WO2018214810A1 - 一种分布式光伏配电网电压的控制方法及装置 - Google Patents

一种分布式光伏配电网电压的控制方法及装置 Download PDF

Info

Publication number
WO2018214810A1
WO2018214810A1 PCT/CN2018/087438 CN2018087438W WO2018214810A1 WO 2018214810 A1 WO2018214810 A1 WO 2018214810A1 CN 2018087438 W CN2018087438 W CN 2018087438W WO 2018214810 A1 WO2018214810 A1 WO 2018214810A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
voltage
controller
local
area
Prior art date
Application number
PCT/CN2018/087438
Other languages
English (en)
French (fr)
Inventor
周开河
朱承治
徐孝忠
龚向阳
王威
王波
虞殷树
方云辉
张锋
何宇
Original Assignee
国网浙江省电力公司宁波供电公司
国家电网公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网浙江省电力公司宁波供电公司, 国家电网公司 filed Critical 国网浙江省电力公司宁波供电公司
Priority to DE212018000228.2U priority Critical patent/DE212018000228U1/de
Publication of WO2018214810A1 publication Critical patent/WO2018214810A1/zh

Links

Images

Classifications

    • H02J3/383
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1878Arrangements for adjusting, eliminating or compensating reactive power in networks using tap changing or phase shifting transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/10The dispersed energy generation being of fossil origin, e.g. diesel generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Definitions

