WO2018220703A1 - 天然ガス液化装置用モジュール、及び天然ガス液化装置 - Google Patents

天然ガス液化装置用モジュール、及び天然ガス液化装置 Download PDF

Info

Publication number
WO2018220703A1
WO2018220703A1 PCT/JP2017/020056 JP2017020056W WO2018220703A1 WO 2018220703 A1 WO2018220703 A1 WO 2018220703A1 JP 2017020056 W JP2017020056 W JP 2017020056W WO 2018220703 A1 WO2018220703 A1 WO 2018220703A1
Authority
WO
WIPO (PCT)
Prior art keywords
natural gas
group
module
frame
equipment
Prior art date
Application number
PCT/JP2017/020056
Other languages
English (en)
French (fr)
Inventor
洋治 荒井
元史 賀川
雅幸 田辺
高志 野里
Original Assignee
日揮株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日揮株式会社 filed Critical 日揮株式会社
Priority to CA3057262A priority Critical patent/CA3057262A1/en
Priority to PCT/JP2017/020056 priority patent/WO2018220703A1/ja
Priority to US16/603,836 priority patent/US11408677B2/en
Priority to AU2017416235A priority patent/AU2017416235B2/en
Priority to RU2019130811A priority patent/RU2747868C1/ru
Publication of WO2018220703A1 publication Critical patent/WO2018220703A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0259Modularity and arrangement of parts of the liquefaction unit and in particular of the cold box, e.g. pre-fabrication, assembling and erection, dimensions, horizontal layout "plot"
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H5/00Buildings or groups of buildings for industrial or agricultural purposes
    • E04H5/02Buildings or groups of buildings for industrial purposes, e.g. for power-plants or factories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0055Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0087Propane; Propylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • F25J1/0215Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
    • F25J1/0216Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle using a C3 pre-cooling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0296Removal of the heat of compression, e.g. within an inter- or afterstage-cooler against an ambient heat sink
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/80Processes or apparatus using other separation and/or other processing means using membrane, i.e. including a permeation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/02Separating impurities in general from the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/64Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/66Separating acid gases, e.g. CO2, SO2, H2S or RSH
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/68Separating water or hydrates

