WO2018212121A1 - Battery semi-fabricated product, battery, battery manufacturing method, battery pack, electronic device, vehicle, power tool, and power storage system - Google Patents

Battery semi-fabricated product, battery, battery manufacturing method, battery pack, electronic device, vehicle, power tool, and power storage system Download PDF

Info

Publication number
WO2018212121A1
WO2018212121A1 PCT/JP2018/018472 JP2018018472W WO2018212121A1 WO 2018212121 A1 WO2018212121 A1 WO 2018212121A1 JP 2018018472 W JP2018018472 W JP 2018018472W WO 2018212121 A1 WO2018212121 A1 WO 2018212121A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
electrode body
electrolyte solution
electrode
injection
Prior art date
Application number
PCT/JP2018/018472
Other languages
French (fr)
Japanese (ja)
Inventor
元気 遠藤
和男 佐々木
高木 良介
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2018212121A1 publication Critical patent/WO2018212121A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This technology relates to a battery applicable to battery packs, electronic devices, vehicles, electric tools, power storage systems, and the like. More specifically, the present invention relates to a battery including a mechanism capable of injecting an electrolytic solution into the exterior body even after the electrode body is sealed with the exterior body.
  • secondary batteries such as lithium-ion batteries that are small, light, and have a high capacity have been introduced into mobile devices, power tools, automobiles, and the like.
  • Such a secondary battery is manufactured through a sealing step of sealing the electrode body with an exterior body after a liquid injection step of injecting an electrolytic solution.
  • Patent Document 1 in order to improve the high-temperature holding characteristics, a first injection step of injecting a first non-aqueous electrolyte, a charging step of charging, and finally a second non-existing solution. It is disclosed that a battery is manufactured through a divided liquid injection process including three processes of a second liquid injection process for injecting a water electrolyte. Further, for example, in Patent Document 2, in order to improve battery characteristics, particularly charge / discharge cycle characteristics, after injecting an electrolyte into the exterior body, a part in the length direction of one side of the outer peripheral portion of the exterior body is left.
  • a sealing step of sealing a charging step of charging through the positive electrode lead portion and the negative electrode lead portion following the sealing step without leaving in the sealing step, a static step of standing in a charged state, and the static step
  • a battery is manufactured through a discharging step of discharging after the placing step and a pouring step of injecting an electrolyte from the part after the discharging step. That is, Patent Document 1 and Patent Document 2 disclose that the electrolytic solution is divided into two parts and injected in the battery manufacturing process.
  • battery performance cannot be sufficiently reduced due to deterioration of the battery or the like.
  • “batterization” means a state in which an electrolytic solution is injected and a function as a battery can be exhibited.
  • the present technology has been made in view of such a situation, and a main object is to provide a battery that can be stored without deteriorating battery performance.
  • an electrode body having a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode, an exterior body having an electrode body housing portion that houses the electrode body, and an electrolyte solution are injected into the electrode body housing portion
  • An injection part, and the injection part provides a semi-finished battery product that is isolated from the electrode body housing part.
  • this technique provides the battery provided with the semi-finished product of the said battery, and the electrolyte solution comprised with a solvent and electrolyte.
  • the present technology also includes an assembling process for assembling an electrode body in which a separator is disposed between a positive electrode and a negative electrode, an injecting part forming process for forming an injecting part for injecting an electrolytic solution after the assembling process, and an injecting part forming process
  • a supply step of supplying an electrolytic solution A sealing step of sealing the electrode body with an exterior body having an electrode body housing portion for housing the electrode body, and an electrode body sealed with the exterior body having a positive electrode, a negative electrode, and a separator after the sealing step
  • a supply step of supplying an electrolytic solution of supplying an electrolytic solution.
  • the present technology provides a battery pack that includes at least one battery according to the present technology and includes an outer case that houses the battery.
  • the present technology also provides an electronic device including the battery according to the present technology as a power supply source.
  • the present technology includes a conversion unit that converts electric power supplied from the battery according to the present technology into a driving force, a driving unit that is driven according to the driving force, and a control unit that controls a use state of the battery.
  • a vehicle provides an electric tool provided with the movable part to which electric power is supplied from the battery according to the present technique.
  • this technique provides an electric power storage system provided with the 1 or 2 or more electronic device to which electric power is supplied from the battery which concerns on this technique, and the control part which controls the electric power supply with respect to the electronic device from a battery.
  • Battery according to first embodiment> The battery according to the first embodiment of the present technology will be described with reference to FIG.
  • a laminated film type lithium ion secondary battery non-aqueous electrolyte battery
  • a laminated film type lithium ion secondary battery non-aqueous electrolyte battery
  • the battery 10 according to the present embodiment is roughly divided into an electrode body 11, an exterior body 12 that includes a laminate material and seals the electrode body 11, and a battery.
  • 10 is provided with a narrow tube 13 for injecting an electrolyte into a 0024 portion, and a valve 14 for controlling the flow of fluid in the narrow tube 13.
  • the thin tube 13 and the valve 14 serve as an injection part that injects the electrolytic solution into the battery 10.
  • the exterior body 12 includes an electrode body housing portion 15 that houses the electrode body 11, and an electrolyte is injected into the electrode body housing portion 15 in a state where the battery 10 is completed (in a battery state).
  • a positive electrode tab 16 having a positive lead and a negative electrode tab 17 having a negative lead are attached to a side surface (upper surface in FIG. 1) of the outer package 12.
  • the rear end portions of the electrode tabs 16 and 17 are connected to the electrode body 11.
  • the exterior body 12 is sealed by adhering a lami seal portion 18 after accommodating the electrode body 11.
  • each electrode tab 16 and 17 may be attached so that the part which contact
  • sealant materials such as a heat-sealing sealing material which is not shown in figure.
  • the positive electrode lead and the negative electrode lead are led out in the same direction from the inside of the outer package 12 to the outside, for example.
  • the positive electrode lead is made of, for example, a metal material such as aluminum
  • the negative electrode lead is made of, for example, a metal material such as copper, nickel, or stainless steel. These metal materials are, for example, in a thin plate shape or a mesh shape.
  • the package 12 is made of, for example, an aluminum laminated film in which a nylon film, an aluminum foil, and a polyethylene film are bonded together in this order.
  • the exterior body 12 has, for example, a structure in which outer edges of two rectangular aluminum laminate films are bonded to each other by fusion or an adhesive so that a polyethylene film faces the electrode body 11. .
  • This adhesion film for preventing the entry of outside air is inserted between the outer package 12 and the positive and negative electrode leads.
  • This adhesion film is made of a material having adhesion to the positive electrode lead and the negative electrode lead. Examples of such a material include polyolefin resins such as polyethylene, polypropylene, modified polyethylene, and modified polypropylene.
  • adherence film of this embodiment is comprised with the material same as a sealant material.
  • the exterior body 12 may be comprised with the laminated film which has another laminated structure instead of the above-mentioned aluminum laminated film, and may be comprised with polymer films or metal films, such as a polypropylene.
  • the narrow tube 13 is covered with a sealant material such as a heat-sealing seal material (not shown) on the same side surface portion as the side surface portion to which the electrode tabs 16 and 17 are attached, and a portion in contact with the sealing portion of the outer package 12. And attached to the exterior body 12.
  • the battery 10 can improve the adhesiveness of the thin tube 13 and the exterior body 12, and can also manufacture the battery 10 provided with the thin tube 13 easily.
  • the thin tube 13 has a valve 14 joined to a distal end portion thereof through a highly adhesive joint or the like, and a rear end portion thereof is inserted into an electrode body accommodating portion 15 between the electrode body 11 and the exterior body 12. .
  • the thin tube 13 is formed so that the cross-sectional thickness is smaller than the thickness of the outer package 12.
  • Such a thin tube 13 can serve as an injection / discharge portion for injecting or discharging the electrolyte into the electrode body housing portion 15. Furthermore, the thin tube 13 can also serve as a gas discharge unit that discharges the gas generated inside the completed battery 10 to the outside.
  • the thin tube 13 can include a non-conductive material or a metal tube having a non-conductive coating.
  • the diameter of the thin tube 13 is 0.05 mm or more and 1.0 mm or less.
  • the thin tube 13 may include a non-conductive material. Thereby, the internal short circuit of the battery 10 can be prevented.
  • the thin tube 13 of the present embodiment may be attached to a side surface portion of the exterior body 12 different from the side surface portion to which the electrode tab 16 is attached.
  • the sealant material may have a cylindrical shape or a shape obtained by folding a strip into two.
  • the sealant material is formed of a tape-like film having a thickness of 20 ⁇ m to 200 ⁇ m and a width of about 5 mm.
  • the battery 10 of this embodiment can improve the adhesiveness of the thin tube 13 and the exterior body 12 by using a sealant material.
  • FIG. 2 shows a cross-sectional configuration of a wound electrode body 30 which is an example of an electrode body.
  • the wound electrode body 30 is obtained by laminating and winding a positive electrode 33 and a negative electrode 34 via an insulating layer 39 composed of a separator 35 and an electrolyte solution holding layer 36, and the outermost peripheral portion is covered with a protective tape 37. Protected.
  • the electrolyte solution holding layer 36 is formed on both surfaces of the separator 35, and the separator 35, the positive electrode 33, and the separator 35 and the negative electrode 34 are bonded via the electrolyte solution holding layer 36. is doing. Further, the positive electrode 33 and the negative electrode 34 are bonded via an insulating layer 39.
  • the electrolyte solution holding layer 36 may be formed only on one side of the separator 35.
  • a positive electrode active material layer 33B is provided on both surfaces of a positive electrode current collector 33A having a pair of surfaces.
  • the positive electrode active material layer 33B may be provided only on one surface of the positive electrode current collector 33A.
  • the positive electrode current collector 33A is made of, for example, a metal material such as aluminum, nickel, or stainless steel.
  • the positive electrode active material layer 33B includes one or more positive electrode materials capable of inserting and extracting lithium as a positive electrode active material, and a binder, a conductive agent, and the like as necessary. Other materials may be included.
  • Positive electrode active material for example, a material capable of inserting and extracting lithium can be used.
  • a positive electrode active material for example, a lithium-containing compound can be used.
  • lithium-containing compound examples include a composite oxide containing lithium and a transition metal element (referred to as “lithium transition metal composite oxide”), and a phosphate compound containing lithium and a transition metal element (“lithium transition metal phosphate compound”). And so on).
  • lithium transition metal composite oxide a composite oxide containing lithium and a transition metal element
  • lithium transition metal phosphate compound a phosphate compound containing lithium and a transition metal element
  • a compound containing at least one of cobalt (Co), nickel, manganese (Mn) and iron as a transition metal element is preferable. This is because a higher voltage can be obtained.
  • lithium transition metal composite oxide examples include a lithium transition metal composite oxide having a layered rock salt structure and a lithium transition metal composite oxide having a spinel structure.
  • LixM1O2 As a lithium transition metal composite oxide having a layered rock salt structure, for example, a general formula LixM1O2 (wherein M1 represents an element containing one or more transition metal elements.
  • M1 represents an element containing one or more transition metal elements.
  • the value of x is 0.05 ⁇ x ⁇ 1.10
  • the value of x varies depending on the charge / discharge state of the battery, and the value of x is not limited to this.
  • lithium cobalt composite oxide (LixCoO2), lithium nickel composite oxide (LixNiO2), lithium nickel cobalt composite oxide (LixNi1-zCozO2 (0 ⁇ z ⁇ 1)), lithium nickel cobalt manganese composite Oxide (LixNi (1-vw) CovMnwO2 (0 ⁇ v + w ⁇ 1, v> 0, w> 0)), lithium cobalt aluminum magnesium composite oxide (LixCo (1-pq) AlpMgqO2 (0 ⁇ p + q ⁇ 1, p > 0, q> 0)).
  • Examples of the spinel-type lithium transition metal composite oxide include lithium manganese composite oxide (LiMn2O4) and lithium manganese nickel composite oxide (LixMn2-tNitO4 (0 ⁇ t ⁇ 2)).
  • lithium transition metal phosphate compound examples include an olivine type lithium transition metal phosphate compound.
  • Examples of the olivine-type lithium transition metal phosphate compound include, for example, the general formula LiyM2PO4 (wherein M2 represents an element including one or more transition metal elements.
  • the value of y is 0.05 ⁇ y, for example. ⁇ 1.10
  • the value of y varies depending on the charge / discharge state of the battery, and the value of y is not limited to this range. More specifically, for example, lithium iron phosphate compound (LiyFePO4), lithium iron manganese phosphate compound (LiyFe1-uMnuPO4 (0 ⁇ u ⁇ 1)) and the like can be mentioned.
  • coated particles having the above-described lithium-containing compound particles and a coating layer provided on at least a part of the surface of the lithium-containing compound particles may be used. By using such coated particles, battery characteristics can be further improved.
  • the coating layer is provided on at least a part of the surface of lithium-containing compound particles (base material particles) serving as a base material, and has a composition element or composition ratio different from that of the base material particles.
  • base material particles As a coating layer, what contains an oxide, a transition metal compound, etc. is mentioned, for example.
  • the coating layer for example, an oxide containing lithium and at least one of nickel and manganese, or nickel, cobalt, manganese, iron, aluminum, magnesium (Mg), and zinc (Zn) A compound containing oxygen (O) and phosphorus (P), and the like.
  • the coating layer may contain a halide such as lithium fluoride or a chalcogenide other than oxygen.
  • the presence of the coating layer can be confirmed by examining the concentration change of the constituent elements from the surface of the positive electrode active material toward the inside.
  • the change in concentration is obtained by scraping particles of a lithium-containing compound provided with a coating layer by sputtering or the like while analyzing the composition by Auger Electron Spectroscopy (AES) or SIMS (Secondary Ion Mass Mass Spectrometry; Secondary ion mass spectrometry. ). It is also possible to slowly dissolve lithium-containing compound particles with a coating layer in an acidic solution and measure the elution of the particles by inductively coupled plasma (ICP) spectroscopy. It is.
  • ICP inductively coupled plasma
  • an oxide, a disulfide, a chalcogenide containing no lithium (particularly, a layered compound or a spinel compound), a conductive polymer, and the like can be used as the positive electrode active material.
  • the oxide include vanadium oxide (V 2 O 5 ), titanium dioxide (TiO 2 ), manganese dioxide (MnO 2 ), and the like.
  • the disulfide include iron disulfide (FeS 2 ), titanium disulfide (TiS 2 ), and molybdenum disulfide (MoS 2 ).
  • chalcogenides that do not contain lithium include niobium diselenide (NbSe 2 ) and the like.
  • the conductive polymer include sulfur, polyaniline, polythiophene, polyacetylene, and polypyrrole.
  • the positive electrode active material may be other than the positive electrode active material exemplified above. Moreover, the positive electrode active material illustrated above may be mixed 2 or more types by arbitrary combinations.
  • binder examples include synthetic rubbers such as styrene butadiene rubber, fluorine rubber or ethylene propylene diene, and polymer materials such as polyvinylidene fluoride. These may be single and multiple types may be mixed. Among these, polyvinylidene fluoride is preferable.
  • Examples of the conductive agent include carbon materials such as graphite and carbon black. These may be single and multiple types may be mixed.
  • a negative electrode active material layer 34B is provided on both surfaces of a negative electrode current collector 34A having a pair of surfaces.
  • the negative electrode active material layer 34B may be provided only on one surface of the negative electrode current collector 34A.
  • the negative electrode current collector 34A is made of, for example, a metal material such as copper, nickel, or stainless steel.
  • the negative electrode active material layer 34B includes one or more negative electrode materials capable of inserting and extracting lithium as a negative electrode active material, and a binder, a conductive agent, and the like as necessary. Other materials may be included. Note that the same binder and conductive agent as those described for the positive electrode can be used.
  • the negative electrode active material a material capable of inserting and extracting lithium can be used. Specifically, a material containing silicon as a constituent element (referred to as “material containing silicon”) can be used as the negative electrode active material. A material containing silicon has a large ability to occlude and release lithium, and a high energy density can be obtained.
  • the material containing silicon examples include a simple substance, an alloy or a compound of silicon, and a material having one or more phases thereof at least in part.
  • the “alloy” in the present technology includes an alloy containing one or more metal elements and one or more metalloid elements in addition to an alloy composed of two or more metal elements. Further, the “alloy” may contain a nonmetallic element. This structure includes a solid solution, a eutectic (eutectic mixture), an intermetallic compound, or one in which two or more of them coexist.
  • alloy of silicon for example, as a second constituent element other than silicon, tin, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony (Sb) and chromium (Cr And at least one member selected from the group consisting of:
  • the silicon alloy is preferably one in which a silicon phase is dispersed in a matrix phase composed of a single phase or a compound phase containing one or more alloy constituent elements.
  • a silicon alloy is an alloy in which silicon is finely dispersed in a different metal different from silicon.
  • the different metal element is, for example, iron. This is because the utilization factor of the active material with respect to the theoretical capacity can be increased, and the cycle characteristics can be further improved.
  • the silicon compound examples include silicon oxides containing silicon and oxygen, and silicon and carbon compounds containing silicon and carbon.
  • the compound of silicon may contain any one type or two types or more of the elements explained regarding the alloy of silicon as a constituent element other than silicon, for example.
  • the oxide of silicon e.g., SiOx, SiO 2 and the like. Since the SiOx may deviate from the stoichiometric ratio, the composition ratio of O is x. For example, x is 0 ⁇ x ⁇ 2.
  • the negative electrode active material may contain a material that can occlude and release lithium other than a material containing silicon. Moreover, the negative electrode active material illustrated above may be mixed 2 or more types by arbitrary combinations.
  • the insulating layer 39 includes a separator 35 and an electrolyte solution holding layer 36 formed on at least one surface of the separator 35. Note that the separator 35 may be omitted, and the insulating layer 39 may be formed of the electrolyte solution holding layer 36 alone.
  • the separator 35 is a porous material that separates the positive electrode 33 and the negative electrode 34 and allows lithium ions to pass through while preventing a short circuit of current due to contact between the two electrodes.
  • the separator 35 is made of a porous film made of a polyolefin resin such as polyethylene or polypropylene, a porous film made of ceramic, or the like. These two or more types of porous membranes may be laminated.
  • the separator 35 is impregnated with an electrolytic solution.
  • the electrolyte solution holding layer 36 includes a porous polymer compound and an electrolyte solution.
  • the electrolyte solution is held in the pores of the porous polymer compound, and the porous polymer compound is swollen by the electrolyte solution.
  • the electrolyte solution holding layer 36 has a function of allowing lithium ions to pass while isolating the positive electrode 33 and the negative electrode 34 singly or together with the separator 35 and preventing a short circuit of current due to contact between the two electrodes. Also good.
  • the electrolytic solution includes a solvent and an electrolyte salt that dissolves in the solvent.
  • a part of the solvent in the electrolytic solution may be previously injected into the electrode body housing part 15.
  • a high dielectric constant solvent for example, a high dielectric constant solvent can be used.
  • cyclic carbonates such as ethylene carbonate (ethylene carbonate) and propylene carbonate (propyl carbonate) can be used.
  • examples of the high dielectric constant solvent include lactones such as ⁇ -butyrolactone and ⁇ -valerolactone, lactams such as N-methylpyrrolidone, and cyclic carbamines such as N-methyloxazolidinone instead of or together with the cyclic carbonate.
  • a sulfone compound such as acid ester or tetramethylene sulfone may be used.
  • a high dielectric constant solvent and a low viscosity solvent may be mixed and used.
  • Low viscosity solvents include chain esters such as ethyl methyl carbonate (methyl ethyl carbonate), diethyl carbonate (diethylene carbonate), dimethyl carbonate, methyl propyl carbonate, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, butyric acid Chain carboxylic acid esters such as methyl, methyl isobutyrate, methyl trimethylacetate and ethyl trimethylacetate, chain amides such as N, N-dimethylacetamide, methyl N, N-diethylcarbamate, ethyl N, N-diethylcarbamate And chain ethers such as 1,2-dimethoxyethane, tetrahydrofuran, tetrahydropyran, 1,3-dioxolane, and the like.
  • chain esters
  • the electrolyte salt contains, for example, one or more light metal salts such as a lithium salt.
  • lithium salt examples include lithium hexafluorophosphate (LiPF 6), lithium tetrafluoroborate (LiBF 4), lithium hexafluoroarsenate (LiAsF 6), lithium hexafluoro antimonate (LiSbF 6) Inorganic lithium salts such as lithium perchlorate (LiClO 4 ) and lithium tetrachloride aluminum oxide (LiAlCl 4 ).
  • lithium salt examples include lithium trifluoromethanesulfonate (CF 3 SO 3 Li), lithium bis (trifluoromethanesulfone) imide ((CF 3 SO 2 ) 2 NLi), and lithium bis (pentafluoromethanesulfone) imide.
  • lithium salts of perfluoroalkanesulfonic acid derivatives such as lithium tris (trifluoromethanesulfone) methide ((CF 3 SO 2 ) 3 CLi), lithium tetrafluoroborate ( Examples thereof include boron-containing lithium salts such as LiBF 4 ) and LiB (C 2 O 4 ) 2 .
  • FIG. 3 is a cross-sectional view showing a configuration example of a valve (valve) provided in the battery of this embodiment.
  • the valve 14 is a ball (iron ball) 25 in which a coil spring 24 for pressurization according to a predetermined pressure is connected to a coil spring 24 on the upper surface and the lower surface closes the tip of the thin tube 13.
  • an opening / closing part 26 is an opening / closing part 26.
  • the valve 14 can be removed from the thin tube 13 and separated from the battery 10. Thereby, when the battery 10 is used, the manufacturing process of the battery 10 is not more complicated than necessary, the valve 14 is not damaged in the manufacturing process of the battery 10, and a single valve 14 can be shared by a plurality of batteries 10. By exchanging 14, there is an effect that the opening pressure of the gas can be changed as necessary. Furthermore, the battery 10 has an effect of being excellent in space efficiency when the plurality of batteries 10 are modularized.
  • the gas 25 is generated inside the exterior body 12, and the ball 25 and the coil spring 24 are pushed in by the gas rising from the thin tube 13 through the opening / closing part 26 when the pressure inside the exterior body 12 is equal to or higher than a predetermined value. Can be opened automatically. Further, when the pressure inside the outer package 12 is less than a predetermined value, the valve 14 can be automatically closed by the coil spring 24 that has been pushed and contracted pushing the ball 25 into the tip of the thin tube 13. .
  • the predetermined value can be adjusted, for example, in the range of 0 kPa to less than 4 kPa.
  • the valve 14 can replace the coil spring 24 in accordance with the pressure inside the exterior body 12.
  • valve 14 the gas release pressure of the valve 14 can be adjusted, for example, in units of 5 kPa to 10 kPa. Further, the valve 14 may be removable from the exterior body 12. Thereby, the manufacturing process is not complicated more than necessary, and the risk of damage to the valve 14 can be reduced.
  • the lower end portion of the thin tube 13 having the valve 14 is inserted into the electrode body housing portion 15 of the electrode body 11, and the thin tube 13 is installed so as to form a passage between the inside of the battery 10 and the outside. Thereafter, the thin tube 13 is sealed with the outer package 12 to produce a semi-finished product of the battery 10.
