WO2018216414A1 - Molding device, and method for operating molding device - Google Patents

Molding device, and method for operating molding device Download PDF

Info

Publication number
WO2018216414A1
WO2018216414A1 PCT/JP2018/016477 JP2018016477W WO2018216414A1 WO 2018216414 A1 WO2018216414 A1 WO 2018216414A1 JP 2018016477 W JP2018016477 W JP 2018016477W WO 2018216414 A1 WO2018216414 A1 WO 2018216414A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal pipe
pipe material
gas
supply unit
gas supply
Prior art date
Application number
PCT/JP2018/016477
Other languages
French (fr)
Japanese (ja)
Inventor
公宏 野際
正之 石塚
雅之 雑賀
紀条 上野
章博 井手
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Publication of WO2018216414A1 publication Critical patent/WO2018216414A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/033Deforming tubular bodies
    • B21D26/041Means for controlling fluid parameters, e.g. pressure or temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/033Deforming tubular bodies
    • B21D26/045Closing or sealing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/16Heating or cooling

Definitions

  • the present invention relates to a molding apparatus and a method for operating the molding apparatus.
  • the molding apparatus disclosed in Patent Document 1 includes a molding die and a gas supply unit that supplies gas into the metal pipe material.
  • a metal pipe material is placed in a molding die, and the metal pipe material is expanded by supplying gas from the gas supply unit to the metal pipe material with the molding die closed. Mold into a shape corresponding to the shape of the mold.
  • the metal pipe material is energized and heated before the expansion molding is performed.
  • the inside of the metal pipe material is oxidized during energization heating. This causes a problem that a large amount of oxide scale is generated inside the metal pipe material.
  • an object of the present invention is to provide a molding apparatus and a method for operating the molding apparatus that can suppress the generation of oxide scale inside the metal pipe material during energization heating.
  • a forming apparatus is a forming apparatus that forms a metal pipe by expanding a metal pipe material, and supplies a power to the metal pipe material and a gas to the metal pipe material.
  • the gas supply unit is controlled so as to perform a replacement process for replacing the air in the metal pipe material with the inert gas by supplying an inert gas from the gas supply unit to the metal pipe material.
  • the power supply unit is controlled so that the metal pipe material is energized and heated by the power supply unit, and the inert gas is supplied from the gas supply unit to the heated metal pipe material. Controlling the gas supply unit to perform expansion molding Te.
  • the control unit arranges the gas supply unit at a position where the inert gas can be supplied to the metal pipe material, and supplies the inert gas from the gas supply unit to the metal pipe material.
  • the gas supply unit is controlled so as to perform a replacement process for replacing the air in the metal pipe with an inert gas.
  • the control unit controls the power supply unit so that the metal pipe material is energized and heated by the power supply unit at least at any timing after the replacement process and during the replacement process.
  • a control part controls a gas supply part so that an inert gas may be supplied to the metal pipe material electrically heated from the gas supply part, and expansion molding may be performed.
  • control unit controls the gas supply unit so as to perform a replacement process for replacing the air in the metal pipe material with an inert gas, and thus the metal pipe material is energized and heated by the power supply unit.
  • the metal pipe material can be prevented from oxidizing. As described above, it is possible to suppress the generation of oxide scale in the metal pipe material during energization heating.
  • an insulating part may be formed on the surface of the gas supply part. Thereby, it can suppress that electric power leaks to the component of a back
  • the forming apparatus may further include a drive unit that moves the gas supply unit forward and backward with respect to the metal pipe material, and an insulating unit may be formed between the tip of the gas supply unit and the drive unit. Thereby, it can suppress that electric power leaks to a drive part at the time of the energization heating to a metal pipe material.
  • the molding apparatus further includes a gas tank for storing a high-pressure inert gas, the gas supply unit is connected to the gas tank, and the gas supply unit receives the inert gas from the same gas tank during the replacement process and during the expansion molding. May be supplied.
  • the complication of the apparatus can be suppressed by sharing the gas tank of the inert gas used during the replacement process and the expansion molding.
  • An operation method of a forming apparatus is an operation method of a forming apparatus that forms a metal pipe by expanding a metal pipe material, and the forming apparatus supplies power to the metal pipe material.
  • a gas supply unit that supplies gas to the metal pipe material
  • the operation method includes disposing the gas supply unit at a position where an inert gas can be supplied to the metal pipe material, and from the gas supply unit to the metal pipe material.
  • the metal pipe material is replaced with the inert gas in the power supply unit at least at any timing during the replacement process. Is heated by energization, and an inert gas is supplied from the gas supply unit to the electrically heated metal pipe material to perform expansion molding.
  • the same effect as the above-described molding apparatus can be obtained.
  • the present invention it is possible to provide a molding apparatus and a method of operating the molding apparatus that can suppress the generation of oxide scale inside the metal pipe material during energization heating.
  • FIG. 1 It is a schematic block diagram which shows the shaping
  • FIG. 1 is a schematic configuration diagram of a molding apparatus according to the present embodiment.
  • a molding apparatus 10 for molding a metal pipe includes a molding die 13 including an upper die 12 and a lower die 11, and a drive mechanism 80 that moves at least one of the upper die 12 and the lower die 11.
  • the pipe holding mechanism 30 that holds the metal pipe material 14 disposed between the upper mold 12 and the lower mold 11, and the heating mechanism 50 that energizes and heats the metal pipe material 14 held by the pipe holding mechanism 30.
  • a gas supply unit 60 for supplying high-pressure gas (gas) into the heated metal pipe material 14 held between the upper mold 12 and the lower mold 11 and the metal pipe material held by the pipe holding mechanism 30 14 includes a pair of gas supply mechanisms 40 and 40 for supplying gas from the gas supply unit 60 and a water circulation mechanism 72 for forcibly cooling the molding die 13 with water, and the drive mechanism 8.
  • Driving, driving of the pipe holding mechanism 30 is configured to include the driving of the heating mechanism 50, and a control unit 120 for controlling each of the gas supply of the gas supply unit 60, a.
  • the lower mold 11 which is one of the molding dies 13 is fixed to the base 15.
  • the lower mold 11 is composed of a large steel block, and includes, for example, a rectangular cavity (concave portion) 16 on the upper surface thereof.
  • a cooling water passage 19 is formed in the lower mold 11 and is provided with a thermocouple 21 inserted from below at a substantially central position.
  • the thermocouple 21 is supported by a spring 22 so as to be movable up and down.
  • a space 11a is provided in the vicinity of the left and right ends (left and right ends in FIG. 1) of the lower mold 11, and electrodes 17 and 18 (lower portions), which are movable parts of the pipe holding mechanism 30, described later, are provided in the space 11a.
  • Side electrodes) and the like are arranged so as to be movable up and down. Then, by placing the metal pipe material 14 on the lower electrodes 17 and 18, the lower electrodes 17 and 18 are in contact with the metal pipe material 14 disposed between the upper mold 12 and the lower mold 11. To do. Thus, the lower electrodes 17 and 18 are electrically connected to the metal pipe material 14.
  • An insulating material 91 for preventing energization is provided between the lower mold 11 and the lower electrode 17 and under the lower electrode 17, and between the lower mold 11 and the lower electrode 18 and under the lower electrode 18. Each is provided. Each insulating material 91 is fixed to an advance / retreat rod 95 which is a movable portion of an actuator (not shown) constituting the pipe holding mechanism 30. This actuator is for moving the lower electrodes 17, 18 and the like up and down, and the fixed portion of the actuator is held on the base 15 side together with the lower mold 11.
  • the upper mold 12 which is the other of the molding dies 13, is fixed to a later-described slide 81 that constitutes the drive mechanism 80.
  • the upper mold 12 is composed of a large steel block, and has a cooling water passage 25 formed therein, and is provided with, for example, a rectangular cavity (recess) 24 on the lower surface thereof.
  • the cavity 24 is provided at a position facing the cavity 16 of the lower mold 11.
  • a space 12a is provided in the vicinity of the left and right ends (left and right ends in FIG. 1) of the upper mold 12 in the same manner as the lower mold 11, and a movable portion of the pipe holding mechanism 30 will be described later in the space 12a.
  • Electrodes 17 and 18 (upper electrodes) and the like are arranged so as to be movable up and down. Then, in a state where the metal pipe material 14 is placed on the lower electrodes 17 and 18, the upper electrodes 17 and 18 are arranged between the upper mold 12 and the lower mold 11 by moving downward. Contact the metal pipe material 14. Thereby, the upper electrodes 17 and 18 are electrically connected to the metal pipe material 14.
  • Insulating materials 101 for preventing energization are provided between the upper mold 12 and the upper electrode 17 and above the upper electrode 17, and between the upper mold 12 and the upper electrode 18 and above the upper electrode 18, respectively. Yes.
  • Each insulating material 101 is fixed to an advance / retreat rod 96 which is a movable portion of an actuator constituting the pipe holding mechanism 30. This actuator is for moving the upper electrodes 17, 18 and the like up and down, and the fixed portion of the actuator is held on the slide 81 side of the drive mechanism 80 together with the upper mold 12.
  • a semicircular arc-shaped groove 18a corresponding to the outer peripheral surface of the metal pipe material 14 is formed on each of the surfaces where the electrodes 18, 18 face each other (see FIG. 2).
  • the metal pipe material 14 can be placed so as to fit into the concave groove 18a.
  • a semicircular arc-shaped groove corresponding to the outer peripheral surface of the metal pipe material 14 is formed on the exposed surface where the insulating materials 91 and 101 face each other, like the groove 18a.
  • a tapered concave surface 18b is formed on the front surface of the electrode 18 (the surface in the outer direction of the mold).
  • the outer periphery of the right end portion of the metal pipe material 14 can be surrounded so as to be in close contact over the entire circumference. ing.
  • a semicircular arc-shaped groove 17a corresponding to the outer peripheral surface of the metal pipe material 14 is formed on each of the surfaces where the electrodes 17 and 17 face each other (see FIG. 2).
  • the metal pipe material 14 can be placed so as to fit into the concave groove 17a.
  • a semicircular arc-shaped groove corresponding to the outer peripheral surface of the metal pipe material 14 is formed on the exposed surface where the insulating materials 91 and 101 face each other, like the groove 18a.
  • a tapered concave surface 17b is formed on the front surface of the electrode 17 (surface in the outer direction of the mold). Therefore, when the metal pipe material 14 is sandwiched from above and below by the left portion of the pipe holding mechanism 30, the outer periphery of the left end portion of the metal pipe material 14 can be surrounded so as to be in close contact over the entire circumference. ing.
  • the drive mechanism 80 includes a slide 81 that moves the upper mold 12 so that the upper mold 12 and the lower mold 11 are aligned with each other, and a shaft 82 that generates a driving force for moving the slide 81. And a connecting rod 83 for transmitting the driving force generated by the shaft 82 to the slide 81.
  • the shaft 82 extends in the left-right direction above the slide 81 and is rotatably supported.
  • An eccentric crank 82a that protrudes from the left and right ends and extends in the left-right direction at a position away from the axis. Have.
  • the eccentric crank 82 a and a rotating shaft 81 a provided in the upper part of the slide 81 and extending in the left-right direction are connected by a connecting rod 83.
  • the height of the eccentric crank 82a is changed by controlling the rotation of the shaft 82 by the control unit 120, and the change in the position of the eccentric crank 82a is transmitted to the slide 81 via the connecting rod 83.
  • the vertical movement of the slide 81 can be controlled.
  • the swinging (rotating motion) of the connecting rod 83 that occurs when the position change of the eccentric crank 82a is transmitted to the slide 81 is absorbed by the rotating shaft 81a.
  • the shaft 82 rotates or stops according to the driving of a motor or the like controlled by the control unit 120, for example.
  • the heating mechanism (power supply unit) 50 includes a power supply source 55 and a power supply line 52 that electrically connects the power supply source 55 and the electrodes 17 and 18.
  • the power supply source 55 includes a DC power source and a switch, and in a state where the electrodes 17 and 18 are electrically connected to the metal pipe material 14, the metal pipe material 14 is energized through the power supply line 52 and the electrodes 17 and 18. It is possible.
  • the power supply line 52 is connected to the lower electrodes 17 and 18 here.
  • the direct current output from the power supply source 55 is transmitted by the power supply line 52 and input to the electrode 17.
  • the direct current passes through the metal pipe material 14 and is input to the electrode 18.
  • the direct current C is transmitted through the power supply line 52 and input to the power supply source 55.
  • each of the pair of gas supply mechanisms 40 includes a cylinder unit (drive unit) 42, a cylinder rod 43 that moves forward and backward in accordance with the operation of the cylinder unit 42, and the pipe holding mechanism 30 side of the cylinder rod 43.
  • a gas supply nozzle (gas supply unit) 44 connected to the tip.
  • the cylinder unit 42 is mounted and fixed on the block 41.
  • a tapered surface 45 is formed at the tip of the gas supply nozzle 44 so as to be tapered, and is configured to fit the tapered concave surfaces 17b and 18b of the electrodes 17 and 18 (see FIG. 2).
  • the gas supply nozzle 44 extends toward the tip from the cylinder unit 42 side, and as shown in detail in FIGS. 2A and 2B, the gas through which the high-pressure gas supplied from the gas supply unit 60 flows.
  • a passage 46 is provided.
  • the gas supply unit 60 includes a gas source 61, an accumulator 62 that stores the gas supplied by the gas source 61, a first tube 63 that extends from the accumulator 62 to the cylinder unit 42 of the gas supply mechanism 40, A pressure control valve 64 and a switching valve 65 provided in one tube 63, a second tube 67 extending from the accumulator 62 to a gas passage 46 formed in the gas supply nozzle 44, and the second tube 67
  • the pressure control valve 68 and the check valve 69 are provided.
  • the pressure control valve 64 serves to supply the cylinder unit 42 with a gas having an operating pressure adapted to the pressing force of the gas supply nozzle 44 against the metal pipe material 14.
  • the check valve 69 serves to prevent the high pressure gas from flowing back in the second tube 67.
  • the pressure control valve 68 provided in the second tube 67 supplies a gas having an operating pressure for expanding the metal pipe material 14 to the gas passage 46 of the gas supply nozzle 44 under the control of the control unit 120. Play a role.
  • the control unit 120 can supply a gas having a desired operating pressure into the metal pipe material 14 by controlling the pressure control valve 68 of the gas supply unit 60.
  • the control unit 120 acquires temperature information from the thermocouple 21 by transmitting information from (A) illustrated in FIG. 1, and controls the drive mechanism 80, the power supply source 55, and the like.
  • the water circulation mechanism 72 includes a water tank 73 that stores water, a water pump 74 that pumps up and pressurizes the water stored in the water tank 73 and sends the water to the cooling water passage 19 of the lower mold 11 and the cooling water passage 25 of the upper mold 12. It consists of a pipe 75. Although omitted, a cooling tower for lowering the water temperature and a filter for purifying water may be interposed in the pipe 75.
  • FIG. 3 is a schematic configuration diagram for explaining a characteristic part of the molding apparatus 1 according to the present embodiment.
  • FIG. 4 is an enlarged view of the gas supply nozzle 44. 3, among the components described in FIG. 1, the gas source 61, the first tube 63, the pressure control valve 64, the switching valve 65, the second tube 67, the pressure control valve 68, the gas supply mechanism 40, the metal mold A mold 13, electrodes 17 and 18, an insulating material 101, and a control unit 120 are shown.
  • an inert gas is employed as the gas supplied from the gas supply nozzle 44 to the metal pipe material 14.
  • the inert gas for example, nitrogen gas, argon gas, helium gas or the like is employed.
  • the gas source 61 is constituted by a gas tank that stores a high-pressure inert gas. Therefore, the gas supply nozzle 44 is connected to the gas tank of the gas source 61 through the second tube 67.
  • the gas supply nozzle 44 supplies a gas for a replacement process for replacing the air inside the metal pipe material 14 with an inert gas and a gas for expansion molding.
  • the replacement process is performed by the gas supply nozzle 44 supplying an inert gas to the metal pipe material 14. That is, when the inert gas is supplied into the metal pipe material 14, the concentration of the inert gas inside the metal pipe material 14 is increased, and the concentration of the inert gas is higher than that of oxygen.
  • the air which existed in the metal pipe material 14 may be discharged
  • the gas supply nozzle 44 may be provided with a communication channel that connects the metal pipe material 14 and the outside (not shown).
  • the replacement process is a process in which the gas supply nozzle 44 supplies an inert gas to the metal pipe at least before the energization heating process by the electrodes 17 and 18 is completed.
  • the replacement process may be performed before the start of the energization heating, may be performed during the energization heating, or may be performed in both.
  • the control unit 120 determines that the concentration of the inert gas in the metal pipe material 14 is equal to or higher than a predetermined value before reaching the temperature at which the oxidation of the metal pipe material 14 starts. Control is performed so that Gas supply for the gas supply nozzle expansion molding is performed after the energization heating is completed.
  • the gas supply nozzle 44 supplies an inert gas from the same gas tank at the time of replacement processing and expansion molding.
  • the gas source 61 may have a single gas tank, but may have a plurality of gas tanks.
  • the gas supply nozzle 44 supplies the inert gas at the time of replacement processing and expansion molding from one gas tank, and when the inert gas in one gas tank runs out, You may supply the inert gas at the time of substitution processing and expansion molding from another gas tank.
  • Such a state can also be said to be a situation in which the gas supply nozzle 44 supplies the inert gas from the same gas tank during the replacement process and during the expansion molding.
  • the gas supply nozzle 44 may supply an inert gas from different gas tanks at the time of replacement processing and expansion molding.
  • the gas supply nozzle 44 since the replacement process by the gas supply nozzle 44 is performed, energization heating to the metal pipe material 14 is performed in a state where the gas supply nozzle 44 is in contact with at least one of the metal pipe material 14 and the electrodes 17 and 18. (See, for example, FIG. 2). In this case, it is necessary to prevent a current from flowing through the gas supply nozzle 44 to constituent members (for example, the cylinder unit 42 and the second tube 67) on the rear stage side of the gas supply nozzle 44. Therefore, the gas supply nozzle 44 may be made of an insulating material or may have an insulating portion.
  • an insulating part 150 may be formed on the surface of the gas supply nozzle 44.
  • the insulating part 150 is formed at least on the surface of the tip of the gas supply nozzle 44, that is, the part that contacts the metal pipe material 14 or the electrodes 17, 18 during energization heating.
  • the entire surface of the gas supply nozzle 44 may be covered with the insulating portion 150.
  • the insulating unit 150 is configured by performing an insulating process for coating the gas supply nozzle 44 with an insulating material.
  • an insulating portion 151 may be formed between the tip of the gas supply nozzle 44 and the cylinder unit 42.
  • the gas supply nozzle 44 includes a tip portion 44A and a base portion 44B.
  • the tip portion 44A is formed with a tapered surface 45 and a gas passage 46.
  • the base portion 44 ⁇ / b> B has a space that guides the inert gas from the second tube 67 to the gas passage 46.
  • the insulating part 151 is formed between the tip part 44A and the base part 44B.
  • the insulating portion 151 may be provided anywhere as long as it is located between the tip of the gas supply nozzle 44 and the cylinder unit 42.
  • the cylinder unit 42 drives the gas supply nozzle 44 through the cylinder rod 43 so as to advance and retreat with respect to the metal pipe material 14.
  • an internal space is formed in the cylinder unit 42, and the internal space is partitioned by a member 43 a connected to the cylinder rod 43.
  • One of the partitioned internal spaces (on the gas supply nozzle 44 side) is connected to the branch tube 63 a of the first tube 63, and the other of the internal spaces is connected to the branch tube 63 b of the first tube 63. Therefore, when pushing out the cylinder unit 42, gas is supplied from the branch tube 63b, and when pulling the cylinder unit 42, gas is supplied from the branch tube 63a.
  • the control unit 120 includes a processor, a memory, a storage, a communication interface, and a user interface, and is configured as a general computer.
  • the processor is a computing unit such as a CPU (Central Processing Unit).
  • the memory is a storage medium such as ROM (Read Only Memory) or RAM (Random Access Memory).
  • the storage is a storage medium such as an HDD (Hard Disk Drive).
  • the control unit 120 includes a gas supply control unit 121, a heating control unit 122, and a drive control unit 123.
  • the gas supply control unit 121 controls the supply of gas to the metal pipe material 14 by the gas supply nozzle 44 by controlling the pressure control valve 68.
  • the gas supply control unit 121 supplies gas from the gas supply nozzle 44 at the timing of performing the above-described replacement process and the timing of performing expansion molding.
  • the heating control unit 122 performs energization heating of the metal pipe material 14 by supplying electric power to the electrodes 17 and 18.
  • the drive controller 123 controls the cylinder unit 42 by controlling the pressure control valve 64 and the switching valve 65.
  • the drive control unit 123 controls the switching valve 65 so as to supply the inert gas from either the branch tube 63a or the branch tube 63b according to the advance / retreat direction of the gas supply nozzle 44. Further, the drive control unit 123 controls the pressure control valve 64 to supply an inert gas to any one of the branch tubes 63a and 63b.
  • a method for forming a metal pipe using the forming apparatus 10 will be described.
  • the metal pipe material 14 is placed (input) on the electrodes 17 and 18 provided on the lower mold 11 side using, for example, a robot arm or the like. Since the grooves 17a and 18a are formed in the electrodes 17 and 18, the metal pipe material 14 is positioned by the grooves 17a and 18a.
  • the control unit 120 controls the drive mechanism 80 and the pipe holding mechanism 30 to cause the pipe holding mechanism 30 to hold the metal pipe material 14 (FIG. 5: Step S10). Specifically, the upper die 12 and the upper electrodes 17 and 18 held on the slide 81 side by the driving mechanism 80 move to the lower die 11 side, and the upper electrode 17 and the upper electrode 17 included in the pipe holding mechanism 30 are moved. By actuating an actuator that allows the 18 and the like and the lower electrodes 17 and 18 to move forward and backward, the vicinity of both ends of the metal pipe material 14 is sandwiched by the pipe holding mechanism 30 from above and below.
  • This clamping is caused to closely adhere to the entire circumference of the metal pipe material 14 near both ends due to the presence of the concave grooves 17a and 18a formed in the electrodes 17 and 18 and the concave grooves formed in the insulating materials 91 and 101. It will be clamped in such a manner.
  • the end of the metal pipe material 14 on the electrode 18 side has a groove 18 a and a taper concave surface 18 b of the electrode 18 in the extending direction of the metal pipe material 14. It protrudes to the gas supply nozzle 44 side from the boundary. Similarly, the end of the metal pipe material 14 on the electrode 17 side protrudes closer to the gas supply nozzle 44 than the boundary between the groove 17 a and the tapered concave surface 17 b of the electrode 17 in the extending direction of the metal pipe material 14. .
  • the lower surfaces of the upper electrodes 17 and 18 and the upper surfaces of the lower electrodes 17 and 18 are in contact with each other.
  • the configuration is not limited to the configuration in which the metal pipe material 14 is in close contact with the entire periphery of the both ends, and a configuration in which the electrodes 17 and 18 are in contact with part of the metal pipe material 14 in the circumferential direction may be employed.
  • the controller 120 operates the cylinder unit 42 of the gas supply mechanism 40 to advance the gas supply nozzle 44 and insert and seal the gas supply nozzle 44 at both ends of the metal pipe material 14 (FIG. 5 :).
  • Step S20 the control part 120 can arrange
  • FIG. 2B the gas supply nozzle 44 is pressed against the end of the metal pipe material 14 on the electrode 18 side, so that the boundary between the groove 18 a and the taper concave surface 18 b of the electrode 18 is reached.
  • the portion protruding toward the gas supply nozzle 44 is deformed into a funnel shape so as to follow the tapered concave surface 18b.
  • the gas supply nozzle 44 is pressed against the end portion of the metal pipe material 14 on the electrode 17 side, a portion protruding to the gas supply nozzle 44 side from the boundary between the concave groove 17a and the tapered concave surface 17b of the electrode 17.
  • it deforms in a funnel shape along the tapered concave surface 17b.
  • control unit 120 supplies an inert gas from the gas supply nozzle 44 to the inside of the metal pipe material 14 (FIG. 5: Step S30). Thereby, the control unit 120 replaces the air inside the metal pipe material 14 with an inert gas.
  • the control unit 120 heats the metal pipe material 14 by controlling the heating mechanism 50 (FIG. 5: Step S40). Specifically, the control unit 120 controls the heating mechanism 50 that functions as a power supply unit and supplies power to the metal pipe material 14. Then, the power transmitted to the lower electrodes 17 and 18 through the power supply line 52 is supplied to the upper electrodes 17 and 18 and the metal pipe material 14 sandwiching the metal pipe material 14, and Due to the existing resistance, the metal pipe material 14 itself generates heat due to Joule heat. That is, the metal pipe material 14 is in an electrically heated state.
  • the energization heating in S40 may be performed after the supply of the inert gas in S30 is completed, or may be performed before the supply of the inert gas in S30 is completed.
  • control unit 120 controls the drive mechanism 80 to close the molding die 13 with respect to the heated metal pipe material 14 (FIG. 5: Step S50).
  • the cavity 16 of the lower mold 11 and the cavity 24 of the upper mold 12 are combined, and the metal pipe material 14 is disposed and sealed in the cavity portion between the lower mold 11 and the upper mold 12.
  • control unit 120 supplies an inert gas from the gas supply nozzle 44 to the inside of the metal pipe material 14 (FIG. 5: Step S60).
  • the metal pipe material 14 expands and contacts the molding die 13.
  • the metal pipe material 14 softened by heating is molded so as to follow the shape of the cavity portion of the molding die 13.
  • austenite transforms to martensite (hereinafter, austenite transforms to martensite is referred to as martensite transformation).
  • cooling may be performed by supplying a cooling medium into the cavity 24, for example, instead of or in addition to mold cooling.
  • the metal pipe material 14 is brought into contact with the mold (upper mold 12 and lower mold 11) until the temperature at which martensitic transformation begins, and then the mold is opened and the cooling medium (cooling gas) is used as the metal pipe material.
  • the martensitic transformation may be generated by spraying on 14.
  • the metal pipe material 14 is blow-molded and then cooled. Then, next, the control part 120 opens the shaping die 13 by controlling the drive mechanism 80 (FIG. 5: step S70). By performing mold opening, for example, a metal pipe having a substantially rectangular cylindrical main body is obtained.
  • the control unit 120 arranges the gas supply nozzle 44 at a position where the inert gas can be supplied to the metal pipe material 14, and the inert gas from the gas supply nozzle 44 to the metal pipe material 14.
  • the gas supply unit 60 is controlled so as to perform a replacement process for replacing the air in the metal pipe material 14 with an inert gas.
  • the control unit 120 controls the heating mechanism 50 so that the metal pipe is energized and heated by the heating mechanism 50 that functions as a power supply unit.
  • the control unit 120 controls the gas supply unit 60 so as to supply the inert gas from the gas supply nozzle 44 to the electrically heated metal pipe material 14 to perform expansion molding.
  • control unit 120 controls the gas supply unit 60 so as to perform a replacement process of replacing the air in the metal pipe material 14 with an inert gas, and thus the metal pipe is heated by the heating mechanism 50 that functions as a power supply unit.
  • the metal pipe material 14 becomes high temperature by energizing and heating the material 14, it is possible to suppress the metal pipe material 14 from being oxidized. As described above, it is possible to suppress the generation of oxide scale in the metal pipe material 14 during energization heating.
  • an insulating part 150 may be formed on the surface of the gas supply nozzle 44. Thereby, it is possible to prevent power from leaking to the constituent elements on the rear side of the gas supply nozzle 44 when the metal pipe material 14 is energized and heated.
  • the molding apparatus 1 further includes a cylinder unit 42 that moves the gas supply nozzle 44 forward and backward relative to the metal pipe material 14, and an insulating portion 151 is formed between the tip of the gas supply nozzle 44 and the cylinder unit 42. Good. Thereby, it is possible to prevent power from leaking to the cylinder unit 42 during energization heating of the metal pipe material 14.
  • the molding apparatus 1 further includes a gas tank (gas source 61) for storing a high-pressure inert gas, the gas supply nozzle 44 is connected to the gas tank, and the gas supply nozzle 44 is used at the time of replacement processing and expansion molding.
  • Inert gas may be supplied from the same gas tank.
  • An operation method of the forming apparatus 1 is an operation method of the forming apparatus 1 that expands the metal pipe material 14 to form a metal pipe, and the forming apparatus 1 supplies power to the metal pipe material 14.
  • a heating mechanism 50 and a gas supply unit 60 for supplying a gas to the metal pipe material 14 are provided.
  • the operation method is such that the gas supply unit 60 is disposed at a position where an inert gas can be supplied to the metal pipe material 14 and the gas is supplied.
  • an inert gas from the supply unit 60 to the metal pipe material 14 By supplying an inert gas from the supply unit 60 to the metal pipe material 14, a replacement process is performed to replace the air in the metal pipe material 14 with an inert gas.
  • the metal pipe material 14 is energized and heated by the heating mechanism 50, and the inert gas is supplied from the gas supply unit 60 to the energized and heated metal pipe material 14 to expand. Carry out the form.
  • the same effect as the above-described molding apparatus 1 can be obtained.
  • the present invention is not limited to the embodiment described above.
  • the overall configuration of the molding apparatus is not limited to that shown in FIG. 1 and can be changed as appropriate without departing from the spirit of the invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)

Abstract

This molding device molds a metal pipe by causing a metal pipe material to expand, and is provided with an electricity supply unit which supplies electric power to the metal pipe material, a gas supply unit which supplies a gas to the metal pipe material, and a control unit which controls the electricity supply unit and the gas supply unit, wherein the control unit: controls the gas supply unit in such a way as to dispose the gas supply unit in a position in which an inert gas can be supplied to the metal pipe material; controls the gas supply unit in such a way as to perform a replacement process to replace air inside the metal pipe material with the inert gas by supplying the inert gas to the metal pipe material from the gas supply unit; controls the electricity supply unit in such a way that the metal pipe material is electrically heated by the electricity supply unit with a timing that is after the replacement process and/or during the replacement process; and controls the gas supply unit in such a way as to perform expansion molding by supplying the inert gas from the gas supply unit to the electrically heated metal pipe material.

Description

成形装置、及び成形装置の動作方法Molding apparatus and method of operating molding apparatus
 本発明は、成形装置、及び成形装置の動作方法に関する。 The present invention relates to a molding apparatus and a method for operating the molding apparatus.
 従来、金属パイプを成形金型により型閉してブロー成形する成形装置が知られている。例えば、特許文献1に開示された成形装置は、成形金型と、金属パイプ材料内に気体を供給する気体供給部と、を備えている。この成形装置では、金属パイプ材料を成形金型内に配置し、成形金型を型閉した状態で金属パイプ材料に気体供給部から気体を供給して膨張させることによって、金属パイプ材料を成形金型の形状に対応する形状に成形する。 Conventionally, a molding apparatus that performs blow molding by closing a metal pipe with a molding die is known. For example, the molding apparatus disclosed in Patent Document 1 includes a molding die and a gas supply unit that supplies gas into the metal pipe material. In this molding apparatus, a metal pipe material is placed in a molding die, and the metal pipe material is expanded by supplying gas from the gas supply unit to the metal pipe material with the molding die closed. Mold into a shape corresponding to the shape of the mold.
特開2015-112608号公報Japanese Patent Laying-Open No. 2015-112608
 従来の成形装置では、膨張成形を行う前段階に、金属パイプ材料の通電加熱を行っている。しかしながら、金属パイプ材料内には空気が存在しているため、通電加熱時に金属パイプ材料の内部が酸化する。これによって金属パイプ材料の内部に酸化スケールが多く生成されるという問題がある。 In the conventional molding apparatus, the metal pipe material is energized and heated before the expansion molding is performed. However, since air exists in the metal pipe material, the inside of the metal pipe material is oxidized during energization heating. This causes a problem that a large amount of oxide scale is generated inside the metal pipe material.
 そこで、本発明は、通電加熱時に金属パイプ材料の内部に酸化スケールが生成されることを抑制することができる成形装置、及び成形装置の動作方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a molding apparatus and a method for operating the molding apparatus that can suppress the generation of oxide scale inside the metal pipe material during energization heating.
 本発明の一形態に係る成形装置は、金属パイプ材料を膨張させて金属パイプを成形する成形装置であって、金属パイプ材料に電力を供給する電力供給部と、金属パイプ材料に気体を供給する気体供給部と、電力供給部及び気体供給部を制御する制御部と、を備え、制御部は、金属パイプ材料へ不活性ガスを供給可能な位置へ気体供給部を配置するように気体供給部を制御し、気体供給部から金属パイプ材料へ不活性ガスを供給することで金属パイプ材料内の空気を不活性ガスへ置換する置換処理を行うように気体供給部を制御し、置換処理の後、及び置換処理中の少なくとも何れかのタイミングで、電力供給部で金属パイプ材料を通電加熱するように電力供給部を制御し、気体供給部から通電加熱された金属パイプ材料へ不活性ガスを供給して膨張成形を行うように気体供給部を制御する。 A forming apparatus according to an aspect of the present invention is a forming apparatus that forms a metal pipe by expanding a metal pipe material, and supplies a power to the metal pipe material and a gas to the metal pipe material. A gas supply unit, and a control unit that controls the power supply unit and the gas supply unit, wherein the control unit arranges the gas supply unit at a position where an inert gas can be supplied to the metal pipe material. After the replacement process, the gas supply unit is controlled so as to perform a replacement process for replacing the air in the metal pipe material with the inert gas by supplying an inert gas from the gas supply unit to the metal pipe material. In addition, at least at any timing during the replacement process, the power supply unit is controlled so that the metal pipe material is energized and heated by the power supply unit, and the inert gas is supplied from the gas supply unit to the heated metal pipe material. Controlling the gas supply unit to perform expansion molding Te.
 本発明の一形態に係る成形装置において、制御部は、金属パイプ材料へ不活性ガスを供給可能な位置へ気体供給部を配置し、気体供給部から金属パイプ材料へ不活性ガスを供給することで金属パイプ内の空気を不活性ガスへ置換する置換処理を行うように気体供給部を制御する。また、制御部は、置換処理の後、及び置換処理中の少なくとも何れかのタイミングで、電力供給部で金属パイプ材料を通電加熱するように電力供給部を制御する。また、制御部は、気体供給部から通電加熱された金属パイプ材料へ不活性ガスを供給して膨張成形を行うように気体供給部を制御する。このように、制御部が、金属パイプ材料内の空気を不活性ガスへ置換する置換処理を行うように気体供給部を制御するため、電力供給部で金属パイプ材料を通電加熱することで金属パイプ材料が高温となる際に、金属パイプ材料が酸化することを抑制できる。以上により、通電加熱時に金属パイプ材料の内部に酸化スケールが生成されることを抑制することができる。 In the molding apparatus according to one aspect of the present invention, the control unit arranges the gas supply unit at a position where the inert gas can be supplied to the metal pipe material, and supplies the inert gas from the gas supply unit to the metal pipe material. The gas supply unit is controlled so as to perform a replacement process for replacing the air in the metal pipe with an inert gas. In addition, the control unit controls the power supply unit so that the metal pipe material is energized and heated by the power supply unit at least at any timing after the replacement process and during the replacement process. Moreover, a control part controls a gas supply part so that an inert gas may be supplied to the metal pipe material electrically heated from the gas supply part, and expansion molding may be performed. In this way, the control unit controls the gas supply unit so as to perform a replacement process for replacing the air in the metal pipe material with an inert gas, and thus the metal pipe material is energized and heated by the power supply unit. When the material reaches a high temperature, the metal pipe material can be prevented from oxidizing. As described above, it is possible to suppress the generation of oxide scale in the metal pipe material during energization heating.
 成形装置において、気体供給部の表面には、絶縁部が形成されていてよい。これにより、金属パイプ材料への通電加熱時に、気体供給部よりも後段側の構成要素に電力が漏れることを抑制できる。 In the molding apparatus, an insulating part may be formed on the surface of the gas supply part. Thereby, it can suppress that electric power leaks to the component of a back | latter stage rather than a gas supply part at the time of the energization heating to a metal pipe material.
 成形装置において、気体供給部を金属パイプ材料に対して進退させる駆動部を更に備え、気体供給部の先端と、駆動部との間には絶縁部が形成されていてよい。これにより、金属パイプ材料への通電加熱時に、駆動部に電力が漏れることを抑制できる。 The forming apparatus may further include a drive unit that moves the gas supply unit forward and backward with respect to the metal pipe material, and an insulating unit may be formed between the tip of the gas supply unit and the drive unit. Thereby, it can suppress that electric power leaks to a drive part at the time of the energization heating to a metal pipe material.
 成形装置において、高圧の不活性ガスを貯留するガスタンクを更に備え、気体供給部は、ガスタンクと接続され、気体供給部は、置換処理時と膨張成形時とで、同一のガスタンクから不活性ガスを供給してよい。このように、置換処理時と膨張成形時に用いられる不活性ガスのガスタンクを共有することで、装置の複雑化を抑制できる。 The molding apparatus further includes a gas tank for storing a high-pressure inert gas, the gas supply unit is connected to the gas tank, and the gas supply unit receives the inert gas from the same gas tank during the replacement process and during the expansion molding. May be supplied. Thus, the complication of the apparatus can be suppressed by sharing the gas tank of the inert gas used during the replacement process and the expansion molding.
 本発明の一形態に係る成形装置の動作方法は、金属パイプ材料を膨張させて金属パイプを成形する成形装置の動作方法であって、成形装置は、金属パイプ材料に電力を供給する電力供給部と、金属パイプ材料に気体を供給する気体供給部と、を備え、動作方法は、金属パイプ材料へ不活性ガスを供給可能な位置へ気体供給部を配置し、気体供給部から金属パイプ材料へ不活性ガスを供給することで金属パイプ材料内の空気を不活性ガスへ置換する置換処理を行い、置換処理の後、及び置換処理中の少なくとも何れかのタイミングで、電力供給部で金属パイプ材料を通電加熱し、気体供給部から通電加熱された金属パイプ材料へ不活性ガスを供給して膨張成形を行う。 An operation method of a forming apparatus according to an aspect of the present invention is an operation method of a forming apparatus that forms a metal pipe by expanding a metal pipe material, and the forming apparatus supplies power to the metal pipe material. And a gas supply unit that supplies gas to the metal pipe material, and the operation method includes disposing the gas supply unit at a position where an inert gas can be supplied to the metal pipe material, and from the gas supply unit to the metal pipe material. The metal pipe material is replaced with the inert gas in the power supply unit at least at any timing during the replacement process. Is heated by energization, and an inert gas is supplied from the gas supply unit to the electrically heated metal pipe material to perform expansion molding.
 本発明の一形態に係る成形装置の動作方法によれば、上述の成形装置と同趣旨の効果を得ることができる。 According to the operation method of the molding apparatus according to one aspect of the present invention, the same effect as the above-described molding apparatus can be obtained.
 本発明によれば、通電加熱時に金属パイプ材料の内部に酸化スケールが生成されることを抑制することができる成形装置、及び成形装置の動作方法を提供できる。 According to the present invention, it is possible to provide a molding apparatus and a method of operating the molding apparatus that can suppress the generation of oxide scale inside the metal pipe material during energization heating.
本発明の実施形態に係る成形装置を示す概略構成図である。It is a schematic block diagram which shows the shaping | molding apparatus which concerns on embodiment of this invention. 電極周辺の拡大図であって、(a)は電極が金属パイプ材料を保持した状態を示す図、(b)は電極に気体供給ノズルを押し付けた状態を示す図、(c)は電極の正面図である。It is an enlarged view of the periphery of the electrode, (a) is a view showing a state where the electrode holds the metal pipe material, (b) is a view showing a state where the gas supply nozzle is pressed against the electrode, (c) is a front view of the electrode FIG. 本実施形態に係る成形装置の主要部を示す概略断面図である。It is a schematic sectional drawing which shows the principal part of the shaping | molding apparatus which concerns on this embodiment. 気体供給ノズル及びシリンダユニットの拡大断面図である。It is an expanded sectional view of a gas supply nozzle and a cylinder unit. 成形装置を制御する制御部による制御処理の内容を示すフローチャートである。It is a flowchart which shows the content of the control processing by the control part which controls a shaping | molding apparatus.
 以下、本発明による成形装置の好適な実施形態について図面を参照しながら説明する。なお、各図において同一部分又は相当部分には同一符号を付し、重複する説明は省略する。 Hereinafter, preferred embodiments of the molding apparatus according to the present invention will be described with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same part or an equivalent part, and the overlapping description is abbreviate | omitted.
 〈成形装置の構成〉
 図1は、本実施形態に係る成形装置の概略構成図である。図1に示されるように、金属パイプを成形する成形装置10は、上型12及び下型11からなる成形金型13と、上型12及び下型11の少なくとも一方を移動させる駆動機構80と、上型12と下型11との間に配置される金属パイプ材料14を保持するパイプ保持機構30と、パイプ保持機構30で保持されている金属パイプ材料14に通電して加熱する加熱機構50と、上型12及び下型11の間に保持され加熱された金属パイプ材料14内に高圧ガス(気体)を供給するための気体供給ユニット60と、パイプ保持機構30で保持された金属パイプ材料14内に気体供給ユニット60からの気体を供給するための一対の気体供給機構40,40と、成形金型13を強制的に水冷する水循環機構72とを備えると共に、上記駆動機構80の駆動、上記パイプ保持機構30の駆動、上記加熱機構50の駆動、及び上記気体供給ユニット60の気体供給をそれぞれ制御する制御部120と、を備えて構成されている。
<Configuration of molding equipment>
FIG. 1 is a schematic configuration diagram of a molding apparatus according to the present embodiment. As shown in FIG. 1, a molding apparatus 10 for molding a metal pipe includes a molding die 13 including an upper die 12 and a lower die 11, and a drive mechanism 80 that moves at least one of the upper die 12 and the lower die 11. The pipe holding mechanism 30 that holds the metal pipe material 14 disposed between the upper mold 12 and the lower mold 11, and the heating mechanism 50 that energizes and heats the metal pipe material 14 held by the pipe holding mechanism 30. A gas supply unit 60 for supplying high-pressure gas (gas) into the heated metal pipe material 14 held between the upper mold 12 and the lower mold 11 and the metal pipe material held by the pipe holding mechanism 30 14 includes a pair of gas supply mechanisms 40 and 40 for supplying gas from the gas supply unit 60 and a water circulation mechanism 72 for forcibly cooling the molding die 13 with water, and the drive mechanism 8. Driving, driving of the pipe holding mechanism 30 is configured to include the driving of the heating mechanism 50, and a control unit 120 for controlling each of the gas supply of the gas supply unit 60, a.
 成形金型13の一方である下型11は、基台15に固定されている。下型11は、大きな鋼鉄製ブロックで構成され、その上面に例えば矩形状のキャビティ(凹部)16を備える。下型11には冷却水通路19が形成され、略中央に下から差し込まれた熱電対21を備えている。この熱電対21はスプリング22により上下移動自在に支持されている。 The lower mold 11 which is one of the molding dies 13 is fixed to the base 15. The lower mold 11 is composed of a large steel block, and includes, for example, a rectangular cavity (concave portion) 16 on the upper surface thereof. A cooling water passage 19 is formed in the lower mold 11 and is provided with a thermocouple 21 inserted from below at a substantially central position. The thermocouple 21 is supported by a spring 22 so as to be movable up and down.
 更に、下型11の左右端(図1における左右端)近傍にはスペース11aが設けられており、当該スペース11a内には、パイプ保持機構30の可動部である後述する電極17,18(下側電極)等が、上下に進退動可能に配置されている。そして、下側電極17,18上に金属パイプ材料14が載置されることで、下側電極17,18は、上型12と下型11との間に配置される金属パイプ材料14に接触する。これにより、下側電極17,18は金属パイプ材料14に電気的に接続される。 Further, a space 11a is provided in the vicinity of the left and right ends (left and right ends in FIG. 1) of the lower mold 11, and electrodes 17 and 18 (lower portions), which are movable parts of the pipe holding mechanism 30, described later, are provided in the space 11a. Side electrodes) and the like are arranged so as to be movable up and down. Then, by placing the metal pipe material 14 on the lower electrodes 17 and 18, the lower electrodes 17 and 18 are in contact with the metal pipe material 14 disposed between the upper mold 12 and the lower mold 11. To do. Thus, the lower electrodes 17 and 18 are electrically connected to the metal pipe material 14.
