WO2018216913A1 - 신규한 헤테로고리 화합물 및 이를 이용한 유기발광 소자 - Google Patents

신규한 헤테로고리 화합물 및 이를 이용한 유기발광 소자 Download PDF

Info

Publication number
WO2018216913A1
WO2018216913A1 PCT/KR2018/004809 KR2018004809W WO2018216913A1 WO 2018216913 A1 WO2018216913 A1 WO 2018216913A1 KR 2018004809 W KR2018004809 W KR 2018004809W WO 2018216913 A1 WO2018216913 A1 WO 2018216913A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
εΐ69ΐζ
8ϊοζ
oav
compound
Prior art date
Application number
PCT/KR2018/004809
Other languages
English (en)
French (fr)
Inventor
차용범
이성재
김연환
전상영
한수진
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201880004751.7A priority Critical patent/CN110023314B/zh
Publication of WO2018216913A1 publication Critical patent/WO2018216913A1/ko

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/06Peri-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers

Definitions

  • organic light emitting phenomenon refers to a phenomenon of converting electrical energy into light energy using an organic material.
  • the organic light emitting device using the organic light emitting phenomenon has a wide viewing angle, excellent contrast, fast response time, excellent luminance, driving voltage and response speed characteristics, many studies have been conducted.
  • the organic light emitting device generally has a structure including an anode and a cathode and an organic layer between the anode and the cathode.
  • the organic layer is often formed of a multi-layered structure composed of different materials, and may be formed of, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer. .
  • Patent Document 0001 Korean Patent Publication No. 10-2000-0051826
  • the present invention relates to a novel heterocyclic compound and an organic light emitting device comprising the same.
  • the present invention provides a compound represented by Formula 1:
  • Ri and 3 ⁇ 4 are hydrogen or connected to each other
  • Xi to X 3 are each independently N, or CH, provided that at least one of 3 ⁇ 4 to 3 ⁇ 4 is N,
  • An and Ar 2 are each independently; Substituted or unsubstituted C 6 -60 aryl; Or substituted or unsubstituted C 2 -60 heteroaryl containing one or more heteroatoms selected from the group consisting of N, 0 and 3,
  • Ar 3 is substituted or unsubstituted C 6 -60 aryl; Carbazolyl; 9-phenylcarbazolyl; Dibenzofuranyl; Dibenzothiophenyl; Or a ring group represented by Formula 2 below:
  • Yi and Y 2 are each independently ⁇ , or CH, provided that at least one of ⁇ and ⁇ 2 is ⁇ ,
  • 0, or S
  • Ar 4 is substituted or unsubstituted C 6 -60 aryl; Or substituted or unsubstituted C 2 -60 heteroaryl containing one or more heteroatoms selected from the group consisting of N, 0 and S,
  • R is hydrogen; Substituted or unsubstituted C 6 -60 aryl; Or substituted or unsubstituted C 2 -60 heteroaryl including any one or more heteroatoms selected from the group consisting of N, 0 and ' S,
  • n is an integer of 1-4.
  • the present invention is a first electrode; A low 12 electrode provided to face the first electrode; And at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers comprises a compound represented by Chemical Formula 1. do.
  • the compound represented by Chemical Formula 1 may be used as a material of the organic material layer of the organic light emitting device, and organic. In the light emitting device, efficiency, low driving voltage, and / or lifetime characteristics can be improved.
  • the compound represented by Chemical Formula 1 may be used as a hole injection, hole transport, hole injection and transport, light emission, electron transport, or electron injection material.
  • FIG. 1 shows an example of an organic light emitting element composed of a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4.
  • FIG. 2 shows an example of an organic light emitting element composed of a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, a light emitting layer 7, an electron transport layer 8 and a cathode 4 It is.
  • the present invention provides a compound represented by Chemical Formula 1.
  • substituted or unsubstituted is deuterium halogen group; nitrile group; nitro group; hydroxy group; carbonyl group; ester group imide group; amino group; phosphine oxide group; alkoxy group; aryloxy group alkylthioxy group Arylthioxy group; alkyl sulfoxy group; a3 ⁇ 4 sulfoxy group; silyl group; boron group alkyl group; cycloalkyl group; alkenyl group; aryl group; aralkyl group; aralkenyl group alkylaryl group; alkylamine group; aralkylamine group; hetero An arylamine group, an arylamine group, an arylphosphine group, or an unsubstituted or substituted with one or more substituents selected from the group consisting of heterocyclic groups containing one or more of N,
  • the compound may be a compound having the following structure, but is not limited thereto.
  • Anidi- the oxygen of the ester group may be substituted with a linear, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms.
  • it may be a compound of the following structural formula,
  • carbon number of an imide group is not specifically limited, It is preferable that it is C1-C25. Specifically, it may be a compound having a structure as follows, but is not limited thereto.
  • the silyl group is specifically trimethylsilyl group, triethylsilyl group,. t-butyldimethylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, triphenylsilyl group, diphenylsilyl group, phenylsilyl group, etc.
  • the boron group specifically includes, but is not limited to, trimethylboron group, triethylboron group, t-butyldimethylboron group, triphenylboron group, phenylboron group, and the like.
  • examples of the halogen group include fluorine, chlorine, bromide or iodine.
  • the alkyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 1 to 40. According to an exemplary embodiment, the alkyl group has 1 to 20 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 10 carbon atoms-. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms.
  • alkyl group examples include methyl, ethyl, propyl, n-propyl ⁇ isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n _ Pentyl, isopentyl, neopentyl, tert-pentyl, nuclear chamber, n-nuclear chamber, 1-methylpentyl, 2-methylpentyl, 4- 1-methyl-2-pentyl, 3, 3-dimethylbutyl, 2-ethylbutyl, Heptyl, n-heptyl, 1-methylnuclear, cyclopentylmethyl, cyclonuctylmethyl, octyl, n —octyl, ter t -octyl, 1—methylheptyl, 2-ethyl
  • the alkenyl group may be linear or branched chain, carbon number is not particularly limited, it is preferably 2 to 40. According to an exemplary embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2—butenyl, 3-butenyl, 1-pentenyl, 2—pentenyl, 3-pentenyl, 3-methyl-1—part Tenyl, 1, 3—Butadienyl, Allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2, 2-diphenylvinyl-1-yl, 2-phenyl-2- (naphthyl-1-yl) vinyl-1-yl , 2,2-bis (dijonyl-1 -yl) vinyl-1-yl, stilbenyl group, styrenyl group and the like, but is not limited to these.
  • the cycloalkyl group is not particularly limited, preferably 3 to 60 carbon atoms, according to one embodiment, the cycloalkyl group is 3 to 30 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 20 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms.
  • aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group.
  • the aryl group has 6 to 30 carbon atoms. According to an exemplary embodiment, the aryl group has 6 to 20 carbon atoms.
  • the aryl group may be a phenyl group, a biphenyl group, a terphenyl group, etc. as the monocyclic aryl group, but is not limited thereto.
  • the polycyclic aryl group may be naphthyl group, anthracenyl group, phenanthryl group, pyrenyl group, perylenyl group, chrysenyl group, fluorenyl group, and the like, but is not limited thereto.
  • the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure. When the fluorenyl group is substituted '
  • the heterocyclic group is a heterocyclic group containing one or more of 0, N, Si, and S as heterologous elements, and the carbon number is not particularly limited, but is preferably 2 to 60 carbon atoms.
  • the heterocyclic group include thiophene furan, pyrrole, imidazole, thiazole, oxazole, oxadiazole, triazole, pyridyl, bipyridyl, pyrimidyl, triazine and acridil pyri.
  • the aryl group in the aralkyl group, aralkenyl group, alkylaryl group, and arylamine group is the same as the example of the aryl group described above.
  • the alkyl group among the aralkyl group, the alkylaryl group, and the alkylamine group is the same as the example of the alkyl group described above.
  • the heteroaryl amine increases heteroaryl can be applied to the description of the above-mentioned heterocyclic groups.
  • the alkenyl group in the aralkenyl group is the same as the example of the alkenyl group described above.
  • the arylene is a divalent group