  • the tip of the narrow tube 13 sealed with the exterior body 12 is connected to an external electrolyte solution injection mechanism, and the valve 14 is opened to inject the electrolyte from the tip of the tube 13 into the electrode body housing 15. After the injection of the electrolytic solution into the electrode body accommodating portion 15 is finished, the valve 14 is closed to complete the battery 10 as a battery.
  • the battery 10 according to this embodiment is manufactured by injecting an electrolytic solution after the semi-finished product of the battery 10 is manufactured by the above configuration and operation, the battery performance is deteriorated in the semi-finished state of the battery 10. It can be stored without it.
  • the electrode body 11 is sealed with the exterior body 12, it is not yet in a battery state, so that it is not subject to transportation regulation, and the subsequent electrolyte solution injection process is performed in another place. It is possible to improve efficiency such as dispersion of processes.
  • the sealing process of the electrode body 11 and the electrolyte injection process are dispersed, the drying equipment and the vacuum equipment after the sealing process are not required, and the cost for dispersing the process can be reduced. .
  • the battery 10 since it can be stored in a semi-finished state of the battery 10 in which the electrode body 11 is sealed, it is possible to quickly respond to an additional order or the like.
  • the battery performance can be prevented from deteriorating.
  • the battery 10 since the battery 10 includes the narrow tube 13, an additional process such as additional injection of the electrolyte solution can be incorporated.
  • gas is generated inside the battery 10 when the battery 10 is repeatedly charged and discharged or when the battery 10 becomes hot.
  • the pressure inside the battery 10 increases.
  • the coil spring 24 in the gas discharge valve 14 is pushed and contracted by the gas in the battery 10, and the ball 25 connected to the coil spring 24 rises, so that the opening / closing part 26 is opened. open.
  • the opening / closing part 26 is opened, the gas rising up the narrow tube 13 is discharged from the valve 14.
  • the coil spring 24 is extended, the ball 25 is lowered, and the opening / closing part 26 is closed.
  • the battery 10 according to the present embodiment can automatically discharge the gas generated inside the battery 10 to the outside by the above-described configuration and operation. Therefore, the battery 10 can be used in a severe usage environment such as excessive rapid charging and use at high temperatures. Troubles can be avoided by the gas generated by the decomposition of the electrolyte inside 10. Thereby, the expansion
  • the battery 40 according to the present embodiment is different from the battery 10 according to the first embodiment in that an injection part for storing the electrolyte solution and injecting it into the electrode body housing part is provided inside the exterior body.
  • the common configurations other than the above-described differences of the battery 40 according to the present embodiment are denoted by the same reference numerals as the configuration of the battery 10 according to the first embodiment, and the description thereof is omitted.
  • the battery 40 of the present embodiment includes an electrode body 11, an exterior body 42 that includes the laminate material and seals the electrode body 11, an electrode body housing portion 15 that houses the electrode body 11, And an injection part 43 for injecting an electrolytic solution into the electrode body housing part 15.
  • the injection portion 43 is isolated from the electrode body housing portion 15 via the electrolyte passage 44.
  • the injection part 43 of this embodiment also has a role of an electrolyte solution storage part that stores the electrolyte solution.
  • the exterior body 42 is sealed by adhering the lamellar seal portion 48 after the electrode body 11 is accommodated.
  • pouring part 43 of this embodiment is formed in the battery 40, more than one injection
  • the battery 40 according to the present embodiment can have the same effects as the battery 10 according to the first embodiment due to the above configuration.
  • the battery 50 according to the present embodiment has the same configuration as that of the battery 10 according to the first embodiment, except that the injection part 43 includes a capsule material containing an electrolytic solution. For this reason, the same code
  • the capsule material plays a role of an electrolyte solution storage unit.
  • the battery 50 of the present embodiment includes an encapsulating material 51 that is an electrolytic solution storage unit that stores an electrolytic solution in the injection unit 43.
  • the encapsulating material 51 may contain an electrolytic solution containing a supporting salt, and a part of the solvent may be injected into the electrode body containing portion 15 in advance.
  • the encapsulant 51 is made of a material that can easily inject the electrolytic solution accommodated by breaking the surface of the battery 50 into the electrode body accommodating portion 15 when the battery 50 is made into a battery.
  • nylon, polypropylene, polyimide, polyethylene, polyamideimide, polyethylene terephthalate, polyethylene naphthalate, PTEE, PFA, aramid, peak, or the like can be used as the encapsulant 51.
  • the battery 50 according to the present embodiment can have the same effects as the battery 10 and the battery 40 according to the first and second embodiments by the above configuration. Moreover, the battery 50 according to the present embodiment can omit the step of closing the passage 44 by using the capsule material 51, and can simplify the manufacturing process.
  • the battery 60 according to the present embodiment has the same configuration as that of the battery 50 according to the third embodiment, except that there is no passage between the electrode body housing portion and the injection portion. For this reason, the same code
  • the electrode body 11 and the capsule material 51 are isolated and accommodated in the electrode body accommodation portion 55.
  • the capsule material 51 itself also serves as an injection part. It should be noted that the same material as the capsule material 51 of the third embodiment can also be used for the capsule material 51 of the present embodiment.
  • the battery 60 according to the present embodiment can have the same effects as the battery 10, the battery 40, and the battery 50 according to the first to third embodiments with the above configuration. Further, in the battery 50 according to the present embodiment, by encapsulating the capsule material 51 in the electrode body accommodating portion 55, the process of forming and closing the passage 44 is not necessary, and the manufacturing process can be simplified. .
  • Example of battery manufacturing method> an example of a method for manufacturing a battery according to the present technology will be described with reference to FIGS. In the present embodiment, as an example, a method for manufacturing the battery 40 according to the second embodiment will be described.
  • FIG. 7A is a schematic diagram showing an exterior body 42 used in the battery 40 according to the second embodiment.
  • the exterior body 42 uses a laminate material.
  • FIG. 7B is a schematic cross-sectional view of the cross section obtained by cutting the exterior body 42 along the line II in FIG. 7A.
  • FIG. 7C is a schematic cross-sectional view of a cross section of the exterior body 42 taken along the line II-II in FIG. 7A.
  • the exterior body 42 is formed of a front surface portion 57 and a rear surface portion 58 on which the injection portion 43 and the electrode body housing portion 15 are formed.
  • the exterior body 42 is folded in half by a fold parallel to the II line so that the front surface portion 57 and the rear surface portion 58 overlap each other.
  • Example 1 Example 1 8 to 12 are schematic cross-sectional views for explaining Example 1 of the method for manufacturing the battery 40 according to the second embodiment. Example 1 of the manufacturing method of the battery 40 will be described with reference to FIGS.
  • the electrolyte solution stored in the electrolyte solution storage portion in the injection portion 43 is supplied to the electrode body storage portion 15 between the injection portion 43 and the electrode body storage portion 15.
  • a passage 44 is formed.
  • path 44 is heat-seal
  • Electrode assembly As shown in FIG. 9, in the second step, the electrode body 11 in which the electrode tabs 16, 17 are protruded outside the exterior body 42 is installed in the electrode body housing portion 15. Then, the front end 57 and the rear surface 58 are bonded together by heat-sealing the side end Lami seal portion 62 (the left end of the exterior body 42 in FIG. 9) where the front surface 57 and the rear surface 58 are not connected.
  • the passage 44 is closed.
  • the passage 44 is weakly bonded by pressurization and low-temperature heating (blocking means 1), or a tube (plug) having a valve is inserted into the passage 44 and the tube and the outer body 42 are laminated by pressurization and heating.
  • the passage 44 is closed by bonding the material (blocking means 2). It is also possible to insert an elastic tube having elasticity into the passage 44, adhere the elastic tube and the laminate material of the exterior body 42 by pressurization and heating, and then press the elastic tube to close the passage 44 ( Occlusion means 3). A method for compressing the elastic tube inserted into the passage 44 of the closing means 3 will be described in Example 2 described later.
  • the electrolytic solution 63 is filled in the injection part 43.
  • the encapsulating material 51 that is an electrolytic solution storage unit that stores the electrolytic solution 63 is disposed in the injection unit 43.
  • the front surface 57 and the upper end Lami seal portion 64 of the rear surface portion 58 are heat-sealed in a vacuum container, and the front surface portion 57 and the rear surface portion 58 are vacuum-sealed.
  • the lower end Lami seal portion 65 of the front surface portion 57 and the rear surface portion 58 is heat-sealed in a vacuum container, and the front surface portion 57 and the rear surface portion 58 are vacuum-sealed.
  • an electrolytic solution 63 is injected from the injection portion 43 into the electrode body storage portion 15 via the passage 44.
  • the injection part 43 is pressed to break the weak adhesion of the passage 44.
  • the injection portion 43 is pressed and the spring of the valve in the pipe inserted into the passage 44 is contracted to be opened.
  • the capsule material 51 is arrange
  • FIGS. 13 to 16 are schematic cross-sectional views for explaining Example 2 of the method for manufacturing the battery 40 according to the second embodiment.
  • Example 2 of the manufacturing method of the battery 40 will be described with reference to FIGS. 13 to 16.
  • the 1st process and 2nd process of a present Example are the same as the 1st process and 2nd process of Example 1 shown in FIG. 8 and FIG.
  • FIG. 13A, FIG. 14A, and FIG. 15A are schematic cross-sectional views showing an example of a method for manufacturing the battery 40 by a method of compressing a passage using a constriction jig.
  • FIG. 13B, FIG. 14B, and FIG. 15B are schematic cross-sectional views showing an example of a method of manufacturing the battery 40 by a method of bending the exterior body and compressing the passage.
  • FIG. 13A when using the constriction jig 67 in the third step, the elastic tube inserted into the passage 44 of the closing means 3 is pressed and closed with the constriction jig 67.
  • FIG. 13B when the exterior body 42 is bent in the third step, the exterior body 42 is folded along the line III-III intersecting with the passage 44 to close the elastic tube inserted into the passage 44 of the closing means 3. To do.
  • the electrolyte solution 63 is filled in the injection part 43.
  • the encapsulating material 51 that is an electrolytic solution storage unit that stores the electrolytic solution 63 is disposed in the injection unit 43.
  • the front surface 57 and the upper end Lami seal portion 64 of the rear surface portion 58 are heat-sealed in a vacuum container to seal the front surface portion 57 and the rear surface portion 58 in a vacuum.
  • the lower end Lami seal portion 65 of the front surface portion 57 and the rear surface portion 58 is heat-sealed in a vacuum container, and the front surface portion 57 and the rear surface portion 58 are vacuum-sealed.
  • an electrolytic solution 63 is injected from the injection portion 43 into the electrode body storage portion 15 via the passage 44.
  • the constriction jig 67 is removed from the passage 44, or the folding of the exterior body 42 along the line III-III is returned to the original position, and the electrode body housing portion 15 is passed from the injection portion 43 via the passage 44.
  • An electrolytic solution 63 is injected into the base. Then, when the electrolytic solution 63 is injected into the electrode body housing part 15, the battery 40 is completed.
  • the battery manufacturing method includes an assembly step of assembling an electrode body in which a separator is disposed between a positive electrode and a negative electrode, an injection portion forming step of forming an injection portion for injecting an electrolytic solution after the assembly step, After the part forming step, a sealing step of sealing the electrode body with an exterior body having an electrode body housing portion that houses the electrode body can be performed at one site (a factory or the like). Then, the supply process which supplies electrolyte solution to the sealed electrode body can be implemented in another site.
  • the present technology is not limited to this example, and is applied to, for example, a cylindrical battery. It can be widely applied to modified embodiments such as.
  • the example of the electronic device according to the fifth embodiment of the present technology includes the battery according to the first to fourth embodiments according to the present technology as a power supply source.
  • the battery provided in the electronic device of the fifth embodiment according to the present technology is as described above, and is the battery of the first to fourth embodiments shown in FIGS. 1 to 6. Therefore, description of the battery is omitted here.
  • examples of the electronic device according to the fifth embodiment of the present technology include, for example, a notebook personal computer, a PDA (personal digital assistant), a mobile phone, a cordless phone, a video movie, a digital still camera, an electronic book, an electronic dictionary, and music.
  • the batteries of the first to fourth embodiments according to the present technology can be used to supply electric power to the electric vehicle according to the sixth embodiment of the present technology.
  • the example of the electric vehicle according to the sixth embodiment of the present technology converts the battery pack that houses the battery according to the first to fourth embodiments according to the present technology and the electric power supplied from the battery pack into driving force.
  • a conversion unit, a drive unit that is driven according to the driving force, and a control unit that controls the usage state of the battery pack are provided.
  • Examples of the electric vehicle include a railway vehicle, a golf cart, an electric cart, an electric vehicle (including a hybrid vehicle), and the like, and are used as a driving power source or an auxiliary power source.
  • FIG. 17 shows a block configuration of a hybrid vehicle which is an example of an electric vehicle.
  • This electric vehicle includes, for example, a control unit 72, an engine 73, a battery pack 901, a driving motor 74, a differential device 75, a generator 76, and a transmission in a metal casing 71. 80, a clutch 81, inverters 82 and 83, and various sensors 84 are provided.
  • the electric vehicle includes, for example, a front wheel drive shaft 85 and a front wheel 86 connected to the differential device 75 and the transmission 80, and a rear wheel drive shaft 87 and a rear wheel 88.
  • This electric vehicle can run using, for example, either the engine 73 or the motor 74 as a drive source.
  • the engine 73 is a main power source, for example, a gasoline engine.
  • the driving force (rotational force) of the engine 73 is transmitted to the front wheels 86 or the rear wheels 88 via, for example, a differential device 75, a transmission 80, and a clutch 81, which are driving units.
  • the rotational force of the engine 73 is also transmitted to the generator 76, and the generator 76 generates AC power using the rotational force.
  • the AC power is converted into DC power via the inverter 83, and the battery Accumulated in the pack 901.
  • the motor 74 which is a conversion unit is used as a power source
  • the power (DC power) supplied from the battery pack 901 is converted into AC power via the inverter 82, and the motor 74 is driven using the AC power.
  • the driving force (rotational force) converted from electric power by the motor 74 is transmitted to the front wheels 86 or the rear wheels 88 via, for example, a differential device 75, a transmission 80, and a clutch 81, which are driving units.
  • the resistance force at the time of deceleration is transmitted as a rotational force to the motor 74, and the motor 74 generates AC power using the rotational force. Good.
  • This AC power is preferably converted into DC power via the inverter 82, and the DC regenerative power is preferably stored in the battery pack 901.
  • the control unit 72 controls the operation of the entire electric vehicle, and includes, for example, a CPU.
  • the battery pack 901 may be connected to an external power source and be able to store power by receiving power supply from the external power source.
  • the various sensors 84 are used, for example, to control the rotational speed of the engine 73 or to control the opening of a throttle valve (throttle opening) (not shown).
  • the various sensors 84 include, for example, a speed sensor, an acceleration sensor, an engine speed sensor, and the like.
  • the batteries of the first to fourth embodiments shown in FIGS. 1 to 6 can be applied.
  • description of a battery pack is abbreviate
  • the electric vehicle may be a vehicle (electric vehicle) that operates using only the battery pack 901 and the motor 74 without using the engine 73.
  • the batteries of the first to fourth embodiments according to the present technology are also applicable as power storage power sources for the power storage system of the seventh embodiment according to the present technology.
  • An example of the power storage system of the seventh embodiment according to the present technology includes a battery pack that accommodates the batteries of the first to fourth embodiments according to the present technology, and one or more electrons that are supplied with power from the battery pack.
  • FIG. 18 shows a block configuration of the power storage system.
  • This power storage system includes, for example, a battery pack 1001, a control unit 91, a smart meter 92, and a power hub 93 in a house 90 such as a general house and a commercial building.
  • the battery pack 1001 is connected to, for example, an electronic device 94 installed inside the house 90 and can be connected to an electric vehicle 96 stopped outside the house 90.
  • the battery pack 1001 is connected to, for example, a private generator 95 installed in the house 90 via a power hub 93 and can be connected to an external centralized power system 97 via a smart meter 92 and the power hub 93. It has become.
  • the battery pack 1001 the batteries of the first to fourth embodiments shown in FIGS. 1 to 6 can be applied. For this reason, description of a battery pack is abbreviate
  • the electronic device 94 includes, for example, one or more home appliances, and the home appliances are, for example, a refrigerator, an air conditioner, a television, and a water heater.
  • the private power generator 95 is, for example, any one type or two or more types such as a solar power generator and a wind power generator.
  • the electric vehicle 96 is, for example, one type or two or more types such as an electric vehicle, an electric motorcycle, and a hybrid vehicle.
  • the centralized electric power system 97 is, for example, one type or two or more types such as a thermal power plant, a nuclear power plant, a hydroelectric power plant, and a wind power plant.
  • the control unit 91 controls the operation of the entire power storage system (including the usage state of the battery pack 1001), and includes, for example, a CPU.
  • the smart meter 92 is, for example, a network-compatible power meter installed in a house 90 of a power consumer, and can communicate with a power supplier. Accordingly, the smart meter 92 enables efficient and stable energy supply by controlling the balance between supply and demand in the house 90 while communicating with the outside, for example.
  • the power storage system for example, power is accumulated in the battery pack 1001 from the centralized power system 97 that is an external power source via the smart meter 92 and the power hub 93, and from the solar power generator 95 that is an independent power source. Electric power is accumulated in the battery pack 1001 via the. Since the electric power stored in the battery pack 1001 is supplied to the electronic device 94 and the electric vehicle 96 in accordance with an instruction from the control unit 91, the electronic device 94 can be operated and the electric vehicle 96 can be charged. Become. That is, the power storage system is a system that enables accumulation and supply of power in the house 90 using the battery pack 1001.
  • the power stored in the battery pack 1001 can be used arbitrarily. For this reason, for example, power is stored in the battery pack 1001 from the centralized power system 97 at midnight when the amount of electricity used is low, and the power stored in the battery pack 1001 is used during the day when the amount of electricity used is high. be able to.
  • the power storage system described above may be installed for each house (one household), or may be installed for each of a plurality of houses (multiple households).
  • the batteries of the first to fourth embodiments according to the present technology are applicable as a power source for the electric tool of the eighth embodiment according to the present technology.
  • An example of the electric power tool of the eighth embodiment according to the present technology includes a battery pack that accommodates the batteries of the first to fourth embodiments according to the present technology, and a movable portion that is supplied with electric power from the battery pack.
  • Examples of the electric tool include an electric drill, an electric saw, a rolling machine such as a rammer, and an electric farm equipment such as a lawn mower.
  • FIG. 19 shows a block configuration of the electric tool.
  • This electric tool is, for example, an electric drill, and includes a control unit 99 and a battery pack 1101 inside a tool main body 98 formed of a plastic material or the like.
  • a drill part 110 which is a movable part is attached to the tool body 98 so as to be operable (rotatable).
  • the control unit 99 controls the operation of the entire power tool (including the usage state of the power supply 1101), and includes, for example, a CPU.
  • the control unit 99 supplies power from the battery pack 1101 to the drill unit 110 in response to an operation switch (not shown).
  • an operation switch not shown.
  • the battery pack 1101 the batteries of the first to fourth embodiments shown in FIGS. 1 to 6 can be applied. For this reason, description of a battery pack is abbreviate
  • this technique can also take the following structures.
  • An electrode body having a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode;
  • An exterior body having an electrode body housing portion for housing the electrode body;
  • An injection part for injecting an electrolytic solution into the electrode body housing part,
  • the injection part is a semi-finished battery product which is isolated from the electrode body housing part.
  • a battery comprising: an electrolyte solution comprising a solvent and an electrolyte.
  • the battery according to (2), wherein a part of the solvent is previously injected into the electrode body housing portion.
  • the injection portion includes a thin tube attached to the exterior body and a valve joined to a tip portion of the thin tube.
  • the injection unit includes an electrolyte solution storage unit that stores the electrolyte solution.
  • a passage for supplying the electrolytic solution stored in the electrolytic solution storage unit to the electrode body storage unit is formed between the electrolytic solution storage unit and the electrode body storage unit. .
  • the electrolyte container is formed of a capsule material.
  • a battery manufacturing method including a supplying step of supplying an electrolytic solution to an electrode body having a positive electrode, a negative electrode, and a separator and sealed with an exterior body.
  • the injection portion forming step includes a step of attaching a thin tube having a valve joined to a tip portion to the exterior body, and inserting a rear end portion of the thin tube into the electrode body housing portion, The method of manufacturing a battery according to (9), wherein the supplying step includes a step of closing the valve after opening the valve and injecting the electrolyte from the tip of the thin tube.
  • the said injection part formation process is a manufacturing method of the battery as described in (9) or (10) including the process of forming the electrolyte solution accommodating part which accommodates the said electrolyte solution.
  • the injection portion forming step includes a step of forming a passage for supplying the electrolyte solution stored in the electrolyte solution storage portion to the electrode body storage portion between the electrolyte solution storage portion and the electrode body storage portion.
  • the manufacturing method of the battery as described in. (13)
  • the injection portion forming step includes a step of forming the electrolyte solution storage portion with a capsule material,
  • the sealing step includes a step of sealing the injection portion and the electrode body housing portion in a spatially separated state,
  • the battery supplying method according to any one of (9) to (13), wherein the supplying step includes a step of releasing the isolated state.
  • An electronic device comprising the battery according to any one of (2) to (7) as a power supply source.
  • a converter that converts the power supplied from the battery according to any one of (2) to (7) into a driving force; A drive unit that is driven according to the drive force; A control unit for controlling the use state of the battery; A vehicle comprising: (19) An electric tool provided with a movable part to which electric power is supplied from the battery according to any one of (2) to (7). (20) (1) two or more electronic devices to which power is supplied from the battery according to any one of (2) to (7); A control unit for controlling power supply from the battery to the electronic device; A power storage system comprising:

