WO2018214347A1 - 一种电力电子型电抗器性能测试装置 - Google Patents

一种电力电子型电抗器性能测试装置 Download PDF

Info

Publication number
WO2018214347A1
WO2018214347A1 PCT/CN2017/101874 CN2017101874W WO2018214347A1 WO 2018214347 A1 WO2018214347 A1 WO 2018214347A1 CN 2017101874 W CN2017101874 W CN 2017101874W WO 2018214347 A1 WO2018214347 A1 WO 2018214347A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
soft start
rectifier
phase
inverter
Prior art date
Application number
PCT/CN2017/101874
Other languages
English (en)
French (fr)
Inventor
夏武
夏文
宋玉锋
孟领刚
沈卫峰
王宗臣
王新明
冯国伟
钱培泉
顾勇
李晓菊
邱素素
王春生
Original Assignee
江苏现代电力科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏现代电力科技股份有限公司 filed Critical 江苏现代电力科技股份有限公司
Publication of WO2018214347A1 publication Critical patent/WO2018214347A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere

Definitions

  • the invention belongs to the technical field of reactive power compensation equipment testing, and mainly relates to a power electronic reactor performance testing device.
  • the series reactor is an important part of the intelligent suppression harmonic reactive compensation module, and its electrical characteristics directly affect the stable operation of the reactive power compensation equipment. According to the requirements of the standard GBT1094.6-2011 and JB54346-1998, the impedance test, temperature rise test, overload capability test, and 1.2 times rated current test with harmonics are required before the factory and the design verification verification stage of the reactor, and the above test is judged. Whether the reactor meets the design specifications.
  • Temperature rise test requires additional temperature test instrument for temperature test. Therefore, the correlation test is poor in consistency and low in efficiency.
  • the harmonic suppression reactive power compensation module used is required to withstand certain harmonic power.
  • the reactor related standard requires that the series reactor be able to withstand harmonic currents within 35%, and It can operate stably for a long time and meet the temperature rise requirements of reactors.
  • the prior art is tested under the power frequency, and it is impossible to truly simulate the actual situation on the site, and it is impossible to carry out the harmonic test of the full load of the reactor.
  • the purpose of the present invention is to address the shortcomings of the prior art, and propose a power electronic reactor performance testing device to overcome the cumbersome testing of the existing reactor and the inability to perform the temperature rise and loss testing in the case of analog field harmonics.
  • a power electronic reactor performance testing device comprising: a soft start module, an LCL filter module, a rectifier module, an energy storage module, an inverter module, a measurement module and a control unit module;
  • the soft start module, the LCL filter module, the rectifier module, the energy storage module, and the inverter module are sequentially connected, the input end of the soft start module is connected to an external power source, and the output end of the inverter module is connected to the tested reactor, the measurement The module, the soft start module and the inverter module are respectively connected with the control unit module, and the measurement module feeds back the sensor signal to the control unit module, the control unit module controls the soft start module and the drive inverter module; the measurement module includes a signal processing unit and a separate And signal The external power supply voltage and current sensor connected to the unit, the energy storage unit output voltage sensor, the inverter module output voltage and current sensor, and the multi-channel temperature sensor that monitors the temperature of the reactor under test.
  • the soft start module includes a soft start unit disposed on each phase line, the soft start unit includes soft start micro switches (Ka1, Kb1, Kc1), soft start resistors (Ras, Rbs, Rcs), and power controllable The switch (Ka2, Kb2, Kc2); after the soft start micro switch is connected in series with the soft start resistor, the power controllable switch is connected at both ends of the soft start micro switch and the soft start resistor series circuit.
  • the soft start micro switch and the soft start resistor are connected in series.
  • the energy storage module on the rear side of the rectifier module is precharged to reduce the impact of the rectifier module charging on the power grid. When the power controllable switch is closed, the soft start switch is disconnected. .
  • the soft-start microswitches (Ka1, Kb1, Kc1) are contactors or relays with a rated current lower than 10A, single-phase contactors or one relay when the external power source is single-phase, three-phase relays or three when three-phase Contactor.
  • the soft start resistors (Ras, Rbs, Rcs) are aluminum shell power resistors, glass glaze power resistors or metal film power resistors, and the power controllable switches (Ka2, Kb2, Kc2) are used for the rectifier module after normal testing. Power supply modules on the side require high-power relays, magnetic holding relays, contactors or molded case circuit breakers with electric operating mechanisms.
  • the LCL filtering module includes an LCL filtering unit disposed on each phase line, and the LCL filtering unit includes a grid side inductance (Lsa, Lsb, Lsc), a filter capacitor (Cda, Cdb, Cdc), and a damping resistor (Rda, Rdb).
  • Lsa, Lsb, Lsc grid side inductance
  • Cda, Cdb, Cdc filter capacitor
  • Rda, Rdb damping resistor
  • the grid side inductance is connected with the output end of the soft start module, the rectification side inductance is connected with the input end of the rectifier module; the grid side inductance is connected in series with the rectification side inductance
  • One end of the filter capacitor is connected to the circuit between the grid side inductor and the rectifier side inductor, and the other end of the filter capacitor is connected to one end of the damping resistor, and the other end of the damping resistor is connected to the neutral line N of the external power source.
  • the rectifier module is configured to convert an alternating current supplied by an external power source into a direct current power, the direct current power may be adjusted, or may not be adjusted, and the rectifier module may be a single-phase full-bridge, a single-phase half-bridge or a three-phase bridge.
  • the rectifier module adopts a single-phase bridge type uncontrollable rectifier circuit composed of four diodes;
  • the rectifier module uses a three-phase bridge type uncontrollable rectifier circuit composed of six diodes.
  • the rectifier module uses four IGBTs or MOSFETs
  • a single-phase bridge type controllable rectifier circuit composed of (V1 to V4) or a single-phase bridge type uncontrollable rectifier circuit and a PFC circuit
  • the single-phase bridge type uncontrollable rectifier circuit is composed of four diodes (D11 to D14)
  • the PFC circuit is connected to an output end of the single-phase bridge type uncontrolled rectifier circuit, and is composed of an inductor, an IGBT or a MOSFET, and a diode;
  • the rectifier module is a single-phase bridge type controllable rectifier circuit composed of six IGBTs or MOSFETs (V1 to V6), a VIENNA rectifier bridge circuit, or a three-phase bridge type uncontrollable rectifier
  • the circuit and the dual-channel interleaved PFC circuit are composed of six diodes (D11-D16) connected at the output end of the three-phase bridge type uncontrolled rectifier circuit. It consists of two inductors, two IGBTs or MOSFETs and two diodes.
  • the rectifier module is connected to the control unit module and driven by the control unit module.
  • the energy storage module includes at least one DC electrolytic capacitor Cz, at least one non-electrode capacitor Cb, and one discharge resistor R.
  • the DC electrolytic capacitor Cz, the small-capacity non-polar capacitor Cb, and the discharge resistor R are all connected in parallel.
  • the energy storage module provides DC support for the rear side inverter module, and the existence of a small capacity non-polar capacitor, on the one hand, as a controllable power device switching spike absorption device, on the other hand, enhances the DC side current ripple resistance.
  • the inverter module is an inverter bridge circuit composed of four full-control devices (V11 to V14); when the reactor under test is a three-phase reactance, the The inverter module (5) is an inverter bridge circuit composed of six full-control devices (V11 to V16).
  • the control unit module adjusts the duty ratio of the controllable power device of the rectifier module and the inverter module by changing the frequency and amplitude of the modulated wave, so that the inverter module outputs the variable frequency and the variable amplitude AC power. Simulate different working conditions.
  • the control unit module collects the voltage and current at both ends of the reactor under test under various working conditions, and calculates the inductance of the tested reactor under the fundamental wave or a certain harmonic by using a fundamental wave extraction or a certain harmonic extraction algorithm.
  • the loss of the reactor under test is calculated by current and voltage; the real-time temperature of the multi-channel temperature measurement point is cyclically detected and recorded by means of time division multiplexing.
  • the frequency and the modulation degree of the modulation signal of the inverter module can be directly controlled to change the voltage across the reactance to realize the measurement of the reactor, and the constant voltage mode takes the output voltage as a given reference amount.
  • the flow mode is a closed-loop control for real-time detection of a given current and reactance detection current.
  • the test current is controllable, which facilitates overcurrent protection of the test device and the reacted reactance.
  • the power electronic reactor performance testing device of the invention can simulate different working conditions, provide a plurality of testing modes, and complete the temperature rise test of the reactor, and the load can be switched between the test modes without stopping the machine, thereby ensuring the test work. Coherence, saving time, significantly improving work efficiency, and the test device of the invention is convenient to operate, has small power loss, and saves electric energy.
  • the advantages of test data can be transmitted in real time in the background.
  • Figure 1 is a block diagram of a power electronic reactor performance test system
  • Figure 2 is a circuit diagram of the soft start module
  • FIG. 3 is a circuit diagram of the LCL filter module
  • Figure 4 is a rectifier module circuit topology diagram 1;
  • Figure 5 is a rectifier module circuit topology diagram 2;
  • FIG. 7 is a circuit diagram of the energy storage module
  • Figure 9 is a block diagram of the measurement module structure
  • Figure 10 is a block diagram of the control unit module structure.
  • a power electronic reactor performance testing device as shown in FIG. 1 includes a soft start module 1, an LCL filter module 2, a rectifier module 3, an energy storage module 4, an inverter module 5, a measurement module 6, and a control unit module 7. And other components.
  • the soft start module 1, the LCL filter module 2, the rectifier module 3, the energy storage module 4 and the inverter module 5 are sequentially connected, the input end of the soft start module 1 is connected to an external power source, and the output end of the inverter module 5 is measured.
  • the reactor 9 is connected.
  • the soft start module 1, the inverter module 5, and the measurement module 6 are respectively connected to the control unit module 7, and the control unit module 7 receives the sensor signal transmitted by the measurement module 6, controls and drives the soft start module 1 and the inverter module 5, and the rectifier module 3
  • the control unit module 7 is also connected to the rectifier module 3 to control and drive the rectifier module 3.
  • the external power source 8 is an alternating current.
  • the soft start module 1 includes three soft start units respectively disposed on the A, B, and C three-phase lines, and the soft start unit includes a soft start micro switch (Ka1/Kb1/Kc1), and a soft start. Resistor (Ras/Rbs/Rcs) and power controllable switch (Ka2/Kb2/Kc2). After the soft-start microswitch is connected in series with the soft-start resistor, the power controllable switch is connected in series with the soft-start microswitch and the soft-start resistor. Both ends of the circuit.
  • the control unit module 7 controls the on/off of the corresponding switch components in the soft start module 1, and activates the corresponding soft start unit.
  • the external power source 8 is single-phase AC power
  • only the soft start unit set on the A phase line, that is, the A group portion formed by the Ka1, Ras, and Ka2 outside the dotted line frame is activated; when the external power source 8 is two-phase power, the startup setting is started.
  • the soft start unit on the A phase line and the B phase line; when the external power source 8 is a three-phase alternating current, the soft start unit set on the A, B, and C phase lines is simultaneously activated.
  • the soft start micro switches Ka1, Kb1, Kc1 adopt small power contactors or relays with rated current less than 10A; the soft start resistors Ras, Rbs, Rcs preferably use aluminum shell power resistors, glass glaze power resistors or metal film power
  • the power controllable switches Ka2, Kb2, Kc2 are high power relays, magnetic holding relays, contactors or molded case circuit breakers with electric operating mechanisms.
  • the LCL filter module 3 also includes three LCL filter units respectively disposed on the three-phase line.
  • the LCL filtering unit is composed of a grid side inductance (Lsa, Lsb, Lsc), a filter capacitor (Cda, Cdb, Cdc), a damping resistor (Rda, Rdb, Rdc), and a rectification side inductor (Lra, Lrb, Lrc).
  • the grid side inductors Lsa, Lsb, and Lsc are respectively connected to the output terminals A1, B1, and C1 of the soft start module, and the rectifying side inductors Lra, Lrb, and Lrc are respectively connected to the input terminals A', B', and C' of the rectifier module 3, respectively. .
  • the grid side inductance Lsa is connected in series with the rectifying side inductor Lra, and one end of the filter capacitor Cda is connected to the circuit between the grid side inductance Lsa and the rectification side inductor Lra, and the filter capacitor Cda is additionally One end is connected to one end of the damping resistor Rda, and the other end of the damping resistor Rda is connected to the neutral line of the external power source 8.
  • the filtering unit disposed on the other two phase lines and the A phase line filtering unit adopt the same architecture, as shown in FIG.
  • the rectifier module 3 is configured to convert an alternating current supplied from an external power source into a direct current, and the output DC voltage may or may not be adjusted.
  • the rectifier module 3 When the DC voltage outputted by the rectifier module 3 is set to be unregulated: if the external power source 8 is single-phase AC or two-phase power, the rectifier module 3 can adopt four diodes (D1 to D4) to form a single-phase bridge type uncontrollable rectifier circuit.