  • the present application relates to the field of photovoltaic grid-connecting technology, such as a method and a device for controlling the voltage of a distributed photovoltaic distribution network.
  • the distributed photovoltaic power generation system is a photovoltaic power generation project built on the roof of an urban building. It needs to be connected to the public power grid (mainly the distribution network) to supply power to nearby users together with the public power grid. Since the photovoltaic power generation system has the characteristics of intermittent output, its power generation power is greatly affected by the weather, so the power generation power of the photovoltaic power generation system is prone to rapid and drastic changes. Especially when the power generation of the photovoltaic power generation system is large and the system load is light, the photovoltaic power generation system will have a reverse power flow, causing an overvoltage in the grid voltage rise, resulting in frequent voltage fluctuations on the grid feeder.
  • the first one is the centralized control scheme, which collects network information from the power station controller, and then the power station control The data analysis of the collected network information is performed according to the optimization target and the constraint condition, and finally the optimal solution of the obtained control variable is sent back to each power generation unit.
  • the scheme is highly dependent on the power plant controller. Once the power plant controller fails, the power station controller will fail to control the whole system.
  • the second is a distributed control scheme in which each power generating unit is controlled in a distributed manner, and each distributed controller individually adjusts with local information. The program does not make full use of the whole network equipment, and the adjustment degree and adjustment effect are limited. Therefore, how to provide a method for controlling the voltage of a distributed photovoltaic distribution network to solve the problem existing in the existing control scheme is a technical problem that a person skilled in the art needs to solve.
  • the embodiment of the invention discloses a method and a device for controlling the voltage of a distributed photovoltaic distribution network, so as to solve the problem that the centralized control scheme has high dependence on the power plant controller, and the adjustment degree and the adjustment effect of the distributed control scheme are limited. .
  • an embodiment of the present invention provides a method for controlling a distributed photovoltaic distribution network voltage, including:
  • the local controller controls the local inverter to perform reactive power line voltage local control
  • the local controller After the local controller performs the local control of the reactive feeder voltage on the photovoltaic inverter, when the feeder voltage continues to rise to the upper limit value, it is determined whether the reactive capacity of the current region is exhausted;
  • the power plant controller is requested to adjust the tap of the on-load tap-changer transformer to perform on-load tap-changer control;
  • the photovoltaic inverter When the transformer tap reaches the operating limit and the feeder voltage exceeds the upper limit, the photovoltaic inverter is subjected to active cut control until the feeder voltage does not exceed the upper limit.
  • the process of controlling the local controller to perform reactive power line voltage local control on the photovoltaic inverter includes:
  • the current local controller is controlled to request reactive power line voltage local control along the feeder to request other local controllers located in the same area.
  • controlling the local controller to perform reactive power line voltage local control on the photovoltaic inverter includes:
  • the local controller is controlled to perform reactive power line voltage local control on the photovoltaic inverter by using a feeder voltage reactive drop control method.
  • the reactive power line voltage coordinated control of the photovoltaic inverter by using the area controller includes:
  • the remaining compensation value is sent to the upstream and downstream area controllers based on the judgment result that the area satisfies the compensation demand.
  • controlling the on-load voltage regulating transformer of the photovoltaic inverter comprises:
  • the on-load tap changer control is performed according to the tap changer position adjustment command of the on-load tap changer.
  • the performing active power reduction control on the photovoltaic inverter includes:
  • the electrical parameter information of the area to which the area controller belongs is sent to the power station controller through the area controller;
  • Each local controller is controlled to perform active cut control based on the received sensitivity factor.
  • the embodiment of the present invention further provides a control device for distributed photovoltaic distribution network voltage, including:
  • the first control unit is configured to control the local controller to perform reactive power line voltage local control on the photovoltaic inverter when the feeder line voltage rises and the warning value does not exceed the upper limit value;
  • a first determining unit configured to determine that the reactive power of the current region is determined when the feeder voltage continues to rise to the upper limit value after the local controller performs the local control of the reactive feeder voltage on the photovoltaic inverter Whether the capacity is exhausted;
  • the first requesting unit is configured to request regional reactive power line voltage coordinated control to the area controller of the area where the local controller is located, based on the determination result of the reactive capacity exhaustion of the current area;
  • a second control unit configured to perform reactive power line voltage coordinated control on the photovoltaic inverter by using the area controller
  • the second request unit is configured to, after the reactive power capacity is exhausted along the line, request the power plant controller to adjust the on-load tap changer tap to perform the on-load tap changer control based on the result that the feeder voltage continues to rise to the upper limit value. ;
  • a third control unit configured to perform active cut control on the photovoltaic inverter when the transformer tap reaches an action limit and the feeder voltage exceeds the upper limit, until the feeder voltage does not exceed the upper limit.
  • the first control unit includes:
  • a first control subunit configured to control a current local controller to perform reactive power line voltage local control on the photovoltaic inverter when the feeder voltage rises to that the alarm value does not exceed the upper limit value, and
  • the area controller sends a remaining reactive capacity value
  • a first request subunit configured to control the current local controller to request a reactive feeder voltage along the feeder to request other local controllers located in the same area after the reactive capacity of the current local controller is exhausted Ground control.
  • the first control unit is configured to:
  • the local controller is controlled to perform reactive power line voltage local control on the photovoltaic inverter by using a feeder voltage reactive drop control method.
  • the second control unit includes:
  • a second determining subunit configured to determine whether the current feeder voltage reaches the upper limit value
  • a first calculating subunit configured to calculate a reactive power compensation value based on the determination result that the current feeder voltage reaches the upper limit value, and send the reactive power compensation value to an upstream and downstream area controller;
  • the third determining subunit is configured to determine whether the compensation value sent by the upstream and downstream area controllers is received based on a determination result that the current feeder voltage does not reach the upper limit value;
  • a second calculating subunit configured to calculate a reactive power compensation value of the local area based on a determination result of receiving the compensation value sent by the upstream and downstream area controller;
  • a first sending subunit configured to send the reactive compensation value to a local controller of the local area
  • the fourth determining subunit is configured to determine whether the area satisfies the compensation requirement
  • the second transmitting subunit is configured to send the remaining compensation value to the upstream and downstream area controller based on the determination result that the local area satisfies the compensation requirement.
  • the second request unit includes:
  • a second control subunit configured to control the power station controller to calculate all node voltages according to a voltage control threshold, to obtain an on-load tapping transformer tap position adjustment command
  • the third control subunit is configured to perform on-load tap changer control according to the tap changer position adjustment command of the on-load tap changer.
  • the third control unit includes:
  • a third sending subunit configured to send, by the area controller, electrical parameter information of an area to which the area controller belongs to the power station controller when performing active control on the photovoltaic inverter;
  • a fourth control subunit configured to control the power station controller to perform power flow calculation on the electrical parameter information to obtain a Jacobian matrix
  • a matrix inversion subunit configured to invert the Jacobian matrix by the power station controller to obtain a voltage sensitivity matrix
  • a first sending subunit configured to control the power station controller to respectively send a matrix element in the voltage sensitivity matrix as a sensitivity factor to a corresponding area controller;
  • a second sending subunit configured to control each of the area controllers to receive a corresponding sensitivity factor, and send the sensitivity factor to a corresponding local controller
  • the fifth control subunit is configured to control each local controller to perform active cut control according to the received sensitivity factor.
  • the present application discloses a method and a device for controlling the voltage of a distributed photovoltaic distribution network, adopting a bottom-up stepwise control strategy, when the feeder voltage rises and the warning value does not exceed the upper limit value.
  • the local inverter controls the reactive inverter voltage on-site by the local controller; when the current region has no power consumption, and the feeder voltage still reaches the upper limit, the regional controller is used for the regional reactive feeder voltage.
  • Coordinated control when the reactive capacity along the line is exhausted, and the feeder voltage still reaches the upper limit, the power plant controller performs the on-load tap-changer control, and when the transformer tap reaches the action limit and the feeder voltage exceeds the upper limit value
  • the active power reduction control of the photovoltaic inverter is performed until the feeder voltage does not exceed the upper limit value.
  • FIG. 1 is a topological structural diagram of a distribution network system according to an embodiment of the present invention.
  • FIG. 2 is a layered schematic diagram of a control level of a distributed photovoltaic distribution network voltage according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of partitioning of a control level of a distributed photovoltaic distribution network voltage according to an embodiment of the present invention
  • FIG. 4 is a flowchart of a method for controlling voltage of a distributed photovoltaic distribution network according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of droop control of reactive power of a feeder voltage according to an embodiment of the present invention
  • FIG. 6 is a flowchart of a method for performing reactive power line voltage coordinated control of a photovoltaic inverter by using a regional controller according to an embodiment of the present invention
  • FIG. 7 is a flowchart of controlling active power reduction of a photovoltaic inverter according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a control device for distributed photovoltaic distribution network voltage according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a second control unit according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a third control unit according to an embodiment of the present invention.
  • the embodiment of the invention discloses a method and a device for controlling the voltage of a distributed photovoltaic distribution network, so as to solve the problem that the existing centralized control scheme has high dependence on the power plant controller, and the adjustment degree and the adjustment effect of the distributed control scheme are limited.
  • FIG. 1 is a schematic diagram of a topology structure of a distribution network system according to an embodiment of the present invention.
  • the upper-stage transmission and distribution system is regarded as a constant voltage source AC, and is connected to a radial distribution network feeder via a 110/10.5 kV on-load voltage regulating transformer.
  • the feeder is connected to a load (such as load 1, load i and load N shown in Figure 1) and distributed photovoltaic, wherein the distributed photovoltaic is connected to the grid via the inverter and the transformer.
  • the nodes that are connected to the load and distributed photovoltaic along the feeder are numbered 0, 1, 2, ..., N, respectively, and the impedance of each line is R 1 + jX 1 , ..., R i + jX i , R N + jX N , where R i represents the line resistance of node number i, X i represents the line reactance of node number i, and j is a complex number.
  • the node is connected to a load and DG (Distributed Generation) unit, each DG unit is composed of PV (PhotoVoltaic) components, inverters and transformers, and the subscript indicates its access position.
  • PV PhotoVoltaic
  • this application Before controlling the distributed photovoltaic distribution network voltage, this application first layeres the control level of the distributed photovoltaic distribution network voltage. As shown in Figure 2, the control hierarchy is divided into the bottom-up: user layer voltage autonomy. Control, feeder layer voltage coordination control and power station layer voltage coordination control.
  • the agent of the user layer voltage autonomous control is the user agent, corresponding to the local controller; the agent of the feeder layer voltage coordination control is the feeder agent, corresponding to the regional controller; the agent of the power station layer voltage overall control is the substation agent, corresponding to the power station controller.
  • Each type of agent can have more than one according to the actual situation.
  • Local control of the user layer voltage is achieved by a local controller in the user's internal plant system.
  • the local controller adjusts the reactive capacity of the local photovoltaic inverter; and when the photovoltaic inverter performs reactive power coordination control and active control, the local controller The controller adjusts the output power of the local user PV inverter according to the decision issued by the regional controller to implement voltage control.
  • the feeder layer voltage coordination control is implemented by the regional controller on the feeder using distributed multi-agent technology.
  • the regional controller obtains a decision to resolve the voltage overvoltage through communication between the adjacent agents and local calculation.
  • the area controller receives the voltage sensitivity calculation result of the power station controller, and sends the sensitivity factor to the corresponding local controller.
  • the power plant layer voltage overall control is realized by the power station controller in the substation, and is only used when the on-load tapping transformer control and active control are performed.
  • the power station controller calculates the voltage of all the nodes according to the voltage control threshold, and obtains the tap position adjustment command of the on-load tap changer.
  • the regional controller of the feeder layer transmits the electrical parameter information such as power and voltage in the region to the power station controller of the substation level point-to-point, and performs the power flow calculation in the power station controller to obtain the Jacobian matrix.
  • the voltage sensitivity matrix is obtained by inverting the Jacobian matrix, and then the matrix elements in the voltage sensitivity matrix are respectively sent to the corresponding regional controllers as sensitivity factors.
  • the distribution network can also be partitioned according to the distributed photovoltaic access point.
  • the zoning strategy for the distribution network is mainly implemented in the feeder layer voltage coordination control. Specifically, according to the voltage sensitivity factor of the photovoltaic user at the end of the feeder, the photovoltaic user is partitioned, and the photovoltaic user with the sensitivity factor relatively close to and different from other sensitivity factors can be formed into a voltage autonomous control region. Wherein, the voltage sensitivity factor can be calculated according to the control variable and the disturbance variable taking the desired random power flow.
  • FIG. 3 there are a photovoltaic user A and a photovoltaic user B on the trunk feeder, and a photovoltaic user X and a photovoltaic user Y on the branch feeder.
  • the photovoltaic modules of PV user B are divided into two groups by five inverters into AC power, which are integrated into the main feeder through the distribution box and the separate transformer, and the load is connected to the grid through a separate transformer.
  • Photovoltaic user class X is more than photovoltaic user A
  • photovoltaic user class Y is compared to photovoltaic user B.
  • Each PV grid-connected user is equipped with a local controller that can obtain information such as grid-connected point voltage and PV output. Initially, the power flow can be calculated based on historical expected data or planned capacity to obtain a voltage sensitivity factor.
  • Figure 3 shows that the sensitivity of PV user X and PV user Y is similar and the difference between PV user A and PV user B is large, so PV user X and PV user Y are regarded as one region, PV user A and PV user. B separately constitutes an area, and the area controller is set accordingly.
  • a flowchart of a method for controlling a distributed photovoltaic distribution network voltage disclosed in an embodiment of the present invention includes the following steps:
  • Step S101 when the feeder line voltage rises and the warning value does not exceed the upper limit value, the local controller controls the local inverter to perform reactive power line voltage local control;
  • the local controller uses the voltage reactive power droop control strategy for the photovoltaic inverter to perform reactive power line voltage local control. That is, by monitoring the voltage of the common connection point or the grid connection point of the power user, and controlling the reactive power output by the photovoltaic inverter according to a certain ratio of the relative fluctuation of the voltage, the voltage of the grid-connected point is adjusted and adjusted.
  • the abscissa is the feeder voltage (indicated by V), and the ordinate is the reactive power of the PV inverter (indicated by Q).
  • the PV inverter is reactively controlled at the user level, if the feeder If the voltage still reaches the upper limit, the photovoltaic inverter is reactively controlled at the feeder level.
  • the user-level local controller monitors the user's grid-connected voltage. When the feeder voltage is in the normal operating range, the local controller controls the active power of the local PV inverter to follow the maximum power point, that is, MPPT (Maximum Power Point Tracking).
  • the photovoltaic inverter does not perform reactive power regulation; when the feeder voltage rises to the warning value does not exceed the upper limit value, the photovoltaic inverter reactive power is adjusted to prevent the voltage feeder voltage from exceeding the upper limit value.
  • the maximum reactive power of the photovoltaic inverter is constrained by formula (1) and formula (2), that is, the reactive power of the photovoltaic inverter is limited by the photovoltaic inverter capacity and the power factor assessment requirements of the grid point, formula
  • formula (1) and formula (2) are as follows:
  • P PV,i represents the active power of the i-th photovoltaic system
  • Q PV,i represents the reactive power of the i-th photovoltaic system
  • S INV,i represents the capacity of the photovoltaic inverter of the i-th photovoltaic system
  • PF min represents the minimum power factor
  • ⁇ max represents the power factor angle corresponding to the minimum power factor PF min .
  • Step S102 After the local controller performs the local control of the reactive feeder voltage on the photovoltaic inverter, when the feeder voltage continues to rise to the upper limit, it is determined whether the reactive capacity of the current region is exhausted. If not exhausted, step S103 is performed, if it is exhausted, step S104 is performed;
  • the local controller controls the reactive inverter voltage of the photovoltaic inverter to be locally controlled, and the feeder voltage is lower than the upper limit value, the control flow of the distributed photovoltaic distribution network voltage ends.
  • Step S103 controlling the local controller to perform reactive power line voltage local control on the photovoltaic inverter
  • Step S104 requesting the regional reactive power line voltage coordination control to the area controller in the area where the local controller is located, and continue to step S105;
  • the reactive power supply of the photovoltaic inverter needs to be transferred to the feeder layer.
  • Step S105 Perform reactive power line voltage coordinated control on the photovoltaic inverter by using the area controller.
  • the area controller sends the reactive power compensation requirement to the upper and lower adjacent voltage area controllers according to the extent that the feeder voltage exceeds the upper limit value.
  • the local controller communicates with the corresponding area controller point-to-point, the local controller sends its remaining reactive capacity to the corresponding area controller, and the area controller compensates according to the demand of the adjacent area and the remaining capacity of the area. Determine the amount of compensation in this area. If the demand cannot be met, if the feeder voltage is still limited, continue to communicate with the upstream and downstream adjacent area controllers point-to-point, complete the above process, and so on.
  • Step S106 after the reactive power capacity along the line is exhausted, if the feeder voltage continues to rise to the upper limit value, request the power station controller to adjust the tap of the on-load tap change transformer to perform on-load tap change transformer control;
  • the regional controller on the feeder collects the node voltage information of the local area, and sends the point-to-point to the power station controller of the substation.
  • the power station controller calculates the formula (3) and formula (4) for all the node voltages according to the voltage control threshold.
  • formula (4) is as follows:
  • n tap min is the minimum adjustable value of the tap position
  • n tap max is the maximum adjustable value of the tap position
  • x rate min is the minimum adjustable ratio of the tap
  • x rate max is the maximum adjustable ratio of the tap
  • n Tapnow is the current tap position of the load regulating transformer
  • n is the number of regions
  • V th min is the voltage lower limit
  • V th max is the voltage upper limit
  • V i is the photovoltaic grid point voltage
  • i is the PV user serial number.
  • the tap changer position adjustment command of the on-load tap changer can be obtained, and the on-load tap changer control is performed according to the tap changer position adjustment command of the on-load tap changer. This can alleviate or even solve the problem that the feeder voltage exceeds the upper limit value, thereby reducing or avoiding the reduction of photovoltaic active output and ensuring the economic benefit of the user.
  • Step S107 When the transformer tap reaches the action limit and the feeder voltage exceeds the upper limit value, the photovoltaic inverter is subjected to active cut control until the feeder voltage does not exceed the upper limit value.
  • step S106 is continued.
  • the bottom-up step-by-step control strategy is adopted.
  • the local controller controls the reactive inverter voltage on the local inverter first;
  • the regional controller is used to perform regional reactive feeder voltage coordinated control; when the regional controller has no power consumption and the feeder voltage still reaches the upper limit value
  • the on-load voltage regulating transformer is controlled by the power station controller, and when the transformer tap reaches the action limit and the feeder voltage exceeds the upper limit value, the active power reduction control of the photovoltaic inverter is performed until the feeder voltage does not exceed the upper limit value.
  • control scheme disclosed in the present application combines the advantages of the centralized control scheme and the distributed control scheme, fully utilizes the reactive capacity of the whole network equipment and the photovoltaic inverters along the line, and effectively alleviates or even solves the problem that the feeder voltage exceeds The problem of the limit guarantees the economic benefits of the user.
  • step S101 in the foregoing embodiment includes:
  • the current local controller When the feeder voltage rises and the warning value does not exceed the upper limit value, the current local controller performs reactive power line voltage local control on the photovoltaic inverter, and sends the remaining reactive power capacity value to the regional controller;
  • a flowchart of a method for performing reactive power line voltage coordinated control of a photovoltaic inverter by using a regional controller includes the following steps:
  • Step S201 determining whether the current feeder voltage has reached the upper limit value, if yes, proceeding to step S202, if not, executing step S203;
  • Step S202 calculating a reactive power compensation value, and transmitting the reactive power compensation value to the upstream and downstream area controllers;
  • Step S203 determining whether the compensation value sent by the upstream and downstream area controller is received, if not, returning to step S201, and if yes, executing step S204;
  • Step S204 calculating a reactive power compensation value of the local area
  • Step S205 sending the reactive power compensation value to the local controller of the local area
  • Step S206 determining whether the area meets the compensation demand, if not, returning to step S201, and if so, executing step S207;
  • Step S207 Send the remaining compensation value to the upstream and downstream area controllers.
  • the process of performing on-load voltage regulating transformer control on the photovoltaic inverter in step S106 includes:
  • the on-load tap changer control is carried out according to the tap changer position adjustment command of the on-load tap changer.
  • the regional controller on the feeder collects the node voltage information of the local area, and sends the point-to-point to the power station controller of the substation.
  • the power station controller calculates the formula (3) and formula (4) for all the node voltages according to the voltage control threshold.
  • formula (4) is as follows:
  • n tap min is the minimum adjustable value of the tap position
  • n tap max is the maximum adjustable value of the tap position
  • x rate min is the minimum adjustable ratio of the tap
  • x rate max is the maximum adjustable ratio of the tap
  • nt Apnow is the current tap position of the load regulating transformer
  • n is the number of regions
  • V th min is the voltage lower limit
  • V th max is the voltage upper limit
  • V i is the photovoltaic grid point voltage
  • i is the PV user serial number.
  • the tap changer position adjustment command of the on-load tap changer can be obtained, and the on-load tap changer control of the photovoltaic inverter is performed according to the tap changer position adjustment command of the on-load tap changer.
  • This can alleviate or even solve the problem that the feeder voltage exceeds the upper limit value, thereby reducing or avoiding the reduction of photovoltaic active output and ensuring the economic benefits of the user.
  • a control flow chart for performing active power reduction on a photovoltaic inverter disclosed in an embodiment of the present application includes the following steps:
  • Step S301 when active control is performed on the photovoltaic inverter, the electrical parameter information of the area to which the regional controller belongs is sent to the power station controller through the area controller;
  • the electrical parameters include: local voltage and power.
  • Step S302 controlling the power station controller to perform power flow calculation on the electrical parameter information, to obtain a Jacobian matrix
  • the feeder voltage is the result of all the loads along the line and the photovoltaics. That is to say, each PV user contributes to the rise of the feeder voltage, but the contribution is different. Because reducing the PV output to affect the economic benefits of multiple users, in order to share the power reduction amount fairly among multiple users along the line, it is proposed to use the Newton-Raphson algorithm to analyze the power flow along the line and obtain the Jacobian matrix.
  • Step S303 inverting the Jacobian matrix by the power station controller to obtain a voltage sensitivity matrix
  • the inverse matrix obtained by inverting the Jacobian matrix is not all a voltage sensitivity matrix, and the voltage sensitivity matrix is only a part of the inverse matrix.
  • the element in the voltage sensitivity matrix is the sensitivity factor, which indicates the contribution rate of the photovoltaic output to the voltage rise, as shown in formula (5).
  • the expression of formula (5) is as follows:
  • is the node voltage phase angle correction vector
  • is the node voltage amplitude correction vector
  • ⁇ P is the node unbalanced active power vector
  • ⁇ Q is the node unbalanced reactive power vector
  • S ⁇ P is the phase angle Active sensitivity matrix
  • S ⁇ Q is the phase angle reactive sensitivity matrix
  • S VP is the voltage active sensitivity matrix
  • S VQ is the voltage reactive sensitivity matrix
  • J -1 is the inverse matrix of the Jacobian matrix.
  • Each element in the sensitivity matrix S VP such as S ij , represents the contribution rate of the active output of the jth photovoltaic to the voltage rise at the i-th bus, and is used to represent the jth photovoltaic when the voltage at the i-th bus is exceeded. The proportion of active power that should be reduced.
  • Step S304 controlling the power station controller to send the matrix elements in the voltage sensitivity matrix to the corresponding regional controllers as sensitivity factors respectively;
  • Step S305 controlling each of the area controllers to receive a corresponding sensitivity factor, and sending the sensitivity factor to the corresponding local controller;
  • Step S306 Control each local controller to perform active cut control according to the received sensitivity factor.
  • active control can also use a droop control strategy. Unlike the fixed droop coefficient of distributed reactive power control, the active control needs to determine the droop coefficient based on the sensitivity factor ratio determined for the sensitivity matrix.
  • each voltage zone controller on the main feeder performs point-to-point communication with the power station controller in the substation, and the local controller transmits local power, power and other power parameter information to the voltage zone controller;
  • the voltage region controller performs power flow analysis on the power parameter information, calculates a Jacobian matrix, and inverts the sensitivity matrix of the Jacobian matrix;
  • the regional controller sends each sensitivity factor in the sensitivity matrix to the corresponding voltage region controller, and the voltage
  • the area controller sends the control parameter corresponding to the sensitivity factor to each voltage local controller in the area to realize the adjustment of the feeder voltage.
  • the reactive power compensation increases due to the inverter capacity. Therefore, when the photovoltaic active output is reduced to a certain extent, it is limited by the power factor. If the photovoltaic inverter is connected to the grid point, the power factor is minimum. If the feeder voltage still exceeds the upper limit, it is necessary to continue to reduce the photovoltaic active output while reducing reactive power compensation.
  • the present application is based on voltage sensitivity partitioning and distributed autonomous control, and is controlled step by step from bottom to top, first on-site control, then regional coordinated control, and finally overall coordinated control.
  • control means, the first reactive power compensation control, then adjust the tap of the on-load tap changer transformer, and finally the active cut control. This not only makes full use of each device in the distribution network, but also avoids excessive investment, and also maximizes the economic benefits of PV users.
  • the present application also discloses a distributed photovoltaic distribution network voltage control device.
  • FIG. 8 is a schematic structural diagram of a distributed photovoltaic distribution network voltage control apparatus according to an embodiment of the present invention.
  • the control apparatus includes:
  • the first control unit 401 is configured to control the local controller to perform reactive power line voltage local control on the photovoltaic inverter when the feeder line voltage rises and the warning value does not exceed the upper limit value;
  • the local controller uses the voltage reactive power droop control strategy for the photovoltaic inverter to perform reactive power line voltage local control. That is, by monitoring the voltage of the common connection point or the grid connection point of the power user, and controlling the reactive power output by the photovoltaic inverter according to a certain ratio of the relative fluctuation of the voltage, the voltage of the grid-connected point is adjusted and adjusted.
  • the first determining unit 402 is configured to: when the local controller performs the local control of the reactive feeder voltage on the photovoltaic inverter, when the feeder voltage continues to rise to the upper limit, determine whether the current region is absent Whether the power capacity is exhausted;
  • the first requesting unit 403 is configured to request regional reactive power line voltage coordination control to the area controller of the area where the local controller is located, based on the determination result of the reactive capacity exhaustion of the current area;
  • the reactive power supply of the photovoltaic inverter needs to be transferred to the feeder layer.
  • the second control unit 404 is configured to perform reactive power line voltage coordinated control on the photovoltaic inverter by using the area controller;
  • the area controller sends the reactive power compensation requirement to the upper and lower adjacent voltage area controllers according to the extent that the feeder voltage exceeds the upper limit value.
  • the local controller communicates with the corresponding area controller point-to-point, the local controller sends its remaining reactive capacity to the corresponding area controller, and the area controller compensates according to the demand of the adjacent area and the remaining capacity of the area. Determine the amount of compensation in this area. If the demand cannot be met, if the feeder voltage is still limited, continue to communicate with the upstream and downstream adjacent area controllers point-to-point, complete the above process, and so on.
  • a second requesting unit 405, configured to request adjustment to the power plant controller if the feeder voltage continues to rise to the upper limit value after performing reactive power line voltage coordinated control on the photovoltaic inverter by using the area controller On-load tap changer taps for on-load tap changer control;
  • the regional controller on the feeder collects the node voltage information of the local area, and sends the point-to-point to the power station controller of the substation.
  • the power station controller calculates the formula (3) and formula (4) for all the node voltages according to the voltage control threshold.
  • formula (4) is as follows:
  • n tap min is the minimum adjustable value of the tap position
  • n tap max is the maximum adjustable value of the tap position
  • x rate min is the minimum adjustable ratio of the tap
  • x rate max is the maximum adjustable ratio of the tap
  • n Tapnow is the current tap position of the load regulating transformer
  • n is the number of regions
  • V th min is the voltage lower limit
  • V th max is the voltage upper limit
  • V i is the photovoltaic grid point voltage
  • i is the PV user serial number.
  • the tap changer position adjustment command of the on-load tap changer can be obtained, and the on-load tap changer control is performed according to the tap changer position adjustment command of the on-load tap changer. This can alleviate or even solve the problem that the feeder voltage exceeds the upper limit value, thereby reducing or avoiding the reduction of photovoltaic active output and ensuring the economic benefit of the user.
  • the third control unit 406 is configured to perform active power reduction control on the photovoltaic inverter when the transformer tap reaches the action limit and the feeder voltage exceeds the upper limit value until the feeder voltage does not exceed the upper limit value.
  • the bottom-up step-by-step control strategy is adopted.
  • the local controller controls the reactive inverter voltage on the local inverter.
  • the regional controller is used to perform regional reactive feeder voltage coordinated control; when the reactive capacity along the line is exhausted and the feeder voltage still reaches the upper limit, The on-load voltage regulating transformer is controlled by the power station controller, and when the transformer tap reaches the action limit and the feeder voltage exceeds the upper limit value, the active power reduction control of the photovoltaic inverter is performed until the feeder voltage does not exceed the upper limit value.
  • control scheme disclosed in the present application combines the advantages of the centralized control scheme and the distributed control scheme, fully utilizes the reactive capacity of the whole network equipment and the photovoltaic inverters along the line, and effectively alleviates or even solves the problem that the feeder voltage exceeds The problem of the limit guarantees the economic benefits of the user.
  • the first control unit 401 includes:
  • a first control subunit configured to control a current local controller to perform reactive power line voltage local control on the photovoltaic inverter when the feeder voltage rises to that the alarm value does not exceed the upper limit value, and
  • the area controller sends a remaining reactive capacity value
  • a first request subunit configured to control the current local controller to request a reactive feeder voltage along the feeder to request other local controllers located in the same area after the reactive capacity of the current local controller is exhausted Ground control.
  • FIG. 9 a schematic structural diagram of a second control unit disclosed in the embodiment of the present invention, where the second control unit includes:
  • the second determining subunit 501 is configured to determine whether the current feeder voltage reaches the upper limit value
  • the first calculating sub-unit 502 may be configured to calculate a reactive power compensation value based on the determination result that the current feeder voltage reaches the upper limit value, and send the reactive power compensation value to the upstream and downstream area controllers;
  • the third determining subunit 503 is configured to determine whether the compensation value sent by the upstream and downstream area controllers is received based on the determination result that the current feeder voltage does not reach the upper limit value;
  • the second calculating subunit 504 is configured to calculate a reactive power compensation value of the local area based on a determination result of receiving the compensation value sent by the upstream and downstream area controllers;
  • the first sending subunit 505 is configured to send the reactive compensation value to the local controller of the local area;
  • the fourth determining sub-unit 506 is configured to determine whether the area meets the compensation requirement
  • the second transmitting subunit 507 is configured to send the remaining compensation value to the upstream and downstream area controller based on the determination result that the local area satisfies the compensation requirement.
  • the second requesting unit 405 includes:
  • a second control subunit configured to control the power station controller to calculate all node voltages according to a voltage control threshold, to obtain an on-load tapping transformer tap position adjustment command
  • the third control subunit is configured to perform on-load tap changer control according to the tap changer position adjustment command of the on-load tap changer.
  • the regional controller on the feeder collects the node voltage information of the local area, and sends the point-to-point to the power station controller of the substation.
  • the power station controller calculates the formula (3) and formula (4) for all the node voltages according to the voltage control threshold.
  • formula (4) is as follows:
  • n tap min is the minimum adjustable value of the tap position
  • n tap max is the maximum adjustable value of the tap position
  • x rate min is the minimum adjustable ratio of the tap
  • x rate max is the maximum adjustable ratio of the tap
  • n Tapnow is the current tap position of the load regulating transformer
  • n is the number of regions
  • V th min is the voltage lower limit
  • V th max is the voltage upper limit
  • V i is the photovoltaic grid point voltage
  • i is the PV user serial number.
  • the tap changer position adjustment command of the on-load tap changer can be obtained, and the on-load tap changer control is performed according to the tap changer position adjustment command of the on-load tap changer. This can alleviate or even solve the problem that the feeder voltage exceeds the upper limit value, thereby reducing or avoiding the reduction of photovoltaic active output and ensuring the economic benefit of the user.
  • FIG. 10 a schematic structural diagram of a third control unit disclosed in the embodiment of the present invention, where the third control unit includes:
  • the third sending subunit 601 is configured to send, by the area controller, electrical parameter information of the area to which the area controller belongs to the power station controller when performing active control on the photovoltaic inverter;
  • the electrical parameters include: local voltage and power.
  • the fourth control subunit 602 is configured to control the power station controller to perform power flow calculation on the electrical parameter information to obtain a Jacobian matrix
  • the feeder voltage is the result of all the loads along the line and the photovoltaics. That is to say, each PV user contributes to the rise of the feeder voltage, but the contribution is different. Because reducing the PV output to affect the economic benefits of each user, in order to share the power reduction amount fairly among the users along the line, it is proposed to use the Newton-Raphson algorithm to analyze the power flow along the line and obtain the Jacobian matrix.
  • a matrix inversion subunit 603, configured to obtain a voltage sensitivity matrix by inverting the Jacobian matrix by the power station controller
  • the inverse matrix obtained by inverting the Jacobian matrix is not all a voltage sensitivity matrix, and the voltage sensitivity matrix is only a part of the inverse matrix.
  • the element in the voltage sensitivity matrix is the sensitivity factor, which indicates the contribution rate of the photovoltaic output to the voltage rise, as shown in formula (5).
  • the expression of formula (5) is as follows:
  • is the node voltage phase angle correction vector
  • is the node voltage amplitude correction vector
  • ⁇ P is the node unbalanced active power vector
  • ⁇ Q is the node unbalanced reactive power vector
  • S ⁇ P is the phase angle Active sensitivity matrix
  • S ⁇ Q is the phase angle reactive sensitivity matrix
  • S VP is the voltage active sensitivity matrix
  • S VQ is the voltage reactive sensitivity matrix
  • J -1 is the inverse matrix of the Jacobian matrix.
  • Each element in the sensitivity matrix S VP such as s ij , represents the contribution rate of the active output of the jth photovoltaic to the voltage rise at the i-th bus, and is used to represent the jth photovoltaic when the voltage at the i-th bus is exceeded. The proportion of active power that should be reduced.
  • the first sending sub-unit 604 is configured to control the power station controller to respectively send the matrix elements in the voltage sensitivity matrix to the corresponding regional controllers as sensitivity factors;
  • the second sending sub-unit 605 is configured to control each of the area controllers to receive a corresponding sensitivity factor, and send the sensitivity factor to the corresponding local controller;
  • the fifth control subunit 606 is configured to control each of the local controllers to perform active cut control according to the received sensitivity factor.
  • active control can also use a droop control strategy. Unlike the fixed droop coefficient of distributed reactive power control, the active control needs to determine the droop coefficient based on the sensitivity factor ratio determined for the sensitivity matrix.
  • each voltage zone controller on the main feeder performs point-to-point communication with the power station controller in the substation, and the local controller transmits local power, power and other power parameter information to the voltage zone controller;
  • the voltage region controller performs power flow analysis on the power parameter information, calculates a Jacobian matrix, and inverts the sensitivity matrix of the Jacobian matrix;
  • the regional controller sends each sensitivity factor in the sensitivity matrix to the corresponding voltage region controller, the voltage region.
  • the controller sends the control parameters corresponding to the sensitivity factor to the local voltage controllers of the region to adjust the feeder voltage.
  • the reactive power compensation increases due to the inverter capacity. Therefore, when the photovoltaic active output is reduced to a certain extent, it is limited by the power factor. If the photovoltaic inverter is connected to the grid point, the power factor is minimum. If the feeder voltage still exceeds the upper limit, it is necessary to continue to reduce the photovoltaic active output while reducing reactive power compensation.
  • the present application is based on voltage sensitivity partitioning and distributed autonomous control, and is controlled step by step from bottom to top, first on-site control, then regional coordinated control, and finally overall coordinated control.
  • This avoids frequent communication between multiple electrical devices, not only can quickly control the feeder voltage, but also optimize the feeder voltage for a long time.
  • control means, the first reactive power compensation control, then adjust the tap of the on-load tap changer transformer, and finally the active cut control. This not only makes full use of each device in the distribution network, but also avoids excessive investment, and also maximizes the economic benefits of PV users.
  • an embodiment of the present invention further discloses a storage medium including computer executable instructions, where the computer executable instructions are used to execute a distributed photovoltaic distribution network voltage control method when executed by a computer processor, Methods include:
  • the local controller controls the local inverter to perform reactive power line voltage local control
  • the local controller After the local controller performs the local control of the reactive feeder voltage on the photovoltaic inverter, when the feeder voltage continues to rise to the upper limit value, it is determined whether the reactive capacity of the current region is exhausted;
  • the power plant controller is requested to adjust the tap of the on-load tap-changer transformer to perform on-load tap-changer control;
  • the photovoltaic inverter When the transformer tap reaches the operating limit and the feeder voltage exceeds the upper limit, the photovoltaic inverter is subjected to active cut control until the feeder voltage does not exceed the upper limit.
  • a storage medium containing computer executable instructions the computer executable instructions are not limited to the method operations as described above, and may also perform the distributed photovoltaic distribution network provided by any embodiment of the present invention. Related operations in the voltage control method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

本申请公开了一种分布式光伏配电网电压的控制方法及装置,采用自下而上的逐级控制策略,当馈线电压上升达到警戒值未超过上限值时,由就地控制器对光伏逆变器进行无功馈线电压就地控制;在当前区域的无功耗尽,而馈线电压仍达到上限值时,采用区域控制器进行区域无功馈线电压协调控制;当沿线无功容量均耗尽,而馈线电压仍达到上限值时,由电站控制器进行有载调压变压器控制,并在变压器分接头达到动作极限而馈线电压超过上限值时,对光伏逆变器进行有功削减控制,直至馈线电压不超过上限值。

Description

一种分布式光伏配电网电压的控制方法及装置 技术领域
本申请涉及光伏并网技术领域,例如一种分布式光伏配电网电压的控制方法及装置。
背景技术
随着全球能源、环境和气候问题的日益严峻,加快开发利用可再生能源以推动经济发展成为全社会的共识。在可再生能源的开发技术中,光伏发电技术日趋成熟并得到了广泛应用。
在光伏发电***中,应用最为广泛的是分布式光伏发电***。分布式光伏发电***是建在城市建筑物屋顶的光伏发电项目,需接入公共电网(主要是配电网),与公共电网一起为附近的用户供电。由于光伏发电***具有间歇性出力的特点,其发电功率受天气影响很大,因此光伏发电***的发电功率容易出现快速剧烈变化的情况。尤其是当光伏发电***的发电功率较大而***负荷较轻时,光伏发电***会出现逆向潮流,使电网电压上升出现过电压,导致电网馈线上的电压波动频繁。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
为解决分布式光伏发电***接入配电网带来的过电压问题,目前的控制方案主要有两种:第一种是集中式控制方案,该方案由电站控制器收集网络信息,然后电站控制器根据最优化目标和约束条件对收集的网络信息进行数据分析,最后把所得控制变量最优解发送回各发电单元。该方案对电站控制器的依赖程度较高,一旦电站控制器发生故障,电站控制器对全***的控制就会失灵。第二种是分布式控制方案,该方案中各发电单元以分布式方式控制,由各分布式控制器利用本地信息独自进行调节。该方案没有充分利用全 网设备,调节程度和调节效果有限。因此,如何提供一种分布式光伏配电网电压的控制方法以解决现有控制方案存在的问题是本领域技术人员亟需解决的技术问题。
有鉴于此,本发明实施例公开一种分布式光伏配电网电压的控制方法及装置,以解决集中式控制方案对电站控制器依赖程度高,分布式控制方案调节程度和调节效果有限的问题。
第一方面,本发明实施例提供一种分布式光伏配网电压的控制方法,包括:
当馈线电压上升达到警戒值未超过上限值时,控制就地控制器对光伏逆变器进行无功馈线电压就地控制;
当利用所述就地控制器对所述光伏逆变器进行无功馈线电压就地控制后,馈线电压继续上升到所述上限值时,判断当前区域的无功容量是否耗尽;
基于所述当前区域的无功容量耗尽的判断结果,向所述就地控制器所在区域的区域控制器请求区域无功馈线电压协调控制;
利用所述区域控制器对所述光伏逆变器进行无功馈线电压协调控制;
当沿线无功容量均耗尽后,基于馈线电压继续上升到所述上限值的结果,向电站控制器请求调节有载调压变压器抽头,进行有载调压变压器控制;
当变压器分接头达到动作极限而馈线电压超过所述上限值时,对所述光伏逆变器进行有功削减控制,直至馈线电压不超过所述上限值。
可选的,所述当馈线电压上升达到警戒值未超过上限值时,控制就地控制器对光伏逆变器进行无功馈线电压就地控制的过程包括:
当馈线电压上升达到所述警戒值未超过所述上限值时,控制当前就地控制器对所述光伏逆变器进行无功馈线电压就地控制,并向所述区域控制器发送剩余无功容量值;
在所述当前就地控制器的无功容量耗尽后,控制所述当前就地控制器沿馈线请求位于相同区域的其它就地控制器进行无功馈线电压就地控制。
可选的,控制就地控制器对光伏逆变器进行无功馈线电压就地控制包括:
控制所述就地控制器对所述光伏逆变器采用馈线电压无功下垂控制方法进行无功馈线电压就地控制。
可选的,所述利用所述区域控制器对所述光伏逆变器进行无功馈线电压协调控制包括:
判断当前馈线电压是否达到所述上限值;
基于所述当前馈线电压达到所述上限值的判断结果,计算无功补偿值,并将所述无功补偿值发送给上下游区域控制器;
基于所述当前馈线电压未达到所述上限值的判断结果,判断是否收到所述上下游区域控制器发送的补偿值;
基于收到所述上下游区域控制器发送的补偿值的判断结果,计算本区域无功补偿值;
向本区域的就地控制器发送所述无功补偿值;
判断本区域是否满足补偿需求;
基于本区域满足补偿需求的判断结果,将剩余补偿值发送给所述上下游区域控制器。
可选的,所述对所述光伏逆变器进行有载调压变压器控制包括:
控制所述电站控制器根据电压控制阈值对所有节点电压进行计算,得到有载调压变压器分接头位置调节指令;
根据所述有载调压变压器分接头位置调节指令,进行有载调压变压器控制。
可选的,所述对所述光伏逆变器进行有功削减控制包括:
当对所述光伏逆变器进行有功控制时,通过所述区域控制器将所述区域控制器所属区域的电气参数信息上发给所述电站控制器;
控制所述电站控制器对所述电气参数信息进行潮流计算,得到雅克比矩阵;
通过所述电站控制器对所述雅克比矩阵求逆得到电压灵敏度矩阵;
控制所述电站控制器将所述电压灵敏度矩阵中的矩阵元素作为灵敏度因子分别下发给对应的区域控制器;
控制每个所述区域控制器接收对应的灵敏度因子,并将灵敏度因子下发给对应的就地控制器;
控制每个就地控制器根据接收的灵敏度因子进行有功削减控制。
第二方面,本发明实施例还提供一种分布式光伏配网电压的控制装置,包括:
第一控制单元,设置为当馈线电压上升达到警戒值未超过上限值时,控制就地控制器对光伏逆变器进行无功馈线电压就地控制;
第一判断单元,设置为当利用所述就地控制器对所述光伏逆变器进行无功馈线电压就地控制后,馈线电压继续上升到所述上限值时,判断当前区域的无功容量是否耗尽;
第一请求单元,设置为基于所述当前区域的无功容量耗尽的判断结果,向所述就地控制器所在区域的区域控制器请求区域无功馈线电压协调控制;
第二控制单元,设置为利用所述区域控制器对所述光伏逆变器进行无功馈线电压协调控制;
第二请求单元,设置为沿线无功容量均耗尽后,基于馈线电压继续上升到所述上限值的结果,向电站控制器请求调节有载调压变压器抽头,进行有载调压变压器控制;
第三控制单元,设置为当变压器分接头达到动作极限而馈线电压超过所述上限值时,对所述光伏逆变器进行有功削减控制,直至馈线电压不超过所述上限值。
可选的,所述第一控制单元包括:
第一控制子单元,设置为当馈线电压上升达到所述警戒值未超过所述上限值时,控制当前就地控制器对所述光伏逆变器进行无功馈线电压就地控制,并向所述区域控制器发送剩余无功容量值;
第一请求子单元,设置为在所述当前就地控制器的无功容量耗尽后,控制所述当前就地控制器沿馈线请求位于相同区域的其它就地控制器进行无功馈线电压就地控制。
可选的,所述第一控制单元设置为:
控制所述就地控制器对所述光伏逆变器采用馈线电压无功下垂控制方法进行无功馈线电压就地控制。
可选的,所述第二控制单元包括:
第二判断子单元,设置为判断当前馈线电压是否达到所述上限值;
第一计算子单元,设置为基于所述当前馈线电压达到所述上限值的判断结果,计算无功补偿值,并将所述无功补偿值发送给上下游区域控制器;
第三判断子单元,设置为基于所述当前馈线电压未达到所述上限值的判断结果,判断是否收到所述上下游区域控制器发送的补偿值;
第二计算子单元,设置为基于收到所述上下游区域控制器发送的补偿值的判断结果,计算本区域无功补偿值;
第一发送子单元,设置为向本区域的就地控制器发送所述无功补偿值;
第四判断子单元,设置为判断本区域是否满足补偿需求;
第二发送子单元,设置为基于本区域满足补偿需求的判断结果,将剩余补偿值发送给所述上下游区域控制器。
可选的,所述第二请求单元包括:
第二控制子单元,设置为控制所述电站控制器根据电压控制阈值对所有节点电压进行计算,得到有载调压变压器分接头位置调节指令;
第三控制子单元,设置为根据所述有载调压变压器分接头位置调节指令,进行有载调压变压器控制。
可选的,所述第三控制单元包括:
第三发送子单元,设置为当对所述光伏逆变器进行有功控制时,通过所述区域控制器将所述区域控制器所属区域的电气参数信息上发给所述电站控制器;
第四控制子单元,设置为控制所述电站控制器对所述电气参数信息进行潮流计算,得到雅克比矩阵;
矩阵求逆子单元,设置为通过所述电站控制器对所述雅克比矩阵求逆得到电压灵敏度矩阵;
第一下发子单元,设置为控制所述电站控制器将所述电压灵敏度矩阵中的矩阵元素作为灵敏度因子分别下发给对应的区域控制器;
第二下发子单元,设置为控制每个所述区域控制器接收对应的灵敏度因子,并将灵敏度因子下发给对应的就地控制器;
第五控制子单元,设置为控制每个就地控制器根据接收的灵敏度因子进行有功削减控制。
从上述的技术方案可知,本申请公开了一种分布式光伏配电网电压的控 制方法及装置,采用自下而上的逐级控制策略,当馈线电压上升达到警戒值未超过上限值时,首先由就地控制器对光伏逆变器进行无功馈线电压就地控制;在当前区域的无功耗尽,而馈线电压仍达到上限值时,采用区域控制器进行区域无功馈线电压协调控制;当沿线无功容量均耗尽,而馈线电压仍达到上限值时,由电站控制器进行有载调压变压器控制,并在变压器分接头达到动作极限而馈线电压超过上限值时,对光伏逆变器进行有功削减控制,直至馈线电压不超过上限值。由此可知,本申请公开的控制方案同时结合了集中式控制方案和分布式控制方案的优势,充分利用了全网设备和沿线光伏逆变器无功容量,有效缓解甚至解决了馈线电压超过上限值的问题,保证了用户的经济利益。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
图1为本发明实施例应用的配网***拓扑结构图;
图2为本发明实施例公开的一种对分布式光伏配网电压的控制层级的分层示意图;
图3为本发明实施例公开的一种对分布式光伏配网电压的控制层级的分区示意图;
图4为本发明实施例公开的一种分布式光伏配网电压的控制方法流程图;
图5为本发明实施例公开的一种对馈线电压的无功功率进行下垂控制的示意图;
图6为本发明实施例公开的一种利用区域控制器对光伏逆变器进行无功馈线电压协调控制的方法流程图;
图7为本发明实施例公开的一种对光伏逆变器进行有功削减的控制流程图;
图8为本发明实施例公开的一种分布式光伏配网电压的控制装置的结构示意图;
图9为本发明实施例公开的一种第二控制单元的结构示意图;
图10为本发明实施例公开的一种第三控制单元的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
本发明实施例公开了一种分布式光伏配电网电压的控制方法及装置,以解决现有集中式控制方案对电站控制器依赖程度高,分布式控制方案调节程度和调节效果有限的问题。
图1为本发明实施例应用的配网***拓扑结构简图,将上级输配电***视为一个恒压源AC,经110/10.5kV有载调压变压器后接一条放射状配网馈线,沿馈线接有负荷(如图1中示出的负荷1、负荷i和负荷N)和分布式光伏,其中,分布式光伏经逆变器和变压器并网。
从变压器低压侧开始编号,沿馈线对接有负荷和分布式光伏的节点进行编号,分别为0、1、2、……、N,相应每段线路阻抗为R 1+jX 1、……、R i+jX i、R N+jX N,其中,R i表示节点编号为i的线路电阻,X i表示节点编号为i的线路电抗,j为复数标记。节点接有负荷和DG(Distributed Generation,分布式发电)单元,每个DG单元由PV(PhotoVoltaic,太阳光电)组件、逆变器和变压器组成,下标表示其接入位置。
在对分布式光伏配网电压进行控制前,本申请首先对分布式光伏配网电压的控制层级进行了分层,如图2所示,将控制层级自下而上分为:用户层电压自治控制、馈线层电压协调控制和电站层电压统筹控制。用户层电压自治控制的代理为用户代理,对应就地控制器;馈线层电压协调控制的代理为馈线代理,对应区域控制器;电站层电压统筹控制的代理为变电站代理,对应电站控制器。每类代理根据实际情况可有多个。
用户层电压的就地控制由用户内部厂站***中的就地控制器来实现。当对光伏逆变器进行无功就地控制时,就地控制器利用本地光伏逆变器的无功容量进行调节;而当对光伏逆变器进行无功协调控制和有功控制时,就地控制器根据区域控制器下发的决策对本地用户光伏逆变器的输出功率进行调整,以实现电压控制。
馈线层电压协调控制由馈线上的区域控制器利用分布式多代理技术实 现。当馈线电压超过上限值而本地无功容量耗尽时,区域控制器通过相邻代理间的通信和本地计算得到解决电压过电压的决策。当进行有功控制时,区域控制器接收电站控制器的电压灵敏度计算结果,并将灵敏度因子下发给对应的就地控制器。
电站层电压统筹控制由变电站中的电站控制器来实现,只在有载调压变压器控制和有功控制时使用。当进行有载调压变压器控制时,电站控制器根据电压控制阈值对所有节点电压进行计算,得到有载调压变压器分接头位置调节指令。当对光伏逆变器进行有功控制时,馈线层的区域控制器将本区域功率和电压等电气参数信息点对点向上发送给变电站层的电站控制器,在电站控制器中进行潮流计算得到雅克比矩阵,对雅克比矩阵求逆得到电压灵敏度矩阵,然后将电压灵敏度矩阵中的矩阵元素作为灵敏度因子分别下发给对应的区域控制器。
本领域技术人员可以理解的是,在配网馈线阻抗比恒定不变的条件下,馈线上电压的最高点为有功功率或无功功率的注入节点,即线路首端可为分布式光伏的接入点。因此,在对分布式光伏逆变器的控制层级进行分层后,还可以根据分布式光伏接入点将配电网分区。
对配电网的分区策略主要在馈线层电压协调控制实现。具体的,根据馈线末端光伏用户电压灵敏度因子的大小,对光伏用户进行分区,可将灵敏度因子相对接近且和其他灵敏度因子相差较大的光伏用户,组成一个电压自治控制区域。其中,电压灵敏度因子可根据控制变量和扰动变量取期望的随机潮流计算得到。
举例说明,如图3所示,主干馈线上有光伏用户A和光伏用户B,分支馈线上有光伏用户X和光伏用户Y。光伏用户A内部有三组光伏阵列,分别经逆变器变为交流电,经配电箱与负荷一起接入0.4kV母线,然后经变压器升压并入主干馈线。光伏用户B内部光伏组件分两组经五个逆变器变为交流电,经配电箱和单独变压器并入主干馈线,负荷经单独变压器并网。光伏用户X类比光伏用户A,光伏用户Y类比光伏用户B。每一个光伏并网用户都装有一个就地控制器,能够得到并网点电压、光伏出力大小等信息。开始,可根据历史期望数据或规划容量等计算潮流,得到电压灵敏度因子。图3中显示的是光伏用户X和光伏用户Y的灵敏度相近且与光伏用户A和光伏用户B相差都较大,所以将 光伏用户X和光伏用户Y视为一个区域,光伏用户A和光伏用户B分别单独构成一个区域,相应设置区域控制器。
如图4所示,本发明实施例公开的一种分布式光伏配网电压的控制方法流程图,该方法包括如下步骤:
步骤S101、当馈线电压上升达到警戒值未超过上限值时,控制就地控制器对光伏逆变器进行无功馈线电压就地控制;
可选的,就地控制器对光伏逆变器采用电压无功下垂控制策略进行无功馈线电压就地控制。也即通过监测电力用户公共连接点或并网点的电压,并根据电压相对变动量按一定比例要求控制光伏逆变器输出的无功功率,以调节改善并网点电压。
如图5所示,横坐标为馈线电压(用V表示),纵坐标为光伏逆变器的无功功率(用Q表示),首先在用户层级对光伏逆变器进行无功控制,若馈线电压仍达到上限值,则再在馈线层级对光伏逆变器进行无功控制。可选的,用户层级的就地控制器监测用户并网电压,当馈线电压处于正常运行范围时,就地控制器控制本地光伏逆变器的有功功率跟随最大功率点即MPPT(Maximum Power Point Tracking,最大功率点跟踪)控制,光伏逆变器不进行无功调节;当馈线电压上升达到警戒值未超过上限值时,调节光伏逆变器无功功率以预防电压馈线电压超越上限值。
其中,光伏逆变器的无功功率最大值受公式(1)和公式(2)约束,即光伏逆变器的无功功率受限于光伏逆变器容量和并网点功率因数考核要求,公式(1)和公式(2)的表达式具体如下:
Figure PCTCN2018087438-appb-000001
Figure PCTCN2018087438-appb-000002
式中,P PV,i表示第i个光伏***的有功功率,Q PV,i表示第i个光伏***的无功功率,S INV,i表示第i个光伏***的光伏逆变器的容量,PF min表示最小功率因数,θ max表示最小功率因数PF min对应的功率因数角。
步骤S102、当利用所述就地控制器对所述光伏逆变器进行无功馈线电压就地控制后,馈线电压继续上升到所述上限值时,判断当前区域的无功容量是否耗尽,如果没有耗尽,则执行步骤S103,如果耗尽,执行步骤S104;
需要说明的是,当利用就地控制器对光伏逆变器进行无功馈线电压就地控制后,馈线电压低于上限值,则对分布式光伏配网电压的控制流程结束。
步骤S103、控制就地控制器对光伏逆变器进行无功馈线电压就地控制;
步骤S104、向所述就地控制器所在区域的区域控制器请求区域无功馈线电压协调控制,并继续执行步骤S105;
若当前区域无功容量耗尽而后馈线电压仍超过上限值,则需转由馈线层对光伏逆变器进行无功控制。
步骤S105、利用所述区域控制器对所述光伏逆变器进行无功馈线电压协调控制;
当利用区域控制器对光伏逆变器进行无功馈线电压协调控制后,馈线电压低于上限值,则对分布式光伏配网电压的控制流程结束。
可选的,区域控制器根据馈线电压超过上限值的程度,向上下相邻电压区域控制器发送无功补偿需求量。在相邻区域中,就地控制器与对应的区域控制器点对点通信,就地控制器向对应区域控制器发送自身剩余无功容量,区域控制器根据相邻区域需求补偿量和本区域剩余容量决定本区域补偿量。若无法满足需求,若馈线电压仍越限,则继续向上下游相邻区域控制器点对点通信,完成上述过程,以此类推。
步骤S106、当沿线无功容量耗尽后,若馈线电压继续上升到所述上限值,则向电站控制器请求调节有载调压变压器抽头,进行有载调压变压器控制;
可选的,馈线上的区域控制器采集本区域节点电压信息,并点对点发送给变电站的电站控制器。当沿线光伏逆变器的无功容量均耗尽却仍存在馈线电压超过上限值时,电站控制器根据电压控制阈值对所有节点电压进行公式(3)和公式(4)计算,公式(3)和公式(4)的表达式如下:
Figure PCTCN2018087438-appb-000003
Figure PCTCN2018087438-appb-000004
式中,n tap min为分接头位置最小可调值,n tap max为分接头位置最大可调值, x rate min为分接头最小可调比例,x rate max为分接头最大可调比例,n tapnow为有载调压变压器当前分接头位置,n为区域数量,V th min为电压下限值,V th max为电压上限值,V i为光伏并网点电压,i为光伏用户序号。
由此可以得到有载调压变压器分接头位置调节指令,根据有载调压变压器分接头位置调节指令,进行有载调压变压器控制。这样可以缓解甚至解决馈线电压超过上限值的问题,从而减少或避免光伏有功出力削减,保证用户经济收益。
当沿线无功没有耗尽时,继续判断馈线电压是否达到上限值。
步骤S107、当变压器分接头达到动作极限而馈线电压超过所述上限值时,对所述光伏逆变器进行有功削减控制,直至馈线电压不超过所述上限值。
当变压器分接头未达到动作极限而馈线电压超过所述上限值时,继续执行步骤S106。
综上可知,采用自下而上的逐级控制策略,当馈线电压上升达到警戒值未超过上限值时,首先由就地控制器对光伏逆变器进行无功馈线电压就地控制;在当前区域的无功耗尽,而馈线电压仍达到上限值时,采用区域控制器进行区域无功馈线电压协调控制;当区域控制器的无功耗尽,而馈线电压仍达到上限值时,由电站控制器进行有载调压变压器控制,并在变压器分接头达到动作极限而馈线电压超过上限值时,对光伏逆变器进行有功削减控制,直至馈线电压不超过上限值。由此可知,本申请公开的控制方案同时结合了集中式控制方案和分布式控制方案的优势,充分利用了全网设备和沿线光伏逆变器无功容量,有效缓解甚至解决了馈线电压超过上限值的问题,保证了用户的经济利益。
可选的,上述实施例中的步骤S101,包括:
当馈线电压上升达到警戒值未超过上限值时,当前就地控制器对光伏逆变器进行无功馈线电压就地控制,并向区域控制器发送剩余无功容量值;
在当前就地控制器的无功容量耗尽后,沿馈线请求位于相同区域的其它就地控制器进行无功馈线电压就地控制。
可选的,如图6所示,本申请一实施例公开的一种利用区域控制器对光伏逆变器进行无功馈线电压协调控制的方法流程图,该方法包括步骤:
步骤S201、判断当前馈线电压是否达到上限值,如果是,则执行步骤S202,如果不是,执行步骤S203;
步骤S202、计算无功补偿值,并将无功补偿值发送给上下游区域控制器;
步骤S203、判断是否收到所述上下游区域控制器发送的补偿值,如果否,则返回执行步骤S201,如果是,执行步骤S204;
步骤S204、计算本区域无功补偿值;
步骤S205、向本区域的就地控制器发送所述无功补偿值;
步骤S206、判断本区域是否满足补偿需求,如果否,则返回执行步骤S201,如果是,则执行步骤S207;
步骤S207、将剩余补偿值发送给上下游区域控制器。
可选的,步骤S106对光伏逆变器进行有载调压变压器控制的过程包括:
控制电站控制器根据电压控制阈值对所有节点电压进行计算,得到有载调压变压器分接头位置调节指令;
根据有载调压变压器分接头位置调节指令,进行有载调压变压器控制。
可选的,馈线上的区域控制器采集本区域节点电压信息,并点对点发送给变电站的电站控制器。当沿线光伏逆变器的无功容量均耗尽却仍存在馈线电压超过上限值时,电站控制器根据电压控制阈值对所有节点电压进行公式(3)和公式(4)计算,公式(3)和公式(4)的表达式如下:
Figure PCTCN2018087438-appb-000005
Figure PCTCN2018087438-appb-000006
式中,n tap min为分接头位置最小可调值,n tap max为分接头位置最大可调值,x rate min为分接头最小可调比例,x rate max为分接头最大可调比例,nt apnow为有载调压变压器当前分接头位置,n为区域数量,V th min为电压下限值,V th max为电压上限值,V i为光伏并网点电压,i为光伏用户序号。
由此可以得到有载调压变压器分接头位置调节指令,根据有载调压变压器分接头位置调节指令,对光伏逆变器进行有载调压变压器控制。这样可以 缓解甚至解决馈线电压超过上限值的问题,从而减少或避免光伏有功出力削减,保证用户经济收益。
可选的,如图7所示,本申请一实施例公开的一种对光伏逆变器进行有功削减的控制流程图,包括步骤:
步骤S301、当对光伏逆变器进行有功控制时,通过区域控制器将区域控制器所属区域的电气参数信息上发给电站控制器;
其中,电气参数包括:本地电压和功率等。
步骤S302、控制电站控制器对电气参数信息进行潮流计算,得到雅克比矩阵;
馈线电压是沿线所有负荷和光伏共同作用的结果,也就是说,每个光伏用户都对馈线电压的抬升有贡献,但贡献度不同。因为削减光伏出力要影响多个用户的经济收益,所以为了在沿线多个用户之间较公平地分担有功削减量,拟采用牛顿拉夫逊算法进行沿线潮流分析,求得雅克比矩阵。
步骤S303、通过电站控制器对雅克比矩阵求逆得到电压灵敏度矩阵;
需要说明的是,对雅克比矩阵求逆得到逆矩阵并不全是电压灵敏度矩阵,电压灵敏度矩阵只是逆矩阵中的一部分。其中,电压灵敏度矩阵中的元素即为灵敏度因子,表示光伏出力对电压上升的贡献率,见公式(5)所示。公式(5)的表达式如下:
Figure PCTCN2018087438-appb-000007
式中,Δθ为节点电压相角修正量向量,Δ|V|为节点电压幅值修正量向量,ΔP为节点不平衡有功功率向量,ΔQ为节点不平衡无功功率向量,S θP为相角有功灵敏度矩阵,S θQ为相角无功灵敏度矩阵,S VP为电压有功灵敏度矩阵,S VQ为电压无功灵敏度矩阵,J -1为雅可比矩阵的逆矩阵。
灵敏度矩阵S VP中的每个元素,如S ij表示第j个光伏的有功输出量对第i个母线处电压上升的贡献率,用其来表示第i个母线处电压越限时第j个光伏应该削减的有功比例。
步骤S304、控制所述电站控制器将所述电压灵敏度矩阵中的矩阵元素作为灵敏度因子分别下发给对应的区域控制器;
步骤S305、控制每个所述区域控制器接收对应的灵敏度因子,并将灵敏度因子下发给对应的就地控制器;
步骤S306、控制每个就地控制器根据接收的灵敏度因子进行有功削减控制。
可选的,有功控制也可以采用下垂控制策略。不同于分布式无功控制的固定下垂系数,有功控制需要根据就灵敏度矩阵确定的灵敏度因子比例来确定下垂系数。
其中,并不是沿线所有光伏用户均参与有功削减,只有电压越限点所在区域内光伏用户才削减有功。对于其他区域内的光伏用户,由于其削减有功调节效果有限,并且还影响该区域光伏用户的收益,因此其他区域的光伏用户不削减有功。
在对光伏逆变器进行有功控制时,主馈线上每个电压区域控制器与变电站中的电站控制器进行点对点通信,就地控制器向电压区域控制器发送本地电压、功率等电力参数信息;电压区域控制器对电力参数信息进行潮流分析,计算得到雅克比矩阵,对雅克比矩阵求逆得到灵敏度矩阵;区域控制器将灵敏度矩阵中的每个灵敏度因子点对点发送给对应电压区域控制器,电压区域控制器把灵敏度因子对应的控制参数下发给本区域的每个电压就地控制器,实现第馈线电压的调节。
在开始削减光伏有功出力时,由于逆变器容量一定,无功补偿增加,因此,当光伏有功出力削减到一定程度时,受功率因数限制,若光伏逆变器并网点已经达到功率因数最小值,而馈线电压仍超过上限值,则需继续削减光伏有功出力,同时减少无功补偿。
综上可知,本申请以电压灵敏度分区和分布式自治控制为基础,自下而上逐级控制,先就地控制,再区域协调控制,最后整体统筹控制。从而避免了每个电气设备间频繁大量通信,不仅可以快速控制馈线电压,而且又可以对馈线电压长期进行一定优化。在控制手段方面,先无功补偿控制,再调节有载调压变压器分接头,最后有功削减控制。这样既充分利用了配网中每种设备,又避免了过度投资,还最大程度保证光伏用户的经济效益。
与上述方法实施例相对应,本申请还公开了一种分布式光伏配网电压的 控制装置。
参见图8,本发明实施例公开的一种分布式光伏配网电压的控制装置的结构示意图,控制装置包括:
第一控制单元401,设置为当馈线电压上升达到警戒值未超过上限值时,控制就地控制器对光伏逆变器进行无功馈线电压就地控制;
可选的,就地控制器对光伏逆变器采用电压无功下垂控制策略进行无功馈线电压就地控制。也即通过监测电力用户公共连接点或并网点的电压,并根据电压相对变动量按一定比例要求控制光伏逆变器输出的无功功率,以调节改善并网点电压。
第一判断单元402,设置为当利用所述就地控制器对所述光伏逆变器进行无功馈线电压就地控制后,馈线电压继续上升到所述上限值时,判断当前区域的无功容量是否耗尽;
第一请求单元403,设置为基于所述当前区域的无功容量耗尽的判断结果,向所述就地控制器所在区域的区域控制器请求区域无功馈线电压协调控制;
若当前区域无功容量耗尽而后馈线电压仍超过上限值,则需转由馈线层对光伏逆变器进行无功控制。
第二控制单元404,设置为利用所述区域控制器对所述光伏逆变器进行无功馈线电压协调控制;
可选的,区域控制器根据馈线电压超过上限值的程度,向上下相邻电压区域控制器发送无功补偿需求量。在相邻区域中,就地控制器与对应的区域控制器点对点通信,就地控制器向对应区域控制器发送自身剩余无功容量,区域控制器根据相邻区域需求补偿量和本区域剩余容量决定本区域补偿量。若无法满足需求,若馈线电压仍越限,则继续向上下游相邻区域控制器点对点通信,完成上述过程,以此类推。
第二请求单元405,设置为当利用所述区域控制器对所述光伏逆变器进行无功馈线电压协调控制后,若馈线电压继续上升到所述上限值,则向电站控制器请求调节有载调压变压器抽头,进行有载调压变压器控制;
可选的,馈线上的区域控制器采集本区域节点电压信息,并点对点发送给变电站的电站控制器。当沿线光伏逆变器的无功容量均耗尽却仍存在馈线 电压超过上限值时,电站控制器根据电压控制阈值对所有节点电压进行公式(3)和公式(4)计算,公式(3)和公式(4)的表达式如下:
Figure PCTCN2018087438-appb-000008
Figure PCTCN2018087438-appb-000009
式中,n tap min为分接头位置最小可调值,n tap max为分接头位置最大可调值,x rate min为分接头最小可调比例,x rate max为分接头最大可调比例,n tapnow为有载调压变压器当前分接头位置,n为区域数量,V th min为电压下限值,V th max为电压上限值,V i为光伏并网点电压,i为光伏用户序号。
由此可以得到有载调压变压器分接头位置调节指令,根据有载调压变压器分接头位置调节指令,进行有载调压变压器控制。这样可以缓解甚至解决馈线电压超过上限值的问题,从而减少或避免光伏有功出力削减,保证用户经济收益。
第三控制单元406,设置为当变压器分接头达到动作极限而馈线电压超过所述上限值时,对所述光伏逆变器进行有功削减控制,直至馈线电压不超过所述上限值。
综上可知,采用自下而上的逐级控制策略,当馈线电压上升达到警戒值未超过上限值时,由就地控制器对光伏逆变器进行无功馈线电压就地控制;在当前区域的无功容量耗尽,而馈线电压仍达到上限值时,采用区域控制器进行区域无功馈线电压协调控制;当沿线无功容量均耗尽,而馈线电压仍达到上限值时,由电站控制器进行有载调压变压器控制,并在变压器分接头达到动作极限而馈线电压超过上限值时,对光伏逆变器进行有功削减控制,直至馈线电压不超过上限值。由此可知,本申请公开的控制方案同时结合了集中式控制方案和分布式控制方案的优势,充分利用了全网设备和沿线光伏逆变器无功容量,有效缓解甚至解决了馈线电压超过上限值的问题,保证了用户的经济利益。
可选的,第一控制单元401包括:
第一控制子单元,设置为当馈线电压上升达到所述警戒值未超过所述上限值时,控制当前就地控制器对所述光伏逆变器进行无功馈线电压就地控制,并向所述区域控制器发送剩余无功容量值;
第一请求子单元,设置为在所述当前就地控制器的无功容量耗尽后,控制所述当前就地控制器沿馈线请求位于相同区域的其它就地控制器进行无功馈线电压就地控制。
可选的,如图9所示,本发明实施例公开的一种第二控制单元的结构示意图,第二控制单元包括:
第二判断子单元501,设置为判断当前馈线电压是否达到所述上限值;
第一计算子单元502,可设置为基于所述当前馈线电压达到所述上限值的判断结果,计算无功补偿值,并将所述无功补偿值发送给上下游区域控制器;
第三判断子单元503,设置为基于所述当前馈线电压未达到所述上限值的判断结果,判断是否收到所述上下游区域控制器发送的补偿值;
第二计算子单元504,设置为基于收到所述上下游区域控制器发送的补偿值的判断结果,则计算本区域无功补偿值;
第一发送子单元505,设置为向本区域的就地控制器发送所述无功补偿值;
第四判断子单元506,设置为判断本区域是否满足补偿需求;
第二发送子单元507,设置为基于本区域满足补偿需求的判断结果,将剩余补偿值发送给所述上下游区域控制器。
可选的,第二请求单元405包括:
第二控制子单元,设置为控制所述电站控制器根据电压控制阈值对所有节点电压进行计算,得到有载调压变压器分接头位置调节指令;
第三控制子单元,设置为根据所述有载调压变压器分接头位置调节指令,进行有载调压变压器控制。
可选的,馈线上的区域控制器采集本区域节点电压信息,并点对点发送给变电站的电站控制器。当沿线光伏逆变器的无功容量均耗尽却仍存在馈线电压超过上限值时,电站控制器根据电压控制阈值对所有节点电压进行公式 (3)和公式(4)计算,公式(3)和公式(4)的表达式如下:
Figure PCTCN2018087438-appb-000010
Figure PCTCN2018087438-appb-000011
式中,n tap min为分接头位置最小可调值,n tap max为分接头位置最大可调值,x rate min为分接头最小可调比例,x rate max为分接头最大可调比例,n tapnow为有载调压变压器当前分接头位置,n为区域数量,V th min为电压下限值,V th max为电压上限值,V i为光伏并网点电压,i为光伏用户序号。
由此可以得到有载调压变压器分接头位置调节指令,根据有载调压变压器分接头位置调节指令,进行有载调压变压器控制。这样可以缓解甚至解决馈线电压超过上限值的问题,从而减少或避免光伏有功出力削减,保证用户经济收益。
可选的,如图10所示,本发明实施例公开的一种第三控制单元的结构示意图,第三控制单元包括:
第三发送子单元601,设置为当对所述光伏逆变器进行有功控制时,通过所述区域控制器将所述区域控制器所属区域的电气参数信息上发给所述电站控制器;
其中,电气参数包括:本地电压和功率等。
第四控制子单元602,设置为控制所述电站控制器对所述电气参数信息进行潮流计算,得到雅克比矩阵;
馈线电压是沿线所有负荷和光伏共同作用的结果,也就是说,每个光伏用户都对馈线电压的抬升有贡献,但贡献度不同。因为削减光伏出力要影响各用户的经济收益,所以为了在沿线各用户之间较公平地分担有功削减量,拟采用牛顿拉夫逊算法进行沿线潮流分析,求得雅克比矩阵。
矩阵求逆子单元603,设置为通过所述电站控制器对所述雅克比矩阵求逆得到电压灵敏度矩阵;
需要说明的是,对雅克比矩阵求逆得到逆矩阵并不全是电压灵敏度矩阵,电压灵敏度矩阵只是逆矩阵中的一部分。其中,电压灵敏度矩阵中的元素即为灵敏度因子,表示光伏出力对电压上升的贡献率,见公式(5)所示。公式 (5)的表达式具体如下:
Figure PCTCN2018087438-appb-000012
式中,Δθ为节点电压相角修正量向量,Δ|V|为节点电压幅值修正量向量,ΔP为节点不平衡有功功率向量,ΔQ为节点不平衡无功功率向量,S θP为相角有功灵敏度矩阵,S θQ为相角无功灵敏度矩阵,S VP为电压有功灵敏度矩阵,S VQ为电压无功灵敏度矩阵,J -1为雅可比矩阵的逆矩阵。
灵敏度矩阵S VP中的每个元素,如s ij表示第j个光伏的有功输出量对第i个母线处电压上升的贡献率,用其来表示第i个母线处电压越限时第j个光伏应该削减的有功比例。
第一下发子单元604,设置为控制所述电站控制器将所述电压灵敏度矩阵中的矩阵元素作为灵敏度因子分别下发给对应的区域控制器;
第二下发子单元605,设置为控制每个所述区域控制器接收对应的灵敏度因子,并将灵敏度因子下发给对应的就地控制器;
第五控制子单元606,设置为控制每个就地控制器根据接收的灵敏度因子进行有功削减控制。
可选的,有功控制也可以采用下垂控制策略。不同于分布式无功控制的固定下垂系数,有功控制需要根据就灵敏度矩阵确定的灵敏度因子比例来确定下垂系数。
其中,并不是沿线所有光伏用户均参与有功削减,只有电压越限点所在区域内光伏用户才削减有功。对于其他区域内的光伏用户,由于其削减有功调节效果有限,并且还影响该区域光伏用户的收益,因此其他区域的光伏用户不削减有功。
在对光伏逆变器进行有功控制时,主馈线上每个电压区域控制器与变电站中的电站控制器进行点对点通信,就地控制器向电压区域控制器发送本地电压、功率等电力参数信息;电压区域控制器对电力参数信息进行潮流分析,计算得到雅克比矩阵,对雅克比矩阵求逆得到灵敏度矩阵;区域控制器将灵敏度矩阵中的各灵敏度因子点对点发送给对应电压区域控制器,电压区域控制器把灵敏度因子对应的控制参数下发给本区域的各电压就地控制器,实现馈线电压的调节。
在开始削减光伏有功出力时,由于逆变器容量一定,无功补偿增加,因此,当光伏有功出力削减到一定程度时,受功率因数限制,若光伏逆变器并网点已经达到功率因数最小值,而馈线电压仍超过上限值,则需继续削减光伏有功出力,同时减少无功补偿。
综上可知,本申请以电压灵敏度分区和分布式自治控制为基础,自下而上逐级控制,先就地控制,再区域协调控制,最后整体统筹控制。从而避免了多个电气设备间频繁大量通信,不仅可以快速控制馈线电压,而且又可以对馈线电压长期进行一定优化。在控制手段方面,先无功补偿控制,再调节有载调压变压器分接头,最后有功削减控制。这样既充分利用了配网中每种设备,又避免了过度投资,还最大程度保证光伏用户的经济效益。
需要说明的是,装置实施例中,每个组成部分的具体工作原理,请参见方法实施例对应部分,此次不再赘述。
可选的,本发明实施例还公开一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行一种分布式光伏配网电压的控制方法,该方法包括:
当馈线电压上升达到警戒值未超过上限值时,控制就地控制器对光伏逆变器进行无功馈线电压就地控制;
当利用所述就地控制器对所述光伏逆变器进行无功馈线电压就地控制后,馈线电压继续上升到所述上限值时,判断当前区域的无功容量是否耗尽;
基于所述当前区域的无功容量耗尽的判断结果,向所述就地控制器所在区域的区域控制器请求区域无功馈线电压协调控制;
利用所述区域控制器对所述光伏逆变器进行无功馈线电压协调控制;
当沿线无功容量均耗尽后,基于馈线电压继续上升到所述上限值的结果,向电站控制器请求调节有载调压变压器抽头,进行有载调压变压器控制;
当变压器分接头达到动作极限而馈线电压超过所述上限值时,对所述光伏逆变器进行有功削减控制,直至馈线电压不超过所述上限值。
当然,本发明实施例所提供的一种包含计算机可执行指令的存储介质,其计算机可执行指令不限于如上所述的方法操作,还可以执行本发明任意实施例所提供的分布式光伏配网电压的控制方法中的相关操作。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。

Claims (13)

  1. 一种分布式光伏配网电压的控制方法,包括:
    当馈线电压上升达到警戒值未超过上限值时,控制就地控制器对光伏逆变器进行无功馈线电压就地控制;
    当利用所述就地控制器对所述光伏逆变器进行无功馈线电压就地控制后,馈线电压继续上升到所述上限值时,判断当前区域的无功容量是否耗尽;
    基于所述当前区域的无功容量耗尽的判断结果,向所述就地控制器所在区域的区域控制器请求区域无功馈线电压协调控制;
    利用所述区域控制器对所述光伏逆变器进行无功馈线电压协调控制;
    当沿线无功容量均耗尽后,基于馈线电压继续上升到所述上限值的结果,向电站控制器请求调节有载调压变压器抽头,进行有载调压变压器控制;
    当变压器分接头达到动作极限而馈线电压超过所述上限值时,对所述光伏逆变器进行有功削减控制,直至馈线电压不超过所述上限值。
  2. 根据权利要求1所述的控制方法,其中,所述当馈线电压上升达到警戒值未超过上限值时,控制就地控制器对光伏逆变器进行无功馈线电压就地控制的过程包括:
    当馈线电压上升达到所述警戒值未超过所述上限值时,控制当前就地控制器对所述光伏逆变器进行无功馈线电压就地控制,并向所述区域控制器发送剩余无功容量值;
    在所述当前就地控制器的无功容量耗尽后,控制所述当前就地控制器沿馈线请求位于相同区域的其它就地控制器进行无功馈线电压就地控制。
  3. 根据权利要求1所述的控制方法,其中,控制就地控制器对光伏逆变器进行无功馈线电压就地控制包括:
    控制所述就地控制器对所述光伏逆变器采用馈线电压无功下垂控制方法进行无功馈线电压就地控制。
  4. 根据权利要求1所述的控制方法,其中,所述利用所述区域控制器对所述光伏逆变器进行无功馈线电压协调控制包括:
    判断当前馈线电压是否达到所述上限值;
    基于所述当前馈线电压达到所述上限值的判断结果,计算无功补偿值,并将所述无功补偿值发送给上下游区域控制器;
    基于所述当前馈线电压未达到所述上限值的判断结果,判断是否收到所述上下游区域控制器发送的补偿值;
    基于收到所述上下游区域控制器发送的补偿值的判断结果,计算本区域无功补偿值;
    向本区域的就地控制器发送所述无功补偿值;
    判断本区域是否满足补偿需求;
    基于本区域满足补偿需求的判断结果,将剩余补偿值发送给所述上下游区域控制器。
  5. 根据权利要求1所述的控制方法,其中,所述对所述光伏逆变器进行有载调压变压器控制包括:
    控制所述电站控制器根据电压控制阈值对所有节点电压进行计算,得到有载调压变压器分接头位置调节指令;
    根据所述有载调压变压器分接头位置调节指令,进行有载调压变压器控制。
  6. 根据权利要求1所述的控制方法,其中,所述对所述光伏逆变器进行有功削减控制包括:
    当对所述光伏逆变器进行有功控制时,通过所述区域控制器将所述区域控制器所属区域的电气参数信息上发给所述电站控制器;
    控制所述电站控制器对所述电气参数信息进行潮流计算,得到雅克比矩阵;
    通过所述电站控制器对所述雅克比矩阵求逆得到电压灵敏度矩阵;
    控制所述电站控制器将所述电压灵敏度矩阵中的矩阵元素作为灵敏度因子分别下发给对应的区域控制器;
    控制每个所述区域控制器接收对应的灵敏度因子,并将灵敏度因子下发给对应的就地控制器;
    控制每个就地控制器根据接收的灵敏度因子进行有功削减控制。
  7. 一种分布式光伏配网电压的控制装置,包括:
    第一控制单元,设置为:当馈线电压上升达到警戒值未超过上限值时,控制就地控制器对光伏逆变器进行无功馈线电压就地控制;
    第一判断单元,设置为当利用所述就地控制器对所述光伏逆变器进行无功馈线电压就地控制后,馈线电压继续上升到所述上限值时,判断当前区域的无功容量是否耗尽;
    第一请求单元,设置为基于所述当前区域的无功容量耗尽的判断结果,向所述就地控制器所在区域的区域控制器请求区域无功馈线电压协调控制;
    第二控制单元,设置为利用所述区域控制器对所述光伏逆变器进行无功馈线电压协调控制;
    第二请求单元,设置为沿线无功容量均耗尽后,基于馈线电压继续上升到所述上限值的结果,向电站控制器请求调节有载调压变压器抽头,进行有载调压变压器控制;
    第三控制单元,设置为当变压器分接头达到动作极限而馈线电压超过所述上限值时,对所述光伏逆变器进行有功削减控制,直至馈线电压不超过所述上限值。
  8. 根据权利要求7所述的控制装置,其中,所述第一控制单元包括:
    第一控制子单元,设置为当馈线电压上升达到所述警戒值未超过所述上限值时,控制当前就地控制器对所述光伏逆变器进行无功馈线电压就地控制,并向所述区域控制器发送剩余无功容量值;
    第一请求子单元,设置为在所述当前就地控制器的无功容量耗尽后,控制所述当前就地控制器沿馈线请求位于相同区域的其它就地控制器进行无功馈线电压就地控制。
  9. 根据权利要求7所述的控制装置,其中,所述第一控制单元设置为:
    控制所述就地控制器对所述光伏逆变器采用馈线电压无功下垂控制方法进行无功馈线电压就地控制。
  10. 根据权利要求7所述的控制装置,其中,所述第二控制单元包括:
    第二判断子单元,设置为判断当前馈线电压是否达到所述上限值;
    第一计算子单元,设置为基于所述当前馈线电压达到所述上限值的判断结果,计算无功补偿值,并将所述无功补偿值发送给上下游区域控制器;
    第三判断子单元,设置为基于所述当前馈线电压未达到所述上限值的判断结果,判断是否收到所述上下游区域控制器发送的补偿值;
    第二计算子单元,设置为基于收到所述上下游区域控制器发送的补偿值的判断结果,计算本区域无功补偿值;
    第一发送子单元,设置为向本区域的就地控制器发送所述无功补偿值;
    第四判断子单元,设置为判断本区域是否满足补偿需求;
    第二发送子单元,设置为基于本区域满足补偿需求的判断结果,将剩余补偿值发送给所述上下游区域控制器。
  11. 根据权利要求7所述的控制装置,其中,所述第二请求单元包括:
    第二控制子单元,设置为控制所述电站控制器根据电压控制阈值对所有节点电压进行计算,得到有载调压变压器分接头位置调节指令;
    第三控制子单元,设置为根据所述有载调压变压器分接头位置调节指令,进行有载调压变压器控制。
  12. 根据权利要求7所述的控制装置,其中,所述第三控制单元包括:
    第三发送子单元,设置为当对所述光伏逆变器进行有功控制时,通过所述区域控制器将所述区域控制器所属区域的电气参数信息上发给所述电站控制器;
    第四控制子单元,设置为控制所述电站控制器对所述电气参数信息进行潮流计算,得到雅克比矩阵;
    矩阵求逆子单元,设置为通过所述电站控制器对所述雅克比矩阵求逆得到电压灵敏度矩阵;
    第一下发子单元,设置为控制所述电站控制器将所述电压灵敏度矩阵中的矩阵元素作为灵敏度因子分别下发给对应的区域控制器;
    第二下发子单元,设置为控制每个所述区域控制器接收对应的灵敏度因子,并将灵敏度因子下发给对应的就地控制器;
    第五控制子单元,设置为控制每个就地控制器根据接收的灵敏度因子进行有功削减控制。
  13. 一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行以实现如权利要求1-6中任一所述的一种分布式光伏配网电压的控制方法。
PCT/CN2018/087438 2017-05-22 2018-05-18 一种分布式光伏配电网电压的控制方法及装置 WO2018214810A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE212018000228.2U DE212018000228U1 (de) 2017-05-22 2018-05-18 Steuervorrichtung für Spannung eines verteilten Photovoltaik-Verteilungsnetzes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710363104.2 2017-05-22
CN201710363104.2A CN107069823B (zh) 2017-05-22 2017-05-22 一种分布式光伏配电网电压的控制方法及装置

Publications (1)

Publication Number Publication Date
WO2018214810A1 true WO2018214810A1 (zh) 2018-11-29

Family

ID=59609673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/087438 WO2018214810A1 (zh) 2017-05-22 2018-05-18 一种分布式光伏配电网电压的控制方法及装置

Country Status (3)

Country Link
CN (1) CN107069823B (zh)
DE (1) DE212018000228U1 (zh)
WO (1) WO2018214810A1 (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110350597A (zh) * 2019-06-21 2019-10-18 武汉理工大学 基于分布式光伏有功-无功优化的配电网电压控制方法
CN111082428A (zh) * 2018-12-20 2020-04-28 国网上海市电力公司 一种基于大数据分析的新能源电站电压控制基准调整方法
CN112366720A (zh) * 2020-10-30 2021-02-12 南京因泰莱电器股份有限公司 新能源***无功调节方法
CN112784475A (zh) * 2020-12-28 2021-05-11 云南电网有限责任公司瑞丽供电局 基于多代理技术的配电网多级电压协调控制方法
CN112994120A (zh) * 2021-03-22 2021-06-18 阳光电源股份有限公司 一种逆变***、逆变器及其无功控制方法
CN113824155A (zh) * 2021-08-23 2021-12-21 国网浙江省电力有限公司温州供电公司 一种光伏接入配电馈线的功率均衡削减方法
CN113937829A (zh) * 2021-11-16 2022-01-14 华北电力大学 一种基于d3qn的主动配电网多目标无功控制方法
CN114123136A (zh) * 2021-11-30 2022-03-01 国网浙江杭州市萧山区供电有限公司 一种分布式能源条件下配电网的保护方法
CN114123218A (zh) * 2021-11-24 2022-03-01 国网山东省电力公司电力科学研究院 分布式光伏接入末端配电网的过电压分层分区抑制方法
CN114155116A (zh) * 2021-11-10 2022-03-08 北京市腾河智慧能源科技有限公司 低压分布式光伏出力异常的诊断方法及***、设备、存储介质
CN114336658A (zh) * 2021-12-13 2022-04-12 国网辽宁省电力有限公司葫芦岛供电公司 一种含分布式光伏及无功调节设备的配网无功控制方法
CN114465358A (zh) * 2022-01-25 2022-05-10 国网福建省电力有限公司 分布式光伏逆变器控制***及方法
CN114580770A (zh) * 2022-03-14 2022-06-03 国网湖北省电力有限公司电力科学研究院 一种面向储能优化配置的低压配电网电压灵敏度快速求解方法
CN116388211A (zh) * 2023-06-07 2023-07-04 国网上海能源互联网研究院有限公司 分布式光伏并网电压越限治理方法、装置、***和介质
CN116488350A (zh) * 2023-05-26 2023-07-25 南京中汇电气科技有限公司 一种分布式新能源群控群调***及方法
CN117691753A (zh) * 2024-02-02 2024-03-12 中国电力科学研究院有限公司 一种基于云边端一体协同的分布式光伏分层分级调控方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107069823B (zh) * 2017-05-22 2020-02-21 国网浙江省电力公司宁波供电公司 一种分布式光伏配电网电压的控制方法及装置
CN107453398B (zh) * 2017-09-01 2019-11-29 南方电网科学研究院有限责任公司 基于多代理的配电网的分布式控制***及分布式控制方法
CN107994587A (zh) * 2017-12-06 2018-05-04 国网江苏省电力有限公司淮安供电分公司 一种高渗透率光伏配电网就地电压控制方法
CN109004653B (zh) * 2018-09-07 2023-03-07 东北大学 一种有功无功耦合治理光伏接入引起农网过电压的方法
CN110247399A (zh) * 2019-04-17 2019-09-17 李文转 一种基于蒙特卡洛模拟的配电网光伏最大消纳方法及***
CN110571801B (zh) * 2019-09-11 2020-11-13 云南电网有限责任公司临沧供电局 变压器分接开关与分布式电源协调控制的低电压治理方法
CN111244950B (zh) * 2020-02-28 2021-10-08 广东工业大学 一种分布式光伏配电网的分区方法及装置
CN111490551B (zh) * 2020-05-21 2023-05-05 云南电网有限责任公司大理供电局 基于分布式牛顿法的配电网光伏发电集群电压控制方法
CN112994097A (zh) * 2021-03-04 2021-06-18 河北工业大学 一种基于智能配变终端***的高比例分布式光伏协同控制方法
CN113452033B (zh) * 2021-06-29 2022-10-18 佛山电力设计院有限公司 分区自治的含高比例光伏配电网电压控制方法及存储介质
CN114498660B (zh) * 2022-01-24 2024-05-14 国网安徽省电力有限公司电力科学研究院 一种分布式小水电并网协调控制***及方法
CN115347577B (zh) * 2022-10-13 2023-01-03 石家庄科林物联网科技有限公司 基于分布式光伏的多区域限值电压调控方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103595135A (zh) * 2013-11-21 2014-02-19 国家电网公司 中低压区域电网智能无功优化与协调控制***
CN104201691A (zh) * 2014-08-06 2014-12-10 国网上海市电力公司 一种无功优化控制方法及***
US20150168981A1 (en) * 2013-12-13 2015-06-18 General Electric Company Hybrid high-inertia synchronous condenser facility
CN205921387U (zh) * 2016-06-16 2017-02-01 上海交通大学 配电网分层电压控制***
CN107069823A (zh) * 2017-05-22 2017-08-18 国网浙江省电力公司宁波供电公司 一种分布式光伏配电网电压的控制方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103138269B (zh) * 2013-02-06 2015-04-01 上海交通大学 基于主动机制的分层分布式配电网电压调控***及方法
CN104518513A (zh) * 2013-09-30 2015-04-15 北京电研华源电力技术有限公司 配电网电压调整及无功补偿全网协调控制的方法及装置
CN104319775A (zh) * 2014-09-27 2015-01-28 国家电网公司 适应大规模风电并网的无功电压控制方法
CN106300369B (zh) * 2016-06-16 2017-11-14 上海交通大学 一种基于等效电压降落指标的分层电压控制***及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103595135A (zh) * 2013-11-21 2014-02-19 国家电网公司 中低压区域电网智能无功优化与协调控制***
US20150168981A1 (en) * 2013-12-13 2015-06-18 General Electric Company Hybrid high-inertia synchronous condenser facility
CN104201691A (zh) * 2014-08-06 2014-12-10 国网上海市电力公司 一种无功优化控制方法及***
CN205921387U (zh) * 2016-06-16 2017-02-01 上海交通大学 配电网分层电压控制***
CN107069823A (zh) * 2017-05-22 2017-08-18 国网浙江省电力公司宁波供电公司 一种分布式光伏配电网电压的控制方法及装置

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111082428A (zh) * 2018-12-20 2020-04-28 国网上海市电力公司 一种基于大数据分析的新能源电站电压控制基准调整方法
CN111082428B (zh) * 2018-12-20 2024-04-02 国网上海市电力公司 一种基于大数据分析的新能源电站电压控制基准调整方法
CN110350597B (zh) * 2019-06-21 2022-11-29 武汉理工大学 基于分布式光伏有功-无功优化的配电网电压控制方法
CN110350597A (zh) * 2019-06-21 2019-10-18 武汉理工大学 基于分布式光伏有功-无功优化的配电网电压控制方法
CN112366720A (zh) * 2020-10-30 2021-02-12 南京因泰莱电器股份有限公司 新能源***无功调节方法
CN112784475A (zh) * 2020-12-28 2021-05-11 云南电网有限责任公司瑞丽供电局 基于多代理技术的配电网多级电压协调控制方法
CN112784475B (zh) * 2020-12-28 2023-08-18 云南电网有限责任公司瑞丽供电局 基于多代理技术的配电网多级电压协调控制方法
CN112994120A (zh) * 2021-03-22 2021-06-18 阳光电源股份有限公司 一种逆变***、逆变器及其无功控制方法
CN112994120B (zh) * 2021-03-22 2024-04-12 阳光电源股份有限公司 一种逆变***、逆变器及其无功控制方法
CN113824155A (zh) * 2021-08-23 2021-12-21 国网浙江省电力有限公司温州供电公司 一种光伏接入配电馈线的功率均衡削减方法
CN113824155B (zh) * 2021-08-23 2023-09-22 国网浙江省电力有限公司温州供电公司 一种光伏接入配电馈线的功率均衡削减方法
CN114155116A (zh) * 2021-11-10 2022-03-08 北京市腾河智慧能源科技有限公司 低压分布式光伏出力异常的诊断方法及***、设备、存储介质
CN113937829A (zh) * 2021-11-16 2022-01-14 华北电力大学 一种基于d3qn的主动配电网多目标无功控制方法
CN114123218A (zh) * 2021-11-24 2022-03-01 国网山东省电力公司电力科学研究院 分布式光伏接入末端配电网的过电压分层分区抑制方法
CN114123218B (zh) * 2021-11-24 2024-02-02 国网山东省电力公司电力科学研究院 分布式光伏接入末端配电网的过电压分层分区抑制方法
CN114123136A (zh) * 2021-11-30 2022-03-01 国网浙江杭州市萧山区供电有限公司 一种分布式能源条件下配电网的保护方法
CN114336658A (zh) * 2021-12-13 2022-04-12 国网辽宁省电力有限公司葫芦岛供电公司 一种含分布式光伏及无功调节设备的配网无功控制方法
CN114336658B (zh) * 2021-12-13 2023-12-22 国网辽宁省电力有限公司葫芦岛供电公司 一种含分布式光伏及无功调节设备的配网无功控制方法
CN114465358A (zh) * 2022-01-25 2022-05-10 国网福建省电力有限公司 分布式光伏逆变器控制***及方法
CN114580770B (zh) * 2022-03-14 2024-05-31 国网湖北省电力有限公司电力科学研究院 一种面向储能优化配置的低压配电网电压灵敏度快速求解方法
CN114580770A (zh) * 2022-03-14 2022-06-03 国网湖北省电力有限公司电力科学研究院 一种面向储能优化配置的低压配电网电压灵敏度快速求解方法
CN116488350A (zh) * 2023-05-26 2023-07-25 南京中汇电气科技有限公司 一种分布式新能源群控群调***及方法
CN116488350B (zh) * 2023-05-26 2023-10-27 南京中汇电气科技有限公司 一种分布式新能源群控群调***及方法
CN116388211B (zh) * 2023-06-07 2023-08-11 国网上海能源互联网研究院有限公司 分布式光伏并网电压越限治理方法、装置、***和介质
CN116388211A (zh) * 2023-06-07 2023-07-04 国网上海能源互联网研究院有限公司 分布式光伏并网电压越限治理方法、装置、***和介质
CN117691753A (zh) * 2024-02-02 2024-03-12 中国电力科学研究院有限公司 一种基于云边端一体协同的分布式光伏分层分级调控方法
CN117691753B (zh) * 2024-02-02 2024-04-19 中国电力科学研究院有限公司 一种基于云边端一体协同的分布式光伏分层分级调控方法

Also Published As

Publication number Publication date
CN107069823A (zh) 2017-08-18
CN107069823B (zh) 2020-02-21
DE212018000228U1 (de) 2020-01-16

Similar Documents

Publication Publication Date Title
WO2018214810A1 (zh) 一种分布式光伏配电网电压的控制方法及装置
Han et al. Hierarchical energy management for PV/hydrogen/battery island DC microgrid
CN104578151B (zh) 大型光伏电站并网逆变器无功与电压控制方法
CN107086578B (zh) 一种光伏配电网的区域电压分层分布式协同控制***
CN103208803A (zh) 风电和光电集中并网的无功电压优化控制方法
CN112803505B (zh) 分布式电压源变流器协同控制方法及交直流混联微电网
CN107104446A (zh) 一种以全局最优为目标的电网自动电压控制方法及***
CN103401272B (zh) 基于区域协调的光伏电站并网电压控制方法
CN103580030A (zh) 并网型光伏电站无功电压控制方法及***
CN105720611A (zh) 风电场无功功率控制方法及***
WO2018103251A1 (zh) 直流微电网的控制设备及控制方法、直流微电网***
CN109038656B (zh) 计及有功输出状态的大型光伏电站avc控制方法及***
CN105762838A (zh) 一种风电集群无功电压多目标控制方法
CN109149662A (zh) 一种光伏并网***多无功源协调出力的控制方法
CN106816890A (zh) 一种光伏电站频率调节方法及***
CN108777493A (zh) 一种基于灵敏度矩阵的低压微网二次电压控制方法
CN105162129B (zh) 计及分布式电源最优配置的配网无功电压控制方法
CN105098787B (zh) 一种基于十一宫图的配电网分布式光伏无功协调控制算法
CN105958535A (zh) 分布式电源集群控制***及其控制方法
CN107516901B (zh) 自动电压控制中500kV变电站之间协调电压控制方法
WO2019127898A1 (zh) 一种多并网光伏逆变器***无功分配方法
CN107611970A (zh) 分布式光伏和电动汽车的不确定性配网的优化方法
CN105576718A (zh) 一种分布式新能源高渗透率情形下交直流配网源荷优化分配控制方法
CN105429178B (zh) 一种光伏电站avc的控制方法
CN115021272A (zh) 有源配电网过电压控制***及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18806429

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18806429

Country of ref document: EP

Kind code of ref document: A1