Abstract

Provided is a battery which can be stored without reducing battery performance. A battery according to the present invention is provided with: an electrode body that has a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode; an exterior body that has an electrode body housing part for housing the electrode body; an injection part that injects an electrolytic solution into the electrode body housing part; and the electrolytic solution that includes a solvent and an electrolyte. The injection part is isolated from the electrode body housing part.

Description

電池の半製品、電池、電池の製造方法、電池パック、電子機器、車両、電動工具および電力貯蔵システムSemi-finished battery, battery, battery manufacturing method, battery pack, electronic device, vehicle, power tool, and power storage system
 本技術は、電池パック、電子機器、車両、電動工具および電力貯蔵システムなどに適用可能な電池に関する。より詳しくは、電極体を外装体で封止した後であっても、外装体内に電解液の注入が可能な機構を備えた電池に関する。 This technology relates to a battery applicable to battery packs, electronic devices, vehicles, electric tools, power storage systems, and the like. More specifically, the present invention relates to a battery including a mechanism capable of injecting an electrolytic solution into the exterior body even after the electrode body is sealed with the exterior body.
 近年、小型軽量かつ高容量という特徴を持つリチウムイオン電池等の二次電池が、モバイル機器、電動工具および自動車等に導入されている。このような二次電池では、電解液を注液する注液工程後に、外装体で電極体を封止する封止工程を経て製造される。 In recent years, secondary batteries such as lithium-ion batteries that are small, light, and have a high capacity have been introduced into mobile devices, power tools, automobiles, and the like. Such a secondary battery is manufactured through a sealing step of sealing the electrode body with an exterior body after a liquid injection step of injecting an electrolytic solution.
 これらの問題に対し、例えば特許文献1に、高温保持特性を向上させるため、第1の非水電解液を注液する第1注液工程、その後、充電する充電工程、最後に第2の非水電解液を注液する第2注液工程の3工程からなる分割注液工程を経て電池を製造することが開示されている。また、例えば特許文献2には、電池特性、特に充放電サイクル特性を向上させるため、外装体に電解液を注入した後、前記外装体の外周部の一辺の長さ方向の一部を残して封口する封口工程と、前記封口工程で静置することなく前記封口工程に続いて前記正極リード部と前記負極リード部を通して充電する充電工程と、充電状態で静置する静置工程と、前記静置工程後に放電する放電工程と、前記放電工程後に、前記一部からさらに電解液を注入する注液工程を経て電池を製造することが開示されている。すなわち、特許文献1および特許文献2には、電池の製造工程において、電解液を2回に分割して注液することが開示されている。 To solve these problems, for example, in Patent Document 1, in order to improve the high-temperature holding characteristics, a first injection step of injecting a first non-aqueous electrolyte, a charging step of charging, and finally a second non-existing solution. It is disclosed that a battery is manufactured through a divided liquid injection process including three processes of a second liquid injection process for injecting a water electrolyte. Further, for example, in Patent Document 2, in order to improve battery characteristics, particularly charge / discharge cycle characteristics, after injecting an electrolyte into the exterior body, a part in the length direction of one side of the outer peripheral portion of the exterior body is left. A sealing step of sealing, a charging step of charging through the positive electrode lead portion and the negative electrode lead portion following the sealing step without leaving in the sealing step, a static step of standing in a charged state, and the static step It is disclosed that a battery is manufactured through a discharging step of discharging after the placing step and a pouring step of injecting an electrolyte from the part after the discharging step. That is, Patent Document 1 and Patent Document 2 disclose that the electrolytic solution is divided into two parts and injected in the battery manufacturing process.
特開2007-207650号公報JP 2007-207650 A 特開2013-101979号公報JP 2013-101979 A
 しかしながら、特許文献1および2に開示された電池では、1回目の注液で電池化しているため、電池の劣化等による電池性能の低下への対応が十分にできていなかった。ここで、「電池化」とは、電解液が注入されて電池としての機能を発揮できる状態のものをいう。 However, since the batteries disclosed in Patent Documents 1 and 2 are made into a battery by the first injection, the battery performance cannot be sufficiently reduced due to deterioration of the battery or the like. Here, “batterization” means a state in which an electrolytic solution is injected and a function as a battery can be exhibited.
 そこで、本技術では、このような状況に鑑みてなされたものであり、電池性能を低下させることなく、保管可能な電池を提供することを主目的とする。 Therefore, the present technology has been made in view of such a situation, and a main object is to provide a battery that can be stored without deteriorating battery performance.
 本技術は、正極と負極と正極および負極の間に配置されたセパレータとを有する電極体と、電極体を収容する電極体収容部を有する外装体と、電極体収容部に電解液を注入する注入部と、を備え、注入部は、電極体収容部と隔離されている電池の半製品を提供する。また、本技術は、上記電池の半製品と、溶媒および電解質で構成される電解液と、を備えた電池を提供する。 In the present technology, an electrode body having a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode, an exterior body having an electrode body housing portion that houses the electrode body, and an electrolyte solution are injected into the electrode body housing portion An injection part, and the injection part provides a semi-finished battery product that is isolated from the electrode body housing part. Moreover, this technique provides the battery provided with the semi-finished product of the said battery, and the electrolyte solution comprised with a solvent and electrolyte.
 また、本技術は、正極と負極との間にセパレータを配置した電極体を組み立てる組立工程と、組立工程後に、電解液を注入する注入部を形成する注入部形成工程と、注入部形成工程後に、電極体を収容する電極体収容部を有する外装体で電極体を封止する封止工程と、封止工程後に、正極と負極とセパレータとを有し外装体で封止された電極体に、電解液を供給する供給工程と、を含む電池の製造方法を提供する。 The present technology also includes an assembling process for assembling an electrode body in which a separator is disposed between a positive electrode and a negative electrode, an injecting part forming process for forming an injecting part for injecting an electrolytic solution after the assembling process, and an injecting part forming process A sealing step of sealing the electrode body with an exterior body having an electrode body housing portion for housing the electrode body, and an electrode body sealed with the exterior body having a positive electrode, a negative electrode, and a separator after the sealing step And a supply step of supplying an electrolytic solution.
 さらに、本技術は、本技術に係る電池を少なくとも一以上含み、電池を収容する外装ケースを備える電池パックを提供する。また、本技術は、本技術に係る電池を電力供給源として備える電子機器を提供する。また、本技術は、本技術に係る電池から供給された電力を駆動力に変換する変換部と、駆動力に応じて駆動する駆動部と、電池の使用状態を制御する制御部と、を備える車両を提供する。また、本技術は、本技術に係る電池から電力が供給される可動部を備える電動工具を提供する。また、本技術は、本技術に係る電池から電力が供給される1または2以上の電子機器と、電池からの電子機器に対する電力供給を制御する制御部と、を備える電力貯蔵システムを提供する。 Furthermore, the present technology provides a battery pack that includes at least one battery according to the present technology and includes an outer case that houses the battery. The present technology also provides an electronic device including the battery according to the present technology as a power supply source. In addition, the present technology includes a conversion unit that converts electric power supplied from the battery according to the present technology into a driving force, a driving unit that is driven according to the driving force, and a control unit that controls a use state of the battery. Provide a vehicle. Moreover, this technique provides an electric tool provided with the movable part to which electric power is supplied from the battery according to the present technique. Moreover, this technique provides an electric power storage system provided with the 1 or 2 or more electronic device to which electric power is supplied from the battery which concerns on this technique, and the control part which controls the electric power supply with respect to the electronic device from a battery.
 本技術によれば、電池性能を低下させることなく、保管可能な電池を提供することができる。なお、ここに記載された効果は、必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。 According to the present technology, it is possible to provide a battery that can be stored without deteriorating battery performance. Note that the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
本技術に係る第1実施形態の電池の構成例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structural example of the battery of 1st Embodiment which concerns on this technique. 図1に示す電極体の構成例を示す拡大断面図である。It is an expanded sectional view which shows the structural example of the electrode body shown in FIG. 図1に示す電池に備えられた弁の構成例を示す拡大断面図である。It is an expanded sectional view which shows the structural example of the valve with which the battery shown in FIG. 1 was equipped. 本技術に係る第2実施形態の電池の構成例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structural example of the battery of 2nd Embodiment which concerns on this technique. 本技術に係る第3実施形態の電池の構成例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structural example of the battery of 3rd Embodiment which concerns on this technique. 本技術に係る第4実施形態の電池の構成例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structural example of the battery of 4th Embodiment which concerns on this technique. 本技術に係る電池に用いる外装体の構成例を示す模式図である。It is a schematic diagram which shows the structural example of the exterior body used for the battery which concerns on this technique. 本技術に係る電池の製造方法例を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the manufacturing method example of the battery which concerns on this technique. 本技術に係る電池の製造方法例を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the manufacturing method example of the battery which concerns on this technique. 本技術に係る電池の製造方法例を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the manufacturing method example of the battery which concerns on this technique. 本技術に係る電池の製造方法例を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the manufacturing method example of the battery which concerns on this technique. 本技術に係る電池の製造方法例を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the manufacturing method example of the battery which concerns on this technique. 本技術に係る電池の製造方法例を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the manufacturing method example of the battery which concerns on this technique. 本技術に係る電池の製造方法例を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the manufacturing method example of the battery which concerns on this technique. 本技術に係る電池の製造方法例を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the manufacturing method example of the battery which concerns on this technique. 本技術に係る電池の製造方法例を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the manufacturing method example of the battery which concerns on this technique. 本技術に係る第6実施形態の電動車両の構成例を示すブロック図である。It is a block diagram showing an example of composition of an electric vehicle of a 6th embodiment concerning this art. 本技術に係る第7実施形態の電力貯蔵システムの構成例を示すブロック図である。It is a block diagram showing an example of composition of an electric power storage system of a 7th embodiment concerning this art. 本技術に係る第8実施形態の電動工具の構成例を示すブロック図である。It is a block diagram showing an example of composition of an electric tool of an 8th embodiment concerning this art.
 以下、本技術を実施するための好適な形態について図面を参照しながら説明する。以下に説明する実施形態は、いずれの実施形態を組み合わせることもできる。本技術の代表的な実施形態の一例を示したものであり、これにより本技術の範囲が狭く解釈されることはない。また、以下に説明する実施形態は、いずれかの一または複数の実施形態を組み合わせることもできる。なお、図面については、同一又は同等の要素又は部材には同一の符号を付し、重複する説明は省略する。 Hereinafter, preferred embodiments for implementing the present technology will be described with reference to the drawings. The embodiments described below can be combined with any of the embodiments. This is an example of a typical embodiment of the present technology, and the scope of the present technology is not interpreted narrowly. In addition, any one or a plurality of embodiments described below can be combined. In addition, about drawing, the same code | symbol is attached | subjected to the same or equivalent element or member, and the overlapping description is abbreviate | omitted.
 説明は以下の順序で行う。
 1.第1実施形態に係る電池
 (1-1)電池の構成例
 (1-2)電極体の構成例
 (1-3)弁の構成例
 (1-4)電解液の注入方法の例
 (1-5)ガスの排出方法の例
 2.第2実施形態に係る電池
 3.第3実施形態に係る電池
 4.第4実施形態に係る電池
 5.本技術に係る電池の製造方法の例
 (5-1実施例1)
 (5-2実施例2)
 6.第5実施形態(電子機器の例)
 (6-1)電子機器
 (6-2)電子機器の具体例
 7.第6実施形態(電動車両の構成例)
 8.第7実施形態(電力貯蔵システムの構成例)
 9.第8実施形態(電動工具の構成例)
The description will be made in the following order.
1. Battery according to the first embodiment (1-1) Example of battery configuration (1-2) Example of electrode body configuration (1-3) Example of valve configuration (1-4) Example of electrolyte injection method (1- 5) Examples of gas discharge methods 2. Battery according to the second embodiment. 3. Battery according to third embodiment 4. Battery according to the fourth embodiment Example of battery manufacturing method according to the present technology (5-1 Example 1)
(5-2 Example 2)
6). Fifth embodiment (example of electronic device)
(6-1) Electronic equipment (6-2) Specific examples of electronic equipment Sixth Embodiment (Configuration Example of Electric Vehicle)
8). Seventh embodiment (configuration example of power storage system)
9. Eighth embodiment (configuration example of electric tool)
 <1.第1実施形態に係る電池>
 図1を用いて、本技術に係る第1実施形態の電池について説明する。本実施形態では、一例として、ラミネートフィルム型のリチウムイオン二次電池(非水電解質電池)を用いて説明する。
<1. Battery according to first embodiment>
The battery according to the first embodiment of the present technology will be described with reference to FIG. In the present embodiment, a laminated film type lithium ion secondary battery (non-aqueous electrolyte battery) will be described as an example.
 (1-1)電池の構成例
 図1に示すように、本実施形態の電池10は、大別して、電極体11と、ラミネート材を含み、電極体11を封止する外装体12と、電池10内0024部に電解液を注入する細管13と、細管13内の流体の流れを制御する弁14と、を備えている。本実施形態では、細管13および弁14が電解液を電池10の内部に注入する注入部の役割を有している。
(1-1) Battery Configuration Example As shown in FIG. 1, the battery 10 according to the present embodiment is roughly divided into an electrode body 11, an exterior body 12 that includes a laminate material and seals the electrode body 11, and a battery. 10 is provided with a narrow tube 13 for injecting an electrolyte into a 0024 portion, and a valve 14 for controlling the flow of fluid in the narrow tube 13. In the present embodiment, the thin tube 13 and the valve 14 serve as an injection part that injects the electrolytic solution into the battery 10.
 外装体12は、電極体11を収容する電極体収容部15を有し、電池10が完成された状態(電池化された状態)では、電極体収容部15に電解液が注入されている。外装体12の側面部(図1の上面部)には、正極リードを備えた正極側の電極タブ16と、負極リードを備えた負極側の電極タブ17が取り付けられている。各電極タブ16、17の後端部は、電極体11に接続されている。外装体12は、電極体11を収容後にラミシール部18を接着させて封止している。 The exterior body 12 includes an electrode body housing portion 15 that houses the electrode body 11, and an electrolyte is injected into the electrode body housing portion 15 in a state where the battery 10 is completed (in a battery state). A positive electrode tab 16 having a positive lead and a negative electrode tab 17 having a negative lead are attached to a side surface (upper surface in FIG. 1) of the outer package 12. The rear end portions of the electrode tabs 16 and 17 are connected to the electrode body 11. The exterior body 12 is sealed by adhering a lami seal portion 18 after accommodating the electrode body 11.
 なお、各電極タブ16、17は、外装体12の封止部と接する部分が、図示していない熱融着シール材などのシーラント材で覆われて取り付けられていてもよい。各電極タブ16、17がシーラント材を介して外装体12に取り付けられることにより、電池10は、各電極タブ16、17と外装体12との密着性を高めることができる。 In addition, each electrode tab 16 and 17 may be attached so that the part which contact | connects the sealing part of the exterior body 12 may be covered with sealant materials, such as a heat-sealing sealing material which is not shown in figure. When the electrode tabs 16 and 17 are attached to the exterior body 12 via the sealant material, the battery 10 can improve the adhesion between the electrode tabs 16 and 17 and the exterior body 12.
 正極リードおよび負極リードは、例えば、外装体12の内部から外部に向かって同一方向に導出されている。正極リードは、例えば、アルミニウムなどの金属材料によって構成されており、負極リードは、例えば、銅、ニッケルまたはステンレスなどの金属材料によって構成されている。これらの金属材料は、例えば、薄板状または網目状になっている。 The positive electrode lead and the negative electrode lead are led out in the same direction from the inside of the outer package 12 to the outside, for example. The positive electrode lead is made of, for example, a metal material such as aluminum, and the negative electrode lead is made of, for example, a metal material such as copper, nickel, or stainless steel. These metal materials are, for example, in a thin plate shape or a mesh shape.
 (外装体)
 外装体12は、例えば、ナイロンフィルム、アルミニウム箔およびポリエチレンフィルムがこの順に貼り合わされたアルミラミネートフィルムによって構成されている。この外装体12は、例えば、ポリエチレンフィルムが電極体11と対向するように、2枚の矩形型のアルミラミネートフィルムの外縁部同士が融着または接着剤によって互いに接着された構造を有している。
(Exterior body)
The package 12 is made of, for example, an aluminum laminated film in which a nylon film, an aluminum foil, and a polyethylene film are bonded together in this order. The exterior body 12 has, for example, a structure in which outer edges of two rectangular aluminum laminate films are bonded to each other by fusion or an adhesive so that a polyethylene film faces the electrode body 11. .
 外装体12と正極リードおよび負極リードとの間には、外気の侵入を防止するための密着フィルムが挿入されている。この密着フィルムは、正極リードおよび負極リードに対して密着性を有する材料によって構成されている。このような材料としては、例えば、ポリエチレン、ポリプロピレン、変性ポリエチレンまたは変性ポリプロピレンなどのポリオレフィン樹脂が挙げられる。なお、本実施形態の密着フィルムは、シーラント材と同一の材料で構成されている。 An adhesion film for preventing the entry of outside air is inserted between the outer package 12 and the positive and negative electrode leads. This adhesion film is made of a material having adhesion to the positive electrode lead and the negative electrode lead. Examples of such a material include polyolefin resins such as polyethylene, polypropylene, modified polyethylene, and modified polypropylene. In addition, the contact | adherence film of this embodiment is comprised with the material same as a sealant material.
 なお、外装体12は、上記したアルミラミネートフィルムに代えて、他の積層構造を有するラミネートフィルムによって構成されていてもよいし、ポリプロピレンなどの高分子フィルムまたは金属フィルムによって構成されていてもよい。 In addition, the exterior body 12 may be comprised with the laminated film which has another laminated structure instead of the above-mentioned aluminum laminated film, and may be comprised with polymer films or metal films, such as a polypropylene.
 (細管)
 細管13は、各電極タブ16、17が取り付けられた側面部と同じ側面部に、外装体12の封止部と接する部分が、図示していない熱融着シール材などのシーラント材で覆われて、外装体12に取り付けられている。これにより、電池10は、細管13と外装体12との密着性を高めることができ、かつ、細管13を備えた電池10の製造を容易にすることができる。また、細管13は、その先端部に密着性の高い継手等を介して弁14が接合され、その後端部が電極体11と外装体12との間の電極体収容部15に差し込まれている。さらに、細管13は、外装体12の厚みよりも断面の厚みが薄く形成されている。
(Narrow tube)
The narrow tube 13 is covered with a sealant material such as a heat-sealing seal material (not shown) on the same side surface portion as the side surface portion to which the electrode tabs 16 and 17 are attached, and a portion in contact with the sealing portion of the outer package 12. And attached to the exterior body 12. Thereby, the battery 10 can improve the adhesiveness of the thin tube 13 and the exterior body 12, and can also manufacture the battery 10 provided with the thin tube 13 easily. Further, the thin tube 13 has a valve 14 joined to a distal end portion thereof through a highly adhesive joint or the like, and a rear end portion thereof is inserted into an electrode body accommodating portion 15 between the electrode body 11 and the exterior body 12. . Further, the thin tube 13 is formed so that the cross-sectional thickness is smaller than the thickness of the outer package 12.
 このような細管13は、電解液を電極体収容部15に注入したり排出したりする、注入排出部としての役割を果たすことができる。さらに、細管13は、完成した電池10内部に発生したガスを外部へ排出する、ガス排出部としての役割も果たすことができる。なお、細管13は、非導電性の材料または金属チューブに非導電性の被覆を行ったものを含むことができる。また、細管13の直径は、0.05mm以上1.0mm以下であることが好ましい。また、細管13は、非導電性の材料を含んでいてもよい。これにより、電池10の内部ショートを防ぐことができる。 Such a thin tube 13 can serve as an injection / discharge portion for injecting or discharging the electrolyte into the electrode body housing portion 15. Furthermore, the thin tube 13 can also serve as a gas discharge unit that discharges the gas generated inside the completed battery 10 to the outside. Note that the thin tube 13 can include a non-conductive material or a metal tube having a non-conductive coating. Moreover, it is preferable that the diameter of the thin tube 13 is 0.05 mm or more and 1.0 mm or less. The thin tube 13 may include a non-conductive material. Thereby, the internal short circuit of the battery 10 can be prevented.
 本実施形態の細管13は、電極タブ16が取り付けられた側面部と異なる外装体12の側面部に取り付けられていてもよい。また、シーラント材は、円筒形状または短冊を二つ折りにした形状であってよい。シーラント材は、一例として、厚みが20μm~200μmで幅が約5mm前後のテープ状のフィルムで形成されている。本実施形態の電池10は、シーラント材を用いることにより、細管13と外装体12との密着性を向上させることができる。 The thin tube 13 of the present embodiment may be attached to a side surface portion of the exterior body 12 different from the side surface portion to which the electrode tab 16 is attached. Further, the sealant material may have a cylindrical shape or a shape obtained by folding a strip into two. As an example, the sealant material is formed of a tape-like film having a thickness of 20 μm to 200 μm and a width of about 5 mm. The battery 10 of this embodiment can improve the adhesiveness of the thin tube 13 and the exterior body 12 by using a sealant material.
 (1-2)電極体の構成例
 図2は、電極体の一例である巻回電極体30の断面構成を表している。巻回電極体30は、セパレータ35および電解液保持層36からなる絶縁層39を介して正極33と負極34とが積層および巻回されたものであり、その最外周部は、保護テープ37によって保護されている。巻回電極体30では、電解液保持層36が、セパレータ35の両面に形成されており、セパレータ35と正極33と、セパレータ35と負極34とが、それぞれ電解液保持層36を介して、接着している。また、正極33と負極34とが、絶縁層39を介して、接着している。正極33および負極34間に絶縁層39を設けることにより、正極33および負極34間の接着性を高めることで、充放電の繰り返しにより、極間距離が不均一になることを抑制する。なお、セパレータ35の片面のみに、電解液保持層36を形成するようにしてもよい。
(1-2) Configuration Example of Electrode Body FIG. 2 shows a cross-sectional configuration of a wound electrode body 30 which is an example of an electrode body. The wound electrode body 30 is obtained by laminating and winding a positive electrode 33 and a negative electrode 34 via an insulating layer 39 composed of a separator 35 and an electrolyte solution holding layer 36, and the outermost peripheral portion is covered with a protective tape 37. Protected. In the wound electrode body 30, the electrolyte solution holding layer 36 is formed on both surfaces of the separator 35, and the separator 35, the positive electrode 33, and the separator 35 and the negative electrode 34 are bonded via the electrolyte solution holding layer 36. is doing. Further, the positive electrode 33 and the negative electrode 34 are bonded via an insulating layer 39. By providing the insulating layer 39 between the positive electrode 33 and the negative electrode 34, the adhesiveness between the positive electrode 33 and the negative electrode 34 is improved, thereby preventing the distance between the electrodes from becoming non-uniform due to repeated charge and discharge. The electrolyte solution holding layer 36 may be formed only on one side of the separator 35.
 (正極)
 正極33は、例えば、一対の面を有する正極集電体33Aの両面に正極活物質層33Bが設けられたものである。ただし、正極活物質層33Bは、正極集電体33Aの片面だけに設けられていてもよい。正極集電体33Aは、例えば、アルミニウム、ニッケルまたはステンレスなどの金属材料によって構成されている。正極活物質層33Bは、正極活物質として、リチウムを吸蔵および放出することが可能な正極材料のいずれか1種または2種以上を含んでおり、必要に応じて、結着剤や導電剤などの他の材料を含んでいてもよい。
(Positive electrode)
In the positive electrode 33, for example, a positive electrode active material layer 33B is provided on both surfaces of a positive electrode current collector 33A having a pair of surfaces. However, the positive electrode active material layer 33B may be provided only on one surface of the positive electrode current collector 33A. The positive electrode current collector 33A is made of, for example, a metal material such as aluminum, nickel, or stainless steel. The positive electrode active material layer 33B includes one or more positive electrode materials capable of inserting and extracting lithium as a positive electrode active material, and a binder, a conductive agent, and the like as necessary. Other materials may be included.
 (正極活物質)
 正極活物質としては、例えば、リチウムを吸蔵および放出可能な材料を用いることができる。正極活物質としては、例えば、リチウム含有化合物を用いることができる。
(Positive electrode active material)