  • the two input ends of the single-phase bridge type uncontrollable rectifier circuit are respectively connected to the A phase line and the neutral line N (that is, the input voltage of the rectifier module is a single phase voltage), or are connected to the A phase line and the B phase line ( That is, the input voltage of the rectifier module is the line voltage); if the external power source 8 is a three-phase alternating current, the rectifier module 3 can adopt six diodes (D1 to D6) to form a three-phase bridge type uncontrollable rectifier circuit, and the three-phase bridge cannot The three input terminals of the control rectifier circuit are respectively connected to three phase lines connected to the three input ends of the filter module, as shown in FIG. 4 .
  • the rectifier module 3 can adopt a single-phase bridge type controllable rectifier circuit composed of four IGBTs or MOSFETs (V1 to V4), as shown in FIG. 6; As shown in FIG. 5, the rectifier module 3 is composed of a single-phase bridge type uncontrollable rectifier circuit and a first-stage PFC circuit.
  • the single-phase bridge type uncontrollable rectifier circuit is composed of four diodes (D11 to D14), and the PFC circuit is connected.
  • the PFC circuit includes an inductor L1 and an IGBT or MOSFET switch transistor Q1 and a diode D17, an inductor L1 and a diode D17 string. Connected to the positive output line of the rectifier module, one end of the switch Q1 is connected between the inductor L1 and the diode D17, and the other end is connected to the negative output line of the rectifier module.
  • the two input terminals of the rectifier module 3 are connected to the A-phase line and the neutral line N.
  • the two input terminals of the rectifier module 3 are respectively connected to the A phase line and the B phase line.
  • the rectifier module 3 may adopt six IGBTs or MOSFETs (V1 to V6) to form a three-phase bridge type controllable rectifier circuit, as shown in FIG. 6; or, using VIENNA The rectifier bridge circuit; or, as shown in FIG.
  • the rectifier module 3 is composed of a three-phase bridge type uncontrollable rectifier circuit and a first-stage dual-channel interleaved PFC circuit, and the three-phase bridge type uncontrollable rectifier circuit has six diodes (D11 ⁇ D16)
  • the PFC converter is connected to the output of a three-phase bridge type uncontrolled rectifier circuit composed of six diodes (D11 to D14), consisting of two inductors (L1 and L2), two IGBT or MOSFET switch tubes ( Q1 and Q2) and two diodes (D17 and D18), wherein the inductor L1 and the diode D17 are connected in series on the positive output line of the rectifier module 3, and the inductor L2 and the diode D18 are connected in series and connected to the inductor L1 and the diode D17.
  • one end of the switch Q1 is connected between the inductor L1 and the diode D17, and the other end is connected to the negative output line of the rectifier module 3.
  • One end of the switch Q2 is connected between the inductor L2 and the diode D18, and the other end is connected with the rectifier module.
  • the negative output line of 3 is connected.
  • the energy storage module 4 is connected to the DC output end of the rectifier module 3, and includes at least one DC electrolytic capacitor Cz, at least one infinite capacitor Cb and one discharge resistor R connected to the DC bus of the energy storage module, as shown in FIG. .
  • the inverter module 5 is composed of six full-control device IGBTs or MOSFETs (V11-V16) to form an inverter full bridge, as shown in FIG. 8, the DC voltage input terminal Vdc+, Vdc-connected energy storage of the inverter full bridge.
  • the DC bus of the module when the reactor under test is single-phase reactance Lc1, the two ends of the reactor are connected to the output terminals U and V of the inverter module 5; when the reactor under test is a three-phase reactance lc3, it will be tested.
  • the three input ends of the reactor are respectively connected to the output terminals U, V, W of the inverter module 5, and the three output ends of the reactor are connected in parallel.
  • the inverter module 5 adopts a three-phase bridge type full-control topology structure.
  • the measured reactance is set to three-phase reactance or single-phase reactance through a human-machine interface or a host computer.
  • the control unit module automatically changes the control strategy and the drive output mode according to the type of reactance, so that the same test device can test both single-phase reactance and three-phase reactance.
  • the inverter module 5 changes the frequency and amplitude of the modulated wave through the control unit module 7, and indirectly adjusts the duty ratio of the controllable power device to convert the direct current into a variable frequency, variable amplitude alternating current for the reactance value of the reactor, Overload capability, loss under harmonic conditions, and temperature rise test.
  • the test device can be set to the power frequency constant voltage mode, the power frequency constant current mode, the power frequency superimposed harmonic constant voltage or the power frequency superimposed harmonic constant current mode to test the reactor.
  • the measurement module 6 includes an information processing unit 11 and an electrical signal sensor respectively connected to the information processing unit 11 and a multi-channel temperature sensor 15 for monitoring the temperature of the reactor, the electrical signal sensor including monitoring external power input.
  • a current sensor 13 for current a voltage sensor 14 for monitoring an external power source voltage, a voltage sensor 12 for monitoring a direct current output of the energy storage module, a voltage sensor 16 for monitoring an output voltage of the inverter module, a current sensor 17 for outputting current, and the like.
  • the multi-channel temperature sensor 15 includes a sensor for monitoring the ambient temperature, a sensor for monitoring the temperature of the core of the reactor under test, and a temperature of the winding. When the reactor under test is a three-phase reactance, the temperatures of the three windings need to be separately measured.
  • the inverter part needs to detect the voltage of the inverter DC side, the voltage and current value at both ends of the reactor, set the test mode of the test device through the human-machine interface, and set the power frequency voltage amplitude, the power frequency current amplitude, the harmonic current ratio or Harmonic voltage ratio is tested for reactance under different conditions.
  • the voltage sensor is a Hall voltage sensor or a linear optocoupler sensor.
  • the temperature sensor can be an infrared temperature measuring module, a thermocouple or a thermistor, etc., and measure the temperature rise of the reactor at different points.
  • the control unit module 7 is as shown in FIG.
  • the background online communication interface 27 is 232, 485, GPRS, network module or wireless module.
  • the control unit module 7 collects the voltage and current at both ends of the tested reactor under various working conditions, and calculates the inductance of the reactance under the fundamental wave or a certain harmonic by the fundamental wave extraction or a certain harmonic extraction algorithm; The voltage is calculated by the loss of the reactor; the real-time temperature of the multi-channel temperature measurement point is cyclically detected by means of time division multiplexing, and recorded; the upper computer is connected through the background online interface, the test data is transmitted, and the test report is generated.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Rectifiers (AREA)
  • Inverter Devices (AREA)

Abstract

一种电力电子型电抗器性能测试装置,包括顺次相接的软启动模块(1)、LCL滤波模块(2)、整流模块(3)、储能模块(4)、逆变模块(5)、测量模块(6)以及控制单元模块(7),软启动模块(1)的输入端与外部电源连接,逆变模块(5)输出端与被测电抗器(9)连接,测量模块(6)、软启动模块(1)及逆变模块(5)分别与控制单元模块(7)连接,由测量模块(6)向控制单元模块(7)反馈传感器信息,控制单元模块(7)控制软启动模块(1)和驱动逆变模块(5)。电力电子型电抗器性能测试装置可模拟不同工况,并完成对电抗器的温升测试,各测试模式之间可带负荷切换,无需停机,保障了测试工作的连贯性,节省时间,提高了工作效率,具有操作方便,功损耗小,节省电能,可联机后台,可实时传输测试数据的优点。

Description

一种电力电子型电抗器性能测试装置 技术领域
本发明属于无功补偿设备测试技术领域,主要涉及一种电力电子型电抗器性能测试装置。
背景技术
串联电抗器作为智能抑制谐波型无功补偿模块的重要组成部分,其电气特性直接影响着无功补偿设备的稳定运行。根据标准GBT1094.6-2011和JB54346-1998的要求,电抗器出厂前与设计核实验证阶段需要进行阻抗测试、温升测试、过载能力测试、带谐波1.2倍额定电流测试等,通过以上测试判断所述电抗器是否满足设计指标。
现有技术中对电抗器测试时,大多数采用调压器加一个升流器的方式进行电抗额定电流和电抗率的测试,最主要的测试项目为电感量测试,也就是用伏安法测试电流和电压,通过不同仪器仪表的组合连接完成,需要使用三相调压器、电压表、电流表等进行测试,这种测试平台只能在工频下进行电抗器的额定电流的测试,电压和电流需要统计出来,并进行相关后期数据处理得到电抗值。对于电抗器的损耗测试,需要使用专用的电能质量测试仪表进行测试,并且无法模拟实际现场运行时的带谐波时电抗器损耗测试。温升测试,需要额外使用温度测试仪表,进行温度测试。因此相关测试的连贯性差,效率低。针对现场谐波较大的场合,所使用的抑制谐波型无功补偿模块要求其能够承受一定的谐波能力,电抗器相关标准要求串联电抗器要求能够承受35%以内的谐波电流,并能长期稳定运行,满足电抗器温升要求。现有技术均是在工频下的测试,无法真正模拟现场实际情况,无法做到电抗器的出厂满负载带谐波测试。
发明内容
本发明目的是针对现有技术的不足,提出了一种电力电子型电抗器性能测试装置,以克服现有电抗器测试繁琐以及无法进行模拟现场带谐波情况下温升和损耗测试的缺点。
本发明提供的技术方案为:
一种电力电子型电抗器性能测试装置,其特征在于,包括软启动模块、LCL滤波模块、整流模块、储能模块、逆变模块、测量模块和控制单元模块;
所述软启动模块、LCL滤波模块、整流模块、储能模块、逆变模块顺次连接,软启动模块的输入端与外部电源连接,逆变模块输出端与被测电抗器连接,所述测量模块、软启动模块及逆变模块分别与控制单元模块连接,由测量模块向控制单元模块反馈传感器信号,控制单元模块控制软启动模块和驱动逆变模块;所述测量模块包括信号处理单元和分别与信号处 理单元连接的外部电源电压与电流传感器、储能单元输出电压传感器、逆变模块输出电压与电流传感器以及监测被测电抗器温度的多路温度传感器。
在上述方案的基础上,进一步改进或优选的方案还包括:
所述的软启动模块包括设置在各相线上的软启动单元,所述软启动单元包括软启动微型开关(Ka1、Kb1、Kc1)、软启动电阻(Ras、Rbs、Rcs)和功率可控开关(Ka2、Kb2、Kc2);所述软启动微型开关与软启动电阻串联后,功率可控开关并接在软启动微型开关和软启动电阻串联电路的两端。软启动微型开关和软启动电阻串联在一起,在测试前,给整流模块后侧的储能模块进行预充电,降低整流模块充电对电网的冲击,功率可控开关闭合,则软启动开关断开。
所述软启动微型开关(Ka1、Kb1、Kc1)为额定电流低于10A的接触器或继电器,外部电源为单相时为单相接触器或一个继电器,三相时为三相继电器或三个接触器。所述软启动电阻(Ras、Rbs、Rcs)为铝壳功率电阻、玻璃釉功率电阻或者金属膜功率电阻,所述功率可控开关(Ka2、Kb2、Kc2)用于正常测试时给整流模块后侧的储能模块供电,需采用大功率的继电器、磁保持继电器、接触器或带电动操作机构的塑壳断路器等。
所述LCL滤波模块包括设置在各相线上的LCL滤波单元,所述LCL滤波单元包括网侧电感(Lsa、Lsb、Lsc)、滤波电容(Cda、Cdb、Cdc)、阻尼电阻(Rda、Rdb、Rdc)以及整流侧电感(Lra、Lrb、Lrc),所述网侧电感与软启动模块的输出端连接,整流侧电感与整流模块的输入端连接;所示网侧电感与整流侧电感串联,滤波电容的一端连接在网侧电感与整流侧电感之间的电路上,滤波电容另一端与阻尼电阻的一端连接,所述阻尼电阻的另一端接入外部电源的零线N。
所述整流模块用于将外部电源供应的交流电变换为直流电,直流电可以调节,也可以不进行调节,整流模块可为单相全桥、单相半桥或三相桥式。
作为优选方案:
所述整流模块输出的直流电压设为不可调节时:
若所述外部电源为单相交流电或两相电,则整流模块采用四个二极管组成的单相桥式不可控整流电路;
若所述外部电源为三相交流电,所述整流模块则采用六个二极管组成的三相桥式不可控整流电路。
所述整流模块输出的直流电压设为可调节时:
当所述外部电源为单相交流电时或两相电,所述整流模块为采用四个IGBT或MOSFET (V1~V4)组成的单相桥式可控整流电路,或者由单相桥式不可控整流电路和PFC电路组成,该单相桥式不可控整流电路由四个二极管(D11~D14)构成,所述PFC电路接在该单相桥式不可控整流电路的输出端,由一个电感、一个IGBT或MOSFET和一个二极管构成;
所述外部电源为三相交流电时,所述整流模块为采用六个IGBT或MOSFET(V1~V6)组成单相桥式可控整流电路,VIENNA整流桥电路,或者由三相桥式不可控整流电路和双通道交错PFC电路组成,该三相桥式不可控整流电路由六个二极管(D11~D16)构成,所述双通道交错PFC连接在该三相桥式不可控整流电路的输出端,由两个电感、两个IGBT或MOSFET和两个二极管构成。
当整流模块输出的直流电压为可调节时,整流模块与控制单元模块连接,由控制单元模块驱动。
所述储能模块包括至少一个直流电解电容Cz、至少一个无极电容Cb和一个放电电阻R,所述直流电解电容Cz、小容量无极电容Cb和放电电阻R均为并联。储能模块为后侧逆变模块提供直流支持,小容量无极电容的存在,一方面作为可控功率器件开关尖峰吸收器件,另一方面增强直流侧的耐电流纹波的能力。
当被测电抗器为单相电抗时,所述的逆变模块为四个全控型器件(V11~V14)组成的逆变桥电路;当被测电抗器为三相电抗时,所述的逆变模块(5)为采用六个全控型器件(V11~V16)组成的逆变桥电路。
所述控制单元模块通过改变调制波的频率和幅值,调整所述整流模块、逆变模块的可控功率器件的占空比,使逆变模块输出可变频率、可变幅值的交流电,模拟不同工况。所述控制单元模块采集各个工况下被测电抗器两端的电压、电流,通过基波提取或某次谐波提取算法计算出被测电抗器在基波或某次谐波下的电感量,通过电流和电压计算被测电抗器的损耗;通过分时复用的方式循环检测并记录多路温度测量点的实时温度。
在使用本发明测试装置对电抗器进行测试时,可直接控制逆变模块调制信号的频率和调制度改变电抗两端的电压实现电抗器的测量,恒压模式以输出电压为给定参考量,恒流模式是对实时检测给定电流和电抗检测电流进行闭环控制,测试电流可控,便于测试装置和被测电抗的过流保护。
有益效果:
本发明电力电子型电抗器性能测试装置可模拟不同工况,提供多种测试模式,并完成对电抗器的温升测试,各测试模式之间可带负荷切换,无需停机,保障了测试工作的连贯性,节省时间,显著提高了工作效率,且本发明测试装置操作方便,具有功损耗小,节省电能, 可联机后台,实时传输测试数据的优点。
附图说明
图1为电力电子型电抗器性能测试***框图;
图2软启动模块电路图;
图3LCL滤波模块电路图;
图4整流模块电路拓扑图一;
图5整流模块电路拓扑图二;
图6整流模块电路拓扑图三;
图7储能模块电路图;
图8逆变模块电路拓扑图;
图9测量模块结构框图;
图10控制单元模块结构框图。
具体实施方式
为了阐明本发明的技术方案和工作原理,下面结合附图与具体实施例对本发明作进一步的介绍。
如图1所示的一种电力电子型电抗器性能测试装置,包括软启动模块1、LCL滤波模块2、整流模块3、储能模块4、逆变模块5、测量模块6和控制单元模块7等组成部分。所述软启动模块1、LCL滤波模块2、整流模块3、储能模块4和逆变模块5顺次相连,软启动模块1的输入端与外部电源连接,逆变模块5输出端与被测电抗器9连接。软启动模块1、逆变模块5、测量模块6分别与控制单元模块7连接,控制单元模块7接收测量模块6传输的传感器信号,控制和驱动软启动模块1与逆变模块5,当整流模块3设为直流电压可调时,控制单元模块7也与整流模块3连接,控制和驱动整流模块3。所述外部电源8为交流电。
如图2所示,软启动模块1包括分别设置在A、B、C三相线上的三个软启动单元,所述软启动单元包括软启动微型开关(Ka1/Kb1/Kc1)、软启动电阻(Ras/Rbs/Rcs)和功率可控开关(Ka2/Kb2/Kc2),所述软启动微型开关与软启动电阻串联后,功率可控开关并接在软启动微型开关和软启动电阻串联电路的两端。测试时,根据外部电源的类型,控制单元模块7控制软启动模块1内相应开关件的通断,启动对应的软启动单元。当外部电源8为单相交流电时,只启动设置在A相线上的软启动单元,即虚线框外Ka1、Ras与Ka2构成的A组部分;当外部电源8为两相电时,启动设置在A相线和B相线上的软启动单元;外部电源8为三相交流电时,则同时启动设置在A、B、C相线上的软启动单元。
所述软启动微型开关Ka1、Kb1、Kc1采用额定电流低于10A的小功率接触器或继电器;所述软启动电阻Ras、Rbs、Rcs优选采用铝壳功率电阻、玻璃釉功率电阻或者金属膜功率电阻;所述功率可控开关Ka2、Kb2、Kc2为大功率继电器、磁保持继电器、接触器或带电动操作机构的塑壳断路器。
如图3所示,LCL滤波模块3同样包括分别设置在三相线上的三个LCL滤波单元。所述LCL滤波单元由网侧电感(Lsa、Lsb、Lsc)、滤波电容(Cda、Cdb、Cdc)、阻尼电阻(Rda、Rdb、Rdc)和整流侧电感(Lra、Lrb、Lrc)组成,所述网侧电感Lsa、Lsb、Lsc分别与软启动模块的输出端A1、B1、C1连接,整流侧电感Lra、Lrb、Lrc则分别与整流模块3的输入端A’、B’、C’连接。以设置在A相线上的滤波单元为例,网侧电感Lsa与整流侧电感Lra串联,滤波电容Cda的一端连接在网侧电感Lsa与整流侧电感Lra之间的电路上,滤波电容Cda另一端与阻尼电阻Rda的一端连接,所述阻尼电阻Rda的另一端则接入外部电源8的零线。设置在另外两相线上的滤波单元与A相线滤波单元采用相同的架构,如图3所示。
所述整流模块3,用于将外部电源供应的交流电变换为直流电,其输出的直流电压可以调节,也可以不进行调节。
当整流模块3输出的直流电压设为不可调节时:若外部电源8为单相交流电或两相电,整流模块3可采用四个二极管(D1~D4)组成单相桥式不可控整流电路,所述单相桥式不可控整流电路的两输入端分别接在A相线和零线N上(即整流模块的输入电压为单相电压),或接在A相线和B相线上(即整流模块的输入电压为线电压);若外部电源8为三相交流电,整流模块3可采用六个二极管(D1~D6)组成三相桥式不可控整流电路,所述三相桥式不可控整流电路的三个输入端分别接在连接滤波模块三个输入端的三路相线上,如图4所示。
当整流模块3的输出直流电压设为可调节时:
(1)若外部电源8为单相交流电或两相电,整流模块3可采用四个IGBT或MOSFET(V1~V4)组成的单相桥式可控整流电路,如图6所示;或者,如图5所示,整流模块3由单相桥式不可控整流电路和一级PFC电路组成,该单相桥式不可控整流电路由四个二极管(D11~D14)构成,所述PFC电路接在四个二极管(D11~D14)构成的单相桥式不可控整流电路的输出端,所述PFC电路包括一个电感L1和一个IGBT或MOSFET开关管Q1和一个二极管D17,电感L1和二极管D17串接在整流模块的正极输出线上,开关管Q1的一端连接在电感L1和二极管D17之间,另一端与整流模块的负极输出线连接。
外部电源8为单相电时,整流模块3的两输入端接在A相线和零线N上。外部电源8为两相电时,整流模块3两输入端分别接在A相线和B相线上。
(2)若所述外部电源8为三相交流电,则整流模块3可采用六个IGBT或MOSFET(V1~V6)组成三相桥式可控整流电路,如图6所示;或者,采用VIENNA整流桥电路;或者,如图5所示,整流模块3由三相桥式不可控整流电路和一级双通道交错PFC电路组成,该三相桥式不可控整流电路由六个二极管(D11~D16)构成,该PFC变换器连接在六个二极管(D11~D14)构成的三相桥式不可控整流电路的输出端,由两个电感(L1和L2)、两个IGBT或MOSFET开关管(Q1和Q2)和两个二极管(D17和D18)构成,其中,电感L1和二极管D17串接在整流模块3的正极输出线上,电感L2和二极管D18串联后并接在电感L1和二极管D17的两端,开关管Q1的一端连接在电感L1和二极管D17之间,另一端与整流模块3的负极输出线连接,开关管Q2的一端连接在电感L2和二极管D18之间,另一端与整流模块3的负极输出线连接。
所述储能模块4与整流模块3的直流输出端连接,包括并接在储能模块直流母线上的至少一个直流电解电容Cz、至少一个无极电容Cb和一个放电电阻R,如图7所示。
所述的逆变模块5由六个全控型器件IGBT或MOSFET(V11~V16)组成逆变全桥,如图8所示,逆变全桥的直流电压输入端Vdc+、Vdc-连接储能模块的直流母线,当被测电抗器为单相电抗Lc1时,将电抗器两端接入逆变模块5的输出端U、V;当被测电抗器为三相电抗lc3时,将被测电抗器的三个输入端分别与逆变模块5的输出端U、V、W相连,电抗器的三个输出端并接。
所述逆变模块5采用三相桥式的全控型拓扑结构,进行单相或三相电抗器的测试时,通过人机接口或上位机设置被测电抗为三相电抗还是单相电抗,控制单元模块自动根据设置电抗种类改变控制策略和驱动输出方式,从而使得同一套测试装置既可以测试单相电抗也可以测试三相电抗。
逆变模块5通过控制单元模块7改变调制波的频率和幅值,间接调整可控功率器件的占空比将直流电变换为可变频率、变幅值的交流电,用于电抗器的电抗值、过载能力、谐波情况下损耗以及温升测试。通过人机接口可以将测试装置设置成工频恒压模式、工频恒流模式、工频叠加谐波恒压或工频叠加谐波恒流模式进行电抗器的测试。
所述测量模块6如图9所示,包括信息处理单元11和分别与信息处理单元11连接的电信号传感器与监测电抗器温度的多路温度传感器15,所述电信号传感器包括监测外部电源输入电流的电流传感器13、监测外部电源电压的电压传感器14、监测储能模块输出直流电的电压传感器12、监测逆变模块输出电压的电压传感器16和输出电流的电流传感器17等等。所述多路温度传感器15包括监测环境温度的传感器、监测被测电抗器铁芯温度和绕组温度的传感器,被测电抗器为三相电抗时,三个绕组的温度需要分别测量。
当整流模块3输出电压可调节时,检测整流模块3输入电压和输入电流以及直流侧输出端的电压电流值,进行直流侧闭环控制,维持整流模块3直流侧稳定在设定值。逆变部分需要检测逆变直流侧电压、电抗器两端的电压及电流值,通过人机接口设置测试装置测试模式,并设置工频电压幅值、工频电流幅值、谐波电流占比或谐波电压占比进行不同工况下的电抗测试。电压传感器为霍尔电压传感器或线性光耦传感器,温度传感器可以是红外测温模块、热电偶或热敏电阻等,测量电抗器的不同点温升情况。
所述的控制单元模块7,如图10所示。包括主控芯片21、液晶和按键或触摸屏式的人机接口22、与信号处理单元连接的数据接口23、软启动操作控制接口24、全控型器件驱动控制接口25、外部存储单元26以及后台联机通信接口27等。后台联机通信接口27为232、485、GPRS、网络模块或无线模块等。控制单元模块7采集各个工况下的被测电抗器两端的电压、电流,通过基波提取或某次谐波提取算法计算出电抗在基波或某次谐波下的电感量;通过电流和电压计算电抗器的损耗;通过分时复用的方式循环检测多路温度测量点的实时温度,并记录下来;通过后台联机接口连接上位机,传输测试数据、生成测试报表。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,本发明要求保护范围由所附的权利要求书、说明书及其等效物界定。

Claims (8)

  1. 一种电力电子型电抗器性能测试装置,其特征在于,包括软启动模块(1)、LCL滤波模块(2)、整流模块(3)、储能模块(4)、逆变模块(5)、测量模块(6)和控制单元模块(7);
    所述软启动模块(1)、LCL滤波模块(2)、整流模块(3)、储能模块(4)和逆变模块(5)顺次连接,软启动模块(1)的输入端与外部电源连接,逆变模块(5)输出端与被测电抗器(9)连接,所述测量模块(6)、软启动模块(1)及逆变模块(5)分别与控制单元模块(7)连接,由测量模块(6)向控制单元模块(7)反馈传感器信号,控制单元模块(7)控制软启动模块(1)和驱动逆变模块(5);
    所述测量模块(6)包括信号处理单元(11)和分别与信号处理单元连接的外部电源电压和电流传感器、储能模块输出电压传感器、逆变模块输出电压与电流传感器以及多路温度传感器,所述多路温度传感器包括监测环境温度的传感器、监测被测电抗器铁芯和绕组温度的传感器。
  2. 根据权利要求1所述的电力电子型电抗器性能测试装置,其特征在于:
    所述的软启动模块(1)包括设置在各相线上的软启动单元,所述软启动单元包括软启动微型开关(Ka1、Kb1、Kc1)、软启动电阻(Ras、Rbs、Rcs)和功率可控开关(Ka2、Kb2、Kc2);所述软启动微型开关与软启动电阻串联后,功率可控开关并接在软启动微型开关和软启动电阻串联电路的两端。
  3. 根据权利要求2所述的电力电子型电抗器性能测试装置,其特征在于:
    所述软启动微型开关(Ka1、Kb1、Kc1)为额定电流低于10A的接触器或继电器;所述软启动电阻(Ras、Rbs、Rcs)为铝壳功率电阻、玻璃釉功率电阻或者金属膜功率电阻,所述功率可控开关(Ka2、Kb2、Kc2)为继电器、磁保持继电器、接触器或带电动操作机构的塑壳断路器。
  4. 根据权利要求1所述的电力电子型电抗器性能测试装置,其特征在于:
    所述LCL滤波模块(2)包括设置在各相线上的LCL滤波单元,所述LCL滤波单元包括网侧电感(Lsa、Lsb、Lsc)、滤波电容(Cda、Cdb、Cdc)、阻尼电阻(Rda、Rdb、Rdc)以及整流侧电感(Lra、Lrb、Lrc),所述网侧电感与软启动模块的输出端连接,整流侧电感与整流模块的输入端连接;
    所述网侧电感与整流侧电感串联,滤波电容的一端连接在网侧电感与整流侧电感之间的电路上,滤波电容另一端与阻尼电阻的一端连接,所述阻尼电阻的另一端接入外部电源(8)的零线N。
  5. 根据权利要求1所述的电力电子型电抗器性能测试装置,其特征在于,
    所述整流模块(3)输出的直流电压设为不可调节时:
    若所述外部电源(8)为单相交流电或两相电时,整流模块(3)为采用四个二极管组成的单相桥式不可控整流电路;
    若所述外部电源(8)为三相交流电,所述整流模块(3)为采用六个二极管组成的三相桥式不可控整流电路;
  6. 根据权利要求1所述的电力电子型电抗器性能测试装置,其特征在于,
    所述整流模块(3)输出的直流电压设为可调节时,整流模块与控制单元模块(7)连接,通过控制单元模块(7)控制驱动;
    若所述外部电源(8)为单相交流电或两相电,所述整流模块(3)为采用四个IGBT或MOSFET(V1~V4)组成的单相桥式可控整流电路,或者由单相桥式不可控整流电路加PFC电路组成,该单相桥式不可控整流电路由四个二极管(D11~D14)构成,所述PFC电路接在该单相桥式不可控整流电路的输出端,由一个电感、一个IGBT或MOSFET和一个二极管构成;
    若所述外部电源(8)为三相交流电,所述整流模块(3)为采用六个IGBT或MOSFET(V1~V6)组成三相桥式可控整流电路,VIENNA整流桥电路,或者由三相桥式不可控整流电路和双通道交错PFC电路组成,该三相桥式不可控整流电路由六个二极管(D11~D16)构成,所述双通道交错PFC电路连接在该三相桥式不可控整流电路的输出端,由两个电感、两个IGBT或MOSFET和两个二极管构成。
  7. 根据权利要求1所述的电力电子型电抗器性能测试装置,其特征在于:
    所述储能模块(4)包括至少一个直流电解电容Cz、至少一个无极电容Cb和一个放电电阻R,所述直流电解电容Cz、小容量无极电容Cb和放电电阻R均为并联。
  8. 根据权利要求1所述的电力电子型电抗器性能测试装置,其特征在于:
    当被测电抗器为单相电抗时,所述的逆变模块(5)为四个全控型器件(V11~V14)组成的逆变桥电路;
    当被测电抗器为三相电抗时,所述的逆变模块(5)为采用六个全控型器件(V11~V16)组成的逆变桥电路。
PCT/CN2017/101874 2017-05-23 2017-09-15 一种电力电子型电抗器性能测试装置 WO2018214347A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710367919.8 2017-05-23
CN201710367919.8A CN107132440A (zh) 2017-05-23 2017-05-23 一种电力电子型电抗器性能测试装置

Publications (1)

Publication Number Publication Date
WO2018214347A1 true WO2018214347A1 (zh) 2018-11-29

Family

ID=59731912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/101874 WO2018214347A1 (zh) 2017-05-23 2017-09-15 一种电力电子型电抗器性能测试装置

Country Status (2)

Country Link
CN (1) CN107132440A (zh)
WO (1) WO2018214347A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117031346A (zh) * 2023-07-28 2023-11-10 深圳凌扬微电子有限公司 一种电源设备快速测试电路、装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107132440A (zh) * 2017-05-23 2017-09-05 江苏现代电力科技股份有限公司 一种电力电子型电抗器性能测试装置
CN107576877A (zh) * 2017-09-21 2018-01-12 佛山市帝博世电子有限公司 电抗器在线检测自动化设备及检测方法
CN112214001B (zh) * 2019-07-11 2021-12-07 株洲中车时代电气股份有限公司 一种控制***的测试方法及存储介质
CN112557779B (zh) * 2019-09-26 2022-03-25 株洲中车时代电气股份有限公司 一种变流器的异常监测方法及装置
CN112305312A (zh) * 2020-10-22 2021-02-02 山东电力设备有限公司 一种对多台电抗器同时进行试验的***和方法
CN112615535B (zh) * 2020-11-30 2022-03-29 北京交通大学 用于交错直流变换器的软启动电路及其控制方法
CN113765362A (zh) * 2021-09-30 2021-12-07 重庆平创半导体研究院有限责任公司 一种交错pfc功率模块

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201562031U (zh) * 2009-10-28 2010-08-25 上海宝冶建设有限公司 分级绝缘型电压互感器的交流感应耐压试验装置
CN202102059U (zh) * 2011-05-20 2012-01-04 北京国电四维清洁能源技术有限公司 功率单元测试装置
CN203606657U (zh) * 2013-12-10 2014-05-21 国家电网公司 电压互感器励磁特性测试仪控制装置
US20150122362A1 (en) * 2011-08-08 2015-05-07 Espen Haugan Direct electrical heating arrangement comprising a power electronic converter
CN205301387U (zh) * 2016-01-14 2016-06-08 陕西科技大学 一种电力谐波发生器
CN205787992U (zh) * 2016-06-16 2016-12-07 浙江正泰电器股份有限公司 恒流源控制***
CN107132440A (zh) * 2017-05-23 2017-09-05 江苏现代电力科技股份有限公司 一种电力电子型电抗器性能测试装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201639302U (zh) * 2009-09-23 2010-11-17 镇江中茂电子科技有限公司 可编程谐波发生装置
CN102969877B (zh) * 2012-11-16 2014-12-10 上海交通大学 采用***电容串联阻尼电阻的lcl滤波器设计方法
CN104037794A (zh) * 2014-06-19 2014-09-10 国家电网公司 一种飞轮储能***及其控制方法
CN104333242A (zh) * 2014-10-09 2015-02-04 许继电气股份有限公司 一种光伏并网逆变器测试用大功率直流源
CN204190628U (zh) * 2014-10-15 2015-03-04 国家电网公司 一种应用于交流耐压试验装置的变频谐振电源
CN204666749U (zh) * 2015-06-05 2015-09-23 廊坊英博电气有限公司 软磁电抗器测试平台
CN205720443U (zh) * 2016-04-08 2016-11-23 镇江市越达电力设备有限公司 一种电抗器测试装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201562031U (zh) * 2009-10-28 2010-08-25 上海宝冶建设有限公司 分级绝缘型电压互感器的交流感应耐压试验装置
CN202102059U (zh) * 2011-05-20 2012-01-04 北京国电四维清洁能源技术有限公司 功率单元测试装置
US20150122362A1 (en) * 2011-08-08 2015-05-07 Espen Haugan Direct electrical heating arrangement comprising a power electronic converter
CN203606657U (zh) * 2013-12-10 2014-05-21 国家电网公司 电压互感器励磁特性测试仪控制装置
CN205301387U (zh) * 2016-01-14 2016-06-08 陕西科技大学 一种电力谐波发生器
CN205787992U (zh) * 2016-06-16 2016-12-07 浙江正泰电器股份有限公司 恒流源控制***
CN107132440A (zh) * 2017-05-23 2017-09-05 江苏现代电力科技股份有限公司 一种电力电子型电抗器性能测试装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117031346A (zh) * 2023-07-28 2023-11-10 深圳凌扬微电子有限公司 一种电源设备快速测试电路、装置

Also Published As

Publication number Publication date
CN107132440A (zh) 2017-09-05

Similar Documents

Publication Publication Date Title
WO2018214347A1 (zh) 一种电力电子型电抗器性能测试装置
CN200947546Y (zh) 低压三相静止无功同步补偿器
CN101639514B (zh) 用于检测igbt的测试装置
CN202433456U (zh) 一种igbt并联功率单元的测试装置
CN101604853A (zh) 蓄电池充放电装置
CN106998147B (zh) 一种节能型多功能模拟用电负载装置及其控制方法
CN101924367B (zh) 基于igbt逆变器的大功率智能型谐波和无功电流发生装置
CN203352454U (zh) 一种电压型高频恒流源
CN104655990A (zh) 一种基于能量反馈的中低压配电网模拟***
CN105226610A (zh) 一种变压器合闸励磁涌流消除器
CN206865359U (zh) 一种节能型多功能模拟用电负载装置
CN202737463U (zh) 具有节能降耗兼谐波治理的有源滤波装置
CN205039524U (zh) 一种变压器合闸励磁涌流消除器
CN203025313U (zh) 高压变频串联谐振试验电源
CN207442465U (zh) 一种具有电能质量监控功能的光伏并网逆变器
CN103457264B (zh) 具有节能降耗兼谐波治理的有源滤波装置
CN211669335U (zh) 一种变流器的测试装置及***
CN205263208U (zh) 一种多功能试验平台
CN108127222A (zh) 储能焊机控制***
CN209767395U (zh) 电压暂降发生器及电压暂降发生***
CN106849105A (zh) 低压配电线路智能调节装置
CN206807019U (zh) 基于三电平npc的电流三相不平衡补偿装置
CN203537240U (zh) 一种模压台变频电源智能温控装置
CN203522011U (zh) 智能型继电保护试验电源屏
CN208445485U (zh) 一种超大功率正弦波超声波电源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17910565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17910565

Country of ref document: EP

Kind code of ref document: A1