  • the description of the aryl group described above may be applied.
  • the heteroarylene is a divalent group
  • the description of the aforementioned heterocyclic group may be applied.
  • the hydrocarbon ring is not a monovalent group, except that two substituents are bonded to each other to form the aforementioned aryl group or cycloalkyl group. The description may apply.
  • the heterocyclic group is not a monovalent group, and the description of the aforementioned heterocyclic group may be applied except that two substituents are formed by bonding.
  • Chemical Formula 1 according to the bonding position, Chemical Formula 1 may be represented by any one of the following Chemical Formulas 1-1 to 1-4:
  • An and Ar 2 are each independently phenyl, biphenylyl, terphenylyl, quarterphenylyl, naphthyl, anthracenyl, phenanthrenyl, triphenylenyl, dimethylfluorenyl, diphenylfluore Nil, dibenzofuranyl, carbazolyl, 9-phenylcarbazolyl, or dibenzothiophenyl. More preferably, An and Ar 2 are each independently phenyl or biphenylyl.
  • Ar 3 is phenyl, biphenylyl, terphenylyl, quarterphenylyl, naphthyl phenanthrenyl, anthracenyl, triphenylenyl, dimethylfluorenyl, diphenylfluorenyl, carbazolyl, 9- Phenylcarbazolyl, dibenzofuranyl, dibenzothiophenyl.
  • Ar 4 is phenyl, biphenylyl, naphthyl, dimethylfluorenyl, diphenylpletuenyl, dibenzo Furanyl, dibenzothiophenyl, carbazolyl, or 9-phenylcarbazolyl.
  • R is hydrogen. Representative examples of the compound represented by Formula 1 are as follows:
  • the compound represented by Chemical Formula 1 may be prepared by the same method as in Scheme 1 below.
  • reaction formula 1 is a Suzuki coupling reaction, in which the compound represented by Chemical Formula 1-a and the compound represented by Chemical Formula 1-b are reacted in the presence of a palladium catalyst and a base to prepare a compound represented by Chemical Formula 1 It's a reaction.
  • the manufacturing method may be more specific in the production examples to be described later.
  • the present invention provides an organic light emitting device including the compound represented by Formula 1.
  • the present invention is a first electrode; A second electrode provided to face the first electrode; And at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers comprises a compound represented by Chemical Formula 1 to provide an organic light emitting device. do.
  • the organic material layer of the organic light emitting device of the present invention may be formed of a single layer structure, but may be formed of a multilayer structure in which two or more organic material layers are stacked.
  • the organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer and the like as the organic layer.
  • the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic layers.
  • the organic layer may include a hole injection layer, a hole transport layer, or a layer for simultaneously injecting and transporting holes, the hole injection layer, a hole transport layer, or a layer for simultaneously injecting and transporting a hole is represented by the formula (1) It includes a compound represented.
  • the organic layer may include a light emitting layer, and the light emitting layer includes a compound represented by Chemical Formula 1.
  • the organic layer may include an electron transport layer, or an electron injection layer, the electron transport layer, or the electron injection layer comprises a compound represented by the formula (1).
  • the electron transport layer, the electron injection layer: or the layer at the same time the electron transport and electron injection comprises a compound represented by the formula (1).
  • the organic layer includes a light emitting layer and an electron transport layer,
  • the electron transport layer may include a compound represented by Chemical Formula 1.
  • the organic light emitting device according to the present invention may be an organic light emitting device having a structure in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate.
  • the organic light emitting device may be an organic light emitting device having an inverted type in which a cathode, one or more organic layers, and an anode are sequentially stacked on a substrate.
  • FIGS. 1 and 2 show an example of an organic light emitting element composed of a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4. As shown in FIG. In such a structure, the compound represented by Formula 1 may be included in the light emitting layer.
  • FIG. 2 shows an example of an organic light emitting element composed of a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, a light emitting layer 7, an electron transport layer 8 and a cathode 4 It is.
  • the compound represented by Chemical Formula 1 may be included in one or more layers of the hole injection layer, the hole transport layer, the light emitting layer, and the electron transport layer.
  • the organic light emitting device according to the present invention may be manufactured by materials and methods known in the art, except that at least one layer of the organic material layer includes the compound represented by Chemical Formula 1.
  • the organic material layers may be formed of the same material or different materials.
  • the organic light emitting device according to the present invention may be manufactured by sequentially stacking a first electrode, an organic material layer, and a crab 2 electrode on a substrate.
  • PVD physical vapor deposition
  • an alloy of It may be prepared by forming an organic layer including a hole injection layer, a hole transport layer, a light emitting layer and an electron transport layer thereon, and then depositing a material that can be used as a cathode thereon.
  • an organic light emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
  • the compound represented by Chemical Formula 1 may be formed as an organic layer by a solution coating method as well as a vacuum deposition method in the manufacture of the organic light emitting device.
  • the solution coating method means spin coating, dip coating, doctor blading, inkjet printing, screen printing, spraying, coating, etc., but is not limited thereto.
  • an organic light emitting device may be manufactured by sequentially depositing an organic material layer and an anode material on a substrate (W0 2003/012890).
  • the manufacturing method is not limited thereto.
  • the first electrode is an anode
  • the second electrode is a cathode
  • the first electrode is a cathode
  • the second electrode is an anode.
  • the anode material a material having a large work function is generally preferred to facilitate hole injection into the organic material layer.
  • the positive electrode material include metals such as vanadium, crumb, copper, zinc and gold or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (IT0), indium zinc oxide (IZ0); A combination of a metal such as ZnO: AI or SN0 2 : Sb and an ' oxide; Conductive polymers such as poly (3 ′ methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PED0T), polypyrrole and polyaniline, but are not limited thereto. no.
  • the cathode material is a material having a small work function to facilitate electron injection into the organic material layer.
  • the negative electrode material Metals such as magnesium, carbon, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead or alloys thereof; Multilayer structure materials such as LiP7Al or Li0 2 / Al, and the like, but are not limited thereto.
  • the hole injection layer is a layer for injecting holes from the electrode, the hole injection material has the ability to transport holes to have a hole injection effect at the anode, has an excellent hole injection effect to the light emitting layer or the light emitting material, The compound which prevents the excitons from moving to the electron injection layer or the electron injection material, and is excellent in thin film formation ability is preferable.
  • HOMO highest occupied molecul ar orbi tal) of the hole injection material is preferably between the work function of the positive electrode material and the HOMO of the surrounding organic layer.
  • the hole injecting material is a metal porphyrin (porphyr in), oligothiophene, an aryl amine-based, organic, hex nitrile hex-aza triphenyl organic materials alkylene series, quinacridone (quinacr idone) organic substance in the series, perylene ( perylene) organic materials, anthraquinone and polyaniline and polythiophene-based conductive polymers, but are not limited thereto.
  • the hole transport layer is a layer that receives holes from the hole injection layer and transports holes to the light emitting layer.
  • a hole transporting material is a material capable of transporting holes from an anode or a hole injection layer to a light emitting layer. This is suitable.
  • the light emitting material is a material capable of emitting light in the visible region by transporting and combining holes and electrons from the hole transport layer and the electron transport layer, respectively, and a material having good quantum efficiency with respect to fluorescence or phosphorescence is preferable.
  • the light emitting layer may include a host material and a dopant material.
  • the host material is a condensed aromatic ring derivative or a heterocyclic containing compound.
  • the condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, and fluoranthene compounds.
  • the heterocyclic compounds include carbazole derivatives, dibenzofuran derivatives, and ladder types. Furan compounds, pyrimidine derivatives, and the like, but are not limited thereto.
  • Examples of the dopant material include aromatic amine derivatives, strylamine compound boron complexes, fluoranthene compounds, and metal complexes.
  • the aromatic amine derivative is a condensed aromatic ring derivative having a substituted or unsubstituted arylamino group, and includes pyrene, anthracene, chrysene, and periplanthene having an arylamino group
  • the styrylamine compound may be substituted or unsubstituted.
  • At least one arylvinyl group is substituted with the substituted arylamine, and one or two or more substituents selected from the group consisting of aryl group, silyl group, alkyl group, cycloalkyl group and arylamino group are substituted or unsubstituted.
  • styryl amine, styryl di are substituted or unsubstituted.
  • the metal complex includes an iridium complex, a platinum complex, and the like, but is not limited thereto.
  • the electron transport layer is a layer that receives electrons from the electron injection layer and transports electrons to the light emitting layer.
  • the electron transporting material a material capable of injecting electrons well from the cathode and transferring them to the light emitting layer is suitable. Do. Specific examples include A 1 complex of 8-hydroxyquinoline; A complex containing the 1 Q 3 '; Organic radical compounds; Hydroxyflavone-metal complexes and the like, but are not limited thereto.
  • the electron transport layer is used according to the prior art As can be used with any desired cathode material.
  • suitable cathode materials are conventional materials having a low work function followed by an aluminum or silver layer. Specifically cesium, barium, calcium, etherboom and samarium, each followed by an aluminum or silver layer.
  • the electron injection layer is a layer for injecting electrons from an electrode, has a capability of transporting electrons, has an electron injection effect from the cathode, has an excellent electron injection effect to the light emitting layer or the light emitting material, and hole injection of excitons generated in the light emitting layer
  • the compound which prevents movement to a layer and is excellent in thin film formation ability is preferable.
  • fluorenone anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone and their derivatives, metal Complex compounds and nitrogen-containing five-membered ring derivatives; and the like, but are not limited thereto.
  • Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis (8-hydroxyquinolinato) zinc, bis (8-hydroxyquinolinato) copper, bis (8-hydroxyquinolinato) manganese, Tris (8-hydroxyquinolinato) aluminum, Tris (2-methyl-8-hydroxyquinolinato) aluminum, Tris (8'hydroxyquinolinato) gallium, bis (10-hydroxybenzo [h] Quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8-quinolinato) chlorogallium, bis (2-methyl ⁇ 8-quinolinato) ( 0-cresolato) gallium, bis (2-methyl-8-quinolinato) (1-naphlato) aluminum, bis (2-methyl-8-quinolinato) (2-naphlato) gallium
  • the present invention is not limited thereto.
  • the organic light emitting device may be a top emission type, a bottom emission type or a double-sided emission type depending on the material used.
  • the compound represented by Formula 1 may be included in an organic solar cell or an organic transistor in addition to the organic light emitting device. Preparation of the compound represented by Chemical Formula 1 and an organic light emitting device including the same will be described in detail in the following Examples. However, the following examples are intended to illustrate the present invention, and the scope of the present invention is not limited thereto.
  • Tetrahydrofuran 240 was added to compound FC11.26 g, 15.53 ⁇ l), and compound a2 (3.95 g, 14.79 ⁇ l ol) in a 500 mL round bottom flask under nitrogen atmosphere. After completely dissolved in mL, 2M aqueous potassium carbonate solution (120 mL) was added, tetrakis (triphenylphosphine) palladium (0.51 g, 0.44 mmol) was added thereto, and the mixture was heated and stirred for 4 hours.
  • Preparation 12 (7.60 g, 65%).
  • IT0 indium tin oxide
  • IT0 indium tin oxide
  • Fischer Co. product was used as the detergent
  • distilled water filtered secondly as a filter of Millipore Co. product was used as the distilled water.
  • the ultrasonic cleaning was repeated twice with distilled water for 10 minutes.
  • ultrasonic cleaning with a solvent of isopropyl alcohol, acetone, methanol, dried and transported to a plasma cleaner.
  • the substrate was cleaned for 5 minutes using an oxygen plasma, and then the substrate was transferred to a vacuum evaporator.
  • the compound represented by the following formula HAT was thermally vacuum deposited to a thickness of 150 A on the prepared ITO transparent electrode to form a hole injection layer.
  • a compound represented by the following Chemical Formula EB1 was vacuum deposited on the hole transport layer with a film thickness of 100 A to form an electron blocking layer.
  • a compound represented by the following formula BH and a compound represented by the following formula BD were deposited at a weight ratio of 25: 1 to form a light emitting layer with a thickness of 200 A.
  • a hole blocking layer was formed by vacuum depositing a compound represented by the following Chemical Formula HB1 with a film thickness of 50 A on the light emitting layer. Subsequently, the compound prepared in Preparation Example 1 and the compound represented by LiQ below were vacuum deposited on the hole blocking layer at a weight ratio of 1: 1 to form an electron injection and transport layer at a thickness of 310 A. Lithium fluoride (LiF) with a thickness of 12 A on the electron injection and transport layer sequentially and aluminum to 1,000 A thickness A cathode was formed under deposition.
  • LiF Lithium fluoride
  • the organic light emitting device was manufactured by the same method as Example 1-1, using the compound shown in Table 1 below instead of the compound prepared in Preparation Example 1. ⁇ Comparative Examples 1-1 to 1-4
  • Example 1-1 Manufactured in the same manner as in Example 1-1.
  • An organic light emitting device was manufactured by using the compound shown in Table 1 below instead of the compound prepared in Preparation Example 1.
  • ETl, ET2, ET3, and ET4 used in Table 1 are as follows.
  • T95 refers to the time it takes for the luminance to decrease to 95% from the initial luminance (1600 nit).
  • the organic light emitting device was manufactured by the same method as Comparative Example 2-1, using a compound represented by the following Chemical Formula GH2 instead of the compound represented by the Chemical Formula GH1.
  • the organic light emitting device was manufactured by the same method as Comparative Example 2-1, but using the compound shown in Table 2 below instead of the compound represented by Formula GH1.
  • Experimental Example 2
  • T95 means the time it takes for the luminance to decrease to 95% from the initial luminance (6000 ni t).
  • Comparative Example 2-2 GH2 4.28 98.45 (0.254, 0.702) 210
  • Table 2 in the case of an organic light emitting device manufactured using the compound of the present invention as a green light emitting layer, the efficiency, driving voltage, and / Or excellent properties in terms of stability.
  • nuorene-9, 8-indoloacr idine Asymmetric compounds of the present invention in which an aryl group is connected at position 3 and an electron withdrawing substituent is connected at position 5 are organic light emitting compounds prepared using the compound of the comparative example as a host of the green light emitting layer. It shows lower voltage and higher efficiency than the device.
  • Table 2 it was confirmed that the other compounds in the present invention can be applied to the organic light emitting device excellent in the light emitting ability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 신규한 화합물 및 이를 이용한 유기발광 소자를 제공한다.

Description

【발명의 명칭】
신규한 헤테로고리 화합물 및 이를 이용한 유기발광 소자
【기술분야】
관련 출원 (들)과의 상호 인용
본 출원은 2017년 5월 22일자 한국 특허 출원 제 10-2017-0063093호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다. 본 발명은 신규한 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.
【배경기술】
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 응답 시간을 가지며, 휘도, 구동 전압 및 웅답 속도 특성이 우수하여 많은 연구가 진행되고 있다. 유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물 층을 포함하는 구조를 가진다. 상기 유기물 층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 '구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 액시톤 (exc i ton)이 형성되며, . 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다. 상기와 같은 유기 발광 소자에 사용되는 유기물에 대하여 새로운 재료의 개발이 지속적으로 요구되고 있다.
【선행기술문헌】
【특허문헌】 (특허문헌 0001) 한국특허 공개번호 제 10-2000-0051826호
【발명의 내용】
【해결하려는 과제】
본 발명은 신규한 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.
【과제의 해결 수단】
본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다:
Figure imgf000003_0001
상기 화학식 1에서,
Ri 및 ¾는 수소이거나, 또는 서로 연결되고,
Xi 내지 X3은 각각 독립적으로 N, 또는 CH이고, 단 ¾ 내지 ¾ 중 적어도 하나는 N이고,
An 및 Ar2는 각각 독립적으로; 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된, N , 0 및 3로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴이고,
Ar3은 치환 또는 비치환된 C6-60 아릴; 카바졸릴; 9-페닐카바졸릴; 디벤조퓨라닐 ; 디벤조티오페닐; 또는 하기 화학식 2로 표시되는 차환기이다:
[화학식 2]
Figure imgf000004_0001
상기 화학식 2에서,
Yi 및 Y2는 각각 독립적으로 Ν , 또는 CH이고, 단 ^ 및 Υ2 중 적어도 하나는 Ν이고,
Ζ는 0, 또는 S이고,
Ar4는 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된, N , 0 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴이고,
R은 수소; 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된, N , 0 및' S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴이고,
n은 1 내지 4의 정수이다. 또한, 본 발명은 제 1 전극; 상기 게 1 전극과 대향하여 구비된 저 12 전극; 및 상기 제 1 전극과 상기 제 2 전극 사이에 구비된 1층 이상의 유기물 층을 포함하는 유기 발광 소자로서 , 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다.
[발명의 효과】
상술한 화학식 1로 표시되는 화합물은 유기 발광 소자의 유기물 층의 재료로서 사용될 수 있으며, 유기. 발광 소자에서 효율의 향상, 낮은 구동전압 및 /또는 수명 특성을 향상시킬 수 있다. 특히, 상술한 화학식 1로 표시되는 화합물은 정공주입, 정공수송, 정공주입 및 수송, 발광, 전자수송, 또는 전자주입 재료로 사용될 수 있다.
【도면의 간단한 설명】
도 1은 기판 ( 1), 양극 (2), 발광층 (3), 음극 (4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 도 2는 기판 ( 1), 양극 (2), 정공주입층 (5), 정공수송층 (6), 발광층 (7), 전자수송층 (8) 및 음극 (4)로 이루어진 유기 발광 소자의 예를 도시한 것이다.
【발명을 실시하기 위한 구체적인 내용】
이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다. 본 발명은 상기 화학식 1로 표시되는 화합물을 제공한다.
본 명세서에서,
Figure imgf000005_0001
다른 치환기에 연결되는 결합을 의미한다. 본 명세서에서 "치환 또는 비치환된'' 이라는 용어는 중수소 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아¾술폭시기; 실릴기; 붕소기 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기 아릴포스핀기; 또는 N , 0 및 S 원자 중 1개 이상을 포함하는 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기 "는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다. 본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니디- .
Figure imgf000006_0001
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나,
Figure imgf000006_0002
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물 될 수 있으나, 이에 한정되는 것은 아니다.
Figure imgf000006_0003
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, . t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다. 본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t—부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다. 본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브름 또는 요오드가 있다. 본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이디- . 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필ᅳ 이소프로필, 부틸, n—부틸, 이소부틸, tert-부틸, sec—부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n_펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 핵실, n-핵실, 1-메틸펜틸, 2-메틸펜될, 4一메틸 -2—펜틸, 3 , 3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸핵실, 사이클로펜틸메틸,사이클로핵틸메틸, 옥틸, n—옥틸, t er t-옥틸, 1—메틸헵틸, 2-에틸핵실, 2-프로필펜틸 , n—노닐, 2 , 2-디메틸헵틸, 1-에틸-프로필, 1 , 1- 디메틸-프로필, 이소핵실, 2-메틸펜틸, 4-메틸핵실, 5-메틸핵실 등이 있으나, 이들에 한정되지 않는다. 본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1ᅳ부테닐, 2—부테닐, 3-부테닐, 1-펜테닐, 2—펜테닐, 3-펜테닐, 3-메틸 -1—부테닐, 1,3—부타디에닐, 알릴, 1-페닐비닐 -1-일, 2-페닐비닐 -1-일, 2 , 2-디페닐비닐 -1-일, 2-페닐 -2- (나프틸 -1-일)비닐 -1—일, 2,2—비스 (디쩨닐 -1—일)비닐 -1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다. 본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2 , 3- 디메틸사이클로펜틸, 사이클로핵실, 3-메틸사이클로핵실, 4一 메틸사이클로핵실, 2 , 3-디메틸사이클로핵실, 3 , 4 , 5—트리메틸사이클로핵실, 4-tert—부틸사이클로핵실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되지 않는다. 본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 치환되는 경우'
Figure imgf000009_0001
수 있다. 다만, 이에 한정 것은 아 . ᄋ 본 명세서에 있어서, 헤테로고리기는 이종 원소로 0 , N , Si 및 S 중1개 이상을 포함하는 헤테로고리기로서, 탄소수는 특별히 한정되지 않으나 탄소수 2 내지 60인 것이 바람직하다. 헤테로고리기의 예로는 티오펜기 퓨란기, 피를기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 아크리딜기 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰를린기 (phenanthrol ine) , 이소옥사졸릴기, 티아디아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다. 본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 증 헤테로아릴은 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 해테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 상기 화학식 1에서, 결합 위치에 따라, 상기 화학식 1은 하기 화학식 1-1 내지 1-4 중 어느 하나로 표시할 수 있다:
Figure imgf000010_0001
[화학식 1-3]
Figure imgf000011_0001
바람직하게는, An 및 Ar2는 각각 독립적으로, 페닐, 비페닐릴, 터페닐릴, 쿼터페닐릴, 나프틸, 안트라세닐, 페난쓰레닐, 트리페닐레닐, 디메틸플루오레닐, 디페닐플루오레닐, 디벤조퓨라닐, 카바졸릴, 9- 페닐카바졸릴, 또는 디벤조티오페닐이다. 보다 바람직하게는, An 및 Ar2는 각각 독립적으로, 페닐, 또는 비페닐릴이다. 바람직하게는, Ar3은 페닐, 비페닐릴, 터페닐릴, 쿼터페닐릴, 나프틸 페난쓰레닐, 안트라세닐, 트리페닐레닐, 디메틸플루오레닐, 디페닐플루오레닐, 카바졸릴, 9-페닐카바졸릴, 디벤조퓨라닐, 디벤조티오페닐이다.. 바람직하게는, 상기 화학식 2에서, Ar4은 페닐, 비페닐릴, 나프틸, 디메틸플루오레닐, 디페닐플투오레닐, 디벤조퓨라닐, 디벤조티오페닐, 카바졸릴, 또는 9-페닐카바졸릴이다. 또한 바람직하게는, 상기 화학식 2에서, R은 수소이다. 상기 화학식 1로 표시되는 화합물의 대표적인 예는 다음과 같다:
Figure imgf000013_0001
608^00/8ΐΟΖΗΜ/Χ3<Ι εΐ69ΐΖ/8ΪΟΖ OAV EL
Figure imgf000014_0001
608^00/8ΐΟΖΗΜ/Χ3<Ι εΐ69ΐΖ/8ΪΟΖ OAV
Figure imgf000015_0001
608^00/8ΐΟΖΗΜ/Χ3<Ι εΐ69ΐΖ/8ΪΟΖ OAV
Figure imgf000016_0001
608^00/8ΐΟΖΗΜ/Χ3<Ι εΐ69ΐΖ/8ΪΟΖ OAV
Figure imgf000017_0001
608^00/8ΐΟΖΗΜ/Χ3<Ι εΐ69ΐΖ/8ΪΟΖ OAV Li
Figure imgf000018_0001
608^00/8ΐΟΖΗΜ/Χ3<Ι εΐ69ΐΖ/8ΪΟΖ OAV 8L
Figure imgf000019_0001
608^00/8ΐΟΖΗΜ/Χ3<Ι εΐ69ΐΖ/8ΪΟΖ OAV 6L
Figure imgf000020_0001
608^00/8ΐΟΖΗΜ/Χ3<Ι εΐ69ΐΖ/8ΪΟΖ OAV
Figure imgf000021_0001
608^00/8ΐΟΖΗΜ/Χ3<Ι εΐ69ΐΖ/8ΪΟΖ OAV
Figure imgf000022_0001
608fOO/8IOCMM/x3<I
Figure imgf000023_0001
608^00/8ΐΟΖΗΜ/Χ3<Ι εΐ69ΐΖ/8ΪΟΖ OAV
Figure imgf000024_0001
Figure imgf000025_0001
608^00/8ΐΟΖΗΜ/Χ3<Ι εΐ69ΐΖ/8ΪΟΖ OAV
Figure imgf000026_0001
608^00/8ΐΟΖΗΜ/Χ3<Ι εΐ69ΐΖ/8ΪΟΖ OAV
Figure imgf000027_0001
608^00/8ΐΟΖΗΜ/Χ3<Ι εΐ69ΐΖ/8ΪΟΖ OAV LZ
Figure imgf000028_0001
608^00/8ΐΟΖΗΜ/Χ3<Ι εΐ69ΐΖ/8ΪΟΖ OAV
Figure imgf000029_0001
608^00/8ΐΟΖΗΜ/Χ3<Ι εΐ69ΐΖ/8ΪΟΖ OAV ez
Figure imgf000030_0001
608^00/8ΐΟΖΗΜ/Χ3<Ι εΐ69ΐΖ/8ΪΟΖ OAV
Figure imgf000031_0001
Figure imgf000031_0002
Figure imgf000031_0003
상기 화학식 1로 표시되는 화합물은 하기 반응식 1과 같은 제조 방법으로 제조할 수 있다.
Figure imgf000031_0004
상기 반응식 1에서, , , Xi 내지 ¾, An , Ar2 , 및 Ar3은 앞서 정의한 바와 같으며, X는 할로겐이다. 바람직하게는, X는 클로로이다. 상기 반웅식 1은 스즈키 커플링 반움으로서, 상기 화학식 1-a로 표시되는 화합물과 상기 화학식 1-b로 표시되는 화합물을 팔라듐 촉매와 염기 존재하에 반응시켜, 상기 화학식 1로 표시되는 화합물을 제조하는 반웅이다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다. 또한, 본 발명은 상기 화학식 1로 표시되는 화합물을 포함하는 유기 발광 소자를 제공한다. 일례로, 본 발명은 제 1 전극; 상기 제 1 전극과 대향하여 구비된 제 2 전극; 및 상기 제 1 전극과 상기 제 2 전극 사이에 구비된 1층 이상의 유기물 층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다. 본 발명의 유기 발광 소자의 유기물 층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대 본 발명의 유기 발광 소자는 유기물 층으로서 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등을 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기층을 포함할 수 있다. 또한, 상기 유기물 층은 정공주입층, 정공수송층, 또는 정공 주입과 수송을 동시에 하는 층을 포함할 수 있고, 상기 정공주입층, 정공수송층, 또는 정공 주입과 수송을 동시에 하는 층은 상기 화학식 1로 표시되는 화합물을 포함한다. 또한, 상기 유기물 층은 발광층을 포함할 수 있고, 상기 발광층은 상기 화학식 1로 표시되는 화합물을 포함한다. 또한, 상기 유기물 층은 전자수송층, 또는 전자주입층을 포함할 수 있고, 상기 전자수송층, 또는 전자주입층은 상기 화학식 1로 표시되는 화합물을 포함한다. 또한, 상기 전자수송층, 전자주입층: 또는 전자수송 및 전자주입을 동시에 하는 층은 상기 화학식 1로 표시되는 화합물을 포함한다. 또한, 상기 유기물 층은 발광층 및 전자수송층을 포함하고, 상기 전자수송층은 상기 화학식 1로 표시되는 화합물을 포함할 수 있다. 또한, 본 발명에 따른 유기 발광 소자는, 기판 상에 양극, 1층 이상의 유기물 층 및 음극이 순차적으로 적층된 구조 (normal type)의 유기 발광 소자일 수 있다ᅳ 또한, 본 발명에 따른 유기 발광 소자는 기판 상에 음극, 1층 이상의 유기물 층 및 양극이 순차적으로 적층된 역방향 구조 ( inverted type)의 유기 발광 소자일 수 있다. 예컨대, 본 발명의 일실시예에 따른 유기 발광 소자의 구조는 도 1 및 2에 예시되어 있다. 도 1은 기판 ( 1), 양극 (2), 발광층 (3), 음극 (4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 발광층에 포함될 수 있다. 도 2는 기판 ( 1), 양극 (2), 정공주입층 (5), 정공수송층 (6), 발광층 (7), 전자수송층 (8) 및 음극 (4)로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 정공주입층, 정공수송층, 발광층 및 전자수송층 증 1층 이상에 포함될 수 있다. 본 발명에 따른 유기 발광 소자는, 상기 유기물 층 중 1층 이상이 상기 화학식 1로 표시되는 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다. 또한, 상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물층은 동일한 물질 또는 다른 물질로 형성될 수 있다. 예컨대, 본 발명에 하른 유기 발광 소자는 기판 상에 제 1 전극, 유기물층 및 게 2 전극을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법 ( sput ter ing)이나 전자빔 증발법 (e— beam evaporat i on)과 같은 PVD(phys i cal Vapor Depos i t ion)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자 수송층을 포함하는 유기물 층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다. 또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물 층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 를 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다. 이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다 (W0 2003/012890) . 다만 제조 방법이 이에 한정되는 것은 아니다. 일례로, 상기 제 1 전극은 양극이고, 상기 제 2 전극은 음극이거나, 또는 상기 게 1 전극은 음극이고, 상기 제 2 전극은 양극이다. 상기 양극 물질로는 통상 유기물 층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크름, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물 ( IT0) , 인듐아연 산화물 ( IZ0)과 같은 금속 산화물 ; ZnO :AI 또는 SN02 : Sb와 같은 금속과 '산화물의 조합; 폴리 (3ᅳ 메틸티오펜), 폴리 [3, 4- (에틸렌— 1 , 2-디옥시 )티오펜] (PED0T) , 폴리피를 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다. 상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슴, 칼슴, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiP7Al 또는 Li02/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다. 상기 정공주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며 , 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 HOMO highest occupi ed molecul ar orbi tal )가 양극 물질의 일함수와 주변 유기물 층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린 (porphyr in) , 올리고티오펜, 아릴아민 계열의 ' 유기물, 핵사니트릴핵사아자트리페닐렌 계열의 유기물, 퀴나크리돈 (quinacr idone)계열의 유기물, 페릴렌 (perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정 되는 것은 아니다. 상기 정공수송층은 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다. 상기 발광 물질로는 정공 수송층과 전자 수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로 8-히드록시—퀴놀린 알루미늄 착물 (Alq3) ; 카르바졸 계열 화합물; 이량체화 스티릴 (dimer i zed styryl ) 화합물; BAlq ; 10- 히드록시벤조 퀴놀린 -금속 화합물 ; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리 (P-페닐렌비닐렌 KPPV) 계열의 고분자; 스피로 (spi ro) 화합물; 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다. 상기 발광층은 호스트 재료 및 도편트 재료를 포함할 수 있다. 호스트 재료는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등이 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체ᅳ 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다. 도편트 재료로는 방향족 아민 유도체, 스트릴아민 화합물 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디.아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되지 않는다. 상기 전자수송층은 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하는 층으로 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 A 1 착물; A 1 Q3' 포함한 착물; 유기 라디칼 화합물; 히드록시플라본 -금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자 수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 캐소드 물질과 함께 사용할 수 있다. 특히, 적절한 캐소드 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로 세슘, 바륨, 칼슘, 이테르붐 및 사마륨이고, 각 경우 알루미늄 층 또는 실버층이 뒤따른다. 상기 전자주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 음극으로부터의 전자 주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공주입층에의 이동을 방자하고, 또한, 박막형성능력이 우수한 화합물이 바람직하다. 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 있으나, 이에 한정되지 않는다. 상기 금속 착체 화합물로서는 8—하이드록시퀴놀리나토 리튬, 비스 (8- 하이드톡시퀴놀리나토)아연, 비스 (8—하이드록시퀴놀리나토)구리, 비스 (8- 하이드록시퀴놀리나토)망간, 트리스 (8-하이드록시퀴놀리나토)알루미늄, 트리스 (2—메틸 -8—하이드록시퀴놀리나토)알루미늄, 트리스 (8ᅳ 하이드록시퀴놀리나토)갈륨, 비스 ( 10-하이드록시벤조 [h]퀴놀리나토)베릴륨, 비스 ( 10-하이드록시벤조 [h]퀴놀리나토)아연 , 비스 (2-메틸 -8- 퀴놀리나토)클로로갈륨, 비스 (2-메틸ᅳ 8-퀴놀리나토) (0-크레졸라토)갈륨, 비스 (2-메틸— 8-퀴놀리나토) ( 1-나프를라토)알루미늄, 비스 (2-메틸—8- 퀴놀리나토) (2-나프를라토)갈륨 등이 있으나, 이에 한정되지 않는다. 본 발명에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다. 또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자 외에도 유기 태양 전지 또는 유기 트랜지스터에 포함될 수 있다. 상기 화학식 1로 표시되는 화합물 및 이를 포함하는 유기 발광 소자의 제조는 이하 실시예에서 구체적으로 설명한다. 그러나 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다.
Figure imgf000038_0001
질소 분위기에서 500 mL 등근 바닥 플라스크에 화합물 A(7.68 g, 11.23 隱 ol), 및 화합물 al(3.67 g, 10.70 隱 ol)을 테트라하이드로퓨란 240 mL에 완전히 녹인 후 2M 탄산칼륨 수용액 (120 mL)을 첨가하고, 테트라키스- (트리페닐포스핀)팔라듐 (0.37 g, 0.32 画 ol)을 넣은 후 3시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슴으로 건조한 후 감압농축시키고 에틸아세테이트.240 mL로 재결정하여 제조예 1(7.69 g, 83%)를 제조하였다.
MS[M+H]+= 865
Figure imgf000038_0002
질소 분위기에서 500 mL 등근 바닥 플라스크에 화합물 B(12.30 g 16.20 隱 ol), 및 화합물 a2(4.12 g, 15.43 mmol)을 테트라하이드로퓨란 220 mL에 완전히 녹인 후 2M 탄산칼륨수용액 (110 mL)을 첨가하고, 테트라키스- (트리페닐포스핀)팔라듐 (0.53 g, 0.46 隱 ol)을 넣은 후 2시간 동안 가열 교반하였다. 상온으로 은도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 에틸아세테이트 320 mL로 재결정하여 제조예 2(10.08 g, 76%)를 제조하였다.
MS[M+H]+= 865
Figure imgf000039_0001
질소 분위기에서 500. mL 등근 바닥 플라스크에 화합물 C 10.57 g, 13.96 隱 ol), 및 화합물 a2(3.55 g, 13.30 隱 ol)을 테트파하이드로퓨란 200 mL에 완전히 녹인 후 2M 탄산칼륨수용액 (100 raL)을 첨가하고, 테트라키스- (트리페닐포스핀)팔라듐 (0.37 g, 0.32 隱 ol)을 넣은 후 4시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 테트라하이드로퓨란 180mL로 재결정하여 제조예 3(9.95 g, 87%)를 제조하였다.
MS[M+H]+= 863 제조예 4
Figure imgf000040_0001
a2
질소 분위기에서 500 mL 등근 바닥 플라스크에 화합물 D 10.47 g, 15.02 隱 ol), 및 화합물 a2(3.82 g, 14.31 醒 ol)을 테트라하이드로퓨란 260 mL에 완전히 녹인 후 2M 탄산칼륨수용액 (130 mL)을 첨가하고, 테트라키스- (트리페닐포스핀)팔라듐 (0.50 g,, 0.43 mmol)을 넣은 후 5시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슴으로 건조한 후 감압농축 시키고 에틸아세테이트 280 mL로 재결정하여 제조예 4(8.44 g, 73%)를 제조하였다.
MS[M+H]+= 803
Figure imgf000040_0002
질소 분위기에서 500 mL 등근 바닥 플라스크에 화합물 E(12.23 g, 17.15 匪 ol), 및 화합물 a2(4.36 g, 16.33 隱 ol)을 테트라하이드로퓨란 280 mL에 완전히 녹인 후 2M 탄산칼륨수용액 (140 mL)을 첨가하고, 테트라키스- (트리페닐포스핀)팔라듐 (0.57 g, 0.49 隱 ol)을 넣은 후 3시간 동안 가열 교반하였다ᅳ 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슴으로 건조한 후 감압농축 시키고 에틸아세테이트 250 mL로 재결정하여 제조예 5(10.27 g, 77%)를 제조하였다. MS[M+H]+= 819
Figure imgf000041_0001
질소 분위기에서 500 mL 등근 바닥 플라스크에 화합물 A(7.05 g, 10.32 瞧 ol), 및 화합물 a3(3.37 g, 9.83 mmol)을 테트라하이드로퓨란 200 mL에 완전히 녹인 후 2M 탄산칼륨수용액 (100 mL)을 첨가하고, 테트라키스- (트리페닐포스핀)팔라듐 (0.37 g, 0.32 隱 ol)을 넣은 후 3시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슴으로 건조한 후 감압농축 시키고 에틸아세테이트 240 mL로 재결정하여 제조예 6(6.49 g, 81%)를 제조하였다.
MS[M+H]+= 865
Figure imgf000041_0002
질소 분위기에서 500 mL 등근 바닥 플라스크에 화합물 A(7.05 g,
10.32 隱 ol), 및 화합물 a4(3.37 g, 9.83 隱 ol)을 테트라하이드로퓨란 200 mL에 완전히 녹인 후 2M 탄산칼륨수용액 (100 mL)을 철가하고, 테트라키스-
(트리페닐포스핀)팔라듐 (0.37 g, 0.32 mmol)을 넣은 후 3시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 에틸아세테이트 240 mL로 재결정하여 제조예 7(6.49 g, 8 )를 제조하였다.
MS[M+H]+= 787
Figure imgf000042_0001
질소 분위기에서 500 mL 둥근 바닥 플라스크에 화합물 A(9.00 g, 13.17 誦 ol), 및 화합물 a5(4.29 g, 12.54 隱 ol)을 테트라하이드로퓨란 240 mL에 완전히 녹인 후 2M 탄산칼륨수용액 (120 mL)을 첨가하고, 테트라키스- (트리페닐포스핀)팔라듐 (0.43 g, 0.38 圍 ol)을 넣은 후 5시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슴으로 건조한 후 감압농축 시키고 에틸아세테아트 240 mL로 재결정하여 제조예 8(7.77 g, 72%)를 제조하였다.
MS[M+H]+= 864
Figure imgf000042_0002
질소 분위기에서 500 mL 둥근 바닥 플라스크에 화합물 FC11.26 g, 15.53 隱 ol), 및 화합물 a2(3.95 g, 14.79 隱 ol)을 테트라하이드로퓨란 240 mL에 완전히 녹인 후 2M 탄산칼륨수용액 (120 mL)을 첨가하고, 테트라키스一 (트리페닐포스핀)팔라듐 (0.51 g, 0.44 mmol)을 넣은 후 4시간 동안 가열 교반하였다. 상은으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슴으로 건조한 후 감압농축 시키고 에틸아세테이트 280 mL로 재결정하여 제조예 9(8.11 g, 66%)를 제조하였다.
― MS[M+H]+= 831
Figure imgf000043_0001
질소 분위기에서 500 mL 둥근 바닥 플라스크에 화합물. G 13.97 g,
18.36 隱 ol), 및 화합물 a6(4.65 g, 17.48 睡 ol)을 테트라하이드로퓨란 220 mL에 완전히 녹인 후 2M 탄산칼륨수용액 (110 mL)을 첨가하고, 테트라키스- (트리페닐포스핀)팔라듐 (0.61 g, 0.52 mmol)을 넣은 후 2시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슴으로 건조한 후 감압농축 시키고 에틸아세테이트 250 mL로 재결정하여 제조예 10(10.9 6g, 72%)를 제조하였다.
MS[M+H]+= 866
Figure imgf000043_0002
질소 분위기에서 500 mL 둥근 바닥 플라스크에 화합물 H 10.57 13.96 瞧 ol), 및 화합물 a2(3.55 'g, 13.30 讓 ol)을 테트라하이드로퓨란 200 mL에 완전히 녹인 후 2M 탄산칼륨수용액 (100 mL)을 첨가하고, 테트라키스- (트리페닐포스핀)팔라듐 (0.37 g, 0.32 醒 ol)을 넣은 후 4시간 동안 가열 교반하였다. 상은으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 테트라하이드로퓨란 180 mL로 재결정하여 제조예 11(8.96 g, 87%)를 제조하였다.
MS[M+H]+= 865
Figure imgf000044_0001
질소 분위기에서 500 mL 등근 바닥 플라스크에 화합물 1(10.47 g, 15.02 隱 ol), 및 화합물 a2(3.82 g, 14.31 隱 ol)을 테트라하이드로퓨란 260 mL에 완전히 녹인 후 2M 탄산칼륨수용액 (130 mL)을 첨가하고, 테트라키스- (트리페닐포스핀)팔라듐 (0.50 g, 0.43 画 ol)을 넣은 후 5시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 에틸아세테이트 280 mL로 재결정하여 제조예 12(7.60 g, 65%)를 제조하였다.
MS[M+H]+= 821 제조예 13
Figure imgf000045_0001
13
질소 분위기에서.500 mL 등근 바닥 플라스크에 화합물 J 12.23 g, 17.15 隱 ol), 및 화합물 a2(4.36 g, 16.33 隱 ol)을 테트라하이드로퓨란 280 mL에 완전히 녹인 후 2M 탄산칼륨수용액 (140 mL)을 첨가하고, 테트라키스- (트리페닐포스핀)팔라듬 (0.57 g, 0.49 隱 ol)을 넣은 후 3시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 에틸아세테이트 250 mL로 재결정하여 제조예 13(9.25 g, 69%)를 제조하였다.
MS[M+H]+= 805
Figure imgf000045_0002
질소 분위기에서 500 mL 등근 바닥 플라스크에 화합물 F(9.37 g, 12.92 睡 ol), 및 화합물 a3(4.22 g, 12.30 隱 ol)을 테트라하이드로퓨란 240 mL에 완전히 녹인 후 2M 탄산칼륨수용액 (120 mL)을 첨가하고, 테트라키스- (트리페닐포스핀)팔라듐 (0.43 g, 0.37 画 ol)을 넣은 후 5시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 테트라하이드로퓨란 220 mL로 재결정하여 제조예 14(9.15 g, 86%)를 제조하였다. MS[M+H]+= 907
Figure imgf000046_0001
질소 분위기에서 500 mL 등근 바닥 플라스크에 화합물 K 11.07 g, 15.20 瞧 ol), 및 화합물 a2(4.51 g, 16.89 隱 ol)을 테트라하이드로퓨란 280 mL에 완전히 녹인 후 2M 탄산칼륨수용액 (140 mL)을 첨가하고, 테트라키스- (트리페닐포스핀)팔라듐 (0.59 g, 0.51 rraiol)을 넣은 후 3시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슴으로 건조한 후 감압농축 시키고 에틸아세테이트 250 mL로 재결정하여 제조예 15(8.17 g, 55%)를 제조하였다.
MS[M+H]+= 882
Figure imgf000046_0002
질소 분위기에서 500 mL 등근 바닥 플라스크에 화합물 LC11.74 g, 15.78 醒 ol), 및 화합물 a2(4.68 g, 17.53 醒 ol)을 테트라하이드로퓨란 280 mL에 완전히 녹인 후 2M 탄산칼륨수용액 (140 mL)을 첨가하고, 테트라키스- (트리페닐포스핀)팔라듐 (0.61 g, 0.53 隱 ol)을 넣은 후 3시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 에틸아세테이트 250 mL로 재결정하여 제조예 16(9.12 g, 58%)를 제조하였다.
MS[M+H]+= 899 실시예 1-1
IT0( indium tin oxide)가 'Ι,ΟΟΟΑ의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이때, 세제로는 피셔사 (Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사 (Millipore Co.) 제품의 필터 (Filter)로 2차로 걸러진 증류수를 사용하였다. ΠΌ를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시찼다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다. 이렇게 준비된 ITO 투명 전극 위에 하기 화학식 HAT로 표시되는 화합물을 150A의 두께로 열 진공 증착하여 정공 주입층을 형성하였다. 상기 정공 주입층 위에 정공을 수송하는 물질인 하기 화학식 ΗΊΊ으로 표시되는 화합물 (1150A)을 진공 증착하여 정공 수송층을 형성하였다. 이어서ᅳ 상기 정공 수송층 위에 막 두께 100 A으로 하기 화학식 EB1으로 표시되는 화합물을 진공 증착하여 전자 저지층을 형성하였다. 이어서, 상기 전자 저지층 위에 막 두께 200 A으로 하기 화학식 BH로 표시되는 화합물 및 하기 화학식 BD로 표시되는 화합물을 25:1의 중량비로 진공증착하여 발광층을 형성하였다. 상기 발광층 위에 막 두께 50A으로 하기 화학식 HB1으로 표시되는 화합물을 진공 증착하여 정공 저지층을 형성하였다. 이어서, 상기 정공 저지층 위에 앞서 제조예 1에서 제조한 화합물과 하기 LiQ로 표시되는 화합물을 1:1의 중량비로 진공 증착하여 310A의 두께로 전자 주입 및 수송층을 형성하였다. 상기 전자 주입 및 수송층 위에 순차적으로 12A두께로 리튬폴로라이드 (LiF)와 1,000A 두께로 알루미늄을 증착하 음극을 형성하였다.
Figure imgf000048_0001
상기의 과정에서 유기물의 증착속도는 0.4 ~ 0.7 A/sec를 유지하였고, 음극의 리튬플로라이드 0.3 A/sec, 알루미늄은 2 A/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2X10—7 ~ 5X10"6 torr를 유지하여, 유기 발광 소자를 제작하였다. 실시예 1-2내지 1-12
상기 실시예 1—1과 동일한 방법으로 제조하되, 제조예 1에서 제조한 화합물 대신 하기 표 1에 기재된 화합물을 사용하여, 유기 발광 소자를 제조하였다. ᅳ 비교예 1-1 내지 1-4
상기 실시예 1-1과 동일한 방법으로 제조하되,. 제조예 1에서 제조한 화합물 대신 하기 표 1에 기재된 화합물을 사용하여, 유기 발광 소자를 제조하였다. 하기 표 1에서 사용한 ETl, ET2, ET3, 및 ET4는 하기와 같다.
실험예 1
상기 실시예 및 비교예에서 제조한 유기 발광 소자에 전류를 인가하였을 때, 전압, 효율, 색좌표 및 수명을 측정하고 그 결과를 하기 표 1에 나타내었다. T95은 휘도가 초기휘도 (1600 nit)에서 95%로 감소되는데 소요되는 시간을 의미한다.
【표 11
Figure imgf000049_0001
상기 표 1에 나타난 바와 같이, 본 발명의 화합물을 전자수송층으로 사용하여 제조된 유기 발광 소자의 경우에 유기 발광 소자의 효율, 구동전압 및 /또는 안정성 면에서 우수한 특성을 나타냄을 확인할 수 있었다. f 1 uor ene-9 , 8- i ndo 1 oacr i d i ne 3번 위치에 아릴기가 연결되는 동시에 5번 위치에 전자끌개 치환기가 연결되는 비대칭형의 본 발명의 화합물들은 대칭형인 비교예 1-1 내지 1-4의 화합물을 전자수송층으로 사용하여 제조된 유기 발광 소자보다 저전압, 고효율의 특성을 나타내었다. 상기 표 1의 결과와 같이, 본 발명에 다른 화합물은 전자 수송 능력이 우수하여 유기 발광 소자에 적용 가능함을 확인할 수 있었다. 비교예 2—1
상기 비교예 1-1과 동일한 방법으로 제조하되, 발광층으로 BH 및 BD를 사용하는 대신 막 두께 350A으로 하기 화학식 GH1로 표시되는 화합물 및 하기 화학식 GD로 표시되는 화합물을 20 : 1의 중량비로 진공증착하여 발광층 형성하여, 유기 발광 소자를 제조하였다.
Figure imgf000050_0001
GH1 GD 비교예 2—2
상기 비교예 2-1과 동일한 방법으로 제조하되, 화학식 GH1로 표시되는 화합물 대신 하기 화학식 GH2로 표시되는 화합물을 사용하여, 유기 발광 소자를 제조하였다.
Figure imgf000051_0001
실시예 2-1 내지 2-13
상기 비교예 2-1과 동일한 방법으로 제조하되, 화학식 GH1로 표시되는 화합물 대신 하기 표 2에 기재된 화합물을 사용하여, 유기 발광 소자를 제조하였다. 실험예 2
상기 실시예 및 비교예쎄서 제조한 유기 발광 소자에 전류를 인가하였을 때, 전압, 효율, 색좌표 및 수명을 측정하고 그 결과를 하기 표 2에 나타내었다. T95은 휘도가 초기휘도 (6000 ni t )에서 95%로 감소되는데 소요되는 시간을 의미한다.
【표 2】
Figure imgf000051_0002
비교예 2-2 GH2 4.28 98.45 (0.254, 0.702) 210 상기 표 2에 나타난 바와 같이, 본 발명의 화합물을 녹색발광층으로 사용하여 제조된 유기 발광 소자의 경우에 유기 발광 소자의 효율, 구동전압 및 /또는 안정성 면에서 우수한 특성을 나타낸다. nuorene-9 , 8- indoloacr idine 3번위치에 아릴기가 연결되는 동시에 5번 위치에 전자 끌개 치환기가 연결되는 비대칭형의 본 발명의 화합물들은 비교예의 화합물을 녹색발광층의 호스트로 사용하여 제조된 유기 발광 소자보다 저전압, 고효율의 특성을 보인다. 상기 표 2의 결과와 같이, 본 발명에 다른 화합물은 발광 능력이 우수하여 유기 발광 소자에 적용 가능함을 확인할 수 있었다.
【부호의 설명】
1: 기판 2 : 양극
3: 발광층 4 : 음극
5: 정공주입층 6 : 정공수송층
7: 발광층 8 : 전자수송층

Claims

【특허청구범위】
【청구항 1】
하기 화학식 1로 표시되는 화합물:
Figure imgf000053_0001
상기 화학식 1에서,
Ri 및 ¾는 수소이거나, 또는 서로 연결되고,
X! 내지 ¾은 각각 독립적으로 N , 또는 CH이고, 단 ¾ 내지 중 적어도 하나는 N이고,
An 및 Ar2는 각각 .독립적으로, 치환 또는 비치환된 C6-60 아릴 ; 또는 치환 또는 비치환된, N , 0 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴이고,
Ar3은 치환 또는 비치환된 C6-60 아릴; 카바졸릴; 9-페닐카바졸릴; 디벤조퓨라닐; 디벤조티오페닐; 또는 하기 화학식 2로 표시되는 치환기이다:
Figure imgf000053_0002
상기 화학식 2에서,
Yi 및 Y2는 각각 독립적으로 Ν , 또는 CH이고, 단 ^ 및 Υ2 중 적어도 하나는 N이고,
Z는 0, 또는 S이고,
Ar4는 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된, N , 0 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-fi0 헤테로아릴이고,
R은 수소; 치환 또는 비치환된 C6-60 아릴 ; 또는 치환 또는 비치환된, N , 0 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로 ¾자를 포함하는 C2-60 헤테로아릴이고ᅳ
n은 1 내지 4의 정수이다.
【청구항 2]
제 1항에 있어서,
상기 화학식 1은 하기 화학식 1-1내지 1-4 중 어느 하나로 표시되는 화합물:
Figure imgf000054_0001
[화학식 1-2]
Figure imgf000055_0001
[화학식 1-4]
Figure imgf000056_0001
【청구항 3】
제 1항에 있어서,
An 및 Ar2는 각각 독립적으로, 페닐, 비페닐릴, 터페닐릴, 쿼터페닐릴, 나프틸, 안트라세닐, 페난쓰레닐, 트리페닐레닐, 디메틸플루오레닐, 디페닐플루오레닐, 디벤조퓨라닐, 카바졸릴, 9— 페닐카바졸릴, 또는 디벤조티오페닐인,
화합물.
【청구항 4】
제 1항에 있어서,
A 및 Ar2는 각각 독립적으로, 페닐, 또는 비페닐릴인,
화합물.
【청구항 5】
제 1항에 있어서,
Ar3은 페닐, 비페닐릴, 터페닐릴, 쿼터페닐릴, 나프틸, 페난쓰레닐, 안트라세닐, 트리페닐레닐, 디메틸플루오레닐, 디페닐플루오레닐, 카바졸릴, 9-페닐카바졸릴, 디벤조퓨라닐, 또는 디벤조티오페닐인,
화합물 .
【청구항 6】
제 1항에 있어서,
Ar4은 페닐, 비페닐릴, 나프틸, 디메틸플루오레닐, 디페닐플루오레닐, 디벤조퓨라닐, 디벤조티오페닐, 카바졸릴, 또는 9-페닐카바졸릴인,
화합물.
【청구항 7】
거 U항에 있어서,
R은 수소인,
화합물. 【청구항 8】
게 1항에 있어서,
상기 화학식 1로 표시되는 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인,
화합물:
Figure imgf000058_0001
608^00/8ΐΟΖΗΜ/Χ3<Ι εΐ69ΐΖ/8ΪΟΖ OAV 85
Figure imgf000059_0001
608^00/8ΐΟΖΗΜ/Χ3<Ι εΐ69ΐΖ/8ΪΟΖ OAV 6S
Figure imgf000060_0001
608^00/8ΐΟΖΗΜ/Χ3<Ι εΐ69ΐΖ/8ΪΟΖ OAV
Figure imgf000061_0001
608^00/8ΐΟΖΗΜ/Χ3<Ι εΐ69ΐΖ/8ΪΟΖ OAV
Figure imgf000062_0001
608^00/8ΐΟΖΗΜ/Χ3<Ι εΐ69ΐΖ/8ΪΟΖ OAV Z9
Figure imgf000063_0001
608^00/8ΐΟΖΗΜ/Χ3<Ι εΐ69ΐΖ/8ΪΟΖ OAV £9
Figure imgf000064_0001
608^00/8ΐΟΖΗΜ/Χ3<Ι εΐ69ΐΖ/8ΪΟΖ OAV
Figure imgf000065_0001
608^00/8ΐΟΖΗΜ/Χ3<Ι εΐ69ΐΖ/8ΪΟΖ OAV S9
Figure imgf000066_0001
608^00/8ΐΟΖΗΜ/Χ3<Ι εΐ69ΐΖ/8ΪΟΖ OAV
Figure imgf000067_0001
608^00/8ΐΟΖΗΜ/Χ3<Ι εΐ69ΐΖ/8ΪΟΖ OAV
Figure imgf000068_0001
608^00/8ΐΟΖΗΜ/Χ3<Ι εΐ69ΐΖ/8ΪΟΖ OAV 89
Figure imgf000069_0001
608^00/8ΐΟΖΗΜ/Χ3<Ι εΐ69ΐΖ/8ΪΟΖ OAV
Figure imgf000070_0001
^00/8ΐΟΖΗΜ/Χ3<Ι εΐ69ΐΖ/8ΪΟΖ OAV 01
Figure imgf000071_0001
^00/8ΐΟΖΗΜ/Χ3<Ι εΐ69ΐΖ/8ΪΟΖ OAV
Figure imgf000072_0001
608^00/8ΐΟΖΗΜ/Χ3<Ι εΐ69ΐΖ/8ΪΟΖ OAV ZL
Figure imgf000073_0001
608^00/8ΐΟΖΗΜ/Χ3<Ι εΐ69ΐΖ/8ΪΟΖ OAV
Figure imgf000074_0001
Figure imgf000074_0002
608^00/8ΐΟΖΗΜ/Χ3<Ι εΐ69ΐΖ/8ΪΟΖ OAV
Figure imgf000075_0001
608^00/8ΐΟΖΗΜ/Χ3<Ι εΐ69ΐΖ/8ΪΟΖ OAV
Figure imgf000076_0001
Figure imgf000076_0002
Figure imgf000076_0003
【청구항 9】
제 1 전극; 상기 제 1 전극과 대향하여 구비된 제 2 전극; 및 상기 제 1 전극과 상기 게 2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 제 1항 내지 제 8항 중 어느 하나의 항에 따른 화합물을 포함하는 것인, 유기 발광 소자.
PCT/KR2018/004809 2017-05-22 2018-04-25 신규한 헤테로고리 화합물 및 이를 이용한 유기발광 소자 WO2018216913A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880004751.7A CN110023314B (zh) 2017-05-22 2018-04-25 新型杂环化合物及利用其的有机发光器件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20170063093 2017-05-22
KR10-2017-0063093 2017-05-22

Publications (1)

Publication Number Publication Date
WO2018216913A1 true WO2018216913A1 (ko) 2018-11-29

Family

ID=64395702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004809 WO2018216913A1 (ko) 2017-05-22 2018-04-25 신규한 헤테로고리 화합물 및 이를 이용한 유기발광 소자

Country Status (3)

Country Link
KR (1) KR102064992B1 (ko)
CN (1) CN110023314B (ko)
WO (1) WO2018216913A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102475855B1 (ko) * 2019-02-15 2022-12-07 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
KR102633124B1 (ko) * 2019-10-07 2024-02-01 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
KR102633769B1 (ko) * 2019-10-18 2024-02-02 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자
KR102639657B1 (ko) * 2019-10-18 2024-02-21 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자
KR102633801B1 (ko) * 2019-10-23 2024-02-02 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
KR102427162B1 (ko) * 2019-11-11 2022-07-29 주식회사 엘지화학 유기 발광 소자
WO2021206502A1 (ko) * 2020-04-09 2021-10-14 주식회사 엘지화학 유기 발광 소자

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110198571A1 (en) * 2010-02-12 2011-08-18 Industrial Technology Research Institute Organic compound and organic electroluminescence device employing the same
CN104342120A (zh) * 2013-08-05 2015-02-11 海洋王照明科技股份有限公司 一种有机半导体材料、制备方法和电致发光器件
KR20160123453A (ko) * 2015-04-15 2016-10-26 (주)위델소재 포스핀 옥사이드 유도체 화합물 및 이를 이용한 유기전계 발광소자
KR20170032414A (ko) * 2014-07-21 2017-03-22 메르크 파텐트 게엠베하 전자 소자용 재료
KR20170038748A (ko) * 2015-09-30 2017-04-07 주식회사 엘지화학 스피로형 화합물 및 이를 포함하는 유기 발광 소자

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1791928B1 (en) * 2004-09-24 2012-01-11 LG Chemical Co. Ltd New compound and organic light emitting device using the same (7)
KR101580357B1 (ko) * 2012-06-18 2015-12-24 주식회사 엘지화학 함질소 헤테로환 화합물 및 이를 포함한 유기 전자소자
WO2014058123A1 (ko) * 2012-10-08 2014-04-17 제일모직 주식회사 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110198571A1 (en) * 2010-02-12 2011-08-18 Industrial Technology Research Institute Organic compound and organic electroluminescence device employing the same
CN104342120A (zh) * 2013-08-05 2015-02-11 海洋王照明科技股份有限公司 一种有机半导体材料、制备方法和电致发光器件
KR20170032414A (ko) * 2014-07-21 2017-03-22 메르크 파텐트 게엠베하 전자 소자용 재료
KR20160123453A (ko) * 2015-04-15 2016-10-26 (주)위델소재 포스핀 옥사이드 유도체 화합물 및 이를 이용한 유기전계 발광소자
KR20170038748A (ko) * 2015-09-30 2017-04-07 주식회사 엘지화학 스피로형 화합물 및 이를 포함하는 유기 발광 소자

Also Published As

Publication number Publication date
KR102064992B1 (ko) 2020-01-10
KR20180127909A (ko) 2018-11-30
CN110023314A (zh) 2019-07-16
CN110023314B (zh) 2022-02-08

Similar Documents

Publication Publication Date Title
WO2018016898A1 (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
KR102469107B1 (ko) 유기 발광 소자
WO2018216913A1 (ko) 신규한 헤테로고리 화합물 및 이를 이용한 유기발광 소자
KR102052710B1 (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
JP6801162B2 (ja) 新規なヘテロ環式化合物およびこれを利用した有機発光素子
KR102016081B1 (ko) 신규한 화합물 및 이를 포함하는 유기발광 소자
JP2020510652A (ja) 新規な化合物およびこれを用いた有機発光素子
WO2018216887A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2018216903A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
KR102064993B1 (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
KR102069310B1 (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
WO2018199466A1 (ko) 신규한 화합물 및 이를 포함하는 유기발광 소자
KR20200018322A (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기 발광 소자
WO2019093623A1 (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
WO2018225943A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2018135798A1 (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기 발광 소자
EP3747873B1 (en) Novel compound and organic light emitting diode using same
KR20200018321A (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기 발광 소자
KR20200020582A (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
KR20190122547A (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2018084426A1 (ko) 신규한 해테로 고리 화합물 및 이를 이용한 유기발광 소자
WO2018128425A1 (ko) 이리듐 착제 및 이를 이용한 유기 발광 소자
KR102064994B1 (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
KR20210039318A (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
KR20210143552A (ko) 신규한 화합물 및 이를 이용한 유기발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18806389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18806389

Country of ref document: EP

Kind code of ref document: A1