As the positive electrode active material, for example, a material capable of inserting and extracting lithium can be used. As the positive electrode active material, for example, a lithium-containing compound can be used.
 リチウム含有化合物としては、例えば、リチウムと遷移金属元素とを含む複合酸化物(「リチウム遷移金属複合酸化物」という)、リチウムと遷移金属元素とを含むリン酸化合物(「リチウム遷移金属リン酸化合物」という)などが挙げられる。リチウム含有化合物としては、遷移金属元素としてコバルト(Co)、ニッケル、マンガン(Mn)および鉄の少なくとも1種を含むものが好ましい。より高い電圧が得られるからである。 Examples of the lithium-containing compound include a composite oxide containing lithium and a transition metal element (referred to as “lithium transition metal composite oxide”), and a phosphate compound containing lithium and a transition metal element (“lithium transition metal phosphate compound”). And so on). As the lithium-containing compound, a compound containing at least one of cobalt (Co), nickel, manganese (Mn) and iron as a transition metal element is preferable. This is because a higher voltage can be obtained.
 リチウム遷移金属複合酸化物としては、例えば、層状岩塩型構造のリチウム遷移金属複合酸化物、スピネル型構造のリチウム遷移金属複合酸化物などが挙げられる。 Examples of the lithium transition metal composite oxide include a lithium transition metal composite oxide having a layered rock salt structure and a lithium transition metal composite oxide having a spinel structure.
 層状岩塩型構造のリチウム遷移金属複合酸化物としては、例えば、一般式LixM1O2(式中、M1は1種類以上の遷移金属元素を含む元素を表す。xの値は、一例として、0.05≦x≦1.10である。xの値は電池の充放電状態によって異なる。なお、xの値はこれに限定されるものではない。)で表されるリチウム含有化合物などが挙げられる。より具体的には、例えば、リチウムコバルト複合酸化物(LixCoO2)、リチウムニッケル複合酸化物(LixNiO2)、リチウムニッケルコバルト複合酸化物(LixNi1-zCozO2(0<z<1))、リチウムニッケルコバルトマンガン複合酸化物(LixNi(1-v-w)CovMnwO2(0<v+w<1、v>0、w>0))、リチウムコバルトアルミニウムマグネシウム複合酸化物(LixCo(1-p-q)AlpMgqO2(0<p+q<1、p>0、q>0))などが挙げられる。 As a lithium transition metal composite oxide having a layered rock salt structure, for example, a general formula LixM1O2 (wherein M1 represents an element containing one or more transition metal elements. The value of x is 0.05 ≦ x ≦ 1.10 The value of x varies depending on the charge / discharge state of the battery, and the value of x is not limited to this. More specifically, for example, lithium cobalt composite oxide (LixCoO2), lithium nickel composite oxide (LixNiO2), lithium nickel cobalt composite oxide (LixNi1-zCozO2 (0 <z <1)), lithium nickel cobalt manganese composite Oxide (LixNi (1-vw) CovMnwO2 (0 <v + w <1, v> 0, w> 0)), lithium cobalt aluminum magnesium composite oxide (LixCo (1-pq) AlpMgqO2 (0 <p + q <1, p > 0, q> 0)).
 スピネル型構造のリチウム遷移金属複合酸化物としては、例えば、リチウムマンガン複合酸化物(LiMn2O4)、リチウムマンガンニッケル複合酸化物(LixMn2-tNitO4(0<t<2))などが挙げられる。 Examples of the spinel-type lithium transition metal composite oxide include lithium manganese composite oxide (LiMn2O4) and lithium manganese nickel composite oxide (LixMn2-tNitO4 (0 <t <2)).
 リチウム遷移金属リン酸化合物としては、例えば、オリビン型構造のリチウム遷移金属リン酸化合物などが挙げられる。 Examples of the lithium transition metal phosphate compound include an olivine type lithium transition metal phosphate compound.
 オリビン型構造のリチウム遷移金属リン酸化合物としては、例えば、一般式LiyM2PO4(式中、M2は1種類以上の遷移金属元素を含む元素を表す。yの値は、一例として、0.05≦y≦1.10である。yの値は電池の充放電状態によって異なる。なお、yの値はこの範囲に限定されるものではない。)で表されるリチウム含有化合物などが挙げられる。より具体的には、例えば、リチウム鉄リン酸化合物(LiyFePO4)、リチウム鉄マンガンリン酸化合物(LiyFe1-uMnuPO4(0<u<1))などが挙げられる。 Examples of the olivine-type lithium transition metal phosphate compound include, for example, the general formula LiyM2PO4 (wherein M2 represents an element including one or more transition metal elements. The value of y is 0.05 ≦ y, for example. ≦ 1.10 The value of y varies depending on the charge / discharge state of the battery, and the value of y is not limited to this range. More specifically, for example, lithium iron phosphate compound (LiyFePO4), lithium iron manganese phosphate compound (LiyFe1-uMnuPO4 (0 <u <1)) and the like can be mentioned.
 正極活物質としては、上述したリチウム含有化合物の粒子と、リチウム含有化合物の粒子の表面の少なくとも一部に設けられた被覆層とを有する被覆粒子を用いてもよい。このような被覆粒子を用いることで、電池特性をより向上できる。 As the positive electrode active material, coated particles having the above-described lithium-containing compound particles and a coating layer provided on at least a part of the surface of the lithium-containing compound particles may be used. By using such coated particles, battery characteristics can be further improved.
 被覆層は、母材となるリチウム含有化合物の粒子(母材粒子)の表面の少なくとも一部に設けられたものであり、母材粒子とは異なる組成元素または組成比を有するものである。被覆層としては、例えば、酸化物や遷移金属化合物などを含むものが挙げられる。具体的には、被覆層としては、例えば、リチウムとニッケルおよびマンガンのうちの少なくとも一方とを含む酸化物、または、ニッケル、コバルト、マンガン、鉄、アルミニウム、マグネシウム(Mg)および亜鉛(Zn)からなる群のうちの少なくとも1種と、酸素(O)と、リン(P)とを含む化合物などを含む。被覆層は、フッ化リチウムなどのハロゲン化物または酸素以外のカルコゲン化物を含むようにしてよい。 The coating layer is provided on at least a part of the surface of lithium-containing compound particles (base material particles) serving as a base material, and has a composition element or composition ratio different from that of the base material particles. As a coating layer, what contains an oxide, a transition metal compound, etc. is mentioned, for example. Specifically, as the coating layer, for example, an oxide containing lithium and at least one of nickel and manganese, or nickel, cobalt, manganese, iron, aluminum, magnesium (Mg), and zinc (Zn) A compound containing oxygen (O) and phosphorus (P), and the like. The coating layer may contain a halide such as lithium fluoride or a chalcogenide other than oxygen.
 被覆層の存在は、正極活物質の表面から内部に向かって構成元素の濃度変化を調べることで、確認することができる。例えば、濃度変化は、被覆層が設けられたリチウム含有化合物の粒子をスパッタリングなどにより削りながらその組成をオージェ電子分光分析(Auger Electron Spectroscopy ;AES)またはSIMS(Secondary Ion Mass Spectrometry ;二次イオン質量分析)により測定することが可能である。また、被覆層が設けられたリチウム含有化合物の粒子を酸性溶液中などでゆっくり溶解させ、その溶出分の時間変化を誘導結合高周波プラズマ(Inductively Coupled Plasma;ICP)分光分析などにより測定することも可能である。 The presence of the coating layer can be confirmed by examining the concentration change of the constituent elements from the surface of the positive electrode active material toward the inside. For example, the change in concentration is obtained by scraping particles of a lithium-containing compound provided with a coating layer by sputtering or the like while analyzing the composition by Auger Electron Spectroscopy (AES) or SIMS (Secondary Ion Mass Mass Spectrometry; Secondary ion mass spectrometry. ). It is also possible to slowly dissolve lithium-containing compound particles with a coating layer in an acidic solution and measure the elution of the particles by inductively coupled plasma (ICP) spectroscopy. It is.
 その他、正極活物質としては、例えば、酸化物、二硫化物、リチウムを含有しないカルコゲン化物(特に層状化合物やスピネル型化合物)、導電性高分子などを用いることができる。酸化物としては、例えば、酸化バナジウム(V)、二酸化チタン(TiO)、二酸化マンガン(MnO)などが挙げられる。二硫化物としては、例えば、二硫化鉄(FeS)、二硫化チタン(TiS)、二硫化モリブデン(MoS)などが挙げられる。リチウムを含有しないカルコゲン化物としては、例えば、二セレン化ニオブ(NbSe)などが挙げられる。導電性高分子としては、硫黄、ポリアニリン、ポリチオフェン、ポリアセチレンまたはポリピロールなどが挙げられる。 In addition, as the positive electrode active material, for example, an oxide, a disulfide, a chalcogenide containing no lithium (particularly, a layered compound or a spinel compound), a conductive polymer, and the like can be used. Examples of the oxide include vanadium oxide (V 2 O 5 ), titanium dioxide (TiO 2 ), manganese dioxide (MnO 2 ), and the like. Examples of the disulfide include iron disulfide (FeS 2 ), titanium disulfide (TiS 2 ), and molybdenum disulfide (MoS 2 ). Examples of chalcogenides that do not contain lithium include niobium diselenide (NbSe 2 ) and the like. Examples of the conductive polymer include sulfur, polyaniline, polythiophene, polyacetylene, and polypyrrole.
 正極活物質は、上記で例示した正極活物質以外であってもよい。また、上記で例示した正極活物質は、任意の組み合わせで2種以上混合されてもよい。 The positive electrode active material may be other than the positive electrode active material exemplified above. Moreover, the positive electrode active material illustrated above may be mixed 2 or more types by arbitrary combinations.
 結着剤としては、例えば、スチレンブタジエン系ゴム、フッ素系ゴムまたはエチレンプロピレンジエンなどの合成ゴムや、ポリフッ化ビニリデンなどの高分子材料が挙げられる。これらは単独でもよいし、複数種が混合されてもよい。中でも、ポリフッ化ビニリデンが好ましい。 Examples of the binder include synthetic rubbers such as styrene butadiene rubber, fluorine rubber or ethylene propylene diene, and polymer materials such as polyvinylidene fluoride. These may be single and multiple types may be mixed. Among these, polyvinylidene fluoride is preferable.
 導電剤としては、例えば、黒鉛、カーボンブラックなどの炭素材料が挙げられる。これらは単独でもよいし、複数種が混合されてもよい。 Examples of the conductive agent include carbon materials such as graphite and carbon black. These may be single and multiple types may be mixed.
 (負極)
 負極34は、例えば、一対の面を有する負極集電体34Aの両面に負極活物質層34Bが設けられたものである。ただし、負極活物質層34Bは、負極集電体34Aの片面だけに設けられていてもよい。負極集電体34Aは、例えば、銅、ニッケルまたはステンレスなどの金属材料によって構成されている。負極活物質層34Bは、負極活物質として、リチウムを吸蔵および放出することが可能な負極材料のいずれか1種または2種以上を含んでおり、必要に応じて、結着剤や導電剤などの他の材料を含んでいてもよい。なお、結着剤および導電剤は、それぞれ正極で説明したものと同様のものを用いることができる。
(Negative electrode)
In the negative electrode 34, for example, a negative electrode active material layer 34B is provided on both surfaces of a negative electrode current collector 34A having a pair of surfaces. However, the negative electrode active material layer 34B may be provided only on one surface of the negative electrode current collector 34A. The negative electrode current collector 34A is made of, for example, a metal material such as copper, nickel, or stainless steel. The negative electrode active material layer 34B includes one or more negative electrode materials capable of inserting and extracting lithium as a negative electrode active material, and a binder, a conductive agent, and the like as necessary. Other materials may be included. Note that the same binder and conductive agent as those described for the positive electrode can be used.
 (負極活物質)
 負極活物質としては、リチウムを吸蔵および放出可能な材料を用いることができる。具体的には、負極活物質としては、ケイ素を構成元素として含む材料(「ケイ素を含む材料」という)を用いることできる。ケイ素を含む材料は、リチウムを吸蔵および放出する能力が大きく、高いエネルギー密度を得ることができる。
(Negative electrode active material)
As the negative electrode active material, a material capable of inserting and extracting lithium can be used. Specifically, a material containing silicon as a constituent element (referred to as “material containing silicon”) can be used as the negative electrode active material. A material containing silicon has a large ability to occlude and release lithium, and a high energy density can be obtained.
 ケイ素を含む材料としては、例えば、ケイ素の単体、合金または化合物や、それらの1種または2種以上の相を少なくとも一部に有する材料などが挙げられる。なお、本技術における「合金」には、2種以上の金属元素からなるものに加えて、1種以上の金属元素と1種以上の半金属元素とを含むものも含まれる。また、「合金」は、非金属元素を含んでいてもよい。この組織には、固溶体、共晶(共融混合物)、金属間化合物、またはそれらの2種以上が共存するものがある。 Examples of the material containing silicon include a simple substance, an alloy or a compound of silicon, and a material having one or more phases thereof at least in part. The “alloy” in the present technology includes an alloy containing one or more metal elements and one or more metalloid elements in addition to an alloy composed of two or more metal elements. Further, the “alloy” may contain a nonmetallic element. This structure includes a solid solution, a eutectic (eutectic mixture), an intermetallic compound, or one in which two or more of them coexist.
 ケイ素の合金としては、例えば、ケイ素以外の第2の構成元素として、スズ、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモン(Sb)およびクロム(Cr)からなる群のうちの少なくとも1種を含むものが挙げられる。 As an alloy of silicon, for example, as a second constituent element other than silicon, tin, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony (Sb) and chromium (Cr And at least one member selected from the group consisting of:
 ケイ素の合金は、1種以上の合金構成元素を含む単体相または化合物相からなるマトリックス相中に、ケイ素相が分散したものであることが好ましい。例えば、このようなケイ素の合金としては、ケイ素とは異なる異種金属中にケイ素が微分散された合金などである。異種金属元素としては、典型的には、例えば、鉄などである。活物質の理論容量に対する利用率を高めることができ、また、サイクル特性をより向上できるからである。 The silicon alloy is preferably one in which a silicon phase is dispersed in a matrix phase composed of a single phase or a compound phase containing one or more alloy constituent elements. For example, such a silicon alloy is an alloy in which silicon is finely dispersed in a different metal different from silicon. Typically, the different metal element is, for example, iron. This is because the utilization factor of the active material with respect to the theoretical capacity can be increased, and the cycle characteristics can be further improved.
 ケイ素の化合物としては、例えば、ケイ素および酸素を含むケイ素の酸化物、ケイ素および炭素を含むケイ素と炭素との化合物などが挙げられる。なお、ケイ素の化合物は、例えば、ケイ素以外の構成元素として、ケイ素の合金に関して説明した元素のいずれか1種類または2種類以上を含んでいてもよい。ケイ素の酸化物としては、例えば、SiOx、SiOなどである。なお、SiOxにおいて化学量論比からずれることがあるため、Oの組成比をxとしている。xは、例えば、0<x<2である。 Examples of the silicon compound include silicon oxides containing silicon and oxygen, and silicon and carbon compounds containing silicon and carbon. In addition, the compound of silicon may contain any one type or two types or more of the elements explained regarding the alloy of silicon as a constituent element other than silicon, for example. The oxide of silicon, e.g., SiOx, SiO 2 and the like. Since the SiOx may deviate from the stoichiometric ratio, the composition ratio of O is x. For example, x is 0 <x <2.
 負極活物質は、ケイ素を含む材料以外のリチウムを吸蔵および放出可能な材料を含んでいてもよい。また、上記で例示した負極活物質は、任意の組み合わせで2種以上混合されてもよい。 The negative electrode active material may contain a material that can occlude and release lithium other than a material containing silicon. Moreover, the negative electrode active material illustrated above may be mixed 2 or more types by arbitrary combinations.
 (絶縁層)
 絶縁層39は、セパレータ35と、セパレータ35の少なくとも一面に形成された電解液保持層36とからなる。なお、セパレータ35を省略して、絶縁層39を電解液保持層36単独で構成してもよい。
(Insulating layer)
The insulating layer 39 includes a separator 35 and an electrolyte solution holding layer 36 formed on at least one surface of the separator 35. Note that the separator 35 may be omitted, and the insulating layer 39 may be formed of the electrolyte solution holding layer 36 alone.
 (セパレータ)
 セパレータ35は、正極33と負極34とを隔離し、両極の接触に起因する電流の短絡を防止しながらリチウムイオンを通過させる多孔質材である。このセパレータ35は、ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂からなる多孔質膜や、セラミックからなる多孔質膜などによって構成されている。これらの2種以上の多孔質膜が積層されたものであってもよい。セパレータ35には電解液が含浸されている。
(Separator)
The separator 35 is a porous material that separates the positive electrode 33 and the negative electrode 34 and allows lithium ions to pass through while preventing a short circuit of current due to contact between the two electrodes. The separator 35 is made of a porous film made of a polyolefin resin such as polyethylene or polypropylene, a porous film made of ceramic, or the like. These two or more types of porous membranes may be laminated. The separator 35 is impregnated with an electrolytic solution.
 (電解液保持層)
 電解液保持層36は、多孔性高分子化合物と、電解液とを含む。電解液保持層36では、電解液が多孔性高分子化合物の空孔に保持されると共に、電解液により多孔性高分子化合物が膨潤されている。なお、電解液保持層36は、単独でまたはセパレータ35と共に、正極33と負極34とを隔離し、両極の接触に起因する電流の短絡を防止しながらリチウムイオンを通過させる機能を有していてもよい。
(Electrolytic solution holding layer)
The electrolyte solution holding layer 36 includes a porous polymer compound and an electrolyte solution. In the electrolyte solution holding layer 36, the electrolyte solution is held in the pores of the porous polymer compound, and the porous polymer compound is swollen by the electrolyte solution. In addition, the electrolyte solution holding layer 36 has a function of allowing lithium ions to pass while isolating the positive electrode 33 and the negative electrode 34 singly or together with the separator 35 and preventing a short circuit of current due to contact between the two electrodes. Also good.
 (電解液)
 電解液は、溶媒と、溶媒に溶解する電解質塩とを含む。なお、電解液中の溶媒の一部は、あらかじめ電極体収容部15に注入されていてもよい。
(Electrolyte)
The electrolytic solution includes a solvent and an electrolyte salt that dissolves in the solvent. A part of the solvent in the electrolytic solution may be previously injected into the electrode body housing part 15.
 溶媒としては、例えば、高誘電率溶媒を用いることができる。高誘電率溶媒としては、エチレンカーボネート(炭酸エチレン)、プロピレンカーボネート(炭酸プロピル)などの環状炭酸エステルなどを用いることができる。高誘電率溶媒としては、環状炭酸エステルの代わりに、または環状炭酸エステルと併せて、γ-ブチロラクトン、γ-バレロラクトンなどのラクトン、N-メチルピロリドンなどのラクタム、N-メチルオキサゾリジノンなどの環状カルバミン酸エステル、テトラメチレンスルホンなどのスルホン化合物を用いてもよい。 As the solvent, for example, a high dielectric constant solvent can be used. As the high dielectric constant solvent, cyclic carbonates such as ethylene carbonate (ethylene carbonate) and propylene carbonate (propyl carbonate) can be used. Examples of the high dielectric constant solvent include lactones such as γ-butyrolactone and γ-valerolactone, lactams such as N-methylpyrrolidone, and cyclic carbamines such as N-methyloxazolidinone instead of or together with the cyclic carbonate. A sulfone compound such as acid ester or tetramethylene sulfone may be used.
 溶媒としては、高誘電率溶媒と、低粘度溶媒とを混合して用いてもよい。低粘度溶媒としては、エチルメチルカーボネート(炭酸メチルエチル)、ジエチルカーボネート(炭酸ジエチレン)、ジメチルカーボネート、メチルプロピルカーボネート等の鎖状炭酸エステル、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチル、トリメチル酢酸エチル等の鎖状カルボン酸エステル、N,N-ジメチルアセトアミド等の鎖状アミド、N,N-ジエチルカルバミン酸メチル、N,N-ジエチルカルバミン酸エチル等の鎖状カルバミン酸エステル、1,2-ジメトキシエタン、テトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン等のエーテル等が挙げられる。なお、溶媒は上記で例示した化合物に限定されるものではなく、従来提案されている化合物を広く用いることができる。 As the solvent, a high dielectric constant solvent and a low viscosity solvent may be mixed and used. Low viscosity solvents include chain esters such as ethyl methyl carbonate (methyl ethyl carbonate), diethyl carbonate (diethylene carbonate), dimethyl carbonate, methyl propyl carbonate, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, butyric acid Chain carboxylic acid esters such as methyl, methyl isobutyrate, methyl trimethylacetate and ethyl trimethylacetate, chain amides such as N, N-dimethylacetamide, methyl N, N-diethylcarbamate, ethyl N, N-diethylcarbamate And chain ethers such as 1,2-dimethoxyethane, tetrahydrofuran, tetrahydropyran, 1,3-dioxolane, and the like. In addition, a solvent is not limited to the compound illustrated above, The compound proposed conventionally can be used widely.
 電解質塩は、例えば、リチウム塩などの軽金属塩のいずれか1種または2種以上を含有している。 The electrolyte salt contains, for example, one or more light metal salts such as a lithium salt.
 リチウム塩としては、例えば、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)、六フッ化ヒ酸リチウム(LiAsF)、六フッ化アンチモン酸リチウム(LiSbF)、過塩素酸リチウム(LiClO)、四塩化アルミニウム酸リチウム(LiAlCl)などの無機リチウム塩が挙げられる。また、リチウム塩としては、例えば、トリフルオロメタンスルホン酸リチウム(CFSOLi)、リチウムビス(トリフルオロメタンスルホン)イミド((CFSONLi)、リチウムビス(ペンタフルオロメタンスルホン)イミド((CSONLi)、リチウムトリス(トリフルオロメタンスルホン)メチド((CFSOCLi)などのパーフルオロアルカンスルホン酸誘導体のリチウム塩、四フッ化ホウ酸リチウム(LiBF)、LiB(Cなどのホウ素含有リチウム塩などが挙げられる。 Examples of the lithium salt include lithium hexafluorophosphate (LiPF 6), lithium tetrafluoroborate (LiBF 4), lithium hexafluoroarsenate (LiAsF 6), lithium hexafluoro antimonate (LiSbF 6) Inorganic lithium salts such as lithium perchlorate (LiClO 4 ) and lithium tetrachloride aluminum oxide (LiAlCl 4 ). Examples of the lithium salt include lithium trifluoromethanesulfonate (CF 3 SO 3 Li), lithium bis (trifluoromethanesulfone) imide ((CF 3 SO 2 ) 2 NLi), and lithium bis (pentafluoromethanesulfone) imide. ((C 2 F 5 SO 2 ) 2 NLi), lithium salts of perfluoroalkanesulfonic acid derivatives such as lithium tris (trifluoromethanesulfone) methide ((CF 3 SO 2 ) 3 CLi), lithium tetrafluoroborate ( Examples thereof include boron-containing lithium salts such as LiBF 4 ) and LiB (C 2 O 4 ) 2 .
 (1-3)弁の構成例
 図3は、本実施形態の電池に備えられた弁(バルブ)の構成例を示す断面図である。図3に示すように、弁14は、所定の圧力に応じた与圧用のコイルスプリング24と、上面がコイルスプリング24とが連結され、下面が細管13の先端部を塞ぐボール(鉄球)25と、開閉部26と、を有する。
(1-3) Configuration Example of Valve FIG. 3 is a cross-sectional view showing a configuration example of a valve (valve) provided in the battery of this embodiment. As shown in FIG. 3, the valve 14 is a ball (iron ball) 25 in which a coil spring 24 for pressurization according to a predetermined pressure is connected to a coil spring 24 on the upper surface and the lower surface closes the tip of the thin tube 13. And an opening / closing part 26.
 弁14は、細管13から取り外して電池10と分離することができる。これにより、電池10を使用すると、電池10の製造工程が必要以上に複雑にならない、電池10製造工程で弁14が破損する事が無い、複数の電池10で1つの弁14を共用できる、弁14を交換することで必要に応じてガスの開放圧力を変えることができる、という効果がある。さらに、電池10は、複数の電池10をモジュール化する際のスペース効率に優れるという効果も有する。 The valve 14 can be removed from the thin tube 13 and separated from the battery 10. Thereby, when the battery 10 is used, the manufacturing process of the battery 10 is not more complicated than necessary, the valve 14 is not damaged in the manufacturing process of the battery 10, and a single valve 14 can be shared by a plurality of batteries 10. By exchanging 14, there is an effect that the opening pressure of the gas can be changed as necessary. Furthermore, the battery 10 has an effect of being excellent in space efficiency when the plurality of batteries 10 are modularized.
 弁14は、外装体12内部にガスが発生し、外装体12内部の圧力が所定値以上のときに細管13から開閉部26を通って上昇してきたガスによってボール25とコイルスプリング24が押し込まれて自動的に開放することができる。また、弁14は、外装体12内部の圧力が所定値未満のときには、押し込まれて縮んでいたコイルスプリング24がボール25を細管13の先端部へ押し込むことによって、自動的に閉塞することができる。上記所定値は、例えば、0kPa~4kPa未満の範囲で調整することができる。弁14は、外装体12内部の圧力に応じてコイルスプリング24を交換することができる。これにより、弁14のガス開放圧力を例えば、5kPa~10kPa単位で調整することができる。また、弁14は、外装体12から取り外し可能にしてもよい。これにより、製造工程が必要以上に複雑にならず、弁14の破損の危険性を低くすることができる。 In the valve 14, the gas 25 is generated inside the exterior body 12, and the ball 25 and the coil spring 24 are pushed in by the gas rising from the thin tube 13 through the opening / closing part 26 when the pressure inside the exterior body 12 is equal to or higher than a predetermined value. Can be opened automatically. Further, when the pressure inside the outer package 12 is less than a predetermined value, the valve 14 can be automatically closed by the coil spring 24 that has been pushed and contracted pushing the ball 25 into the tip of the thin tube 13. . The predetermined value can be adjusted, for example, in the range of 0 kPa to less than 4 kPa. The valve 14 can replace the coil spring 24 in accordance with the pressure inside the exterior body 12. Thereby, the gas release pressure of the valve 14 can be adjusted, for example, in units of 5 kPa to 10 kPa. Further, the valve 14 may be removable from the exterior body 12. Thereby, the manufacturing process is not complicated more than necessary, and the risk of damage to the valve 14 can be reduced.
 (1-4)電解液の注入方法の例
 図1を用いて電極体収容部15に電解液を注入する方法の一例について説明する。なお、電極体収容部15に電解液を注入する前の状態を、電池10の半製品といい、電極体収容部15に電解液を注入することにより、電池化して完成された状態を、電池10という。
(1-4) Example of Electrolyte Solution Injection Method An example of a method of injecting the electrolyte solution into the electrode body housing portion 15 will be described with reference to FIG. The state before injecting the electrolytic solution into the electrode body housing portion 15 is referred to as a semi-finished product of the battery 10, and the state completed by forming the battery by injecting the electrolytic solution into the electrode body housing portion 15 is referred to as the battery. Ten.
 まず、弁14を有する細管13の下端部を電極体11の電極体収容部15まで差し込み、電池10内部と外部との間に通路を形成するように細管13を設置する。その後、細管13を外装体12で封止し、電池10の半製品を作製する。次に、外装体12で封止した細管13の先端部を外部の電解液注入機構と接続し、弁14を開放して細管13の先端部から電極体収容部15に電解液を注入する。電極体収容部15への電解液の注入を終えた後に、弁14を閉じて電池10を電池化して完成させる。 First, the lower end portion of the thin tube 13 having the valve 14 is inserted into the electrode body housing portion 15 of the electrode body 11, and the thin tube 13 is installed so as to form a passage between the inside of the battery 10 and the outside. Thereafter, the thin tube 13 is sealed with the outer package 12 to produce a semi-finished product of the battery 10. Next, the tip of the narrow tube 13 sealed with the exterior body 12 is connected to an external electrolyte solution injection mechanism, and the valve 14 is opened to inject the electrolyte from the tip of the tube 13 into the electrode body housing 15. After the injection of the electrolytic solution into the electrode body accommodating portion 15 is finished, the valve 14 is closed to complete the battery 10 as a battery.