 下型11と下側電極17との間及び下側電極17の下部、並びに下型11と下側電極18との間及び下側電極18の下部には、通電を防ぐための絶縁材91がそれぞれ設けられている。それぞれの絶縁材91は、パイプ保持機構30を構成するアクチュエータ(不図示)の可動部である進退ロッド95に固定されている。このアクチュエータは、下側電極17,18等を上下動させるためのものであり、アクチュエータの固定部は、下型11と共に基台15側に保持されている。 An insulating material 91 for preventing energization is provided between the lower mold 11 and the lower electrode 17 and under the lower electrode 17, and between the lower mold 11 and the lower electrode 18 and under the lower electrode 18. Each is provided. Each insulating material 91 is fixed to an advance / retreat rod 95 which is a movable portion of an actuator (not shown) constituting the pipe holding mechanism 30. This actuator is for moving the lower electrodes 17, 18 and the like up and down, and the fixed portion of the actuator is held on the base 15 side together with the lower mold 11.
 成形金型13の他方である上型12は、駆動機構80を構成する後述のスライド81に固定されている。上型12は、大きな鋼鉄製ブロックで構成され、内部に冷却水通路25が形成されると共に、その下面に例えば矩形状のキャビティ(凹部)24を備える。このキャビティ24は、下型11のキャビティ16に対向する位置に設けられる。 The upper mold 12, which is the other of the molding dies 13, is fixed to a later-described slide 81 that constitutes the drive mechanism 80. The upper mold 12 is composed of a large steel block, and has a cooling water passage 25 formed therein, and is provided with, for example, a rectangular cavity (recess) 24 on the lower surface thereof. The cavity 24 is provided at a position facing the cavity 16 of the lower mold 11.
 上型12の左右端(図1における左右端)近傍には、下型11と同様に、スペース12aが設けられており、当該スペース12a内には、パイプ保持機構30の可動部である後述する電極17,18(上側電極)等が、上下に進退動可能に配置されている。そして、下側電極17,18上に金属パイプ材料14が載置された状態において、上側電極17,18は、下方に移動することで、上型12と下型11との間に配置された金属パイプ材料14に接触する。これにより、上側電極17,18は金属パイプ材料14に電気的に接続される。 A space 12a is provided in the vicinity of the left and right ends (left and right ends in FIG. 1) of the upper mold 12 in the same manner as the lower mold 11, and a movable portion of the pipe holding mechanism 30 will be described later in the space 12a. Electrodes 17 and 18 (upper electrodes) and the like are arranged so as to be movable up and down. Then, in a state where the metal pipe material 14 is placed on the lower electrodes 17 and 18, the upper electrodes 17 and 18 are arranged between the upper mold 12 and the lower mold 11 by moving downward. Contact the metal pipe material 14. Thereby, the upper electrodes 17 and 18 are electrically connected to the metal pipe material 14.
 上型12と上側電極17との間及び上側電極17の上部、並びに上型12と上側電極18との間及び上側電極18の上部には、通電を防ぐための絶縁材101がそれぞれ設けられている。それぞれの絶縁材101は、パイプ保持機構30を構成するアクチュエータの可動部である進退ロッド96に固定されている。このアクチュエータは、上側電極17,18等を上下動させるためのものであり、アクチュエータの固定部は、上型12と共に駆動機構80のスライド81側に保持されている。 Insulating materials 101 for preventing energization are provided between the upper mold 12 and the upper electrode 17 and above the upper electrode 17, and between the upper mold 12 and the upper electrode 18 and above the upper electrode 18, respectively. Yes. Each insulating material 101 is fixed to an advance / retreat rod 96 which is a movable portion of an actuator constituting the pipe holding mechanism 30. This actuator is for moving the upper electrodes 17, 18 and the like up and down, and the fixed portion of the actuator is held on the slide 81 side of the drive mechanism 80 together with the upper mold 12.
 パイプ保持機構30の右側部分において、電極18,18が互いに対向する面のそれぞれには、金属パイプ材料14の外周面に対応した半円弧状の凹溝18aが形成されていて(図2参照)、当該凹溝18aの部分に丁度金属パイプ材料14が嵌り込むように載置可能とされている。パイプ保持機構30の右側部分において、絶縁材91,101が互いに対向する露出面には、上記凹溝18aと同様に、金属パイプ材料14の外周面に対応した半円弧状の凹溝が形成されている。また、電極18の正面(金型の外側方向の面)には、凹溝18aに向って周囲がテーパー状に傾斜して窪んだテーパー凹面18bが形成されている。よって、パイプ保持機構30の右側部分で金属パイプ材料14を上下方向から挟持すると、丁度金属パイプ材料14の右側端部の外周を全周に渡って密着するように取り囲むことができるように構成されている。 In the right part of the pipe holding mechanism 30, a semicircular arc-shaped groove 18a corresponding to the outer peripheral surface of the metal pipe material 14 is formed on each of the surfaces where the electrodes 18, 18 face each other (see FIG. 2). The metal pipe material 14 can be placed so as to fit into the concave groove 18a. In the right portion of the pipe holding mechanism 30, a semicircular arc-shaped groove corresponding to the outer peripheral surface of the metal pipe material 14 is formed on the exposed surface where the insulating materials 91 and 101 face each other, like the groove 18a. ing. Further, a tapered concave surface 18b is formed on the front surface of the electrode 18 (the surface in the outer direction of the mold). Therefore, when the metal pipe material 14 is sandwiched from above and below by the right side portion of the pipe holding mechanism 30, the outer periphery of the right end portion of the metal pipe material 14 can be surrounded so as to be in close contact over the entire circumference. ing.
 パイプ保持機構30の左側部分において、電極17,17が互いに対向する面のそれぞれには、金属パイプ材料14の外周面に対応した半円弧状の凹溝17aが形成されていて(図2参照)、当該凹溝17aの部分に丁度金属パイプ材料14が嵌り込むように載置可能とされている。パイプ保持機構30の左側部分において、絶縁材91,101が互いに対向する露出面には、上記凹溝18aと同様に、金属パイプ材料14の外周面に対応した半円弧状の凹溝が形成されている。また、電極17の正面(金型の外側方向の面)には、凹溝17aに向って周囲がテーパー状に傾斜して窪んだテーパー凹面17bが形成されている。よって、パイプ保持機構30の左側部分で金属パイプ材料14を上下方向から挟持すると、丁度金属パイプ材料14の左側端部の外周を全周に渡って密着するように取り囲むことができるように構成されている。 In the left part of the pipe holding mechanism 30, a semicircular arc-shaped groove 17a corresponding to the outer peripheral surface of the metal pipe material 14 is formed on each of the surfaces where the electrodes 17 and 17 face each other (see FIG. 2). The metal pipe material 14 can be placed so as to fit into the concave groove 17a. In the left portion of the pipe holding mechanism 30, a semicircular arc-shaped groove corresponding to the outer peripheral surface of the metal pipe material 14 is formed on the exposed surface where the insulating materials 91 and 101 face each other, like the groove 18a. ing. In addition, a tapered concave surface 17b is formed on the front surface of the electrode 17 (surface in the outer direction of the mold). Therefore, when the metal pipe material 14 is sandwiched from above and below by the left portion of the pipe holding mechanism 30, the outer periphery of the left end portion of the metal pipe material 14 can be surrounded so as to be in close contact over the entire circumference. ing.
 図1に示されるように、駆動機構80は、上型12及び下型11同士が合わさるように上型12を移動させるスライド81と、上記スライド81を移動させるための駆動力を発生するシャフト82と、該シャフト82で発生した駆動力をスライド81に伝達するためのコネクティングロッド83とを備えている。シャフト82は、スライド81上方にて左右方向に延在していると共に回転自在に支持されており、その軸心から離間した位置にて左右端から突出して左右方向に延在する偏心クランク82aを有している。この偏心クランク82aと、スライド81の上部に設けられると共に左右方向に延在している回転軸81aとは、コネクティングロッド83によって連結されている。駆動機構80では、制御部120によってシャフト82の回転を制御することにより偏心クランク82aの上下方向の高さを変化させ、この偏心クランク82aの位置変化をコネクティングロッド83を介してスライド81に伝達することにより、スライド81の上下動を制御できる。ここで、偏心クランク82aの位置変化をスライド81に伝達する際に発生するコネクティングロッド83の揺動(回転運動)は、回転軸81aによって吸収される。なお、シャフト82は、例えば制御部120によって制御されるモータ等の駆動に応じて回転又は停止する。 As shown in FIG. 1, the drive mechanism 80 includes a slide 81 that moves the upper mold 12 so that the upper mold 12 and the lower mold 11 are aligned with each other, and a shaft 82 that generates a driving force for moving the slide 81. And a connecting rod 83 for transmitting the driving force generated by the shaft 82 to the slide 81. The shaft 82 extends in the left-right direction above the slide 81 and is rotatably supported. An eccentric crank 82a that protrudes from the left and right ends and extends in the left-right direction at a position away from the axis. Have. The eccentric crank 82 a and a rotating shaft 81 a provided in the upper part of the slide 81 and extending in the left-right direction are connected by a connecting rod 83. In the drive mechanism 80, the height of the eccentric crank 82a is changed by controlling the rotation of the shaft 82 by the control unit 120, and the change in the position of the eccentric crank 82a is transmitted to the slide 81 via the connecting rod 83. Thus, the vertical movement of the slide 81 can be controlled. Here, the swinging (rotating motion) of the connecting rod 83 that occurs when the position change of the eccentric crank 82a is transmitted to the slide 81 is absorbed by the rotating shaft 81a. The shaft 82 rotates or stops according to the driving of a motor or the like controlled by the control unit 120, for example.
 加熱機構(電力供給部)50は、電力供給源55と、電力供給源55と電極17,18とを電気的に接続する電力供給ライン52と、を備える。電力供給源55は、直流電源及びスイッチを含み、電極17,18が金属パイプ材料14に電気的に接続された状態において、電力供給ライン52、電極17,18を介して金属パイプ材料14に通電可能とされている。なお、電力供給ライン52は、ここでは、下側電極17,18に接続されている。 The heating mechanism (power supply unit) 50 includes a power supply source 55 and a power supply line 52 that electrically connects the power supply source 55 and the electrodes 17 and 18. The power supply source 55 includes a DC power source and a switch, and in a state where the electrodes 17 and 18 are electrically connected to the metal pipe material 14, the metal pipe material 14 is energized through the power supply line 52 and the electrodes 17 and 18. It is possible. Here, the power supply line 52 is connected to the lower electrodes 17 and 18 here.
 この加熱機構50では、電力供給源55から出力された直流電流は、電力供給ライン52によって伝送され、電極17に入力される。そして、直流電流は、金属パイプ材料14を通過して、電極18に入力される。そして、直流電流Cは、電力供給ライン52によって伝送されて電力供給源55に入力される。 In the heating mechanism 50, the direct current output from the power supply source 55 is transmitted by the power supply line 52 and input to the electrode 17. The direct current passes through the metal pipe material 14 and is input to the electrode 18. The direct current C is transmitted through the power supply line 52 and input to the power supply source 55.
 図1に戻り、一対の気体供給機構40の各々は、シリンダユニット(駆動部)42と、シリンダユニット42の作動に合わせて進退動するシリンダロッド43と、シリンダロッド43におけるパイプ保持機構30側の先端に連結された気体供給ノズル(気体供給部)44とを有する。シリンダユニット42はブロック41上に載置固定されている。気体供給ノズル44の先端には先細となるようにテーパー面45が形成されており、電極17,18のテーパー凹面17b,18bに合わさる形状に構成されている(図2参照)。気体供給ノズル44には、シリンダユニット42側から先端に向かって延在し、詳しくは図2(a),(b)に示されるように、気体供給ユニット60から供給された高圧ガスが流れるガス通路46が設けられている。 Returning to FIG. 1, each of the pair of gas supply mechanisms 40 includes a cylinder unit (drive unit) 42, a cylinder rod 43 that moves forward and backward in accordance with the operation of the cylinder unit 42, and the pipe holding mechanism 30 side of the cylinder rod 43. A gas supply nozzle (gas supply unit) 44 connected to the tip. The cylinder unit 42 is mounted and fixed on the block 41. A tapered surface 45 is formed at the tip of the gas supply nozzle 44 so as to be tapered, and is configured to fit the tapered concave surfaces 17b and 18b of the electrodes 17 and 18 (see FIG. 2). The gas supply nozzle 44 extends toward the tip from the cylinder unit 42 side, and as shown in detail in FIGS. 2A and 2B, the gas through which the high-pressure gas supplied from the gas supply unit 60 flows. A passage 46 is provided.
 気体供給ユニット60は、ガス源61と、このガス源61によって供給されたガスを溜めるアキュムレータ62と、このアキュムレータ62から気体供給機構40のシリンダユニット42まで延びている第1チューブ63と、この第1チューブ63に介設されている圧力制御弁64及び切替弁65と、アキュムレータ62から気体供給ノズル44内に形成されたガス通路46まで延びている第2チューブ67と、この第2チューブ67に介設されている圧力制御弁68及び逆止弁69とからなる。圧力制御弁64は、気体供給ノズル44の金属パイプ材料14に対する押力に適応した作動圧力のガスをシリンダユニット42に供給する役割を果たす。逆止弁69は、第2チューブ67内で高圧ガスが逆流することを防止する役割を果たす。第2チューブ67に介設されている圧力制御弁68は、制御部120の制御により、金属パイプ材料14を膨張させるための作動圧力を有するガスを、気体供給ノズル44のガス通路46に供給する役割を果たす。 The gas supply unit 60 includes a gas source 61, an accumulator 62 that stores the gas supplied by the gas source 61, a first tube 63 that extends from the accumulator 62 to the cylinder unit 42 of the gas supply mechanism 40, A pressure control valve 64 and a switching valve 65 provided in one tube 63, a second tube 67 extending from the accumulator 62 to a gas passage 46 formed in the gas supply nozzle 44, and the second tube 67 The pressure control valve 68 and the check valve 69 are provided. The pressure control valve 64 serves to supply the cylinder unit 42 with a gas having an operating pressure adapted to the pressing force of the gas supply nozzle 44 against the metal pipe material 14. The check valve 69 serves to prevent the high pressure gas from flowing back in the second tube 67. The pressure control valve 68 provided in the second tube 67 supplies a gas having an operating pressure for expanding the metal pipe material 14 to the gas passage 46 of the gas supply nozzle 44 under the control of the control unit 120. Play a role.
 制御部120は、気体供給ユニット60の圧力制御弁68を制御することにより、金属パイプ材料14内に所望の作動圧力のガスを供給することができる。また、制御部120は、図1に示す(A)から情報が伝達されることによって、熱電対21から温度情報を取得し、駆動機構80及び電力供給源55等を制御する。 The control unit 120 can supply a gas having a desired operating pressure into the metal pipe material 14 by controlling the pressure control valve 68 of the gas supply unit 60. In addition, the control unit 120 acquires temperature information from the thermocouple 21 by transmitting information from (A) illustrated in FIG. 1, and controls the drive mechanism 80, the power supply source 55, and the like.
 水循環機構72は、水を溜める水槽73と、この水槽73に溜まっている水を汲み上げ、加圧して下型11の冷却水通路19及び上型12の冷却水通路25へ送る水ポンプ74と、配管75とからなる。省略したが、水温を下げるクーリングタワーや水を浄化する濾過器を配管75に介在させることは差し支えない。 The water circulation mechanism 72 includes a water tank 73 that stores water, a water pump 74 that pumps up and pressurizes the water stored in the water tank 73 and sends the water to the cooling water passage 19 of the lower mold 11 and the cooling water passage 25 of the upper mold 12. It consists of a pipe 75. Although omitted, a cooling tower for lowering the water temperature and a filter for purifying water may be interposed in the pipe 75.
 次に、図3及び図4を参照して、制御部120について説明する。図3は、本実施形態に係る成形装置1の特徴部を説明するための概略構成図である。図4は、気体供給ノズル44の拡大図である。図3には、図1で説明した構成要素のうち、ガス源61、第1チューブ63、圧力制御弁64、切替弁65、第2チューブ67、圧力制御弁68、気体供給機構40、成形金型13、電極17,18、絶縁材101、及び制御部120が示されている。 Next, the control unit 120 will be described with reference to FIGS. FIG. 3 is a schematic configuration diagram for explaining a characteristic part of the molding apparatus 1 according to the present embodiment. FIG. 4 is an enlarged view of the gas supply nozzle 44. 3, among the components described in FIG. 1, the gas source 61, the first tube 63, the pressure control valve 64, the switching valve 65, the second tube 67, the pressure control valve 68, the gas supply mechanism 40, the metal mold A mold 13, electrodes 17 and 18, an insulating material 101, and a control unit 120 are shown.
 本実施形態において、気体供給ノズル44が金属パイプ材料14に供給する気体として不活性ガスが採用される。不活性ガスとして、例えば、窒素ガス、アルゴンガス、ヘリウムガスなどが採用される。ガス源61は、高圧の不活性ガスを貯留するガスタンクによって構成される。従って、気体供給ノズル44は、第2チューブ67を介してガス源61のガスタンクに接続された状態となる。 In this embodiment, an inert gas is employed as the gas supplied from the gas supply nozzle 44 to the metal pipe material 14. As the inert gas, for example, nitrogen gas, argon gas, helium gas or the like is employed. The gas source 61 is constituted by a gas tank that stores a high-pressure inert gas. Therefore, the gas supply nozzle 44 is connected to the gas tank of the gas source 61 through the second tube 67.
 気体供給ノズル44は、金属パイプ材料14の内部の空気を不活性ガスに置換するための置換処理のための気体供給と、膨張成形のための気体供給を行う。置換処理は、気体供給ノズル44が金属パイプ材料14へ不活性ガスを供給することで実行される。すなわち、金属パイプ材料14内へ不活性ガスが供給されると、金属パイプ材料14内部の不活性ガスの濃度が高くなり、酸素よりも不活性ガスの濃度が高くなる。なお、金属パイプ材料14内部に存在していた空気は、不活性ガスの供給に伴って外部に排出されてもよく、排出されなくともよい。空気を排出する場合、例えば、気体供給ノズル44に、金属パイプ材料14と外部とを連通する連通流路を設けてよい(不図示)。置換処理は、少なくとも電極17,18による通電加熱処理が完了する前段階に、気体供給ノズル44が金属パイプに不活性ガスを供給する処理である。置換処理は、通電加熱が開始する前段階で行われてもよく、通電加熱中に行われてもよく、両方で行われてもよい。ただし、置換処理と通電加熱が同時に行われる場合、制御部120は、金属パイプ材料14の酸化が開始される温度に到達する前に、金属パイプ材料14内の不活性ガスの濃度が所定値以上となるように、制御を行う。気体供給ノズル膨張成形のための気体供給は、通電加熱が完了した後に行われる。 The gas supply nozzle 44 supplies a gas for a replacement process for replacing the air inside the metal pipe material 14 with an inert gas and a gas for expansion molding. The replacement process is performed by the gas supply nozzle 44 supplying an inert gas to the metal pipe material 14. That is, when the inert gas is supplied into the metal pipe material 14, the concentration of the inert gas inside the metal pipe material 14 is increased, and the concentration of the inert gas is higher than that of oxygen. In addition, the air which existed in the metal pipe material 14 may be discharged | emitted outside with supply of an inert gas, and does not need to be discharged | emitted. In the case of discharging air, for example, the gas supply nozzle 44 may be provided with a communication channel that connects the metal pipe material 14 and the outside (not shown). The replacement process is a process in which the gas supply nozzle 44 supplies an inert gas to the metal pipe at least before the energization heating process by the electrodes 17 and 18 is completed. The replacement process may be performed before the start of the energization heating, may be performed during the energization heating, or may be performed in both. However, when the replacement process and the electric heating are performed at the same time, the control unit 120 determines that the concentration of the inert gas in the metal pipe material 14 is equal to or higher than a predetermined value before reaching the temperature at which the oxidation of the metal pipe material 14 starts. Control is performed so that Gas supply for the gas supply nozzle expansion molding is performed after the energization heating is completed.
 気体供給ノズル44は、置換処理時と膨張成形時とで、同一のガスタンクから不活性ガスを供給する。なお、ガス源61は、単一のガスタンクを有していてもよいが、複数本のガスタンクを有していてもよい。ガス源61が複数のガスタンクを有する場合、気体供給ノズル44は一のガスタンクから置換処理時及び膨張成形時における不活性ガスを供給し、一のガスタンクの不活性ガスがなくなった場合などには、他のガスタンクから置換処理時及び膨張成形時における不活性ガスを供給してよい。このような状態も、気体供給ノズル44が、置換処理時と膨張成形時とで、同一のガスタンクから不活性ガスを供給している状況と言える。なお、気体供給ノズル44は、置換処理時と膨張成形時とで、異なるガスタンクから不活性ガスを供給してもよい。 The gas supply nozzle 44 supplies an inert gas from the same gas tank at the time of replacement processing and expansion molding. The gas source 61 may have a single gas tank, but may have a plurality of gas tanks. When the gas source 61 has a plurality of gas tanks, the gas supply nozzle 44 supplies the inert gas at the time of replacement processing and expansion molding from one gas tank, and when the inert gas in one gas tank runs out, You may supply the inert gas at the time of substitution processing and expansion molding from another gas tank. Such a state can also be said to be a situation in which the gas supply nozzle 44 supplies the inert gas from the same gas tank during the replacement process and during the expansion molding. The gas supply nozzle 44 may supply an inert gas from different gas tanks at the time of replacement processing and expansion molding.
 ここで、気体供給ノズル44による置換処理が行われるため、気体供給ノズル44が金属パイプ材料14及び電極17,18の少なくとも一方と接触した状態にて、金属パイプ材料14への通電加熱が実行される場合がある(例えば、図2参照)。この場合、気体供給ノズル44を介して、当該気体供給ノズル44の後段側の構成部材(例えばシリンダユニット42や、第2チューブ67)へ電流が流れることを防止する必要がある。よって、気体供給ノズル44は、絶縁材料によって構成されていてよく、または絶縁部を有してよい。 Here, since the replacement process by the gas supply nozzle 44 is performed, energization heating to the metal pipe material 14 is performed in a state where the gas supply nozzle 44 is in contact with at least one of the metal pipe material 14 and the electrodes 17 and 18. (See, for example, FIG. 2). In this case, it is necessary to prevent a current from flowing through the gas supply nozzle 44 to constituent members (for example, the cylinder unit 42 and the second tube 67) on the rear stage side of the gas supply nozzle 44. Therefore, the gas supply nozzle 44 may be made of an insulating material or may have an insulating portion.
 具体的には、図4(a)に示すように、気体供給ノズル44の表面には、絶縁部150が形成されていてよい。絶縁部150は、気体供給ノズル44の先端の表面、すなわち通電加熱時に金属パイプ材料14又は電極17,18に接触する部分に少なくとも形成されている。気体供給ノズル44の表面全体が絶縁部150で覆われていてもよい。絶縁部150は、気体供給ノズル44を絶縁材料でコーティングする絶縁処理を行うことによって構成される。 Specifically, as shown in FIG. 4A, an insulating part 150 may be formed on the surface of the gas supply nozzle 44. The insulating part 150 is formed at least on the surface of the tip of the gas supply nozzle 44, that is, the part that contacts the metal pipe material 14 or the electrodes 17, 18 during energization heating. The entire surface of the gas supply nozzle 44 may be covered with the insulating portion 150. The insulating unit 150 is configured by performing an insulating process for coating the gas supply nozzle 44 with an insulating material.
 あるいは、図4(b)に示すように、気体供給ノズル44の先端と、シリンダユニット42との間に絶縁部151が形成されてよい。気体供給ノズル44は、先端部44Aと、基体部44Bと、を備える。先端部44Aは、テーパー面45及びガス通路46が形成される。基体部44Bは、第2チューブ67からの不活性ガスをガス通路46へ導く空間を有する。絶縁部151は、先端部44Aと基体部44Bとの間に形成されている。ただし、絶縁部151は、気体供給ノズル44の先端とシリンダユニット42との間の位置であればどこに設けてもよい。 Alternatively, as shown in FIG. 4B, an insulating portion 151 may be formed between the tip of the gas supply nozzle 44 and the cylinder unit 42. The gas supply nozzle 44 includes a tip portion 44A and a base portion 44B. The tip portion 44A is formed with a tapered surface 45 and a gas passage 46. The base portion 44 </ b> B has a space that guides the inert gas from the second tube 67 to the gas passage 46. The insulating part 151 is formed between the tip part 44A and the base part 44B. However, the insulating portion 151 may be provided anywhere as long as it is located between the tip of the gas supply nozzle 44 and the cylinder unit 42.
 シリンダユニット42は、シリンダロッド43を介して気体供給ノズル44を金属パイプ材料14に対して進退するように駆動させる。図4に示すように、シリンダユニット42には内部空間が形成され、当該内部空間は、シリンダロッド43に接続された部材43aによって区切られている。また、区切られた内部空間の一方(気体供給ノズル44側)は第1チューブ63の分岐チューブ63aに接続され、内部空間の他方は第1チューブ63の分岐チューブ63bに接続されている。従って、シリンダユニット42を押し出す場合は、分岐チューブ63bから気体が供給され、シリンダユニット42を引く場合は、分岐チューブ63aから気体が供給される。 The cylinder unit 42 drives the gas supply nozzle 44 through the cylinder rod 43 so as to advance and retreat with respect to the metal pipe material 14. As shown in FIG. 4, an internal space is formed in the cylinder unit 42, and the internal space is partitioned by a member 43 a connected to the cylinder rod 43. One of the partitioned internal spaces (on the gas supply nozzle 44 side) is connected to the branch tube 63 a of the first tube 63, and the other of the internal spaces is connected to the branch tube 63 b of the first tube 63. Therefore, when pushing out the cylinder unit 42, gas is supplied from the branch tube 63b, and when pulling the cylinder unit 42, gas is supplied from the branch tube 63a.
 制御部120は、プロセッサ、メモリ、ストレージ、通信インターフェース及びユーザインターフェースを備え、一般的なコンピュータとして構成されている。プロセッサは、CPU(Central Processing Unit)などの演算器である。メモリは、ROM(Read Only Memory)やRAM(Random Access Memory)などの記憶媒体である。ストレージは、HDD(Hard Disk Drive)などの記憶媒体である。制御部120は、気体供給制御部121と、加熱制御部122と、駆動制御部123と、を備えている。気体供給制御部121は、圧力制御弁68を制御することにより、気体供給ノズル44による金属パイプ材料14への気体の供給を制御する。気体供給制御部121は、前述の置換処理を行うタイミング、及び膨張成形を行うタイミングにて、気体供給ノズル44から気体を供給する。加熱制御部122は、電極17,18に電力を供給することにより、金属パイプ材料14の通電加熱を行う。駆動制御部123は、圧力制御弁64及び切替弁65を制御することにより、シリンダユニット42の駆動制御を行う。駆動制御部123は、気体供給ノズル44の進退方向に応じて、分岐チューブ63a及び分岐チューブ63bのいずれかから不活性ガスを供給するように切替弁65を制御する。また、駆動制御部123は、圧力制御弁64を制御することで、分岐チューブ63a,63bの何れかへ不活性ガスを供給する。 The control unit 120 includes a processor, a memory, a storage, a communication interface, and a user interface, and is configured as a general computer. The processor is a computing unit such as a CPU (Central Processing Unit). The memory is a storage medium such as ROM (Read Only Memory) or RAM (Random Access Memory). The storage is a storage medium such as an HDD (Hard Disk Drive). The control unit 120 includes a gas supply control unit 121, a heating control unit 122, and a drive control unit 123. The gas supply control unit 121 controls the supply of gas to the metal pipe material 14 by the gas supply nozzle 44 by controlling the pressure control valve 68. The gas supply control unit 121 supplies gas from the gas supply nozzle 44 at the timing of performing the above-described replacement process and the timing of performing expansion molding. The heating control unit 122 performs energization heating of the metal pipe material 14 by supplying electric power to the electrodes 17 and 18. The drive controller 123 controls the cylinder unit 42 by controlling the pressure control valve 64 and the switching valve 65. The drive control unit 123 controls the switching valve 65 so as to supply the inert gas from either the branch tube 63a or the branch tube 63b according to the advance / retreat direction of the gas supply nozzle 44. Further, the drive control unit 123 controls the pressure control valve 64 to supply an inert gas to any one of the branch tubes 63a and 63b.
 〈成形装置を用いた金属パイプの成形方法〉
 次に、成形装置10を用いた金属パイプの成形方法について説明する。図5に示す制御部120の制御処理の内容も、適宜説明する。最初に、焼入れ可能な鋼種の円筒状の金属パイプ材料14を準備する。この金属パイプ材料14を、例えばロボットアーム等を用いて、下型11側に備わる電極17,18上に載置(投入)する。電極17,18には凹溝17a,18aが形成されているので、当該凹溝17a,18aによって金属パイプ材料14が位置決めされる。
<Metal pipe forming method using forming equipment>
Next, a method for forming a metal pipe using the forming apparatus 10 will be described. The contents of the control process of the control unit 120 shown in FIG. First, a cylindrical metal pipe material 14 of a hardenable steel type is prepared. The metal pipe material 14 is placed (input) on the electrodes 17 and 18 provided on the lower mold 11 side using, for example, a robot arm or the like. Since the grooves 17a and 18a are formed in the electrodes 17 and 18, the metal pipe material 14 is positioned by the grooves 17a and 18a.
 次に、制御部120は、駆動機構80及びパイプ保持機構30を制御することによって、当該パイプ保持機構30に金属パイプ材料14を保持させる(図5:ステップS10)。具体的には、駆動機構80の駆動によりスライド81側に保持されている上型12及び上側電極17,18等が下型11側に移動すると共に、パイプ保持機構30に含まれる上側電極17,18等及び下側電極17,18等を進退動可能としているアクチュエータを作動させることによって、金属パイプ材料14の両方の端部付近を上下からパイプ保持機構30により挟持する。この挟持は電極17,18に形成される凹溝17a,18a、及び絶縁材91,101に形成される凹溝の存在によって、金属パイプ材料14の両端部付近の全周に渡って密着するような態様で挟持されることとなる。 Next, the control unit 120 controls the drive mechanism 80 and the pipe holding mechanism 30 to cause the pipe holding mechanism 30 to hold the metal pipe material 14 (FIG. 5: Step S10). Specifically, the upper die 12 and the upper electrodes 17 and 18 held on the slide 81 side by the driving mechanism 80 move to the lower die 11 side, and the upper electrode 17 and the upper electrode 17 included in the pipe holding mechanism 30 are moved. By actuating an actuator that allows the 18 and the like and the lower electrodes 17 and 18 to move forward and backward, the vicinity of both ends of the metal pipe material 14 is sandwiched by the pipe holding mechanism 30 from above and below. This clamping is caused to closely adhere to the entire circumference of the metal pipe material 14 near both ends due to the presence of the concave grooves 17a and 18a formed in the electrodes 17 and 18 and the concave grooves formed in the insulating materials 91 and 101. It will be clamped in such a manner.
 なお、このとき、図2(a)に示されるように、金属パイプ材料14の電極18側の端部は、金属パイプ材料14の延在方向において、電極18の凹溝18aとテーパー凹面18bとの境界よりも気体供給ノズル44側に突出している。同様に、金属パイプ材料14の電極17側の端部は、金属パイプ材料14の延在方向において、電極17の凹溝17aとテーパー凹面17bとの境界よりも気体供給ノズル44側に突出している。また、上側電極17,18の下面と下側電極17,18の上面とは、それぞれ互いに接触している。ただし、金属パイプ材料14の両端部全周に渡って密着する構成に限られず、金属パイプ材料14の周方向における一部に電極17,18が当接するような構成であってもよい。 At this time, as shown in FIG. 2A, the end of the metal pipe material 14 on the electrode 18 side has a groove 18 a and a taper concave surface 18 b of the electrode 18 in the extending direction of the metal pipe material 14. It protrudes to the gas supply nozzle 44 side from the boundary. Similarly, the end of the metal pipe material 14 on the electrode 17 side protrudes closer to the gas supply nozzle 44 than the boundary between the groove 17 a and the tapered concave surface 17 b of the electrode 17 in the extending direction of the metal pipe material 14. . The lower surfaces of the upper electrodes 17 and 18 and the upper surfaces of the lower electrodes 17 and 18 are in contact with each other. However, the configuration is not limited to the configuration in which the metal pipe material 14 is in close contact with the entire periphery of the both ends, and a configuration in which the electrodes 17 and 18 are in contact with part of the metal pipe material 14 in the circumferential direction may be employed.
 次に、制御部120は、気体供給機構40のシリンダユニット42を作動させることによって気体供給ノズル44を前進させて金属パイプ材料14の両端に気体供給ノズル44を挿入してシールする(図5:ステップS20)。これにより、制御部120は、金属パイプ材料14へ不活性ガスを供給可能な位置へ気体供給ノズル44を配置することができる。このとき、図2(b)に示されるように、金属パイプ材料14の電極18側の端部に気体供給ノズル44が押し付けられることによって、電極18の凹溝18aとテーパー凹面18bとの境界よりも気体供給ノズル44側に突出している部分が、テーパー凹面18bに沿うように漏斗状に変形する。同様に、金属パイプ材料14の電極17側の端部に気体供給ノズル44が押し付けられることによって、電極17の凹溝17aとテーパー凹面17bとの境界よりも気体供給ノズル44側に突出している部分が、テーパー凹面17bに沿うように漏斗状に変形する。 Next, the controller 120 operates the cylinder unit 42 of the gas supply mechanism 40 to advance the gas supply nozzle 44 and insert and seal the gas supply nozzle 44 at both ends of the metal pipe material 14 (FIG. 5 :). Step S20). Thereby, the control part 120 can arrange | position the gas supply nozzle 44 to the position which can supply an inert gas to the metal pipe material 14. FIG. At this time, as shown in FIG. 2B, the gas supply nozzle 44 is pressed against the end of the metal pipe material 14 on the electrode 18 side, so that the boundary between the groove 18 a and the taper concave surface 18 b of the electrode 18 is reached. Further, the portion protruding toward the gas supply nozzle 44 is deformed into a funnel shape so as to follow the tapered concave surface 18b. Similarly, when the gas supply nozzle 44 is pressed against the end portion of the metal pipe material 14 on the electrode 17 side, a portion protruding to the gas supply nozzle 44 side from the boundary between the concave groove 17a and the tapered concave surface 17b of the electrode 17. However, it deforms in a funnel shape along the tapered concave surface 17b.
 次に、制御部120は、気体供給ノズル44から不活性ガスを金属パイプ材料14の内部へ供給する(図5:ステップS30)。これにより、制御部120は、金属パイプ材料14の内部の空気を不活性ガスに置換する。 Next, the control unit 120 supplies an inert gas from the gas supply nozzle 44 to the inside of the metal pipe material 14 (FIG. 5: Step S30). Thereby, the control unit 120 replaces the air inside the metal pipe material 14 with an inert gas.
 次に、制御部120は、加熱機構50を制御することによって、金属パイプ材料14を加熱する(図5:ステップS40)。具体的には、制御部120は、電力供給部として機能する加熱機構50を制御し金属パイプ材料14に電力を供給する。すると、電力供給ライン52を介して下側電極17,18に伝達される電力が、金属パイプ材料14を挟持している上側電極17,18及び金属パイプ材料14に供給され、金属パイプ材料14に存在する抵抗により、金属パイプ材料14自体がジュール熱によって発熱する。すなわち、金属パイプ材料14は通電加熱状態となる。なお、S40の通電加熱は、S30の不活性ガスの供給が完了してから実行されてもよく、S30の不活性ガスの供給が完了する前に実行されてもよい。 Next, the control unit 120 heats the metal pipe material 14 by controlling the heating mechanism 50 (FIG. 5: Step S40). Specifically, the control unit 120 controls the heating mechanism 50 that functions as a power supply unit and supplies power to the metal pipe material 14. Then, the power transmitted to the lower electrodes 17 and 18 through the power supply line 52 is supplied to the upper electrodes 17 and 18 and the metal pipe material 14 sandwiching the metal pipe material 14, and Due to the existing resistance, the metal pipe material 14 itself generates heat due to Joule heat. That is, the metal pipe material 14 is in an electrically heated state. The energization heating in S40 may be performed after the supply of the inert gas in S30 is completed, or may be performed before the supply of the inert gas in S30 is completed.
 次に、制御部120は、駆動機構80を制御することによって、加熱後の金属パイプ材料14に対して成形金型13を閉じる(図5:ステップS50)。これにより、下型11のキャビティ16と上型12のキャビティ24とが組み合わされ、下型11と上型12との間のキャビティ部内に金属パイプ材料14が配置密閉される。 Next, the control unit 120 controls the drive mechanism 80 to close the molding die 13 with respect to the heated metal pipe material 14 (FIG. 5: Step S50). As a result, the cavity 16 of the lower mold 11 and the cavity 24 of the upper mold 12 are combined, and the metal pipe material 14 is disposed and sealed in the cavity portion between the lower mold 11 and the upper mold 12.
 次に、制御部120は、気体供給ノズル44から不活性ガスを金属パイプ材料14の内部へ供給する(図5:ステップS60)。これにより、金属パイプ材料14が膨張して成形金型13と接触する。加熱により軟化した金属パイプ材料14は、成形金型13のキャビティ部の形状に沿うように成形される。 Next, the control unit 120 supplies an inert gas from the gas supply nozzle 44 to the inside of the metal pipe material 14 (FIG. 5: Step S60). Thereby, the metal pipe material 14 expands and contacts the molding die 13. The metal pipe material 14 softened by heating is molded so as to follow the shape of the cavity portion of the molding die 13.
 ブロー成形されて膨らんだ金属パイプ材料14の外周面が下型11のキャビティ16に接触して急冷されると同時に、上型12のキャビティ24に接触して急冷(上型12と下型11は熱容量が大きく且つ低温に管理されているため、金属パイプ材料14が接触すればパイプ表面の熱が一気に金型側へと奪われる。)されて焼き入れが行われる。このような冷却法は、金型接触冷却又は金型冷却と呼ばれる。急冷された直後はオーステナイトがマルテンサイトに変態する(以下、オーステナイトがマルテンサイトに変態することをマルテンサイト変態とする)。冷却の後半は冷却速度が小さくなったので、復熱によりマルテンサイトが別の組織(トルースタイト、ソルバイト等)に変態する。従って、別途焼戻し処理を行う必要がない。また、本実施形態においては、金型冷却に代えて、あるいは金型冷却に加えて、冷却媒体を例えばキャビティ24内に供給することによって冷却が行われてもよい。例えば、マルテンサイト変態が始まる温度までは金型(上型12及び下型11)に金属パイプ材料14を接触させて冷却を行い、その後型開きすると共に冷却媒体(冷却用気体)を金属パイプ材料14へ吹き付けることにより、マルテンサイト変態を発生させてもよい。 The outer peripheral surface of the metal pipe material 14 swelled by blow molding is brought into contact with the cavity 16 of the lower mold 11 and rapidly cooled, and at the same time is brought into contact with the cavity 24 of the upper mold 12 to rapidly cool (the upper mold 12 and the lower mold 11 are Since the heat capacity is large and the temperature is controlled at a low temperature, if the metal pipe material 14 comes into contact, the heat of the pipe surface is taken away to the mold side at once, and quenching is performed. Such a cooling method is called mold contact cooling or mold cooling. Immediately after being quenched, austenite transforms to martensite (hereinafter, austenite transforms to martensite is referred to as martensite transformation). In the second half of the cooling, the cooling rate was reduced, so that martensite was transformed into another structure (truthite, sorbite, etc.) by recuperation. Therefore, it is not necessary to perform a separate tempering process. In the present embodiment, cooling may be performed by supplying a cooling medium into the cavity 24, for example, instead of or in addition to mold cooling. For example, the metal pipe material 14 is brought into contact with the mold (upper mold 12 and lower mold 11) until the temperature at which martensitic transformation begins, and then the mold is opened and the cooling medium (cooling gas) is used as the metal pipe material. The martensitic transformation may be generated by spraying on 14.
 上述のように金属パイプ材料14に対してブロー成形を行った後に冷却を行う。その後、次に、制御部120は、駆動機構80を制御することによって、成形金型13を開く(図5:ステップS70)。型開きを行うことにより、例えば略矩形筒状の本体部を有する金属パイプを得る。 As described above, the metal pipe material 14 is blow-molded and then cooled. Then, next, the control part 120 opens the shaping die 13 by controlling the drive mechanism 80 (FIG. 5: step S70). By performing mold opening, for example, a metal pipe having a substantially rectangular cylindrical main body is obtained.
 次に、本実施形態に係る成形装置1の作用・効果について説明する。 Next, functions and effects of the molding apparatus 1 according to this embodiment will be described.
 本実施形態に係る成形装置1において、制御部120は、金属パイプ材料14へ不活性ガスを供給可能な位置へ気体供給ノズル44を配置し、気体供給ノズル44から金属パイプ材料14へ不活性ガスを供給することで金属パイプ材料14内の空気を不活性ガスへ置換する置換処理を行うように気体供給ユニット60を制御する。また、制御部120は、電力供給部として機能する加熱機構50で金属パイプを通電加熱するように加熱機構50を制御する。また、制御部120は、気体供給ノズル44から通電加熱された金属パイプ材料14へ不活性ガスを供給して膨張成形を行うように気体供給ユニット60を制御する。このように、制御部120が、金属パイプ材料14内の空気を不活性ガスへ置換する置換処理を行うように気体供給ユニット60を制御するため、電力供給部として機能する加熱機構50で金属パイプ材料14を通電加熱することで金属パイプ材料14が高温となる際に、金属パイプ材料14が酸化することを抑制できる。以上により、通電加熱時に金属パイプ材料14の内部に酸化スケールが生成されることを抑制することができる。 In the molding apparatus 1 according to the present embodiment, the control unit 120 arranges the gas supply nozzle 44 at a position where the inert gas can be supplied to the metal pipe material 14, and the inert gas from the gas supply nozzle 44 to the metal pipe material 14. The gas supply unit 60 is controlled so as to perform a replacement process for replacing the air in the metal pipe material 14 with an inert gas. In addition, the control unit 120 controls the heating mechanism 50 so that the metal pipe is energized and heated by the heating mechanism 50 that functions as a power supply unit. Further, the control unit 120 controls the gas supply unit 60 so as to supply the inert gas from the gas supply nozzle 44 to the electrically heated metal pipe material 14 to perform expansion molding. In this way, the control unit 120 controls the gas supply unit 60 so as to perform a replacement process of replacing the air in the metal pipe material 14 with an inert gas, and thus the metal pipe is heated by the heating mechanism 50 that functions as a power supply unit. When the metal pipe material 14 becomes high temperature by energizing and heating the material 14, it is possible to suppress the metal pipe material 14 from being oxidized. As described above, it is possible to suppress the generation of oxide scale in the metal pipe material 14 during energization heating.
 成形装置1において、気体供給ノズル44の表面には、絶縁部150が形成されていてよい。これにより、金属パイプ材料14への通電加熱時に、気体供給ノズル44よりも後段側の構成要素に電力が漏れることを抑制できる。 In the molding apparatus 1, an insulating part 150 may be formed on the surface of the gas supply nozzle 44. Thereby, it is possible to prevent power from leaking to the constituent elements on the rear side of the gas supply nozzle 44 when the metal pipe material 14 is energized and heated.
 成形装置1において、気体供給ノズル44を金属パイプ材料14に対して進退させるシリンダユニット42を更に備え、気体供給ノズル44の先端と、シリンダユニット42との間には絶縁部151が形成されていてよい。これにより、金属パイプ材料14への通電加熱時に、シリンダユニット42に電力が漏れることを抑制できる。 The molding apparatus 1 further includes a cylinder unit 42 that moves the gas supply nozzle 44 forward and backward relative to the metal pipe material 14, and an insulating portion 151 is formed between the tip of the gas supply nozzle 44 and the cylinder unit 42. Good. Thereby, it is possible to prevent power from leaking to the cylinder unit 42 during energization heating of the metal pipe material 14.
 成形装置1において、高圧の不活性ガスを貯留するガスタンク(ガス源61)を更に備え、気体供給ノズル44は、ガスタンクと接続され、気体供給ノズル44は、置換処理時と膨張成形時とで、同一のガスタンクから不活性ガスを供給してよい。このように、置換処理時と膨張成形時に用いられる不活性ガスのガスタンクを共有することで、装置の複雑化を抑制できる。 The molding apparatus 1 further includes a gas tank (gas source 61) for storing a high-pressure inert gas, the gas supply nozzle 44 is connected to the gas tank, and the gas supply nozzle 44 is used at the time of replacement processing and expansion molding. Inert gas may be supplied from the same gas tank. Thus, the complication of the apparatus can be suppressed by sharing the gas tank of the inert gas used during the replacement process and the expansion molding.
 本実施形態に係る成形装置1の動作方法は、金属パイプ材料14を膨張させて金属パイプを成形する成形装置1の動作方法であって、成形装置1は、金属パイプ材料14に電力を供給する加熱機構50と、金属パイプ材料14に気体を供給する気体供給ユニット60と、を備え、動作方法は、金属パイプ材料14へ不活性ガスを供給可能な位置へ気体供給ユニット60を配置し、気体供給ユニット60から金属パイプ材料14へ不活性ガスを供給することで金属パイプ材料14内の空気を不活性ガスへ置換する置換処理を行い、置換処理の後、及び置換処理中の少なくとも何れかのタイミングで、加熱機構50で金属パイプ材料14を通電加熱し、気体供給ユニット60から通電加熱された金属パイプ材料14へ不活性ガスを供給して膨張成形を行う。 An operation method of the forming apparatus 1 according to the present embodiment is an operation method of the forming apparatus 1 that expands the metal pipe material 14 to form a metal pipe, and the forming apparatus 1 supplies power to the metal pipe material 14. A heating mechanism 50 and a gas supply unit 60 for supplying a gas to the metal pipe material 14 are provided. The operation method is such that the gas supply unit 60 is disposed at a position where an inert gas can be supplied to the metal pipe material 14 and the gas is supplied. By supplying an inert gas from the supply unit 60 to the metal pipe material 14, a replacement process is performed to replace the air in the metal pipe material 14 with an inert gas. At timing, the metal pipe material 14 is energized and heated by the heating mechanism 50, and the inert gas is supplied from the gas supply unit 60 to the energized and heated metal pipe material 14 to expand. Carry out the form.
 本実施形態に係る成形装置1の動作方法によれば、上述の成形装置1と同趣旨の効果を得ることができる。 According to the operation method of the molding apparatus 1 according to the present embodiment, the same effect as the above-described molding apparatus 1 can be obtained.
 本発明は、上述の実施形態に限定されるものではない。例えば、成形装置の全体構成は図1に示すものに限定されず、発明の趣旨を逸脱しない範囲で適宜変更可能である。 The present invention is not limited to the embodiment described above. For example, the overall configuration of the molding apparatus is not limited to that shown in FIG. 1 and can be changed as appropriate without departing from the spirit of the invention.
 10…成形装置、14…金属パイプ材料、42…シリンダユニット(駆動部)、44…気体供給ノズル(気体供給部)、50…加熱機構(電力供給部)、61…ガス源(ガスタンク)、120…制御部、150,151…絶縁部。 DESCRIPTION OF SYMBOLS 10 ... Molding apparatus, 14 ... Metal pipe material, 42 ... Cylinder unit (drive part), 44 ... Gas supply nozzle (gas supply part), 50 ... Heating mechanism (electric power supply part), 61 ... Gas source (gas tank), 120 ... Control part, 150, 151 ... Insulating part.

Claims (5)

  1.  金属パイプ材料を膨張させて金属パイプを成形する成形装置であって、
     前記金属パイプ材料に電力を供給する電力供給部と、
     前記金属パイプ材料に気体を供給する気体供給部と、
     前記電力供給部及び前記気体供給部を制御する制御部と、を備え、
     前記制御部は、
      前記金属パイプ材料へ不活性ガスを供給可能な位置へ前記気体供給部を配置するように前記気体供給部を制御し、
      前記気体供給部から前記金属パイプ材料へ不活性ガスを供給することで前記金属パイプ材料内の空気を前記不活性ガスへ置換する置換処理を行うように前記気体供給部を制御し、
      前記置換処理の後、及び前記置換処理中の少なくとも何れかのタイミングで、前記電力供給部で前記金属パイプ材料を通電加熱するように前記電力供給部を制御し、
      前記気体供給部から通電加熱された前記金属パイプ材料へ不活性ガスを供給して膨張成形を行うように前記気体供給部を制御する、成形装置。
    A forming apparatus for forming a metal pipe by expanding a metal pipe material,
    A power supply unit for supplying power to the metal pipe material;
    A gas supply unit for supplying gas to the metal pipe material;
    A control unit for controlling the power supply unit and the gas supply unit,
    The controller is
    Controlling the gas supply unit to place the gas supply unit at a position where an inert gas can be supplied to the metal pipe material;
    Controlling the gas supply unit to perform a replacement process of replacing the air in the metal pipe material with the inert gas by supplying an inert gas from the gas supply unit to the metal pipe material;
    After the replacement process and at least at any timing during the replacement process, the power supply unit is controlled to energize and heat the metal pipe material in the power supply unit,
    A molding apparatus that controls the gas supply unit so as to perform an expansion molding by supplying an inert gas to the metal pipe material that is energized and heated from the gas supply unit.
  2.  前記気体供給部の表面には、絶縁部が形成されている、請求項1に記載の成形装置。 The molding apparatus according to claim 1, wherein an insulating part is formed on a surface of the gas supply part.
  3.  前記気体供給部を前記金属パイプ材料に対して進退させる駆動部を更に備え、
     前記気体供給部の先端と、前記駆動部との間には絶縁部が形成されている、請求項1に記載の成形装置。
    A drive unit for moving the gas supply unit back and forth with respect to the metal pipe material;
    The molding apparatus according to claim 1, wherein an insulating part is formed between a tip of the gas supply part and the driving part.
  4.  高圧の不活性ガスを貯留するガスタンクを更に備え、
     前記気体供給部は、前記ガスタンクと接続され、
     前記気体供給部は、置換処理時と膨張成形時とで、同一の前記ガスタンクから不活性ガスを供給する、請求項1~3の何れか一項に記載の成形装置。
    A gas tank for storing a high-pressure inert gas;
    The gas supply unit is connected to the gas tank;
    The molding apparatus according to any one of claims 1 to 3, wherein the gas supply unit supplies an inert gas from the same gas tank during a replacement process and during expansion molding.
  5.  金属パイプ材料を膨張させて金属パイプを成形する成形装置の動作方法であって、
     前記成形装置は、
      前記金属パイプ材料に電力を供給する電力供給部と、
      前記金属パイプ材料に気体を供給する気体供給部と、を備え、
     前記動作方法は、
      前記金属パイプ材料へ不活性ガスを供給可能な位置へ前記気体供給部を配置し、
      前記気体供給部から前記金属パイプ材料へ不活性ガスを供給することで前記金属パイプ材料内の空気を前記不活性ガスへ置換する置換処理を行い、
      前記置換処理の後、及び前記置換処理中の少なくとも何れかのタイミングで、前記電力供給部で前記金属パイプ材料を通電加熱し、
      前記気体供給部から通電加熱された前記金属パイプ材料へ不活性ガスを供給して膨張成形を行う、成形装置の動作方法。
    A method of operating a forming apparatus for forming a metal pipe by expanding a metal pipe material,
    The molding device includes:
    A power supply unit for supplying power to the metal pipe material;
    A gas supply part for supplying gas to the metal pipe material,
    The operation method is as follows:
    The gas supply unit is disposed at a position where an inert gas can be supplied to the metal pipe material,
    Performing a replacement process of replacing the air in the metal pipe material with the inert gas by supplying an inert gas from the gas supply unit to the metal pipe material,
    After the replacement process and at least at any timing during the replacement process, the metal pipe material is energized and heated in the power supply unit,
    An operation method of a forming apparatus, wherein an expansion gas is supplied by supplying an inert gas to the metal pipe material that is energized and heated from the gas supply unit.
PCT/JP2018/016477 2017-05-24 2018-04-23 Molding device, and method for operating molding device WO2018216414A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-102871 2017-05-24
JP2017102871A JP2020116583A (en) 2017-05-24 2017-05-24 Molding device

Publications (1)

Publication Number Publication Date
WO2018216414A1 true WO2018216414A1 (en) 2018-11-29

Family

ID=64395468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016477 WO2018216414A1 (en) 2017-05-24 2018-04-23 Molding device, and method for operating molding device

Country Status (2)

Country Link
JP (1) JP2020116583A (en)
WO (1) WO2018216414A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016002587A (en) * 2014-06-19 2016-01-12 住友重機械工業株式会社 Molding system
JP2016036816A (en) * 2014-08-05 2016-03-22 住友重機械工業株式会社 Molding device
JP2016190248A (en) * 2015-03-31 2016-11-10 住友重機械工業株式会社 Molding device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016002587A (en) * 2014-06-19 2016-01-12 住友重機械工業株式会社 Molding system
JP2016036816A (en) * 2014-08-05 2016-03-22 住友重機械工業株式会社 Molding device
JP2016190248A (en) * 2015-03-31 2016-11-10 住友重機械工業株式会社 Molding device

Also Published As

Publication number Publication date
JP2020116583A (en) 2020-08-06

Similar Documents

Publication Publication Date Title
KR102362771B1 (en) molding equipment
JP6475437B2 (en) Molding equipment
JP6670543B2 (en) Molding apparatus and molding method
JP7492050B2 (en) Molding device, molding method, and metal pipe
JP6396249B2 (en) Molding equipment
JP2021185002A (en) Molding equipment and molding method
JP2016190260A (en) Molding device
WO2018216414A1 (en) Molding device, and method for operating molding device
JP6990519B2 (en) Molding equipment
JP7469221B2 (en) Molding device and metal pipe
JP6651415B2 (en) Molding equipment
JP2021170557A (en) Energization heating apparatus
JP7009264B2 (en) Molding equipment
WO2018179975A1 (en) Electric conduction heating device
JP7080085B2 (en) Molding equipment
WO2019172421A1 (en) Forming device
JP2019150845A (en) Molding apparatus
WO2020179359A1 (en) Molding device and molding method
JP2018167284A (en) Metal body and electric conduction heating method
JP2018195539A (en) Electrification heating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18806270

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18806270

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP