WO2018214149A1 - 上行信号的传输方法及终端、网络设备 - Google Patents

上行信号的传输方法及终端、网络设备 Download PDF

Info

Publication number
WO2018214149A1
WO2018214149A1 PCT/CN2017/086097 CN2017086097W WO2018214149A1 WO 2018214149 A1 WO2018214149 A1 WO 2018214149A1 CN 2017086097 W CN2017086097 W CN 2017086097W WO 2018214149 A1 WO2018214149 A1 WO 2018214149A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
zero
power
uplink reference
resource
Prior art date
Application number
PCT/CN2017/086097
Other languages
English (en)
French (fr)
Inventor
陈文洪
张治�
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2019564159A priority Critical patent/JP6999701B2/ja
Priority to CN201780090554.7A priority patent/CN110622540B/zh
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to KR1020197034088A priority patent/KR102346896B1/ko
Priority to CN201911316699.1A priority patent/CN111132173B/zh
Priority to RU2019139254A priority patent/RU2734022C1/ru
Priority to US16/617,328 priority patent/US11229030B2/en
Priority to EP17911108.3A priority patent/EP3624477B1/en
Priority to BR112019024587A priority patent/BR112019024587A2/pt
Priority to ES17911108T priority patent/ES2955022T3/es
Priority to PCT/CN2017/086097 priority patent/WO2018214149A1/zh
Priority to MX2019014085A priority patent/MX2019014085A/es
Priority to FIEP17911108.3T priority patent/FI3624477T3/fi
Priority to IL270679A priority patent/IL270679B2/en
Priority to AU2017415762A priority patent/AU2017415762A1/en
Priority to CA3064151A priority patent/CA3064151C/en
Priority to TW107114992A priority patent/TWI769246B/zh
Publication of WO2018214149A1 publication Critical patent/WO2018214149A1/zh
Priority to PH12019502590A priority patent/PH12019502590A1/en
Priority to ZA2019/08598A priority patent/ZA201908598B/en
Priority to US17/528,643 priority patent/US11706785B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/0013Rate matching, e.g. puncturing or repetition of code symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/06Channels characterised by the type of signal the signals being represented by different frequencies
    • H04L5/10Channels characterised by the type of signal the signals being represented by different frequencies with dynamo-electric generation of carriers; with mechanical filters or demodulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present invention relates to a radio access technology, and in particular, to a method for transmitting an uplink signal, a terminal, and a network device.
  • a terminal In a new radio (NR) system, a terminal sometimes transmits a Sounding Reference Signal (SRS), a Demodulation Reference Signal (DMRS), or a Phase Tracking Reference Signal (PTRS). ) and other upstream reference signals.
  • SRS Sounding Reference Signal
  • DMRS Demodulation Reference Signal
  • PTRS Phase Tracking Reference Signal
  • aspects of the present invention provide a method for transmitting an uplink signal, a terminal, and a network device for ensuring reliable transmission of an uplink reference signal of the terminal.
  • An aspect of the present invention provides a method for transmitting an uplink signal, including:
  • Another aspect of the present invention provides another method for transmitting an uplink signal, including:
  • a terminal including:
  • a receiving unit configured to receive configuration information of a zero-power uplink reference signal sent by the network device
  • a determining unit configured to determine, according to the configuration information, a resource occupied by the zero-power uplink reference signal
  • An execution unit configured to not send uplink data on the resource; and/or, on the resource, not transmitting an uplink reference signal of non-zero power.
  • Another aspect of the present invention provides a network device, including:
  • an obtaining unit configured to obtain configuration information of the zero-power uplink reference signal according to resources occupied by the zero-power uplink reference signal
  • a sending unit configured to send the configuration information to the terminal
  • An execution unit configured to not receive uplink data on the resource; and/or to receive an uplink reference signal of non-zero power on the resource.
  • the embodiment of the present invention receives the configuration information of the zero-power uplink reference signal sent by the network device, and further determines the resource occupied by the zero-power uplink reference signal according to the configuration information.
  • the uplink reference signal of the non-zero power is not sent on the resource, and/or the uplink reference signal of the non-zero power is not sent on the resource, because the terminal performs resource reservation, the terminal is effectively prevented from being reserved.
  • the interference caused by the uplink signal transmitted on the resource to the uplink reference signal transmitted by the other terminal on the reserved resource can ensure the reliable transmission of the uplink reference signal of the terminal, thereby improving the transmission performance of the uplink reference signal.
  • the embodiment of the present invention obtains the configuration information of the zero-power uplink reference signal according to the resource occupied by the zero-power uplink reference signal, and further sends the configuration information to the terminal, so that The uplink reference signal of the non-zero power is not received on the resource, and/or the uplink reference signal of the non-zero power is not received on the resource, and the terminal reserves the resource, thereby effectively avoiding the reservation of the terminal.
  • the interference caused by the uplink signal transmitted on the resource to the uplink reference signal transmitted by other terminals on the reserved resource can ensure the reliable transmission of the uplink reference signal of the terminal, thereby improving the transmission performance of the uplink reference signals.
  • FIG. 1 is a schematic flowchart of a method for transmitting an uplink signal according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of another method for transmitting an uplink signal according to another embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a terminal according to another embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a network device according to another embodiment of the present invention.
  • the non-zero power uplink reference signal is the uplink reference signal that the terminal actually needs to transmit. If an uplink reference signal is not a zero-power uplink reference signal, the uplink reference signal of non-zero power may be used by default, and the so-called uplink reference signal is the non-zero power uplink reference signal referred to in this application.
  • FIG. 1 is a schematic flowchart of a method for transmitting an uplink signal according to an embodiment of the present invention, as shown in FIG. 1 .
  • ZP ULRS Zero-Power Uplink Reference Signal
  • NZP ULRS Non-Zero-Power Uplink Reference Signal
  • the uplink data is not sent on the resource, and specifically, the rate matching or puncturing processing is performed on the uplink data.
  • execution entities of 101 to 103 may be terminals.
  • the main idea of the embodiment is that, by configuring the network device and instructing the terminal to activate the zero-power uplink reference signal, when the terminal transmits the uplink reference signal (that is, the non-zero-power uplink reference signal), the other terminal is simultaneously indicated.
  • the resources are idle on the corresponding resources, thereby avoiding the interference of the uplink reference signals transmitted by other terminals, and improving the transmission performance of the uplink reference signals.
  • the configuration information of the zero-power uplink reference signal sent by the network device is received, and the resource occupied by the zero-power uplink reference signal is determined according to the configuration information, so that the uplink is not sent on the resource.
  • the interference caused by the uplink reference signal transmitted on the reserved resources can ensure reliable transmission of the uplink reference signal of the terminal, thereby improving the transmission performance of the uplink reference signals.
  • the ZP ULRS may include, but is not limited to, an existing ULRS such as a ZP SRS, a ZP DMRS, or a ZP PTRS.
  • an existing ULRS such as a ZP SRS, a ZP DMRS, or a ZP PTRS.
  • other ZP ULRSs newly defined for the NR system may be used, and this embodiment is not particularly limited.
  • the NZP ULRS may include, but is not limited to, an NZP SRS, an NZP DMRS, or an NZP PTRS, or another NZP ULRS that may also be newly defined by the NR system. This is not particularly limited.
  • configuration information of the ZP ULRS sent by the network device by using high layer signaling or Downlink Control Information (DCI) may be specifically received.
  • DCI Downlink Control Information
  • the terminal may specifically receive configuration information of the ZP ULRS sent by the network device by using high layer signaling or DCI.
  • the high-level signaling may be a radio resource control (RRC) message
  • the configuration information of the ZP ULRS may be carried by an information element (IE) in an RRC message, where the RRC message is sent.
  • RRC message in the prior art for example, the RRC CONNECTION RECONFIGURATION message, is not limited in this embodiment, and the IE of the existing RRC message is extended to carry the ZP ULRS.
  • the configuration information, or the RRC message may also be an RRC message different from that existing in the prior art.
  • the high-level signaling may be a Media Access Control (MAC) Control Element (CE) message
  • MAC Media Access Control
  • CE Control Element
  • the configuration information of the ZP ULRS may be carried by adding a new MAC CE message.
  • the received configuration information may include, but is not limited to, resource configuration information and activation information, which is not specifically limited in this embodiment.
  • the resource configuration information and the activation information, the two pieces of information may be two independent information, or may be one information, which is not specifically limited in this embodiment.
  • the terminal may receive resource configuration information of the ZP ULRS sent by the network device through the RRC message.
  • the terminal may receive activation information of the ZP ULRS sent by the network device through the DCI or MAC CE message.
  • the resource configuration information is used to indicate resources configured for the ZP ULRS.
  • the resource may include, but is not limited to, at least one of a time domain resource, a frequency domain resource, and a sequence resource, which is not specifically limited in this embodiment.
  • the time domain resource may be a time slot in which the ZP ULRS is located or an Orthogonal Frequency Division Multiple (OFDM) symbol.
  • OFDM Orthogonal Frequency Division Multiple
  • the frequency domain resource may be a subcarrier or a physical resource block (RB) occupied by the ZP ULRS.
  • RB physical resource block
  • the sequence resource may be a cyclic shift, an Orthogonal Cover Code (OCC), or an Identity (ID) used by the ZP ULRS.
  • OCC Orthogonal Cover Code
  • ID Identity
  • the resources configured for the ZP ULRS may be reused as resources configured by the corresponding NZP ULRS.
  • the network device may configure the NZP ULRS to share the same N resources (N is an integer greater than or equal to 1) with the ZP ULRS, and thereby indicate which resource is occupied by the ZP ULRS through the activation information.
  • the activation information is used to indicate whether to activate the ZP ULRS, that is, to indicate whether the ZP ULRS is valid.
  • the “activation” may also be referred to as triggering. It may also be referred to as enabling, and this embodiment is not particularly limited.
  • the activation information may be represented by 1-bit information, for example, 1 may indicate an activation state; and 0 may indicate an inactive state.
  • the DCI sent by the network device may be specifically received, where the DCI includes aperiodic ZP SRS trigger signaling, which is used to trigger the ZP SRS.
  • the aperiodic ZP SRS trigger signaling may be used as the activation information.
  • the terminal B when one terminal A is triggered to transmit the NZP SRS, if the uplink transmission of another terminal B multiplexes the same resource with the NZP SRS, the terminal B may be triggered by the aperiodic ZP SRS signaling.
  • the ZP SRS corresponding to the NZP SRS is triggered, so that no uplink signal is transmitted on the resources occupied by the NZP SRS, and interference with the NZP SRS can be avoided.
  • a DCI that is sent by the network device to schedule an uplink transmission is specifically received, where the DCI includes the activation information, and is used to activate a PHY that carries the uplink transmission.
  • the uplink transmission may be an uplink data transmission, or may be reported as an uplink channel state information (CSI), which is not specifically limited in this embodiment.
  • CSI uplink channel state information
  • the terminal and the network device may pre-arrange, or the network device configures the physical resource or the DMRS port used by the ZP DMRS.
  • the terminal receives the DCI for scheduling the uplink transmission, the uplink transmission needs to be performed in a certain time slot.
  • the ZP DMRS may be activated in the time slot, that is, the uplink data, the uplink CSI, or the DMRS are not transmitted on the physical resources corresponding to the DMRS port of the ZP DMRS or the ZP DMRS in the time slot.
  • a terminal and other terminals perform Multi-User Multiple-Input Multiple-Output (MU-MIMO) transmission, if two terminals use different DMRS ports, and different ports occupy different physicalities. For a resource, a terminal may not transmit an uplink signal on a physical resource that the multiplex terminal transmits the DMRS to reduce interference to the multiplex terminal.
  • MU-MIMO Multi-User Multiple-Input Multiple-Output
  • the terminal and the network device may pre-arrange or configure the physical resource or the PTRS port used by the ZP PTRS by the network device.
  • the terminal receives the DCI for scheduling the uplink transmission, the terminal needs to perform the time slot in a certain time slot.
  • the ZP PTRS may be activated in the time slot, that is, the uplink data, the uplink CSI, or the DMRS are not transmitted on the physical resources corresponding to the PTRS port of the ZP PTRS or the ZP PTRS in the time slot. .
  • the activation information may further be used to indicate that the activated uplink reference signal is a ZP ULRS or an NZP ULRS.
  • the activation information may be represented by 2-bit information, for example, 00 may indicate an inactive state; 01 may indicate that the activated uplink reference signal is an NZP ULRS; and 10 may indicate that the activated uplink reference signal is a ZP ULRS; 11 temporarily not used.
  • the terminal needs to transmit the NZP ULRS on the corresponding resource; if the activated uplink reference signal is ZP ULRS, the terminal does not need to transmit the uplink reference on the corresponding resource. Signal and need to be reserved The corresponding resources. In this way, whether a terminal transmits NZP ULRS or needs to reserve resources for resources corresponding to NDP ULRS transmitted by other terminals, the same signaling can be used for indication, thereby simplifying signaling design.
  • the activation information may further be used to indicate that the zero power that is activated is selected from a plurality of resources configured for the ZP ULRS indicated by the resource configuration information.
  • the network device may pre-configure multiple resources occupied by the ZP ULRS.
  • the activation information may specifically select at least one resource occupied by the ZP ULRS from among a plurality of resources occupied by the ZP ULRS configured by the network device. For example, it may be indicated by an index or a bitmap.
  • the activation information may further be used to indicate an antenna port occupied by the activated zero-power uplink reference signal.
  • the activation information may be used to indicate a DMRS port occupied by the ZP DMRS or a PTRS port occupied by a ZP PTRS, indicating that other terminals are in the same resource.
  • the DMRS port or PTRS port occupied by the transmission may be used to indicate a DMRS port occupied by the ZP DMRS or a PTRS port occupied by a ZP PTRS, indicating that other terminals are in the same resource.
  • the ZP ULRS in the 102, if the ZP ULRS is not activated, the ZP ULRS does not need to occupy resources, that is, the resource occupied by the ZP ULRS is empty;
  • the ZP ULRS is activated, and the resources occupied by the ZP ULRS may be determined according to the configuration information of the ZP ULRS.
  • the ZP ULRS and the NZP ULRS are the same type of uplink reference signals, or are different types of uplink reference signals, which are not specifically limited in this embodiment.
  • DMRS and/or PTRS may not be transmitted on resources occupied by the ZP DMRS.
  • DMRS and/or SRS may not be transmitted on resources occupied by the ZP PTRS.
  • the method for transmitting the uplink signal according to the present invention can be used to enable the other terminals to flexibly idle the resources on the corresponding resources when the uplink reference signals are transmitted by some terminals, thereby avoiding interference of the uplink signals transmitted by other terminals on the uplink reference signals. It can ensure the reliable transmission of the uplink reference signal of the terminal, thereby improving the transmission performance of these uplink reference signals.
  • the configuration information of the zero-power uplink reference signal sent by the network device is received, and the resource occupied by the zero-power uplink reference signal is determined according to the configuration information, so that the resource can be used on the resource.
  • the uplink data is not sent, and/or the uplink reference signal of non-zero power is not sent on the resource. Since the terminal performs resource reservation, the uplink signal pair transmitted by the terminal on the reserved resource is effectively avoided.
  • the interference caused by the uplink reference signals transmitted by the other terminals on the reserved resources can ensure the reliable transmission of the uplink reference signals of the terminal, thereby improving the transmission performance of the uplink reference signals.
  • FIG. 2 is a schematic flowchart of another method for transmitting an uplink signal according to another embodiment of the present invention, as shown in FIG. 2 .
  • Zero-Power Uplink Reference Signal ZP ULRS
  • Non-Zero-Power Uplink Reference Signal on the resource, NZP ULRS.
  • the uplink data is not received on the resource, and specifically, the rate matching or puncturing processing is performed on the uplink data.
  • execution entities of 201 to 203 may be network devices.
  • the main idea of the embodiment is that, by configuring the network device and instructing the terminal to activate the zero-power uplink reference signal, when the terminal transmits the uplink reference signal (that is, the non-zero-power uplink reference signal), the other terminal is simultaneously indicated.
  • the resources are idle on the corresponding resources, thereby avoiding the interference of the uplink reference signals transmitted by other terminals, and improving the transmission performance of the uplink reference signals.
  • the configuration information of the zero-power uplink reference signal is obtained by using the resource occupied by the zero-power uplink reference signal, and the configuration information is sent to the terminal, so that the uplink data cannot be received on the resource. And/or receiving the non-zero-power uplink reference signal on the resource, because the terminal performs resource reservation, effectively avoiding that the uplink signal transmitted by the terminal on the reserved resource is reserved for other terminals.
  • the interference caused by the uplink reference signal transmitted on the resource can ensure the reliable transmission of the uplink reference signal of the terminal, thereby improving the transmission performance of the uplink reference signals.
  • the ZP ULRS may include, but is not limited to, an existing ULRS such as a ZP SRS, a ZP DMRS, or a ZP PTRS, or another ZP that may also be newly defined by the NR system.
  • the ULRS is not particularly limited in this embodiment.
  • the NZP ULRS may include, but is not limited to, an NZP SRS, an NZP DMRS, or an NZP PTRS, or another NZP ULRS that may also be newly defined by the NR system. This is not particularly limited.
  • configuration information of the ZP ULRS may be sent to the terminal by using high layer signaling or Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the high-level signaling may be a radio resource control (RRC) message
  • the configuration information of the ZP ULRS may be carried by an information element (IE) in an RRC message, where the RRC message is sent.
  • RRC message in the prior art for example, the RRC CONNECTION RECONFIGURATION message, is not limited in this embodiment, and the IE of the existing RRC message is extended to carry the ZP ULRS.
  • the configuration information, or the RRC message may also be an RRC message different from that existing in the prior art.
  • the high-level signaling may be a Media Access Control (MAC) Control Element (CE) message
  • MAC Media Access Control
  • CE Control Element
  • the configuration information of the ZP ULRS may be carried by adding a new MAC CE message.
  • the obtained configuration information may include, but is not limited to, resource configuration information and activation information, which is not specifically limited in this embodiment.
  • the resource configuration information and the activation information, the two pieces of information may be two independent information, or may be one information, which is not specifically limited in this embodiment.
  • the network device may send the resource configuration information of the ZP ULRS to the terminal by using an RRC message.
  • the network device may send the activation information of the ZP ULRS to the terminal by using a DCI or a MAC CE message.
  • the resource configuration information is used to indicate the resource configured for the ZP ULRS. source.
  • the resource may include, but is not limited to, at least one of a time domain resource, a frequency domain resource, and a sequence resource, which is not specifically limited in this embodiment.
  • the time domain resource may be a time slot in which the ZP ULRS is located or an Orthogonal Frequency Division Multiple (OFDM) symbol.
  • OFDM Orthogonal Frequency Division Multiple
  • the frequency domain resource may be a subcarrier or a physical resource block (RB) occupied by the ZP ULRS.
  • RB physical resource block
  • the sequence resource may be a cyclic shift, an Orthogonal Cover Code (OCC), or an Identity (ID) used by the ZP ULRS.
  • OCC Orthogonal Cover Code
  • ID Identity
  • the resources configured for the ZP ULRS may be reused as resources configured by the corresponding NZP ULRS.
  • the network device may configure the NZP ULRS to share the same N resources (N is an integer greater than or equal to 1) with the ZP ULRS, and thereby indicate which resource is occupied by the ZP ULRS through the activation information.
  • the activation information is used to indicate whether to activate the ZP ULRS.
  • the "activation” may also be referred to as triggering, and may also be referred to as enabling. This embodiment is not particularly limited.
  • the activation information may be represented by 1-bit information, for example, 1 may indicate an activation state; and 0 may indicate an inactive state.
  • a DCI may be specifically sent to the terminal, where the DCI includes aperiodic ZP SRS trigger signaling, which is used to trigger a ZP SRS.
  • the aperiodic ZP SRS trigger signaling may be used as the activation information.
  • the terminal B when one terminal A is triggered to transmit NZP SRS, if another If the uplink transmission of one terminal B and the NZP SRS are multiplexed with the same resource, the terminal B may be triggered by the aperiodic ZP SRS to trigger the ZP SRS corresponding to the NZP SRS, thereby occupying the NZP SRS.
  • the uplink signal is not transmitted on the resources, and interference with the NZP SRS can be avoided.
  • a DCI for scheduling uplink transmission may be specifically sent to the terminal, where the DCI includes the activation information, and is used to activate a physical resource region that carries the uplink transmission.
  • ZP DMRS or ZP PTRS may be specifically sent to the terminal, where the DCI includes the activation information, and is used to activate a physical resource region that carries the uplink transmission.
  • the uplink transmission may be an uplink data transmission, or may be reported as an uplink channel state information (CSI), which is not specifically limited in this embodiment.
  • CSI uplink channel state information
  • the terminal and the network device may pre-arrange, or the network device configures the physical resource or the DMRS port used by the ZP DMRS.
  • the terminal receives the DCI for scheduling the uplink transmission, the uplink transmission needs to be performed in a certain time slot.
  • the ZP DMRS may be activated in the time slot, that is, the uplink data, the uplink CSI, or the DMRS are not transmitted on the physical resources corresponding to the DMRS port of the ZP DMRS or the ZP DMRS in the time slot.
  • a terminal and other terminals perform Multi-User Multiple-Input Multiple-Output (MU-MIMO) transmission, if two terminals use different DMRS ports, and different ports occupy different physicalities. For the resource, a terminal may not transmit an uplink signal on the physical resource of the multiplexed terminal to transmit the DMRS, so as to reduce interference to the multiplexed terminal.
  • MU-MIMO Multi-User Multiple-Input Multiple-Output
  • the terminal and the network device may pre-arrange or configure the physical resource or the PTRS port used by the ZP PTRS by the network device.
  • the terminal receives the DCI for scheduling the uplink transmission, the terminal needs to perform the time slot in a certain time slot.
  • the uplink transmission it can be The ZP PTRS is activated in the time slot, that is, the uplink data, the uplink CSI, or the DMRS are not transmitted on the physical resources corresponding to the PTRS port of the ZP PTRS or the ZP PTRS in the time slot.
  • the activation information may further be used to indicate that the activated uplink reference signal is a ZP ULRS or an NZP ULRS.
  • the activation information may be represented by 2-bit information, for example, 00 may indicate an inactive state; 01 may indicate that the activated uplink reference signal is an NZP ULRS; and 10 may indicate that the activated uplink reference signal is a ZP ULRS; 11 temporarily not used.
  • the terminal needs to transmit the NZP ULRS on the corresponding resource; if the activated uplink reference signal is ZP ULRS, the terminal does not need to transmit the uplink reference on the corresponding resource. Signal, and need to reserve the corresponding resources. In this way, whether a terminal transmits NZP ULRS or needs to reserve resources for resources corresponding to NDP ULRS transmitted by other terminals, the same signaling can be used for indication, thereby simplifying signaling design.
  • the activation information may further be used to indicate that the zero power that is activated is selected from a plurality of resources configured for the ZP ULRS indicated by the resource configuration information.
  • the network device may pre-configure multiple resources occupied by the ZP ULRS.
  • the activation information may be specifically occupied by a ZP ULRS configured by the network device.
  • the multiple resources used at least one resource occupied by the ZP ULRS is selected. For example, it may be indicated by an index or a bitmap.
  • the activation information may further be used to indicate an antenna port occupied by the activated zero-power uplink reference signal.
  • the activation information may be used to indicate a DMRS port occupied by the ZP DMRS or a PTRS port occupied by a ZP PTRS, indicating that other terminals are in the same resource.
  • the DMRS port or PTRS port occupied by the transmission may be used to indicate a DMRS port occupied by the ZP DMRS or a PTRS port occupied by a ZP PTRS, indicating that other terminals are in the same resource.
  • the ZP ULRS does not need to occupy resources, that is, the resources occupied by the ZP ULRS are empty; if the ZP ULRS is When activated, the resources occupied by the ZP ULRS may be determined according to the configuration information of the ZP ULRS.
  • the ZP ULRS and the NZP ULRS are the same type of uplink reference signals, or are different types of uplink reference signals, which are not specifically limited in this embodiment.
  • DMRS and/or PTRS may not be transmitted on resources occupied by the ZP DMRS.
  • DMRS and/or SRS may not be transmitted on resources occupied by the ZP PTRS.
  • the method for transmitting the uplink signal according to the present invention can be used to enable the other terminals to flexibly idle the resources on the corresponding resources when the uplink reference signals are transmitted by some terminals, thereby avoiding interference of the uplink signals transmitted by other terminals on the uplink reference signals. It can ensure the reliable transmission of the uplink reference signal of the terminal, thereby improving the transmission performance of these uplink reference signals.
  • the configuration information of the zero-power uplink reference signal is obtained by using the resource occupied by the zero-power uplink reference signal, and then the configuration information is sent to the terminal, so that the resource cannot be received.
  • the interference caused by the uplink reference signal transmitted on the reserved resources can ensure reliable transmission of the uplink reference signal of the terminal, thereby improving the transmission performance of the uplink reference signals.
  • FIG. 3 is a schematic structural diagram of a terminal according to another embodiment of the present invention, as shown in FIG. 3.
  • the terminal of this embodiment may include a receiving unit 31, a determining unit 32, and an executing unit 33.
  • the receiving unit 31 is configured to receive configuration information of a zero-power uplink reference signal sent by the network device, where the determining unit 32 is configured to determine, according to the configuration information, resources occupied by the zero-power uplink reference signal;
  • the unit 33 is configured to not send uplink data on the resource; and/or, on the resource, does not send an uplink reference signal of non-zero power.
  • the zero-power uplink reference signal may include, but is not limited to, a zero-power sounding reference signal, and a zero-power demodulation reference.
  • the phase tracking reference signal of the signal or zero power is not particularly limited in this embodiment.
  • the non-zero power uplink reference signal may include, but is not limited to, a non-zero power sounding reference signal, a non-zero power demodulation reference signal, or a non-zero power.
  • the phase tracking reference signal is not particularly limited in this embodiment.
  • the receiving unit 31 is specifically configured to receive configuration information of a zero-power uplink reference signal that is sent by the network device by using high-layer signaling or downlink control information.
  • the high layer signaling may include, but is not limited to, a radio physical resource control message or a media access control control element message, which is not specifically limited in this embodiment.
  • the configuration information may include, but is not limited to, resource configuration information and activation information, which is not specifically limited in this embodiment;
  • the resource configuration information is used to indicate a resource configured for the zero-power uplink reference signal
  • the activation information is used to indicate whether to activate the zero-power uplink reference signal.
  • the determining unit 32 may be specifically configured to determine, according to the resource configuration information, resources occupied by the zero-power uplink reference signal, if the activation information indicates that the zero-power uplink reference signal is activated.
  • the resource configured for the zero-power uplink reference signal may be reused as a resource configured by the corresponding uplink reference signal of the non-zero power rate.
  • the receiving unit 31 may be specifically configured to receive The downlink control information sent by the network device, where the downlink control information includes a non-period zero-power detection reference signal triggering signaling, and is used to trigger a zero-power detection reference signal.
  • the receiving unit 31 may be configured to receive downlink control information that is sent by the network device and that is used to schedule an uplink transmission, where the downlink control information includes the activation information, where A zero-power demodulation reference signal or a zero-power phase tracking reference signal in the physical resource region carrying the uplink transmission is activated.
  • the activation information may further be used to indicate that the activated uplink reference signal is zero power uplink reference signal or an non-zero power uplink reference signal.
  • the activation information may be further used to indicate that the activated zero is selected from among a plurality of resources configured for the zero-power uplink reference signal indicated by the resource configuration information.
  • the resources occupied by the upstream reference signal of the power may be further used to indicate that the activated zero is selected from among a plurality of resources configured for the zero-power uplink reference signal indicated by the resource configuration information.
  • the activation information may further be used to indicate an antenna port occupied by the activated zero-power uplink reference signal.
  • the resource may include, but is not limited to, at least one of a time domain resource, a frequency domain resource, and a sequence resource, which is not specifically limited in this embodiment.
  • the executing unit 33 may be specifically configured to perform rate matching or puncturing processing on the uplink data on the resource.
  • the zero-power uplink reference signal and the non-zero-power uplink reference signal may be the same type of uplink reference signal, or may be different types.
  • the uplink reference signal is not particularly limited in this embodiment.
  • the receiving unit receives the configuration information of the zero-power uplink reference signal sent by the network device, and the determining unit determines, according to the configuration information, the resource occupied by the zero-power uplink reference signal, so that the execution unit
  • the uplink data may be not sent on the resource, and/or the uplink reference signal of non-zero power is not sent on the resource. Because the terminal performs resource reservation, the terminal is effectively reserved. The interference caused by the uplink signal transmitted on the resource to the uplink reference signal transmitted by other terminals on the reserved resource can ensure the reliable transmission of the uplink reference signal of the terminal, thereby improving the transmission performance of the uplink reference signals.
  • FIG. 4 is a schematic structural diagram of a network device according to another embodiment of the present invention, as shown in FIG. 4 .
  • the network device of this embodiment may include an obtaining unit 41, a transmitting unit 42, and an executing unit 43.
  • the obtaining unit 41 is configured to obtain configuration information of the zero-power uplink reference signal according to the resource occupied by the zero-power uplink reference signal
  • the sending unit 42 is configured to send the configuration information to the terminal. And for receiving no uplink data on the resource; and/or not receiving an uplink reference signal of non-zero power on the resource.
  • the sending unit 42 is specifically configured to send the configuration information to the terminal by using high layer signaling or downlink control information.
  • the configuration information may include, but is not limited to, resource configuration information and activation information, which is not specifically limited in this embodiment;
  • the resource configuration information is used to indicate that the zero-power uplink reference signal is configured resource of;
  • the activation information is used to indicate whether to activate the zero-power uplink reference signal.
  • the executing unit 43 is specifically configured to perform rate matching or puncturing processing on the uplink data on the resource.
  • the zero-power uplink reference signal and the non-zero-power uplink reference signal may be the same type of uplink reference signal, or may be different types.
  • the uplink reference signal is not particularly limited in this embodiment.
  • the configuration information of the zero-power uplink reference signal is obtained by the obtaining unit according to the resource occupied by the zero-power uplink reference signal, and then the sending unit sends the configuration information to the terminal, so that the executing unit can On the resource, the uplink data is not received, and/or the uplink reference signal of non-zero power is not received on the resource. Because the terminal performs resource reservation, the terminal is effectively prevented from transmitting on the reserved resource. The interference caused by the uplink signal to the uplink reference signal transmitted by other terminals on the reserved resources can ensure the reliable transmission of the uplink reference signal of the terminal, thereby improving the transmission performance of the uplink reference signals.
  • the disclosed system is The method of setting can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明提供上行信号的传输方法及终端、网络设备。一方面,本发明实施例通过接收网络设备发送的零功率的上行参考信号的配置信息,进而根据所述配置信息,确定所述零功率的上行参考信号所占用的资源,使得能够在所述资源上,不发送上行数据,和/或,在所述资源上,不发送非零功率的上行参考信号,由于终端进行了资源预留,有效地避免了终端在所预留的资源上传输的上行信号对其他终端在所预留的资源上传输的上行参考信号所造成的干扰,能够保证终端的上行参考信号的可靠传输,从而提高了这些上行参考信号的传输性能。

Description

上行信号的传输方法及终端、网络设备 技术领域
本发明涉及无线接入技术,尤其涉及上行信号的传输方法及终端、网络设备。
背景技术
在新无线(New Radio,NR)***中,终端有时会发送探测参考信号(Sounding Reference Signal,SRS)、解调参考信号(Demodulation Reference Signal,DMRS)或相位跟踪参考信号(Phase tracking Reference Signal,PTRS)等上行参考信号。
为了降低对这些上行参考信号传输的干扰,以保证终端的这些上行参考信号的可靠传输,亟需提供一种上行信号的传输方法。
发明内容
本发明的多个方面提供上行信号的传输方法及终端、网络设备,用以保证终端的上行参考信号的可靠传输。
本发明的一方面,提供一种上行信号的传输方法,包括:
接收网络设备发送的零功率的上行参考信号的配置信息;
根据所述配置信息,确定所述零功率的上行参考信号所占用的资源;
在所述资源上,不发送上行数据;和/或,在所述资源上,不发送非零功率的上行参考信号。
本发明的另一方面,提供另一种上行信号的传输方法,包括:
根据零功率的上行参考信号所占用的资源,获得所述零功率的上行参考信号的配置信息;
向终端发送所述配置信息;
在所述资源上,不接收上行数据;和/或,在所述资源上,不接收非零功率的上行参考信号。
本发明的另一方面,提供一种终端,包括:
接收单元,用于接收网络设备发送的零功率的上行参考信号的配置信息;
确定单元,用于根据所述配置信息,确定所述零功率的上行参考信号所占用的资源;
执行单元,用于在所述资源上,不发送上行数据;和/或,在所述资源上,不发送非零功率的上行参考信号。
本发明的另一方面,提供一种网络设备,包括:
获得单元,用于根据零功率的上行参考信号所占用的资源,获得所述零功率的上行参考信号的配置信息;
发送单元,用于向终端发送所述配置信息;
执行单元,用于在所述资源上,不接收上行数据;和/或在所述资源上,不接收非零功率的上行参考信号。
由上述技术方案可知,一方面,本发明实施例通过接收网络设备发送的零功率的上行参考信号的配置信息,进而根据所述配置信息,确定所述零功率的上行参考信号所占用的资源,使得能够在所述资源上,不发送上行数据,和/或,在所述资源上,不发送非零功率的上行参考信号,由于终端进行了资源预留,有效地避免了终端在所预留的资源上传输的上行信号对其他终端在所预留的资源上传输的上行参考信号所造成的干扰,能够保证终端的上行参考信号的可靠传输,从而提高了这些上行参考信号的传输性能。
由上述技术方案可知,另一方面,本发明实施例通过根据零功率的上行参考信号所占用的资源,获得所述零功率的上行参考信号的配置信息,进而向终端发送所述配置信息,使得能够在所述资源上,不接收上行数据,和/或,在所述资源上,不接收非零功率的上行参考信号,由于终端进行了资源预留,有效地避免了终端在所预留的资源上传输的上行信号对其他终端在所预留的资源上传输的上行参考信号所造成的干扰,能够保证终端的上行参考信号的可靠传输,从而提高了这些上行参考信号的传输性能。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一实施例提供的一种上行信号的传输方法的流程示意图;
图2为本发明另一实施例提供的另一种上行信号的传输方法的流程示意图;
图3为本发明另一实施例提供的终端的结构示意图;
图4为本发明另一实施例提供的网络设备的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的全部其他实施例,都属于本发明保护的范围。
需要说明的是,非零功率的上行参考信号就是终端实际需要传输的上行参考信号。如果一个上行参考信号不是零功率的上行参考信号,则可以默认都是非零功率的上行参考信号,通常所说的上行参考信号,就是本申请中所指的非零功率的上行参考信号。
另外,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
图1为本发明一实施例提供的一种上行信号的传输方法的流程示意图,如图1所示。
101、接收网络设备发送的零功率的上行参考信号(Zero-Power Uplink Reference Signal,ZP ULRS)的配置信息。
102、根据所述配置信息,确定所述ZP ULRS所占用的资源。
103、在所述资源上,不发送上行数据;和/或,在所述资源上,不发送非零功率的上行参考信号(Non-Zero-Power Uplink Reference Signal,NZP ULRS)。
在103中,在所述资源上,不发送上行数据,具体可以为:在所述资源上,对上行数据进行速率匹配或打孔处理。
需要说明的是,101~103的执行主体可以为终端。
本实施例的主要思想就是,通过网络设备的配置和向终端指示,激活零功率的上行参考信号,可以在一些终端传输上行参考信号(即非零功率的上行参考信号)时,同时指示其他终端在相应的资源上进行资源空闲,从而避免其他终端所传输的上行参考信号的干扰,提高这些上行参考信号的传输性能。
这样,通过接收网络设备发送的零功率的上行参考信号的配置信息,进而根据所述配置信息,确定所述零功率的上行参考信号所占用的资源,使得能够在所述资源上,不发送上行数据,和/或,在所述资源上,不发送非零功率的上行参考信号,由于终端进行了资源预留,有效地避免了终端在所预留的资源上传输的上行信号对其他终端在所预留的资源上传输的上行参考信号所造成的干扰,能够保证终端的上行参考信号的可靠传输,从而提高了这些上行参考信号的传输性能。
可选地,在本实施例的一个可能的实现方式中,所述ZP ULRS可以包括但不限于ZP SRS、ZP DMRS或ZP PTRS这些现有的ULRS, 或者还可以为NR***新定义的其他ZP ULRS,本实施例对此不进行特别限定。
可选地,在本实施例的一个可能的实现方式中,所述NZP ULRS可以包括但不限于NZP SRS、NZP DMRS或NZP PTRS,或者还可以为NR***新定义的其他NZP ULRS,本实施例对此不进行特别限定。
可选地,在本实施例的一个可能的实现方式中,在101中,具体可以接收网络设备通过高层信令或下行控制信息(Downlink Control Information,DCI),发送的ZP ULRS的配置信息。
具体来说,终端具体可以接收网络设备通过高层信令或DCI,所发送的ZP ULRS的配置信息。
例如,所述高层信令可以是无线物理资源控制(Radio Resource Control,RRC)消息,具体可以通过RRC消息中的信息元素(Information Element,IE)携带所述ZP ULRS的配置信息,所述RRC消息可以为现有技术中的RRC消息,例如,RRC连接重配置(RRC CONNECTION RECONFIGURATION)消息等,本实施例对此不进行限定,通过对已有的RRC消息的IE进行扩展携带所述ZP ULRS的配置信息,或者所述RRC消息也可以为不同于现有技术中已有的RRC消息。
再例如,所述高层信令可以是媒体访问控制(Media Access Control,MAC)控制元素(Control Element,CE)消息,具体还可以通过增加新的MAC CE消息携带所述ZP ULRS的配置信息。
可选地,在本实施例的一个可能的实现方式中,在101中,所接收的所述配置信息可以包括但不限于资源配置信息和激活信息,本实施例对此不进行特别限定。
在本实施例中,资源配置信息与激活信息,这两个信息,可以是独立的两个信息,或者还可以是一个信息,本实施例对此不进行特别限定。
例如,终端可以接收网络设备通过RRC消息,所发送的ZP ULRS的资源配置信息。
或者,再例如,终端可以接收网络设备通过DCI或者MAC CE消息,所发送的ZP ULRS的激活信息。
其中,所述资源配置信息,用于指示为所述ZP ULRS所配置的资源。
本实施例中,所述资源可以包括但不限于时域资源、频域资源以及序列资源中的至少一项,本实施例对此不进行特别限定。
例如,所述时域资源可以是ZP ULRS所在的时隙或者正交频分复用(Orthogonal Frequency Division Multiple,OFDM)符号。
或者,再例如,所述频域资源可以是ZP ULRS所占用的子载波或者物理资源块(Resource Block,RB)。
所述序列资源可以是所述ZP ULRS所使用的循环移位、正交掩码(Orthogonal Cover Code,OCC)或者序列标识(Identity,ID)。
本实施例中,所述为ZP ULRS所配置的资源可以重用为对应的NZP ULRS所配置的资源。
例如,网络设备可以配置NZP ULRS与ZP ULRS共用相同的N个资源(N为大于或等于1的整数),进而通过激活信息指示ZP ULRS所占用其中的哪个资源。
其中,所述激活信息,用于指示是否激活所述ZP ULRS,即用于指示所述ZP ULRS是否生效。其中,所述的“激活”,还可以称为触发, 也可以称为使能,本实施例对此不进行特别限定。
具体来说,所述激活信息可以采用1比特信息表示,例如,1可以表示激活状态;0可以表示非激活状态。
在一个具体的实现过程中,在101中,具体可以接收所述网络设备发送的DCI,所述DCI中包含非周期的ZP SRS触发信令,用于触发ZP SRS。其中,所述非周期的ZP SRS触发信令,则可以作为激活信息。
在该实现方式中,当一个终端A被触发传输NZP SRS时,如果另一个终端B的上行传输与所述NZP SRS复用相同的资源,则终端B可以被非周期的ZP SRS触发信令,触发与所述NZP SRS对应的ZP SRS,从而在所述NZP SRS所占用的资源上不传输上行信号,能够避免对NZP SRS的干扰。
在另一个具体的实现过程中,在101中,具体可以接收所述网络设备发送的用于调度上行传输的DCI,所述DCI中包含所述激活信息,用于激活承载所述上行传输的物理资源区域中的ZP DMRS或ZP PTRS。
其中,所述上行传输,可以为上行数据传输,或者还可以为上行信道状态信息(Channel State Information,CSI)上报,本实施例对此不进行特别限定。
例如,终端和网络设备可以预先约定好,或者由网络设备配置ZP DMRS所使用的物理资源或DMRS端口,当终端接收到用于调度上行传输的DCI,需要在某个时隙进行所述上行传输时,则可以在所述时隙中激活所述ZP DMRS,即在所述时隙中的ZP DMRS或者ZP DMRS的DMRS端口所对应的物理资源上不传输上行数据、上行CSI或者DMRS。
这样,当一个终端和其他终端进行多用户多输入多输出(Multi-User Multiple-Input Multiple-Output,MU-MIMO)传输时,如果两个终端使用不同的DMRS端口,且不同端口占用不同的物理资源,则一个终端可以在复用终端传输DMRS的物理资源上不传输上行信号,以降低对复用终端的干扰。
或者,再例如,终端和网络设备可以预先约定好,或者由网络设备配置ZP PTRS所使用的物理资源或PTRS端口,当终端接收到用于调度上行传输的DCI,需要在某个时隙进行所述上行传输时,则可以在所述时隙中激活所述ZP PTRS,即在所述时隙中的ZP PTRS或者ZP PTRS的PTRS端口所对应的物理资源上不传输上行数据、上行CSI或者DMRS。
这样,当一个终端和其他终端进行MU-MIMO传输时,如果两个终端使用不同的PTRS端口,且不同端口占用不同的物理资源,则一个终端可以在复用终端传输PTRS的物理资源上不传输上行信号,以降低对复用终端的干扰。
进一步地,在该实现方式中,所述激活信息,还可以进一步用于指示所激活的上行参考信号为ZP ULRS,或者为NZP ULRS。
具体来说,所述激活信息可以采用2比特信息表示,例如,00可以表示非激活状态;01可以表示所激活的上行参考信号为NZP ULRS;10可以表示所激活的上行参考信号为ZP ULRS;11暂时不用。
例如,如果所激活的上行参考信号为NZP ULRS,则终端需要在对应的资源上传输所述NZP ULRS;如果所激活的上行参考信号为ZP ULRS,则终端不需要在对应的资源上传输上行参考信号,且需要预留 相应的资源。这样,无论一个终端是传输NZP ULRS,还是需要对其他终端传输NZP ULRS对应的资源进行资源预留,都可以采用相同的信令来进行指示,从而简化信令设计。
进一步地,在该实现方式中,所述激活信息,还可以进一步用于指示从所述资源配置信息所指示的为所述ZP ULRS所配置的多个资源中,选择所激活的所述零功率的上行参考信号所占用的资源。
具体来说,网络设备可以预先配置ZP ULRS所占用的多个资源。相应地,所述激活信息,具体可以从网络设备所配置的ZP ULRS所占用的多个资源中,选择ZP ULRS所占用的至少一个资源。例如,可以采用索引(index)或位图(bitmap)的方式指示。
进一步地,在该实现方式中,所述激活信息,还可以进一步用于指示所激活的所述零功率的上行参考信号所占用的天线端口。
例如,如果所激活的所述ZP ULRS为ZP DMRS或ZP PTRS,则所述激活信息可以用于指示所述ZP DMRS所占用的DMRS端口或者ZP PTRS所占用的PTRS端口,说明其他终端在相同资源上传输所占用的DMRS端口或PTRS端口。
可选地,在本实施例的一个可能的实现方式中,在102中,若所述ZP ULRS没有被激活,则所述ZP ULRS不需要占用资源,即ZP ULRS所占用的资源为空;若所述ZP ULRS被激活,则可以根据所述ZP ULRS的配置信息,确定所述ZP ULRS所占用的资源。
本发明中,所述ZP ULRS与所述NZP ULRS为相同类型的上行参考信号,或者为不同类型的上行参考信号,本实施例对此不进行特别限定。
例如,可以在ZP DMRS所占用的资源上不传输DMRS和/或PTRS。
或者,再例如,可以在ZP PTRS所占用的资源上不传输DMRS和/或SRS。
基于本发明所提供的上行信号的传输方法,可以在一些终端传输上行参考信号时,同时使得其他终端在相应资源上灵活进行资源空闲,从而避免其他终端传输的上行信号对这些上行参考信号的干扰,能够保证终端的上行参考信号的可靠传输,从而提高了这些上行参考信号的传输性能。
本实施例中,通过接收网络设备发送的零功率的上行参考信号的配置信息,进而根据所述配置信息,确定所述零功率的上行参考信号所占用的资源,使得能够在所述资源上,不发送上行数据,和/或,在所述资源上,不发送非零功率的上行参考信号,由于终端进行了资源预留,有效地避免了终端在所预留的资源上传输的上行信号对其他终端在所预留的资源上传输的上行参考信号所造成的干扰,能够保证终端的上行参考信号的可靠传输,从而提高了这些上行参考信号的传输性能。
图2为本发明另一实施例提供的另一种上行信号的传输方法的流程示意图,如图2所示。
201、根据零功率的上行参考信号(Zero-Power Uplink Reference Signal,ZP ULRS)所占用的资源,获得所述零功率的上行参考信号的配置信息。
202、向终端发送所述配置信息。
203、在所述资源上,不接收上行数据;和/或在所述资源上,不接收非零功率的上行参考信号(Non-Zero-Power Uplink Reference Signal, NZP ULRS)。
在203中,在所述资源上,不接收上行数据,具体可以为:在所述资源上,对上行数据进行速率匹配或打孔处理。
需要说明的是,201~203的执行主体可以为网络设备。
本实施例的主要思想就是,通过网络设备的配置和向终端指示,激活零功率的上行参考信号,可以在一些终端传输上行参考信号(即非零功率的上行参考信号)时,同时指示其他终端在相应的资源上进行资源空闲,从而避免其他终端所传输的上行参考信号的干扰,提高这些上行参考信号的传输性能。
这样,通过根据零功率的上行参考信号所占用的资源,获得所述零功率的上行参考信号的配置信息,进而向终端发送所述配置信息,使得能够在所述资源上,不接收上行数据,和/或在所述资源上,不接收非零功率的上行参考信号,由于终端进行了资源预留,有效地避免了终端在所预留的资源上传输的上行信号对其他终端在所预留的资源上传输的上行参考信号所造成的干扰,能够保证终端的上行参考信号的可靠传输,从而提高了这些上行参考信号的传输性能。
可选地,在本实施例的一个可能的实现方式中,所述ZP ULRS可以包括但不限于ZP SRS、ZP DMRS或ZP PTRS这些现有的ULRS,或者还可以为NR***新定义的其他ZP ULRS,本实施例对此不进行特别限定。
可选地,在本实施例的一个可能的实现方式中,所述NZP ULRS可以包括但不限于NZP SRS、NZP DMRS或NZP PTRS,或者还可以为NR***新定义的其他NZP ULRS,本实施例对此不进行特别限定。
可选地,在本实施例的一个可能的实现方式中,在202中,具体可以通过高层信令或下行控制信息(Downlink Control Information,DCI),向终端发送ZP ULRS的配置信息。
例如,所述高层信令可以是无线物理资源控制(Radio Resource Control,RRC)消息,具体可以通过RRC消息中的信息元素(Information Element,IE)携带所述ZP ULRS的配置信息,所述RRC消息可以为现有技术中的RRC消息,例如,RRC连接重配置(RRC CONNECTION RECONFIGURATION)消息等,本实施例对此不进行限定,通过对已有的RRC消息的IE进行扩展携带所述ZP ULRS的配置信息,或者所述RRC消息也可以为不同于现有技术中已有的RRC消息。
再例如,所述高层信令可以是媒体访问控制(Media Access Control,MAC)控制元素(Control Element,CE)消息,具体还可以通过增加新的MAC CE消息携带所述ZP ULRS的配置信息。
可选地,在本实施例的一个可能的实现方式中,在201中,所获得的所述配置信息可以包括但不限于资源配置信息和激活信息,本实施例对此不进行特别限定。
在本实施例中,资源配置信息与激活信息,这两个信息,可以是独立的两个信息,或者还可以是一个信息,本实施例对此不进行特别限定。
例如,网络设备可以通过RRC消息,向终端发送ZP ULRS的资源配置信息。
或者,再例如,网络设备可以通过DCI或者MAC CE消息,向终端发送ZP ULRS的激活信息。
其中,所述资源配置信息,用于指示为所述ZP ULRS所配置的资 源。
本实施例中,所述资源可以包括但不限于时域资源、频域资源以及序列资源中的至少一项,本实施例对此不进行特别限定。
例如,所述时域资源可以是ZP ULRS所在的时隙或者正交频分复用(Orthogonal Frequency Division Multiple,OFDM)符号。
或者,再例如,所述频域资源可以是ZP ULRS所占用的子载波或者物理资源块(Resource Block,RB)。
所述序列资源可以是所述ZP ULRS所使用的循环移位、正交掩码(Orthogonal Cover Code,OCC)或者序列标识(Identity,ID)。
本实施例中,所述为ZP ULRS所配置的资源可以重用为对应的NZP ULRS所配置的资源。
例如,网络设备可以配置NZP ULRS与ZP ULRS共用相同的N个资源(N为大于或等于1的整数),进而通过激活信息指示ZP ULRS所占用其中的哪个资源。
其中,所述激活信息,用于指示是否激活所述ZP ULRS。其中,所述的“激活”,还可以称为触发,也可以称为使能,本实施例对此不进行特别限定。
具体来说,所述激活信息可以采用1比特信息表示,例如,1可以表示激活状态;0可以表示非激活状态。
在一个具体的实现过程中,在202中,具体可以向所述终端发送DCI,所述DCI中包含非周期的ZP SRS触发信令,用于触发ZP SRS。其中,所述非周期的ZP SRS触发信令,则可以作为激活信息。
在该实现方式中,当一个终端A被触发传输NZP SRS时,如果另 一个终端B的上行传输与所述NZP SRS复用相同的资源,则终端B可以被非周期的ZP SRS触发信令,触发与所述NZP SRS对应的ZP SRS,从而在所述NZP SRS所占用的资源上不传输上行信号,能够避免对NZP SRS的干扰。
在另一个具体的实现过程中,在202中,具体可以向所述终端发送用于调度上行传输的DCI,所述DCI中包含所述激活信息,用于激活承载所述上行传输的物理资源区域中的ZP DMRS或ZP PTRS。
其中,所述上行传输,可以为上行数据传输,或者还可以为上行信道状态信息(Channel State Information,CSI)上报,本实施例对此不进行特别限定。
例如,终端和网络设备可以预先约定好,或者由网络设备配置ZP DMRS所使用的物理资源或DMRS端口,当终端接收到用于调度上行传输的DCI,需要在某个时隙进行所述上行传输时,则可以在所述时隙中激活所述ZP DMRS,即在所述时隙中的ZP DMRS或者ZP DMRS的DMRS端口所对应的物理资源上不传输上行数据、上行CSI或者DMRS。
这样,当一个终端和其他终端进行多用户多输入多输出(Multi-User Multiple-Input Multiple-Output,MU-MIMO)传输时,如果两个终端使用不同的DMRS端口,且不同端口占用不同的物理资源,则一个终端可以在复用终端传输DMRS的物理资源上不传输上行信号,以降低对复用终端的干扰。
或者,再例如,终端和网络设备可以预先约定好,或者由网络设备配置ZP PTRS所使用的物理资源或PTRS端口,当终端接收到用于调度上行传输的DCI,需要在某个时隙进行所述上行传输时,则可以在所 述时隙中激活所述ZP PTRS,即在所述时隙中的ZP PTRS或者ZP PTRS的PTRS端口所对应的物理资源上不传输上行数据、上行CSI或者DMRS。
这样,当一个终端和其他终端进行MU-MIMO传输时,如果两个终端使用不同的PTRS端口,且不同端口占用不同的物理资源,则一个终端可以在复用终端传输PTRS的物理资源上不传输上行信号,以降低对复用终端的干扰。
进一步地,在该实现方式中,所述激活信息,还可以进一步用于指示所激活的上行参考信号为ZP ULRS,或者为NZP ULRS。
具体来说,所述激活信息可以采用2比特信息表示,例如,00可以表示非激活状态;01可以表示所激活的上行参考信号为NZP ULRS;10可以表示所激活的上行参考信号为ZP ULRS;11暂时不用。
例如,如果所激活的上行参考信号为NZP ULRS,则终端需要在对应的资源上传输所述NZP ULRS;如果所激活的上行参考信号为ZP ULRS,则终端不需要在对应的资源上传输上行参考信号,且需要预留相应的资源。这样,无论一个终端是传输NZP ULRS,还是需要对其他终端传输NZP ULRS对应的资源进行资源预留,都可以采用相同的信令来进行指示,从而简化信令设计。
进一步地,在该实现方式中,所述激活信息,还可以进一步用于指示从所述资源配置信息所指示的为所述ZP ULRS所配置的多个资源中,选择所激活的所述零功率的上行参考信号所占用的资源。
具体来说,网络设备可以预先配置ZP ULRS所占用的多个资源。相应地,所述激活信息,具体可以从网络设备所配置的ZP ULRS所占 用的多个资源中,选择ZP ULRS所占用的至少一个资源。例如,可以采用索引(index)或位图(bitmap)的方式指示。
进一步地,在该实现方式中,所述激活信息,还可以进一步用于指示所激活的所述零功率的上行参考信号所占用的天线端口。
例如,如果所激活的所述ZP ULRS为ZP DMRS或ZP PTRS,则所述激活信息可以用于指示所述ZP DMRS所占用的DMRS端口或者ZP PTRS所占用的PTRS端口,说明其他终端在相同资源上传输所占用的DMRS端口或PTRS端口。
可选地,在本实施例的一个可能的实现方式中,若所述ZP ULRS没有被激活,则所述ZP ULRS不需要占用资源,即ZP ULRS所占用的资源为空;若所述ZP ULRS被激活,则可以根据所述ZP ULRS的配置信息,确定所述ZP ULRS所占用的资源。
本发明中,所述ZP ULRS与所述NZP ULRS为相同类型的上行参考信号,或者为不同类型的上行参考信号,本实施例对此不进行特别限定。
例如,可以在ZP DMRS所占用的资源上不传输DMRS和/或PTRS。
或者,再例如,可以在ZP PTRS所占用的资源上不传输DMRS和/或SRS。
基于本发明所提供的上行信号的传输方法,可以在一些终端传输上行参考信号时,同时使得其他终端在相应资源上灵活进行资源空闲,从而避免其他终端传输的上行信号对这些上行参考信号的干扰,能够保证终端的上行参考信号的可靠传输,从而提高了这些上行参考信号的传输性能。
本实施例中,通过根据零功率的上行参考信号所占用的资源,获得所述零功率的上行参考信号的配置信息,进而向终端发送所述配置信息,使得能够在所述资源上,不接收上行数据,和/或在所述资源上,不接收非零功率的上行参考信号,由于终端进行了资源预留,有效地避免了终端在所预留的资源上传输的上行信号对其他终端在所预留的资源上传输的上行参考信号所造成的干扰,能够保证终端的上行参考信号的可靠传输,从而提高了这些上行参考信号的传输性能。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
图3为本发明另一实施例提供的终端的结构示意图,如图3所示。本实施例的终端可以包括接收单元31、确定单元32和执行单元33。其中,接收单元31,用于接收网络设备发送的零功率的上行参考信号的配置信息;确定单元32,用于根据所述配置信息,确定所述零功率的上行参考信号所占用的资源;执行单元33,用于在所述资源上,不发送上行数据;和/或,在所述资源上,不发送非零功率的上行参考信号。
可选地,在本实施例的一个可能的实现方式中,所述零功率的上行参考信号可以包括但不限于零功率的探测参考信号、零功率的解调参考 信号或零功率的相位跟踪参考信号,本实施例对此不进行特别限定。
可选地,在本实施例的一个可能的实现方式中,所述非零功率的上行参考信号可以包括但不限于非零功率的探测参考信号、非零功率的解调参考信号或非零功率的相位跟踪参考信号,本实施例对此不进行特别限定。
可选地,在本实施例的一个可能的实现方式中,所述接收单元31,具体可以用于接收网络设备通过高层信令或下行控制信息,发送的零功率的上行参考信号的配置信息。
可选地,在本实施例的一个可能的实现方式中,所述高层信令可以包括但不限于无线物理资源控制消息或媒体访问控制控制元素消息,本实施例对此不进行特别限定。
可选地,在本实施例的一个可能的实现方式中,所述配置信息可以包括但不限于资源配置信息和激活信息,本实施例对此不进行特别限定;其中,
所述资源配置信息,用于指示为所述零功率的上行参考信号所配置的资源;
所述激活信息,用于指示是否激活所述零功率的上行参考信号。
具体来说,确定单元32,具体可以用于若所述激活信息指示激活所述零功率的上行参考信号,根据所述资源配置信息确定所述零功率的上行参考信号所占用的资源。
本实施例中,为所述零功率的上行参考信号所配置的资源可以重用为对应的非零功所述率的上行参考信号所配置的资源。
在一个具体的实现过程中,所述接收单元31,具体可以用于接收所 述网络设备发送的下行控制信息,所述下行控制信息中包含非周期的零功率的探测参考信号触发信令,用于触发零功率的探测参考信号。
在另一个具体的实现过程中,所述接收单元31,具体可以用于接收所述网络设备发送的用于调度上行传输的下行控制信息,所述下行控制信息中包含所述激活信息,用于激活承载所述上行传输的物理资源区域中的零功率的解调参考信号或零功率的相位跟踪参考信号。
在该实现方式中,所述激活信息,还可以进一步用于指示所激活的上行参考信号为零功率的上行参考信号,或者为非零功率的上行参考信号。
在该实现方式中,所述激活信息,还可以进一步用于指示从所述资源配置信息所指示的为所述零功率的上行参考信号所配置的多个资源中,选择所激活的所述零功率的上行参考信号所占用的资源。
在该实现方式中,所述激活信息,还可以进一步用于指示所激活的所述零功率的上行参考信号所占用的天线端口。
可选地,在本实施例的一个可能的实现方式中,所述资源可以包括但不限于时域资源、频域资源以及序列资源中的至少一项,本实施例对此不进行特别限定。
可选地,在本实施例的一个可能的实现方式中,所述执行单元33,具体可以用于在所述资源上,对上行数据进行速率匹配或打孔处理。
可选地,在本实施例的一个可能的实现方式中,所述零功率的上行参考信号与所述非零功率的上行参考信号可以为相同类型的上行参考信号,或者还可以为不同类型的上行参考信号,本实施例对此不进行特别限定。
需要说明的是,图1对应的实施例中方法,可以由本实施例提供的终端实现。详细描述可以参见图1对应的实施例中的相关内容,此处不再赘述。
本实施例中,通过接收单元接收网络设备发送的零功率的上行参考信号的配置信息,进而由确定单元根据所述配置信息,确定所述零功率的上行参考信号所占用的资源,使得执行单元能够在所述资源上,不发送上行数据,和/或,在所述资源上,不发送非零功率的上行参考信号,由于终端进行了资源预留,有效地避免了终端在所预留的资源上传输的上行信号对其他终端在所预留的资源上传输的上行参考信号所造成的干扰,能够保证终端的上行参考信号的可靠传输,从而提高了这些上行参考信号的传输性能。
图4为本发明另一实施例提供的网络设备的结构示意图,如图4所示。本实施例的网络设备可以包括获得单元41、发送单元42和执行单元43。其中,获得单元41,用于根据零功率的上行参考信号所占用的资源,获得所述零功率的上行参考信号的配置信息;发送单元42,用于向终端发送所述配置信息;执行单元43,用于在所述资源上,不接收上行数据;和/或在所述资源上,不接收非零功率的上行参考信号。
可选地,在本实施例的一个可能的实现方式中,所述发送单元42,具体可以用于通过高层信令或下行控制信息,向终端发送所述配置信息。
可选地,在本实施例的一个可能的实现方式中,所述配置信息可以包括但不限于资源配置信息和激活信息,本实施例对此不进行特别限定;其中,
所述资源配置信息,用于指示为所述零功率的上行参考信号所配置 的资源;
所述激活信息,用于指示是否激活所述零功率的上行参考信号。
可选地,在本实施例的一个可能的实现方式中,所述执行单元43,具体可以用于在所述资源上,对上行数据进行速率匹配或打孔处理。
可选地,在本实施例的一个可能的实现方式中,所述零功率的上行参考信号与所述非零功率的上行参考信号可以为相同类型的上行参考信号,或者还可以为不同类型的上行参考信号,本实施例对此不进行特别限定。
需要说明的是,图2对应的实施例中方法,可以由本实施例提供的网络设备实现。详细描述可以参见图2对应的实施例中的相关内容,此处不再赘述。
本实施例中,通过获得单元根据零功率的上行参考信号所占用的资源,获得所述零功率的上行参考信号的配置信息,进而由发送单元向终端发送所述配置信息,使得执行单元能够在所述资源上,不接收上行数据,和/或在所述资源上,不接收非零功率的上行参考信号,由于终端进行了资源预留,有效地避免了终端在所预留的资源上传输的上行信号对其他终端在所预留的资源上传输的上行参考信号所造成的干扰,能够保证终端的上行参考信号的可靠传输,从而提高了这些上行参考信号的传输性能。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本发明所提供的几个实施例中,应该理解到,所揭露的***,装 置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (44)

  1. 一种上行信号的传输方法,其特征在于,包括:
    接收网络设备发送的零功率的上行参考信号的配置信息;
    根据所述配置信息,确定所述零功率的上行参考信号所占用的资源;
    在所述资源上,不发送上行数据;和/或,在所述资源上,不发送非零功率的上行参考信号。
  2. 根据权利要求1所述的方法,其特征在于,所述零功率的上行参考信号包括零功率的探测参考信号、零功率的解调参考信号或零功率的相位跟踪参考信号。
  3. 根据权利要求1所述的方法,其特征在于,所述非零功率的上行参考信号包括非零功率的探测参考信号、非零功率的解调参考信号或非零功率的相位跟踪参考信号。
  4. 根据权利要求1所述的方法,其特征在于,所述配置信息包括资源配置信息和激活信息;其中,
    所述资源配置信息,用于指示为所述零功率的上行参考信号所配置的资源;
    所述激活信息,用于指示是否激活所述零功率的上行参考信号。
  5. 根据权利要求4所述的方法,其特征在于,所述资源配置信息通过无线物理资源控制RRC消息承载。
  6. 根据权利要求4所述的方法,其特征在于,所述激活信息通过媒体访问控制控制元素MAC CE消息或下行控制信息DCI承载。
  7. 根据权利要求4所述的方法,其特征在于,所述根据所述配置信息,确定所述零功率的上行参考信号所占用的资源,包括:
    若所述激活信息指示激活所述零功率的上行参考信号,根据所述资源配置信息确定所述零功率的上行参考信号所占用的资源。
  8. 根据权利要求4所述的方法,其特征在于,所述为所述零功率的上行参考信号所配置的资源重用为对应的非零功率的上行参考信号所配置的资源。
  9. 根据权利要求4所述的方法,其特征在于,所述接收网络设备发送的零功率的上行参考信号的配置信息,包括:
    接收所述网络设备发送的下行控制信息,所述下行控制信息中包含非周期的零功率的探测参考信号触发信令,用于触发零功率的探测参考信号。
  10. 根据权利要求4所述的方法,其特征在于,所述接收网络设备发送的零功率的上行参考信号的配置信息,包括:
    接收所述网络设备发送的用于调度上行传输的下行控制信息,所述下行控制信息中包含所述激活信息,用于激活承载所述上行传输的物理资源区域中的零功率的解调参考信号或零功率的相位跟踪参考信号。
  11. 根据权利要求4所述的方法,其特征在于,所述激活信息,用于指示所激活的上行参考信号为零功率的上行参考信号,或者为非零功率的上行参考信号。
  12. 根据权利要求4所述的方法,其特征在于,所述激活信息,用于指示从所述资源配置信息所指示的为所述零功率的上行参考信号所配置的多个资源中,选择所激活的所述零功率的上行参考信号所占用的资源。
  13. 根据权利要求4所述的方法,其特征在于,所述激活信息,还 用于指示所激活的所述零功率的上行参考信号所占用的天线端口。
  14. 根据权利要求1所述的方法,其特征在于,所述在所述资源上,不发送上行数据,包括:
    在所述资源上,对上行数据进行速率匹配或打孔处理。
  15. 根据权利要求1所述的方法,其特征在于,所述零功率的上行参考信号与所述非零功率的上行参考信号为相同类型的上行参考信号,或者为不同类型的上行参考信号。
  16. 根据权利要求1~15任一权利要求所述的方法,其特征在于,所述资源包括时域资源、频域资源以及序列资源中的至少一项。
  17. 一种上行信号的传输方法,其特征在于,包括:
    根据零功率的上行参考信号所占用的资源,获得所述零功率的上行参考信号的配置信息;
    向终端发送所述配置信息;
    在所述资源上,不接收上行数据;和/或,在所述资源上,不接收非零功率的上行参考信号。
  18. 根据权利要求17所述的方法,其特征在于,所述配置信息包括资源配置信息和激活信息;其中,
    所述资源配置信息,用于指示为所述零功率的上行参考信号所配置的资源;
    所述激活信息,用于指示是否激活所述零功率的上行参考信号。
  19. 根据权利要求18所述的方法,其特征在于,所述资源配置信息通过无线物理资源控制RRC消息承载。
  20. 根据权利要求18所述的方法,其特征在于,所述激活信息通 过媒体访问控制控制元素MAC CE消息或下行控制信息DCI承载。
  21. 根据权利要求17~20任一权利要求所述的方法,其特征在于,所述在所述资源上,不接收上行数据,包括:
    在所述资源上,对上行数据进行速率匹配或打孔处理。
  22. 根据权利要求17~20任一权利要求所述的方法,其特征在于,所述零功率的上行参考信号与所述非零功率的上行参考信号为相同类型的上行参考信号,或者为不同类型的上行参考信号。
  23. 一种终端,其特征在于,包括:
    接收单元,用于接收网络设备发送的零功率的上行参考信号的配置信息;
    确定单元,用于根据所述配置信息,确定所述零功率的上行参考信号所占用的资源;
    执行单元,用于在所述资源上,不发送上行数据;和/或,在所述资源上,不发送非零功率的上行参考信号。
  24. 根据权利要求23所述的终端,其特征在于,所述零功率的上行参考信号包括零功率的探测参考信号、零功率的解调参考信号或零功率的相位跟踪参考信号。
  25. 根据权利要求23所述的终端,其特征在于,所述非零功率的上行参考信号包括非零功率的探测参考信号、非零功率的解调参考信号或非零功率的相位跟踪参考信号。
  26. 根据权利要求23所述的终端,其特征在于,所述配置信息包括资源配置信息和激活信息;其中,
    所述资源配置信息,用于指示为所述零功率的上行参考信号所配置 的资源;
    所述激活信息,用于指示是否激活所述零功率的上行参考信号。
  27. 根据权利要求26所述的终端,其特征在于,所述资源配置信息通过无线物理资源控制RRC消息承载。
  28. 根据权利要求26所述的终端,其特征在于,所述激活信息通过媒体访问控制控制元素MAC CE消息或下行控制信息DCI承载。
  29. 根据权利要求26所述的终端,其特征在于,所述确定单元,具体用于
    若所述激活信息指示激活所述零功率的上行参考信号,根据所述资源配置信息确定所述零功率的上行参考信号所占用的资源。
  30. 根据权利要求26所述的终端,其特征在于,所述为所述零功率的上行参考信号所配置的资源重用为对应的非零功率的上行参考信号所配置的资源。
  31. 根据权利要求26所述的终端,其特征在于,所述接收单元,具体用于
    接收所述网络设备发送的下行控制信息,所述下行控制信息中包含非周期的零功率的探测参考信号触发信令,用于触发零功率的探测参考信号。
  32. 根据权利要求26所述的终端,其特征在于,所述接收单元,具体用于
    接收所述网络设备发送的用于调度上行传输的下行控制信息,所述下行控制信息中包含所述激活信息,用于激活承载所述上行传输的物理资源区域中的零功率的解调参考信号或零功率的相位跟踪参考信号。
  33. 根据权利要求26所述的终端,其特征在于,所述激活信息,用于指示所激活的上行参考信号为零功率的上行参考信号,或者为非零功率的上行参考信号。
  34. 根据权利要求26所述的终端,其特征在于,所述激活信息,用于指示从所述资源配置信息所指示的为所述零功率的上行参考信号所配置的多个资源中,选择所激活的所述零功率的上行参考信号所占用的资源。
  35. 根据权利要求26所述的终端,其特征在于,所述激活信息,还用于指示所激活的所述零功率的上行参考信号所占用的天线端口。
  36. 根据权利要求23所述的终端,其特征在于,所述执行单元,具体用于
    在所述资源上,对上行数据进行速率匹配或打孔处理。
  37. 根据权利要求23所述的终端,其特征在于,所述零功率的上行参考信号与所述非零功率的上行参考信号为相同类型的上行参考信号,或者为不同类型的上行参考信号。
  38. 根据权利要求23~37任一权利要求所述的终端,其特征在于,所述资源包括时域资源、频域资源以及序列资源中的至少一项。
  39. 一种网络设备,其特征在于,包括:
    获得单元,用于根据零功率的上行参考信号所占用的资源,获得所述零功率的上行参考信号的配置信息;
    发送单元,用于向终端发送所述配置信息;
    执行单元,用于在所述资源上,不接收上行数据;和/或,在所述资源上,不接收非零功率的上行参考信号。
  40. 根据权利要求39所述的网络设备,其特征在于,所述配置信息包括资源配置信息和激活信息;其中,
    所述资源配置信息,用于指示为所述零功率的上行参考信号所配置的资源;
    所述激活信息,用于指示是否激活所述零功率的上行参考信号。
  41. 根据权利要求40所述的网络设备,其特征在于,所述资源配置信息通过无线物理资源控制RRC消息承载。
  42. 根据权利要求40所述的网络设备,其特征在于,所述激活信息通过媒体访问控制控制元素MAC CE消息或下行控制信息DCI承载。
  43. 根据权利要求39~42任一权利要求所述的网络设备,其特征在于,所述执行单元,具体用于
    在所述资源上,对上行数据进行速率匹配或打孔处理。
  44. 根据权利要求39~42任一权利要求所述的网络设备,其特征在于,所述零功率的上行参考信号与所述非零功率的上行参考信号为相同类型的上行参考信号,或者为不同类型的上行参考信号。
PCT/CN2017/086097 2017-05-26 2017-05-26 上行信号的传输方法及终端、网络设备 WO2018214149A1 (zh)

Priority Applications (19)

Application Number Priority Date Filing Date Title
MX2019014085A MX2019014085A (es) 2017-05-26 2017-05-26 Método para transmitir señal de enlace ascendente, terminal y dispositivo de red.
PCT/CN2017/086097 WO2018214149A1 (zh) 2017-05-26 2017-05-26 上行信号的传输方法及终端、网络设备
FIEP17911108.3T FI3624477T3 (fi) 2017-05-26 2017-05-26 Menetelmä uplink-suunnan signaalin lähettämiseksi, päätelaite ja verkkolaite
CN201780090554.7A CN110622540B (zh) 2017-05-26 2017-05-26 上行信号的传输方法及终端、网络设备
RU2019139254A RU2734022C1 (ru) 2017-05-26 2017-05-26 Способ для передачи сигнала восходящей линии связи, терминал и сетевое устройство
US16/617,328 US11229030B2 (en) 2017-05-26 2017-05-26 Method for transmitting uplink signal, terminal and network device
EP17911108.3A EP3624477B1 (en) 2017-05-26 2017-05-26 Method for transmitting uplink signal, terminal and network device
BR112019024587A BR112019024587A2 (pt) 2017-05-26 2017-05-26 método para transmitir sinal de uplink, terminal e dispositivo de rede
ES17911108T ES2955022T3 (es) 2017-05-26 2017-05-26 Método para transmitir una señal de enlace ascendente, terminal y dispositivo de red
JP2019564159A JP6999701B2 (ja) 2017-05-26 2017-05-26 上り信号の伝送方法、端末及びネットワークデバイス
CN201911316699.1A CN111132173B (zh) 2017-05-26 2017-05-26 上行信号的传输方法及终端、网络设备
KR1020197034088A KR102346896B1 (ko) 2017-05-26 2017-05-26 상향 신호의 전송 방법, 단말기 및 네트워크 디바이스
IL270679A IL270679B2 (en) 2017-05-26 2017-05-26 A method for transmitting an upload signal, an end unit and a network device
AU2017415762A AU2017415762A1 (en) 2017-05-26 2017-05-26 Method for transmitting uplink signal, terminal and network device
CA3064151A CA3064151C (en) 2017-05-26 2017-05-26 Method for transmitting uplink signal, terminal and network device
TW107114992A TWI769246B (zh) 2017-05-26 2018-05-03 上行訊號的傳輸方法及終端、網路設備
PH12019502590A PH12019502590A1 (en) 2017-05-26 2019-11-19 Method for transmitting uplink signal, terminal and network device
ZA2019/08598A ZA201908598B (en) 2017-05-26 2019-12-23 Method for transmitting uplink signal, terminal and network device
US17/528,643 US11706785B2 (en) 2017-05-26 2021-11-17 Method for transmitting uplink signal, terminal and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/086097 WO2018214149A1 (zh) 2017-05-26 2017-05-26 上行信号的传输方法及终端、网络设备

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/617,328 A-371-Of-International US11229030B2 (en) 2017-05-26 2017-05-26 Method for transmitting uplink signal, terminal and network device
US17/528,643 Continuation US11706785B2 (en) 2017-05-26 2021-11-17 Method for transmitting uplink signal, terminal and network device

Publications (1)

Publication Number Publication Date
WO2018214149A1 true WO2018214149A1 (zh) 2018-11-29

Family

ID=64396100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/086097 WO2018214149A1 (zh) 2017-05-26 2017-05-26 上行信号的传输方法及终端、网络设备

Country Status (17)

Country Link
US (2) US11229030B2 (zh)
EP (1) EP3624477B1 (zh)
JP (1) JP6999701B2 (zh)
KR (1) KR102346896B1 (zh)
CN (2) CN110622540B (zh)
AU (1) AU2017415762A1 (zh)
BR (1) BR112019024587A2 (zh)
CA (1) CA3064151C (zh)
ES (1) ES2955022T3 (zh)
FI (1) FI3624477T3 (zh)
IL (1) IL270679B2 (zh)
MX (1) MX2019014085A (zh)
PH (1) PH12019502590A1 (zh)
RU (1) RU2734022C1 (zh)
TW (1) TWI769246B (zh)
WO (1) WO2018214149A1 (zh)
ZA (1) ZA201908598B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022155824A1 (zh) * 2021-01-20 2022-07-28 华为技术有限公司 参考信号的传输方法和通信装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018214149A1 (zh) * 2017-05-26 2018-11-29 Oppo广东移动通信有限公司 上行信号的传输方法及终端、网络设备
CN111132294B (zh) 2017-05-27 2021-03-09 Oppo广东移动通信有限公司 无线通信方法和设备
CN109150444B (zh) * 2017-06-16 2022-01-11 华为技术有限公司 资源单元的设置、传输方法及装置
JP2023537334A (ja) * 2020-08-01 2023-08-31 華為技術有限公司 アップリンク伝送方法および関連装置
CN114070449A (zh) * 2020-08-01 2022-02-18 华为技术有限公司 上行传输方法及相关装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102547872A (zh) * 2012-01-18 2012-07-04 电信科学技术研究院 一种传输带宽信息的方法及装置
CN102665230A (zh) * 2012-04-23 2012-09-12 电信科学技术研究院 一种e-pdcch传输及盲检的方法及装置
WO2016060466A1 (ko) * 2014-10-17 2016-04-21 엘지전자 주식회사 Fdr 전송을 지원하는 무선 통신 시스템에서 디바이스 간 간섭을 측정하는 방법 및 이를 위한 장치
CN106102174A (zh) * 2010-08-11 2016-11-09 株式会社泛泰 发送静默信息的装置和方法与获取信道状态的装置和方法
CN106416404A (zh) * 2014-01-30 2017-02-15 夏普株式会社 终端装置、基站装置以及通信方法

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8761824B2 (en) 2008-06-27 2014-06-24 Qualcomm Incorporated Multi-carrier operation in a wireless communication network
RU2502191C1 (ru) 2009-09-07 2013-12-20 Эл Джи Электроникс Инк. Способ и устройство для передачи/приема опорного сигнала в системе беспроводной связи
CN101827444B (zh) * 2010-03-31 2015-03-25 中兴通讯股份有限公司 一种测量参考信号的信令配置***及方法
CN103037395B (zh) 2011-09-29 2015-04-29 华为技术有限公司 多个接入点时配置csi-rs的方法、基站及接入点
CN102404854B (zh) * 2011-11-04 2018-04-06 中兴通讯股份有限公司 一种上行解调参考信号的资源配置方法及***
US9166729B2 (en) * 2011-12-14 2015-10-20 Marvell World Trade Ltd. Enhanced demodulation reference signal (DM-RS) design
US9106386B2 (en) 2012-08-03 2015-08-11 Intel Corporation Reference signal configuration for coordinated multipoint
KR101753594B1 (ko) * 2012-09-16 2017-07-19 엘지전자 주식회사 협력적 송신을 지원하는 무선 통신 시스템에서 데이터를 수신하는 방법 및 장치
KR102061700B1 (ko) 2012-11-02 2020-01-02 삼성전자주식회사 무선 통신 시스템에서 간섭 인지 검출 방법 및 장치
CN105027657B (zh) 2013-03-05 2018-12-11 夏普株式会社 终端装置、基站装置、集成电路以及无线通信方法
US9210670B2 (en) * 2013-03-18 2015-12-08 Samsung Electronics Co., Ltd. Uplink power control in adaptively configured TDD communication systems
JP6220049B2 (ja) * 2013-04-01 2017-10-25 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 送信装置および制御信号配置方法
US9270435B2 (en) * 2013-05-09 2016-02-23 Nokia Solutions And Networks Oy Sounding reference signal (SRS) usage
CN104378826B (zh) * 2013-08-14 2018-08-07 电信科学技术研究院 一种传输资源的确定、指示方法及终端、基站
EP3099128B1 (en) 2014-01-24 2023-08-16 Huawei Technologies Co., Ltd. Pilot signal transmission method and device
CN108809607B (zh) * 2014-05-29 2019-07-12 华为技术有限公司 解调导频配置方法和装置
US10462836B2 (en) 2014-08-06 2019-10-29 Lg Electronics Inc. Method and apparatus for supporting amorphous cell in wireless communication system
CN105991222B (zh) * 2015-02-12 2020-05-19 中兴通讯股份有限公司 配置信息通知方法、获取方法、装置、基站及终端
WO2017017564A1 (en) 2015-07-25 2017-02-02 Mariana Goldhamer Coupling loss in wireless networks
WO2017033778A1 (ja) 2015-08-21 2017-03-02 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
EP3345325B1 (en) * 2015-08-31 2019-07-31 Telefonaktiebolaget LM Ericsson (publ) Reference signal configuration for cell coordination
WO2017052489A1 (en) * 2015-09-24 2017-03-30 Intel Corporation V2x performance enhancements in high speed environments
US11038647B2 (en) * 2016-09-29 2021-06-15 Nokia Technologies Oy Interference measurement resources for a UE in a wireless communication network
CN108400855B (zh) * 2017-02-07 2022-09-13 中兴通讯股份有限公司 一种相位噪声导频的配置、确定、信息反馈方法及装置
BR112019019822A2 (pt) * 2017-03-23 2020-04-22 Guangdong Oppo Mobile Telecommunications Corp Ltd método e dispositivo para transmitir sinal de referência de demodulação de uplink
US10965415B2 (en) * 2017-03-25 2021-03-30 Lg Electronics Inc. Method for assigning PTRS for phase noise removal in wireless communication system, and device therefor
WO2018214149A1 (zh) * 2017-05-26 2018-11-29 Oppo广东移动通信有限公司 上行信号的传输方法及终端、网络设备
US10727996B2 (en) * 2017-06-13 2020-07-28 Qualcomm Incorporated Null resource elements for dynamic and bursty inter-cell interference measurement in new radio
US20200382181A1 (en) * 2019-08-16 2020-12-03 Intel Corporation Phase-tracking reference signal (ptrs) operations for full power uplink transmissions in new radio (nr) systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106102174A (zh) * 2010-08-11 2016-11-09 株式会社泛泰 发送静默信息的装置和方法与获取信道状态的装置和方法
CN102547872A (zh) * 2012-01-18 2012-07-04 电信科学技术研究院 一种传输带宽信息的方法及装置
CN102665230A (zh) * 2012-04-23 2012-09-12 电信科学技术研究院 一种e-pdcch传输及盲检的方法及装置
CN106416404A (zh) * 2014-01-30 2017-02-15 夏普株式会社 终端装置、基站装置以及通信方法
WO2016060466A1 (ko) * 2014-10-17 2016-04-21 엘지전자 주식회사 Fdr 전송을 지원하는 무선 통신 시스템에서 디바이스 간 간섭을 측정하는 방법 및 이를 위한 장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022155824A1 (zh) * 2021-01-20 2022-07-28 华为技术有限公司 参考信号的传输方法和通信装置

Also Published As

Publication number Publication date
KR20200011424A (ko) 2020-02-03
EP3624477B1 (en) 2023-08-09
MX2019014085A (es) 2020-02-07
US20200374883A1 (en) 2020-11-26
EP3624477A1 (en) 2020-03-18
PH12019502590A1 (en) 2020-07-13
ES2955022T3 (es) 2023-11-28
IL270679B1 (en) 2023-12-01
US11229030B2 (en) 2022-01-18
FI3624477T3 (fi) 2023-09-11
US11706785B2 (en) 2023-07-18
AU2017415762A1 (en) 2019-12-12
JP2020522161A (ja) 2020-07-27
IL270679A (zh) 2020-02-27
TWI769246B (zh) 2022-07-01
CN111132173A (zh) 2020-05-08
ZA201908598B (en) 2021-04-28
BR112019024587A2 (pt) 2020-06-09
TW201902260A (zh) 2019-01-01
JP6999701B2 (ja) 2022-01-19
EP3624477A4 (en) 2020-05-27
CN110622540A (zh) 2019-12-27
CN110622540B (zh) 2024-04-30
US20220078794A1 (en) 2022-03-10
RU2734022C1 (ru) 2020-10-12
CA3064151A1 (en) 2018-11-29
CN111132173B (zh) 2021-02-23
KR102346896B1 (ko) 2022-01-04
IL270679B2 (en) 2024-04-01
CA3064151C (en) 2023-02-21

Similar Documents

Publication Publication Date Title
WO2018214149A1 (zh) 上行信号的传输方法及终端、网络设备
US10856292B2 (en) Communication method and base station
CN113206731B (zh) 传输参考信号的方法和通信设备
EP4224733A1 (en) Beam processing method and apparatus, and related device
WO2020200001A1 (zh) 一种速率匹配方法、装置和存储介质
WO2022042689A1 (zh) 传输方法、装置、通信设备及终端
US20160157235A1 (en) Carrier Configuration Method, Base Station, and User Equipment
WO2019153853A1 (zh) 资源指示方法、用户设备及网络侧设备
WO2013063988A1 (zh) 一种传输信息的方法、***和设备
US20190305902A1 (en) Reference signal transmission method and apparatus
WO2018145626A1 (zh) 一种参考信号的发送方法、接收方法及相关设备
KR20230025428A (ko) 무선 통신 시스템에서 사운딩 참조 신호의 송수신 방법 및 그 장치
CN109391401B (zh) 一种下行控制信息的传输方法、基站、终端及存储介质
WO2024114491A1 (zh) 上行参考信号资源传输方法、装置、终端及网络侧设备
CN116633508A (zh) 下行tci状态确定方法、装置、终端和网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911108

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3064151

Country of ref document: CA

Ref document number: 20197034088

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019564159

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019024587

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017415762

Country of ref document: AU

Date of ref document: 20170526

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017911108

Country of ref document: EP

Effective date: 20191212

ENP Entry into the national phase

Ref document number: 112019024587

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191122