WO2018219274A1 - 降噪处理方法、装置、存储介质及终端 - Google Patents

降噪处理方法、装置、存储介质及终端 Download PDF

Info

Publication number
WO2018219274A1
WO2018219274A1 PCT/CN2018/088865 CN2018088865W WO2018219274A1 WO 2018219274 A1 WO2018219274 A1 WO 2018219274A1 CN 2018088865 W CN2018088865 W CN 2018088865W WO 2018219274 A1 WO2018219274 A1 WO 2018219274A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
processed
photo
displacement
terminal
Prior art date
Application number
PCT/CN2018/088865
Other languages
English (en)
French (fr)
Inventor
卓世杰
***
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP18809315.7A priority Critical patent/EP3633600A1/en
Publication of WO2018219274A1 publication Critical patent/WO2018219274A1/zh
Priority to US16/693,359 priority patent/US20200090309A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20172Image enhancement details
    • G06T2207/20182Noise reduction or smoothing in the temporal domain; Spatio-temporal filtering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20216Image averaging

Definitions

  • the present application relates to the field of image processing technologies, and in particular, to a noise reduction processing method, apparatus, storage medium, and terminal.
  • the mobile terminal can be carried around, and can be photographed by using the mobile terminal anytime and anywhere, thereby bringing great convenience to the user's life.
  • the embodiment of the present application provides a noise reduction processing method, device, storage medium, and terminal, which can improve the quality of a photo.
  • the embodiment of the present application provides a noise reduction processing method, including:
  • the pixel values of the corresponding pixel points to be processed are adjusted according to the pixel values of each reference pixel.
  • the embodiment of the present application further provides a noise reduction processing apparatus, including:
  • a first acquiring module configured to obtain a to-be-processed photo and a reference photo from a plurality of consecutively taken photos
  • a second acquiring module configured to acquire a displacement generated by the terminal during a time period of capturing the to-be-processed photo and the reference photo;
  • a determining module configured to determine, according to the displacement, a reference pixel point corresponding to each pixel to be processed of the to-be-processed photo in the reference photo;
  • an adjustment module configured to sequentially adjust pixel values of the corresponding pixel to be processed according to pixel values of each reference pixel.
  • the embodiment of the present application further provides a storage medium, where the storage medium stores a plurality of instructions, and the instruction is adapted to be loaded by a processor to perform the noise reduction processing method.
  • the embodiment of the present application further provides a terminal, including a processor, a camera, and a control circuit.
  • the processor is electrically connected to the camera and the control circuit, and the control circuit is configured to control the camera to take a photo, and the processor uses Perform the following steps:
  • the pixel values of the corresponding pixel points to be processed are adjusted according to the pixel values of each reference pixel.
  • FIG. 1 is a schematic diagram of a first flow of a noise reduction processing method provided by an embodiment of the present application.
  • FIG. 2 is a second schematic flowchart of a noise reduction processing method provided by an embodiment of the present application.
  • FIG. 3 is a third schematic flowchart of a noise reduction processing method provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a first application scenario of a noise reduction processing method provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a second application scenario of a noise reduction processing method provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a first structure of a noise reduction processing apparatus according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a second structure of a noise reduction processing apparatus provided by an embodiment of the present application.
  • FIG. 8 is a third schematic structural diagram of a noise reduction processing apparatus according to an embodiment of the present application.
  • FIG. 9 is a fourth schematic structural diagram of a noise reduction processing apparatus according to an embodiment of the present application.
  • FIG. 10 is a fifth structural diagram of a noise reduction processing apparatus according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • the embodiment of the present application provides a noise reduction processing method, including:
  • the pixel values of the corresponding pixel points to be processed are adjusted according to the pixel values of each reference pixel.
  • the terminal includes an angular velocity sensor
  • the step of acquiring the displacement generated by the terminal during the time period in which the photo to be processed and the reference photo are taken includes:
  • the angular displacement data is determined as the displacement of the terminal.
  • the terminal includes an acceleration sensor, and the step of acquiring the displacement generated by the terminal during the time period in which the photo to be processed and the reference photo are taken includes:
  • the displacement data is determined as the displacement of the terminal.
  • the determining, according to the displacement, the reference pixel point corresponding to each pixel to be processed of the to-be-processed photo in the reference photo comprises:
  • the determining, in the reference photo, the reference pixel points corresponding to each pixel to be processed of the to-be-processed photo according to the horizontal and vertical sub-displacements comprises:
  • the step of adjusting the pixel value of the corresponding pixel to be processed according to the pixel value of each reference pixel in turn includes:
  • the step of calculating the target pixel value by the preset weight according to the pixel value of the pixel to be processed and the pixel value of the corresponding reference pixel includes:
  • the average pixel value is determined as a target pixel value.
  • the embodiment of the present application provides a noise reduction processing method, which can be applied to a terminal.
  • the terminal can be a device such as a smartphone or a tablet.
  • the noise reduction processing method may include the following steps:
  • the terminal has a camera, and the terminal can take a photo through the camera.
  • the terminal can control the camera to take multiple photos in rapid succession for better photo effects. For example, when taking a photo, the terminal controls the camera to quickly take four photos A, A1, A2, and A3 in rapid succession within one second. In practical applications, after taking multiple photos in succession for the same scene, you can process the multiple photos and finally keep the best one.
  • the terminal may perform comparative analysis on the plurality of photos to obtain the highest-resolution photo from the plurality of photos as the to-be-processed photo. For example, among the four photographs A, A1, A2, and A3 taken, the sharpness of the photograph A is the highest, and the photograph A can be selected as the photograph to be processed. Subsequently, a reference photo is taken from a plurality of photos other than the photo to be processed. For example, the photo with the highest definition can be selected from a plurality of photos other than the photo to be processed as a reference photo.
  • the reference photo can be an adjacent photo of the photo to be processed.
  • adjacent refers to a photo in which the shooting order is before or after the photo to be processed.
  • the photo A1 may be selected as a reference photo.
  • the terminal After obtaining the to-be-processed photo and the reference photo from the plurality of photos, the terminal processes the to-be-processed photo according to the reference photo.
  • the terminal can process the photo to be processed multiple times. That is, the terminal can obtain the reference photo, and after processing the processed photo, continue to obtain the next reference photo, and process the photo for the next processing.
  • the photo A is a photo to be processed, and the terminal can perform the first processing on the photo A with the photo A1 as a reference photo, and then continue to perform the photo A with the photo A2 as a reference photo. The second treatment.
  • the terminal when the user takes a picture while controlling the terminal, the terminal will inevitably shake. Therefore, when the terminal continuously captures a plurality of photos, the position and posture of the terminal are not exactly the same when each photo is taken. Even if the shooting interval between the two photos is short, the terminal will produce a slight displacement.
  • the displacement may include a displacement generated by the translation, and may also include an angular displacement generated by the rotation.
  • the displacement generated during the time period in which the photo to be processed and the reference photo are taken may be acquired.
  • an angular velocity sensor also referred to as a gyroscope
  • An angular velocity sensor can be used to measure angular displacement.
  • the displacement generated by the acquisition terminal during the time period in which the photo to be processed and the reference photo are taken may include the following steps:
  • the terminal can record the time when the photo to be processed is taken and the time when the reference photo is taken, and then obtain the angular displacement data generated by the angular velocity sensor between the two moments, and determine the angular displacement data as the displacement of the terminal.
  • the terminal has an acceleration sensor (also referred to as a gravity sensor). Acceleration sensors can be used to measure displacement. As shown in FIG. 3, the displacement generated by the acquisition terminal during the time period in which the photo to be processed and the reference photo are taken may include the following steps:
  • the terminal can record the time when the photo to be processed is taken and the time when the reference photo is taken, and then acquire the displacement data generated by the acceleration sensor between the two moments, and determine the displacement data as the displacement of the terminal.
  • the terminal may also acquire the displacement generated by the terminal during the time period in which the photo to be processed and the reference photo are taken by the angular velocity sensor and the acceleration sensor.
  • each pixel in the to-be-processed photo is processed in turn.
  • the pixel in the photo to be processed is the pixel to be processed.
  • the pixel in the reference photo is the reference pixel.
  • FIG. 4 shows a photo to be processed
  • FIG. 5 shows a reference photo
  • the pixel point P1 in FIG. 4 and the pixel point P2 in FIG. 5 are pixel points in the two photographs of the same portion of the object to be photographed. That is, the pixel point P1 in the photo to be processed and the pixel point P2 in the reference photo are corresponding pixel points.
  • the distance of the pixel point P from the left edge of the photo is d1.
  • the distance P of the pixel from the left edge of the photo is d2. Since the terminal is displaced during shooting, d1 and d2 are different.
  • the terminal After acquiring the displacement generated during the time period in which the photo to be processed and the reference photo are taken, the terminal determines, according to the displacement, a reference pixel point corresponding to each pixel to be processed of the to-be-processed photo in the reference photo.
  • the pixel P1 in the photo to be processed is the pixel to be processed
  • the pixel P2 corresponding to the pixel P1 to be processed in the reference photo is the reference pixel.
  • the step of determining, according to the displacement, a reference pixel point corresponding to each pixel to be processed of the to-be-processed photo in the reference photo includes:
  • the terminal may determine the lateral displacement and the longitudinal displacement of the imaging surface of the terminal at the time of shooting according to the displacement.
  • the imaging surface at the time of shooting is the imaging surface when the terminal takes a reference photo.
  • the lateral displacement can be understood as a displacement along the X-axis direction of the photograph
  • the longitudinal split displacement can be understood as a displacement along the Y-axis direction of the photograph.
  • the lateral displacement and the longitudinal displacement are the displacements of the imaging plane of the terminal at the time of shooting, and also the lateral and longitudinal displacements of each pixel in the reference photograph with respect to each corresponding pixel in the photograph to be processed.
  • the reference pixel corresponding to each pixel to be processed of the to-be-processed photo in the reference photo may be determined according to the lateral partial displacement and the longitudinal partial displacement.
  • the determining, according to the lateral splitting displacement and the longitudinal splitting displacement, the reference pixel points corresponding to each pixel to be processed of the to-be-processed photo in the reference photo includes:
  • the specifications of the camera in the terminal are fixed. That is, the spacing between two adjacent minimum photosensitive units (pixels in the camera) in the camera is fixed. For example, the spacing between two adjacent pixels in the camera is 0.1 micron.
  • the terminal After acquiring the lateral partial displacement and the longitudinal partial displacement, the terminal respectively calculates the lateral pixel point offset and the vertical pixel point offset of each pixel to be processed of the to-be-processed photo according to the lateral partial displacement and the longitudinal partial displacement.
  • the lateral displacement is 5 microns and the longitudinal displacement is 2 microns. It can be determined that during the shooting process, each pixel to be processed of the to-be-processed photo is laterally offset by 50 pixels and longitudinally offset by 20 pixels.
  • the terminal determines a reference pixel point corresponding to each pixel to be processed of the to-be-processed photo in the reference photo according to the horizontal pixel point offset and the vertical pixel point offset of the pixel to be processed.
  • the pixel to be processed in the photo to be processed is laterally offset by 50 pixels and longitudinally offset by 20 pixels to obtain a reference pixel corresponding to the pixel to be processed.
  • the terminal After determining, by the terminal, the reference pixel corresponding to each pixel to be processed in the photo to be processed, the terminal sequentially adjusts the pixel value of the corresponding pixel to be processed according to the pixel value of each reference pixel. Reducing the effect of the photo to be processed.
  • the step of adjusting the pixel values of the corresponding pixel to be processed according to the pixel values of each reference pixel in turn includes:
  • the terminal may calculate the target pixel value by using a preset weight according to the pixel value of the pixel to be processed and the pixel value of the corresponding reference pixel.
  • the pixel value of the pixel to be processed is 120
  • the pixel value of the reference pixel is 100
  • the preset weight of the pixel to be processed is 0.7
  • the preset weight of the reference pixel is 0.3
  • the target pixel value W can be calculated.
  • 120 x 0.7 + 100 x 0.3 114.
  • the pixel value of the pixel to be processed is modified to the target pixel value.
  • the step of calculating the target pixel value by the preset weight according to the pixel value of the pixel to be processed and the pixel value of the corresponding reference pixel includes:
  • the preset weight of the pixel to be processed and the preset weight of the reference pixel are both 0.5.
  • the terminal calculates an average pixel value of the pixel value of the pixel to be processed and the pixel value of the corresponding reference pixel, and then determines the average pixel value as the target pixel value. For example, if the pixel value of the pixel to be processed is 120 and the pixel value of the reference pixel is 100, the average pixel value can be calculated as 110, and then the target pixel value is determined to be 110.
  • the noise reduction processing method acquires a to-be-processed photo and a reference photo from a plurality of consecutively taken photos; and acquires a displacement generated by the terminal during the time period in which the to-be-processed photo and the reference photo are taken. And determining, according to the displacement, reference pixel points corresponding to each pixel to be processed of the to-be-processed photo in the reference photo; and sequentially adjusting pixel values of the corresponding pixel to be processed according to pixel values of each reference pixel.
  • the solution determines a reference pixel point corresponding to each pixel to be processed in the photo to be processed according to the displacement generated by the terminal during the photographing process, and then adjusts the pixel value of the pixel to be processed according to the pixel value of the reference pixel point, Improves the quality of your photos by reducing noise in your photos.
  • the embodiment of the present application further provides a noise reduction processing apparatus, including:
  • a first acquiring module configured to obtain a to-be-processed photo and a reference photo from a plurality of consecutively taken photos
  • a second acquiring module configured to acquire a displacement generated by the terminal during a time period of capturing the to-be-processed photo and the reference photo;
  • a determining module configured to determine, according to the displacement, a reference pixel point corresponding to each pixel to be processed of the to-be-processed photo in the reference photo;
  • an adjustment module configured to sequentially adjust pixel values of the corresponding pixel to be processed according to pixel values of each reference pixel.
  • the terminal includes an angular velocity sensor
  • the second acquisition module includes:
  • a first acquiring submodule configured to acquire angular displacement data of the angular velocity sensor
  • a first determining submodule configured to determine the angular displacement data as a displacement of the terminal.
  • the terminal includes an acceleration sensor
  • the second acquisition module includes:
  • a second acquiring submodule configured to acquire displacement data of the acceleration sensor
  • a second determining submodule configured to determine the displacement data as a displacement of the terminal.
  • the determining module comprises:
  • a third determining submodule configured to determine a lateral splitting displacement and a longitudinal splitting displacement of the imaging plane of the terminal when photographing according to the displacement
  • a fourth determining submodule configured to determine a reference pixel point corresponding to each pixel to be processed of the to-be-processed photo in the reference photo according to the horizontal and vertical sub-displacements.
  • the fourth determining sub-module is for:
  • the adjustment module comprises:
  • a calculation submodule configured to calculate a target pixel value by a preset weight according to a pixel value of the pixel to be processed and a pixel value of the corresponding reference pixel;
  • modifying a submodule configured to modify a pixel value of the pixel to be processed to the target pixel value.
  • the computing sub-module is used to:
  • the average pixel value is determined as a target pixel value.
  • the embodiment of the present application further provides a noise reduction processing device, which may be integrated in a terminal, and the terminal may be a device such as a smart phone or a tablet computer.
  • the noise reduction processing apparatus 200 may include: a first acquisition module 201, a second acquisition module 202, a determination module 203, and an adjustment module 204.
  • the first obtaining module 201 is configured to obtain a to-be-processed photo and a reference photo from a plurality of consecutively taken photos.
  • the terminal has a camera, and the terminal can take a photo through the camera.
  • the terminal can control the camera to take multiple photos in rapid succession for better photo effects. For example, when taking a photo, the terminal controls the camera to quickly take four photos A, A1, A2, and A3 in rapid succession within one second. In practical applications, after taking multiple photos in succession for the same scene, you can process the multiple photos and finally keep the best one.
  • the first obtaining module 201 may perform comparative analysis on the plurality of photos to obtain the highest-resolution photo from the plurality of photos as the to-be-processed photo. For example, among the four photographs A, A1, A2, and A3 taken, the sharpness of the photograph A is the highest, and the photograph A can be selected as the photograph to be processed. Subsequently, a reference photo is taken from a plurality of photos other than the photo to be processed. For example, the photo with the highest definition can be selected from a plurality of photos other than the photo to be processed as a reference photo.
  • the reference photo can be an adjacent photo of the photo to be processed.
  • adjacent refers to a photograph in which the shooting order is before or after the photo to be processed.
  • the photo A1 may be selected as a reference photo.
  • the noise reduction processing device 200 processes the to-be-processed photo according to the reference photo.
  • the noise reduction processing device 200 may perform the processing on the photo to be processed a plurality of times. That is, the first acquisition module 201 can obtain the reference photo, and after the noise reduction processing device 200 processes the photo to be processed, the first acquisition module 201 continues to acquire the next reference photo, and is processed by the noise reduction processing device 200. The photo is processed next time. For example, among the four photos A, A1, A2, and A3, the photo A is a photo to be processed, and the photo A can be processed for the first time using the photo A1 as a reference photo, and then the photo A is continued with the photo A2 as a reference photo. Secondary treatment.
  • the second obtaining module 202 is configured to acquire a displacement generated by the terminal during a time period of capturing the photo to be processed and the reference photo.
  • the terminal when the user takes a picture while controlling the terminal, the terminal will inevitably shake. Therefore, when the terminal continuously captures a plurality of photos, the position and posture of the terminal are not exactly the same when each photo is taken. Even if the shooting interval between the two photos is short, the terminal will produce a slight displacement.
  • the displacement may include a displacement generated by the translation, and may also include an angular displacement generated by the rotation.
  • the second obtaining module 202 may acquire the displacement generated during the time period in which the to-be-processed photo and the reference photo are taken.
  • the second obtaining module 202 includes: a first obtaining submodule 2021 and a first determining submodule 2022 .
  • a first obtaining sub-module 2021 configured to acquire angular displacement data of the angular velocity sensor
  • the first determining sub-module 2022 is configured to determine the angular displacement data as a displacement of the terminal.
  • the first obtaining sub-module 2021 can record the time when the photo to be processed is taken and the time when the reference photo is taken, and then acquire the angular displacement data generated by the angular velocity sensor between the two moments, and the first determining sub-module 2022 The angular displacement data is determined as the displacement of the terminal.
  • the terminal has an acceleration sensor (also referred to as a gravity sensor). Acceleration sensors can be used to measure displacement.
  • the second obtaining module 202 includes: a second obtaining submodule 2023 and a second determining submodule 2024 .
  • a second obtaining submodule 2023 configured to acquire displacement data of the acceleration sensor
  • the second determining sub-module 2024 is configured to determine the displacement data as a displacement of the terminal.
  • the second obtaining sub-module 2023 may record the time when the photo to be processed is taken and the time when the reference photo is taken, and then acquire the displacement data generated by the acceleration sensor between the two times, and the second determining sub-module 2024 will The displacement data is determined as the displacement of the terminal.
  • the second acquisition module 202 can also acquire the displacement generated by the terminal during the time period in which the photo to be processed and the reference photo are taken by the angular velocity sensor and the acceleration sensor.
  • the determining module 203 is configured to determine, according to the displacement, a reference pixel point corresponding to each pixel to be processed of the to-be-processed photo in the reference photo.
  • each pixel in the photo to be processed is sequentially processed.
  • the pixel in the photo to be processed is the pixel to be processed.
  • the pixel in the reference photo is the reference pixel.
  • the determining module 203 determines, according to the displacement, corresponding to each pixel to be processed in the photo to be processed in the reference photo. Reference pixel point.
  • the determining module 203 includes: a third determining submodule 2031 and a fourth determining submodule 2032.
  • a third determining sub-module 2031 configured to determine, according to the displacement, a lateral partial displacement and a longitudinal partial displacement of the imaging surface of the terminal at the time of shooting;
  • the fourth determining sub-module 2032 is configured to determine a reference pixel point corresponding to each pixel to be processed of the to-be-processed photo in the reference photo according to the horizontal partial displacement and the longitudinal partial displacement.
  • the third determining sub-module 2031 can determine the lateral splitting displacement and the longitudinal splitting displacement of the imaging plane of the terminal at the time of shooting according to the displacement.
  • the lateral displacement and the longitudinal displacement are the displacements of the imaging plane of the terminal at the time of shooting, and also the lateral and longitudinal displacements of each pixel in the reference photograph with respect to each corresponding pixel in the photograph to be processed.
  • the fourth determining sub-module 2032 can determine each pixel to be processed in the reference photo and the to-be-processed photo according to the lateral partial displacement and the longitudinal partial displacement. Corresponding reference pixels.
  • the fourth determining sub-module 2032 is configured to perform the following steps:
  • the specifications of the camera in the terminal are fixed. That is, the spacing between two adjacent minimum photosensitive units (pixels in the camera) in the camera is fixed. For example, the spacing between two adjacent pixels in the camera is 0.1 micron.
  • the fourth determining sub-module 2032 respectively calculates the lateral pixel point offset of each pixel to be processed of the to-be-processed photo according to the horizontal partial displacement and the longitudinal partial displacement. And the vertical pixel offset.
  • the lateral displacement is 5 microns and the longitudinal displacement is 2 microns. It can be determined that during the shooting process, each pixel to be processed of the to-be-processed photo is laterally offset by 50 pixels and longitudinally offset by 20 pixels.
  • the fourth determining sub-module 2032 determines a reference pixel point corresponding to each pixel to be processed of the to-be-processed photo in the reference photo according to the lateral pixel point offset and the vertical pixel point offset of the pixel to be processed.
  • the pixel to be processed in the photo to be processed is laterally offset by 50 pixels and longitudinally offset by 20 pixels to obtain a reference pixel corresponding to the pixel to be processed.
  • the adjusting module 204 is configured to sequentially adjust pixel values of the corresponding pixel to be processed according to pixel values of each reference pixel.
  • the adjusting module 204 After the determining module 203 determines the reference pixel point corresponding to each pixel to be processed in the photo to be processed in the reference photo, the adjusting module 204 sequentially pairs the pixel of the corresponding pixel to be processed according to the pixel value of each reference pixel. The values are adjusted to achieve noise reduction for the photos being processed.
  • the adjustment module 204 includes a calculation sub-module 2041 and a modification sub-module 2042.
  • a calculation sub-module 2041 configured to calculate a target pixel value by using a preset weight according to a pixel value of the pixel to be processed and a pixel value of the corresponding reference pixel;
  • the modification sub-module 2042 is configured to modify the pixel value of the pixel to be processed to the target pixel value.
  • the modification sub-module 2042 modifies the pixel value of the pixel to be processed to the target pixel value.
  • calculation sub-module 2041 is configured to perform the following steps:
  • the average pixel value is determined as the target pixel value.
  • the preset weight of the pixel to be processed and the preset weight of the reference pixel are both 0.5.
  • the calculation sub-module 2041 calculates an average pixel value of the pixel value of the pixel to be processed and the pixel value of the corresponding reference pixel, and then determines the average pixel value as the target pixel value. For example, if the pixel value of the pixel to be processed is 120 and the pixel value of the reference pixel is 100, the average pixel value can be calculated as 110, and then the target pixel value is determined to be 110.
  • each of the above modules may be implemented as a separate entity, or may be implemented in any combination as one or several entities.
  • the noise reduction processing device 200 acquires a to-be-processed photo and a reference photo from a plurality of consecutively captured photos by the first acquisition module 201.
  • the second acquisition module 202 acquires the terminal to be processed. a displacement generated during a time period of the photo and the reference photo; the determining module 203 determines, according to the displacement, a reference pixel point corresponding to each pixel to be processed of the to-be-processed photo in the reference photo; the adjustment module 204 sequentially according to each reference The pixel value of the pixel is adjusted for the pixel value of the corresponding pixel to be processed.
  • the solution determines a reference pixel point corresponding to each pixel to be processed in the photo to be processed according to the displacement generated by the terminal during the photographing process, and then adjusts the pixel value of the pixel to be processed according to the pixel value of the reference pixel point, Improves the quality of your photos by reducing noise in your photos.
  • the terminal 300 may include a radio frequency (RF) circuit 301, a memory 302 including one or more computer readable storage media, an input unit 303, and a display.
  • RF radio frequency
  • the terminal structure shown in FIG. 11 does not constitute a limitation to the terminal, and may include more or less components than those illustrated, or a combination of certain components, or different component arrangements.
  • the radio frequency circuit 301 can communicate with a network device or other electronic device through a wireless network to complete transceiving information with the network device or other electronic device.
  • Memory 302 can be used to store applications and data.
  • the application stored in the memory 302 contains executable program code.
  • Applications can form various functional modules.
  • the processor 308 executes various functional applications and data processing by running an application stored in the memory 302.
  • the input unit 303 can be configured to receive character information or user feature information (eg, a fingerprint) input by the user.
  • the input unit 303 can include a fingerprint identification module and a touch screen.
  • the fingerprint identification module is used to collect fingerprint information of the user.
  • the touch screen is used to receive a user's touch operation.
  • Display unit 304 can be used to display information entered by the user or information provided to the user, as well as various graphical user interfaces of the terminal, which can be composed of graphics, text, icons, video, and any combination thereof.
  • the terminal also includes one or more cameras 305.
  • the terminal can include a front camera and a rear camera. The camera is used to take photos.
  • the control circuit 306 can be electrically connected to the camera 305 to control the camera 305 to take a photo or adjust the parameters of the camera 305.
  • Wireless Fidelity is a short-range wireless transmission technology, and the terminal can communicate with other terminals or servers through the wireless fidelity module 307.
  • the processor 308 is a control center of the terminal, and connects various parts of the entire terminal by various interfaces and lines, and executes various kinds of terminals by running or executing an application stored in the memory 302 and calling data stored in the memory 302. Function and process data to monitor the terminal as a whole.
  • the terminal also includes a power source 309 (eg, a battery) that powers the various components.
  • a power source 309 eg, a battery
  • the power supply can be logically coupled to the processor 308 through a power management system to manage functions such as charging, discharging, and power management through the power management system.
  • the terminal may further include a Near Field Communication (NFC) module, a Bluetooth module, and the like, and details are not described herein again.
  • NFC Near Field Communication
  • the processor 308 in the terminal loads the executable program code corresponding to the process of one or more applications into the memory 302 according to the following instructions, and is executed by the processor 308 to be stored in the memory.
  • the application in 302 to implement various functions:
  • the pixel values of the corresponding pixel points to be processed are adjusted according to the pixel values of each reference pixel.
  • the terminal includes an angular velocity sensor
  • the processor 308 acquires a displacement generated by the terminal during the time period in which the photo to be processed and the reference photo are taken, and performs the following steps: acquiring angular displacement data of the angular velocity sensor; The displacement data is determined as the displacement of the terminal.
  • the terminal includes an acceleration sensor
  • the processor 308 acquires the displacement generated by the terminal during the time period in which the photo to be processed and the reference photo are taken, and performs the following steps: acquiring displacement data of the acceleration sensor; Determine the displacement of the terminal.
  • the processor 308 determines, according to the displacement, a reference pixel point corresponding to each pixel to be processed of the to-be-processed photo in the reference photo, performing the following steps: determining, according to the displacement, the terminal when photographing a lateral partial displacement and a longitudinal partial displacement of the imaging surface; determining reference pixel points corresponding to each pixel to be processed of the to-be-processed photo in the reference photo according to the lateral partial displacement and the longitudinal partial displacement.
  • the processor 308 determines a reference pixel point corresponding to each pixel to be processed of the to-be-processed photo in the reference photo according to the horizontal and vertical partial displacements, performing the following steps: according to the horizontal Displacement and longitudinal partial displacement respectively determine a lateral pixel point offset and a vertical pixel point offset of each pixel to be processed of the to-be-processed photo; determining the horizontal pixel point offset and the vertical pixel point offset according to the horizontal pixel point offset A reference pixel in the photo that corresponds to each pixel to be processed of the photo to be processed.
  • the processor 308 when the processor 308 sequentially adjusts the pixel values of the corresponding pixel to be processed according to the pixel value of each reference pixel, the following steps are performed: according to the pixel value of the pixel to be processed and the corresponding reference pixel.
  • the pixel value of the point is calculated by the preset weight; the pixel value of the pixel to be processed is modified to the target pixel value.
  • the processor 308 calculates the target pixel value according to the pixel value of the pixel to be processed and the pixel value of the corresponding reference pixel, the following steps are performed: calculating the pixel value of the pixel to be processed and correspondingly The average pixel value of the pixel value of the reference pixel; the average pixel value is determined as the target pixel value.
  • the embodiment of the present application provides a terminal, which acquires a to-be-processed photo and a reference photo from a plurality of consecutively taken photos; and acquires a displacement generated by the terminal during a time period in which the to-be-processed photo and the reference photo are taken; Determining, according to the displacement, a reference pixel point corresponding to each pixel to be processed of the to-be-processed photo in the reference photo; and sequentially adjusting pixel values of the corresponding pixel to be processed according to the pixel value of each reference pixel.
  • the solution determines a reference pixel point corresponding to each pixel to be processed in the photo to be processed according to the displacement generated by the terminal during the photographing process, and then adjusts the pixel value of the pixel to be processed according to the pixel value of the reference pixel point, Improves the quality of your photos by reducing noise in your photos.
  • the embodiment of the present application further provides a storage medium, where the storage medium stores a plurality of instructions, and the instructions are adapted to be loaded by a processor to perform the noise reduction processing method described in any of the foregoing embodiments.
  • the medium may include, but is not limited to, a read only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Studio Devices (AREA)
  • Image Processing (AREA)

Abstract

一种降噪处理方法、装置、存储介质及终端,该方法从连续拍摄的多张照片中获取待处理照片和参考照片;获取终端在拍摄该待处理照片和该参考照片的时间段内产生的位移;根据该位移确定该参考照片中与该待处理照片的每个待处理像素点相应的参考像素点;依次根据每个参考像素点的像素值对相应的待处理像素点的像素值进行调整。

Description

降噪处理方法、装置、存储介质及终端
本申请要求于2017年05月31日提交中国专利局、申请号为201710401745.2、发明名称为“降噪处理方法、装置、存储介质及终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及图像处理技术领域,特别涉及一种降噪处理方法、装置、存储介质及终端。
背景技术
当前,诸如智能手机等移动终端的拍照功能越来越完善。移动终端能够被随身携带,并且随时随地都可以使用移动终端拍照,从而给用户的生活带来很大的便利。
然而,在使用移动终端进行拍照时,在某些亮度比较低的场景下,拍摄的照片中存在噪点(照片中不期望出现的像素点)。这些噪点的存在,严重影响照片的质量。
发明内容
本申请实施例提供一种降噪处理方法、装置、存储介质及终端,可以提高照片的质量。
第一方面,本申请实施例提供一种降噪处理方法,包括:
从连续拍摄的多张照片中获取待处理照片和参考照片;
获取终端在拍摄该待处理照片和该参考照片的时间段内产生的位移;
根据该位移确定该参考照片中与该待处理照片的每个待处理像素点相应的参考像素点;
依次根据每个参考像素点的像素值对相应的待处理像素点的像素值进行调整。
第二方面,本申请实施例还提供一种降噪处理装置,包括:
第一获取模块,用于从连续拍摄的多张照片中获取待处理照片和参考照片;
第二获取模块,用于获取终端在拍摄该待处理照片和该参考照片的时间段内产生的位移;
确定模块,用于根据该位移确定该参考照片中与该待处理照片的每个待处理像素点相应的参考像素点;
调整模块,用于依次根据每个参考像素点的像素值对相应的待处理像素点的像素值进行调整。
第三方面,本申请实施例还提供一种存储介质,该存储介质中存储有多条指令,该指令适于由处理器加载以执行上述降噪处理方法。
第四方面,本申请实施例还提供一种终端,包括处理器、摄像头以及控制电路,该处理器与该摄像头、控制电路电性连接,该控制电路用于控制该摄像头拍摄照片,该处理器用于执行以下步骤:
从连续拍摄的多张照片中获取待处理照片和参考照片;
获取终端在拍摄该待处理照片和该参考照片的时间段内产生的位移;
根据该位移确定该参考照片中与该待处理照片的每个待处理像素点相应的参考像素点;
依次根据每个参考像素点的像素值对相应的待处理像素点的像素值进行调整。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的降噪处理方法的第一种流程示意图。
图2是本申请实施例提供的降噪处理方法的第二种流程示意图。
图3是本申请实施例提供的降噪处理方法的第三种流程示意图。
图4是本申请实施例提供的降噪处理方法的第一种应用场景示意图。
图5是本申请实施例提供的降噪处理方法的第二种应用场景示意图。
图6是本申请实施例提供的降噪处理装置的第一种结构示意图。
图7是本申请实施例提供的降噪处理装置的第二种结构示意图。
图8是本申请实施例提供的降噪处理装置的第三种结构示意图。
图9是本申请实施例提供的降噪处理装置的第四种结构示意图。
图10是本申请实施例提供的降噪处理装置的第五种结构示意图。
图11是本申请实施例提供的终端的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书以及上述附图中的术语“第一”、“第二”、“第三”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应当理解,这样描述的对象在适当情况下可以互换。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。例如,包含了一系列步骤的过程、方法或包含了一系列模块或单元的装置、终端、***不必限于清楚地列出的那些步骤或模块或单元,还可以包括没有清楚地列出的步骤或模块或单元,也可以包括对于这些过程、方法、装置、终端或***固有的其它步骤或模块或单元。
本申请实施例提供一种降噪处理方法,包括:
从连续拍摄的多张照片中获取待处理照片和参考照片;
获取终端在拍摄所述待处理照片和所述参考照片的时间段内产生的位移;
根据所述位移确定所述参考照片中与所述待处理照片的每个待处理像素点相应的参考像素点;
依次根据每个参考像素点的像素值对相应的待处理像素点的像素值进行调整。
在一些实施例中,所述终端包括角速度传感器,获取终端在拍摄所述待处理照片和所述参考照片的时间段内产生的位移的步骤包括:
获取所述角速度传感器的角位移数据;
将所述角位移数据确定为所述终端的位移。
在一些实施例中,所述终端包括加速度传感器,获取终端在拍摄所述待处理照片和所述参考照片的时间段内产生的位移的步骤包括:
获取所述加速度传感器的位移数据;
将所述位移数据确定为所述终端的位移。
在一些实施例中,根据所述位移确定所述参考照片中与所述待处理照片的每个待处理像素点相应的参考像素点的步骤包括:
根据所述位移确定所述终端在拍摄时的成像面的横向分位移和纵向分位移;
根据所述横向分位移和纵向分位移确定所述参考照片中与所述待处理照片的每个待处理像素点相应的参考像素点。
在一些实施例中,根据所述横向分位移和纵向分位移确定所述参考照片中与所述待处理照片的每个待处理像素点相应的参考像素点的步骤包括:
根据所述横向分位移和纵向分位移分别确定所述待处理照片的每个待处理像素点的横向像素点偏移量和纵向像素点偏移量;
根据所述横向像素点偏移量和纵向像素点偏移量确定所述参考照片中与所述待处理照 片的每个待处理像素点相应的参考像素点。
在一些实施例中,依次根据每个参考像素点的像素值对相应的待处理像素点的像素值进行调整的步骤包括:
根据待处理像素点的像素值和相应的参考像素点的像素值以预设权重计算目标像素值;
将所述待处理像素点的像素值修改为所述目标像素值。
在一些实施例中,根据待处理像素点的像素值和相应的参考像素点的像素值以预设权重计算目标像素值的步骤包括:
计算待处理像素点的像素值和相应的参考像素点的像素值的平均像素值;
将所述平均像素值确定为目标像素值。
本申请实施例提供一种降噪处理方法,该方法可以应用于终端中。该终端可以是智能手机、平板电脑等设备。如图1所示,该降噪处理方法可以包括以下步骤:
110,从连续拍摄的多张照片中获取待处理照片和参考照片。
其中,终端中具有摄像头,终端可以通过摄像头拍摄照片。拍摄照片时,为了获得更好的照片效果,终端可以控制摄像头快速地连续拍摄多张照片。例如,拍摄照片时,终端控制摄像头在1秒内快速地连续拍摄4张照片A、A1、A2、A3。在实际应用中,对相同的场景连续拍摄多张照片后,可以对该多张照片进行处理,最后保留一张效果最好的照片。
其中,连续拍摄多张照片后,终端可以对该多张照片进行对比分析,以从该多张照片中获取清晰度最高的照片作为待处理照片。例如,拍摄的4张照片A、A1、A2、A3中,照片A的清晰度最高,则可以选取照片A作为待处理照片。随后,从待处理照片之外的多张照片中获取参考照片。例如,可以从待处理照片之外的多张照片中选取清晰度最高的照片作为参考照片。
在一些实施例中,参考照片可以为待处理照片的相邻照片。其中,相邻指的是拍摄顺序处于该待处理照片之前或之后的照片。例如,4张照片A、A1、A2、A3中,照片A为待处理照片,则可以选取照片A1作为参考照片。
终端从多张照片中获取待处理照片和参考照片后,根据参考照片对该待处理照片进行处理。
需要说明的是,在对照片进行处理的整个过程中,终端可以对待处理照片进行多次处理。也即,终端可以获取到参考照片,并对待处理照片进行处理后,继续获取下一张参考照片,并对待处理照片进行下一次处理。例如,4张照片A、A1、A2、A3中,照片A为待处理照片,终端可以以照片A1作为参考照片对照片A进行第一次处理,然后继续以照片A2作为参考照片对照片A进行第二次处理。
120,获取终端在拍摄该待处理照片和该参考照片的时间段内产生的位移。
实际应用中,用户在控制终端进行拍照时,终端不可避免地会发生抖动。从而,终端在连续拍摄多张照片时,拍摄每一张照片时终端的位置、姿势不是完全相同的。即使两张照片之间的拍摄时间间隔很短,终端也会产生微小的位移。其中,位移可以包括平移所产生的位移,也可以包括旋转所产生的角位移。
终端获取到待处理照片和参考照片后,可以获取拍摄该待处理照片和该参考照片的时间段内产生的位移。
在一些实施例中,终端中具有角速度传感器(也称为陀螺仪)。角速度传感器可用于测量角位移。如图2所示,获取终端在拍摄该待处理照片和该参考照片的时间段内产生的位移可以包括以下步骤:
121,获取角速度传感器的角位移数据;
122,将该角位移数据确定为终端的位移。
其中,终端可以记录下拍摄待处理照片时的时刻以及拍摄参考照片时的时刻,然后获 取角速度传感器在该两个时刻之间产生的角位移数据,并将该角位移数据确定为终端的位移。
在一些实施例中,终端中具有加速度传感器(也称为重力传感器)。加速度传感器可用于测量位移。如图3所示,获取终端在拍摄该待处理照片和该参考照片的时间段内产生的位移可以包括以下步骤:
123,获取加速度传感器的位移数据;
124,将该位移数据确定为终端的位移。
其中,终端可以记录下拍摄待处理照片时的时刻以及拍摄参考照片时的时刻,然后获取加速度传感器在该两个时刻之间产生的位移数据,并将该位移数据确定为终端的位移。
在一些实施例中,终端还可以同时通过角速度传感器和加速度传感器来获取终端在拍摄该待处理照片和该参考照片的时间段内产生的位移。
130,根据该位移确定该参考照片中与该待处理照片的每个待处理像素点相应的参考像素点。
其中,终端对待处理照片进行处理时,依次对该待处理照片中的每个像素点进行处理。待处理照片中的像素点即为待处理像素点。参考照片中的像素点即为参考像素点。
在拍摄照片的过程中,终端产生位移时,被拍摄物体(或景物)的相同部位在待处理照片和参考照片中的位置是不同的。
参考图4、图5,其中图4所示为待处理照片,图5所示为参考照片。图4中的像素点P1与图5中的像素点P2是被拍摄物体的相同部位在两张照片中的像素点。也即,待处理照片中的像素点P1与参考照片中的像素点P2是相应的像素点。待处理照片中,像素点P距离照片左边缘的距离为d1。参考照片中,像素点P距离照片左边缘的距离为d2。由于终端在拍摄过程中产生了位移,因此d1与d2是不同的。
终端获取到在拍摄该待处理照片和该参考照片的时间段内产生的位移后,根据该位移确定该参考照片中与该待处理照片的每个待处理像素点相应的参考像素点。其中,在图4、图5中,待处理照片中的像素点P1即为待处理像素点,参考照片中与待处理像素点P1相对应的像素点P2即为参考像素点。
在一些实施例中,如图2所示,根据该位移确定该参考照片中与该待处理照片的每个待处理像素点相应的参考像素点的步骤包括:
131,根据该位移确定终端在拍摄时的成像面的横向分位移和纵向分位移;
132,根据该横向分位移和纵向分位移确定该参考照片中与该待处理照片的每个待处理像素点相应的参考像素点。
其中,终端在确定拍摄过程中的位移后,可以根据该位移确定终端在拍摄时的成像面的横向分位移和纵向分位移。拍摄时的成像面为终端拍摄参考照片时的成像面。参考图4、图5,横向分位移可以理解为沿照片X轴方向的位移,纵向分位移可以理解为沿照片Y轴方向的位移。
上述横向分位移和纵向分位移是终端在拍摄时的成像面的位移,也是参考照片中每个像素点相对于待处理照片中的每个相应像素点的横向分位移和纵向分位移。终端确定横向分位移和纵向分位移后,即可根据该横向分位移和纵向分位移确定该参考照片中与该待处理照片的每个待处理像素点相应的参考像素点。
在一些实施例中,如图3所示,根据该横向分位移和纵向分位移确定该参考照片中与该待处理照片的每个待处理像素点相应的参考像素点的步骤包括:
1321,根据该横向分位移和纵向分位移分别确定该待处理照片的每个待处理像素点的横向像素点偏移量和纵向像素点偏移量;
1322,根据该横向像素点偏移量和纵向像素点偏移量确定该参考照片中与该待处理照 片的每个待处理像素点相应的参考像素点。
其中,终端中摄像头的规格是固定的。也即,摄像头中的相邻两个最小感光单元(摄像头中的像素点)之间的间距是固定的。例如,摄像头中两个相邻像素点之间的间距为0.1微米。
终端获取到横向分位移和纵向分位移后,根据该横向分位移和纵向分位移分别计算待处理照片的每个待处理像素点的横向像素点偏移量和纵向像素点偏移量。例如,横向分位移为5微米,纵向分位移为2微米。则可以确定出在拍摄过程中,待处理照片的每个待处理像素点横向偏移了50个像素点,纵向偏移了20个像素点。
随后,终端根据待处理像素点的横向像素点偏移量和纵向像素点偏移量确定参考照片中与待处理照片的每个待处理像素点相应的参考像素点。例如,将待处理照片中的待处理像素点横向偏移50个像素点、纵向偏移20个像素点,即可得到与该待处理像素点相应的参考像素点。
140,依次根据每个参考像素点的像素值对相应的待处理像素点的像素值进行调整。
其中,终端确定出参考照片中与待处理照片的每个待处理像素点相应的参考像素点后,依次根据每个参考像素点的像素值对相应的待处理像素点的像素值进行调整,以达到对待处理照片进行降噪的效果。
在一些实施例中,如图2所示,依次根据每个参考像素点的像素值对相应的待处理像素点的像素值进行调整的步骤包括:
141,根据待处理像素点的像素值和相应的参考像素点的像素值以预设权重计算目标像素值;
142,将该待处理像素点的像素值修改为该目标像素值。
其中,终端可以根据待处理像素点的像素值和相应的参考像素点的像素值以预设权重计算目标像素值。例如,待处理像素点的像素值为120,参考像素点的像素值为100,待处理像素点的预设权重为0.7,参考像素点的预设权重为0.3,则可以计算出目标像素值W=120×0.7+100×0.3=114。随后,将该待处理像素点的像素值修改为该目标像素值。
在一些实施例中,如图3所示,根据待处理像素点的像素值和相应的参考像素点的像素值以预设权重计算目标像素值的步骤包括:
1411,计算待处理像素点的像素值和相应的参考像素点的像素值的平均像素值;
1412,将该平均像素值确定为目标像素值。
其中,待处理像素点的预设权重和参考像素点的预设权重均为0.5。终端计算待处理像素点的像素值和相应的参考像素点的像素值的平均像素值,随后将该平均像素值确定为目标像素值。例如,待处理像素点的像素值为120,参考像素点的像素值为100,则可以计算出平均像素值为110,随后将目标像素值确定为110。
具体实施时,本申请不受所描述的各个步骤的执行顺序的限制,在不产生冲突的情况下,某些步骤还可以采用其它顺序进行或者同时进行。
由上可知,本申请实施例提供的降噪处理方法,从连续拍摄的多张照片中获取待处理照片和参考照片;获取终端在拍摄该待处理照片和该参考照片的时间段内产生的位移;根据该位移确定该参考照片中与该待处理照片的每个待处理像素点相应的参考像素点;依次根据每个参考像素点的像素值对相应的待处理像素点的像素值进行调整。该方案根据终端在拍照过程中产生的位移,来确定与待处理照片中的每个待处理像素点相应的参考像素点,随后根据参考像素点的像素值对待处理像素点的像素值进行调整,能够减少照片中的噪点,从而提高照片的质量。
本申请实施例还提供一种降噪处理装置,包括:
第一获取模块,用于从连续拍摄的多张照片中获取待处理照片和参考照片;
第二获取模块,用于获取终端在拍摄所述待处理照片和所述参考照片的时间段内产生的位移;
确定模块,用于根据所述位移确定所述参考照片中与所述待处理照片的每个待处理像素点相应的参考像素点;
调整模块,用于依次根据每个参考像素点的像素值对相应的待处理像素点的像素值进行调整。
在一些实施例中,所述终端包括角速度传感器,所述第二获取模块包括:
第一获取子模块,用于获取所述角速度传感器的角位移数据;
第一确定子模块,用于将所述角位移数据确定为所述终端的位移。
在一些实施例中,所述终端包括加速度传感器,所述第二获取模块包括:
第二获取子模块,用于获取所述加速度传感器的位移数据;
第二确定子模块,用于将所述位移数据确定为所述终端的位移。
在一些实施例中,所述确定模块包括:
第三确定子模块,用于根据所述位移确定所述终端在拍摄时的成像面的横向分位移和纵向分位移;
第四确定子模块,用于根据所述横向分位移和纵向分位移确定所述参考照片中与所述待处理照片的每个待处理像素点相应的参考像素点。
在一些实施例中,所述第四确定子模块用于:
根据所述横向分位移和纵向分位移分别确定所述待处理照片的每个待处理像素点的横向像素点偏移量和纵向像素点偏移量;
根据所述横向像素点偏移量和纵向像素点偏移量确定所述参考照片中与所述待处理照片的每个待处理像素点相应的参考像素点。
在一些实施例中,所述调整模块包括:
计算子模块,用于根据待处理像素点的像素值和相应的参考像素点的像素值以预设权重计算目标像素值;
修改子模块,用于将所述待处理像素点的像素值修改为所述目标像素值。
在一些实施例中,所述计算子模块用于:
计算待处理像素点的像素值和相应的参考像素点的像素值的平均像素值;
将所述平均像素值确定为目标像素值。
本申请实施例还提供一种降噪处理装置,该装置可以集成在终端中,该终端可以是智能手机、平板电脑等设备。
如图6所示,降噪处理装置200可以包括:第一获取模块201、第二获取模块202、确定模块203、调整模块204。
第一获取模块201,用于从连续拍摄的多张照片中获取待处理照片和参考照片。
其中,终端中具有摄像头,终端可以通过摄像头拍摄照片。拍摄照片时,为了获得更好的照片效果,终端可以控制摄像头快速地连续拍摄多张照片。例如,拍摄照片时,终端控制摄像头在1秒内快速地连续拍摄4张照片A、A1、A2、A3。在实际应用中,对相同的场景连续拍摄多张照片后,可以对该多张照片进行处理,最后保留一张效果最好的照片。
其中,连续拍摄多张照片后,第一获取模块201可以对该多张照片进行对比分析,以从该多张照片中获取清晰度最高的照片作为待处理照片。例如,拍摄的4张照片A、A1、A2、A3中,照片A的清晰度最高,则可以选取照片A作为待处理照片。随后,从待处理照片之外的多张照片中获取参考照片。例如,可以从待处理照片之外的多张照片中选取清晰度最高的照片作为参考照片。
在一些实施例中,参考照片可以为待处理照片的相邻照片。其中,相邻指的是拍摄顺 序处于该待处理照片之前或之后的照片。例如,4张照片A、A1、A2、A3中,照片A为待处理照片,则可以选取照片A1作为参考照片。
第一获取模块201从多张照片中获取待处理照片和参考照片后,降噪处理装置200根据参考照片对该待处理照片进行处理。
需要说明的是,在对照片进行处理的整个过程中,降噪处理装置200可以对待处理照片进行多次处理。也即,第一获取模块201可以获取到参考照片,并由降噪处理装置200对待处理照片进行处理后,第一获取模块201继续获取下一张参考照片,并由降噪处理装置200对待处理照片进行下一次处理。例如,4张照片A、A1、A2、A3中,照片A为待处理照片,可以以照片A1作为参考照片对照片A进行第一次处理,然后继续以照片A2作为参考照片对照片A进行第二次处理。
第二获取模块202,用于获取终端在拍摄该待处理照片和该参考照片的时间段内产生的位移。
实际应用中,用户在控制终端进行拍照时,终端不可避免地会发生抖动。从而,终端在连续拍摄多张照片时,拍摄每一张照片时终端的位置、姿势不是完全相同的。即使两张照片之间的拍摄时间间隔很短,终端也会产生微小的位移。其中,位移可以包括平移所产生的位移,也可以包括旋转所产生的角位移。
第一获取模块201获取到待处理照片和参考照片后,第二获取模块202可以获取拍摄该待处理照片和该参考照片的时间段内产生的位移。
在一些实施例中,终端中具有角速度传感器(也称为陀螺仪)。角速度传感器可用于测量角位移。如图7所示,第二获取模块202包括:第一获取子模块2021、第一确定子模块2022。
第一获取子模块2021,用于获取角速度传感器的角位移数据;
第一确定子模块2022,用于将该角位移数据确定为终端的位移。
其中,第一获取子模块2021可以记录下拍摄待处理照片时的时刻以及拍摄参考照片时的时刻,然后获取角速度传感器在该两个时刻之间产生的角位移数据,第一确定子模块2022将该角位移数据确定为终端的位移。
在一些实施例中,终端中具有加速度传感器(也称为重力传感器)。加速度传感器可用于测量位移。如图8所示,第二获取模块202包括:第二获取子模块2023、第二确定子模块2024。
第二获取子模块2023,用于获取加速度传感器的位移数据;
第二确定子模块2024,用于将该位移数据确定为终端的位移。
其中,第二获取子模块2023可以记录下拍摄待处理照片时的时刻以及拍摄参考照片时的时刻,然后获取加速度传感器在该两个时刻之间产生的位移数据,第二确定子模块2024将该位移数据确定为终端的位移。
在一些实施例中,第二获取模块202还可以同时通过角速度传感器和加速度传感器来获取终端在拍摄该待处理照片和该参考照片的时间段内产生的位移。
确定模块203,用于根据该位移确定该参考照片中与该待处理照片的每个待处理像素点相应的参考像素点。
其中,降噪处理装置200对待处理照片进行处理时,依次对该待处理照片中的每个像素点进行处理。待处理照片中的像素点即为待处理像素点。参考照片中的像素点即为参考像素点。
第二获取模块202获取到在拍摄该待处理照片和该参考照片的时间段内产生的位移后,确定模块203根据该位移确定该参考照片中与该待处理照片的每个待处理像素点相应的参考像素点。
在一些实施例中,如图9所示,确定模块203包括:第三确定子模块2031、第四确定子模块2032。
第三确定子模块2031,用于根据该位移确定终端在拍摄时的成像面的横向分位移和纵向分位移;
第四确定子模块2032,用于根据该横向分位移和纵向分位移确定该参考照片中与该待处理照片的每个待处理像素点相应的参考像素点。
其中,第二获取模块202在确定拍摄过程中的位移后,第三确定子模块2031可以根据该位移确定终端在拍摄时的成像面的横向分位移和纵向分位移。
上述横向分位移和纵向分位移是终端在拍摄时的成像面的位移,也是参考照片中每个像素点相对于待处理照片中的每个相应像素点的横向分位移和纵向分位移。第三确定子模块2031确定横向分位移和纵向分位移后,第四确定子模块2032即可根据该横向分位移和纵向分位移确定该参考照片中与该待处理照片的每个待处理像素点相应的参考像素点。
在一些实施例中,第四确定子模块2032用于执行以下步骤:
根据该横向分位移和纵向分位移分别确定该待处理照片的每个待处理像素点的横向像素点偏移量和纵向像素点偏移量;
根据该横向像素点偏移量和纵向像素点偏移量确定该参考照片中与该待处理照片的每个待处理像素点相应的参考像素点。
其中,终端中摄像头的规格是固定的。也即,摄像头中的相邻两个最小感光单元(摄像头中的像素点)之间的间距是固定的。例如,摄像头中两个相邻像素点之间的间距为0.1微米。
第三确定子模块2031确定横向分位移和纵向分位移后,第四确定子模块2032根据该横向分位移和纵向分位移分别计算待处理照片的每个待处理像素点的横向像素点偏移量和纵向像素点偏移量。例如,横向分位移为5微米,纵向分位移为2微米。则可以确定出在拍摄过程中,待处理照片的每个待处理像素点横向偏移了50个像素点,纵向偏移了20个像素点。
随后,第四确定子模块2032根据待处理像素点的横向像素点偏移量和纵向像素点偏移量确定参考照片中与待处理照片的每个待处理像素点相应的参考像素点。例如,将待处理照片中的待处理像素点横向偏移50个像素点、纵向偏移20个像素点,即可得到与该待处理像素点相应的参考像素点。
调整模块204,用于依次根据每个参考像素点的像素值对相应的待处理像素点的像素值进行调整。
其中,确定模块203确定出参考照片中与待处理照片的每个待处理像素点相应的参考像素点后,调整模块204依次根据每个参考像素点的像素值对相应的待处理像素点的像素值进行调整,以达到对待处理照片进行降噪的效果。
在一些实施例中,如图10所示,调整模块204包括:计算子模块2041、修改子模块2042。
计算子模块2041,用于根据待处理像素点的像素值和相应的参考像素点的像素值以预设权重计算目标像素值;
修改子模块2042,用于将该待处理像素点的像素值修改为该目标像素值。
其中,计算子模块2041可以根据待处理像素点的像素值和相应的参考像素点的像素值以预设权重计算目标像素值。例如,待处理像素点的像素值为120,参考像素点的像素值为100,待处理像素点的预设权重为0.7,参考像素点的预设权重为0.3,则可以计算出目标像素值W=120×0.7+100×0.3=114。随后,修改子模块2042将该待处理像素点的像素值修改为该目标像素值。
在一些实施例中,计算子模块2041用于执行以下步骤:
计算待处理像素点的像素值和相应的参考像素点的像素值的平均像素值;
将该平均像素值确定为目标像素值。
其中,待处理像素点的预设权重和参考像素点的预设权重均为0.5。计算子模块2041计算待处理像素点的像素值和相应的参考像素点的像素值的平均像素值,随后将该平均像素值确定为目标像素值。例如,待处理像素点的像素值为120,参考像素点的像素值为100,则可以计算出平均像素值为110,随后将目标像素值确定为110。
具体实施时,以上各个模块可以作为独立的实体来实现,也可以进行任意组合,作为同一或若干个实体来实现。
由上可知,本申请实施例提供的降噪处理装置200,通过第一获取模块201从连续拍摄的多张照片中获取待处理照片和参考照片;第二获取模块202获取终端在拍摄该待处理照片和该参考照片的时间段内产生的位移;确定模块203根据该位移确定该参考照片中与该待处理照片的每个待处理像素点相应的参考像素点;调整模块204依次根据每个参考像素点的像素值对相应的待处理像素点的像素值进行调整。该方案根据终端在拍照过程中产生的位移,来确定与待处理照片中的每个待处理像素点相应的参考像素点,随后根据参考像素点的像素值对待处理像素点的像素值进行调整,能够减少照片中的噪点,从而提高照片的质量。
本申请实施例还提供一种终端,如图11所示,终端300可以包括射频(RF,Radio Frequency)电路301、包括有一个或一个以上计算机可读存储介质的存储器302、输入单元303、显示单元304、摄像头305、控制电路306、无线保真(WiFi,Wireless Fidelity)模块307、包括有一个或者一个以上处理核心的处理器308、以及电源309等部件。本领域技术人员可以理解,图11中示出的终端结构并不构成对终端的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
射频电路301可以通过无线网络与网络设备或其他电子设备通信,完成与网络设备或其他电子设备之间的信息收发。
存储器302可用于存储应用程序和数据。存储器302存储的应用程序中包含有可执行程序代码。应用程序可以组成各种功能模块。处理器308通过运行存储在存储器302的应用程序,从而执行各种功能应用以及数据处理。
输入单元303可用于接收用户输入的字符信息或用户特征信息(例如指纹)。其中,输入单元303可以包括指纹识别模组和触摸屏。指纹识别模组用于采集用户的指纹信息。触摸屏用于接收用户的触摸操作。
显示单元304可用于显示由用户输入的信息或提供给用户的信息以及终端的各种图形用户接口,这些图形用户接口可以由图形、文本、图标、视频和其任意组合来构成。
终端还包括一个或多个摄像头305。例如,终端可以包括前置摄像头和后置摄像头。摄像头用于拍摄照片。
控制电路306可以与摄像头305电性连接,以控制摄像头305拍摄照片或者对摄像头305的参数进行调节。
无线保真(WiFi)属于短距离无线传输技术,终端通过无线保真模块307可以与其他终端或服务器进行通信。
处理器308是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器302内的应用程序,以及调用存储在存储器302内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。
终端还包括给各个部件供电的电源309(例如电池)。在一些实施例中,电源可以通过电源管理***与处理器308逻辑相连,从而通过电源管理***实现管理充电、放电、以及功耗管理等功能。
尽管图11中未示出,终端还可以包括近场通信(Near Field Communication,NFC)模块、蓝牙模块等,在此不再赘述。
在本实施例中,终端中的处理器308会按照如下的指令,将一个或一个以上的应用程序的进程对应的可执行程序代码加载到存储器302中,并由处理器308来运行存储在存储器302中的应用程序,从而实现各种功能:
从连续拍摄的多张照片中获取待处理照片和参考照片;
获取终端在拍摄该待处理照片和该参考照片的时间段内产生的位移;
根据该位移确定该参考照片中与该待处理照片的每个待处理像素点相应的参考像素点;
依次根据每个参考像素点的像素值对相应的待处理像素点的像素值进行调整。
在一些实施例中,终端包括角速度传感器,处理器308获取终端在拍摄该待处理照片和该参考照片的时间段内产生的位移时,执行以下步骤:获取角速度传感器的角位移数据;将该角位移数据确定为终端的位移。
在一些实施例中,终端包括加速度传感器,处理器308获取终端在拍摄该待处理照片和该参考照片的时间段内产生的位移时,执行以下步骤:获取加速度传感器的位移数据;将该位移数据确定为终端的位移。
在一些实施例中,处理器308根据该位移确定该参考照片中与该待处理照片的每个待处理像素点相应的参考像素点时,执行以下步骤:根据该位移确定该终端在拍摄时的成像面的横向分位移和纵向分位移;根据该横向分位移和纵向分位移确定该参考照片中与该待处理照片的每个待处理像素点相应的参考像素点。
在一些实施例中,处理器308根据该横向分位移和纵向分位移确定该参考照片中与该待处理照片的每个待处理像素点相应的参考像素点时,执行以下步骤:根据该横向分位移和纵向分位移分别确定该待处理照片的每个待处理像素点的横向像素点偏移量和纵向像素点偏移量;根据该横向像素点偏移量和纵向像素点偏移量确定该参考照片中与该待处理照片的每个待处理像素点相应的参考像素点。
在一些实施例中,处理器308依次根据每个参考像素点的像素值对相应的待处理像素点的像素值进行调整时,执行以下步骤:根据待处理像素点的像素值和相应的参考像素点的像素值以预设权重计算目标像素值;将该待处理像素点的像素值修改为该目标像素值。
在一些实施例中,处理器308根据待处理像素点的像素值和相应的参考像素点的像素值以预设权重计算目标像素值时,执行以下步骤:计算待处理像素点的像素值和相应的参考像素点的像素值的平均像素值;将该平均像素值确定为目标像素值。
上述实施例中,对各个实施例的描述都各有侧重,某些实施例中没有详细描述的部分,可以参见前面对降噪处理方法的详细描述,在此不再赘述。
由上可知,本申请实施例提供了一种终端,从连续拍摄的多张照片中获取待处理照片和参考照片;获取终端在拍摄该待处理照片和该参考照片的时间段内产生的位移;根据该位移确定该参考照片中与该待处理照片的每个待处理像素点相应的参考像素点;依次根据每个参考像素点的像素值对相应的待处理像素点的像素值进行调整。该方案根据终端在拍照过程中产生的位移,来确定与待处理照片中的每个待处理像素点相应的参考像素点,随后根据参考像素点的像素值对待处理像素点的像素值进行调整,能够减少照片中的噪点,从而提高照片的质量。
本申请实施例还提供一种存储介质,所述存储介质中存储有多条指令,所述指令适于由处理器加载以执行上述任一实施例所述的降噪处理方法。
需要说明的是,本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于计算机可读存储介质中,存储介质可以包括但不限于:只读存储器(ROM,Read Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁盘或光盘等。
以上对本申请实施例所提供的降噪处理方法、装置、存储介质及终端进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种降噪处理方法,包括:
    从连续拍摄的多张照片中获取待处理照片和参考照片;
    获取终端在拍摄所述待处理照片和所述参考照片的时间段内产生的位移;
    根据所述位移确定所述参考照片中与所述待处理照片的每个待处理像素点相应的参考像素点;
    依次根据每个参考像素点的像素值对相应的待处理像素点的像素值进行调整。
  2. 根据权利要求1所述的降噪处理方法,其中,所述终端包括角速度传感器,获取终端在拍摄所述待处理照片和所述参考照片的时间段内产生的位移的步骤包括:
    获取所述角速度传感器的角位移数据;
    将所述角位移数据确定为所述终端的位移。
  3. 根据权利要求1所述的降噪处理方法,其中,所述终端包括加速度传感器,获取终端在拍摄所述待处理照片和所述参考照片的时间段内产生的位移的步骤包括:
    获取所述加速度传感器的位移数据;
    将所述位移数据确定为所述终端的位移。
  4. 根据权利要求1所述的降噪处理方法,其中,根据所述位移确定所述参考照片中与所述待处理照片的每个待处理像素点相应的参考像素点的步骤包括:
    根据所述位移确定所述终端在拍摄时的成像面的横向分位移和纵向分位移;
    根据所述横向分位移和纵向分位移确定所述参考照片中与所述待处理照片的每个待处理像素点相应的参考像素点。
  5. 根据权利要求4所述的降噪处理方法,其中,根据所述横向分位移和纵向分位移确定所述参考照片中与所述待处理照片的每个待处理像素点相应的参考像素点的步骤包括:
    根据所述横向分位移和纵向分位移分别确定所述待处理照片的每个待处理像素点的横向像素点偏移量和纵向像素点偏移量;
    根据所述横向像素点偏移量和纵向像素点偏移量确定所述参考照片中与所述待处理照片的每个待处理像素点相应的参考像素点。
  6. 根据权利要求1所述的降噪处理方法,其中,依次根据每个参考像素点的像素值对相应的待处理像素点的像素值进行调整的步骤包括:
    根据待处理像素点的像素值和相应的参考像素点的像素值以预设权重计算目标像素值;
    将所述待处理像素点的像素值修改为所述目标像素值。
  7. 根据权利要求6所述的降噪处理方法,其中,根据待处理像素点的像素值和相应的参考像素点的像素值以预设权重计算目标像素值的步骤包括:
    计算待处理像素点的像素值和相应的参考像素点的像素值的平均像素值;
    将所述平均像素值确定为目标像素值。
  8. 一种降噪处理装置,包括:
    第一获取模块,用于从连续拍摄的多张照片中获取待处理照片和参考照片;
    第二获取模块,用于获取终端在拍摄所述待处理照片和所述参考照片的时间段内产生的位移;
    确定模块,用于根据所述位移确定所述参考照片中与所述待处理照片的每个待处理像素点相应的参考像素点;
    调整模块,用于依次根据每个参考像素点的像素值对相应的待处理像素点的像素值进行调整。
  9. 根据权利要求8所述的降噪处理装置,其中,所述终端包括角速度传感器,所述第二获取模块包括:
    第一获取子模块,用于获取所述角速度传感器的角位移数据;
    第一确定子模块,用于将所述角位移数据确定为所述终端的位移。
  10. 根据权利要求8所述的降噪处理装置,其中,所述终端包括加速度传感器,所述第二获取模块包括:
    第二获取子模块,用于获取所述加速度传感器的位移数据;
    第二确定子模块,用于将所述位移数据确定为所述终端的位移。
  11. 根据权利要求8所述的降噪处理装置,其中,所述确定模块包括:
    第三确定子模块,用于根据所述位移确定所述终端在拍摄时的成像面的横向分位移和纵向分位移;
    第四确定子模块,用于根据所述横向分位移和纵向分位移确定所述参考照片中与所述待处理照片的每个待处理像素点相应的参考像素点。
  12. 根据权利要求8所述的降噪处理装置,其中,所述调整模块包括:
    计算子模块,用于根据待处理像素点的像素值和相应的参考像素点的像素值以预设权重计算目标像素值;
    修改子模块,用于将所述待处理像素点的像素值修改为所述目标像素值。
  13. 一种存储介质,所述存储介质中存储有多条指令,所述指令适于由处理器加载以执行权利要求1至7中任一项所述的降噪处理方法。
  14. 一种终端,包括处理器、摄像头以及控制电路,其中,所述处理器与所述摄像头、控制电路电性连接,所述控制电路用于控制所述摄像头拍摄照片,所述处理器用于执行以下步骤:
    从连续拍摄的多张照片中获取待处理照片和参考照片;
    获取终端在拍摄所述待处理照片和所述参考照片的时间段内产生的位移;
    根据所述位移确定所述参考照片中与所述待处理照片的每个待处理像素点相应的参考像素点;
    依次根据每个参考像素点的像素值对相应的待处理像素点的像素值进行调整。
  15. 根据权利要求14所述的终端,其中,所述终端包括角速度传感器,获取终端在拍摄所述待处理照片和所述参考照片的时间段内产生的位移时,所述处理器用于执行以下步骤:
    获取所述角速度传感器的角位移数据;
    将所述角位移数据确定为所述终端的位移。
  16. 根据权利要求14所述的终端,其中,所述终端包括加速度传感器,获取终端在拍摄所述待处理照片和所述参考照片的时间段内产生的位移时,所述处理器用于执行以下步骤:
    获取所述加速度传感器的位移数据;
    将所述位移数据确定为所述终端的位移。
  17. 根据权利要求14所述的终端,其中,根据所述位移确定所述参考照片中与所述待处理照片的每个待处理像素点相应的参考像素点时,所述处理器用于执行以下步骤:
    根据所述位移确定所述终端在拍摄时的成像面的横向分位移和纵向分位移;
    根据所述横向分位移和纵向分位移确定所述参考照片中与所述待处理照片的每个待处理像素点相应的参考像素点。
  18. 根据权利要求17所述的终端,其中,根据所述横向分位移和纵向分位移确定所述参考照片中与所述待处理照片的每个待处理像素点相应的参考像素点时,所述处理器用于执行以下步骤:
    根据所述横向分位移和纵向分位移分别确定所述待处理照片的每个待处理像素点的横 向像素点偏移量和纵向像素点偏移量;
    根据所述横向像素点偏移量和纵向像素点偏移量确定所述参考照片中与所述待处理照片的每个待处理像素点相应的参考像素点。
  19. 根据权利要求14所述的终端,其中,依次根据每个参考像素点的像素值对相应的待处理像素点的像素值进行调整时,所述处理器用于执行以下步骤:
    根据待处理像素点的像素值和相应的参考像素点的像素值以预设权重计算目标像素值;
    将所述待处理像素点的像素值修改为所述目标像素值。
  20. 根据权利要求19所述的终端,其中,根据待处理像素点的像素值和相应的参考像素点的像素值以预设权重计算目标像素值时,所述处理器用于执行以下步骤:
    计算待处理像素点的像素值和相应的参考像素点的像素值的平均像素值;
    将所述平均像素值确定为目标像素值。
PCT/CN2018/088865 2017-05-31 2018-05-29 降噪处理方法、装置、存储介质及终端 WO2018219274A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18809315.7A EP3633600A1 (en) 2017-05-31 2018-05-29 Method and apparatus for denoising processing, storage medium and terminal
US16/693,359 US20200090309A1 (en) 2017-05-31 2019-11-24 Method and device for denoising processing, storage medium, and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710401745.2A CN107085837A (zh) 2017-05-31 2017-05-31 降噪处理方法、装置、存储介质及终端
CN201710401745.2 2017-05-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/693,359 Continuation US20200090309A1 (en) 2017-05-31 2019-11-24 Method and device for denoising processing, storage medium, and terminal

Publications (1)

Publication Number Publication Date
WO2018219274A1 true WO2018219274A1 (zh) 2018-12-06

Family

ID=59608958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088865 WO2018219274A1 (zh) 2017-05-31 2018-05-29 降噪处理方法、装置、存储介质及终端

Country Status (4)

Country Link
US (1) US20200090309A1 (zh)
EP (1) EP3633600A1 (zh)
CN (1) CN107085837A (zh)
WO (1) WO2018219274A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107085837A (zh) * 2017-05-31 2017-08-22 广东欧珀移动通信有限公司 降噪处理方法、装置、存储介质及终端
CN108053369A (zh) * 2017-11-27 2018-05-18 努比亚技术有限公司 一种图像处理的方法、设备及存储介质
CN109951629A (zh) * 2017-12-21 2019-06-28 姜鹏飞 一种降噪处理方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103024263A (zh) * 2011-09-26 2013-04-03 卡西欧计算机株式会社 图像处理装置及图像处理方法
CN103973958A (zh) * 2013-01-30 2014-08-06 阿里巴巴集团控股有限公司 图像处理方法及设备
CN106127720A (zh) * 2016-06-29 2016-11-16 青岛海信移动通信技术股份有限公司 一种拍摄放大图像的方法和装置
CN107085837A (zh) * 2017-05-31 2017-08-22 广东欧珀移动通信有限公司 降噪处理方法、装置、存储介质及终端

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009284394A (ja) * 2008-05-26 2009-12-03 Olympus Imaging Corp 撮像装置および撮像方法
CN104065854B (zh) * 2014-06-18 2018-08-10 联想(北京)有限公司 一种图像处理方法及一种电子设备
CN105894486B (zh) * 2016-06-29 2018-08-03 深圳市优象计算技术有限公司 一种基于imu信息的手机夜拍方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103024263A (zh) * 2011-09-26 2013-04-03 卡西欧计算机株式会社 图像处理装置及图像处理方法
CN103973958A (zh) * 2013-01-30 2014-08-06 阿里巴巴集团控股有限公司 图像处理方法及设备
CN106127720A (zh) * 2016-06-29 2016-11-16 青岛海信移动通信技术股份有限公司 一种拍摄放大图像的方法和装置
CN107085837A (zh) * 2017-05-31 2017-08-22 广东欧珀移动通信有限公司 降噪处理方法、装置、存储介质及终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3633600A4 *

Also Published As

Publication number Publication date
US20200090309A1 (en) 2020-03-19
EP3633600A4 (en) 2020-04-08
EP3633600A1 (en) 2020-04-08
CN107085837A (zh) 2017-08-22

Similar Documents

Publication Publication Date Title
EP3686845B1 (en) Image processing method and device and apparatus
CN109788189B (zh) 将相机与陀螺仪融合在一起的五维视频稳定化装置及方法
EP2991339B1 (en) Photographing method and electronic device
US9692959B2 (en) Image processing apparatus and method
CN113454982B (zh) 用于使图像稳定化的电子装置及其操作方法
CN107580209B (zh) 一种移动终端的拍照成像方法及装置
KR20200128565A (ko) 이미지 처리 방법 및 장치, 단말 및 컴퓨터 판독 가능 저장 매체
KR20210111833A (ko) 타겟의 위치들을 취득하기 위한 방법 및 장치와, 컴퓨터 디바이스 및 저장 매체
CN108156374B (zh) 一种图像处理方法、终端及可读存储介质
US20220130023A1 (en) Video denoising method and apparatus, terminal, and storage medium
KR102637901B1 (ko) 전자 장치에 의한 돌리 줌 효과 제공 방법 및 상기 방법에서 사용되는 전자 장치
WO2018219274A1 (zh) 降噪处理方法、装置、存储介质及终端
CN111127541B (zh) 车辆尺寸的确定方法、装置及存储介质
US20170026584A1 (en) Image processing apparatus and method of operating the same
WO2018219304A1 (zh) 照片处理方法、装置、计算机可读存储介质及电子设备
CN114390195B (zh) 一种自动对焦的方法、装置、设备及存储介质
WO2019179413A1 (zh) 景深图像生成方法及移动终端
CN115134532A (zh) 图像处理方法、装置、存储介质及电子设备
CN108881739B (zh) 图像生成方法、装置、终端及存储介质
CN107087114B (zh) 一种拍摄的方法及装置
EP3627817B1 (en) Image processing method and terminal
WO2023185096A1 (zh) 图像模糊度的确定方法及其相关设备
CN114157848B (zh) 投影设备校正方法、装置、存储介质以及投影设备
WO2023225825A1 (zh) 位置差异图生成方法及装置、电子设备、芯片及介质
KR20240034606A (ko) 이미지를 제공하는 전자 장치 및 그의 동작 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018809315

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018809315

Country of ref document: EP

Effective date: 20200102