(即移动终端的加速度方向)设置不同的加速度阈值,可以在不同的抖动方向上按照相对统一的标准筛选出噪声值相对较小的满足多帧降噪处理条件的图像,进一步提高了图像筛选的准确度。
205,移动终端确定第一图像满足多帧降噪处理条件。
206,移动终端确定第一图像不满足多帧降噪处理条件。
本发明实施例中的步骤203至步骤206可以参见图1所示的步骤101至步骤104,此处不再赘述。
实施图2所示的方法,通过判断摄像头连续拍摄的至少两张图像在拍摄时移动终端的加速度大小是否小于预设加速度阈值来筛选满足多帧降噪处理条件的图像,筛选算法简单,可以快速准确选择满足多帧降噪处理条件的图像。
请参阅图3,图3是本发明实施例公开的另一种图像选择方法的流程示意图,如图3所示,该图像选择方法包括如下步骤。
301,移动终端接收连续拍摄指令。
302,移动终端响应连续拍摄指令控制摄像头连续拍摄至少两张图像,并在摄像头连续拍摄至少两张图像时通过陀螺仪测量移动终端的加速度值和加速度方向。
303,移动终端获取第一图像对应的图像信息,第一图像对应的图像信息包括摄像头在拍摄第一图像时移动终端的第一加速度值,第一图像为摄像头连续拍摄的至少两张图像中的任一张。
304,移动终端判断第一加速度值是否小于预设加速度阈值。若是,则执行步骤305,若否则执行步骤306。
305,移动终端确定第一图像满足多帧降噪处理条件。
306,移动终端确定第一图像不满足多帧降噪处理条件。
307,移动终端对至少两张图像中满足多帧降噪处理条件的图像进行多帧降噪处理。
本发明实施例中,在执行步骤305之后,还可以执行步骤307。本发明实施例中的图像选择方法是为了从摄像头连续拍摄的多张图像中筛选出满足多帧降噪处理条件的图像进行多帧降噪处理。
本发明实施例中的步骤301至步骤306可以参见图1所示的步骤201至步骤206,此处不再赘述。
实施图3所示的方法,通过判断摄像头连续拍摄的至少两张图像在拍摄时移动终端的加速度大小是否小于预设加速度阈值筛选出满足多帧降噪处理条件的图像,并对上述至少两张图像中满足多帧降噪处理条件的图像进行多帧降噪处理。本发明实施例中的筛选算法简单,可以快速准确选择满足多帧降噪处理条件的图像,同时降低采用多帧降噪处理合成的图像的噪声,提高多帧降噪处理合成的图像的显示效果。
请参阅图4,图4是本发明实施例公开的另一种图像选择方法的流程示意图,如图4所示,该图像选择方法包括如下步骤。
401,移动终端接收连续拍摄指令。
402,移动终端响应连续拍摄指令控制摄像头连续拍摄至少两张图像,并在摄像头连续拍摄至少两张图像时通过陀螺仪测量移动终端的加速度值和加速度方向。
403,移动终端获取第一图像对应的图像信息,第一图像对应的图像信息包括摄像头在拍摄第一图像时移动终端的第一加速度值,第一图像为摄像头连续拍摄的至少两张图像中的任一张。
404,移动终端判断第一加速度值是否小于预设加速度阈值。若是,则执行步骤405,若否则执行步骤406。
405,移动终端确定第一图像满足多帧降噪处理条件。
406,移动终端确定第一图像不满足多帧降噪处理条件。
407,移动终端判断至少两张图像中满足多帧降噪处理条件的图像的数目是否达到预设数目。若是,则执行步骤408;若否,则执行步骤409。
在执行步骤405之后,还可以执行步骤407。
408,移动终端对至少两张图像中满足多帧降噪处理条件的图像进行多帧降噪处理。
409,移动终端输出提示信息,提示信息用于提示用于多帧降噪处理条件的图像的数目过少,无法合成质量较高的图像。
本发明实施例中,多帧降噪处理合成的图像效果与用于多帧降噪处理的图像的数目相关。一般而言,多帧降噪处理的图像的数目越多,多帧降噪处理合成的图像噪声越低,效果越好。如果用于多帧降噪处理的图像的数目太少,多帧降噪处理合成的图像效果难以达到预期效果。本发明实施例中的预设数目可以设置为2、3、4、5等数目。一般而言,为了通过多帧降噪处理合成噪声相对较小的图像,需要对4张或4张以上的图像进行多帧降噪处理,因此预设数目可以设为4。
本发明实施例中的图像选择方法是为了从摄像头连续拍摄的多张图像中筛选出满足多帧降噪处理条件的图像进行多帧降噪处理。
本发明实施例中的步骤401至步骤406可以参见图1所示的步骤201至步骤206,此处不再赘述。
实施图4所示的方法,通过判断摄像头连续拍摄的至少两张图像在拍摄时移动终端的加速度大小是否小于预设加速度阈值筛选出满足多帧降噪处理条件的图像,并对上述至少两张图像中满足多帧降噪处理条件的图像进行多帧降噪处理。本发明实施例中的筛选算法简单,可以快速准确选择出预设数目的满足多帧降噪处理条件的图像,可以进一步降低采用多帧降噪处理合成的图像的噪声,提高多帧降噪处理合成的图像的显示效果。
请参阅图5,图5是本发明实施例公开的另一种图像选择方法的流程示意图,如图5所示,该图像选择方法包括如下步骤。
501,移动终端接收连续拍摄指令。
502,移动终端响应连续拍摄指令控制摄像头连续拍摄至少两张图像,并在摄像头连续拍摄至少两张图像时通过陀螺仪测量移动终端的加速度值和加速度方向。
503,移动终端获取第一图像对应的图像信息,第一图像对应的图像信息包括摄像头在拍摄第一图像时移动终端的第一加速度值,第一图像为摄像头连续拍摄的至少两张图像中的任一张。
504,移动终端判断第一加速度值是否小于预设加速度阈值。若是,则执行步骤505,若否则执行步骤506。
505,移动终端确定第一图像满足多帧降噪处理条件。
506,移动终端确定第一图像不满足多帧降噪处理条件。
507,移动终端判断至少两张图像中满足多帧降噪处理条件的图像的数目是否达到预设数目。若是,则执行步骤508;若否,则执行步骤511。
在执行步骤505之后,还可以执行步骤507。
508,移动终端判断满足多帧降噪处理条件的图像中是否均存在相同的运动区域;若是,则执行步骤509,若否,则执行步骤510。
509,移动终端对满足多帧降噪处理条件的图像中除运动区域之外的区域进行多帧降噪处理。
510,移动终端对至少两张图像中满足多帧降噪处理条件的图像进行多帧降噪处理。
511,移动终端输出提示信息,提示信息用于提示用于多帧降噪处理条件的图像的数目过少,无法合成质量较高的图像。
本发明实施例中,相同的运动区域可以理解为多张满足多帧降噪处理条件的图像中存在同一运动的物体,上述同一运动的物体在每张满足多帧降噪处理条件的图像中的位置都不相同,因此,将上述同一运动的物体占据每张满足多帧降噪处理条件的图像中的区域定义为相同的运动区域。举例来说,请参阅图6,图6中的(a)、(b)、(c)、(d)为4张满足多张降噪处理条件的图像,图像(a)中的区域611与图像(b)中的区域621、图像(c)中的区域631以及图像(d)中的区域641内拍摄的均是同一物体,由于摄像头在连续拍摄的过程中,上述同一物体在持续运动,导致上述同一物体在每个图像中的位置不相同。例如,在图像(a)中,区域611在图像(a)的左侧,在图像(d)中,区域641在图像(d)的右侧。如果对拍摄有运动物体的多帧图像(即,满足多帧降噪处理的图像中出现了相同的运动区域)进行多帧降噪处理,则会在运动物体显示的区域出现拖影,反而会降低图像合成效果。本发明实施例不对相同的运动区域(即,拍摄过程中运动的物体显示的区域)进行多帧降噪处理,可以提高多帧降噪处理的图像合成效果。
本发明实施例中的图像选择方法是为了从摄像头连续拍摄的多张图像中筛选出满足多帧降噪处理条件的图像进行多帧降噪处理。
本发明实施例中的步骤501至步骤506可以参见图1所示的步骤201至步骤206,此 处不再赘述。
实施图5所示的方法,通过判断摄像头连续拍摄的至少两张图像在拍摄时移动终端的加速度大小是否小于预设加速度阈值筛选出满足多帧降噪处理条件的图像,并对上述至少两张图像中满足多帧降噪处理条件的图像进行多帧降噪处理。本发明实施例中的筛选算法简单,可以快速准确选择出预设数目的满足多帧降噪处理条件的图像,可以进一步降低采用多帧降噪处理合成的图像的噪声,提高多帧降噪处理合成的图像的显示效果。此外,本发明实施例不对满足多帧降噪处理的图像中出现相同的运动区域(即,拍摄过程中运动的物体显示的区域)进行多帧降噪处理,可以提高多帧降噪处理的图像合成效果。
上述主要从方法侧执行过程的角度对本发明实施例的方案进行了介绍。可以理解的是,移动终端为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
本发明实施例可以根据上述方法示例对移动终端进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本发明实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
请参阅图7,图7是本发明实施例公开的一种移动终端的结构示意图。如图7所示,该移动终端700包括摄像头701和应用处理器AP702,摄像头701和应用处理器AP702可以通过总线703连接,其中,
AP702,用于获取第一图像对应的图像信息,第一图像对应的图像信息包括摄像头701在拍摄第一图像时移动终端700的第一加速度值,第一图像为摄像头701连续拍摄的至少两张图像中的任一张。
AP702,还用于判断第一加速度值是否小于预设加速度阈值。
AP702,还用于当第一加速度值小于预设加速度阈值时,确定第一图像满足多帧降噪处理条件。
可选的,如图7所示,该移动终端700还包括陀螺仪704。
AP702,还用于接收连续拍摄指令。
摄像头701,还用于响应连续拍摄指令连续拍摄至少两张图像。
陀螺仪704,还用于在摄像头连续拍摄至少两张图像时测量移动终端的加速度值和加速度方向。
可选的,陀螺仪704在摄像头701连续拍摄至少两张图像时测量移动终端700的加速度值和加速度方向,具体为:
陀螺仪704在摄像头701在拍摄第一图像时测量移动终端700的第一加速度值和第一加速度方向。
AP702判断第一加速度值是否小于预设加速度阈值,具体为:
AP702判断第一加速度值是否小于第一加速度方向对应的预设加速度阈值。
可选的,AP702,还用于在确定第一图像满足多帧降噪处理条件之后,对至少两张图像中满足多帧降噪处理条件的图像进行多帧降噪处理。
可选的,AP702,还用于判断至少两张图像中满足多帧降噪处理条件的图像的数目是否达到预设数目。
AP702,还用于在至少两张图像中满足多帧降噪处理条件的图像的数目达到预设数目时,对至少两张图像中满足多帧降噪处理条件的图像进行多帧降噪处理。
可选的,AP702,还用于判断满足多帧降噪处理条件的图像中是否均存在相同的运动区域;
若满足多帧降噪处理条件的图像中均存在相同的运动区域,AP702对至少两张图像中满足多帧降噪处理条件的图像进行多帧降噪处理,具体为:
AP702对满足多帧降噪处理条件的图像中除运动区域之外的区域进行多帧降噪处理。
实施图7所示的移动终端,移动终端通过判断获取摄像头连续拍摄的至少两张图像在拍摄时移动终端的加速度大小是否小于预设加速度阈值来筛选满足多帧降噪处理条件的图像,筛选算法简单,可以快速准确选择满足多帧降噪处理条件的图像。
请参阅图8,图8是本发明实施例公开的另一种移动终端的结构示意图。如图8所示,该移动终端800包括摄像头801、应用处理器AP802和存储器803,其中,移动终端800还可以包括总线804,摄像头801、应用处理器AP802和存储器803可以通过总线804相互连接,总线804可以是外设部件互连标准(Peripheral Component Interconnect,简称PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,简称EISA)总线等。所述总线804可以分为地址总线、数据总线、控制总线等。为便于表示,图8中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
存储器803用于存储包含指令的一个或多个程序;
AP802用于调用存储在存储器803中的指令执行如下操作:
获取第一图像对应的图像信息,第一图像对应的图像信息包括摄像头801在拍摄第一图像时移动终端800的第一加速度值,第一图像为摄像头801连续拍摄的至少两张图像中的任一张;
判断第一加速度值是否小于预设加速度阈值;
若是,确定第一图像满足多帧降噪处理条件。
可选的,移动终端800还包括陀螺仪805,AP802获取第一图像对应的图像信息之前,AP802还用于:
接收连续拍摄指令,响应连续拍摄指令控制摄像头801连续拍摄至少两张图像,并在摄像头801连续拍摄至少两张图像时通过陀螺仪805测量移动终端800的加速度值和加速度方向。
可选的,AP802在摄像头801连续拍摄至少两张图像时通过陀螺仪805测量移动终端800的加速度值和加速度方向,具体为:
在摄像头801在拍摄第一图像时,通过陀螺仪805测量移动终端800的第一加速度值和第一加速度方向;
判断第一加速度值是否小于预设加速度阈值,具体为:
判断第一加速度值是否小于第一加速度方向对应的预设加速度阈值。
可选的,AP802确定第一图像满足多帧降噪处理条件之后,AP802还用于:
对至少两张图像中满足多帧降噪处理条件的图像进行多帧降噪处理。
可选的,AP802对至少两张图像中满足多帧降噪处理条件的图像进行多帧降噪处理之前,AP802还用于:
判断至少两张图像中满足多帧降噪处理条件的图像的数目是否达到预设数目;
若是,对至少两张图像中满足多帧降噪处理条件的图像进行多帧降噪处理。
可选的,AP802对至少两张图像中满足多帧降噪处理条件的图像进行多帧降噪处理之前,AP802还用于:
判断满足多帧降噪处理条件的图像中是否均存在相同的运动区域;
若满足多帧降噪处理条件的图像中均存在相同的运动区域,AP802对至少两张图像中满足多帧降噪处理条件的图像进行多帧降噪处理,具体为:
对满足多帧降噪处理条件的图像中除运动区域之外的区域进行多帧降噪处理。
实施图8所示的移动终端,移动终端通过判断获取摄像头连续拍摄的至少两张图像在拍摄时移动终端的加速度大小是否小于预设加速度阈值来筛选满足多帧降噪处理条件的图像,筛选算法简单,可以快速准确选择满足多帧降噪处理条件的图像。
请参阅图9,图9是本发明实施例公开的一种图像选择装置的结构示意图。如图9所示,该图像选择装置900应用于包含摄像头的移动终端,该图像选择装置900包括获取单元901、第一判断单元902和确定单元903。
获取单元901,用于获取第一图像对应的图像信息,第一图像对应的图像信息包括摄像头在拍摄第一图像时移动终端的第一加速度值,第一图像为摄像头连续拍摄的至少两张图像中的任一张。
第一判断单元902,用于判断第一加速度值是否小于预设加速度阈值。
确定单元903,用于当第一判断单元902判断第一加速度值小于预设加速度阈值时,确定第一图像满足多帧降噪处理条件。
可选的,该图像选择装置900还包括接收单元904和拍摄和测量单元905。
接收单元904,用于接收连续拍摄指令;
拍摄和测量单元905,用于响应连续拍摄指令控制摄像头连续拍摄至少两张图像,并在摄像头连续拍摄至少两张图像时通过陀螺仪测量移动终端的加速度值和加速度方向。
可选的,拍摄和测量单元905在摄像头连续拍摄至少两张图像时通过陀螺仪测量移动终端的加速度值和加速度方向,具体为:
拍摄和测量单元905在摄像头在拍摄第一图像时,通过陀螺仪测量移动终端的第一加速度值和第一加速度方向。
第一判断单元902判断第一加速度值是否小于预设加速度阈值,包括:
第一判断单元902判断第一加速度值是否小于第一加速度方向对应的预设加速度阈值。
可选的,该图像选择装置900还包括处理单元906。
处理单元906,还用于对至少两张图像中满足多帧降噪处理条件的图像进行多帧降噪处理。
可选的,第一判断单元902,还用于在处理单元906对至少两张图像中满足多帧降噪处理条件的图像进行多帧降噪处理之前,判断至少两张图像中满足多帧降噪处理条件的图像的数目是否达到预设数目;
处理单元906,还用于当第一判断单元902判断至少两张图像中满足多帧降噪处理条件的图像的数目达到预设数目时,对至少两张图像中满足多帧降噪处理条件的图像进行多帧降噪处理。
可选的,该图像选择装置900还包括第二判断单元907。
第二判断单元907,用于判断满足多帧降噪处理条件的图像中是否均存在相同的运动区域。
当第二判断单元907判断结果为是时,处理单元906对至少两张图像中满足多帧降噪处理条件的图像进行多帧降噪处理,具体为:
处理单元906对满足多帧降噪处理条件的图像中除运动区域之外的区域进行多帧降噪处理。
实施图9所示的图像选择装置,图像选择装置通过判断获取摄像头连续拍摄的至少两张图像在拍摄时移动终端的加速度大小是否小于预设加速度阈值来筛选满足多帧降噪处理 条件的图像,筛选算法简单,可以快速准确选择满足多帧降噪处理条件的图像。
本发明实施例还提供了另一种移动终端,如图10所示,为了便于说明,仅示出了与本发明实施例相关的部分,具体技术细节未揭示的,请参照本发明实施例方法部分。该移动终端可以为包括手机、平板电脑、PDA(Personal Digital Assistant,个人数字助理)、POS(Point of Sales,销售终端)、车载电脑等任意终端设备,以移动终端为手机为例:
图10示出的是与本发明实施例提供的移动终端相关的手机的部分结构的框图。参考图10,手机包括:射频(Radio Frequency,RF)电路910、存储器920、输入单元930、显示单元940、传感器950、音频电路960、无线保真(Wireless Fidelity,WiFi)模块970、处理器980、以及电源990等部件。本领域技术人员可以理解,图10中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图10对手机的各个构成部件进行具体的介绍:
RF电路910可用于信息的接收和发送。通常,RF电路910包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(Low Noise Amplifier,LNA)、双工器等。此外,RF电路910还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯***(Global System of Mobile communication,GSM)、通用分组无线服务(General Packet Radio Service,GPRS)、码分多址(Code Division Multiple Access,CDMA)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、长期演进(Long Term Evolution,LTE)、电子邮件、短消息服务(Short Messaging Service,SMS)等。
存储器920可用于存储软件程序以及模块,处理器980通过运行存储在存储器920的软件程序以及模块,从而执行手机的各种功能应用以及数据处理。存储器920可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需的应用程序等;存储数据区可存储根据手机的使用所创建的数据等。此外,存储器920可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
输入单元930可用于接收输入的数字或字符信息,以及产生与手机的用户设置以及功能控制有关的键信号输入。具体地,输入单元930可包括指纹识别模组931以及其他输入设备932。指纹识别模组931,可采集用户在其上的指纹数据。除了指纹识别模组931,输入单元930还可以包括其他输入设备932。具体地,其他输入设备932可以包括但不限于触控屏、物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元940可用于显示由用户输入的信息或提供给用户的信息以及手机的各种菜单。显示单元940可包括显示屏941,可选的,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示屏941。虽然在图10中,指纹识别模组931与显示屏941是作为两个独立的部件来实现手机的输入和输入功能,但是在某些实施例中,可以将指纹识别模组931与显示屏941集成而实现手机的输入和播放功能。
手机还可包括至少一种传感器950,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示屏941的亮度,接近传感器可在手机移动到耳边时,关闭显示屏941和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于手机 还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。传感器950还可以包括陀螺仪951,陀螺仪951用于测量手机的瞬时加速度大小。
音频电路960、扬声器961,传声器962可提供用户与手机之间的音频接口。音频电路960可将接收到的音频数据转换后的电信号,传输到扬声器961,由扬声器961转换为声音信号播放;另一方面,传声器962将收集的声音信号转换为电信号,由音频电路960接收后转换为音频数据,再将音频数据播放处理器980处理后,经RF电路910以发送给比如另一手机,或者将音频数据播放至存储器920以便进一步处理。
WiFi属于短距离无线传输技术,手机通过WiFi模块970可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图10示出了WiFi模块970,但是可以理解的是,其并不属于手机的必须构成,完全可以根据需要在不改变发明的本质的范围内而省略。
处理器980是手机的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器920内的软件程序和/或模块,以及调用存储在存储器920内的数据,执行手机的各种功能和处理数据,从而对手机进行整体监控。可选的,处理器980可包括一个或多个处理单元;优选的,处理器980可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作***、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器980中。
手机还包括给各个部件供电的电源990(比如电池),优选的,电源可以通过电源管理***与处理器980逻辑相连,从而通过电源管理***实现管理充电、放电、以及功耗管理等功能。
手机还可以包括摄像头9100,摄像头9100用于拍摄图像与视频,并将拍摄的图像和视频传输到处理器980进行处理。
手机还可以蓝牙模块等,在此不再赘述。
前述图1~图5所示的实施例中,各步骤方法流程可以基于该手机的结构实现。
本发明实施例还提供一种计算机存储介质,其中,该计算机存储介质存储用于电子数据交换的计算机程序,该计算机程序使得计算机执行如上述方法实施例中记载的任何一种图像选择方法的部分或全部步骤。
本发明实施例还提供一种计算机程序产品,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使计算机执行如上述方法实施例中记载的任何一种图像选择方法的部分或全部步骤。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的 部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储器中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储器中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储器包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储器中,存储器可以包括:闪存盘、只读存储器(英文:Read-Only Memory,简称:ROM)、随机存取器(英文:Random Access Memory,简称:RAM)、磁盘或光盘等。
以上对本发明实施例进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (20)

  1. 一种图像选择方法,其特征在于,应用于包含摄像头的移动终端,所述方法包括:
    获取第一图像对应的图像信息,所述第一图像对应的图像信息包括所述摄像头在拍摄所述第一图像时所述移动终端的第一加速度值,所述第一图像为所述摄像头连续拍摄的至少两张图像中的任一张;
    判断所述第一加速度值是否小于预设加速度阈值;
    若是,确定所述第一图像满足多帧降噪处理条件。
  2. 根据权利要求1所述的方法,其特征在于,所述移动终端还包括陀螺仪,所述获取第一图像对应的图像信息之前,所述方法还包括:
    接收连续拍摄指令,响应所述连续拍摄指令控制所述摄像头连续拍摄至少两张图像,并在所述摄像头连续拍摄所述至少两张图像时通过所述陀螺仪测量所述移动终端的加速度值和加速度方向。
  3. 根据权利要求2所述的方法,所述在所述摄像头连续拍摄所述至少两张图像时通过所述陀螺仪测量所述移动终端的加速度值和加速度方向,包括:
    在所述摄像头在拍摄所述第一图像时,通过所述陀螺仪测量所述移动终端的第一加速度值和第一加速度方向;
    所述判断所述第一加速度值是否小于预设加速度阈值,包括:
    判断所述第一加速度值是否小于所述第一加速度方向对应的所述预设加速度阈值。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述确定所述第一图像满足多帧降噪处理条件之后,所述方法还包括:
    对所述至少两张图像中满足所述多帧降噪处理条件的图像进行多帧降噪处理。
  5. 根据权利要求4所述的方法,其特征在于,所述对所述至少两张图像中满足所述多帧降噪处理条件的图像进行多帧降噪处理之前,所述方法还包括:
    判断所述至少两张图像中满足所述多帧降噪处理条件的图像的数目是否达到预设数目;
    若是,执行所述对所述至少两张图像中满足所述多帧降噪处理条件的图像进行多帧降噪处理的步骤。
  6. 根据权利要求5所述的方法,其特征在于,所述对所述至少两张图像中满足所述多帧降噪处理条件的图像进行多帧降噪处理之前,所述方法包括:
    判断所述满足多帧降噪处理条件的图像中是否均存在相同的运动区域;
    若存在,所述对所述至少两张图像中满足所述多帧降噪处理条件的图像进行多帧降噪处理,包括:
    对所述满足多帧降噪处理条件的图像中除所述运动区域之外的区域进行多帧降噪处理。
  7. 一种移动终端,其特征在于,包括摄像头和应用处理器AP,其中,
    所述AP,用于获取第一图像对应的图像信息,所述第一图像对应的图像信息包括所述摄像头在拍摄所述第一图像时所述移动终端的第一加速度值,所述第一图像为所述摄像头连续拍摄的至少两张图像中的任一张;
    所述AP,还用于判断所述第一加速度值是否小于预设加速度阈值;
    所述AP,还用于当所述第一加速度值小于所述预设加速度阈值时,确定所述第一图像满足多帧降噪处理条件。
  8. 根据权利要求7所述的移动终端,其特征在于,所述移动终端还包括陀螺仪,
    所述AP,还用于接收连续拍摄指令;
    所述摄像头,还用于响应所述连续拍摄指令连续拍摄至少两张图像;
    所述陀螺仪,还用于在所述摄像头连续拍摄所述至少两张图像时测量所述移动终端的加速度值和加速度方向。
  9. 根据权利要求8所述的移动终端,其特征在于,
    所述陀螺仪在所述摄像头连续拍摄所述至少两张图像时测量所述移动终端的加速度值和加速度方向,具体为:
    所述陀螺仪在所述摄像头在拍摄所述第一图像时测量所述移动终端的第一加速度值和第一加速度方向;
    所述AP判断所述第一加速度值是否小于预设加速度阈值,具体为:
    所述AP判断所述第一加速度值是否小于所述第一加速度方向对应的所述预设加速度阈值。
  10. 根据权利要求7-9任一项所述的移动终端,其特征在于,
    所述AP,还用于在确定所述第一图像满足多帧降噪处理条件之后,对所述至少两张图像中满足所述多帧降噪处理条件的图像进行多帧降噪处理。
  11. 根据权利要求10所述的移动终端,其特征在于,
    所述AP,还用于判断所述至少两张图像中满足所述多帧降噪处理条件的图像的数目是否达到预设数目;
    所述AP,还用于在所述至少两张图像中满足所述多帧降噪处理条件的图像的数目达到所述预设数目时,对所述至少两张图像中满足所述多帧降噪处理条件的图像进行多帧降噪处理。
  12. 根据权利要求15所述的移动终端,其特征在于,
    所述AP,还用于判断所述满足多帧降噪处理条件的图像中是否均存在相同的运动区域;
    若所述满足多帧降噪处理条件的图像中均存在相同的所述运动区域,所述AP对所述至少两张图像中满足所述多帧降噪处理条件的图像进行多帧降噪处理,具体为:
    所述AP对所述满足多帧降噪处理条件的图像中除所述运动区域之外的区域进行多帧降噪处理。
  13. 一种移动终端,其特征在于,包括:摄像头、应用处理器AP和存储器;
    所述存储器用于存储包含指令的一个或多个程序;
    所述AP用于调用存储在所述存储器中的指令执行如权利要求1-6任一项所述的方法。
  14. 一种图像选择装置,其特征在于,应用于包含摄像头的移动终端,所述图像选择装置包括:
    获取单元,用于获取第一图像对应的图像信息,所述第一图像对应的图像信息包括所述摄像头在拍摄所述第一图像时所述移动终端的第一加速度值,所述第一图像为所述摄像头连续拍摄的至少两张图像中的任一张;
    第一判断单元,用于判断所述第一加速度值是否小于预设加速度阈值;
    确定单元,用于当所述第一判断单元判断结果为是时,确定所述第一图像满足多帧降噪处理条件。
  15. 根据权利要求14所述的图像选择装置,其特征在于,所述移动终端还包括陀螺仪,所述图像选择装置还包括接收单元以及拍摄和测量单元,其中:
    所述拍摄单元,用于接收连续拍摄指令;
    所述拍摄和测量单元,用于响应所述连续拍摄指令控制所述摄像头连续拍摄至少两张图像,并在所述摄像头连续拍摄所述至少两张图像时通过所述陀螺仪测量所述移动终端的加速度值和加速度方向。
  16. 根据权利要求15所述的图像选择装置,其特征在于,所述拍摄和测量单元在所述摄像头连续拍摄所述至少两张图像时通过所述陀螺仪测量所述移动终端的加速度值和加速度方向,具体为:
    所述拍摄和测量单元在所述摄像头在拍摄所述第一图像时,通过所述陀螺仪测量所述移动终端的第一加速度值和第一加速度方向;
    所述第一判断单元判断所述第一加速度值是否小于预设加速度阈值,具体为:
    所述第一判断单元判断所述第一加速度值是否小于所述第一加速度方向对应的所述预设加速度阈值。
  17. 根据权利要求14-16任一项所述的图像选择装置,其特征在于,所述图像选择装置还包括处理单元;
    所述处理单元,用于对所述至少两张图像中满足所述多帧降噪处理条件的图像进行多帧降噪处理。
  18. 根据权利要求17所述的图像选择装置,其特征在于,
    所述第一判断单元,还用于在所述处理单元对所述至少两张图像中满足所述多帧降噪处理条件的图像进行多帧降噪处理之前,判断所述至少两张图像中满足所述多帧降噪处理条件的图像的数目是否达到预设数目;
    所述处理单元,还用于当所述第一判断单元判断所述至少两张图像中满足所述多帧降噪处理条件的图像的数目达到所述预设数目时,对所述至少两张图像中满足所述多帧降噪处理条件的图像进行多帧降噪处理。
  19. 根据权利要求18所述的图像选择装置,其特征在于,所述图像选择装置还包括第二判断单元,
    所述第二判断单元,用于判断所述满足多帧降噪处理条件的图像中是否均存在相同的运动区域。
    当所述第二判断单元判断结果为是时,所述处理单元对所述至少两张图像中满足所述多帧降噪处理条件的图像进行多帧降噪处理,具体为:
    所述处理单元对所述满足多帧降噪处理条件的图像中除所述运动区域之外的区域进行多帧降噪处理。
  20. 一种计算机可读存储介质,其特征在于,其存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如权利要求1-6任一项所述的方法。
PCT/CN2018/089976 2017-06-13 2018-06-05 图像选择方法及相关产品 WO2018228241A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18817165.6A EP3627823B1 (en) 2017-06-13 2018-06-05 Image selection method and related product
US16/704,915 US11363196B2 (en) 2017-06-13 2019-12-05 Image selection method and related product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710443969.X 2017-06-13
CN201710443969.XA CN107205116B (zh) 2017-06-13 2017-06-13 图像选择方法、移动终端、图像选择装置及计算机可读存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/704,915 Continuation US11363196B2 (en) 2017-06-13 2019-12-05 Image selection method and related product

Publications (1)

Publication Number Publication Date
WO2018228241A1 true WO2018228241A1 (zh) 2018-12-20

Family

ID=59907667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/089976 WO2018228241A1 (zh) 2017-06-13 2018-06-05 图像选择方法及相关产品

Country Status (4)

Country Link
US (1) US11363196B2 (zh)
EP (1) EP3627823B1 (zh)
CN (1) CN107205116B (zh)
WO (1) WO2018228241A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107205116B (zh) 2017-06-13 2019-12-31 Oppo广东移动通信有限公司 图像选择方法、移动终端、图像选择装置及计算机可读存储介质
CN107729858B (zh) * 2017-10-27 2020-12-04 Oppo广东移动通信有限公司 人脸识别方法以及相关产品
CN108335278B (zh) * 2018-03-18 2020-07-07 Oppo广东移动通信有限公司 图像的处理方法、装置、存储介质及电子设备
CN109151323B (zh) * 2018-10-18 2021-06-04 Oppo广东移动通信有限公司 一种拍照方法及装置、终端、存储介质
CN111091513B (zh) * 2019-12-18 2023-07-25 Oppo广东移动通信有限公司 图像处理方法、装置、计算机可读存储介质及电子设备
CN111314593A (zh) * 2020-03-18 2020-06-19 Oppo广东移动通信有限公司 终端设备、图像拍摄方法、装置及存储介质
CN112488027B (zh) * 2020-12-10 2024-04-30 Oppo(重庆)智能科技有限公司 一种降噪方法、电子设备及计算机存储介质
CN115802146B (zh) * 2021-09-07 2024-04-02 荣耀终端有限公司 一种录像中抓拍图像的方法及电子设备
CN116432677B (zh) * 2023-06-12 2023-09-26 北京紫光青藤微***有限公司 用于识别条码的方法及装置、控制器及条码识别终端

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007143415A2 (en) * 2006-06-05 2007-12-13 Fotonation Vision Limited Image acquisition method and apparatus
CN104065854A (zh) * 2014-06-18 2014-09-24 联想(北京)有限公司 一种图像处理方法及一种电子设备
CN104967781A (zh) * 2015-06-29 2015-10-07 上海卓易科技股份有限公司 移动终端摄像头智能调节方法及***
US20160048216A1 (en) * 2014-08-14 2016-02-18 Ryan Fink Methods for camera movement compensation for gesture detection and object recognition
CN105391941A (zh) * 2015-11-06 2016-03-09 广东欧珀移动通信有限公司 照片处理方法及装置
CN105827967A (zh) * 2016-03-28 2016-08-03 广东欧珀移动通信有限公司 控制方法、控制装置及电子装置
CN107205116A (zh) * 2017-06-13 2017-09-26 广东欧珀移动通信有限公司 图像选择方法及相关产品

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9396385B2 (en) * 2010-08-26 2016-07-19 Blast Motion Inc. Integrated sensor and video motion analysis method
US8665338B2 (en) * 2011-03-03 2014-03-04 Qualcomm Incorporated Blurred image detection for text recognition
JP5743729B2 (ja) * 2011-06-10 2015-07-01 キヤノン株式会社 画像合成装置
US9025859B2 (en) * 2012-07-30 2015-05-05 Qualcomm Incorporated Inertial sensor aided instant autofocus
US10951310B2 (en) * 2012-12-27 2021-03-16 Panasonic Intellectual Property Corporation Of America Communication method, communication device, and transmitter
JP6493855B2 (ja) * 2014-02-26 2019-04-03 パナソニックIpマネジメント株式会社 画像処理装置及び画像処理方法
US10181193B2 (en) * 2014-03-10 2019-01-15 Microsoft Technology Licensing, Llc Latency reduction in camera-projection systems
JP6539091B2 (ja) * 2015-04-09 2019-07-03 キヤノン株式会社 撮像装置およびその制御方法
US10542217B2 (en) 2015-11-26 2020-01-21 Sony Semiconductor Solutions Corporation Shooting device and shooting method to suppress blur in an image
CN106127698A (zh) 2016-06-15 2016-11-16 深圳市万普拉斯科技有限公司 图像降噪处理方法和装置
US11216923B2 (en) * 2018-05-23 2022-01-04 Samsung Electronics Co., Ltd. Apparatus and method for successive multi-frame image denoising

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007143415A2 (en) * 2006-06-05 2007-12-13 Fotonation Vision Limited Image acquisition method and apparatus
CN104065854A (zh) * 2014-06-18 2014-09-24 联想(北京)有限公司 一种图像处理方法及一种电子设备
US20160048216A1 (en) * 2014-08-14 2016-02-18 Ryan Fink Methods for camera movement compensation for gesture detection and object recognition
CN104967781A (zh) * 2015-06-29 2015-10-07 上海卓易科技股份有限公司 移动终端摄像头智能调节方法及***
CN105391941A (zh) * 2015-11-06 2016-03-09 广东欧珀移动通信有限公司 照片处理方法及装置
CN105827967A (zh) * 2016-03-28 2016-08-03 广东欧珀移动通信有限公司 控制方法、控制装置及电子装置
CN107205116A (zh) * 2017-06-13 2017-09-26 广东欧珀移动通信有限公司 图像选择方法及相关产品

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3627823A4 *
WANG, LIBIN . ET AL.: "MutiFrame Used in Feature Phone", COMPUTER ENGINEERING AND SOFTWARE, vol. 35, no. 6, 30 June 2014 (2014-06-30), pages 62 - 64, XP009517868, ISSN: 1003-6970 *

Also Published As

Publication number Publication date
EP3627823A4 (en) 2020-04-22
US20200120278A1 (en) 2020-04-16
EP3627823B1 (en) 2023-05-17
CN107205116B (zh) 2019-12-31
EP3627823A1 (en) 2020-03-25
US11363196B2 (en) 2022-06-14
CN107205116A (zh) 2017-09-26

Similar Documents

Publication Publication Date Title
WO2018228241A1 (zh) 图像选择方法及相关产品
WO2019091486A1 (zh) 拍照处理的方法、装置、终端和存储介质
CN107820014B (zh) 一种拍摄方法、移动终端及计算机存储介质
WO2018228168A1 (zh) 图像处理方法及相关产品
CN112449099B (zh) 一种图像处理方法、电子设备及云服务器
US20160112632A1 (en) Method and terminal for acquiring panoramic image
WO2018219170A1 (zh) 控制对焦的方法、计算机设备及计算机可读存储介质
WO2019129020A1 (zh) 一种摄像头自动调焦方法、存储设备及移动终端
WO2016019926A1 (zh) 照片拍摄方法、装置及移动终端
CN108307106B (zh) 一种图像处理方法、装置及移动终端
CN111586431B (zh) 进行直播处理的方法、装置、设备及存储介质
JP2023518895A (ja) 画像撮影方法と電子機器
CN111010511B (zh) 全景分身图像拍摄方法及电子设备
JP6862564B2 (ja) 画像合成のための方法、装置および不揮発性コンピュータ可読媒体
CN109889695A (zh) 一种图像区域确定方法、终端及计算机可读存储介质
CN107734269B (zh) 一种图像处理方法及移动终端
CN112135045A (zh) 一种视频处理方法、移动终端以及计算机存储介质
CN107360363B (zh) 一种拍摄方法及终端
CN113472980B (zh) 一种图像处理方法、装置、设备、介质和芯片
CN108989560B (zh) 一种拍摄模式下的切屏控制方法及终端设备、存储介质
CN107995413B (zh) 一种拍照控制方法及移动终端
CN107566745B (zh) 一种拍摄方法、终端和计算机可读存储介质
CN113194227A (zh) 处理方法、移动终端和存储介质
CN111787228A (zh) 拍摄方法、装置、存储介质及移动终端
CN108335301B (zh) 一种拍照方法及移动终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18817165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018817165

Country of ref document: EP

Effective date: 20191217