Definitions

  • the present invention relates to a technology for constructing a natural gas liquefying apparatus for liquefying natural gas.
  • a natural gas liquefaction device is a facility for producing liquefied natural gas (LNG) by cooling and liquefying natural gas (NG) produced in a gas well or the like.
  • LNG liquefied natural gas
  • NG natural gas
  • efforts have been made to modularize a large number of devices constituting the NG liquefaction apparatus, and incorporate a group of devices in each block into a common frame (for example, Patent Document 1). .
  • the module design with a higher degree of freedom can be performed as the restrictions on the devices that can be incorporated in a common frame are smaller. Also, if the degree of integration of each module constituting the NG liquefaction device (for example, the number of devices that can be arranged per unit volume in the frame) can be increased, the module built at another location can be transported to the installation site to liquefy NG. It is also possible to reduce costs and man-hours required for transportation and assembly when constructing the apparatus.
  • modules must be designed with safety as a priority.
  • the present invention has been made under such a background, and the object thereof is natural gas having a high degree of integration while presuming an optimal equipment arrangement from the viewpoint of economy and safety focusing on the fireproof coating range.
  • An object of the present invention is to provide a liquefier module and a natural gas liquefier equipped with the natural gas liquefier module.
  • the module for a natural gas liquefier of the present invention is a module for a natural gas liquefier for constituting a natural gas liquefier.
  • the frame An air-cooled heat exchanger group disposed side by side on the upper surface of the frame for cooling the fluid handled in the natural gas liquefier;
  • the equipment group constituting the natural gas liquefying apparatus is a pretreatment part equipment group provided in a pretreatment part for pretreatment of natural gas before being liquefied, and a natural gas after being treated in the pretreatment part.
  • the other device group is constituted by the pre-processing unit device group.
  • the module for natural gas liquefier may have the following characteristics.
  • (A) The frame is divided into an arrangement area in which the air-cooled heat exchanger group is arranged on the upper surface and a non-arrangement area in which the air-cooled heat exchanger group is not arranged on the upper surface. And a liquid selected from a liquid group consisting of flammable liquid, flammable liquid, liquefied natural gas, and liquefied petroleum gas among the devices included in the other device group in the frame on the arrangement region side. Only non-handling equipment that is not handled is provided, and the remaining equipment is provided in the frame on the non-arrangement area side.
  • the frame is divided into an arrangement area in which the air-cooling heat exchanger group is arranged on the upper surface and a non-arrangement area in which the air-cooling heat exchanger group is not arranged on the upper surface.
  • a handling device that handles a liquid selected from a liquid group consisting of a flammable liquid, a flammable liquid, a liquefied natural gas, and a liquefied petroleum gas is provided on the frame on the arrangement region side.
  • the handling equipment provided in the frame on the arrangement area side is at least selected from a security equipment group consisting of a gas detector, a sprinkler, a fireproof cover, and a pressure line. There is one security facility.
  • the frame is divided into an arrangement area in which the air-cooling heat exchanger group is arranged on the upper surface and a non-arrangement area in which the air-cooling heat exchanger group is not arranged on the upper surface.
  • another device group arranged in the frame includes devices included in the liquefaction processing unit device group in addition to the preprocessing unit device group or in place of the preprocessing unit device group,
  • the equipment included in the partial equipment group is provided in the frame on the non-arranged area side. At this time, the equipment included in the liquefaction processing unit equipment group is equipment for paying out liquefied natural gas from the natural gas liquefying apparatus.
  • the pretreatment unit removes a gas-liquid separation unit for separating a liquid component contained in natural gas, a mercury removal unit for removing mercury contained in the natural gas, and an acid gas contained in the natural gas. Selected from a group of pretreatment units consisting of an acid gas removal unit for removing water, a water removal unit for removing moisture contained in natural gas, and a heavy component removal unit for removing heavy components contained in natural gas Including at least one pre-processing unit.
  • a natural gas liquefying apparatus includes the above-described plurality of natural gas liquefying apparatus modules, and another natural gas liquefying apparatus module in which the liquefaction processing unit device group is provided in a frame. It is characterized by including.
  • the present invention relates to a pretreatment unit device group for pretreatment of natural gas, which has a small occupation ratio in a module of a device that handles a flammable liquid or a cryogenic liquid among the device group constituting the natural gas liquefaction apparatus.
  • the air-cooled heat exchanger group are arranged on a common frame to constitute a module for a natural gas liquefier.
  • a highly integrated module for a natural gas liquefying apparatus can be configured while minimizing the influence of a necessary area.
  • composition of each processing block contained in a natural gas liquefying device It is an example of composition of each processing block contained in a natural gas liquefying device. It is an example of the top view which shows the layout of the module arrange
  • FIG. 1 is an example of a schematic configuration of a natural gas (NG) liquefier configured using the module for a natural gas liquefier of this example.
  • the NG liquefaction apparatus includes a gas-liquid separation block (gas-liquid separation unit) 11 that separates liquid from NG, a mercury removal block (mercury removal unit) 12 that removes mercury in NG, and carbon dioxide and hydrogen sulfide from NG.
  • gas-liquid separation block gas-liquid separation unit
  • mercury removal block mercury removal unit
  • An acid gas removal block (acid gas removal unit) 13 that removes acid gas such as, a water removal block (water removal unit) 14 that removes a trace amount of water contained in NG, and NG from which these impurities are removed
  • a liquefaction processing block (liquefaction processing unit) 15 that cools and liquefies to obtain LNG, and a storage tank 16 that stores the liquefied LNG are provided.
  • the gas-liquid separation block 11 separates liquid condensate at room temperature contained in NG transported by a pipeline or the like.
  • the gas-liquid separation block 11 is added as necessary for the purpose of preventing obstruction of the pipeline in the course of transportation, such as slender pipes and drums that are inclined to separate liquid from NG using the specific gravity difference. It is equipped with a group of equipment such as an antifreeze regeneration tower and a reboiler for heating and regenerating the antifreeze and their associated facilities.
  • the mercury removal block 12 removes a trace amount of mercury contained in NG after the liquid is separated.
  • the mercury removal block 12 includes a group of equipment such as a mercury adsorption tower in which an adsorption tower is filled with a mercury removing agent and its associated facilities.
  • the acidic gas removal block 13 removes acidic gases such as carbon dioxide and hydrogen sulfide that may solidify in LNG during liquefaction.
  • acid gas removal method include a method using a gas absorbing solution containing an amine compound and the like, and a method using a gas separation membrane that allows the acidic gas in NG to permeate.
  • the acid gas removal block 13 includes an absorption tower that counter-contacts the natural gas and the gas absorption liquid, a regeneration tower for regenerating the gas absorption liquid that has absorbed the acid gas, and regeneration.
  • a reboiler for heating the gas absorption liquid in the tower and a group of equipment such as these incidental facilities are provided.
  • the acidic gas removal block 13 includes a group of devices such as a gas separation unit that houses a large number of hollow fiber membranes in the main body and its associated facilities.
  • the moisture removal block 14 removes a trace amount of moisture contained in NG.
  • the moisture removal block 14 is filled with an adsorbent such as a molecular sieve or silica gel, and a plurality of adsorption towers that are alternately switched between an NG moisture removal operation and a regeneration operation for adsorbent that has adsorbed moisture. It is equipped with a heater for heating the adsorbent regeneration gas (for example, NG after moisture removal) supplied to the adsorption tower in which the operation is performed, and a group of equipment such as these incidental facilities.
  • adsorbent such as a molecular sieve or silica gel
  • the liquefaction processing block 15 includes a precooling heat exchanger that precools NG with a precooling refrigerant mainly composed of propane, a scrub column that removes heavy components from the precooled NG, nitrogen, methane, ethane, propane, and the like.
  • a cryogenic heat exchanger (MCHE: Main Cryogenic Heat Exchanger) that cools and liquefies NG with a mixed refrigerant (Mixed Refrigerant) containing multiple types of refrigerant raw materials, precooling refrigerant and mixed refrigerant evaporated by heat exchange
  • the apparatus includes a refrigerant compressor 21 that compresses gas, and a group of devices such as these incidental facilities.
  • FIG. 1 shows an example in which the motor 22 is used as a power source for driving the refrigerant compressor 21, a gas turbine or the like may be used depending on the scale of the refrigerant compressor 21.
  • the regeneration tower A number of air-cooled heat exchangers (ACHE: Air-Cooled) are used to cool the fluids handled in the NG liquefaction equipment. Heat Exchanger) 41 is provided.
  • ACHE Air-Cooled
  • the liquefaction processing block 15 includes a deethanizer for separating ethane from the liquid separated from the cooled NG (liquid heavy component), a depropanizer for separating propane from the liquid after ethane separation, and a liquid after the propane separation.
  • a rectifying block 151 including a debutizer for separating butane from the liquid and obtaining liquid condensate at room temperature is provided.
  • Each of the deethanizer, depropanizer, and debutanizer includes a rectifying column that performs rectification of each component, a reboiler that heats the liquid in each rectifying column, and a group of equipment such as these incidental facilities.
  • the rectification block 151 corresponds to the heavy component removal unit of the present embodiment.
  • the liquefied natural gas (LNG) that has been liquefied and supercooled in the liquefaction processing block 15 is sent to the storage tank 16 and stored therein.
  • the LNG stored in the storage tank 16 is fed by an LNG pump (not shown) and shipped to an LNG tanker or pipeline.
  • each processing block gas-liquid separation block 11, mercury removal block 12, acid gas removal block 13, moisture removal block 14, rectification block related to pretreatment before NG is liquefied. 151) is called the hot end (Hot End: HE)
  • the liquefaction processing block 15 including each refrigerant compressor 21) that cools and liquefies NG to obtain LNG is called the cold end (Cold End: CE)
  • These processing blocks may be classified.
  • Each processing block constituting the HE corresponds to a preprocessing unit of this example, and a device group provided in each processing block (hereinafter also referred to as “HE-side device group”) corresponds to a preprocessing unit device group. is doing.
  • the liquefaction processing block 15 constituting the CE corresponds to the liquefaction processing unit of this example, and a device group provided in the liquefaction processing block 15 (hereinafter also referred to as “CE side device group”) is a liquefaction processing unit. It corresponds to the device group.
  • the device group provided in the NG liquefier is divided into a HE side device group and a CE side device group.
  • a plurality of NG liquefying device modules configured to be incorporated in a common frame are provided. The specific configuration of the NG liquefier module will be described below with reference to FIGS.
  • each of the NG liquefaction apparatuses of this example has a plurality of HE modules 3a and CE modules 3b arranged in two front and rear rows, on both sides of the row where the CE modules 3b are arranged,
  • the refrigerant compressor 21 that is an MR compressor or a C3 compressor is arranged.
  • the HE module 3a corresponds to “a module for natural gas liquefier”
  • the CE module 3b corresponds to “a module for other natural gas liquefier”.
  • the arrangement side of the HE module 3a row is also referred to as the front side and the arrangement side of the CE module 3b row is referred to as the back side along the Y-axis direction shown in each drawing.
  • each HE module 3 a has an HE side processing block (gas-liquid separation block 11, mercury removal block 12, acid gas removal block 13, moisture removal block 14, rectification block 151, in the frame 30.
  • This is a structure in which HE side device groups constituting the above are arranged.
  • an air-cooled heat exchanger (ACHE) group 4 including a plurality of ACHEs 41 is disposed on the upper surface side of the frame 30 that is common to the frame 30 on which the HE-side device group is disposed. ing.
  • each CE module 3b has a structure in which a CE side device group constituting the liquefaction processing block 15 on the CE side is arranged in the frame 30, but the ACHE group 4 is provided on the upper surface of the frame 30.
  • the NG liquefying apparatus of this example is characterized in that the HE module 3a is configured by limiting the devices provided in the frame 30 common to the ACHE group 4 to the HE side device group.
  • the reason for providing such a limitation will be described.
  • FIG. 4 shows a configuration example of a conventional NG liquefaction apparatus.
  • the figure shows an example in which the device group constituting the NG liquefaction apparatus is classified into an HE side device group, a CE side device group, and an ACHE group 4 and each is arranged on a different frame 30. That is, only the HE side device group is arranged in the frame 30 of the HE module 3a ', and only the CE side device group is arranged in the frame 30 of the CE module 3b. Further, only the ACHE group 4 is disposed on the upper surface of the frame 30 of the ACHE module 3c.
  • the HE module 3a ', the CE module 3b, and the ACHE module 3c are separated as in the NG liquefaction apparatus shown in FIG. 4, the number of modules constituting the NG liquefaction apparatus increases. For this reason, in the installation site of the modules 3a ', 3b, 3c, not only the cost of installing the connecting pipes connecting these modules 3a', 3b, 3c and connecting the electric cables increases, It is also difficult to reduce the number of man-hours required for this construction.
  • a more compact NG liquefaction apparatus can be configured by reducing gaps formed between the arrangement positions of the modules 3a′3b and 3c and an unused space in the frame 30.
  • the ACHE 41 provided on the upper surface of the ACHE module 3c rotates a fan (not shown) to take in cooling air from the lower side and cools the fluid to be cooled flowing in the tube (not shown). The air is discharged upward.
  • a fan not shown
  • the ACHE 41 passes through the installation area of the NG liquefaction device.
  • the steel structure constituting the frame 30 or the like may be damaged such as low temperature embrittlement. If the cryogenic material is scattered by the ACHE 41, the damage range may be expanded. There is also.
  • the space below the ACHE group 4 in the conventional ACHE module 3c is a fluid to be cooled that is cooled by the ACHE 41, and other various processing blocks of the HE module 3a 'and the CE module 3b.
  • a pipe rack in which a large number of pipes 42 through which the fluid passed between (gas-liquid separation block 11, mercury removal block 12, acid gas removal block 13, moisture removal block 14, liquefaction processing block 15, rectification block 151) flows are arranged It has become.
  • the piping 42 can suppress the possibility of fluid leakage to a local range by minimizing the possibility of leakage such as a flange portion.
  • the HE-side device group and the CE-side device group arranged in the HE module 3a 'and the CE module 3b include devices having a larger volume than piping and the like. For this reason, even if the supply of fluid to these devices is stopped when leakage occurs, there is a possibility that a larger outflow will occur.
  • the flammability is relatively low among the combustible liquids and the combustible liquids.
  • the equipment which handles the liquid (Flammable Liquid) and LNG / LPG (liquefied petroleum gas) was listed.
  • the liquids handled in the NG liquefier are not only flammable and flammable, but many of them increase in volume due to vaporization. Therefore, care should be taken when handling these liquids below the ACHE 41. There is a need to.
  • FIGS. 2 to 4 show, among the devices included in the HE side device group and the CE side device group, devices (handling devices 62 and 72) that handle flammable liquids, flammable liquids, and LNG / LPG.
  • the hatch is attached.
  • devices that do not handle these substances are shown in white.
  • many of the CE side devices arranged in the CE module 3 b are handling devices 72, and the occupation rate of those devices in the module is high, while the occupation rate of the non-handling devices 71. Is relatively low.
  • the HE side device group arranged in the HE module 3a ′ has a lower occupation ratio of those devices in the module of the handling device 62 compared to the CE side device group, while the non-handling device 61 is occupied. The rate is high.
  • the NG liquefying apparatus of this example has a HE in a frame 30 in which the ACHE group 4 is arranged on the upper surface side.
  • the HE module 3a in which devices are limited to the side device group and the CE module 3b in which the CE side device group is arranged in the frame 30 in which the ACHE group 4 is not provided are configured in a conventional manner.
  • the HE side device group includes the handling device 62 that handles flammable liquid, flammable liquid, and LNG / LPG. Therefore, the HE module 3a of this example includes these handling devices 62. The module is integrated in consideration of the existence of.
  • a detailed configuration of the HE module 3a of the present example hereinafter also referred to as a composite HE module 3a
  • the composite HE module 3a includes a frame 30 having a rectangular planar shape.
  • the frame 30 is a steel frame structure that covers a necessary portion with a refractory material such as concrete or synthetic resin, or a refractory material that protects against an extremely low temperature liquid (also has a refractory capability).
  • An ACHE group 4 including a large number of ACHEs 41 is arranged on the upper surface of the frame 30.
  • a plurality of rows of ACHEs 41 arranged in the front-rear direction are arranged on the upper surface of the frame 30, and a plurality of rows in the width direction of the frame 30 (for convenience of illustration, FIG.
  • the arrangement area of the ACHE group 4 is configured by providing the same.
  • two arrangement regions of the ACHE group 4 are arranged on the upper surface of the frame 30 with a gap therebetween.
  • the space on the lower side of the arrangement area of each of these ACHE groups 4 is the same as that of the conventional ACHE module 3c shown in FIG.
  • each frame 30 is provided so as to extend to the front side of the arrangement area of the ACHE group 4.
  • positioned HE side apparatus group in the inside of the said extended frame 30 and the space below the ACHE group 4 differs from the conventional HE module 3a 'and the ACHE module 3c.
  • FIG. 2 a part of the ACHE group 4 positioned on the upper side of these devices is cut out for easy understanding of the arrangement of the devices on the lower side of the ACHE group 4.
  • a region where the ACHE group 4 is arranged on the upper surface of the frame 30 is also referred to as an arrangement region A1
  • a region where the ACHE group 4 is not arranged on the upper surface is also referred to as a non-arrangement region A2.
  • the handling device 62 is preferentially arranged in the non-arrangement area A2 (the handling device 62b in FIGS. 2 and 3).
  • the HE module 3a ′ shown in FIG. 4 has a handling device 62b arranged at a position adjacent to the ACHE module 3c, and a space in which the handling device 62b can be arranged below the ACHE 41. To do. At this time, if the HE module 3a ′ and the ACHE module 3c are integrated, it seems natural to dispose the handling device 62b below the ACHE 41.
  • the handling device 62b handles flammable liquids, flammable liquids, and LNG / LPG, and is disposed in the non-arranged area A2 that is not easily affected by the ACHE 41 even when leakage of these fluids occurs.
  • the arrangement position of the handling device 62b can be changed as shown in FIG. 3, the layout is changed, and the non-handling device 61 is arranged in the arrangement area A1 as much as possible (FIG. 3).
  • Non-handling device 61a Non-handling device 61a).
  • the handling device 62 even if it is considered that the handling device 62 is preferentially arranged in the non-arrangement region A2, the handling device 62 must be arranged in the arrangement region A1 due to the arrangement space. There may be no case (the handling device 62a in FIGS. 2 and 3). In this case, at least one security facility selected from a security facility group consisting of a gas detector, a sprinkler, a fireproof cover, and a pressure line is attached to the handling device 62a arranged in the arrangement area A1. To prevent an early response and an increase in impact when a leak occurs.
  • a security facility group consisting of a gas detector, a sprinkler, a fireproof cover, and a pressure line
  • the composite HE module 3a of this example is the optimum security equipment for the handling device 62a that must be arranged in the arrangement area A1 after considering the layout in which the handling equipment 62 is not arranged in the arrangement area A1 as much as possible. Install. Accordingly, it is possible to obtain the composite HE module 3a in which sufficient safety is ensured while minimizing the additional fireproof design cost associated with the module construction.
  • the LNG payout device for example, an end flash drum for adjusting the temperature of the LNG
  • the CE side Even if it is included in the device group, it may be unavoidably disposed in the composite HE module 3a.
  • the handling devices 62a and 62b of the HE side device group described above first, after considering a layout in which the handling device 72 is not arranged as much as possible in the arrangement area A1, the arrangement is made in the arrangement area A1.
  • the above-described security equipment is provided (handling equipment 72b and 72a in FIG. 2).
  • each processing block 11, 12, 13, 14, 151 may be divided into a plurality of composite HE modules 3a, or a plurality of processing blocks 11, 12, 13, 14, 151 in one composite HE module 3a. May be provided.
  • a CE module 3b having a CE-like device group arranged in the frame 30 and a refrigerant compressor 21 such as an MR compressor or a C3 compressor is constructed.
  • the plurality of composite HE modules 3a are arranged in a row in the horizontal direction with the arrangement area A1 of the ACHE group 4 directed in the same direction.
  • the plurality of CE modules 3b including the CE side device group are arranged in a row on the rear side of the row of the composite HE modules 3a across the region where the arrangement region A1 of the ACHE group 4 is arranged in the horizontal direction.
  • the refrigerant compressor 21 of C3 compressor and MR compressor is arrange
  • the composite HE module 3a, the CE module 3b, and the refrigerant compressor 21 are connected to each other by a joint pipe or the like, but the description of the pipe is omitted in FIG.
  • the composite HE module 3a has the following effects.
  • the equipment group constituting the NG liquefaction apparatus the HE-side equipment group and the ACHE group 4 having a low occupancy ratio of the equipment that handles flammable liquid, flammable liquid, and LNG / LPG (the handling equipment 62) are the common frame 30.
  • the composite HE module 3a is configured by being arranged inside.
  • a composite HE having a high degree of integration and minimizing additional fireproofing costs in accordance with API2218.
  • the module 3a can be configured.
  • the configuration of the NG liquefaction apparatus is not limited to the example of FIG. 1, and if necessary, installation of a part of the processing block on the HE side may be omitted, or processing blocks for other purposes may be omitted. It may be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical & Material Sciences (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

【課題】安全性の高い機器配置を前提としつつ、集積度の高い天然ガス液化装置用モジュールなどを提供する。 【解決手段】天然ガス液化装置用モジュール3aは、架構30の上面に並べて配置され、天然ガス液化装置内で取り扱われる流体の冷却を行うための空冷式熱交換器群4と、架構30内にて、空冷式熱交換器群4の配置高さよりも下方側に配置されると共に、前記天然ガス液化装置の一部を構成する他の機器群と、を備える。そして、前記天然ガス液化装置を構成する機器群を、液化される前の天然ガスの前処理を行う前処理部に設けられる前処理部機器群と、前記前処理部にて処理された後の天然ガスを液化する処理に係る液化処理部に設けられる液化処理部機器群と、に分類分けしたとき、前記他の機器群は、前記前処理部機器群によって構成されている。

Description

天然ガス液化装置用モジュール、及び天然ガス液化装置
 本発明は、天然ガスの液化を行う天然ガス液化装置を建造する技術に関する。
 天然ガス液化装置(NG液化装置)は、ガス井などで産出した天然ガス(NG:Natural Gas)を冷却、液化し、液化天然ガス(LNG:Liquefied Natural Gas)を製造する設備である。 
 近年、NG液化装置を建造するにあたり、NG液化装置を構成する多数の機器をブロック分けし、各ブロックの機器群を共通の架構内に組み込むモジュール化の取り組みがなされている(例えば特許文献1)。
 このようにNG液化装置をモジュール化する場合には、共通の架構内に組み込むことが可能な機器の制約が少ないほど、自由度の高いモジュール設計を行うことができる。 
 また、NG液化装置を構成する各モジュールの集積度(例えば、架構内の単位容積あたりに配置可能な機器の数)を高めることができれば、他所で建造したモジュールを設置現場に搬送してNG液化装置を建設する場合における、搬送や組み立てに要するコストや工数を削減することも可能となる。
 一方で、可燃性の液体や極低温の液体を取り扱うNG液化装置においては、安全性を優先したモジュールの設計を行わなければならない。
国際公開第2014/028961号
 本発明は、このような背景の下になされたものであり、その目的は、耐火被覆範囲に着目した経済性と安全性の観点から最適な機器配置を前提としつつ、集積度の高い天然ガス液化装置用モジュール、及び当該天然ガス液化装置用モジュールを備えた天然ガス液化装置を提供することにある。
 本発明の天然ガス液化装置用モジュールは、天然ガス液化装置を構成するための天然ガス液化装置用モジュールにおいて、
 架構と、
 前記架構の上面に並べて配置され、前記天然ガス液化装置内で取り扱われる流体の冷却を行うための空冷式熱交換器群と、
 前記架構内にて、前記空冷式熱交換器群の配置高さよりも下方側に配置されると共に、前記天然ガス液化装置の一部を構成する他の機器群と、を備え、
 前記天然ガス液化装置を構成する機器群を、液化される前の天然ガスの前処理を行う前処理部に設けられる前処理部機器群と、前記前処理部にて処理された後の天然ガスを液化する処理に係る液化処理部に設けられる液化処理部機器群と、に分類分けしたとき、前記他の機器群は、前記前処理部機器群によって構成されていることを特徴とする。
 前記天然ガス液化装置用モジュールは以下の特徴を備えていてもよい。
(a)前記架構は、その上面に前記空冷式熱交換器群が配置された配置領域と、当該上面に前記空冷式熱交換器群が配置されていない非配置領域とに区分けされていることと、前記配置領域側の架構内には、前記他の機器群に含まれる機器のうち、可燃性液体、引火性液体、液化天然ガス、及び液化石油ガスからなる液体グループから選択される液体を取り扱わない非取扱機器のみが設けられ、残る機器が前記非配置領域側の架構内に設けられていること。
(b)前記架構は、その上面に前記空冷式熱交換器群が配置された配置領域と、当該上面に前記空冷式熱交換器群が配置されていない非配置領域とに区分けされていることと、前記他の機器群に含まれる機器のうち、可燃性液体、引火性液体、液化天然ガス、及び液化石油ガスからなる液体グループから選択される液体を取り扱う取扱機器が前記配置領域側の架構内に設けてられていることと、前記配置領域側の架構内に設けられた前記取扱機器には、ガス検知器、スプリンクラー、耐火カバー、及びデプレッシャーラインからなる保安設備グループから選択される少なくとも一つの保安設備が併設されていること。
(c)前記架構は、その上面に前記空冷式熱交換器群が配置された配置領域と、当該上面に前記空冷式熱交換器群が配置されていない非配置領域とに区分けされていることと、前記架構内に配置される他の機器群が、前記前処理部機器群に加えて、または前処理部機器群に替えて前記液化処理部機器群に含まれる機器を含み、当該液化処理部機器群に含まれる機器は、前記非配置領域側の架構内に設けられていること。このとき、前記液化処理部機器群に含まれる機器は、液化天然ガスを天然ガス液化装置から払い出すための機器であること。
(d)前記前処理部は、天然ガスに含まれる液体分を分離するための気液分離部、天然ガスに含まれる水銀を除去するための水銀除去部、天然ガスに含まれる酸性ガスを除去するための酸性ガス除去部、天然ガスに含まれる水分を除去するための水分除去部、天然ガスに含まれる重質分を除去するための重質分除去部からなる前処理部グループから選択される少なくとも一つの前処理部を含むこと。
 また、他の発明に係る天然ガス液化装置は、上述の複数の天然ガス液化装置用モジュールと、架構内に、前記液化処理部機器群が設けられた他の天然ガス液化装置用モジュールと、を含むことを特徴とする。
 本発明は、天然ガス液化装置を構成する機器群のうち、可燃性の液体や、極低温の液体を取り扱う機器のモジュール内における占有率が少ない、天然ガスの前処理用の前処理部機器群と空冷式熱交換器群とを共通の架構に配置して天然ガス液化装置用モジュールを構成する。この結果、可燃性や極低温の液体を取り扱う機器の占有率が多い、天然ガスの液化用の液化処理部機器群と比較して、後述する国際設計基準(API2218)による液プール火災による耐火被覆必要領域の影響を最小限に抑えつつ、集積度の高い天然ガス液化装置用モジュールを構成することができる。
天然ガス液化装置に含まれる各処理ブロックの構成例である。 前記天然ガス液化装置内に配置されるモジュールのレイアウトを示す平面図の例である。 実施の形態に係る天然ガス液化装置用モジュールの側面図である。 従来の天然ガス液化装置用モジュールの側面図である。
 図1は、本例の天然ガス液化装置用モジュールを用いて構成される天然ガス(NG)液化装置の概略構成の一例である。 
 NG液化装置は、NGから液体を分離する気液分離ブロック(気液分離部)11と、NG中の水銀の除去を行う水銀除去ブロック(水銀除去部)12と、NGから二酸化炭素や硫化水素などの酸性ガスを除去する酸性ガス除去ブロック(酸性ガス除去部)13と、NGに含まれる微量の水分を除去する水分除去ブロック(水分除去部)14と、これらの不純物が除去されたNGを冷却、液化してLNGを得る液化処理ブロック(液化処理部)15と、液化されたLNGを貯蔵する貯蔵タンク16とを備える。
 気液分離ブロック11は、パイプラインなどにより輸送されてきたNGに含まれる常温で液体のコンデンセートを分離する。例えば気液分離ブロック11は、比重差を利用してNGから液体を分離するための傾斜配置された細長いパイプやドラム、輸送の過程におけるパイプラインの閉塞を防止する目的で必要に応じて添加される不凍液の加熱再生を行う不凍液の再生塔やリボイラー、及びこれらの付帯設備などの機器群を備えている。
 水銀除去ブロック12は、液体が分離された後のNGに含まれる微量の水銀を除去する。例えば水銀除去ブロック12は、吸着塔内に水銀除去剤を充填した水銀吸着塔やその付帯設備などの機器群を備えている。
 酸性ガス除去ブロック13は、液化の際にLNG中で固化するおそれのある二酸化炭素や、硫化水素などの酸性ガスを除去する。酸性ガスの除去法としては、アミン化合物などを含むガス吸収液を用いる手法や、NG中の酸性ガスを透過させるガス分離膜を用いる手法が挙げられる。
 ガス吸収液が採用されている場合、酸性ガス除去ブロック13は、天然ガスとガス吸収液とを向流接触させる吸収塔や、酸性ガスを吸収したガス吸収液を再生するための再生塔、再生塔内のガス吸収液を加熱するためのリボイラー、及びこれらの付帯設備などの機器群を備える。 
 また、ガス分離膜が採用されている場合、酸性ガス除去ブロック13は、本体内に多数本の中空糸膜を収容したガス分離ユニットやその付帯設備などの機器群を備える。
 水分除去ブロック14は、NG中に含まれる微量の水分を除去する。例えば水分除去ブロック14は、モレキュラーシーブやシリカゲルなどの吸着剤が充填され、NGの水分除去操作と、水分を吸着した吸着剤の再生操作とが交互に切り替えて実施される複数の吸着塔、再生操作が行われている吸着塔に供給される吸着剤の再生用ガス(例えば水分除去後のNG)の加熱を行うヒーター、及びこれらの付帯設備などの機器群を備えている。
 以上に説明した各種の処理ブロックにて不純物が除去された後のNGは、液化処理ブロック15に供給されて液化される。例えば液化処理ブロック15は、プロパンを主成分とする予冷用冷媒によってNGの予冷を行う予冷熱交換器、予冷後のNGから重質分を除去するスクラブカラム、窒素、メタン、エタン、プロパンなどの複数種類の冷媒原料を含む混合冷媒(Mixed Refrigerant)によりNGを冷却して液化、過冷却する極低温熱交換器(MCHE:Main Cryogenic Heat Exchanger)、熱交換により気化した予冷用冷媒や混合冷媒のガスを圧縮する冷媒圧縮機21、及びこれらの付帯設備などの機器群を備える。
 なお図1においては、予冷用冷媒や混合冷媒の個別の冷媒圧縮機(混合冷媒用の低圧MR圧縮機、高圧MR圧縮機、予冷用冷媒用のC3圧縮機)を1つにまとめて記載した他は、上述の各機器の個別の記載は省略してある。
 また図1には、冷媒圧縮機21を駆動する動力源としてモーター22を用いた例を示してあるが、冷媒圧縮機21の規模などに応じてガスタービンなどを用いてもよい。
 また上述の液化処理ブロック15の各冷媒圧縮機21の後段には、圧縮された冷媒を冷却するための各種クーラーやコンデンサー、酸性ガス除去ブロック13がガス吸収液を用いている場合に、再生塔にて再生されたガス吸収液や塔頂液を冷却するためのクーラーなどを構成し、NG液化装置内で取り扱われる流体の冷却を行うための多数の空冷式熱交換器(ACHE:Air-Cooled Heat Exchanger)41が設けられている。
 さらに液化処理ブロック15には、冷却されたNGから分離された液体(液体重質分)から、エタンを分離するデエタナイザと、エタン分離後の液体からプロパンを分離するデプロパナイザと、プロパン分離後の液体からブタンを分離し、常温で液体のコンデンセートを得るデブタナイザとを含む精留ブロック151が併設されている。デエタナイザ、デプロパナイザ、デブタナイザは、それぞれ各成分の精留を行う精留塔、各精留塔内の液体を加熱するリボイラー、及びこれらの付帯設備などの機器群を備えている。精留ブロック151は、本実施の形態の重質分除去部に相当する。
 貯蔵タンク16には、液化処理ブロック15にて液化、過冷却された後の液化天然ガス(LNG)が送液され、貯蔵される。貯蔵タンク16に貯蔵されたLNGは、不図示のLNGポンプによって送液され、LNGタンカーやパイプラインへと出荷される。
 ここで一般に、NG液化装置においては、NGが液化される前の前処理に係る各処理ブロック(気液分離ブロック11、水銀除去ブロック12、酸性ガス除去ブロック13、水分除去ブロック14、精留ブロック151)をホットエンド(Hot End:HE)と呼び、NGを冷却、液化してLNGを得る液化処理ブロック15(各冷媒圧縮機21を含む)をコールドエンド(Cold End:CE)と呼んで、これらの処理ブロックを分類分けする場合がある。
 HEを構成する各処理ブロックは、本例の前処理部に相当し、各処理ブロックに設けられている機器群(以下、「HE側機器群」ともいう)は、前処理部機器群に相当している。またCEを構成する液化処理ブロック15は、本例の液化処理部に相当し、当該液化処理ブロック15に設けられている機器群(以下、「CE側機器群」ともいう)は、液化処理部機器群に相当している。
 以上に構成例を説明したNG液化装置は、既述のように、当該NG液化装置に設けられる機器群がHE側機器群とCE側機器群とにブロック分けされ、ブロック分けされた機器群を共通の架構内に組み込んで構成された複数のNG液化装置用モジュールを備えている。 
 以下、図2~4も参照しながらNG液化装置用モジュールの具体的構成について説明する。
 図2の平面図に示すように本例のNG液化装置は、各々、複数のHEモジュール3aと、CEモジュール3bとを前後2列に並べ、CEモジュール3bが並べられた列の両脇に、MR圧縮機やC3圧縮機である冷媒圧縮機21を配置した構成となっている。本NG液化装置において、HEモジュール3aは「天然ガス液化装置用モジュール」に相当し、CEモジュール3bは「他の天然ガス液化装置用モジュール」に相当している。 
 なお、図2~4に係る説明では、各図中に示したY軸方向に沿って、HEモジュール3aの列の配置側を手前側、CEモジュール3bの列の配置側を奥手側とも呼ぶ。
 図3に示すように、各HEモジュール3aは、架構30内に、HE側の処理ブロック(気液分離ブロック11、水銀除去ブロック12、酸性ガス除去ブロック13、水分除去ブロック14、精留ブロック151)を構成するHE側機器群を配置した構造となっている。さらに、本例のHEモジュール3aは、HE側機器群が配置されている架構30と共通の架構30の上面側に、複数のACHE41からなる、空冷式熱交換器(ACHE)群4が配置されている。
 一方で各CEモジュール3bは、架構30内に、CE側の液化処理ブロック15を構成するCE側機器群を配置した構造となっているが、当該架構30の上面にはACHE群4は設けられていない。 
 このように、本例のNG液化装置は、ACHE群4と共通の架構30に設けられる機器をHE側機器群に限定してHEモジュール3aを構成した点に特徴を有する。以下、このような限定を設けた理由について説明する。
 図4は、従来のNG液化装置の構成例を示している。同図には、NG液化装置を構成する、機器群をHE側機器群と、CE側機器群と、ACHE群4とに分類分けし、各々、異なる架構30に配置した例を示している。即ち、HEモジュール3a’の架構30内にはHE側機器群のみが配置され、CEモジュール3bの架構30内にはCE側機器群のみが配置されている。またACHEモジュール3cの架構30の上面には、ACHE群4のみが配置されている。
 図4に示すNG液化装置のように、HEモジュール3a’、CEモジュール3b、ACHEモジュール3cが分離されていると、NG液化装置を構成するモジュール数が多くなってしまう。このため、モジュール3a’、3b、3cの据え付け現場において、これらのモジュール3a’、3b、3c間を繋ぐ取り合い配管の設置や電気ケーブルの繋ぎ込み作業のコストが上昇してしまうばかりでなく、これらの工事に要する工数の低減も困難となる。
 このような問題点に対し、図4に示した各モジュール3a’3b、3cについて、共通の架構30内に、より多くの機器を組み込んで、複数のモジュール3a’3b、3cを統合することができれば、モジュール数を低減することが可能となり、上述の問題の解決にもつながる。 
 また、各モジュール3a’3b、3cの配置位置の間に形成される隙間や架構30内の未活用空間を低減してよりコンパクトなNG液化装置を構成することもできる。
 一方で、ACHEモジュール3cの上面に設けられているACHE41は、ファン(不図示)を回転させて下方側から冷却用の空気を取り込み、チューブ(不図示)内を流れる被冷却流体を冷却した後の空気を上方側へ向けて排出する。 
 このACHEモジュール3cにおいて、ACHE41の稼働中にその下方側で可燃性の流体の漏洩などが発生すると、可燃物の成分を含む空気が吸い上げられ、ACHE41を介して、NG液化装置の設置領域内に四散してしまうおそれもある。また、極低温の液体が流出した場合には、架構30などを構成する鉄骨構造物が低温脆化などの損傷を受けるおそれがあり、ACHE41によって当該極低温物質が四散すると、損傷範囲が広がるおそれもある。
 ここで図4に示すように、従来のACHEモジュール3cにおけるACHE群4の下方側の空間は、ACHE41にて冷却される被冷却流体や、その他、HEモジュール3a’やCEモジュール3bの各種処理ブロック(気液分離ブロック11、水銀除去ブロック12、酸性ガス除去ブロック13、水分除去ブロック14、液化処理ブロック15、精留ブロック151)間で受け渡される流体が流れる多数の配管42を配置したパイプラックとなっている。 
 配管42は、フランジ部などの漏洩可能性のある箇所を最小限にすることで、流体の漏洩の可能性は局所的な範囲に抑えることができる。
 一方、HEモジュール3a’やCEモジュール3bに配置されているHE側機器群やCE側機器群には、配管などと比較して容積が大きい機器も含まれている。このため、漏洩発生時にこれらの機器への流体の供給を停止しても、より大規模の流出が発生してしまうおそれがある。
 このように、図4に示すモジュール3a’3b、3cのさらなる統合は、統合の実施に伴う影響を正確に把握しつつ、十分な安全性を確保した状態で実施する必要がある。
 そこで本例のNG液化装置においては、HE側機器群やCE側機器群に含まれる機器のうち、可燃性の液体(Combustible Liquid)、可燃性の液体のうち比較的、引火点が低い引火性の液体(Flammable Liquid)、LNG/LPG(liquefied petroleum gas)を取り扱う機器をリストアップした。 
 特にNG液化装置内で取り扱われる液体は、可燃性や引火性を有するばかりでなく、気化によって容積が増大するものも多いことから、ACHE41の下方側におけるこれらの液体の取り扱いには、十分留意をする必要がある。
 上記の観点で図2~4には、HE側機器群やCE側機器群に含まれる機器のうち、可燃性液体、引火性液体やLNG/LPGを取り扱う機器(取扱機器62、72)を斜線のハッチを付してある。また、これらの物質を取り扱わない機器(非取扱機器61、71)は、白抜きの状態で記してある。
 図4に模式的に示すように、CEモジュール3bに配置されるCE側機器群の多くは取扱機器72であり、モジュール内におけるそれらの機器の占有率が高い一方、非取扱機器71の占有率は比較的低い。 
 これに対してHEモジュール3a’に配置されるHE側機器群は、CE側機器群と比較して、取扱機器62のモジュール内におけるそれらの機器の占有率が低い一方、非取扱機器61の占有率が高い。
 このようなHE側機器群、CE側機器群の特徴に着目し、図2、3に示すように、本例のNG液化装置は、上面側にACHE群4が配置された架構30内にHE側機器群に限定して機器を設けたHEモジュール3aと、従来通り、ACHE群4が設けられていない架構30内にCE側機器群を配置したCEモジュール3bとを組み合わせて構成されている。
 一方で、既述のようにHE側機器群には、可燃性液体、引火性液体やLNG/LPGを取り扱う取扱機器62も含まれているために、本例のHEモジュール3aはこれら取扱機器62の存在に配慮したモジュールの統合を行っている。 
 以下、本例のHEモジュール3a(以下、複合HEモジュール3aともよぶ)の詳細な構成について説明する。
 図2、3に示すように、複合HEモジュール3aは、平面形状が矩形の架構30を備えている。架構30は、コンクリートや合成樹脂などの耐火材や、極低温の液体から保護する耐冷材(耐火能力も有する)で必要な箇所を覆った鉄骨製の骨組み構造体である。
 架構30の上面には多数のACHE41を含むACHE群4が配置されている。本例の複合HEモジュール3aにおいて、架構30の上面には、前後方向に複数台並べたACHE41の列を、架構30の幅方向に複数列(図示の便宜上、図2には3列の例を示してある)設けることによりACHE群4の配置領域を構成している。本例の複合HEモジュール3aにおいて、架構30の上面には、前記ACHE群4の配置領域が、間隔を開けて前後に2つ配置されている。 
 これら各ACHE群4の配置領域の下方側の空間は、多数の配管42が配置されたパイプラックとなっている点については、図4に示す従来のACHEモジュール3cと同様である。
 また図2、3に示すように、本例の複合HEモジュール3aにおいて、各架構30は、ACHE群4の配置領域の前方側まで延伸されるように設けられている。そして、当該延伸された架構30内と、ACHE群4の下方側の空間とにHE側機器群を配置している点が、従来のHEモジュール3a’、ACHEモジュール3cと異なる。
 このように、ACHE群4の下方側の空間をHE側機器群を配置する空間として活用することにより、図4に示すHEモジュール3a’とACHEモジュール3cとの合計の容積と比較して、図3に示す統合後の複合HEモジュール3aの容積を低減することもできる。
 ここで図2においては、ACHE群4の下方側の機器の配置を分かりやすく表すため、これらの機器の上方側に位置するACHE群4の一部を切り欠いて示してある。 
 また以下の説明では、架構30の上面にACHE群4が配置された領域を配置領域A1、当該上面にACHE群4が配置されていない領域を非配置領域A2ともいう(図3参照)。
 複合HEモジュール3aの基本的な設計方針として、HE側機器群を構成する各機器のうち、取扱機器62は非配置領域A2内に優先して配置する(図2、3の取扱機器62b)。 
 例えば図4に示すHEモジュール3a’には、ACHEモジュール3cに隣接する位置に取扱機器62bが配置されていると共に、ACHE41の下方側には当該取扱機器62bを配置することが可能な空間が存在する。このとき、HEモジュール3a’とACHEモジュール3cとを統合するのであれば、ACHE41の下方側に取扱機器62bを配置することが自然であるようにも見える。
 しかしながら、取扱機器62bは、可燃性液体、引火性液体やLNG/LPGを取り扱うところ、これらの流体の漏洩が発生した場合であってもACHE41の影響を受けにくい非配置領域A2内に配置することを優先してレイアウト変更が可能か否かを検討する。 
 その結果、図3に示すように取扱機器62bの配置位置を変更することが可能であれば、レイアウト変更を実施し、可能な限り配置領域A1内には非取扱機器61を配置する(図3の非取扱機器61a)。
 このように、取扱機器62を非配置領域A2内に優先して配置するように検討を行った場合であっても、配置スペースの都合上、配置領域A1に取扱機器62を配置せざるを得ない場合もある(図2、3の取扱機器62a)。
 この場合には、配置領域A1に配置される取扱機器62aに対して、ガス検知器、スプリンクラー、耐火カバー、及びデプレッシャーラインからなる保安設備グループから選択される少なくとも一つの保安設備を併設することにより、漏洩発生時の早期対応や影響拡大の防止を図る。
 NG液化装置や石油精製装置などのオイルアンドガスプラントの安全に係る国際設計基準であるAPI(American Petroleum Institute) Publication 2218には、ACHE群4の配置領域A1における耐火被覆の実施範囲を定めている。 
 本例の複合HEモジュール3aは、配置領域A1には取扱機器62をできるだけ配置しないレイアウトを検討したうえで、配置領域A1に配置せざるを得ない取扱機器62aに対しては、最適な保安設備の設置を行う。これにより、モジュール建造に伴う追加耐火設計費用を最小限に抑えつつ、十分な安全性が確保された複合HEモジュール3aを得ることができる。
 また、NG液化装置から見てLNGの払い出し先がHEの配置領域側に存在する場合などには、LNGの払い出すための機器(例えばLNGの温度調節用のエンドフラッシュドラムなど)は、CE側機器群に含まれるものであっても複合HEモジュール3a内に配置せざるを得ないこともある。 
 この場合には、上述のHE側機器群の取扱機器62a、62bと同様の考え方に基づき、まずは配置領域A1には取扱機器72をできるだけ配置しないレイアウトを検討したうえで、配置領域A1に配置せざるを得ない取扱機器72aに対しては、既述の保安設備の併設を行う(図2の取扱機器72b、72a)。
 以上の考え方に基づき、HE側の処理ブロックである気液分離ブロック11、水銀除去ブロック12、酸性ガス除去ブロック13、水分除去ブロック14、精留ブロック151の複合HEモジュール3a、及び必要に応じてLNGの払い出し用の取扱機器72を含む複数の複合HEモジュール3aを建造する。このとき、各処理ブロック11、12、13、14、151を複数の複合HEモジュール3aに分けてもよいし、1つの複合HEモジュール3a内に複数の処理ブロック11、12、13、14、151を設けてもよい。 
 また複合HEモジュール3a以外については、架構30内にCE側機器群を配置した、従来と同様の構成のCEモジュール3bや、MR圧縮機やC3圧縮機である冷媒圧縮機21を建造する。
 図2に示すNG液化装置の例では、複数の複合HEモジュール3aはACHE群4の配置領域A1を同じ方向へ向け、横方向に1列に配置されている。 
 そして、CE側機器群を含む複数のCEモジュール3bは、ACHE群4の配置領域A1が横方向に並んだ領域を挟んで、複合HEモジュール3aの列の後方側に1列に並べて配置されている。そして、C3圧縮機及びMR圧縮機の冷媒圧縮機21が、当該CEモジュール3bの列を挟んで左右に配置されることにより、本例のNG液化装置が構成されている。 
 なお、既述のように複合HEモジュール3a、CEモジュール3b、冷媒圧縮機21間は、取り合い配管などによって互いに接続されるが、図2においては当該配管の記載は省略してある。
 本実施の形態に係る複合HEモジュール3aによれば、以下の効果がある。NG液化装置を構成する機器群のうち、可燃性液体、引火性液体やLNG/LPGを取り扱う機器(取扱機器62)の占有率が低い、HE側機器群とACHE群4とを共通の架構30内に配置して複合HEモジュール3aを構成する。この結果、上述の液体の取扱い機器の占有率が高い天然ガスの液化用のCE側機器群と比較して、API2218に準拠した、追加耐火費用を最小限に抑えつつ、集積度の高い複合HEモジュール3aを構成することができる。 
 この結果、モジュール据え付け現場において、より現場作業工程の少ない複合HEモジュール3aとCEモジュール3bの設計を実現させ、初期投資費用を最小限に抑えたNG液化装置を構成することができる。
 ここで、NG液化装置の構成は図1の例に限定されるものではなく、必要に応じてHE側の処理ブロックの一部の設置を省略してもよいし、他の目的の処理ブロックを設けてもよい。
A1    配置領域
A2    非配置領域
11    気液分離ブロック
12    水銀除去ブロック
13    酸性ガス除去ブロック
14    水分除去ブロック
15    液化処理ブロック
151   精留ブロック
3a、   複合HE(Hot End)モジュール
3a’   従来HE(Hot End)モジュール
3b    CE(Cold End)モジュール
30    架構
4     ACHE群
61、71 非取扱機器
62、72 取扱機器

 

Claims (7)

  1.  天然ガス液化装置を構成するための天然ガス液化装置用モジュールにおいて、
     架構と、
     前記架構の上面に並べて配置され、前記天然ガス液化装置内で取り扱われる流体の冷却を行うための空冷式熱交換器群と、
     前記架構内にて、前記空冷式熱交換器群の配置高さよりも下方側に配置されると共に、前記天然ガス液化装置の一部を構成する他の機器群と、を備え、
     前記天然ガス液化装置を構成する機器群を、液化される前の天然ガスの前処理を行う前処理部に設けられる前処理部機器群と、前記前処理部にて処理された後の天然ガスを液化する処理に係る液化処理部に設けられる液化処理部機器群と、に分類分けしたとき、前記他の機器群は、前記前処理部機器群によって構成されていることを特徴とする天然ガス液化装置用モジュール。
  2.  前記架構は、その上面に前記空冷式熱交換器群が配置された配置領域と、当該上面に前記空冷式熱交換器群が配置されていない非配置領域とに区分けされていることと、
     前記配置領域側の架構内には、前記他の機器群に含まれる機器のうち、可燃性液体、引火性液体、液化天然ガス、及び液化石油ガスからなる液体グループから選択される液体を取り扱わない非取扱機器のみが設けられ、残る機器が前記非配置領域側の架構内に設けられていることと、を特徴とする請求項1に記載の天然ガス液化装置用モジュール。
  3.  前記架構は、その上面に前記空冷式熱交換器群が配置された配置領域と、当該上面に前記空冷式熱交換器群が配置されていない非配置領域とに区分けされていることと、
     前記他の機器群に含まれる機器のうち、可燃性液体、引火性液体、液化天然ガス、及び液化石油ガスからなる液体グループから選択される液体を取り扱う取扱機器が前記配置領域側の架構内に設けてられていることと、
     前記配置領域側の架構内に設けられた前記取扱機器には、ガス検知器、スプリンクラー、耐火カバー、及びデプレッシャーラインからなる保安設備グループから選択される少なくとも一つの保安設備が併設されていることと、を特徴とする請求項1に記載の天然ガス液化装置。
  4.  前記架構は、その上面に前記空冷式熱交換器群が配置された配置領域と、当該上面に前記空冷式熱交換器群が配置されていない非配置領域とに区分けされていることと、
     前記架構内に配置される他の機器群が、前記前処理部機器群に加えて、または前処理部機器群に替えて前記液化処理部機器群に含まれる機器を含み、当該液化処理部機器群に含まれる機器は、前記非配置領域側の架構内に設けられていることと、を特徴とする請求項1に記載の天然ガス液化装置用モジュール。
  5.  前記液化処理部機器群に含まれる機器は、液化天然ガスを天然ガス液化装置から払い出すための機器であることを特徴とする請求項4に記載の天然ガス液化装置用モジュール。
  6.  前記前処理部は、天然ガスに含まれる液体分を分離するための気液分離部、天然ガスに含まれる水銀を除去するための水銀除去部、天然ガスに含まれる酸性ガスを除去するための酸性ガス除去部、天然ガスに含まれる水分を除去するための水分除去部、天然ガスに含まれる重質分を除去するための重質分除去部からなる前処理部グループから選択される少なくとも一つの前処理部を含むことを特徴とする請求項1に記載の天然ガス液化装置用モジュール。
  7.  請求項1ないし6のいずれか一つに記載の複数の天然ガス液化装置用モジュールと、
     架構内に、前記液化処理部機器群が設けられた他の天然ガス液化装置用モジュールと、を含むことを特徴とする天然ガス液化装置。

     
PCT/JP2017/020056 2017-05-30 2017-05-30 天然ガス液化装置用モジュール、及び天然ガス液化装置 WO2018220703A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA3057262A CA3057262A1 (en) 2017-05-30 2017-05-30 Module for natural gas liquefier apparatus and natural gas liquefier apparatus
PCT/JP2017/020056 WO2018220703A1 (ja) 2017-05-30 2017-05-30 天然ガス液化装置用モジュール、及び天然ガス液化装置
US16/603,836 US11408677B2 (en) 2017-05-30 2017-05-30 Module for natural gas liquefier apparatus and natural gas liquefier apparatus
AU2017416235A AU2017416235B2 (en) 2017-05-30 2017-05-30 Module for natural gas liquefier device, and natural gas liquefier device
RU2019130811A RU2747868C1 (ru) 2017-05-30 2017-05-30 Модуль для устройства сжижения природного газа и устройство сжижения природного газа

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/020056 WO2018220703A1 (ja) 2017-05-30 2017-05-30 天然ガス液化装置用モジュール、及び天然ガス液化装置

Publications (1)

Publication Number Publication Date
WO2018220703A1 true WO2018220703A1 (ja) 2018-12-06

Family

ID=64455725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020056 WO2018220703A1 (ja) 2017-05-30 2017-05-30 天然ガス液化装置用モジュール、及び天然ガス液化装置

Country Status (5)

Country Link
US (1) US11408677B2 (ja)
AU (1) AU2017416235B2 (ja)
CA (1) CA3057262A1 (ja)
RU (1) RU2747868C1 (ja)
WO (1) WO2018220703A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113837712A (zh) * 2021-08-10 2021-12-24 中国海洋石油集团有限公司 一种大型陆地液化天然气生产工艺模块划分与布置方法
CN117848093A (zh) * 2024-01-13 2024-04-09 广东博益空调配套设备有限公司 一种翅片式液化器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016514823A (ja) * 2013-03-27 2016-05-23 ウッドサイド エナジー テクノロジーズ プロプライエタリー リミテッド 空冷式モジュール型lng生産設備
WO2017062155A1 (en) * 2015-10-06 2017-04-13 Exxonmobil Upstream Research Company Modularization of a hydrocarbon processing plant

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4041721A (en) * 1975-07-07 1977-08-16 The Lummus Company Vessel having natural gas liquefaction capabilities
ATE238529T1 (de) * 1995-10-05 2003-05-15 Bhp Petroleum Pty Ltd Verflüssigungsapparat
RU2275562C2 (ru) * 2004-04-30 2006-04-27 Александр Николаевич Лапкин Способ разделения газа и устройство для его осуществления
RU2451250C1 (ru) * 2011-03-22 2012-05-20 Закрытое акционерное общество Финансовая компания "Центр Космос-Нефть-Газ" Блок-модуль установки комплексной подготовки газа газового промысла нефтегазоконденсатного месторождения
AU2012216352B2 (en) * 2012-08-22 2015-02-12 Woodside Energy Technologies Pty Ltd Modular LNG production facility
FR3016676B1 (fr) * 2014-01-21 2016-02-26 Cryolor Station et procede de fourniture d'un fluide carburant inflammable
JP5976951B2 (ja) * 2014-04-07 2016-08-24 三菱重工コンプレッサ株式会社 浮体式液化ガス製造設備
JP2018531355A (ja) * 2015-10-06 2018-10-25 エクソンモービル アップストリーム リサーチ カンパニー 炭化水素処理プラント内の統合された冷凍及び液化モジュール

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016514823A (ja) * 2013-03-27 2016-05-23 ウッドサイド エナジー テクノロジーズ プロプライエタリー リミテッド 空冷式モジュール型lng生産設備
WO2017062155A1 (en) * 2015-10-06 2017-04-13 Exxonmobil Upstream Research Company Modularization of a hydrocarbon processing plant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113837712A (zh) * 2021-08-10 2021-12-24 中国海洋石油集团有限公司 一种大型陆地液化天然气生产工艺模块划分与布置方法
CN113837712B (zh) * 2021-08-10 2023-08-22 中国海洋石油集团有限公司 一种大型陆地液化天然气生产工艺模块划分与布置方法
CN117848093A (zh) * 2024-01-13 2024-04-09 广东博益空调配套设备有限公司 一种翅片式液化器

Also Published As

Publication number Publication date
AU2017416235A1 (en) 2019-08-22
US20200041202A1 (en) 2020-02-06
RU2747868C1 (ru) 2021-05-17
US11408677B2 (en) 2022-08-09
AU2017416235B2 (en) 2023-02-23
CA3057262A1 (en) 2018-12-06

Similar Documents

Publication Publication Date Title
US10060670B2 (en) Air-cooled modular LNG production facility
KR101915007B1 (ko) 모듈로 조립된 콤팩트한 액화천연가스 생산설비
CA3054113C (en) Module for natural gas liquefaction devices, natural gas liquefaction device, and method for manufacturing natural gas liquefaction devices
US10161675B2 (en) Natural gas liquefaction system
WO2018220703A1 (ja) 天然ガス液化装置用モジュール、及び天然ガス液化装置
WO2019097571A1 (ja) 天然ガス液化装置、及び天然ガス液化装置の設計方法
AU2017419936B2 (en) Natural gas liquefaction device
AU2015252986B2 (en) Liquid drains in core-in-shell heat exchanger
JP6887071B1 (ja) 天然ガスプラント用モジュール
US11913717B2 (en) Natural gas liquefying apparatus
JP7313459B2 (ja) 天然ガス液化装置
JP2020159647A (ja) 天然ガス液化装置
WO2020021668A1 (ja) 天然ガス処理装置
WO2020026377A1 (ja) 浮体設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911908

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017416235

Country of ref document: AU

Date of ref document: 20170530

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3057262

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17911908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP