WO2018219213A1 - 中央空调温控装置、风机盘管的控制方法、介质及*** - Google Patents

中央空调温控装置、风机盘管的控制方法、介质及*** Download PDF

Info

Publication number
WO2018219213A1
WO2018219213A1 PCT/CN2018/088292 CN2018088292W WO2018219213A1 WO 2018219213 A1 WO2018219213 A1 WO 2018219213A1 CN 2018088292 W CN2018088292 W CN 2018088292W WO 2018219213 A1 WO2018219213 A1 WO 2018219213A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
control device
temperature control
setting
preset
Prior art date
Application number
PCT/CN2018/088292
Other languages
English (en)
French (fr)
Inventor
易哲
唐雄
郭丹旦
赖鹏程
程文远
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP18810374.1A priority Critical patent/EP3633281B1/en
Publication of WO2018219213A1 publication Critical patent/WO2018219213A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • F24F11/58Remote control using Internet communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • F24F11/67Switching between heating and cooling modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention relates to the technical field of central air conditioners, in particular to a central air conditioner temperature control device, a fan coil control method, a medium and a system.
  • the central air-conditioning fan coil is the most common end product of central air-conditioning. It consists of heat exchangers, water pipes, filters, fans, water trays, exhaust valves, brackets, etc. Its working principle is the continuous recycling in the unit. The air in the room or outside is allowed to pass through the cold water (hot water) coil and then cooled (heated) to keep the room temperature constant.
  • the prior art mainly installs a thermostat panel with a single chip on the wall near the fan port, and the thermostat panel has switches, wind speed gears, temperature addition and subtraction buttons and the like.
  • the LCD screen displays the temperature, and the user controls the operation of the fan coil by manual operation.
  • the existing fan coil control mode cannot realize remote control, cumbersome operation, high networking cost, and time and labor in the operation process.
  • the user needs to find the thermostat panel corresponding to the fan port to control, and cannot remotely control.
  • the distance between the fan port and the temperature controller panel is far away, and special wiring is required, and the networking cost is large.
  • the temperature controller needs to manually set the running state (heating, cooling, ventilation), wind speed (high-grade, mid-range, low-grade) and temperature. 4.
  • For the government or enterprise users of central air-conditioning when the fan coil needs to be turned off after work in the evening, it is necessary to check by a special person and then manually shut down, which is labor-intensive. 5.
  • Teen can operate the fan coil operation without permission control.
  • Teen can set the temperature of the thermostat at will. Unreasonable temperature setting will increase the energy consumption of the central air conditioner.
  • Embodiments of the present invention provide a central air conditioning temperature control device, a fan coil control method, a medium, and a system.
  • the temperature control device includes a temperature acquisition module, a memory, and a processor;
  • the temperature collection module is configured to collect an ambient temperature according to a set period
  • the memory stores a fan coil control program, and the processor executes the fan coil control program to implement the following steps:
  • the temperature control device If the temperature control device is in an automatic operation mode, determining an environmental temperature change trend according to the collected ambient temperature; setting an operation state of the temperature control device according to the ambient temperature change trend;
  • a corresponding control signal is sent to the fan coil connected to the temperature control device, so that the fan coil starts an action corresponding to the operating state.
  • a method for controlling a fan coil in an embodiment of the present invention comprising:
  • the temperature control device If the temperature control device is in the automatic working mode, collecting the ambient temperature according to the set period; determining the ambient temperature change trend according to the collected ambient temperature; setting the operating state of the temperature control device according to the ambient temperature change trend;
  • a corresponding control signal is sent to the fan coil connected to the temperature control device, so that the fan coil starts an action corresponding to the operating state.
  • a computer readable storage medium in an embodiment of the present invention the storage medium storing a fan coil control program, wherein the fan coil control program is executed by at least one processor to implement the method according to any of the above A step of.
  • a central air conditioning system comprising the central air conditioning temperature control device, the control terminal and the server according to any one of the preceding claims;
  • the control terminal is configured to send a setting command to the temperature control device.
  • the device, the method, the storage medium and the system in the embodiment of the invention effectively set the running state of the temperature control device by controlling the terminal, or automatically set the running state of the temperature control device, thereby effectively solving the manual manual setting of the existing thermostat, And set the cumbersome process.
  • FIG. 1 is a schematic structural view of a central air conditioning temperature control device according to an embodiment of the present invention
  • FIG. 2 is a schematic layout view of a central air conditioning temperature control system according to an embodiment of the present invention
  • FIG. 3 is a schematic structural view of a central air conditioning temperature control device according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an APP main interface of a control terminal according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an APP configuration interface of a control terminal according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of determining a network status by a control terminal according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural view of a central air conditioning temperature control system according to Embodiment 3 of the present invention.
  • Figure 8 is a flow chart showing the arrangement of a fan coil according to a third embodiment of the present invention.
  • FIG. 9 is a flow chart showing a method of controlling a fan coil in an embodiment of the present invention.
  • the present invention provides a central air conditioning temperature control device, a fan coil control method, a medium and a system, and the present invention will be further described below in conjunction with the accompanying drawings and embodiments. It is to be understood that the embodiments described herein are merely illustrative of the invention and are not limiting of the invention.
  • an embodiment of the present invention provides a central air conditioning temperature control device, where the temperature control device includes a temperature acquisition module, a memory, and a processor;
  • the temperature collecting module is configured to collect an ambient temperature according to a set period
  • the memory stores a fan coil control program, and the processor executes the fan coil control program to implement the following steps:
  • the temperature control device If the temperature control device is in the non-automatic operation mode, receiving a setting instruction through the network, and setting an operating state of the temperature control device according to the setting instruction;
  • the temperature control device If the temperature control device is in an automatic operation mode, determining an environmental temperature change trend according to the collected ambient temperature; setting an operation state of the temperature control device according to the ambient temperature change trend;
  • a corresponding control signal is sent to the fan coil connected to the temperature control device, so that the fan coil starts an action corresponding to the operating state.
  • the temperature acquisition module can be a temperature sensor, and the memory can be externally.
  • the control terminal can employ any known terminal, such as a mobile terminal such as a mobile phone.
  • the network can use a wireless network.
  • Operating states include cooling, heating, and ventilation.
  • the corresponding action of the operating state may be a solenoid valve that opens or closes the fan coil, a fan that turns the fan coil on or off, or a working speed of the fan.
  • the setting instructions may include a cooling command, a heating command, a ventilation command, and the like.
  • the setting instructions may further include: a power-on command, a power-off command, a timed command (including a timed power-on and a time-out), an automatic mode command, and an automatic mode command.
  • the temperature control device can be a thermostat terminal (also referred to as a thermostat) or a thermostat gateway.
  • the non-automatic working mode indicates that the thermostat requires the user to set the operating state of the thermostat through the control terminal;
  • the automatic mode working mode indicates that the thermostat does not require the user to set the operating state of the thermostat through the control terminal, and the thermostat can set the operating state of the thermostat according to the changing trend of the ambient temperature.
  • the operating state of the temperature control device is set by the control terminal, or the operating state of the temperature control device is automatically set by the change trend of the ambient temperature, thereby effectively solving the problem that the existing temperature controller needs manual manual setting, and the present invention is improved.
  • the determining an environmental temperature change trend according to the collected ambient temperature includes:
  • the ambient temperature change trend is determined according to the ambient temperature of each periodic node.
  • the setting the operating state of the temperature control device according to the ambient temperature change trend comprises:
  • the ambient temperature change trend is a decreasing trend, set the operating state of the temperature control device to a cooling state, and set a cooling target temperature;
  • the ambient temperature change trend is an increasing trend, setting an operating state of the temperature control device to a heating state, and setting a heating target temperature;
  • the operating state of the temperature control device is set to a ventilation state.
  • the manner in which the ambient temperature change trend is determined includes:
  • the ambient temperature change trend is a decreasing trend
  • the ambient temperature change trend is an increasing trend
  • the ambient temperature change trend is a gentle trend.
  • One of the judging periods may be composed of two adjacent periodic nodes, or may be composed of two or more adjacent periodic nodes.
  • temperature acquisition uses multiple sampling methods to determine the operation of the thermostat. If the number of temperature rises of the sample at the time of power-on is greater than the number of temperature drops, it is considered to be hot air, and the jitter data caused by external factors is discarded (a cold wind is also a similar strategy).
  • the environmental temperature change trend is finally determined to be a decreasing trend; and if the environmental temperature change trend is determined to be an increasing trend If the number of times is large, it is finally determined that the environmental temperature change trend is an increasing trend; wherein N is an odd number.
  • the method further includes:
  • the fan operating speed of the fan coil is set to a low speed; the working speed includes a low speed (ie, a first preset rate), a medium speed (ie, a second preset rate), and a high speed (ie, a third pre- Set rate);
  • the fan operating speed of the fan coil is set according to the difference; in the decreasing trend, the difference is the difference between the currently acquired ambient temperature and the cooling target temperature, and is increasing In the trend, the difference is the difference between the heating target temperature and the currently acquired ambient temperature; the temperature threshold T2 ⁇ the temperature threshold T1.
  • the setting the fan operating speed of the fan coil according to the difference comprises:
  • the difference is less than the preset temperature threshold T2 (ie, the second temperature threshold) and is not less than 0, set the working speed of the fan to be a low speed;
  • the method may further include: when the difference is equal to 0, setting a solenoid valve of the fan coil to be in a closed state;
  • the fan When the difference is less than the preset temperature threshold T3 (ie, the third temperature threshold), the fan is set to be in a closed state; the temperature threshold T3 ⁇ 0.
  • the preset temperature threshold T3 ie, the third temperature threshold
  • the method further includes: after the difference is less than the preset temperature threshold T3, after the fan is set to be in a closed state, the method further includes:
  • a preset temperature threshold T4 ie, a fourth temperature threshold
  • the solenoid valve and the fan are set to a power-on state; the temperature threshold T4>0.
  • the processor executes the temperature controlled computer program and further implements the following steps:
  • the status data of the temperature control device is transmitted to a control terminal that obtains control authority from the server.
  • the temperature control device further includes a network connection module configured to form a network with the control terminal and/or the server by wireless or wired, and with the smart terminal and/or the The server performs control commands and/or state data interactions.
  • the receiving the setting instruction through the network, and setting the operating state of the temperature control device according to the setting instruction includes:
  • the setting instruction is any one of the following: a control instruction directly sent by the control terminal to the temperature control device and a server forwarding the Control terminal control command of the temperature control device;
  • the operating state of the temperature control device is set according to the setting instruction.
  • the temperature control device is identified as a network address of the temperature control device
  • the receiving, by the network, the setting instruction, before parsing the temperature control device identifier from the setting instruction further includes:
  • the server sends heartbeat data to the server, so that when receiving the control terminal control command, the server forwards the received control terminal control command to the corresponding temperature control device according to the preset hardware address and network address mapping table;
  • the heartbeat data carries the hardware address of the temperature control device.
  • an embodiment of the present invention provides a central air conditioning thermostat system, which includes any of the temperature control devices, control terminals, and servers described in Embodiment 1.
  • the control terminal is configured to display and control the temperature controller status; for example, the control terminal is configured to acquire a device list of the temperature control device with control authority from the server;
  • a setup command is sent to the selected temperature control device.
  • the control terminal has a control APP.
  • the server is configured as a thermostat authority management, a temperature control device data statistics display and forwarding setting instruction, and has communication data between the control APP and the management software; wherein the management software is set on the server.
  • the temperature control device is configured to control the fan coil operation and wirelessly communicate with the server module and the control terminal; and automatically set the mode, temperature, wind speed gear position and switch of the temperature controller according to the environmental information.
  • the temperature control device can be any of a thermostat terminal and a thermostat gateway.
  • the thermostat gateway is configured to control the fan coil operation and communicate with the server module and the temperature controller terminal module, and periodically report the heartbeat to the server module;
  • the thermostat gateway hardware mainly includes a network connection module and a processor. , RTC (Real-Time Clock) clock, temperature acquisition module (such as temperature sensor), LED (Light Emitting Diode) indicator, buzzer, button, external memory, power module, LCD touch screen.
  • RTC Real-Time Clock
  • temperature acquisition module such as temperature sensor
  • LED Light Emitting Diode
  • the network connection module is connected to the Internet and is responsible for communicating with the server on the Internet.
  • the network connection module includes at least one wireless network module, and the network connection module may further comprise a wireless network module or a wired network module, wherein the wireless network module is preferably a wifi network processor. .
  • the network connection module is responsible for receiving the thermostat setting instruction forwarded by the network processor and forwarding the setting instruction to the thermostat gateway.
  • the wired network module and the wireless network module transmit data through the processor, and the data is converted through a customized protocol. If the wireless network module has the function of connecting to the Internet, the gateway device hardware can be removed for connection.
  • the wireless network module can be configured with a power amplifier configured to amplify the wireless signal of the wireless network module, so that the wireless signal is transmitted farther; of course, the power amplifier can also be set in the wired network module.
  • a processor configured to control the signal lines of the fan coil and to connect the various hardware modules.
  • the RTC clock module is configured to time and obtain server time in real time.
  • a temperature acquisition module configured to collect ambient temperature.
  • LED indicator configured to indicate the operating status and network status of the thermostat.
  • Buzzer configured for device identification when networking.
  • the external memory is configured to store the fan coil control program and the running version files of each chip and some key data of the thermostat operation.
  • buttons are mainly configured to set the thermostat status, reset the device, and restore the factory settings.
  • a power module configured to supply power to the device.
  • the LCD touch screen is an optional module configured to display the thermostat status and set the thermostat. If the user needs to be compatible with the usage habits of the conventional thermostat panel, the liquid crystal touch screen is configured; if the user is more accustomed to remote operation using the control terminal, the liquid crystal touch screen is not configured.
  • the thermostat gateway itself is also a thermostat. Compared with the thermostat terminal, there is one more network processor, and the performance of the wireless network module and other hardware performance configurations are stronger than the terminal device.
  • the gateway can be independent according to the needs of the user, and the function of the thermostat is not integrated. Each thermostat system requires a minimum of one gateway device or multiple deployments.
  • the hardware of the temperature controller terminal device mainly includes a wireless network module, a processor RTC clock, a temperature collection module, an LED indicator, a buzzer, an external memory, a button, a power module, a liquid crystal touch screen, and may also include Time switch module, lock unlock module, statistics module, and report module.
  • the wireless network module has a Mesh (Wireless Grid Network) network function
  • the wireless network module is configured to communicate with the wireless network module of the gateway device or the wireless network module of the next hop.
  • Other devices have the same functionality as gateway devices.
  • Each thermostat system has zero, one or more terminal devices. Install the thermostat in the range of about 1 meter from the fan coil outlet to save wiring.
  • the temperature controller terminal can set the software module.
  • the software module is mainly responsible for the intelligent automatic operation of the temperature controller, the control of the fan coil, the daily running status statistics of the temperature controller, the timing of the thermostat and the timing set for the user.
  • the device performs functions such as processing.
  • the thermostat terminal automatically records the running time of each gear position and mode every day, and reports the statistical data (ie, running data) to the server after the morning of the next day.
  • the time switch function is set by the user in the control terminal (for example, mobile phone) APP, and the software module of the temperature controller terminal is stored, and after the time point set by the user is reached, the temperature controller is automatically set and switched.
  • the control terminal for example, mobile phone
  • An example of the main interface and the configuration interface of the APP is shown in FIG. 4 and FIG. 5, respectively.
  • the wireless network module is primarily responsible for wireless communication and data forwarding.
  • the wireless network module includes network processor software and a network processor, and is mainly responsible for protocol conversion between the wireless network module and the network processor, reporting the heartbeat to the server, and collecting functions such as online state and ambient temperature of each temperature controller terminal.
  • the thermostat terminal automatically runs the following technical scheme: after the thermostat terminal is powered on, the temperature acquisition module starts to periodically collect the ambient temperature data.
  • the thermostat terminal automatically sets the operating state, temperature, and gear position of the thermostat by judging the change in the ambient temperature.
  • temperature acquisition uses multiple sampling methods to determine the operation of the thermostat terminal. If the number of temperature rises of the sample at the time of power-on is greater than the number of temperature drops, it is considered to be hot air, and the jitter data caused by external factors is discarded (a cold wind is also a similar strategy).
  • the thermostat terminal is automatically set to the default temperature of cooling. If the ambient temperature is lower than the default temperature of the cooling, the solenoid valve and fan of the fan coil are turned off. If the ambient temperature is higher than the default temperature of the cooling, the ambient temperature is based on the ambient temperature. Set the fan's gear position by the difference between the set temperature and the set temperature.
  • the temperature of the thermostat is automatically set to the default temperature of heating. If the ambient temperature is higher than the default temperature of heating, the solenoid valve and fan (fan) of the fan coil are turned off; if the ambient temperature is lower than the default temperature of heating, The gear position of the fan is set according to the difference between the ambient temperature and the set temperature.
  • the system default cooling default temperature is 26 ° C
  • the heating default temperature is 20 ° C
  • the default setting temperature can effectively reduce the central air conditioning energy consumption; in special cases, users can set other Temperature value. After the user sets other temperatures, the temperature of the above-mentioned fan coil solenoid valve and fan is automatically adjusted accordingly.
  • the wind speed is operated according to the mode set by the user, and the automatic mode does not take effect.
  • the automatic mode is reactivated.
  • the software module of the thermostat terminal includes the following program modules:
  • the anti-shake module is configured to filter the effective change of the collected temperature information
  • the first judging module is configured to determine a trend of an environmental temperature change after the thermostat is turned on, for example, changing height or unchanged;
  • the temperature mode automatic setting module is configured to set the operation mode to heating when the first determination module indicates a high trend, and set a heating default temperature.
  • the operating mode is set to cool, and the cooling default temperature (ie, the target temperature) is set.
  • the first determining module indicates that the temperature is constant, the operating mode is set to ventilate.
  • the second judging module is configured to determine a difference between the ambient temperature and the default temperature under a decreasing trend; and determine a difference between the default temperature and the ambient temperature under an increasing trend;
  • the fan gear automatic setting module is configured to set the fan gear position to a low speed when the first determination result indicates that the temperature is constant.
  • the fan gear automatic setting module is further configured to set the working speed of the fan to a third preset rate if the difference is greater than a preset temperature threshold T1;
  • the difference is not less than the temperature threshold T2 and not greater than the temperature threshold T1, set the working speed of the fan to a second preset rate; the first preset rate ⁇ the second preset rate ⁇ The third preset rate; the temperature threshold T2 ⁇ the temperature threshold T1.
  • the switch machine automatically sets the module, configured to set the solenoid valve of the fan coil to be in a closed state when the difference is equal to 0;
  • the fan When the difference is less than the preset temperature threshold T3, the fan is set to be in a closed state; the temperature threshold T3 ⁇ 0.
  • the fan coil solenoid valve when the temperature mode automatic setting module is set to cool, and the second judgment module temperature difference is zero, the fan coil solenoid valve is closed, and when the second determination module temperature difference is lower than the set temperature T3, the fan is set to be turned off.
  • the coil fan is turned off for a period of time, and the temperature difference between the second judging module is higher than the set temperature T4 to automatically open the fan and the solenoid valve; in the temperature mode, the automatic setting module is set to be heated, and the second judging module is in temperature difference
  • the value is zero
  • the fan coil solenoid valve is closed.
  • the temperature difference between the second judgment module is lower than the set temperature T3
  • the fan coil fan is turned off.
  • the temperature difference of the second judgment module is higher than the set temperature T4.
  • the fan and solenoid valve are automatically turned on.
  • a processor configured to control the thermostat and connect the hardware devices of the thermostat; and configured to respond to the setting commands of the various temperature, mode, gear position, and switch of the control terminal APP and control the operation of the fan coil;
  • the time switch module is configured to automatically set the switch after the time switch time set by the user
  • unlocking module is locked and configured as an administrator to lock the thermostat, other users are not allowed to perform remote setting of the thermostat, and the button setting on the LCD panel is not allowed;
  • the statistics module is configured to automatically count the running time of the daily thermostat in various modes and gears, and obtain the operating data of the thermostat;
  • the reporting module is configured to report the running data of the thermostat terminal to the server.
  • the server is mainly responsible for communication with the thermostat terminal device, the thermostat gateway device and the control terminal; it is also responsible for the user's login authority management, user authorization management and user operation log statistics. It is usually deployed on a cloud server or deployed on a server built by itself.
  • the server includes:
  • a statistical data storage module configured to store temperature control device statistics in a database
  • An operation log storage module configured to store a remote operation record of the user in an operation log
  • the rights management module is configured to: when the control terminal requests the device list, send the authorized device information to the control terminal.
  • a statistical data chart drawing module configured to draw data in the database into a chart on the management software
  • the operation log query module is configured to query the operation log.
  • the control terminal displays the state of the temperature control device through the APP, controls the temperature control device, responds to various operations of the user, configures the installation address and name of the temperature control device, and sets the time switching time of the temperature control device.
  • the network processor of the thermostat gateway device is a Wifi network processor
  • the control terminal is also responsible for configuring the connection between the Wifi module of the gateway and the wireless router.
  • the control terminal can also intelligently select whether to directly communicate with the gateway in the local area network or through the server according to the network condition.
  • APP mainly includes Android platform and IOS platform, and can also be extended to other smartphone platforms.
  • control terminal can include:
  • thermostat monitoring module configured to view and set a state of the temperature control device
  • a timer setting module configured to set a time switch machine for the temperature control device
  • Authorization module configured as an administrator to authorize other users to authorize certain specified temperature control devices
  • a configuration module configured to configure an address and a name for the newly installed temperature control device by the administrator
  • Batch setting module configured as an administrator to set multiple temperature control devices at one time
  • the internal and external network modules are automatically judged.
  • the control of the temperature control device automatically takes the LAN control, and does not need to be transited through the server; when the temperature control device and the control terminal are not in the same local area network, Need to go to the server terminal; APP automatically judges whether the internal network or the external network does not require user settings.
  • Step 1 Start the APP.
  • Step 2 initial setting control
  • the temperature controller command is forwarded by the server to detect the mobile phone network.
  • Step 3 Determine whether the mobile phone is connected to Wifi. If step 4 is performed, go to step 7.
  • Step 4 Broadcast and find a gateway message in the local area network.
  • Step 5 Determine whether there is a gateway device response in the LAN. If step 6 is performed, go to step 7.
  • Step 6 Set the communication flag of all devices under the gateway to the intranet mode.
  • Step 7 The mobile phone control command is forwarded by the server.
  • the system can also include management software modules, including a web server and a client module, configured as a controller for deletion, modification, authorization, etc., thermostat boot time statistics and charting, thermostat operation log statistics Etc.; mainly communicates with the server module.
  • the management software module can also use the management software of the C/S architecture.
  • the embodiment of the present invention introduces a method for controlling a fan coil by using a smart phone, which is convenient for remote management by a user, and any smart phone can be used by installing an APP.
  • the embodiment of the present invention performs large data analysis based on the temperature data collected by the temperature control device, and designs a set of automatic operation system of the temperature control device.
  • the user only needs to set the switch of the temperature control device, and does not need to set the temperature control.
  • Device mode, wind speed, temperature and other information After the user sets the time of the temperature control device to switch on and off, the operation of the temperature control device can be no longer controlled, and the intelligent automatic operation can be performed.
  • the temperature control device can be installed near the air outlet of the fan coil (about 1 meter), which reduces the wiring and saves the cost of the user network.
  • the temperature control device automatically counts the total startup time of each day and the running time of each gear position and mode to report to the server. After the server stores the data, the data is provided to the control terminal and the management software, and the temperature control device is drawn on the control terminal and the management software. Statistical charts of daily, weekly and monthly operating conditions, which are convenient for users to analyze the operation and energy consumption of the thermostat.
  • the administrator user can operate on the control terminal or management software to authorize other users. After other users are authorized, the control terminal can also be used to control the authorized temperature control device and view the operating status of the temperature control device.
  • control terminal and the gateway of the temperature control device are in the same Wifi, the control terminal does not connect to the Internet and can directly control the temperature control device through the local area network to save user traffic and ensure the real-time control of the temperature control device, even if the Wifi router and the Internet The connection is disconnected, and the user does not need to monitor the temperature control device; if the control terminal and the gateway are not in the same Wifi, the control terminal needs to connect to the Internet, and the LAN control or the Internet control is automatically determined by the control terminal, and no user intervention is required.
  • the power amplifier module is added to the hardware of the temperature control device, so that the wireless data transmission distance between the temperature controllers is further.
  • this embodiment will enable manipulation of a single temperature control device on a handset.
  • the network processor in the thermostat gateway hardware uses the Wifi module of the ESP8266 chip, and the wireless network module uses the CC2538 module as the Zigbee coordinator.
  • the wireless network module in the hardware of the thermostat terminal uses the CC2530 module as the Zigbee router.
  • the processor uses the new Tang 0516 microcontroller.
  • the manipulation process includes:
  • Step 1 start the APP
  • Step 2 The APP user logs in; the APP user can log in to the APP with his mobile phone number and obtain the SMS verification code as the login password. The server verifies that the verification code is correct. After the verification is passed, the user logs in successfully.
  • Step 3 Request server configuration.
  • step 4 the server determines whether there is control of the thermostat device. After the user logs in successfully, the server searches the server according to the user's mobile phone number to find out which thermostat devices have control rights for the user, and returns a list of authorized devices to the APP, and the APP displays the device list on the APP interface. If the user does not have a privileged device, go to step 14.
  • Step 5 The APP obtains a device list; queries the device online status. As shown in Figure 4.
  • Step 6 Determine whether the device is online. If the device is online, you can enter the APP configuration interface and add a new device in the configuration interface. If there is a new thermostat device, after clicking the Add New Device button, the new thermostat will be displayed in the interface to be configured, click to enter. You can name and configure the new thermostat. After the configuration is complete, go to step 7. If it is not online, go to step 13.
  • Step 7 Query the real-time status of the device.
  • the state of the temperature control device mainly includes fan speed state (high speed, medium speed, low speed), current ambient temperature, temperature control device setting temperature, temperature control device mode state (automatic, cooling, heating, ventilation), switch state, locking status.
  • step 8 it is determined whether the device is locked. If yes, go to step 12; if not, go to step 9.
  • step 9 it is determined whether the device needs to be controlled. If no, step 11 is performed, and if step 10 is performed.
  • Step 10 Click on each of the control buttons shown in Figure 5.
  • control of the thermostat mainly includes fan speed setting (high speed, medium speed, low speed), temperature setting, thermostat mode setting (automatic, cooling, heating, ventilation), switch setting, timing Switch on and off, set the device settings.
  • the APP fills in the communication interface with the IEEE address of the device to be controlled.
  • the Zigbee Coordinator module of the gateway device determines whether the IEEE address is its own address. If it is its own address, it directly sends a command to the MCU to control the air-conditioning fan disk. tube. If it is not its own address, the Zigbee Coordinator of the gateway device encapsulates the control command of the APP as it is, queries the routing table, and sends a control command to the next hop zigbee router;
  • the Zigbee router determines whether the destination IEEE address of the received control command is its own IEEE address, and sends a command to the MCU (Microcontroller Unit) to control the air conditioner fan coil, and then continues to send to the next hop until Control commands are sent to the corresponding Zigbee router.
  • MCU Microcontroller Unit
  • the mobile terminal checks the network connection mode of the control APP;
  • the control APP scans the gateway device in the local area network to have a gateway device response in the local area network, and the gateway is marked as an intranet device, and controls the APP and the gateway device.
  • the communication adopts the direct intra-LAN communication mode, and does not transit through the server; for the gateway device that does not answer, it is marked as the external network device, and the communication with the device is transited through the server.
  • step 12 if the temperature control device is in the locked state, other operations of the temperature control device cannot be performed, and the administrator is contacted to unlock the temperature control device or exit.
  • step 13 the display is not online.
  • Step 14 Configure the device or contact the administrator for authorization. For example, if there is no new thermostat device, contact the administrator to authorize the thermostat usage rights. The administrator authorizes the user by controlling the APP software or web software.
  • This embodiment will implement the control of multiple thermostat devices (which may be all devices) on the smart phone at the same time.
  • This embodiment mainly provides the administrator with batch control of the thermostat. Includes the following steps:
  • Step A the APP user logs in
  • the APP user logs in to the app with his mobile phone number and obtains the SMS verification code as the login password.
  • the server verifies that the verification code is correct. After the verification is passed, the user logs in successfully.
  • step B the APP obtains a device list.
  • the APP After the user logs in successfully, the APP searches the server according to the user's mobile phone number to find out which thermostat devices have control rights for the user, and returns a list of authorized devices to the APP, and the APP displays the device list on the APP interface.
  • Step C the user enters a batch setting interface of the control APP
  • Step D performing batch control on the thermostat
  • the batch control of the thermostat mainly includes fan speed setting (high speed, medium speed, low speed), temperature setting, thermostat mode setting (automatic, cooling, heating, ventilation), switch setting, timer switch setting, locking Device settings.
  • the APP After the user enters the batch setting interface, select multiple devices that need to be set in batches. After clicking the batch setting button, the APP sends control commands one by one according to the scheme in the third embodiment.
  • This embodiment will implement automatic operation of the thermostat device. Includes the following steps:
  • Step A The device is powered on.
  • the power to the device is normal and the hardware, software, and temperature sensors are operating normally.
  • Step B the device collects an ambient temperature
  • the temperature sensor of the device collects the ambient temperature every 5 seconds and records the collected temperature.
  • Step C the device is turned on
  • the user remotely operates the device with the mobile phone and sets the automatic mode (or the user's mobile phone remote operation device is turned on and does not operate within the predetermined time, then the default mode is entered into the automatic mode) or the device automatically turns the device on.
  • Step D the device determines the trend of the ambient temperature
  • step E If the ambient temperature is slowly decreasing, it is considered that the fan coil outlet air outlet is cold, and the process proceeds to step E. If the ambient temperature is slowly rising, the fan coil outlet air outlet is considered to be hot air, and the process proceeds to step F; if the ambient temperature is constant, It is considered that the fan coil outlet has a natural wind, and the central air conditioner has no cooling or heating, and the temperature of the thermostat is set to a low position.
  • step E the target temperature is automatically set to 26 ° C, and the mode is a cooling state
  • the air conditioner fan gear is set to high; if the ambient temperature is greater than 27 ° C and less than 30 ° C, the air conditioner fan gear is set to midrange; if the ambient temperature is greater than 26 ° C If it is less than 27 °C, the air conditioner fan gear position is set to low gear; if the ambient temperature is less than 26 degrees Celsius, the solenoid valve is closed; if the temperature continues to decrease after the solenoid valve is closed, the fan is turned off. After shutting down for a period of time, if the ambient temperature is above 26.5 °C, re-open the solenoid valve and fan.
  • step F the target temperature is automatically set to 20 ° C, and the mode is a heating state
  • the air conditioner fan gear is set to high grade; if the ambient temperature is greater than 16 °C and less than 19 °C, the air conditioner fan gear is set to midrange; if the ambient temperature is greater than 19 °C and less than 20 °C, the air conditioner fan The gear position is set to low gear; if the ambient temperature is greater than 20 degrees Celsius, the solenoid valve is closed; if the temperature continues to rise after the solenoid valve is closed, the fan is turned off. After shutting down for a period of time, if the ambient temperature is below 19.5 ° C, re-open the solenoid valve and fan.
  • a single temperature control device is controlled on a smart phone.
  • the wireless communication technology of the temperature control device adopts NB-IoT, and the SIM card with the NB-IoT chip is installed on the temperature control device, and the temperature control device periodically reports the heartbeat to The server, the heartbeat includes the hardware address of the SIM card.
  • Step A the APP user logs in
  • the APP user logs in to the app with his mobile phone number and obtains the SMS verification code as the login password.
  • the server verifies that the verification code is correct. After the verification is passed, the user logs in successfully.
  • Step B the APP acquires a device list
  • the APP After the user logs in successfully, the APP searches the server for the temperature control device according to the user's mobile phone number, and returns a list of authorized devices to the APP. The APP displays the device list on the APP interface.
  • Step C querying the state of the temperature control device
  • the state of the temperature control device mainly includes fan speed state (high speed, medium speed, low speed), current ambient temperature, temperature control device setting temperature, temperature control device mode state (automatic, cooling, heating, ventilation), switch state, locking status.
  • Step D controlling the temperature control device
  • the control of the temperature control device mainly includes fan speed setting (high speed, medium speed, low speed), temperature setting, temperature control device mode setting (automatic, cooling, heating, ventilation), switch setting, timer switch setting, locking device Settings.
  • the APP fills in the communication interface with the NB-IoT hardware address that needs to control the temperature control device, and sends the control command to the server.
  • the server forwards the control command to the corresponding temperature control device by checking the mapping table of the hardware address and the network address.
  • the wireless communication technology of the thermostat adopts LoRa
  • the LoRa network processor is installed on the thermostat, and the LoRa network processor periodically reports the heartbeat to the server, in the heartbeat.
  • the data processing method includes the following steps: wherein the hardware address belongs to one of the temperature control device identifiers.
  • Step A the APP user logs in
  • the APP user logs in to the app with his mobile phone number and obtains the SMS verification code as the login password.
  • the server verifies that the verification code is correct. After the verification is passed, the user logs in successfully.
  • Step B the APP acquires a device list
  • the APP After the user logs in successfully, the APP searches the server according to the user's mobile phone number to find out which temperature control devices the user has control authority, and returns a list of authorized temperature control devices to the APP, and the APP displays the device list on the APP interface.
  • Step C querying the state of the temperature control device
  • the state of the temperature control device mainly includes fan speed status (high speed, medium speed, low speed), current ambient temperature, thermostat set temperature, thermostat mode status (automatic, cooling, heating, ventilation), switch status, lock status.
  • Step D controlling the temperature control device
  • Temperature control device control mainly includes fan speed setting (high speed, medium speed, low speed), temperature setting, thermostat mode setting (automatic, cooling, heating, ventilation), switch setting, timer switch setting, locking device Settings.
  • the APP fills in the communication interface with the LoRa hardware address of the device to be controlled, and sends a control command to the server.
  • the server forwards the control command to the corresponding thermostat by checking the mapping table of the hardware address and the network address.
  • an embodiment of the present invention provides a method for controlling a fan coil, which is used for a central air conditioning temperature control device, and the method includes:
  • Step S101 setting an operating state by controlling the terminal or adopting an automatic mode
  • the step includes: receiving the setting instruction through the network if the temperature control device is in the non-automatic working mode, and setting an operating state of the temperature control device according to the setting instruction;
  • the temperature control device If the temperature control device is in the automatic working mode, collecting the ambient temperature according to the set period; determining the ambient temperature change trend according to the collected ambient temperature; setting the operating state of the temperature control device according to the ambient temperature change trend;
  • Step S102 according to the set operating state, send a corresponding control signal to the fan coil connected to the temperature control device, so that the fan coil starts an action corresponding to the operating state.
  • the operating state of the temperature control device is set by the control terminal, or the operating state of the temperature control device is automatically set by the change trend of the ambient temperature, thereby effectively solving the problem that the existing temperature controller needs manual manual setting, and the present invention is improved.
  • the determining an environmental temperature change trend according to the collected ambient temperature includes:
  • the ambient temperature change trend is determined according to the ambient temperature of each periodic node.
  • the operating state includes a cooling state, a heating state, and a ventilation state
  • Setting the operating state of the temperature control device according to the environmental temperature change trend includes:
  • the ambient temperature change trend is a decreasing trend, set the operating state of the temperature control device to a cooling state, and set a cooling target temperature;
  • the ambient temperature change trend is an increasing trend, setting an operating state of the temperature control device to a heating state, and setting a heating target temperature;
  • the operating state of the temperature control device is set to a ventilation state.
  • the manner in which the ambient temperature change trend is determined includes:
  • the ambient temperature change trend is a decreasing trend
  • the ambient temperature change trend is an increasing trend
  • the ambient temperature change trend is a gentle trend.
  • the method further includes:
  • the fan operating speed of the fan coil is set to a low speed;
  • the working speed includes a low speed, a medium speed, and a high speed;
  • the fan operating speed of the fan coil is set according to the difference; in the decreasing trend, the difference is the difference between the currently acquired ambient temperature and the cooling target temperature, and is increasing In the trend, the difference is the difference between the heating target temperature and the currently acquired ambient temperature.
  • the operating speed of the fan of the fan coil is set according to the difference, including:
  • the operating speed of the fan is set to a medium speed.
  • the setting the working speed of the fan of the fan coil according to the difference further includes:
  • the fan When the difference is less than the preset temperature threshold T3, the fan is set to be in a closed state; the temperature threshold T3 ⁇ 0.
  • the method further includes: after the difference is less than the preset temperature threshold T3, after the fan is set to be in a closed state, the method further includes:
  • the solenoid valve and the fan are set to a power-on state; the temperature threshold T4>0.
  • the method further includes:
  • the status data of the temperature control device is transmitted to a control terminal that obtains control authority from the server.
  • the receiving the setting instruction through the network, and setting the operating state of the temperature control device according to the setting instruction includes:
  • the setting instruction is any one of the following: a control instruction directly sent by the control terminal to the temperature control device and a server forwarding the Control terminal control command of the temperature control device;
  • the operating state of the temperature control device is set according to the setting instruction.
  • the temperature control device is identified as a network address of the temperature control device
  • the receiving, by the network, the setting instruction, before parsing the temperature control device identifier from the setting instruction further includes:
  • the server sends heartbeat data to the server, so that when receiving the control terminal control command, the server forwards the received control terminal control command to the corresponding temperature control device according to the preset hardware address and network address mapping table;
  • the heartbeat data carries the hardware address of the temperature control device.
  • An embodiment of the present invention provides a computer readable storage medium, where the storage medium stores a fan coil control program, and the fan coil control program is executed by at least one processor to implement any one of Embodiments The steps of the method.
  • the computer readable storage medium in embodiments of the invention may be RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable hard disk, CD-ROM, or any other form of storage medium known in the art.
  • a storage medium can be coupled to the processor to enable the processor to read information from, and write information to, the storage medium; or the storage medium can be an integral part of the processor.
  • the processor and the storage medium may be located in an application specific integrated circuit.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner such as: multiple units or components may be combined, or Can be integrated into another system, or some features can be ignored or not executed.
  • the coupling, or direct coupling, or communication connection of the components shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may be electrical, mechanical or other forms. of.
  • the control terminal sets the operating state of the temperature control device, or automatically sets the operating state of the temperature control device, thereby effectively solving the problem that the existing temperature controller needs manual manual setting, and the setting process is cumbersome.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种中央空调温控装置、风机盘管的控制方法、介质及***。风机盘管的控制方法用于温控装置,包括:若温控装置处于非自动工作模式下,接收设置指令,并根据设置指令设置温控装置的运行状态;若温控装置处于自动工作模式下,按照设定周期采集环境温度,根据采集的环境温度确定环境温度变化趋势,根据环境温度变化趋势设置温控装置的运行状态;根据设置的运行状态,向与温控装置连接的风机盘管发送对应的控制信号,以使风机盘管启动与运行状态相应的动作。

Description

中央空调温控装置、风机盘管的控制方法、介质及***
相关申请的交叉引用
本申请基于申请号为201710400466.4、申请日为2017年05月31日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以全文引入的方式引入本申请。
技术领域
本发明涉及中央空调技术领域,特别是涉及一种中央空调温控装置、风机盘管的控制方法、介质及***。
背景技术
中央空调的风机盘管是中央空调最普遍的末端产品,由热交换器、水管、过滤器、风扇、接水盘、排气阀、支架等组成,其工作原理是机组内不断的再循环所在房间或室外的空气,使空气通过冷水(热水)盘管后被冷却(加热),以保持房间温度的恒定。
为了控制风机盘管的运行,现有技术主要是在风机口附近的墙壁上装一个带有单片机的温控器面板,温控器面板上面有开关,风速档位,温度加减等几个按钮和显示温度的液晶屏,用户通过手动操作去控制风机盘管的运行。
现有风机盘管控制方式不能实现远程控制、操作繁琐、组网成本高,且操作过程中耗时耗力。例如:1、用户需要找到风机口对应的温控器面板才能控制,不能远程控制。2、风机口与温控器面板的距离较远,需要专门布线,组网成本较大。3、温控器需要人工手动设置运行状态(制热、制冷、换气)、风速(高档、中档、低档)、温度。4、对于中央空调的政府或企业 用户,晚上下班后,需要关闭风机盘管时,需要靠专人去检查,然后手动关闭,耗费人力。5、任何人都可以去操作风机盘管的运行,没有权限控制。6、任何人都可以随意设置温控器的温度,不合理的温度设置会增加中央空调能耗。
发明内容
本发明实施例提供一种中央空调温控装置、风机盘管的控制方法、介质及***。
本发明实施例中的一种中央空调温控装置,所述温控装置包括温度采集模块、存储器和处理器;
所述温度采集模块配置为按照设定周期采集环境温度;
所述存储器存储有风机盘管控制程序,所述处理器执行所述风机盘管控制程序,以实现以下步骤:
若所述温控装置处于非自动工作模式下,接收设置指令,并根据所述设置指令设置所述温控装置的运行状态;
若所述温控装置处于自动工作模式下,根据采集的环境温度,确定环境温度变化趋势;根据所述环境温度变化趋势设置所述温控装置的运行状态;
根据设置的运行状态,向与所述温控装置连接的风机盘管发送对应的控制信号,以使所述风机盘管启动与所述运行状态相应的动作。
本发明实施例中的一种风机盘管的控制方法,所述方法用于温控装置,包括:
若所述温控装置处于非自动工作模式下,接收设置指令,并根据所述设置指令设置所述温控装置的运行状态;
若所述温控装置处于自动工作模式下,按照设定周期采集环境温度;根据采集的环境温度,确定环境温度变化趋势;根据所述环境温度变化趋 势设置所述温控装置的运行状态;
根据设置的运行状态,向与所述温控装置连接的风机盘管发送对应的控制信号,以使所述风机盘管启动与所述运行状态相应的动作。
本发明实施例中的一种计算机可读存储介质,所述存储介质存储有风机盘管控制程序,所述风机盘管控制程序被至少一个处理器执行时,以实现以如上任一所述方法的步骤。
本发明实施例中的一种中央空调***,包括如上任意一项所述的中央空调温控装置、控制终端和服务器;
所述控制终端配置为向所述温控装置发送设置指令。
本发明实施例有益效果如下:
本发明实施例中装置、方法、存储介质和***,通过控制终端设置温控装置的运行状态,或者采用自动设置温控装置的运行状态,从而有效解决了现有温控器需要人工手动设置,并且设置过程繁琐的问题。
附图说明
图1是本发明实施例中一种中央空调温控装置的结构示意图;
图2是本发明实施例中一种中央空调温控***的布局示意图;
图3是本发明实施例中一种中央空调温控装置的结构示意图;
图4是本发明实施例中控制终端的APP主界面示意图;
图5是本发明实施例中控制终端的APP配置界面示意图;
图6是本发明实施例中控制终端判断网络状态流程图;
图7是本发明实施例三的中央空调温控***的结构示意图;
图8是本发明实施例三的风机盘管的设置流程图;
图9是本发明实施例中一种风机盘管的控制方法的流程图。
具体实施方式
为了解决现有技术的问题,本发明提供了一种中央空调温控装置、风机盘管的控制方法、介质及***,以下结合附图以及实施例,对本发明进行进一步说明。应当理解,此处所描述的实施例仅用以解释本发明,并不限定本发明。
实施例一
如图1所示,本发明实施例提供一种中央空调温控装置,所述温控装置包括温度采集模块、存储器和处理器;
所述温度采集模块,配置为按照设定周期采集环境温度;
所述存储器存储有风机盘管控制程序,所述处理器执行所述风机盘管控制程序,以实现以下步骤:
若所述温控装置处于非自动工作模式下,通过网络接收设置指令,并根据所述设置指令设置所述温控装置的运行状态;
若所述温控装置处于自动工作模式下,根据采集的环境温度,确定环境温度变化趋势;根据所述环境温度变化趋势设置所述温控装置的运行状态;
根据设置的运行状态,向与所述温控装置连接的风机盘管发送对应的控制信号,以使所述风机盘管启动与所述运行状态相应的动作。
其中温度采集模块可以是温度传感器,存储器可以采用外置的方式。
控制终端可以采用任何已知的终端,例如手机等移动终端。网络可以采用无线网络。
运行状态包括制冷状态、制热状态和换气状态。
运行状态相应的动作可以是开启或关闭风机盘管的电磁阀,也可以是开启或关闭风机盘管的风机,还可以是设置风机的工作速度等。
设置指令可以包括制冷命令、制热命令和换气命令等。除此之外,设 置指令还可以包括:开机指令、关机指令、定时指令(包括定时开机和定时关机)、进入自动模式指令以及退出自动模式指令。温控装置接收到相应指令后,设置温控装置工作模式(也可以称为运行状态)。
温控装置可以是温控器终端(也可以称之为温控器),也可以是温控器网关。
其中,非自动工作模式表示温控器需要用户通过控制终端来设置温控器的运行状态;
自动模式工作模式表示温控器不需要用户通过控制终端的来设置温控器的运行状态,而温控器可以根据环境温度的变化趋势,自身设置温控器的运行状态。
本发明实施例中通过控制终端设置温控装置的运行状态,或者通过环境温度的变化趋势自动设置温控装置的运行状态,从而有效解决现有温控器需要人工手动设置的问题,提高了现有温控器的控制便捷性。
在其他实施例中,所述根据采集的环境温度,确定环境温度变化趋势,包括:
在每个周期节点,获取采集的环境温度;
根据各周期节点的所述环境温度,确定环境温度变化趋势。
在其他实施例中,所述根据所述环境温度变化趋势设置所述温控装置的运行状态,包括:
若所述环境温度变化趋势为降低趋势,将所述温控装置的运行状态设置为制冷状态,并设置制冷目标温度;
若所述环境温度变化趋势为升高趋势,将所述温控装置的运行状态设置为制热状态,并设置制热目标温度;
若所述环境温度变化趋势为平缓趋势,将所述温控装置的运行状态设置为换气状态。
在其他实施例中,所述环境温度变化趋势的判断方式包括:
在预设判断周期内,若所述环境温度的降低幅度达到预设制冷阈值,则所述环境温度变化趋势为降低趋势;
在预设判断周期内,若所述环境温度的升高幅度达到预设制热阈值,则所述环境温度变化趋势为升高趋势;
在预设判断周期内,若所述环境温度的变化幅度在预设换气阈值范围内,则所述环境温度变化趋势为平缓趋势。
其中一个判断周期可以由相邻的两个周期节点组成,也可以由相邻的两个以上周期节点组成。
当然,为了避免外界因素干扰,温度采集是采用多次采样的方式来决定温控器的运行。如果开机时采样的温度上升次数大于温度下降次数,则认为是热风,丢弃掉外界因素导致的抖动数据(判断冷风也是类似策略)。
例如,在N个判断周期中,若判断所述环境温度变化趋势为降低趋势的次数多,则最终判定所述环境温度变化趋势为降低趋势;若判断所述环境温度变化趋势为升高趋势的次数多,则最终判定所述环境温度变化趋势为升高趋势;其中N为奇数。
在其他实施例中,所述根据所述环境温度变化趋势设置所述温控装置的运行状态之后,还包括:
在平缓趋势下,设置所述风机盘管的风机工作速度为低速;所述工作速度包括低速(即第一预设速率)、中速(即第二预设速率)和高速(即第三预设速率);
在降低趋势或升高趋势下,根据差值设置所述风机盘管的风机工作速度;在降低趋势下,所述差值为当前获取的环境温度与所述制冷目标温度之差,在升高趋势下,所述差值为所述制热目标温度与当前获取的环境温度之差;所述温度阈值T2<所述温度阈值T1。
在其他实施例中,所述根据差值设置所述风机盘管的风机工作速度,包括:
若所述差值大于预设温度阈值T1(即第一温度阈值),设置所述风机的工作速度为高速;
若所述差值小于预设温度阈值T2(即第二温度阈值)且不小于0,设置所述风机的工作速度为低速;
若所述差值不小于所述温度阈值T2且不大于所述温度阈值T1,设置所述风机的工作速度为中速;其中T2>0。
其中,所述方法,还可以包括:当所述差值等于0时,设置所述风机盘管的电磁阀为关闭状态;
当所述差值小于预设温度阈值T3(即第三温度阈值),设置所述风机为关闭状态;所述温度阈值T3<0。
其中,所述当所述差值小于预设温度阈值T3,设置所述风机为关闭状态之后,还包括:
在预设时间内,当所述差值大于预设温度阈值T4(即第四温度阈值)时,将所述电磁阀和所述风机设置为开机状态;所述温度阈值T4>0。
在其他实施例中,所述处理器执行所述温控计算机程序,还实现以下步骤:
确定所述温控装置的运行数据,将所述运行数据发送给预置的服务器,以使所述服务器生成分析图表;
将所述温控装置的状态数据发送给从所述服务器获得控制权限的控制终端。
在其他实施例中,所述温控装置还包括网络连接模块;所述网络连接模块配置为通过无线或有线的方式与控制终端和/或服务器组成网络,并与所述智能终端和/或所述服务器进行控制指令和/或状态数据交互。
在其他实施例中,所述通过网络接收设置指令,并根据所述设置指令设置所述温控装置的运行状态,包括:
通过所述网络接收设置指令,从所述设置指令中解析出温控装置标识;所述设置指令为以下任一种:控制终端直接发送给所述温控装置的控制指令和服务器转发给所述温控装置的控制终端控制指令;
当解析出的温控装置标识与自身的温控装置标识一致时,根据所述设置指令设置所述温控装置的运行状态。
在其他实施例中,所述温控装置标识为温控装置的网络地址;
所述通过所述网络接收设置指令,从所述设置指令中解析出温控装置标识之前,还包括:
向服务器上报心跳数据,以使所述服务器在接收到控制终端控制指令时,根据预置的硬件地址和网络地址的映射表,将接收的控制终端控制指令转发给相应的温控装置;所述心跳数据中携带温控装置的硬件地址。
在此需要说明的是,图1中还涉及、但本发明实施例没有描述的功能模块在实施例二中进行说明。
实施例二
如图2所示,本发明实施例提供一种中央空调温控器***,所示***包括实施例一中所述的任意一种温控装置、控制终端和服务器。
其中,控制终端,配置为温控器状态显示和控制;例如,所述控制终端,配置为从所述服务器获取具有控制权限的温控装置的设备列表;
将所述设备列表显示在控制界面上;
在所述控制界面上接收用户选择的温控装置;
向选择的温控装置发送设置指令。
控制终端中按照有控制APP。
服务器,配置为温控器权限管理、温控装置数据统计显示和转发设置 指令,以及拥有控制APP和管理软件之间的通讯数据;其中管理软件设置在服务器。
温控装置,配置为控制风机盘管运行并且与服务器模块和控制终端无线通讯;并根据环境信息自动设置温控器的模式、温度、风速档位、开关。
在其他实施例中,其中温控装置可以是温控器终端和温控器网关中任一种。结合图3所示,温控器网关,配置为控制风机盘管运行并且与服务器模块和温控器终端模块通讯,定时上报心跳到服务器模块;温控器网关硬件主要包括网络连接模块、处理器、RTC(实时时钟,Real-Time Clock)时钟、温度采集模块(例如温度传感器)、LED(发光二极管,Light Emitting Diode)指示灯、蜂鸣器、按键、外置存储器、电源模块、液晶触摸屏。
其中网络连接模块与互联网相连,负责与互联网上的服务器通讯,网络连接模块包括至少一个无线网络模块,网络连接模块还可以再包括无线网络模块或有线网络模块,其中无线网络模块优选wifi网络处理器。
网络连接模块负责接收网络处理器转发过来的温控器设置指令,并将设置指令转发给温控器网关。其中有线网络模块和无线网络模块之间通过处理器中转传输数据,通过自定义的协议来进行数据的转换,如果无线网络模块自带连接互联网的功能,则在网关设备硬件上可以去掉用于连接互联网的网络处理器。其中无线网络模块可以设置功放,配置为放大无线网络模块无线信号,使得无线信号传的更远;当然有线网络模块中也可以设置功放。
处理器,配置为控制风机盘管的信号线和连接各个硬件模块。
RTC时钟模块,配置为计时,并实时获取服务器时间来对时。
温度采集模块,配置为采集环境温度。
LED指示灯,配置为指示温控器的运行状态和网络状态。
蜂鸣器,配置为组网时设备识别。
外置存储器,配置为存放风机盘管控制程序以及各个芯片的运行版本文件和温控器运行的一些关键数据。
按键主要,配置为设置温控器状态、复位设备和恢复出厂设置等功能。
电源模块,配置为设备供电。
液晶触摸屏为可选模块,配置为显示温控器状态和设置温控器。如果用户需要兼容传统温控器面板的使用习惯,则配置液晶触摸屏;如果用户更习惯用控制终端远程操作,则不配置液晶触摸屏。
温控器网关自身也是一个温控器,与温控器终端相比,多一个网络处理器,并且无线网络模块性能和其他硬件性能配置比终端设备要强。可以根据用户需要,将网关独立出来,不集成温控器的功能。每个温控器***最少需要有一个网关设备,也可以部署多个。
如图3所示,温控器终端设备硬件主要包括无线网络模块、处理器RTC时钟、温度采集模块、LED指示灯、蜂鸣器、外置存储器、按键、电源模块、液晶触摸屏;还可以包括定时开关模块、锁定解锁模块、统计模块、上报模块。如果无线网络模块带Mesh(无线网格网络)网络功能,无线网络模块配置为与网关设备的无线网络模块或者下一跳的无线网络模块通讯。其他器件与网关器件的功能相同。每个温控器***有零个、一个或者多个终端设备。将温控器安装在风机盘管出风口1米左右的范围内,以节省布线。
一、温控器终端可以设置软件模块,软件模块主要负责温控器的智能自动运行、对风机盘管的控制、温控器每天的运行状态统计上报、温控器计时和对于用户设置的定时器进行处理等功能。温控器终端每天自动记录各个档位、模式的运行时间,并在第二天的凌晨零点后上报统计数据(即运行数据)到服务器。
定时开关功能由用户在控制终端(例如手机)APP发起设置,温控器 终端的软件模块存储下来,到达用户设置的时间点后,自动对温控器进行开关设置。其中APP的主界面和配置界面的一种示例分别如图4和图5所示。
无线网络模块主要负责无线通讯和数据转发。无线网络模块包括网络处理器软件和网络处理器,主要负责无线网络模块与网络处理器之间的协议转换,上报心跳到服务器,采集各个温控器终端的在线状态、环境温度等功能。
其中,温控器终端自动运行采用以下技术方案:温控器终端上电后,温度采集模块开始定时采集环境的温度数据。温控器终端通过判断环境温度的变化来自动设置温控器的运行状态、温度、档位。
为了避免外界因素干扰,温度采集是采用多次采样的方式来决定温控器终端的运行。如果开机时采样的温度上升次数大于温度下降次数,则认为是热风,丢弃掉外界因素导致的抖动数据(判断冷风也是类似策略)。风机盘管出冷风时,将温控器终端自动设置为制冷默认温度,如果环境温度低于制冷默认温度则关闭风机盘管的电磁阀和风扇,如果环境温度高于制冷默认温度则根据环境温度与设置温度的差值大小设置风机的档位。出热风时,将温控器温度自动设置为制热默认温度,如果环境温度高于制热默认温度则关闭风机盘管的电磁阀和风扇(风机);如果环境温度低于制热默认温度,则根据环境温度与设置温度差值大小设置风机的档位。
***默认制冷默认温度为26℃,制热默认温度为20℃,也是政府对办公区域的温度设置的推荐值,默认该设置温度可以有效降低中央空调能耗;在特殊情况下,用户可以设置其他温度值。用户设置其他温度后,上述关闭风机盘管电磁阀和风扇的温度自动做相应的调整。
如果用户在打开温控器终端后,设置了温控器终端的模式,风速,则按照用户设置的方式来运行,自动模式不生效。用户选择自动模式后,自 动模式重新生效。
在其他的实施例中,温控器终端的软件模块包括以下程序模块:
防抖模块,配置为筛选采集出来的温度信息的有效变化情况;
第一判断模块,配置为判断温控器打开后环境温度变化趋势,例如变高还是不变;
温度模式自动设置模块,配置为在所述第一判断模块指示变高趋势时,设置运行模式为制热,并设置制热默认温度。在所述第一判断模块指示变低趋势时,设置运行模式为制冷,并设置制冷默认温度(即目标温度)。在所述第一判断模块指示温度不变时,设置运行模式为换气。
第二判断模块,配置为在降低趋势下,判断环境温度与默认温度的差值;在升高趋势下,判断默认温度与环境温度的差值;
风机档位自动设置模块,配置为在所述第一判断结果指示温度不变时设置风机档位为低速。
风机档位自动设置模块,还配置为若所述差值大于预设温度阈值T1,设置所述风机的工作速度为第三预设速率;
若所述差值小于预设温度阈值T2且不小于0,设置所述风机的工作速度为第一预设速率;
若所述差值不小于所述温度阈值T2且不大于所述温度阈值T1,设置所述风机的工作速度为第二预设速率;所述第一预设速率<所述第二预设速率<所述第三预设速率;所述温度阈值T2<所述温度阈值T1。
开关机自动设置模块,配置为当所述差值等于0时,设置所述风机盘管的电磁阀为关闭状态;
当所述差值小于预设温度阈值T3,设置所述风机为关闭状态;所述温度阈值T3<0。
例如,在所述温度模式自动设置模块设置为制冷,并且第二判断模块 温度差值为零时设置关闭风机盘管电磁阀,第二判断模块温度差值低于设置温度T3时,设置关闭风机盘管风机,关机一段时间后,第二判断模块温度差值为高于设置温度T4时自动打开风机和电磁阀;在所述温度模式自动设置模块设置为制热,并且第二判断模块温度差值为零时设置关闭风机盘管电磁阀,第二判断模块温度差值为低于设置温度T3时设置关闭风机盘管风机,关机一段时间后,第二判断模块温度差值高于设置温度T4时自动打开风机和电磁阀。
处理器,配置为控制温控器和连接温控器各个硬件器件;并配置为响应控制终端APP的各种温度、模式、档位、开关的设置指令并控制风机盘管的运行;
定时开关模块,配置为到用户设置的定时开关时间后,自动开关机设置;
锁定解锁模块,配置为管理员锁定温控器后,不允许其他用户进行温控器远程设置,也不允许液晶面板上按键设置;
统计模块,配置为自动统计每天温控器在各种模式、档位的运行时间,获得温控器运行数据;
上报模块,配置为将上述温控器终端运行数据上报到服务器。
二、服务器主要负责与温控器终端设备、温控器网关设备和控制终端之间通讯;还负责用户的登陆权限管理、用户授权管理和用户操作日志统计等。一般部署在云服务器上,也可以部署在自己搭建的服务器。
服务器包括:
统计数据存储模块,配置为将温控装置统计数据存储在数据库;
操作日志存储模块,配置为将用户的远程操作记录存储在操作日志中;
权限管理模块,配置为控制终端请求设备列表时,将有权限的设备信息发送给控制终端。
统计数据图表绘制模块,配置为将数据库中的数据在管理软件上绘制成图表;
操作日志查询模块,配置为管理员查询上述操作日志。
三、控制终端通过APP显示温控装置的状态、控制温控装置、响应用户的各类操作、配置温控装置安装地址与名称、设置温控装置定时开关时间。当温控器网关设备的网络处理器是Wifi网络处理器时,控制终端还负责配置网关的Wifi模块与无线路由器的连接。控制终端还可以智能的根据网络情况选择在局域网内直接与网关通讯还是通过服务器中转。APP主要包括安卓平台和IOS平台,也可以扩展到其他智能手机平台。
在其他实施例中,控制终端可以包括:
温控器监控模块,配置为用户查看和设置温控装置的状态;
定时器设置模块,配置为用户给温控装置设置定时开关机;
授权模块,配置为管理员给其他用户对某些指定的温控装置授权;
配置模块,配置为管理员给新安装的温控装置配置地址和名称;
批量设置模块,配置为管理员一次性设置多个温控装置;
自动判断内外网模块,当温控装置与控制终端处于同一个局域网时,温控装置的控制自动走局域网控制,不需要经过服务器中转;当温控装置与控制终端不处于同一个局域网时,才需要走服务器终端;APP自动判断内网还是外网,不需要用户设置。以控制终端为手机为例,流程如图6所示:
步骤1、启动APP。
步骤2、初始化设置控制温控器命令由服务器转发,检测手机网络。
步骤3、判断手机是否连接Wifi。若是执行步骤4,若否执行步骤7。
步骤4、在局域网内广播查找网关消息。
步骤5、判断局域网内是否有网关设备应答。若是执行步骤6,若否执 行步骤7。
步骤6、将该网关下的所有设备的通讯标志位置为内网模式。
步骤7、手机控制命令由服务器转发。
四、本***还可以包括管理软件模块,包括Web服务器和客户端模块,配置为温控器的删除、修改、授权等管理,温控器开机时间统计并绘制图表,温控器的操作日志统计等等;主要与服务器模块通讯。管理软件模块也可以使用C/S架构的管理软件。
本发明实施例中***具有以下技术效果:
一、本发明实施例引入了用智能手机控制风机盘管方法,方便用户远程管理,任何智能手机安装APP即可使用。
二、本发明实施例基于温控装置采集的温度数据进行大数据分析,设计了一套温控装置自动运行***,大多数情况下,用户只需要设置温控装置的开关,不需要设置温控装置的模式,风速,温度等信息。用户设置温控装置的定时开关机的时间后,可以不再控制温控装置的运行,智能化全自动运行。
三、由于采用远程管理,本发明实施例可以将温控装置安装在风机盘管出风口附近(1米范围左右),减少了布线,节省了用户组网成本。
四、温控装置自动统计每天的开机总时间和各个档位、模式的运行时间上报服务器,服务器存储数据后,提供数据给控制终端和管理软件,在控制终端和管理软件上绘制出温控装置每天、每周、每月运行情况的统计图表,方便用户分析温控器的运行情况和能耗情况。
五、为管理员用户提供了温度装置定时开关、批量管理温控装置和锁定温控装置的功能,管理更方便,节能效果更明显。
六、管理员用户可以在控制终端或管理软件上操作给其他用户授权,其他用户得到授权后,也可以用控制终端控制被授权的温控装置和查看温 控装置的运行状态。
七、如果控制终端和温控装置的网关处于同一个Wifi下,控制终端不连接互联网直接通过局域网就可以控制温控装置以节省用户流量和保证控制温控装置的实时性,即使Wifi路由器和互联网的连接断开,也不用影响用户监控温控装置;如果控制终端和网关不在同一个Wifi下,控制终端才需要连接互联网,走局域网控制还是走互联网控制由控制终端自动判断,不需要用户干预。
八、温控装置硬件上加入功放模块,使得温控器之间的无线数据传输距离更远。
实施例三
如图7所示,本实施例将实现在手机上对单个温控装置的操控。温控器网关硬件中的网络处理器采用ESP8266芯片的Wifi模块,无线网络模块采用CC2538模块作为Zigbee协调器。温控器终端硬件中的无线网络模块采用CC2530模块作为Zigbee路由器。处理器采用新唐0516单片机。如图8所示,操控流程包括:
步骤1,启动APP;
步骤2,APP用户登陆;APP用户可用自己的手机号登陆APP,获取短信验证码作为登陆密码。服务器校验验证码是否正确,校验通过后,用户登陆成功。
步骤3,请求服务器配置。
步骤4,服务器判断是否有温控器设备控制权。用户登陆成功后,服务器根据用户的手机号在服务器查找该用户对哪些温控器设备有控制权限,并返回有权限的设备列表给APP,APP将设备列表显示在APP的界面上。如果该用户没有有权限的设备,执行步骤14。
步骤5,APP获取设备列表;查询设备在线状态。如图4所示。
步骤6,判断设备是否在线。如果设备在线,可进入APP配置界面,在配置界面添加新设备,如果当前有新的温控器设备,在点击添加新设备按钮后,新的温控器会显示在待配置界面,点击进入,即可对新温控器进行命名和配置,配置完成后,执行步骤7;如果不在线则执行步骤13。
步骤7,查询设备实时状态。温控装置的状态主要有风机速度状态(高速,中速,低速),当前环境温度,温控装置设置温度,温控装置模式状态(自动,制冷,制热,换气),开关状态,锁定状态。
步骤8,判断设备是否被锁定。若是执行步骤12;若否执行步骤9。
步骤9,判断是否需要控制设备,若否执行步骤11,若是执行步骤10。
步骤10,点击如图5所示各个控制按钮。
在其他实施例中,温控器的控制主要有风机速度设置(高速,中速,低速),温度设定,温控器模式设置(自动,制冷,制热,换气),开关设置,定时开关机设置,锁定设备设置。
APP在通讯接口中填写需要控制设备的IEEE地址,网关设备的Zigbee协调器模块收到控制命令后,判断IEEE地址是否为自身地址,如果是自身地址,则直接发命令到MCU去控制空调风机盘管。如果不是自身地址,网关设备的Zigbee协调器将APP的控制命令原样封装后,查询路由表,将控制命令发送到下一跳zigbee路由器;
Zigbee路由器判断收到的控制命令的目的IEEE地址是否为自己的IEEE地址,是则发命令到MCU(微控制单元,Microcontroller Unit)去控制空调风机盘管,不是则继续发送给下一跳,直到控制命令发送到对应的Zigbee路由器。
其中,手机在向温控器发送控制命令(即设置指令)时,查看控制APP的网络连接方式;
如果手机连接为移动网络方式,通过服务器转发;如果手机连接为Wifi 方式,控制APP在局域网内扫描网关设备在局域网内有网关设备应答,则该网关标记为内网设备,控制APP与网关设备的通讯都采用直接局域网内通讯的方式,不通过服务器中转;对于没有应答的网关设备,标记为外网设备,与设备的通讯都通过服务器中转。
步骤11,退出。
步骤12,温控装置处于锁定状态,则不能对温控装置进行其他的操作,联系管理员解除温控装置的锁定状态或者退出。
步骤13,显示不在线。
步骤14,配置设备或者联系管理员授权。例如,如果当前没有新的温控器设备,则联系管理员给自己授权温控器使用权限,管理员通过控制APP软件或者Web软件给用户授权。
实施例四
本实施例将实现在智能手机上同时对多个温控器设备(可以是所有设备)的操控,本实施例主要给管理员批量控制温控器使用。包括以下步骤:
步骤A,APP用户登陆;
APP用户用自己的手机号登陆APP,获取短信验证码作为登陆密码。服务器校验验证码是否正确,校验通过后,用户登陆成功。
步骤B,APP获取设备列表。
用户登陆成功后,APP根据用户的手机号在服务器查找该用户对哪些温控器设备有控制权限,并返回有权限的设备列表给APP,APP将设备列表显示在APP的界面上。
步骤C,用户进入控制APP的批量设置界面;
步骤D,对温控器进行批量控制;
温控器的批量控制主要有风机速度设置(高速,中速,低速),温度设定,温控器模式设置(自动,制冷,制热,换气),开关设置,定时开关机 设置,锁定设备设置。
用户进入批量设置界面后,选择需要批量设置的多个设备,点击批量设置按钮后,APP按照实施例三中的方案逐个设备发送控制命令。
实施例五
本实施例将实现温控器设备的自动运行。包括以下步骤:
步骤A,设备上电;
设备的供电正常,硬件、软件和温度传感器运行正常。
步骤B,设备采集环境温度;
设备的温度传感器每隔5秒采集一次环境温度,并将采集的温度记录下来。
步骤C,设备打开;
用户用手机远程操作设备打开且设置自动模式(或用户手机远程操作设备打开且预定时间内没有操作则认为默认进入自动模式)或者由设备的定时器自动将设备打开。
步骤D,设备判断环境温度的变化趋势;
如果环境温度在缓慢降低,则认为风机盘管出风口出冷风,转步骤E;如果环境温度在缓慢升高,则认为风机盘管出风口出热风,转步骤F;如果环境温度不变,则认为风机盘管出风口出自然风,中央空调没有供冷或者供热,将温控器的风机档位置为低档。
步骤E,将目标温度自动设置为26℃,模式为制冷状态;
例如,在升高趋势下,如果环境温度大于30℃,则空调风机档位设置为高档;如果环境温度大于27℃且小于30℃,则空调风机档位设置为中档;如果环境温度大于26℃且小于27℃,则空调风机档位设置为低档;如果环境温度小于26摄氏度,则关闭电磁阀;如果关闭电磁阀后,温度继续降低,则关闭风机。关机一段时间后,如果环境温度高于26.5℃,则重新打开电 磁阀和风机。
步骤F,将目标温度自动设置为20℃,模式为制热状态;
如果环境温度小于16℃,则空调风机档位设置为高档;如果环境温度大于16℃且小于19℃,则空调风机档位设置为中档;如果环境温度大于19℃且小于20℃,则空调风机档位设置为低档;如果环境温度大于20摄氏度,则关闭电磁阀;如果关闭电磁阀后,温度继续升高,则关闭风机。关机一段时间后,如果环境温度低于19.5℃,则重新打开电磁阀和风机。
实施例六
本实施例将实现在智能手机上对单个温控装置的操控,温控装置的无线通讯技术采用NB-IoT,温控装置上安装带NB-IoT芯片的SIM卡,温控装置定时上报心跳到服务器,心跳中包括SIM卡的硬件地址。包括以下步骤:
步骤A,APP用户登陆;
APP用户用自己的手机号登陆APP,获取短信验证码作为登陆密码。服务器校验验证码是否正确,校验通过后,用户登陆成功。
步骤B,APP获取设备列表;
用户登陆成功后,APP根据用户的手机号在服务器查找该用户对哪些温控装置有控制权限,并返回有权限的设备列表给APP,APP将设备列表显示在APP的界面上。
步骤C,查询温控装置状态;
温控装置的状态主要有风机速度状态(高速,中速,低速),当前环境温度,温控装置设置温度,温控装置模式状态(自动,制冷,制热,换气),开关状态,锁定状态。
步骤D,对温控装置进行控制;
温控装置的控制主要有风机速度设置(高速,中速,低速),温度设定, 温控装置模式设置(自动,制冷,制热,换气),开关设置,定时开关机设置,锁定设备设置。
APP在通讯接口中填写需要控制温控装置的NB-IoT硬件地址,将控制指令发送到服务器,服务器通过查硬件地址和网络地址的映射表,将控制指令转发到对应的温控装置。
实施例七
本实施例将实现在智能手机上对单个温控装置的操控,温控器的无线通讯技术采用LoRa,温控器上安装带LoRa网络处理器,LoRa网络处理器定时上报心跳到服务器,心跳中包括LoRa的硬件地址。数据处理方法包括以下步骤:其中硬件地址属于温控装置标识的一种。
步骤A,APP用户登陆;
APP用户用自己的手机号登陆APP,获取短信验证码作为登陆密码。服务器校验验证码是否正确,校验通过后,用户登陆成功。
步骤B,APP获取设备列表;
用户登陆成功后,APP根据用户的手机号在服务器查找该用户对哪些温控装置有控制权限,并返回有权限的温控装置列表给APP,APP将设备列表显示在APP的界面上。
步骤C,查询温控装置状态;
温控装置的状态主要有风机速度状态(高速,中速,低速),当前环境温度,温控器设置温度,温控器模式状态(自动,制冷,制热,换气),开关状态,锁定状态。
步骤D,对温控装置进行控制;
温控装置的控制主要有风机速度设置(高速,中速,低速),温度设定,温控器模式设置(自动,制冷,制热,换气),开关设置,定时开关机设置,锁定设备设置。
APP在通讯接口中填写需要控制设备的LoRa硬件地址,将控制指令发送到服务器,服务器通过查硬件地址和网络地址的映射表,将控制指令转发到对应的温控器。
实施例八
如图9所示,本发明实施例提供一种风机盘管的控制方法,用于中央空调温控装置,所述方法包括:
步骤S101,通过控制终端或采用自动模式设置运行状态;
其中,该步骤包括若所述温控装置处于非自动工作模式下,通过网络接收设置指令,并根据所述设置指令设置所述温控装置的运行状态;
若所述温控装置处于自动工作模式下,按照设定周期采集环境温度;根据采集的环境温度,确定环境温度变化趋势;根据所述环境温度变化趋势设置所述温控装置的运行状态;
步骤S102,根据设置的运行状态,向与所述温控装置连接的风机盘管发送对应的控制信号,以使所述风机盘管启动与所述运行状态相应的动作。
本发明实施例中通过控制终端设置温控装置的运行状态,或者通过环境温度的变化趋势自动设置温控装置的运行状态,从而有效解决现有温控器需要人工手动设置的问题,提高了现有温控器的控制便捷性。
在其他实施例中,所述根据采集的环境温度,确定环境温度变化趋势,包括:
在每个周期节点,获取采集的环境温度;
根据各周期节点的所述环境温度,确定环境温度变化趋势。
在其他实施例中,所述运行状态包括制冷状态、制热状态和换气状态;
所述根据所述环境温度变化趋势设置所述温控装置的运行状态,包括:
若所述环境温度变化趋势为降低趋势,将所述温控装置的运行状态设置为制冷状态,并设置制冷目标温度;
若所述环境温度变化趋势为升高趋势,将所述温控装置的运行状态设置为制热状态,并设置制热目标温度;
若所述环境温度变化趋势为平缓趋势,将所述温控装置的运行状态设置为换气状态。
在其他的实施例中,所述环境温度变化趋势的判断方式包括:
在预设数量的周期内,若所述环境温度的降低幅度达到预设制冷阈值,则所述环境温度变化趋势为降低趋势;
在预设数量的周期内,若所述环境温度的升高幅度达到预设制热阈值,则所述环境温度变化趋势为升高趋势;
在预设数量的周期内,若所述环境温度的变化幅度在预设换气阈值范围内,则所述环境温度变化趋势为平缓趋势。
在其他的实施例中,所述根据所述环境温度变化趋势设置所述温控装置的运行状态之后,还包括:
在平缓趋势下,设置所述风机盘管的风机工作速度为低速;所述工作速度包括低速、中速和高速;
在降低趋势或升高趋势下,根据差值设置所述风机盘管的风机工作速度;在降低趋势下,所述差值为当前获取的环境温度与所述制冷目标温度之差,在升高趋势下,所述差值为所述制热目标温度与当前获取的环境温度之差。
其中,所述根据差值设置所述风机盘管的风机工作速度,包括:
若所述差值大于预设温度阈值T1,设置所述风机的工作速度为高速;
若所述差值小于预设温度阈值T2且不小于0,设置所述风机的工作速度为低速;
若所述差值不小于所述温度阈值T2且不大于所述温度阈值T1,设置所述风机的工作速度为中速。
当然,所述根据差值设置所述风机盘管的风机工作速度,还包括:
当所述差值等于0时,设置所述风机盘管的电磁阀为关闭状态;
当所述差值小于预设温度阈值T3,设置所述风机为关闭状态;所述温度阈值T3<0。
其中,所述当所述差值小于预设温度阈值T3,设置所述风机为关闭状态之后,还包括:
在预设时间内,当所述差值大于预设温度阈值T4时,将所述电磁阀和所述风机设置为开机状态;所述温度阈值T4>0。
在其他实施例中,所述方法还包括:
确定所述温控装置的运行数据,将所述运行数据发送给预置的服务器,以使所述服务器生成分析图表;
将所述温控装置的状态数据发送给从所述服务器获得控制权限的控制终端。
在其他实施例中,所述通过网络接收设置指令,并根据所述设置指令设置所述温控装置的运行状态,包括:
通过所述网络接收设置指令,从所述设置指令中解析出温控装置标识;所述设置指令为以下任一种:控制终端直接发送给所述温控装置的控制指令和服务器转发给所述温控装置的控制终端控制指令;
当解析出的温控装置标识与自身的温控装置标识一致时,根据所述设置指令设置所述温控装置的运行状态。
在其他实施例中,所述温控装置标识为温控装置的网络地址;
所述通过所述网络接收设置指令,从所述设置指令中解析出温控装置标识之前,还包括:
向服务器上报心跳数据,以使所述服务器在接收到控制终端控制指令时,根据预置的硬件地址和网络地址的映射表,将接收的控制终端控制指 令转发给相应的温控装置;所述心跳数据中携带温控装置的硬件地址。
实施例九
本发明实施例提供一种计算机可读存储介质,所述存储介质存储有风机盘管控制程序,所述风机盘管控制程序被至少一个处理器执行时,以实现实施例八中任一所述方法的步骤。
本发明实施例中存储介质在实现时可以参阅上述的方法实施例,在此不做赘述。
本发明实施例中计算机可读存储介质可以是RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域已知的任何其他形式的存储介质。可以将一种存储介质藕接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于专用集成电路中。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多 限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个***,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
以上所述,仅为本发明的实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
工业实用性
通过控制终端设置温控装置的运行状态,或者采用自动设置温控装置的运行状态,从而有效解决了现有温控器需要人工手动设置,并且设置过程繁琐的问题。

Claims (27)

  1. 一种风机盘管的控制方法,所述方法用于温控装置,包括:
    若所述温控装置处于非自动工作模式下,接收设置指令,并根据所述设置指令设置所述温控装置的运行状态;
    若所述温控装置处于自动工作模式下,按照设定周期采集环境温度;根据采集的环境温度,确定环境温度变化趋势;根据所述环境温度变化趋势设置所述温控装置的运行状态;
    根据设置的运行状态,向与所述温控装置连接的风机盘管发送对应的控制信号,以使所述风机盘管启动与所述运行状态相应的动作。
  2. 如权利要求1所述的方法,所述根据采集的环境温度,确定环境温度变化趋势,包括:
    在每个周期节点,获取采集的环境温度;
    根据各周期节点的所述环境温度,确定环境温度变化趋势。
  3. 如权利要求2所述的方法,所述运行状态包括制冷状态、制热状态和换气状态;
    所述根据所述环境温度变化趋势设置所述温控装置的运行状态,包括:
    若所述环境温度变化趋势为降低趋势,将所述温控装置的运行状态设置为制冷状态,并设置制冷目标温度;
    若所述环境温度变化趋势为升高趋势,将所述温控装置的运行状态设置为制热状态,并设置制热目标温度;
    若所述环境温度变化趋势为平缓趋势,将所述温控装置的运行状态设置为换气状态。
  4. 如权利要求3所述的方法,所述环境温度变化趋势的判断方式包括:
    在预设判断周期内,若所述环境温度的降低幅度达到预设制冷阈值,则所述环境温度变化趋势为降低趋势;
    在预设判断周期内,若所述环境温度的升高幅度达到预设制热阈值,则所述环境温度变化趋势为升高趋势;
    在预设判断周期内,若所述环境温度的变化幅度在预设换气阈值范围内,则所述环境温度变化趋势为平缓趋势。
  5. 如权利要求3所述的方法,所述根据所述环境温度变化趋势设置所述温控装置的运行状态之后,还包括:
    在降低趋势或升高趋势下,根据差值设置所述风机盘管的风机工作速度;其中,在降低趋势下,所述差值为当前获取的环境温度与所述制冷目标温度之差;在升高趋势下,所述差值为所述制热目标温度与当前获取的环境温度之差。
  6. 如权利要求5所述的方法,所述根据差值设置所述风机盘管的风机工作速度,包括:
    若所述差值大于预设第一温度阈值,设置所述风机的工作速度为第三预设速率;
    若所述差值小于预设第二温度阈值且不小于0,设置所述风机的工作速度为第一预设速率;
    若所述差值不小于所述第二温度阈值且不大于所述第一温度阈值,设置所述风机的工作速度为第二预设速率;所述第一预设速率<所述第二预设速率<所述第三预设速率;所述第二温度阈值<所述第一温度阈值。
  7. 如权利要求6所述的方法,所述根据差值设置所述风机盘管的风机工作速度,还包括:
    当所述差值等于0时,设置所述风机盘管的电磁阀为关闭状态;
    当所述差值小于预设第三温度阈值,设置所述风机为关闭状态;所 述第三温度阈值<0。
  8. 如权利要求7所述的方法,所述当所述差值小于预设第三温度阈值,设置所述风机为关闭状态之后,还包括:
    在预设时间内,当所述差值大于预设第四温度阈值时,将所述电磁阀和所述风机设置为开机状态;所述第四温度阈值>0。
  9. 如权利要求1所述的方法,所述方法还包括:
    确定所述温控装置的运行数据,将所述运行数据发送给预置的服务器,以使所述服务器生成分析图表;
    将所述温控装置的状态数据发送给从所述服务器获得控制权限的控制终端。
  10. 如权利要求1-9中任意一项所述的方法,所述接收设置指令,并根据所述设置指令设置所述温控装置的运行状态,包括:
    通过网络接收设置指令,从所述设置指令中解析出温控装置标识;所述设置指令为以下任一种:控制终端直接发送给所述温控装置的控制指令和服务器转发给所述温控装置的控制终端控制指令;
    当解析出的温控装置标识与自身的温控装置标识一致时,根据所述设置指令设置所述温控装置的运行状态。
  11. 如权利要求10所述的方法,所述温控装置标识为温控装置的网络地址;
    所述通过所述网络接收设置指令,从所述设置指令中解析出温控装置标识之前,还包括:
    向服务器上报心跳数据,以使所述服务器在接收到控制终端控制指令时,根据预置的硬件地址和网络地址的映射表,将接收的控制终端控制指令转发给相应的温控装置;所述心跳数据中携带温控装置的硬件地址。
  12. 一种中央空调温控装置,所述温控装置包括温度采集模块、存储器和处理器;
    所述温度采集模块配置为按照设定周期采集环境温度;
    所述存储器存储有风机盘管控制程序,所述处理器执行所述风机盘管控制程序,以实现以下步骤:
    若所述温控装置处于非自动工作模式下,接收设置指令,并根据所述设置指令设置所述温控装置的运行状态;
    若所述温控装置处于自动工作模式下,根据采集的环境温度,确定环境温度变化趋势;根据所述环境温度变化趋势设置所述温控装置的运行状态;
    根据设置的运行状态,向与所述温控装置连接的风机盘管发送对应的控制信号,以使所述风机盘管启动与所述运行状态相应的动作。
  13. 如权利要求12所述的温控装置,所述根据采集的环境温度,确定环境温度变化趋势,包括:
    在每个周期节点,获取采集的环境温度;
    根据各周期节点的所述环境温度,确定环境温度变化趋势。
  14. 如权利要求13所述的温控装置,所述运行状态包括制冷状态、制热状态和换气状态;
    所述根据所述环境温度变化趋势设置所述温控装置的运行状态,包括:
    若所述环境温度变化趋势为降低趋势,将所述温控装置的运行状态设置为制冷状态,并设置制冷目标温度;
    若所述环境温度变化趋势为升高趋势,将所述温控装置的运行状态设置为制热状态,并设置制热目标温度;
    若所述环境温度变化趋势为平缓趋势,将所述温控装置的运行状态 设置为换气状态。
  15. 如权利要求14所述的温控装置,所述环境温度变化趋势的判断方式包括:
    在预设数量的周期内,若所述环境温度的降低幅度达到预设制冷阈值,则所述环境温度变化趋势为降低趋势;
    在预设数量的周期内,若所述环境温度的升高幅度达到预设制热阈值,则所述环境温度变化趋势为升高趋势;
    在预设数量的周期内,若所述环境温度的变化幅度在预设换气阈值范围内,则所述环境温度变化趋势为平缓趋势。
  16. 如权利要求14所述的温控装置,所述根据所述环境温度变化趋势设置所述温控装置的运行状态之后,还包括:
    在降低趋势或升高趋势下,根据差值设置所述风机盘管的风机工作速度;在降低趋势下,所述差值为当前获取的环境温度与所述制冷目标温度之差,在升高趋势下,所述差值为所述制热目标温度与当前获取的环境温度之差。
  17. 如权利要求16所述的温控装置,所述根据差值设置所述风机盘管的风机工作速度,包括:
    若所述差值大于预设第一温度阈值,设置所述风机的工作速度为第三预设速率;
    若所述差值小于预设第二温度阈值且不小于0,设置所述风机的工作速度为第一预设速率;
    若所述差值不小于所述第二温度阈值且不大于所述第一温度阈值,设置所述风机的工作速度为第二预设速率;所述第一预设速率<所述第二预设速率<所述第三预设速率;所述第二温度阈值<所述第一温度阈值。
  18. 如权利要求17所述的温控装置,所述根据差值设置所述风机盘 管的风机工作速度,还包括:
    当所述差值等于0时,设置所述风机盘管的电磁阀为关闭状态;
    当所述差值小于预设第三温度阈值,设置所述风机为关闭状态;所述第三温度阈值<0。
  19. 如权利要求18所述的温控装置,所述当所述差值小于预设第三温度阈值,设置所述风机为关闭状态之后,还包括:
    在预设时间内,当所述差值大于预设第四温度阈值时,将所述电磁阀和所述风机设置为开机状态;所述第四温度阈值>0。
  20. 如权利要求12所述的温控装置,所述处理器执行所述温控计算机程序,还实现以下步骤:
    确定所述温控装置的运行数据,将所述运行数据发送给预置的服务器,以使所述服务器生成分析图表;
    将所述温控装置的状态数据发送给从所述服务器获得控制权限的控制终端。
  21. 如权利要求20中所述的温控装置,所述温控装置还包括网络连接模块;所述网络连接模块配置为通过无线或有线的方式与控制终端组成网络,并与所述控制终端进行控制指令和/或状态数据交互。
  22. 如权利要求20中所述的温控装置,所述温控装置还包括网络连接模块;所述网络连接模块配置为通过无线或有线的方式与服务器组成网络,并与所述服务器进行控制指令和/或状态数据交互。
  23. 如权利要求12-22中任意一项所述的温控装置,所述接收设置指令,并根据所述设置指令设置所述温控装置的运行状态,包括:
    通过网络接收设置指令,从所述设置指令中解析出温控装置标识;所述设置指令为以下任一种:控制终端直接发送给所述温控装置的控制指令和服务器转发给所述温控装置的控制终端控制指令;
    当解析出的温控装置标识与自身的温控装置标识一致时,根据所述设置指令设置所述温控装置的运行状态。
  24. 如权利要求23中所述的温控装置,所述温控装置标识为温控装置的网络地址;
    所述通过所述网络接收设置指令,从所述设置指令中解析出温控装置标识之前,还包括:
    向服务器上报心跳数据,以使所述服务器在接收到控制终端控制指令时,根据预置的硬件地址和网络地址的映射表,将接收的控制终端控制指令转发给相应的温控装置;所述心跳数据中携带温控装置的硬件地址。
  25. 一种计算机可读存储介质,所述存储介质存储有风机盘管控制程序,所述风机盘管控制程序被至少一个处理器执行时,以实现以如权利要求1-11任意一项所述方法的步骤。
  26. 一种中央空调***,所述***包括如权利要求12-24任意一项所述的温控装置、控制终端和服务器;
    所述控制终端配置为通过局域网或者所述服务器向所述温控装置发送设置指令;所述设置指令携带所述温控装置的温控装置标识。
  27. 如权利26所述的***,所述控制终端配置为从所述服务器获取具有控制权限的温控器装置的设备列表;
    将所述设备列表显示在控制界面上;
    在所述控制界面上接收用户选择的温控器装置;
    向选择的温控器装置发送设置指令。
PCT/CN2018/088292 2017-05-31 2018-05-24 中央空调温控装置、风机盘管的控制方法、介质及*** WO2018219213A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18810374.1A EP3633281B1 (en) 2017-05-31 2018-05-24 Central air-conditioning temperature control device, fan coil control method, medium and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710400466.4A CN108981092B (zh) 2017-05-31 2017-05-31 中央空调温控装置、风机盘管的控制方法、介质及***
CN201710400466.4 2017-05-31

Publications (1)

Publication Number Publication Date
WO2018219213A1 true WO2018219213A1 (zh) 2018-12-06

Family

ID=64456503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088292 WO2018219213A1 (zh) 2017-05-31 2018-05-24 中央空调温控装置、风机盘管的控制方法、介质及***

Country Status (3)

Country Link
EP (1) EP3633281B1 (zh)
CN (1) CN108981092B (zh)
WO (1) WO2018219213A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109933023A (zh) * 2018-12-19 2019-06-25 吉林大学 基于低功耗广域网的网联车管理***
CN114615291A (zh) * 2021-12-08 2022-06-10 江苏众亿国链大数据科技有限公司 一种基于物联网的数据采集方法
CN115599021A (zh) * 2022-10-18 2023-01-13 无锡锐泰节能***科学有限公司(Cn) 风机能耗智能管控平台
CN116557330A (zh) * 2023-07-11 2023-08-08 深圳盈特创智能科技有限公司 一种用于启动无反偏风筒的控制管理***

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109812933B (zh) * 2019-01-28 2020-09-11 北京国马斯尔福实验室设备有限责任公司 实验室智能化控制***
CN110986306B (zh) * 2019-11-30 2021-06-08 远景智能国际私人投资有限公司 基于机器学习的室温调节的方法、装置、设备及存储介质
CN113218052B (zh) * 2021-05-14 2022-12-16 广州市设计院集团有限公司 温度调节方法、装置、计算机设备和存储介质
CN113606753B (zh) * 2021-07-19 2023-01-10 启北公司 温控器功能配置方法、装置、计算机设备及可读存储介质
CN113608596B (zh) * 2021-07-29 2024-05-24 上海德衡数据科技有限公司 一种服务器智能冷却方法及***
CN114383269A (zh) * 2021-12-31 2022-04-22 无锡军创工程技术有限公司 基于云平台的中央空调节能控制方法与***

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005180770A (ja) * 2003-12-18 2005-07-07 Mitsubishi Electric Corp 冷暖房自動切換システム
CN203068732U (zh) * 2012-12-14 2013-07-17 上海盈达空调设备有限公司 一种风机盘管***
CN104570755A (zh) * 2015-01-21 2015-04-29 苏州奥莱维信息技术有限公司 一种基于手机的智能家居控制方法
CN104597763A (zh) * 2015-01-21 2015-05-06 苏州奥莱维信息技术有限公司 一种基于手机控制的智能家居***
CN104596046A (zh) * 2014-12-15 2015-05-06 福建求实智能股份有限公司 两管制空调的冬夏制切换方法
CN105352139A (zh) * 2015-12-08 2016-02-24 刘俊声 动态水力平衡末端风机盘管的控制方法
US20160320086A1 (en) * 2013-03-15 2016-11-03 Honeywell International Inc. Multi-mode auto changeover system
CN106196463A (zh) * 2016-07-20 2016-12-07 珠海格力电器股份有限公司 一种风机盘管自动控制方法及装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3128043B2 (ja) * 1994-09-29 2001-01-29 鹿島建設株式会社 ファンコイル装置の制御方法及びファンコイル装置
CN1256546C (zh) * 2001-12-25 2006-05-17 乐金电子(天津)电器有限公司 空调机自动转换冷/暖运转方式的方法
CN100414199C (zh) * 2003-12-23 2008-08-27 乐金电子(天津)电器有限公司 无抖动的室温控制装置及其控制方法
CN1322280C (zh) * 2004-11-19 2007-06-20 杨东 智能型风机盘管
KR100802159B1 (ko) * 2006-08-29 2008-02-11 바스코리아 주식회사 실내온도의 최적 제어를 위한 팬코일 유닛 제어기 및팬코일 유닛 제어시스템
CN201003837Y (zh) * 2007-02-09 2008-01-09 上海元上电子科技有限公司 风机盘管限温温控器
CN103188091A (zh) * 2011-12-28 2013-07-03 英业达股份有限公司 云端服务***的管理方法及管理***
KR101294291B1 (ko) * 2013-01-09 2013-08-07 바스코리아 주식회사 공조 및 팬코일 제어 장치
CN105172819B (zh) * 2015-08-07 2018-02-13 中国北车集团大连机车研究所有限公司 电力机车用空调电控***及其控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005180770A (ja) * 2003-12-18 2005-07-07 Mitsubishi Electric Corp 冷暖房自動切換システム
CN203068732U (zh) * 2012-12-14 2013-07-17 上海盈达空调设备有限公司 一种风机盘管***
US20160320086A1 (en) * 2013-03-15 2016-11-03 Honeywell International Inc. Multi-mode auto changeover system
CN104596046A (zh) * 2014-12-15 2015-05-06 福建求实智能股份有限公司 两管制空调的冬夏制切换方法
CN104570755A (zh) * 2015-01-21 2015-04-29 苏州奥莱维信息技术有限公司 一种基于手机的智能家居控制方法
CN104597763A (zh) * 2015-01-21 2015-05-06 苏州奥莱维信息技术有限公司 一种基于手机控制的智能家居***
CN105352139A (zh) * 2015-12-08 2016-02-24 刘俊声 动态水力平衡末端风机盘管的控制方法
CN106196463A (zh) * 2016-07-20 2016-12-07 珠海格力电器股份有限公司 一种风机盘管自动控制方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3633281A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109933023A (zh) * 2018-12-19 2019-06-25 吉林大学 基于低功耗广域网的网联车管理***
CN109933023B (zh) * 2018-12-19 2024-02-13 吉林大学 基于低功耗广域网的网联车管理***
CN114615291A (zh) * 2021-12-08 2022-06-10 江苏众亿国链大数据科技有限公司 一种基于物联网的数据采集方法
CN115599021A (zh) * 2022-10-18 2023-01-13 无锡锐泰节能***科学有限公司(Cn) 风机能耗智能管控平台
CN115599021B (zh) * 2022-10-18 2023-11-17 无锡锐泰节能***科学有限公司 风机能耗智能管控平台
CN116557330A (zh) * 2023-07-11 2023-08-08 深圳盈特创智能科技有限公司 一种用于启动无反偏风筒的控制管理***
CN116557330B (zh) * 2023-07-11 2023-09-22 深圳盈特创智能科技有限公司 一种用于启动无反偏风筒的控制管理***

Also Published As

Publication number Publication date
EP3633281A1 (en) 2020-04-08
EP3633281A4 (en) 2021-03-10
CN108981092B (zh) 2022-04-12
CN108981092A (zh) 2018-12-11
EP3633281B1 (en) 2023-12-27

Similar Documents

Publication Publication Date Title
WO2018219213A1 (zh) 中央空调温控装置、风机盘管的控制方法、介质及***
US10386088B2 (en) Efficient distribution of heating, ventilation and air conditioning functionality
JP6665244B2 (ja) ターゲット装置を制御するためのネットワークシステム、プロトコル及び方法
US10544946B2 (en) Intelligent HVAC control including automatic furnace shutdown event processing
EP3076093B1 (en) Air conditioning system and air conditioning management program
US9846443B2 (en) Methods and systems for data interchange between a network-connected thermostat and cloud-based management server
WO2016145743A1 (zh) 网络控制装置、智能家居***及其控制方法
US20150140990A1 (en) Method and apparatus for controlling home devices on group basis in a home network system
US20140343698A1 (en) Device control apparatus, device control method, and device control system
CN104865835A (zh) 一种基于ZigBee的智能家居***
JP6556228B2 (ja) 宅内機器、通信アダプタ、ホームシステム、制御方法、及び、プログラム
JP2015017718A (ja) 空調システム、空調システムの制御装置及び空調システムの制御方法
KR101842542B1 (ko) 가정용 냉난방장치 통합 관리 서버
CN105650832A (zh) 一种基于物联网技术的外置感温空调
KR100426181B1 (ko) 온풍기 원격제어 중계 장치 및 그 중계 방법
KR20220083103A (ko) 스마트폰 앱을 통한 가정 내 자동 온도 조절기
KR20230018725A (ko) Ai 스위치를 제어하는 방법, 사용자 단말 및 컴퓨터 프로그램
KR101480008B1 (ko) 온라인/오프라인 겸용 원격 제어 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18810374

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018810374

Country of ref document: EP

Effective date: 20200102