 本実施形態に係る電池10は、上記構成および動作により、電池10の半製品を作製した後に、電解液を注入して電池化しているため、電池10の半製品の状態で電池性能を低下させることなく保管可能することができる。また、外装体12で電極体11を封止した後であっても、未だ電池化していない状態であるため、輸送規制対象にならず、その後の電解液の注入工程を別の場所で行うことによる工程の分散化等の効率化が可能となる。また、電極体11の封止工程と電解液の注入工程とを分散する場合、封止工程以降のドライ化設備や真空設備が不要となり、工程を分散化する時のコストを削減することができる。また、電極体11を封止した電池10の半製品の状態で保管が可能であるため、追加の注文等に迅速な対応ができる。また、電極とセパレータを熱融着する工程がある場合、支持塩の分解等がないので、電池性能の低下を防ぐことができる。さらに、電池10は、細管13を備えていることにより、電解液を再び追加注入するなどの追加工程を組み込むこともできる。 Since the battery 10 according to this embodiment is manufactured by injecting an electrolytic solution after the semi-finished product of the battery 10 is manufactured by the above configuration and operation, the battery performance is deteriorated in the semi-finished state of the battery 10. It can be stored without it. In addition, even after the electrode body 11 is sealed with the exterior body 12, it is not yet in a battery state, so that it is not subject to transportation regulation, and the subsequent electrolyte solution injection process is performed in another place. It is possible to improve efficiency such as dispersion of processes. Further, when the sealing process of the electrode body 11 and the electrolyte injection process are dispersed, the drying equipment and the vacuum equipment after the sealing process are not required, and the cost for dispersing the process can be reduced. . Moreover, since it can be stored in a semi-finished state of the battery 10 in which the electrode body 11 is sealed, it is possible to quickly respond to an additional order or the like. In addition, when there is a step of heat-sealing the electrode and the separator, since the supporting salt is not decomposed, the battery performance can be prevented from deteriorating. Further, since the battery 10 includes the narrow tube 13, an additional process such as additional injection of the electrolyte solution can be incorporated.
 (1-5)ガスの排出方法の例
 図1を用いて電池10内部に発生したガスを外部へ排出する方法の一例について説明する。
(1-5) Example of Gas Discharge Method An example of a method of discharging the gas generated inside the battery 10 to the outside will be described with reference to FIG.
 まず、電池10を繰返し充放電した場合や電池10が高温になった場合等に、電池10内部にガスが発生する。電池10内部にガスが発生すると、電池10内部の圧力が上昇する。電池10内部の圧力が上昇すると、ガス排出の弁14内のコイルスプリング24が電池10内のガスに押されて縮まり、コイルスプリング24に連結されたボール25が上昇することにより、開閉部26が開く。開閉部26が開くと、細管13を上昇してきたガスが、弁14から排出される。ガスが排出されることにより、電池10内の圧力が低下すると、コイルスプリング24が伸びてボール25が下降し、開閉部26が閉じる。 First, gas is generated inside the battery 10 when the battery 10 is repeatedly charged and discharged or when the battery 10 becomes hot. When gas is generated inside the battery 10, the pressure inside the battery 10 increases. When the pressure inside the battery 10 rises, the coil spring 24 in the gas discharge valve 14 is pushed and contracted by the gas in the battery 10, and the ball 25 connected to the coil spring 24 rises, so that the opening / closing part 26 is opened. open. When the opening / closing part 26 is opened, the gas rising up the narrow tube 13 is discharged from the valve 14. When the pressure in the battery 10 is reduced by discharging the gas, the coil spring 24 is extended, the ball 25 is lowered, and the opening / closing part 26 is closed.
 本実施形態に係る電池10は、上記構成および動作により、電池10内部に発生したガスを自動的に外部へ排出できるため、過度な急速充電、高温化での使用など過酷な使用環境により、電池10内部の電解液が分解して発生するガスによりトラブルを回避することができる。これにより、電池10の膨張および電池性能の低下を防止することができる。なお、上記ガスによるトラブルには、「電池の膨張による機器の圧迫」、「電池の膨張による電池性能の低下」および「電池の膨張による外装体の破損」等がある。また、本実施形態に係る電池10は、電池をより高温下で使えるようにすることができる。さらに、電池10は、ガス排出に細管を利用するため、電池の構造をこれまでから大きく変更する必要が無いという効果を有する。 The battery 10 according to the present embodiment can automatically discharge the gas generated inside the battery 10 to the outside by the above-described configuration and operation. Therefore, the battery 10 can be used in a severe usage environment such as excessive rapid charging and use at high temperatures. Troubles can be avoided by the gas generated by the decomposition of the electrolyte inside 10. Thereby, the expansion | swelling of the battery 10 and the fall of battery performance can be prevented. Note that the troubles caused by the gas include “compression of equipment due to battery expansion”, “decrease in battery performance due to battery expansion”, and “damage of exterior body due to battery expansion”. In addition, the battery 10 according to the present embodiment can be used at a higher temperature. Furthermore, since the battery 10 uses a thin tube for gas discharge, there is an effect that it is not necessary to change the structure of the battery greatly.
 <2.第2実施形態に係る電池>
 次に、図4を用いて、本技術に係る電池の第2実施形態について説明する。本実施形態に係る電池40が第1実施形態に係る電池10と相違する点は、電解液を保管し電極体収容部へ注入する注入部を外装体の内部に備えている点である。本実施形態に係る電池40の上記相違点以外の共通する構成については、第1実施形態に係る電池10の構成と同一の符号を付して、その説明を省略する。
<2. Battery according to Second Embodiment>
Next, a second embodiment of the battery according to the present technology will be described with reference to FIG. The battery 40 according to the present embodiment is different from the battery 10 according to the first embodiment in that an injection part for storing the electrolyte solution and injecting it into the electrode body housing part is provided inside the exterior body. The common configurations other than the above-described differences of the battery 40 according to the present embodiment are denoted by the same reference numerals as the configuration of the battery 10 according to the first embodiment, and the description thereof is omitted.
 図4に示すように、本実施形態の電池40は、電極体11と、ラミネート材を含み、電極体11を封止する外装体42と、電極体11を収容する電極体収容部15と、電極体収容部15に電解液を注入する注入部43と、を備えている。注入部43は、電解液の通路44を介して電極体収容部15と隔離されている。本実施形態の注入部43は、電解液を収容する電解液収容部の役割も有している。外装体42は、電極体11の収容後にラミシール部48を接着させて封止している。なお、本実施形態の注入部43は、電池40内に1つだけ形成されているが、本技術に係る注入部は一つに限らず電池内に複数形成されていてもよい。注入部が複数形成されている場合には、それらのうちのいずれかの注入部が追加で注入するための電解液を収容するものとすることができる。 As shown in FIG. 4, the battery 40 of the present embodiment includes an electrode body 11, an exterior body 42 that includes the laminate material and seals the electrode body 11, an electrode body housing portion 15 that houses the electrode body 11, And an injection part 43 for injecting an electrolytic solution into the electrode body housing part 15. The injection portion 43 is isolated from the electrode body housing portion 15 via the electrolyte passage 44. The injection part 43 of this embodiment also has a role of an electrolyte solution storage part that stores the electrolyte solution. The exterior body 42 is sealed by adhering the lamellar seal portion 48 after the electrode body 11 is accommodated. In addition, although one injection | pouring part 43 of this embodiment is formed in the battery 40, more than one injection | pouring part which concerns on this technique may be formed in the battery. When multiple injection | pouring parts are formed, the electrolyte solution for inject | pouring additional one of those injection | pouring parts shall be accommodated.
 本実施形態に係る電池40は、上記構成により、第1実施形態に係る電池10と同様の効果を有することができる。 The battery 40 according to the present embodiment can have the same effects as the battery 10 according to the first embodiment due to the above configuration.
 <3.第3実施形態に係る電池>
 次に、図5を用いて、本技術に係る電池の第3実施形態について説明する。本実施形態に係る電池50は、注入部43に電解液を収容したカプセル材を備えている構成以外は、第1実施形態に係る電池10と同一の構成である。このため、共通する構成以外は同一の符号を付して、その説明を省略する。なお、本実施形態に係る電池50では、カプセル材が電解液収容部の役割を担っている。
<3. Battery According to Third Embodiment>
Next, a third embodiment of the battery according to the present technology will be described with reference to FIG. The battery 50 according to the present embodiment has the same configuration as that of the battery 10 according to the first embodiment, except that the injection part 43 includes a capsule material containing an electrolytic solution. For this reason, the same code | symbol is attached | subjected except the common structure, and the description is abbreviate | omitted. In the battery 50 according to the present embodiment, the capsule material plays a role of an electrolyte solution storage unit.
 図5に示すように、本実施形態の電池50は、注入部43に、電解液を収容した電解液収容部であるカプセル材51を備えている。カプセル材51には、一例として、支持塩を含む電解液を収容し、溶媒の一部をあらかじめ電極体収容部15に注入しておいてもよい。カプセル材51は、電池50を電池化させる際に、その表面を破って収容した電解液を容易に電極体収容部15へ注入できる素材を用いている。 As shown in FIG. 5, the battery 50 of the present embodiment includes an encapsulating material 51 that is an electrolytic solution storage unit that stores an electrolytic solution in the injection unit 43. As an example, the encapsulating material 51 may contain an electrolytic solution containing a supporting salt, and a part of the solvent may be injected into the electrode body containing portion 15 in advance. The encapsulant 51 is made of a material that can easily inject the electrolytic solution accommodated by breaking the surface of the battery 50 into the electrode body accommodating portion 15 when the battery 50 is made into a battery.
 具体的にカプセル材51は、ナイロン、ポリプロピレン、ポリイミド、ポリエチレン、ポリアミドイミド、ポリエチレンテレフタラート、ポリエチレンナフタレート、PTEE、PFA、アラミドおよびピーク等を用いることができる。 Specifically, as the encapsulant 51, nylon, polypropylene, polyimide, polyethylene, polyamideimide, polyethylene terephthalate, polyethylene naphthalate, PTEE, PFA, aramid, peak, or the like can be used.
 本実施形態に係る電池50は、上記構成により、第1および第2実施形態に係る電池10および電池40と同様の効果を有することができる。また、本実施形態に係る電池50は、カプセル材51を用いることにより、通路44の閉塞の工程を省くことができ、製造工程を簡略化することができる。 The battery 50 according to the present embodiment can have the same effects as the battery 10 and the battery 40 according to the first and second embodiments by the above configuration. Moreover, the battery 50 according to the present embodiment can omit the step of closing the passage 44 by using the capsule material 51, and can simplify the manufacturing process.
 <4.第4実施形態に係る電池>
 次に、図6を用いて、本技術に係る電池の第4実施形態について説明する。本実施形態に係る電池60は、電極体収容部と注入部との間に通路がない構成以外は、第3実施形態に係る電池50と同一の構成である。このため、共通する構成以外は同一の符号を付して、その説明を省略する。
<4. Battery according to Fourth Embodiment>
Next, a fourth embodiment of the battery according to the present technology will be described with reference to FIG. The battery 60 according to the present embodiment has the same configuration as that of the battery 50 according to the third embodiment, except that there is no passage between the electrode body housing portion and the injection portion. For this reason, the same code | symbol is attached | subjected except the common structure, and the description is abbreviate | omitted.
 図6に示すように、本実施形態の電池60は、電極体収容部55に電極体11およびカプセル材51が隔離されて収容されている。本実施形態では、カプセル材51自体が注入部の役割も担っている。なお、本実施形態のカプセル材51も第3の実施形態のカプセル材51と同様の素材を用いることができる。 As shown in FIG. 6, in the battery 60 of the present embodiment, the electrode body 11 and the capsule material 51 are isolated and accommodated in the electrode body accommodation portion 55. In this embodiment, the capsule material 51 itself also serves as an injection part. It should be noted that the same material as the capsule material 51 of the third embodiment can also be used for the capsule material 51 of the present embodiment.
 本実施形態に係る電池60は、上記構成により、第1から第3実施形態に係る電池10、電池40および電池50と同様の効果を有することができる。また、本実施形態に係る電池50は、カプセル材51を電極体収容部55に隔離して収容することにより、通路44の形成および閉塞の工程が不要となり、製造工程を簡略化することができる。 The battery 60 according to the present embodiment can have the same effects as the battery 10, the battery 40, and the battery 50 according to the first to third embodiments with the above configuration. Further, in the battery 50 according to the present embodiment, by encapsulating the capsule material 51 in the electrode body accommodating portion 55, the process of forming and closing the passage 44 is not necessary, and the manufacturing process can be simplified. .
 <5.電池の製造方法の例>
 次に、図7から図16を用いて、本技術に係る電池の製造方法の例について説明する。なお、本実施形態では、一例として、第2実施形態に係る電池40の製造方法について説明する。
<5. Example of battery manufacturing method>
Next, an example of a method for manufacturing a battery according to the present technology will be described with reference to FIGS. In the present embodiment, as an example, a method for manufacturing the battery 40 according to the second embodiment will be described.
 図7Aは、第2実施形態に係る電池40に用いられる外装体42を示す模式図である。外装体42は、一例として、ラミネート材を使用している。図7Bは、図7AのI-I線で外装体42を切断した断面の断面模式図である。図7Cは、図7AのII-II線で外装体42を切断した断面の断面模式図である。図7Aから図7Cに示すように、外装体42は、注入部43および電極体収容部15が形成された前面部57と後面部58とから形成されている。以下の製造工程で電池40を製造するため、前面部57と後面部58とが重なり合うように、I-I線と平行な折り目によって外装体42を二つ折りに折り曲げておく。 FIG. 7A is a schematic diagram showing an exterior body 42 used in the battery 40 according to the second embodiment. As an example, the exterior body 42 uses a laminate material. FIG. 7B is a schematic cross-sectional view of the cross section obtained by cutting the exterior body 42 along the line II in FIG. 7A. FIG. 7C is a schematic cross-sectional view of a cross section of the exterior body 42 taken along the line II-II in FIG. 7A. As shown in FIGS. 7A to 7C, the exterior body 42 is formed of a front surface portion 57 and a rear surface portion 58 on which the injection portion 43 and the electrode body housing portion 15 are formed. In order to manufacture the battery 40 in the following manufacturing process, the exterior body 42 is folded in half by a fold parallel to the II line so that the front surface portion 57 and the rear surface portion 58 overlap each other.
 (5-1実施例1)
 図8から図12は、第2実施形態に係る電池40の製造方法の実施例1を説明するための断面模式図である。図8から図12を用いて、電池40の製造方法の実施例1について説明する。
(5-1 Example 1)
8 to 12 are schematic cross-sectional views for explaining Example 1 of the method for manufacturing the battery 40 according to the second embodiment. Example 1 of the manufacturing method of the battery 40 will be described with reference to FIGS.
 (通路形成)
 図8に示すように、第1工程において、注入部43と電極体収容部15との間に、注入部43内の電解液収容部に収容された電解液を電極体収容部15へ供給する通路44を形成する。そして、形成した通路44を除く、注入部43と電極体収容部15との間のラミシール部61を熱融着して前面部57と後面部58とを接着させる。
(Passage formation)
As shown in FIG. 8, in the first step, the electrolyte solution stored in the electrolyte solution storage portion in the injection portion 43 is supplied to the electrode body storage portion 15 between the injection portion 43 and the electrode body storage portion 15. A passage 44 is formed. And the lamellar seal part 61 between the injection | pouring part 43 and the electrode body accommodating part 15 except the formed channel | path 44 is heat-seal | fused, and the front-surface part 57 and the rear surface part 58 are adhere | attached.
 (電極体設置)
 図9に示すように、第2工程において、電極タブ16、17を外装体42の外部に突出させた電極体11を電極体収容部15に設置する。そして、前面部57と後面部58とが連接していない側端ラミシール部62(図9の外装体42の左側端部)を熱融着して前面部57と後面部58とを接着させる。
(Electrode assembly)
As shown in FIG. 9, in the second step, the electrode body 11 in which the electrode tabs 16, 17 are protruded outside the exterior body 42 is installed in the electrode body housing portion 15. Then, the front end 57 and the rear surface 58 are bonded together by heat-sealing the side end Lami seal portion 62 (the left end of the exterior body 42 in FIG. 9) where the front surface 57 and the rear surface 58 are not connected.
 (通路の閉塞)
 第3工程において、通路44を閉塞する。具体的には、通路44を加圧および低温加熱で弱く接着したり(閉塞手段1)、通路44に弁を持つ管(栓)を挿入して加圧および加熱で管と外装体42のラミネート材とを接着したり(閉塞手段2)、して通路44を閉塞する。また、通路44に弾性を有する弾性管を挿入し、加圧および加熱で弾性管と外装体42のラミネート材とを接着してから弾性管を圧迫して、通路44を閉塞することもできる(閉塞手段3)。なお、閉塞手段3の通路44に挿入した弾性管の圧迫方法に関しては、後述の実施例2で説明する。
(Blockage of passage)
In the third step, the passage 44 is closed. Specifically, the passage 44 is weakly bonded by pressurization and low-temperature heating (blocking means 1), or a tube (plug) having a valve is inserted into the passage 44 and the tube and the outer body 42 are laminated by pressurization and heating. The passage 44 is closed by bonding the material (blocking means 2). It is also possible to insert an elastic tube having elasticity into the passage 44, adhere the elastic tube and the laminate material of the exterior body 42 by pressurization and heating, and then press the elastic tube to close the passage 44 ( Occlusion means 3). A method for compressing the elastic tube inserted into the passage 44 of the closing means 3 will be described in Example 2 described later.
 (電解液充填)
 図10に示すように、第4工程において、電解液63を注入部43に充填する。なお、第3実施形態に係る電池50または第4実施形態に係る電池60の場合は、電解液63を収容した電解液収容部であるカプセル材51を注入部43に配置する。
(Electrolyte filling)
As shown in FIG. 10, in the fourth step, the electrolytic solution 63 is filled in the injection part 43. Note that, in the case of the battery 50 according to the third embodiment or the battery 60 according to the fourth embodiment, the encapsulating material 51 that is an electrolytic solution storage unit that stores the electrolytic solution 63 is disposed in the injection unit 43.
 (真空封止)
 図11に示すように、第5工程において、前面部57および後面部58の上端ラミシール部64を真空容器内で熱融着して前面部57と後面部58とを真空封止させる。同様に、前面部57および後面部58の下端ラミシール部65を真空容器内で熱融着して前面部57と後面部58とを真空封止させる。
(Vacuum sealing)
As shown in FIG. 11, in the fifth step, the front surface 57 and the upper end Lami seal portion 64 of the rear surface portion 58 are heat-sealed in a vacuum container, and the front surface portion 57 and the rear surface portion 58 are vacuum-sealed. Similarly, the lower end Lami seal portion 65 of the front surface portion 57 and the rear surface portion 58 is heat-sealed in a vacuum container, and the front surface portion 57 and the rear surface portion 58 are vacuum-sealed.
 (電解液注入)
 図12に示すように、第6工程において、注入部43から通路44を介して電極体収容部15へ電解液63を注入する。具体的には、閉塞手段1の場合、注入部43を圧迫して、通路44の弱い接着を破る。また、閉塞手段2の場合、注入部43を圧迫して、通路44に挿入された管内の弁のバネを縮ませて開状態にさせる。なお、第3実施形態または第4実施形態のようにカプセル材51を配置している場合、カプセル材51を圧迫してその表面を破る。そして、電解液63が電極体収容部15へ注入されると、電池化した電池40が完成する。
(Electrolyte injection)
As shown in FIG. 12, in the sixth step, an electrolytic solution 63 is injected from the injection portion 43 into the electrode body storage portion 15 via the passage 44. Specifically, in the case of the closing means 1, the injection part 43 is pressed to break the weak adhesion of the passage 44. Further, in the case of the closing means 2, the injection portion 43 is pressed and the spring of the valve in the pipe inserted into the passage 44 is contracted to be opened. In addition, when the capsule material 51 is arrange | positioned like 3rd Embodiment or 4th Embodiment, the capsule material 51 is pressed and the surface is broken. Then, when the electrolytic solution 63 is injected into the electrode body housing part 15, the battery 40 is completed.
 (5-2実施例2)
 図13から図16は、第2実施形態に係る電池40の製造方法の実施例2を説明するための断面模式図である。図13から図16を用いて、電池40の製造方法の実施例2について説明する。なお、本実施例の第1工程および第2工程は、図8および図9に示す実施例1の第1工程および第2工程と同一である。
(5-2 Example 2)
FIGS. 13 to 16 are schematic cross-sectional views for explaining Example 2 of the method for manufacturing the battery 40 according to the second embodiment. Example 2 of the manufacturing method of the battery 40 will be described with reference to FIGS. 13 to 16. In addition, the 1st process and 2nd process of a present Example are the same as the 1st process and 2nd process of Example 1 shown in FIG. 8 and FIG.
 (通路の閉塞)
 図13A、図14Aおよび図15Aは、狭窄治具を用いて通路を圧迫する方法による電池40の製造方法の例を示す断面模式図である。図13B、図14Bおよび図15Bは、外装体を折り曲げて通路を圧迫する方法による電池40の製造方法の例を示す断面模式図である。図13Aに示すように、第3工程において狭窄治具67を用いる場合、閉塞手段3の通路44に挿入した弾性管を狭窄治具67で圧迫して閉塞する。また、図13Bに示すように、第3工程において外装体42を折り曲げる場合、通路44と交差するIII-III線で外装体42を折り曲げて、閉塞手段3の通路44に挿入した弾性管を閉塞する。
(Blockage of passage)
FIG. 13A, FIG. 14A, and FIG. 15A are schematic cross-sectional views showing an example of a method for manufacturing the battery 40 by a method of compressing a passage using a constriction jig. FIG. 13B, FIG. 14B, and FIG. 15B are schematic cross-sectional views showing an example of a method of manufacturing the battery 40 by a method of bending the exterior body and compressing the passage. As shown in FIG. 13A, when using the constriction jig 67 in the third step, the elastic tube inserted into the passage 44 of the closing means 3 is pressed and closed with the constriction jig 67. Further, as shown in FIG. 13B, when the exterior body 42 is bent in the third step, the exterior body 42 is folded along the line III-III intersecting with the passage 44 to close the elastic tube inserted into the passage 44 of the closing means 3. To do.
 (電解液充填)
 図14Aおよび図14Bに示すように、第4工程において、電解液63を注入部43に充填する。なお、第3実施形態に係る電池50または第4実施形態に係る電池60の場合は、電解液63を収容した電解液収容部であるカプセル材51を注入部43に配置する。
(Electrolyte filling)
As shown in FIG. 14A and FIG. 14B, in the fourth step, the electrolyte solution 63 is filled in the injection part 43. Note that, in the case of the battery 50 according to the third embodiment or the battery 60 according to the fourth embodiment, the encapsulating material 51 that is an electrolytic solution storage unit that stores the electrolytic solution 63 is disposed in the injection unit 43.
 (真空封止)
 図15Aおよび図15Bに示すように、第5工程において、前面部57および後面部58の上端ラミシール部64を真空容器内で熱融着して前面部57と後面部58とを真空封止させる。同様に、前面部57および後面部58の下端ラミシール部65を真空容器内で熱融着して前面部57と後面部58とを真空封止させる。
(Vacuum sealing)
As shown in FIG. 15A and FIG. 15B, in the fifth step, the front surface 57 and the upper end Lami seal portion 64 of the rear surface portion 58 are heat-sealed in a vacuum container to seal the front surface portion 57 and the rear surface portion 58 in a vacuum. . Similarly, the lower end Lami seal portion 65 of the front surface portion 57 and the rear surface portion 58 is heat-sealed in a vacuum container, and the front surface portion 57 and the rear surface portion 58 are vacuum-sealed.
 (電解液注入)
 図16に示すように、第6工程において、注入部43から通路44を介して電極体収容部15へ電解液63を注入する。具体的には、狭窄治具67を通路44から外すか、または、外装体42のIII-III線での折り曲げを元の位置まで戻し、注入部43から通路44を介して電極体収容部15へ電解液63を注入する。そして、電解液63が電極体収容部15へ注入されると、電池化した電池40が完成する。
(Electrolyte injection)
As shown in FIG. 16, in the sixth step, an electrolytic solution 63 is injected from the injection portion 43 into the electrode body storage portion 15 via the passage 44. Specifically, the constriction jig 67 is removed from the passage 44, or the folding of the exterior body 42 along the line III-III is returned to the original position, and the electrode body housing portion 15 is passed from the injection portion 43 via the passage 44. An electrolytic solution 63 is injected into the base. Then, when the electrolytic solution 63 is injected into the electrode body housing part 15, the battery 40 is completed.
 本技術に係る電池の製造方法は、正極と負極との間にセパレータを配置した電極体を組み立てる組立工程と、組立工程後に、電解液を注入する注入部を形成する注入部形成工程と、注入部形成工程後に、電極体を収容する電極体収容部を有する外装体で電極体を封止する封止工程と、を一つのサイト(工場等)で実施することができる。その後、封止された電極体に電解液を供給する供給工程を他のサイトで実施することができる。 The battery manufacturing method according to the present technology includes an assembly step of assembling an electrode body in which a separator is disposed between a positive electrode and a negative electrode, an injection portion forming step of forming an injection portion for injecting an electrolytic solution after the assembly step, After the part forming step, a sealing step of sealing the electrode body with an exterior body having an electrode body housing portion that houses the electrode body can be performed at one site (a factory or the like). Then, the supply process which supplies electrolyte solution to the sealed electrode body can be implemented in another site.
 なお、第1から第4実施形態に係る電池では、一例として、ラミネート型電池への適用例を説明しているが、本技術はこれに限定されるものではなく、例えば、円筒形電池へ適用する等の変形実施形態にも広く適用が可能である。 In the batteries according to the first to fourth embodiments, an example of application to a laminate type battery has been described as an example. However, the present technology is not limited to this example, and is applied to, for example, a cylindrical battery. It can be widely applied to modified embodiments such as.
 <6.第5実施形態(電子機器の例)>
 [6-1.電子機器]
 本技術に係る第5実施形態の電子機器の例は、本技術に係る第1から第4実施形態の電池を電力供給源として備える。
<6. Fifth Embodiment (Example of Electronic Device)>
[6-1. Electronics]
The example of the electronic device according to the fifth embodiment of the present technology includes the battery according to the first to fourth embodiments according to the present technology as a power supply source.
 本技術に係る第5実施形態の電子機器が備える電池は、上記で述べたとおりであり、図1~図6に示される第1から第4実施形態の電池である。したがって、ここでは、電池の説明は省略する。 The battery provided in the electronic device of the fifth embodiment according to the present technology is as described above, and is the battery of the first to fourth embodiments shown in FIGS. 1 to 6. Therefore, description of the battery is omitted here.
 [6-2.電子機器の具体例]
 また、本技術に係る第5実施形態の電子機器としては、例えばノート型パソコン、PDA(携帯情報端末)、携帯電話、コードレスフォン子機、ビデオムービー、デジタルスチルカメラ、電子書籍、電子辞書、音楽プレイヤー、ラジオ、ヘッドホン、ゲーム機、ナビゲーションシステム、メモリーカード、ペースメーカー、補聴器、電動工具、電気シェーバー、冷蔵庫、 エアコン、テレビ、ステレオ、温水器、電子レンジ、食器洗い器、洗濯機、乾燥器、照明機器、玩具、医療機器、ロボット、ロードコンディショナー、信号機等が挙げられる。
[6-2. Specific examples of electronic devices]
In addition, examples of the electronic device according to the fifth embodiment of the present technology include, for example, a notebook personal computer, a PDA (personal digital assistant), a mobile phone, a cordless phone, a video movie, a digital still camera, an electronic book, an electronic dictionary, and music. Player, radio, headphones, game console, navigation system, memory card, pacemaker, hearing aid, electric tool, electric shaver, refrigerator, air conditioner, TV, stereo, water heater, microwave oven, dishwasher, washing machine, dryer, lighting equipment , Toys, medical equipment, robots, road conditioners, traffic lights and the like.
 <7.第6実施形態(電動車両の構成例)>
 本技術に係る第1から第4実施形態の電池は、本技術に係る第6実施形態の電動車両に電力を供給するために使用することができる。本技術に係る第6実施形態の電動車両の例は、本技術に係る第1から第4実施形態の記載の電池を収容した電池パックと、電池パックから供給された電力を駆動力に変換する変換部と、駆動力に応じて駆動する駆動部と、電池パックの使用状態を制御する制御部と、を備える。電動車両としては鉄道車両、ゴルフカート、電動カート、電気自動車(ハイブリッド自動車を含む)等が挙げられ、これらの駆動用電源または補助用電源として用いられる。
<7. Sixth Embodiment (Configuration Example of Electric Vehicle)>
The batteries of the first to fourth embodiments according to the present technology can be used to supply electric power to the electric vehicle according to the sixth embodiment of the present technology. The example of the electric vehicle according to the sixth embodiment of the present technology converts the battery pack that houses the battery according to the first to fourth embodiments according to the present technology and the electric power supplied from the battery pack into driving force. A conversion unit, a drive unit that is driven according to the driving force, and a control unit that controls the usage state of the battery pack are provided. Examples of the electric vehicle include a railway vehicle, a golf cart, an electric cart, an electric vehicle (including a hybrid vehicle), and the like, and are used as a driving power source or an auxiliary power source.
 図17は、電動車両の一例であるハイブリッド自動車のブロック構成を表している。この電動車両は、例えば、金属製の筐体71の内部に、制御部72と、エンジン73と、電池パック901と、駆動用のモータ74と、差動装置75と、発電機76と、トランスミッション80およびクラッチ81と、インバータ82,83と、各種センサ84とを備えている。この他、電動車両は、例えば、差動装置75およびトランスミッション80に接続された前輪用駆動軸85および前輪86と、後輪用駆動軸87および後輪88とを備える。 FIG. 17 shows a block configuration of a hybrid vehicle which is an example of an electric vehicle. This electric vehicle includes, for example, a control unit 72, an engine 73, a battery pack 901, a driving motor 74, a differential device 75, a generator 76, and a transmission in a metal casing 71. 80, a clutch 81, inverters 82 and 83, and various sensors 84 are provided. In addition, the electric vehicle includes, for example, a front wheel drive shaft 85 and a front wheel 86 connected to the differential device 75 and the transmission 80, and a rear wheel drive shaft 87 and a rear wheel 88.
 この電動車両は、例えば、エンジン73またはモータ74のいずれか一方を駆動源として走行可能である。エンジン73は、主要な動力源であり、例えば、ガソリンエンジンなどである。エンジン73を動力源とする場合、そのエンジン73の駆動力(回転力)は、例えば、駆動部である差動装置75、トランスミッション80およびクラッチ81を介して前輪86または後輪88に伝達される。なお、エンジン73の回転力は発電機76にも伝達され、その回転力を利用して発電機76が交流電力を発生させると共に、その交流電力はインバータ83を介して直流電力に変換され、電池パック901に蓄積される。一方、変換部であるモータ74を動力源とする場合、電池パック901から供給された電力(直流電力)がインバータ82を介して交流電力に変換され、その交流電力を利用してモータ74が駆動する。このモータ74により電力から変換された駆動力(回転力)は、例えば、駆動部である差動装置75、トランスミッション80およびクラッチ81を介して前輪86または後輪88に伝達される。 This electric vehicle can run using, for example, either the engine 73 or the motor 74 as a drive source. The engine 73 is a main power source, for example, a gasoline engine. When the engine 73 is used as a power source, the driving force (rotational force) of the engine 73 is transmitted to the front wheels 86 or the rear wheels 88 via, for example, a differential device 75, a transmission 80, and a clutch 81, which are driving units. . The rotational force of the engine 73 is also transmitted to the generator 76, and the generator 76 generates AC power using the rotational force. The AC power is converted into DC power via the inverter 83, and the battery Accumulated in the pack 901. On the other hand, when the motor 74 which is a conversion unit is used as a power source, the power (DC power) supplied from the battery pack 901 is converted into AC power via the inverter 82, and the motor 74 is driven using the AC power. To do. The driving force (rotational force) converted from electric power by the motor 74 is transmitted to the front wheels 86 or the rear wheels 88 via, for example, a differential device 75, a transmission 80, and a clutch 81, which are driving units.
 なお、図示しない制動機構を介して電動車両が減速すると、その減速時の抵抗力がモータ74に回転力として伝達され、その回転力を利用してモータ74が交流電力を発生させるようにしてもよい。この交流電力はインバータ82を介して直流電力に変換され、その直流回生電力は電池パック901に蓄積されることが好ましい。 When the electric vehicle decelerates via a braking mechanism (not shown), the resistance force at the time of deceleration is transmitted as a rotational force to the motor 74, and the motor 74 generates AC power using the rotational force. Good. This AC power is preferably converted into DC power via the inverter 82, and the DC regenerative power is preferably stored in the battery pack 901.
 制御部72は、電動車両全体の動作を制御するものであり、例えば、CPUなどを含んでいる。電池パック901は、外部電源と接続され、その外部電源から電力供給を受けることで電力を蓄積可能になっていてもよい。各種センサ84は、例えば、エンジン73の回転数を制御したり、図示しないスロットルバルブの開度(スロットル開度)を制御したり、するために用いられる。この各種センサ84は、例えば、速度センサ、加速度センサ、エンジン回転数センサなどを含んでいる。 The control unit 72 controls the operation of the entire electric vehicle, and includes, for example, a CPU. The battery pack 901 may be connected to an external power source and be able to store power by receiving power supply from the external power source. The various sensors 84 are used, for example, to control the rotational speed of the engine 73 or to control the opening of a throttle valve (throttle opening) (not shown). The various sensors 84 include, for example, a speed sensor, an acceleration sensor, an engine speed sensor, and the like.
 そして、電池パック901としては、図1~図6に示す第1から第4実施形態の電池を適用することができる。このため、ここでは、電池パックの説明は省略する。なお、電動車両がハイブリッド自動車である場合について説明したが、その電動車両は、エンジン73を用いずに電池パック901およびモータ74だけを用いて作動する車両(電気自動車)であってもよい。 As the battery pack 901, the batteries of the first to fourth embodiments shown in FIGS. 1 to 6 can be applied. For this reason, description of a battery pack is abbreviate | omitted here. Although the case where the electric vehicle is a hybrid vehicle has been described, the electric vehicle may be a vehicle (electric vehicle) that operates using only the battery pack 901 and the motor 74 without using the engine 73.
 <8.第7実施形態(電力貯蔵システムの構成例)>
 本技術に係る第1から第4実施形態の電池は、本技術に係る第7実施形態の電力貯蔵システムのための電力貯蔵用電源としても適用可能である。本技術に係る第7実施形態の電力貯蔵システムの例は、本技術に係る第1から第4実施形態の電池を収容した電池パックと、電池パックから電力が供給される1または2以上の電子機器と、電池パックからの電子機器に対する電力供給を制御する制御部と、を備える。
<8. Seventh Embodiment (Configuration Example of Power Storage System)>
The batteries of the first to fourth embodiments according to the present technology are also applicable as power storage power sources for the power storage system of the seventh embodiment according to the present technology. An example of the power storage system of the seventh embodiment according to the present technology includes a battery pack that accommodates the batteries of the first to fourth embodiments according to the present technology, and one or more electrons that are supplied with power from the battery pack. A device and a control unit for controlling power supply from the battery pack to the electronic device.
 図18は、電力貯蔵システムのブロック構成を表している。この電力貯蔵システムは、例えば、一般住宅および商業用ビルなどの家屋90の内部に、電池パック1001と、制御部91と、スマートメータ92と、パワーハブ93とを備える。 FIG. 18 shows a block configuration of the power storage system. This power storage system includes, for example, a battery pack 1001, a control unit 91, a smart meter 92, and a power hub 93 in a house 90 such as a general house and a commercial building.
 電池パック1001は、例えば、家屋90の内部に設置された電子機器94に接続されていると共に、家屋90の外部に停車された電動車両96に接続可能になっている。また、電池パック1001は、例えば、家屋90に設置された自家発電機95にパワーハブ93を介して接続されていると共に、スマートメータ92およびパワーハブ93を介して外部の集中型電力系統97に接続可能になっている。電池パック1001としては、図1~図6に示す第1から第4実施形態の電池を適用することができる。このため、ここでは、電池パックの説明は省略する。 The battery pack 1001 is connected to, for example, an electronic device 94 installed inside the house 90 and can be connected to an electric vehicle 96 stopped outside the house 90. The battery pack 1001 is connected to, for example, a private generator 95 installed in the house 90 via a power hub 93 and can be connected to an external centralized power system 97 via a smart meter 92 and the power hub 93. It has become. As the battery pack 1001, the batteries of the first to fourth embodiments shown in FIGS. 1 to 6 can be applied. For this reason, description of a battery pack is abbreviate | omitted here.
 なお、電子機器94は、例えば、1または2以上の家電製品を含んでおり、その家電製品は、例えば、冷蔵庫、エアコン、テレビおよび給湯器などである。自家発電機95は、例えば、太陽光発電機および風力発電機などのいずれか1種類または2種類以上である。電動車両96は、例えば、電気自動車、電気バイクおよびハイブリッド自動車などの1種類または2種類以上である。集中型電力系統97は、例えば、火力発電所、原子力発電所、水力発電所および風力発電所などの1種類または2種類以上である。 Note that the electronic device 94 includes, for example, one or more home appliances, and the home appliances are, for example, a refrigerator, an air conditioner, a television, and a water heater. The private power generator 95 is, for example, any one type or two or more types such as a solar power generator and a wind power generator. The electric vehicle 96 is, for example, one type or two or more types such as an electric vehicle, an electric motorcycle, and a hybrid vehicle. The centralized electric power system 97 is, for example, one type or two or more types such as a thermal power plant, a nuclear power plant, a hydroelectric power plant, and a wind power plant.
 制御部91は、電力貯蔵システム全体の動作(電池パック1001の使用状態を含む)を制御するものであり、例えば、CPUなどを含んでいる。スマートメータ92は、例えば、電力需要者の家屋90に設置されるネットワーク対応型の電力計であり、電力供給者と通信可能になっている。これに伴い、スマートメータ92は、例えば、外部と通信しながら、家屋90における需要・供給のバランスを制御することで、効率的で安定したエネルギー供給を可能とする。 The control unit 91 controls the operation of the entire power storage system (including the usage state of the battery pack 1001), and includes, for example, a CPU. The smart meter 92 is, for example, a network-compatible power meter installed in a house 90 of a power consumer, and can communicate with a power supplier. Accordingly, the smart meter 92 enables efficient and stable energy supply by controlling the balance between supply and demand in the house 90 while communicating with the outside, for example.
 この電力貯蔵システムでは、例えば、外部電源である集中型電力系統97からスマートメータ92およびパワーハブ93を介して電池パック1001に電力が蓄積されると共に、独立電源である太陽光発電機95からパワーハブ93を介して電池パック1001に電力が蓄積される。この電池パック1001に蓄積された電力は、制御部91の指示に応じて電子機器94および電動車両96に供給されるため、その電子機器94が稼働可能になると共に、電動車両96が充電可能になる。すなわち、電力貯蔵システムは、電池パック1001を用いて、家屋90内における電力の蓄積および供給を可能にするシステムである。 In this power storage system, for example, power is accumulated in the battery pack 1001 from the centralized power system 97 that is an external power source via the smart meter 92 and the power hub 93, and from the solar power generator 95 that is an independent power source. Electric power is accumulated in the battery pack 1001 via the. Since the electric power stored in the battery pack 1001 is supplied to the electronic device 94 and the electric vehicle 96 in accordance with an instruction from the control unit 91, the electronic device 94 can be operated and the electric vehicle 96 can be charged. Become. That is, the power storage system is a system that enables accumulation and supply of power in the house 90 using the battery pack 1001.
 電池パック1001に蓄積された電力は、任意に利用可能である。このため、例えば、電気使用量が安い深夜において集中型電力系統97から電池パック1001に電力を蓄積しておき、その電池パック1001に蓄積しておいた電力を電気使用量が高い日中に用いることができる。 The power stored in the battery pack 1001 can be used arbitrarily. For this reason, for example, power is stored in the battery pack 1001 from the centralized power system 97 at midnight when the amount of electricity used is low, and the power stored in the battery pack 1001 is used during the day when the amount of electricity used is high. be able to.
 なお、上記した電力貯蔵システムは、1戸(1世帯)ごとに設置されていてもよいし、複数戸(複数世帯)ごとに設置されていてもよい。 The power storage system described above may be installed for each house (one household), or may be installed for each of a plurality of houses (multiple households).
 <9.第8実施形態(電動工具の構成例)>
 本技術に係る第1から第4実施形態の電池は、本技術に係る第8実施形態の電動工具のための電源として適用可能である。本技術に係る第8実施形態の電動工具の例は、本技術に係る第1から第4実施形態の電池を収容した電池パックと、該電池パックから電力が供給される可動部と、を備える。前記電動工具としては、電動ドリル、電動のこぎり、ランマーなどの転圧機、芝刈り機などの電動農機具などが挙げられる。
<9. Eighth Embodiment (Configuration Example of Electric Tool)>
The batteries of the first to fourth embodiments according to the present technology are applicable as a power source for the electric tool of the eighth embodiment according to the present technology. An example of the electric power tool of the eighth embodiment according to the present technology includes a battery pack that accommodates the batteries of the first to fourth embodiments according to the present technology, and a movable portion that is supplied with electric power from the battery pack. . Examples of the electric tool include an electric drill, an electric saw, a rolling machine such as a rammer, and an electric farm equipment such as a lawn mower.
 図19は、電動工具のブロック構成を表している。この電動工具は、例えば、電動ドリルであり、プラスチック材料などにより形成された工具本体98の内部に、制御部99と、電池パック1101とを備えている。この工具本体98には、例えば、可動部であるドリル部110が稼働(回転)可能に取り付けられている。 FIG. 19 shows a block configuration of the electric tool. This electric tool is, for example, an electric drill, and includes a control unit 99 and a battery pack 1101 inside a tool main body 98 formed of a plastic material or the like. For example, a drill part 110 which is a movable part is attached to the tool body 98 so as to be operable (rotatable).
 制御部99は、電動工具全体の動作(電源1101の使用状態を含む)を制御するものであり、例えば、CPUなどを含んでいる。この制御部99は、図示しない動作スイッチの操作に応じて、電池パック1101からドリル部110に電力を供給するようになっている。
 電池パック1101は、図1~図6に示す第1から第4実施形態の電池を適用することができる。このため、ここでは、電池パックの説明は省略する。
The control unit 99 controls the operation of the entire power tool (including the usage state of the power supply 1101), and includes, for example, a CPU. The control unit 99 supplies power from the battery pack 1101 to the drill unit 110 in response to an operation switch (not shown).
As the battery pack 1101, the batteries of the first to fourth embodiments shown in FIGS. 1 to 6 can be applied. For this reason, description of a battery pack is abbreviate | omitted here.
 なお、本技術は、以下のような構成も取ることができる。
(1)
 正極と負極と該正極および該負極の間に配置されたセパレータとを有する電極体と、
 前記電極体を収容する電極体収容部を有する外装体と、
 前記電極体収容部に電解液を注入する注入部と、を備え、
 前記注入部は、前記電極体収容部と隔離されている電池の半製品。
(2)
 (1)に記載の電池の半製品と、
 溶媒および電解質で構成される電解液と、を備えた電池。
(3)
 前記溶媒の一部が、あらかじめ前記電極体収容部に注入されている(2)に記載の電池。
(4)
 前記注入部は、前記外装体に取り付けられた細管と、該細管の先端部に接合された弁と、を有する(2)又は(3)に記載の電池。
(5)
 前記注入部は、前記電解液を収容する電解液収容部を有する(2)から(4)のいずれか1つに記載の電池。
(6)
 前記電解液収容部と前記電極体収容部との間には、前記電解液収容部に収容された電解液を前記電極体収容部へ供給する通路が形成されている(5)に記載の電池。
(7)
 前記電解液収容部は、カプセル材で形成されている(5)又は(6)に記載の電池。
(8)
 正極と負極とセパレータとを有し外装体で封止された電極体に、電解液を供給する供給工程を含む電池の製造方法。
(9)
 正極と負極との間にセパレータを配置した電極体を組み立てる組立工程と、
 前記組立工程後に、電解液を注入する注入部を形成する注入部形成工程と、
 前記注入部形成工程後に、前記電極体を収容する電極体収容部を有する外装体で前記電極体を封止する封止工程と、をさらに含み、
 前記封止工程後に、前記供給工程を行う(8)に記載の電池の製造方法。
(10)
 前記注入部形成工程は、先端部に弁が接合された細管を前記外装体に取り付け、前記細管の後端部を前記電極体収容部に差し込む工程を含み、
 前記供給工程は、前記弁を開放して前記細管の先端部から前記電解液を注入した後に、前記弁を閉じる工程を含む、(9)に記載の電池の製造方法。
(11)
 前記注入部形成工程は、前記電解液を収容する電解液収容部を形成する工程を含む(9)又は(10)に記載の電池の製造方法。
(12)
 前記注入部形成工程は、前記電解液収容部と前記電極体収容部との間に、前記電解液収容部に収容された電解液を前記電極体収容部へ供給する通路を形成する工程を含む(11)に記載の電池の製造方法。
(13)
 前記注入部形成工程は、前記電解液収容部をカプセル材で形成する工程を含み、
 前記供給工程は、前記カプセル材を破って前記電解液を前記電極体に供給する工程を含む、(11)又は(12)に記載の電池の製造方法。
(14)
 前記封止工程は、前記注入部と前記電極体収容部とを空間的に隔離した状態で封止する工程を含み、
 前記供給工程は、前記隔離した状態を解除する工程を含む、(9)から(13)のいずれか1つに記載の電池の製造方法。
(15)
 前記供給工程後に、電解液を再び供給する再供給工程をさらに含む(8)から(14)のいずれか1つに記載の電池の製造方法。
(16)
 (2)から(7)のいずれか1つに記載の電池を少なくとも一以上含み、
 該電池を収容する外装ケース
を備える電池パック。
(17)
 (2)から(7)のいずれか1つに記載の電池を電力供給源として備える電子機器。
(18)
 (2)から(7)のいずれか1つに記載の電池から供給された電力を駆動力に変換する変換部と、
 該駆動力に応じて駆動する駆動部と、
 該電池の使用状態を制御する制御部と、
を備える車両。
(19)
 (2)から(7)のいずれか1つに記載の電池から電力が供給される可動部を備える電動工具。
(20)
 (2)から(7)のいずれか1つに記載の電池から電力が供給される1または2以上の電子機器と、
 該電池からの該電子機器に対する電力供給を制御する制御部と、
を備える電力貯蔵システム。
In addition, this technique can also take the following structures.
(1)
An electrode body having a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode;
An exterior body having an electrode body housing portion for housing the electrode body;
An injection part for injecting an electrolytic solution into the electrode body housing part,
The injection part is a semi-finished battery product which is isolated from the electrode body housing part.
(2)
A semi-finished battery product according to (1);
A battery comprising: an electrolyte solution comprising a solvent and an electrolyte.
(3)
The battery according to (2), wherein a part of the solvent is previously injected into the electrode body housing portion.
(4)
The battery according to (2) or (3), wherein the injection portion includes a thin tube attached to the exterior body and a valve joined to a tip portion of the thin tube.
(5)
The battery according to any one of (2) to (4), wherein the injection unit includes an electrolyte solution storage unit that stores the electrolyte solution.
(6)
The battery according to (5), wherein a passage for supplying the electrolytic solution stored in the electrolytic solution storage unit to the electrode body storage unit is formed between the electrolytic solution storage unit and the electrode body storage unit. .
(7)
The battery according to (5) or (6), wherein the electrolyte container is formed of a capsule material.
(8)
A battery manufacturing method including a supplying step of supplying an electrolytic solution to an electrode body having a positive electrode, a negative electrode, and a separator and sealed with an exterior body.
(9)
An assembly process for assembling an electrode body in which a separator is disposed between the positive electrode and the negative electrode;
After the assembly process, an injection part forming process for forming an injection part for injecting an electrolyte solution;
A sealing step of sealing the electrode body with an exterior body having an electrode body housing portion for housing the electrode body after the injection portion forming step;
The battery manufacturing method according to (8), wherein the supplying step is performed after the sealing step.
(10)
The injection portion forming step includes a step of attaching a thin tube having a valve joined to a tip portion to the exterior body, and inserting a rear end portion of the thin tube into the electrode body housing portion,
The method of manufacturing a battery according to (9), wherein the supplying step includes a step of closing the valve after opening the valve and injecting the electrolyte from the tip of the thin tube.
(11)
The said injection part formation process is a manufacturing method of the battery as described in (9) or (10) including the process of forming the electrolyte solution accommodating part which accommodates the said electrolyte solution.
(12)
The injection portion forming step includes a step of forming a passage for supplying the electrolyte solution stored in the electrolyte solution storage portion to the electrode body storage portion between the electrolyte solution storage portion and the electrode body storage portion. (11) The manufacturing method of the battery as described in.
(13)
The injection portion forming step includes a step of forming the electrolyte solution storage portion with a capsule material,
The battery supplying method according to (11) or (12), wherein the supplying step includes a step of breaking the capsule material and supplying the electrolyte solution to the electrode body.
(14)
The sealing step includes a step of sealing the injection portion and the electrode body housing portion in a spatially separated state,
The battery supplying method according to any one of (9) to (13), wherein the supplying step includes a step of releasing the isolated state.
(15)
The method for manufacturing a battery according to any one of (8) to (14), further including a resupply step of supplying the electrolytic solution again after the supply step.
(16)
Including at least one battery according to any one of (2) to (7),
A battery pack comprising an outer case for housing the battery.
(17)
An electronic device comprising the battery according to any one of (2) to (7) as a power supply source.
(18)
A converter that converts the power supplied from the battery according to any one of (2) to (7) into a driving force;
A drive unit that is driven according to the drive force;
A control unit for controlling the use state of the battery;
A vehicle comprising:
(19)
An electric tool provided with a movable part to which electric power is supplied from the battery according to any one of (2) to (7).
(20)
(1) two or more electronic devices to which power is supplied from the battery according to any one of (2) to (7);
A control unit for controlling power supply from the battery to the electronic device;
A power storage system comprising:
10、40、50、60 電池(電池の半製品)
11、30 電極体
12、42、57、58 外装体
13 細管
14 弁
15、55 電極体収容部
16、17 電極タブ
18、48、53、61、62、64、65 ラミシール部
24 コイルスプリング
25 ボール(鉄球)
26 開閉弁
33 正極
33A 正極集電体
33B 正極活物質層
34 負極
34A 負極集電体
34B 負極活物質層
35 セパレータ
36 電解液保持層
37 保護テープ
39 絶縁層
43 注入部
44 通路
51 カプセル材(電解液収容部)
63 電解液
66 矢印
67 狭窄治具
71 筐体
72 制御部
73 エンジン
74 モータ
75 差動装置
76 発電機
80 トランスミッション
81 クラッチ
82、83 インバータ
84 各種センサ
85 前輪用駆動軸
86 前輪
87 後輪用駆動軸
88 後輪
90 家屋
91 制御部
92 スマートメータ
93 パワーハブ
94 電子機器
95 自家発電機
96 電動車両
97 集中型電力系統
98 工具本体
99 制御部
110 ドリル部
901、1001、1101 電池パック
10, 40, 50, 60 Battery (Battery semi-finished product)
DESCRIPTION OF SYMBOLS 11, 30 Electrode body 12, 42, 57, 58 Exterior body 13 Narrow tube 14 Valve 15, 55 Electrode body accommodating part 16, 17 Electrode tab 18, 48, 53, 61, 62, 64, 65 Lamy seal part 24 Coil spring 25 Ball (Iron ball)
26 On-off valve 33 Positive electrode 33A Positive electrode current collector 33B Positive electrode active material layer 34 Negative electrode 34A Negative electrode current collector 34B Negative electrode active material layer 35 Separator 36 Electrolytic solution holding layer 37 Protective tape 39 Insulating layer 43 Injection portion 44 Passage 51 Capsule material (electrolysis Liquid storage part)
63 Electrolyte 66 Arrow 67 Narrowing jig 71 Case 72 Controller 73 Engine 74 Motor 75 Differential device 76 Generator 80 Transmission 81 Clutch 82, 83 Inverter 84 Various sensors 85 Front wheel drive shaft 86 Front wheel 87 Rear wheel drive shaft 88 Rear wheel 90 House 91 Control unit 92 Smart meter 93 Power hub 94 Electronic device 95 Private generator 96 Electric vehicle 97 Centralized power system 98 Tool body 99 Control unit 110 Drill unit 901, 1001, 1101 Battery pack

Claims (20)

  1.  正極と負極と該正極および該負極の間に配置されたセパレータとを有する電極体と、
     前記電極体を収容する電極体収容部を有する外装体と、
     前記電極体収容部に電解液を注入する注入部と、を備え、
     前記注入部は、前記電極体収容部と隔離されている電池の半製品。
    An electrode body having a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode;
    An exterior body having an electrode body housing portion for housing the electrode body;
    An injection part for injecting an electrolytic solution into the electrode body housing part,
    The injection part is a semi-finished battery product which is isolated from the electrode body housing part.
  2.  請求項1に記載の電池の半製品と、
     溶媒および電解質で構成される電解液と、を備えた電池。
    A semi-finished battery product according to claim 1;
    A battery comprising: an electrolyte solution comprising a solvent and an electrolyte.
  3.  前記溶媒の一部が、あらかじめ前記電極体収容部に注入されている請求項2に記載の電池。 The battery according to claim 2, wherein a part of the solvent is previously injected into the electrode body housing portion.
  4.  前記注入部は、前記外装体に取り付けられた細管と、該細管の先端部に接合された弁と、を有する請求項2に記載の電池。 The battery according to claim 2, wherein the injection part includes a thin tube attached to the exterior body and a valve joined to a tip of the thin tube.
  5.  前記注入部は、前記電解液を収容する電解液収容部を有する請求項2に記載の電池。 The battery according to claim 2, wherein the injection part has an electrolyte solution storage part for storing the electrolyte solution.
  6.  前記電解液収容部と前記電極体収容部との間には、前記電解液収容部に収容された電解液を前記電極体収容部へ供給する通路が形成されている請求項5に記載の電池。 6. The battery according to claim 5, wherein a passage is formed between the electrolyte solution storage unit and the electrode body storage unit to supply the electrolyte solution stored in the electrolyte solution storage unit to the electrode body storage unit. .
  7.  前記電解液収容部は、カプセル材で形成されている請求項5に記載の電池。 The battery according to claim 5, wherein the electrolyte container is formed of a capsule material.
  8.  正極と負極とセパレータとを有し外装体で封止された電極体に、電解液を供給する供給工程を含む電池の製造方法。 A battery manufacturing method including a supplying step of supplying an electrolytic solution to an electrode body having a positive electrode, a negative electrode, and a separator and sealed with an exterior body.
  9.  正極と負極との間にセパレータを配置した電極体を組み立てる組立工程と、
     前記組立工程後に、電解液を注入する注入部を形成する注入部形成工程と、
     前記注入部形成工程後に、前記電極体を収容する電極体収容部を有する外装体で前記電極体を封止する封止工程と、をさらに含み、
     前記封止工程後に、前記供給工程を行う請求項8に記載の電池の製造方法。
    An assembly process for assembling an electrode body in which a separator is disposed between the positive electrode and the negative electrode;
    After the assembly process, an injection part forming process for forming an injection part for injecting an electrolyte solution;
    A sealing step of sealing the electrode body with an exterior body having an electrode body housing portion for housing the electrode body after the injection portion forming step;
    The battery manufacturing method according to claim 8, wherein the supplying step is performed after the sealing step.
  10.  前記注入部形成工程は、先端部に弁が接合された細管を前記外装体に取り付け、前記細管の後端部を前記電極体収容部に差し込む工程を含み、
     前記供給工程は、前記弁を開放して前記細管の先端部から前記電解液を注入した後に、前記弁を閉じる工程を含む、請求項9に記載の電池の製造方法。
    The injection portion forming step includes a step of attaching a thin tube having a valve joined to a tip portion to the exterior body, and inserting a rear end portion of the thin tube into the electrode body housing portion,
    The method of manufacturing a battery according to claim 9, wherein the supplying step includes a step of closing the valve after opening the valve and injecting the electrolyte from the tip of the thin tube.
  11.  前記注入部形成工程は、前記電解液を収容する電解液収容部を形成する工程を含む請求項9に記載の電池の製造方法。 The method for manufacturing a battery according to claim 9, wherein the injection portion forming step includes a step of forming an electrolyte solution storage portion for storing the electrolyte solution.
  12.  前記注入部形成工程は、前記電解液収容部と前記電極体収容部との間に、前記電解液収容部に収容された電解液を前記電極体収容部へ供給する通路を形成する工程を含む請求項11に記載の電池の製造方法。 The injection portion forming step includes a step of forming a passage for supplying the electrolyte solution stored in the electrolyte solution storage portion to the electrode body storage portion between the electrolyte solution storage portion and the electrode body storage portion. The method for producing a battery according to claim 11.
  13.  前記注入部形成工程は、前記電解液収容部をカプセル材で形成する工程を含み、
     前記供給工程は、前記カプセル材を破って前記電解液を前記電極体に供給する工程を含む、請求項11に記載の電池の製造方法。
    The injection portion forming step includes a step of forming the electrolyte solution storage portion with a capsule material,
    The method for manufacturing a battery according to claim 11, wherein the supplying step includes a step of breaking the capsule material and supplying the electrolytic solution to the electrode body.
  14.  前記封止工程は、前記注入部と前記電極体収容部とを空間的に隔離した状態で封止する工程を含み、
     前記供給工程は、前記隔離した状態を解除する工程を含む、請求項9に記載の電池の製造方法。
    The sealing step includes a step of sealing the injection portion and the electrode body housing portion in a spatially separated state,
    The battery manufacturing method according to claim 9, wherein the supplying step includes a step of releasing the isolated state.
  15.  前記供給工程後に、電解液を再び供給する再供給工程をさらに含む請求項8に記載の電池の製造方法。 The battery manufacturing method according to claim 8, further comprising a resupply step of supplying the electrolyte solution again after the supplying step.
  16.  請求項2に記載の電池を少なくとも一以上含み、
     該電池を収容する外装ケース
    を備える電池パック。
    Including at least one battery according to claim 2,
    A battery pack comprising an outer case for housing the battery.
  17.  請求項2に記載の電池を電力供給源として備える電子機器。 Electronic equipment comprising the battery according to claim 2 as a power supply source.
  18.  請求項2に記載の電池から供給された電力を駆動力に変換する変換部と、
     該駆動力に応じて駆動する駆動部と、
     該電池の使用状態を制御する制御部と、
    を備える車両。
    A converter that converts electric power supplied from the battery according to claim 2 into driving force;
    A drive unit that is driven according to the drive force;
    A control unit for controlling the use state of the battery;
    A vehicle comprising:
  19.  請求項2に記載の電池から電力が供給される可動部を備える電動工具。 An electric tool including a movable part to which electric power is supplied from the battery according to claim 2.
  20.  請求項2に記載の電池から電力が供給される1または2以上の電子機器と、
     該電池からの該電子機器に対する電力供給を制御する制御部と、
    を備える電力貯蔵システム。
    One or more electronic devices to which power is supplied from the battery according to claim 2;
    A control unit for controlling power supply from the battery to the electronic device;
    A power storage system comprising:
PCT/JP2018/018472 2017-05-18 2018-05-14 Battery semi-fabricated product, battery, battery manufacturing method, battery pack, electronic device, vehicle, power tool, and power storage system WO2018212121A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017099289 2017-05-18
JP2017-099289 2017-05-18

Publications (1)

Publication Number Publication Date
WO2018212121A1 true WO2018212121A1 (en) 2018-11-22

Family

ID=64273956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018472 WO2018212121A1 (en) 2017-05-18 2018-05-14 Battery semi-fabricated product, battery, battery manufacturing method, battery pack, electronic device, vehicle, power tool, and power storage system

Country Status (1)

Country Link
WO (1) WO2018212121A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020166719A1 (en) * 2019-02-15 2020-08-20 エリーパワー株式会社 Structure for nonaqueous electrolyte secondary batteries, method for producing structure for nonaqueous electrolyte secondary batteries, and method for producing nonaqueous electrolyte secondary battery
JP2020136003A (en) * 2019-02-15 2020-08-31 エリーパワー株式会社 Lithium-ion secondary battery structure, method of manufacturing the same, package, and method of manufacturing lithium-ion secondary battery
CN114902488A (en) * 2020-01-15 2022-08-12 株式会社 Lg新能源 Secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000306573A (en) * 1999-04-14 2000-11-02 Alcatel Manufacture of electrochemical battery and improved cell package
JP2009076249A (en) * 2007-09-19 2009-04-09 Fuji Heavy Ind Ltd Power storage device
JP2011233520A (en) * 2010-04-16 2011-11-17 Eaglepicher Technologies Llc Activation mechanism for reserve battery cell
JP2012022992A (en) * 2010-07-16 2012-02-02 Sony Corp Battery and method for manufacturing the same
JP2015201418A (en) * 2014-04-08 2015-11-12 株式会社倉元製作所 Electrolyte separation housing battery
JP2016081646A (en) * 2014-10-14 2016-05-16 ソニー株式会社 Secondary battery, battery pack, electric motor vehicle, electric power storage system, electric motor-driven tool and electronic device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000306573A (en) * 1999-04-14 2000-11-02 Alcatel Manufacture of electrochemical battery and improved cell package
JP2009076249A (en) * 2007-09-19 2009-04-09 Fuji Heavy Ind Ltd Power storage device
JP2011233520A (en) * 2010-04-16 2011-11-17 Eaglepicher Technologies Llc Activation mechanism for reserve battery cell
JP2012022992A (en) * 2010-07-16 2012-02-02 Sony Corp Battery and method for manufacturing the same
JP2015201418A (en) * 2014-04-08 2015-11-12 株式会社倉元製作所 Electrolyte separation housing battery
JP2016081646A (en) * 2014-10-14 2016-05-16 ソニー株式会社 Secondary battery, battery pack, electric motor vehicle, electric power storage system, electric motor-driven tool and electronic device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020166719A1 (en) * 2019-02-15 2020-08-20 エリーパワー株式会社 Structure for nonaqueous electrolyte secondary batteries, method for producing structure for nonaqueous electrolyte secondary batteries, and method for producing nonaqueous electrolyte secondary battery
JP2020136003A (en) * 2019-02-15 2020-08-31 エリーパワー株式会社 Lithium-ion secondary battery structure, method of manufacturing the same, package, and method of manufacturing lithium-ion secondary battery
JP7334925B2 (en) 2019-02-15 2023-08-29 エリーパワー株式会社 Structural body for lithium ion secondary battery, manufacturing method thereof, package body, and manufacturing method of lithium ion secondary battery
CN114902488A (en) * 2020-01-15 2022-08-12 株式会社 Lg新能源 Secondary battery

Similar Documents

Publication Publication Date Title
JP6070067B2 (en) Batteries, electrodes, battery packs, electronic devices, electric vehicles, power storage devices, and power systems
JP6155605B2 (en) Lithium ion secondary battery, battery pack, electronic device, electric vehicle, power storage device, and power system
JP5891655B2 (en) Nonaqueous electrolyte battery, nonaqueous electrolyte battery manufacturing method, insulating material, insulating material manufacturing method, battery pack, electronic device, electric vehicle, power storage device, and power system
JP6597599B2 (en) Secondary battery, battery pack, electronic device, electric vehicle, power storage device, and power system
JP5915804B2 (en) Secondary battery and battery pack, electronic device, electric vehicle, power storage device and power system
JP2023153322A (en) Lithium-ion secondary battery, and electric vehicle
JP6927297B2 (en) Rechargeable batteries, battery packs, electric vehicles, power storage systems, power tools and electronics
WO2016009794A1 (en) Negative electrode active material for secondary battery, negative electrode for secondary battery, secondary battery, battery pack, electric vehicle, electric power storage system, electric tool, and electronic equipment
CN103050647A (en) Battery, method of manufacturing battery, battery pack, electronic device, electric vehicle, capacitive storage device, and power system
JP2013157088A (en) Battery and battery pack, electronic apparatus, electric vehicle, power storage device and power system
JP7287467B2 (en) Secondary batteries, battery packs, electronic devices, electric tools, electric aircraft and electric vehicles
JP2013225388A (en) Battery and electrolyte, and battery pack, electronic apparatus, electric vehicle, power storage device and electric power system
CN102969500A (en) Active material, electrode, secondary battery, battery pack, electric vehicle, electric energy storage system, electric power tool, and electronic unit
JP2012221898A (en) Nonaqueous electrolyte battery and nonaqueous electrolyte, and battery pack, electronic device, electric vehicle, power storage device, and electric power system
WO2018212121A1 (en) Battery semi-fabricated product, battery, battery manufacturing method, battery pack, electronic device, vehicle, power tool, and power storage system
CN104919630A (en) Active material for secondary batteries, electrode for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool, and electronic device
JP6593324B2 (en) Secondary battery, battery pack, electronic device, electric vehicle, power storage device, and power system
JPWO2018110067A1 (en) Secondary battery, battery pack, electric vehicle, electric power storage system, electric tool and electronic device
US20220123371A1 (en) Secondary battery, battery pack, electric tool, electric aircraft, and electric vehicle
US20220123372A1 (en) Secondary battery, battery pack, electronic device, electric tool, electric aircraft, and electric vehicle
WO2017195480A1 (en) Film-exterior-type cell, cell pack, electronic device, electric vehicle, power storage device, and electric power system
JP2020053407A (en) Negative electrode for secondary battery, secondary battery, battery pack, electric vehicle, power storage system, power tool and electronic equipment
JP6891955B2 (en) Rechargeable batteries, battery packs, electric vehicles, power storage systems, power tools and electronics
CN105518915A (en) Negative electrode for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool and electronic device
JP2013134861A (en) Battery, battery pack, electronic apparatus, electric vehicle, power storage device, and electric power system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18802425

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18802425

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP