WO2018211598A1 - ボイラ燃焼制御システム、およびボイラ燃焼制御方法 - Google Patents

ボイラ燃焼制御システム、およびボイラ燃焼制御方法 Download PDF

Info

Publication number
WO2018211598A1
WO2018211598A1 PCT/JP2017/018399 JP2017018399W WO2018211598A1 WO 2018211598 A1 WO2018211598 A1 WO 2018211598A1 JP 2017018399 W JP2017018399 W JP 2017018399W WO 2018211598 A1 WO2018211598 A1 WO 2018211598A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference curve
boiler
fuel
amount
correction
Prior art date
Application number
PCT/JP2017/018399
Other languages
English (en)
French (fr)
Inventor
雄治 岡村
谷口 一徳
山下 亨
伸浩 鹿島
健一郎 首藤
Original Assignee
郵船商事株式会社
出光興産株式会社
日本郵船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郵船商事株式会社, 出光興産株式会社, 日本郵船株式会社 filed Critical 郵船商事株式会社
Priority to PCT/JP2017/018399 priority Critical patent/WO2018211598A1/ja
Priority to JP2019518831A priority patent/JP6894503B2/ja
Priority to CN201880032696.2A priority patent/CN110832250B/zh
Priority to TW107116604A priority patent/TWI672469B/zh
Priority to KR1020197033888A priority patent/KR102422056B1/ko
Priority to AU2018270018A priority patent/AU2018270018B2/en
Priority to MYPI2019006723A priority patent/MY197403A/en
Priority to PCT/JP2018/018877 priority patent/WO2018212224A1/ja
Publication of WO2018211598A1 publication Critical patent/WO2018211598A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/18Applications of computers to steam boiler control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers

Definitions

  • the present invention relates to a technology for controlling combustion of a boiler, and more particularly to a technology effective when applied to a boiler combustion control system and a boiler combustion control method for determining a fuel input amount to a boiler based on a required load amount of the boiler. Is.
  • fuel solid fuel, liquid fuel, or gaseous fuel
  • the heat is absorbed by the heat exchanger, and the steam is Generate heat energy.
  • the generated steam is converted from thermal energy into rotational motion by being supplied to a steam turbine, for example, and used for power generation by a generator.
  • the amount of fuel input to the boiler is a load requirement amount (for example, a power generation requirement amount MWD (Mega Watt Demand), and may be referred to as a load requirement amount MWD in the following), and a fuel injection amount (hereinafter referred to as a fuel requirement amount MWD).
  • the fuel function FX which is a relational expression between the boiler input command value BID (may be described as Boiler Input Demand).
  • Patent Document 1 As a technique related to this, for example, in Japanese Patent No. 4522326 (Patent Document 1), a plurality of ratios or differences between values before and after feedback correction are sequentially updated and stored, and the stored multiple values are used. It is described that a fuel correction coefficient is obtained and a value after feedback correction is corrected by this correction coefficient. Thus, it is possible to correct the fuel injection amount in consideration of changes in the thermal efficiency of the boiler due to the influence of various factors.
  • Patent Document 2 a fuel correction coefficient for correcting a value after feedback correction is subdivided into three elements in a multiple-type fuel mixed combustion boiler. It is described that the amount of fuel input to the boiler is corrected in accordance with the difference in unit calorific value and the difference in boiler thermal efficiency due to the change in the mixed combustion rate.
  • the value of the load request amount MWD before and after the feedback correction is compared as needed for changes in the thermal efficiency of the boiler due to the influence of various factors. It is possible to determine this by measuring, and acquire the value of the correction coefficient for further correcting and optimizing the value after feedback correction based on the determination result by self-learning.
  • the fuel function FX that defines the relationship between the required load amount MWD and the corresponding boiler input command value BID as a function (curve) is set reflecting the characteristics of the boiler. These are set as fixed values calculated in advance based on the accumulation of past actual measurement data. However, the behavior of the main steam pressure based on the characteristics of the boiler is different for each boiler, and even in one boiler, it can be changed by updating the boiler equipment. That is, there may be a slight difference between the actual behavior of the main vapor pressure and the expected value (optimum value) assumed in the fuel function FX. This divergence becomes a divergence from the optimum value of the fuel input amount, destabilizes the combustion control process of the boiler, and results in energy loss.
  • an object of the present invention is to detect a deviation from the optimum value assumed by the fuel function FX in the behavior of the main vapor pressure, and to correct the fuel function FX autonomously and self-containedly. And providing a boiler combustion control method.
  • a boiler combustion control system supplies a fuel related to a fuel input amount to a boiler, which is calculated based on a predetermined fuel function with respect to a load requirement amount, and is measured. Further, a feedback correction amount is obtained based on a measured main steam pressure that is the main steam pressure of the boiler and a set main steam pressure that is a main steam pressure of the boiler that is set in advance, and the load is determined based on the feedback correction amount.
  • a boiler combustion control system that outputs a fuel correction coefficient for correcting the load request amount or the fuel input amount after the feedback correction to a plant that corrects the required amount or the fuel input amount, wherein the feedback correction
  • a fuel correction coefficient calculation unit that calculates the fuel correction coefficient based on a fine adjustment function, and a reference curve correction unit that outputs a reference curve correction coefficient that corrects the initial value and the fine adjustment function. is there.
  • the reference curve correction unit includes a deviation determination unit that calculates a deviation between the measured main vapor pressure and the set main vapor pressure, a cycle determination unit that acquires and records a cycle related to the variation in the deviation, An amplitude determination unit that acquires and records an amplitude related to a variation in deviation, a reference curve correction coefficient output unit that calculates and outputs the reference curve correction coefficient based on a predetermined reference curve correction function, the period and the amplitude A reference curve fuel function correction determination unit that corrects the reference curve correction function based on a control state for the boiler when the combination is satisfied. Have.
  • the deviation from the optimum value assumed by the fuel function FX in the behavior of the main vapor pressure is detected, and the fuel function FX is corrected autonomously and self-contained. Is possible.
  • the input amount (boiler input command value BID) of fuel for example, coal or biomass fuel
  • the steam request amount (load request amount MWD) of the boiler is , Determined using the fuel function FX.
  • the required load amount MWD is controlled to perform feedback correction so as to bring the main steam pressure of the boiler closer to a desired set main steam pressure.
  • the ratio of the required load amount MWD before and after performing feedback correction that is, feedback of the main steam pressure.
  • a fuel correction coefficient is obtained by self-learning based on an index indicating the correction operation level, and the load request amount MWD (or boiler input command value BID) is further corrected by this fuel correction coefficient. This correction can be said to be substantially equivalent to correcting the fuel function FX.
  • the boiler combustion control system corrects the reference curve that is the basis / starting point of self-learning by AI (Artificial Intelligence) in order to further improve the accuracy with respect to the above-described conventional technology.
  • This reference curve shows the initial value of the relationship between the required load amount MWD defined for the target boiler and the boiler input command value BID.
  • this reference curve is set as a fixed value calculated in advance based on the accumulation of past actual measurement data, like the fuel function FX. In this case, depending on the equipment update of the boiler and other changes in the state, the behavior of the main steam pressure slightly deviates from the optimum value assumed in the fuel function FX corrected by the fuel correction coefficient, and the combustion control of the boiler is performed. The process may become unstable and efficiency may be reduced.
  • the behavior / state change of the main steam pressure of the boiler is constantly analyzed and determined based on past data, and the above reference curve is adjusted based on the determination result By doing so, a slight deviation occurring in the fuel function FX is corrected.
  • this series of processing is performed autonomously and in real time by a self-contained processing loop.
  • FIG. 1 is a diagram showing an outline of a configuration example of a boiler combustion control system according to an embodiment of the present invention.
  • the boiler combustion control system 1 determines the fuel correction coefficient K by adjusting the reference curve using the initial value and the fine adjustment function FXAI so that the amount of fuel input to the boiler 2 in the plant is optimized.
  • the control information is output to an existing circuit or the like that inputs fuel into the boiler 2 (that is, the combustion of the boiler 2 is controlled by substantially correcting the fuel function FX).
  • the boiler combustion control system 1 may be configured as, for example, a device that is implemented by hardware including a semiconductor circuit (not shown), a microcomputer, and the like that executes processing related to each function described below. Alternatively, it is composed of general-purpose server devices, virtual servers built on cloud computing services, etc., and expanded on memory from a recording device such as HDD (Hard Disk Drive) by a CPU (Central Processing Unit) (not shown) By executing middleware such as an OS (Operating System) or software operating on the middleware, processing related to each function described later may be executed.
  • middleware such as an OS (Operating System) or software operating on the middleware
  • the configuration is not limited to a configuration in which the entirety is mounted in one casing, and a configuration in which some functions are mounted in another casing and the casings are mutually connected by a communication cable or the like may be used. That is, the implementation form of the boiler combustion control system 1 is not particularly limited, and can be configured flexibly as appropriate according to the plant environment and the like.
  • the boiler combustion control system 1 includes various units such as a division unit 11, a reference curve correction unit 12, a multiplication unit 13, and a fuel correction coefficient calculation unit 14 that are implemented by hardware or software.
  • various units such as a division unit 11, a reference curve correction unit 12, a multiplication unit 13, and a fuel correction coefficient calculation unit 14 that are implemented by hardware or software.
  • files such as files and tables recorded in a memory, HDD, etc., and data such as fine adjustment functions FXAI.
  • the main steam generated by burning the fuel in the boiler 2 based on the information of the fuel input amount (boiler input command value BID in the figure) is supplied to the steam turbine 3, for example, by a generator (not shown) Used for power generation.
  • the required load amount MWD (input steam required amount) of the boiler 2 corresponding to the output from the generator is input, for example, by an operation panel (not shown) in the boiler 2 and also input to the boiler combustion control system 1.
  • the pressure of the main steam generated in the boiler 2 is measured by a pressure gauge (not shown) provided in the boiler 2, and the measured value is input to the main steam pressure transmitter PX.
  • the measured main steam pressure PV transmitted from the main steam pressure transmitter PX is input to the PID control unit 4 and is compared with the set main steam pressure SV which is the main steam pressure that should be originally in the PID control unit 4. Is called.
  • the fuel input amount is determined using the fuel function FX obtained under the conditions in which the state of the boiler 2 (furnace fouling, etc.), fuel properties, and other factors are maintained, measurement is performed.
  • a difference between the main steam pressure PV and the set main steam pressure SV hardly occurs, and a desired load (generator output) is obtained by the fuel function FX.
  • a pressure difference may occur between the measured main steam pressure PV and the set main steam pressure SV with changes in the state of the boiler 2, changes in fuel properties, and other factors. is there.
  • the PID control unit 4 when a pressure difference between the measured main steam pressure PV and the set main steam pressure SV is detected, it is generated by a feedback correction amount, that is, a fuel shortage (or excess) by a known PID control technique. A deviation (error amount) of the main vapor pressure is calculated and sent to the adding unit 5.
  • the adding unit 5 adds the feedback correction amount sent from the PID control unit 4 to the load request amount MWD that is also input to the boiler combustion control system 1 to output the load request amount MWD ′ after feedback correction.
  • the PID control unit 4 and the addition unit 5 may be referred to as a feedback control unit).
  • the output fuel correction coefficient K is multiplied by the load request amount MWD ′ by the multiplier 6.
  • the fuel input amount calculation unit 7 uses this corrected load requirement amount MWD "as an input, the fuel input amount calculation unit 7 converts this into a boiler input command value BID by the fuel function FX. Based on this boiler input command value BID, the fuel to the boiler 2 is converted. Input is controlled.
  • the reference curve correction unit 12 always performs comparative measurement between the measured main steam pressure PV of the boiler 2 and the set main steam pressure SV, which is a set value that should be supposed to be, so that the main A change in vapor pressure behavior is analyzed and determined, and a reference curve correction coefficient KP is set based on the determination result. Then, the initial value and the initial value of the reference curve defined in the fine adjustment function FXAI are corrected in real time by multiplying the initial value and the fine adjustment function FXAI by the multiplication unit 13.
  • FIG. 4 is a diagram showing an outline of an example of the behavior of the main vapor pressure.
  • Each of the diagrams shows a curve of an example of the change in the measured main steam pressure PV over time, and also shows the set main steam pressure SV in a straight line.
  • the upper diagram shows a case where the degree of correction (correction by the fuel correction coefficient K and integral correction by PID control) is set strongly, and the measured main steam pressure PV varies greatly across the set main steam pressure SV. It shows that.
  • the middle diagram shows a case where the degree of correction is optimal, and shows that the measured main steam pressure PV fluctuates in the vicinity of the set main steam pressure SV.
  • the lower diagram shows a case where the degree of correction is set to be weak, and the measured main vapor pressure PV fluctuates greatly slowly across the set main vapor pressure SV as a whole while repeating small fluctuations. It is shown that.
  • the behavior of the main steam pressure is centered on the vibration of the measured main steam pressure PV based on the set main steam pressure SV, that is, the set main steam pressure SV. It grasps
  • the state in which the main vapor pressure (measured main vapor pressure PV) is optimal basically refers to a state in which the amplitude is small and the cycle is short, as shown in the middle diagram.
  • the state with a long period means that the state in which the measured main vapor pressure PV is away from the set main vapor pressure SV continues for a long period of time as shown in the lower diagram.
  • the measured main vapor pressure PV is oscillated with a small amplitude around the set main vapor pressure SV.
  • a pressure difference may occur between the measured main steam pressure PV and the set main steam pressure SV with changes in the state of the boiler 2, changes in fuel properties, and other factors.
  • this deviation is measured to detect a state where the measured main vapor pressure PV is in an optimum state, that is, a state where the amplitude and period values are small, and the fuel function is based on the state at that time.
  • a correction coefficient for FX (in this embodiment, an initial value and a fuel function correction coefficient KP for fine adjustment function FXAI) is calculated.
  • FIG. 2 is a diagram showing an outline of a configuration example of the reference curve correction unit 12 in the present embodiment.
  • the reference curve correction unit 12 further includes, as its configuration, a deviation determination unit 121, a period determination unit 122, an amplitude determination unit 123, a reference curve correction determination unit 124, and a reference curve correction coefficient output implemented by hardware or software. Each part such as the part 125 is included.
  • the data includes a period history 126, amplitude history 127, optimum value information 128, reference curve correction function VFX, and the like implemented as files or tables recorded in a memory, HDD, or the like.
  • the measured main steam pressure PV and the set main steam pressure SV input to the reference curve correction unit 12 are input to the deviation determination unit 121, and the difference (deviation) is calculated.
  • the calculated difference is input to the period determination unit 122 and the amplitude determination unit 123, respectively, and the period and amplitude of the fluctuation are calculated as information characterizing the behavior of the measurement main vapor pressure PV.
  • the behavior of the measurement main vapor pressure PV is not constant but changes every moment. Therefore, the period and the amplitude are calculated as a moving average over a long time (for example, 30 minutes). For this reason, the calculated period and amplitude information are recorded in a memory, HDD, or the like as the period history 126 and the amplitude history 127, respectively.
  • the calculated period and amplitude values are input to the reference curve correction determination unit 124.
  • the reference curve correction determination unit 124 it is determined whether or not the values of the period and the amplitude are optimum values (including a suitable value within a certain range corresponding thereto).
  • the information related to the optimum value is recorded as, for example, the optimum value information 128 in a memory or HDD.
  • the value of the reference curve correction function VFX set as a variable function is moved until the period and the amplitude are out of the optimum state.
  • the reference curve correction coefficient output unit 125 acquires and outputs a reference curve correction coefficient KP corresponding to the load requirement amount MWD.
  • the reference curve correction coefficient KP is multiplied by the initial value and the fine adjustment function FXAI to correct the initial value and the fine adjustment function FXAI.
  • FIG. 3 is a flowchart showing an example of a flow of processing for correcting the initial value and the fine adjustment function FXAI in the present embodiment.
  • the flow of processing up to the part where the reference curve correction function VFX is set in the reference curve correction determination unit 124 of the reference curve correction unit 12 is shown.
  • the reference curve correction coefficient output unit 125 of the reference curve correction unit 12 acquires and outputs a reference curve correction coefficient KP corresponding to the load requirement amount MWD based on the set reference curve correction function VFX.
  • the deviation determination unit 121 acquires the set main vapor pressure SV (S01).
  • the set main steam pressure SV may be preset in the system as a constant as shown in FIG. 1, or may be acquired as an external input from the boiler 2 or the like.
  • the measurement main vapor pressure PV transmitted from the main vapor pressure transmitter PX is acquired (S02).
  • the above processing order is an example, and may be executed in reverse order or in parallel.
  • a deviation process for obtaining a difference between them is performed (S03).
  • the deviation determination unit 121 inputs the calculated difference information to the period determination unit 122 and the amplitude determination unit 123, respectively, and returns to step S01 to continue the process.
  • the cycle determining unit 122 measures the fluctuation cycle of the measured main steam pressure PV based on the set main steam pressure SV based on the information on the difference in main steam pressure acquired from the deviation determining unit 121 (S11). For example, the timing at which the sign of the difference is reversed is grasped based on the history information of the past difference stored in a memory or the like (not shown), and the time interval is set as the period. As described above, the behavior of the measured main vapor pressure PV is not constant and changes every moment. Therefore, the period is calculated as a moving average based on a past long time (for example, 30 minutes) history. Thereafter, it is determined whether or not the measured cycle is normal (is not an abnormal value such as minus) (S12). If it is not normal (is an abnormal value) (S12: N), the process returns to step S11 to continue the cycle measurement process.
  • the amplitude determination unit 123 measures the amplitude of fluctuation in the measured main steam pressure PV based on the set main steam pressure SV based on the difference information of the main steam pressure acquired from the deviation determination unit 121 ( S21). For example, the absolute value of the difference is grasped as the amplitude. The amplitude is also calculated as a moving average of history information for the past long time (for example, 30 minutes). Thereafter, it is determined whether or not the measured amplitude is normal (S22). If not normal (S22: N), the process returns to step S21 to continue the amplitude measurement process.
  • the reference curve correction determination unit 124 acquires a transition of a cycle within a past fixed time range (for example, 5 minutes) (S31), and determines whether each cycle is within a predetermined range (S32). ). If it does not fall within the predetermined range (S32: N), nothing is done, or if the correction process for the reference curve correction function VFX has already been performed, this is ended (S38). Thereby, the reference curve correction coefficient output unit 125 at the subsequent stage acquires and outputs the reference curve correction coefficient KP based on the reference curve correction function VFX at this time.
  • a past fixed time range for example, 5 minutes
  • the period within the past fixed time range is within the predetermined range (S32: Y)
  • whether or not the measured period and amplitude are the minimum values so far in the past fluctuation history. Is determined (S33).
  • the minimum value information so far may be recorded in the optimum value information 128, for example.
  • step S35 it is determined whether the combination of the measured period and amplitude is the optimum value.
  • a method for determining which is the optimum value for example, an appropriate method can be used, for example, it is assumed that the smaller value of the period is optimum while the amplitude value is within a predetermined range. If the measured combination of period and amplitude is not the optimum value (S35: N), nothing is done, or if the correction process for the reference curve correction function VFX has already been performed, this is ended (S38).
  • the reference curve correction function VFX is set as a variable function that defines a curve of a correspondence relationship between the load requirement amount MWD and the reference curve correction coefficient KP that is a correction coefficient for the initial value and the fine adjustment function FXAI. Correction is made by moving a predetermined amount. This correction is continued until, for example, the measured period and amplitude deviate from the optimum state. Note that such a correction method is an example.
  • the reference curve correction function VFX is used by using another index such as the boiler input command value BID in the control state when the combination of the measured period and amplitude is the optimum value.
  • a method of correcting the initial value and the fine adjustment function FXAI may be used.
  • the deviation of the variation of the measured main steam pressure PV from the set main steam pressure SV is measured as a period and an amplitude. Based on the transition of time, the timing at which the period and amplitude are in the optimum state is specified. Then, a reference curve correction coefficient KP for correcting the fuel function FX (specifically, the initial value and the fine adjustment function FXAI in the present embodiment) is output based on the state when the period and the amplitude are optimal. That is, it is possible to substantially correct a slight deviation occurring in the fuel function FX in real time autonomously and self-containedly.
  • the present invention made by the present inventor has been specifically described based on the embodiments.
  • the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention. Needless to say.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to the one having all the configurations described.
  • each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tables, and files for realizing each function can be stored in a recording device such as a memory, a hard disk, or an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
  • control lines and information lines indicate what is considered necessary for explanation, and not all control lines and information lines on mounting are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
  • the present invention can be used in a boiler combustion control system and a boiler combustion control method that determine the amount of fuel input to the boiler based on the required load amount of the boiler.
  • Optimal value information SV: set main steam pressure, PV: measurement main steam pressure, PX: main steam pressure transmitter, MWD, MWD ', MWD "... load requirement, BID: boiler input command value, K ... fuel correction coefficient, KP ... standard Curve correction coefficient, FX ... fuel function, FXAI ... initial value and fine adjustment function, VFX ... reference curve correction function

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

フィードバック補正後の負荷要求量を補正する燃料補正係数を出力するボイラ燃焼制御システムである。フィードバック補正の前後の負荷要求量の比と、負荷要求量と燃料投入量との関係の初期値を規定した初期値および微調整関数とに基づいて燃料補正係数を算出する燃料補正係数演算部と、初期値および微調整関数を補正する基準曲線補正係数を出力する基準曲線補正部とを有する。基準曲線補正部は、測定主蒸気圧と設定主蒸気圧との偏差を算出する偏差判定部と、偏差の変動に係る周期を取得する周期判定部と、振幅を取得する振幅判定部と、基準曲線補正係数を基準曲線補正関数に基づいて算出して出力する基準曲線補正係数出力部と、周期と振幅の組み合わせが所定の条件を満たした場合に基準曲線補正関数を補正する基準曲線補正判定部とを有する。

Description

ボイラ燃焼制御システム、およびボイラ燃焼制御方法
 本発明は、ボイラの燃焼を制御する技術に関し、特に、ボイラの負荷要求量に基づいてボイラへの燃料投入量を決定するボイラ燃焼制御システム、およびボイラ燃焼制御方法に適用して有効な技術に関するものである。
 例えば、ボイラ設備を使用してエネルギーを取得する場合、ボイラ(火炉)に燃料(固体燃料、液体燃料、もしくは気体燃料)を供給して燃焼させ、その熱を熱交換器で吸収し、蒸気を発生させて熱エネルギーを得る。発生した蒸気は、例えば、蒸気タービンへ供給することで熱エネルギーから回転運動に変換され、発電機による発電等に用いられる。ボイラへの燃料投入量は、負荷要求量(例えば、発電要求量MWD(Mega Watt Demand)であり、以下では、負荷要求量MWDと記載する場合がある)と、ボイラへの燃料投入量(以下では、ボイラ入力指令値BID(Boiler Input Demand)と記載する場合がある)との間の関係式である燃料関数FXにより決定される。
 ここで、ボイラ設備に係る諸因子、例えば、燃料性状や発熱量、火炉汚れ、スーツブロワ、気水温等による影響により、ボイラの運転状態、特に、主蒸気圧に変動が生じる場合がある。そこで、燃料関数FXにより求められた燃料投入量に係る燃料をボイラに供給し、発生した主蒸気圧を測定して、これと予め設定された主蒸気圧との差分に基づいてPID(Proportional-Integral-Differential)制御によってフィードバック補正量を求め、これを負荷要求量に加算してボイラへの燃料投入量を補正するという制御が一般的に行われていた。
 これに関連する技術として、例えば、特許第4522326号公報(特許文献1)には、フィードバック補正を行う前と後の値の比または差を逐次更新しつつ複数記憶し、記憶した複数の値から燃料補正係数を求め、この補正係数によりフィードバック補正後の値を補正する旨が記載されている。これにより、諸因子の影響によるボイラの熱効率の変化を考慮して適正な燃料投入量に補正することが可能であるとされる。
 さらに、例えば、特許第4791269号公報(特許文献2)には、複数種類燃料混合燃焼ボイラにおいて、フィードバック補正後の値を補正するための燃料補正係数を3要素に細分化することで、燃料の単位熱量の差異および混焼率の変化に伴うボイラ熱効率の差異に対応して、ボイラへの燃料投入量を補正する旨が記載されている。
特許第4522326号公報 特許第4791269号公報
 例えば、特許文献1、2等の従来技術によれば、諸因子の影響によるボイラの熱効率の変化に対して、フィードバック補正の前後の負荷要求量MWDの値(もしくは他の制御値)を随時比較計測することでこれを判定し、判定結果に基づいてフィードバック補正後の値をさらに補正して最適化するための補正係数の値を自己学習により取得することが可能である。
 一方で、負荷要求量MWDとこれに対応するボイラ入力指令値BIDとの関係を関数(曲線)として規定した燃料関数FXは、ボイラの特性を反映して設定されるものであり、従来技術では、過去の実測データの蓄積等に基づいて予め算出した固定値として設定されている。しかし、ボイラの特性に基づく主蒸気圧の挙動は、個々のボイラで異なるものであり、さらに、1つのボイラにおいてもボイラ設備の更新等により変化し得る。すなわち、主蒸気圧の実際の挙動と、燃料関数FXにおいて想定している、あるべき値(最適値)との間にごく僅かながら乖離が生じる場合がある。この乖離は、燃料投入量の最適値からの乖離となってボイラの燃焼制御プロセスを不安定化し、結果としてエネルギーの損失を生じさせる。
 そこで本発明の目的は、主蒸気圧の挙動における燃料関数FXが想定する最適値からの乖離を検知し、燃料関数FXを自律的・自己完結的に修正することを可能とするボイラ燃焼制御システム、およびボイラ燃焼制御方法を提供することにある。
 本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、以下のとおりである。
 本発明の代表的な実施の形態によるボイラ燃焼制御システムは、負荷要求量に対して所定の燃料関数に基づいて算出されたボイラへの燃料投入量に係る燃料を前記ボイラに供給し、測定された前記ボイラの主蒸気圧である測定主蒸気圧と、予め設定された前記ボイラの主蒸気圧である設定主蒸気圧とに基づいてフィードバック補正量を求め、前記フィードバック補正量に基づいて前記負荷要求量もしくは前記燃料投入量を補正するプラントに対して、前記フィードバック補正後の前記負荷要求量もしくは前記燃料投入量を補正する燃料補正係数を出力するボイラ燃焼制御システムであって、前記フィードバック補正の前後の前記負荷要求量の比と、前記ボイラについて前記負荷要求量と前記燃料投入量との関係の初期値を規定した初期値および微調整関数と、に基づいて前記燃料補正係数を算出する燃料補正係数演算部と、前記初期値および微調整関数を補正する基準曲線補正係数を出力する基準曲線補正部と、を有するものである。
 そして、前記基準曲線補正部は、前記測定主蒸気圧と前記設定主蒸気圧との偏差を算出する偏差判定部と、前記偏差の変動に係る周期を取得して記録する周期判定部と、前記偏差の変動に係る振幅を取得して記録する振幅判定部と、前記基準曲線補正係数を所定の基準曲線補正関数に基づいて算出して出力する基準曲線補正係数出力部と、前記周期と前記振幅の組み合わせが所定の条件を満たすか否かを判定し、前記条件を満たした場合に、前記ボイラに対する制御状態に基づいて、前記基準曲線補正関数を補正する基準曲線燃料関数補正判定部と、を有する。
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。
 すなわち、本発明の代表的な実施の形態によれば、主蒸気圧の挙動における燃料関数FXが想定する最適値からの乖離を検知し、燃料関数FXを自律的・自己完結的に修正することが可能となる。
本発明の一実施の形態であるボイラ燃焼制御システムの構成例について概要を示した図である。 本発明の一実施の形態における基準曲線補正部の構成例について概要を示した図である。 本発明の一実施の形態における初期値および微調整関数の補正を行う処理の流れの例を示したフロー図である。 主蒸気圧の挙動の例について概要を示した図である。
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一部には原則として同一の符号を付し、その繰り返しの説明は省略する。一方で、ある図において符号を付して説明した部位について、他の図の説明の際に再度の図示はしないが同一の符号を付して言及する場合がある。
 上述したように、ボイラ設備を使用してエネルギーを取得する場合、ボイラの蒸気要求量(負荷要求量MWD)に対応する燃料(例えば石炭やバイオマス燃料等)投入量(ボイラ入力指令値BID)は、燃料関数FXを用いて決定される。このとき、負荷要求量MWDは、ボイラの主蒸気圧を所望の設定主蒸気圧に近づけるようなフィードバック補正を行うよう制御される。
 これに対し、上記の特許文献1、2等に記載されたような従来技術では、さらに制御の精度を向上させるため、フィードバック補正を行う前後の負荷要求量MWDの比、すなわち主蒸気圧のフィードバック補正の操作度合いを示す指標に基づいて燃料補正係数を自己学習により求め、この燃料補正係数により負荷要求量MWD(もしくはボイラ入力指令値BID)をさらに補正する仕組みを有している。この補正は、実質的には燃料関数FXを補正することと等価であるといえる。
 本発明の一実施の形態であるボイラ燃焼制御システムは、上記の従来技術に対してさらに精度を向上させるため、自己学習の基礎・起点となる基準曲線をAI(Artificial Intelligence:人工知能)により補正するものである。この基準曲線は、対象のボイラについて規定された負荷要求量MWDとボイラ入力指令値BIDとの関係の初期値を示したものである。従来技術では、この基準曲線は、燃料関数FXと同様に、過去の実測データの蓄積に基づいて予め算出した固定値として設定されていた。この場合、ボイラの設備更新やその他の状態の変化によっては、主蒸気圧の挙動が、燃料補正係数による補正後の燃料関数FXにおいて想定している最適値から僅かに乖離してボイラの燃焼制御プロセスが不安定となり効率が低下する場合がある。
 これに対し、本実施の形態のボイラ燃料制御システムでは、ボイラの主蒸気圧の挙動・状態変化を、過去のデータに基づいて常時分析・判定し、判定結果に基づいて上記の基準曲線を調整することで、燃料関数FXに生じる僅かなズレを補正する。そして、本実施の形態では、この一連の処理を自己完結型の処理ループによって自律的に、かつリアルタイムで行う。
 <システム構成>
 図1は、本発明の一実施の形態であるボイラ燃焼制御システムの構成例について概要を示した図である。ボイラ燃焼制御システム1は、上述したように、プラントにおけるボイラ2に対する燃料投入量が最適となるように初期値および微調整関数FXAIを用いて基準曲線を調整することで燃料補正係数Kを決定し、制御情報としてボイラ2への燃料投入等を行う既設の回路等に出力する(すなわち、燃料関数FXを実質的に補正することでボイラ2の燃焼を制御する)装置である。
 ボイラ燃焼制御システム1は、例えば、後述する各機能に係る処理を実行する図示しない半導体回路やマイコン等からなるハードウェアにより実装された装置として構成されてもよい。もしくは、汎用的なサーバ機器やクラウドコンピューティングサービス上に構築された仮想サーバ等により構成され、図示しないCPU(Central Processing Unit)により、HDD(Hard Disk Drive)等の記録装置からメモリ上に展開したOS(Operating System)等のミドルウェアや、その上で稼働するソフトウェアを実行することで、後述する各機能に係る処理を実行するものとしてもよい。
 また、これらのハードウェアによる実装とソフトウェアによる実装とを適宜組み合わせて構成するようにしてもよい。また、全体を1つの筐体で実装する構成に限らず、一部の機能を別の筐体で実装し、これらの筐体間を通信ケーブル等により相互に接続する構成であってもよい。すなわち、ボイラ燃焼制御システム1の実装形態は特に限定されず、プラントの環境等に応じて適宜柔軟に構成することが可能である。
 ボイラ燃焼制御システム1は、図示するように、例えば、ハードウェアもしくはソフトウェアにより実装された除算部11、基準曲線補正部12、乗算部13、および燃料補正係数演算部14等の各部を有する。また、メモリやHDD等に記録されたファイルやテーブルとして実装された初期値および微調整関数FXAI等のデータを有する。
 プラントにおいて、燃料投入量(図中ではボイラ入力指令値BID)の情報に基づいてボイラ2で燃料を燃焼させることで発生した主蒸気は、例えば、蒸気タービン3に供給され、図示しない発電機による発電等に用いられる。発電機での出力に対応するボイラ2の負荷要求量MWD(入力蒸気要求量)は、例えば、ボイラ2における図示しない操作パネル等によって入力されるとともに、ボイラ燃焼制御システム1にも入力される。
 一方、例えば、ボイラ2に設けられた図示しない圧力計により、ボイラ2で発生した主蒸気の圧力が測定され、測定値が主蒸気圧発信器PXに入力される。主蒸気圧発信器PXから発信された測定主蒸気圧PVは、PID制御部4に入力され、PID制御部4において本来あるべき主蒸気圧である設定主蒸気圧SVとの間で比較が行われる。このとき、例えば、ボイラ2の状態(火炉の汚れ等)、燃料性状、その他の諸因子が維持された条件で得られる燃料関数FXを用いて燃料投入量を決定しているのであれば、測定主蒸気圧PVと設定主蒸気圧SVとの差はほとんど生じず、燃料関数FXによって所望の負荷(発電機出力)が得られる。しかし、上述したように、例えば、ボイラ2の状態変化や、燃料性状、その他の諸因子の変化に伴って、測定主蒸気圧PVと設定主蒸気圧SVとの間で圧力差が生じる場合がある。
 PID制御部4では、測定主蒸気圧PVと設定主蒸気圧SVとの間の圧力差を検知した場合、公知のPID制御の手法によりフィードバック補正量、すなわち、燃料不足(もしくは過剰)により発生した主蒸気圧の偏差(誤差量)を算出してこれを加算部5に送る。加算部5では、PID制御部4から送られたフィードバック補正量を、ボイラ燃焼制御システム1にも入力される負荷要求量MWDに加算することで、フィードバック補正後の負荷要求量MWD’を出力する(PID制御部4および加算部5をフィードバック制御部と記載する場合がある)。
 本実施の形態のボイラ燃料制御システム1では、上述したように、特許文献1、2等の従来技術と同様に、ボイラ2の効率等の特性の変化に伴う最適値からの乖離に追従するため、フィードバック制御部(PID制御部4および加算部5)によるフィードバック補正の操作度合いを示す指標、すなわち、フィードバック補正の前後の指令値である負荷要求量MWDと負荷要求量MWD’の比を除算部11により求める。そして、これを入力として、燃料補正係数演算部14により燃料補正係数Kを自己学習により算出し、出力する。
 出力された燃料補正係数Kは、乗算部6によって負荷要求量MWD’に乗算される。この補正後の負荷要求量MWD” を入力として、燃料投入量演算部7が燃料関数FXによってこれをボイラ入力指令値BIDに変換する。このボイラ入力指令値BIDに基づいてボイラ2への燃料の投入が制御される。
 なお、ボイラ燃焼制御システム1の燃料補正係数演算部14における燃料補正係数Kの算出手法については、例えば、特許文献1、2等に記載されたものと同様の手法を適宜用いることができるため、ここでの再度の詳細な説明は省略する。また、特許文献1、2等に記載されているように、ボイラ燃焼制御システム1を含むプラント各部の接続関係や処理順序等は、図1に示したものに限られず、同様の思想の範囲内で各種のバリエーションの構成を適宜採用することができる。例えば、図1の例では、燃料補正係数Kをフィードバック補正後の負荷要求量MWD’に乗算して補正しているが、燃料投入量演算部7によって求められたボイラ入力指令値BIDに乗算して補正する構成としてもよい。また、燃料関数FXを直接補正する構成としてもよい。
 上述したように、燃料補正係数Kの決定においては、基準曲線を起点として自己学習が行われるが、従来技術では、基準曲線には予め設定された固定値が用いられていた。この場合、ボイラ2の効率等の特性の変化に伴い、この基準曲線についても最適値から僅かに乖離し、ボイラ2の燃焼制御プロセスが不安定となり効率が低下する場合が生じ得る。そこで、本実施の形態では、基準曲線補正部12により、ボイラ2の測定主蒸気圧PVと、本来あるべき設定値である設定主蒸気圧SVとの比較計測を常時行って、ボイラ2の主蒸気圧の挙動の変化を分析・判定し、判定結果に基づいて基準曲線補正係数KPを設定する。そして、これを乗算部13により初期値および微調整関数FXAIに乗算することで、初期値および微調整関数FXAIに規定された基準曲線の初期値をリアルタイムで補正する。
 図4は、主蒸気圧の挙動の例について概要を示した図である。各段の図は、それぞれ、時間経過に伴う測定主蒸気圧PVの変動の例を曲線で示しており、併せて設定主蒸気圧力SVについても直線で示している。上段の図は、補正(燃料補正係数Kによる補正、およびPID制御による積分補正)の程度を強く設定した場合を示しており、測定主蒸気圧PVが設定主蒸気圧SVを跨いで大きく変動していることを示している。これに対し、中段の図は、補正の程度が最適である場合を示しており、測定主蒸気圧PVは設定主蒸気圧SVの付近で変動していることを示している。一方、下段の図は、補正の程度を弱く設定した場合を示しており、測定主蒸気圧PVは、小さな変動を繰り返しながら、全体として設定主蒸気圧SVを跨いで大きくゆっくりと変動していることを示している。
 ここで、本実施の形態のボイラ燃焼制御システム1では、主蒸気圧の挙動を、設定主蒸気圧SVを基準とした測定主蒸気圧PVの振動、すなわち、設定主蒸気圧SVを中心とした振幅と周期(測定主蒸気圧PVが設定主蒸気圧SVと交差するタイミングの間隔)によって把握する。主蒸気圧(測定主蒸気圧PV)が最適な状態とは、基本的に、中段の図に示すように、振幅が小さく、かつ周期が短い状態を指す。なお、周期が長い状態とは、下段の図に示すように、測定主蒸気圧PVが設定主蒸気圧SVから離れた状態が長期間続くことを意味する。
 上述したように、例えば、ボイラ2の状態や燃料性状、その他の諸因子が維持された条件で得られる燃料関数FXを用いて燃料投入量を決定しているのであれば、測定主蒸気圧PVと設定主蒸気圧SVとの差はほとんど生じない。実際には、例えば、図4の中段の図に示すように、測定主蒸気圧PVは、設定主蒸気圧SVを中心として小さい振幅で振動する形となる。しかし、ボイラ2の状態変化や、燃料性状、その他の諸因子の変化に伴って、測定主蒸気圧PVと設定主蒸気圧SVとの間で圧力差(偏差)が生じ得る。本実施の形態では、この偏差を計測して、測定主蒸気圧PVが最適な状態、すなわち、振幅および周期の値が小さい状態となったタイミングを検知し、そのときの状態に基づいて燃料関数FXに対する補正係数(本実施の形態では、初期値および微調整関数FXAIに対する燃料関数補正係数KP)を算出する。
 図2は、本実施の形態における基準曲線補正部12の構成例について概要を示した図である。基準曲線補正部12は、例えば、その構成としてさらに、ハードウェアもしくはソフトウェアにより実装された偏差判定部121、周期判定部122、振幅判定部123、基準曲線補正判定部124、および基準曲線補正係数出力部125等の各部を有する。また、メモリやHDD等に記録されたファイルやテーブルとして実装された周期履歴126、振幅履歴127、最適値情報128、および基準曲線補正関数VFX等の各データを有する。
 基準曲線補正部12に入力された測定主蒸気圧PVおよび設定主蒸気圧SVは、偏差判定部121に入力され、その差分(偏差)が算出される。算出された差分は、周期判定部122および振幅判定部123にそれぞれ入力され、測定主蒸気圧PVの挙動を特徴付ける情報としてその変動の周期および振幅をそれぞれ算出する。なお、上述したように、測定主蒸気圧PVの挙動は一定ではなく時々刻々と変化する。したがって、周期および振幅は、長時間(例えば、30分間)での移動平均として算出するものとする。このため、算出した周期および振幅の情報は、それぞれ、周期履歴126および振幅履歴127としてメモリやHDD等に記録しておく。
 算出された周期および振幅の値は、基準曲線補正判定部124に入力される。基準曲線補正判定部124では、周期および振幅の値が最適値(これに準ずる一定範囲の好適な値も含むものとする)であるか否かを判定する。最適値に係る情報は、例えば、最適値情報128としてメモリやHDD等に記録しておく。そして、周期および振幅が最適な状態であると判定した場合に、最適な状態から外れるまでの間、可変関数として設定された基準曲線補正関数VFXの値を移動させる。
 この基準曲線補正関数VFXに基づいて、基準曲線補正係数出力部125は、負荷要求量MWDに対応する基準曲線補正係数KPを取得して出力する。この基準曲線補正係数KPは、初期値および微調整関数FXAIに対して乗算されることで初期値および微調整関数FXAIを補正する。
 <初期値および微調整関数FXAIの補正処理>
 図3は、本実施の形態における初期値および微調整関数FXAIの補正を行う処理の流れの例を示したフロー図である。ここでは、基準曲線補正部12の基準曲線補正判定部124において基準曲線補正関数VFXを設定する部分までの処理の流れを示す。以降は、基準曲線補正部12の基準曲線補正係数出力部125が、設定された基準曲線補正関数VFXに基づいて負荷要求量MWDに対応する基準曲線補正係数KPを取得して出力する。
 基準曲線補正部12では、まず、偏差判定部121が、設定主蒸気圧SVを取得する(S01)。設定主蒸気圧SVは、図1に示すように定数としてシステム内部に予め設定しておいてもよいし、ボイラ2等からの外部入力として取得してもよい。その後、主蒸気圧発信器PXから発信される測定主蒸気圧PVを取得する(S02)。上記の処理順は一例であり、逆の順序で実行してもよいし並行的に行ってもよい。設定主蒸気圧SVと測定主蒸気圧PVを取得すると、これらの間の差分を求める偏差処理を行う(S03)。偏差判定部121は、算出した差分の情報を周期判定部122および振幅判定部123にそれぞれ入力するとともに、ステップS01に戻って処理を継続する。
 周期判定部122では、偏差判定部121から取得した主蒸気圧の差分の情報に基づいて、設定主蒸気圧SVを基準とした測定主蒸気圧PVの変動の周期を計測する(S11)。例えば、図示しないメモリ等に蓄積した過去の差分の履歴情報に基づいて、差分の符合が反転するタイミングを把握し、その時間間隔を周期とする。上述したように、測定主蒸気圧PVの挙動は一定ではなく時々刻々と変化する。したがって、周期は、過去の長時間(例えば、30分間)の履歴に基づく移動平均として算出する。その後、計測した周期が正常か否か(マイナス等の異常値ではないか)を判定する(S12)。正常ではない(異常値である)場合は(S12:N)、ステップS11に戻って周期計測の処理を継続する。
 また、振幅判定部123でも同様に、偏差判定部121から取得した主蒸気圧の差分の情報に基づいて、設定主蒸気圧SVを基準とした測定主蒸気圧PVの変動の振幅を計測する(S21)。例えば、差分の絶対値を振幅として把握する。振幅についても、過去の長時間(例えば、30分間)の履歴情報の移動平均として算出する。その後、計測した振幅が正常か否かを判定する(S22)。正常ではない場合は(S22:N)、ステップS21に戻って振幅計測の処理を継続する。
 周期および振幅の値がいずれも正常である場合は(S12:Y、S22:Y)、算出された周期および振幅の値が基準曲線補正判定部124に入力される。基準曲線補正判定部124では、過去の一定時間範囲内(例えば、5分間)での周期の遷移を取得し(S31)、各周期が所定の範囲内に収まっているか否かを判定する(S32)。所定の範囲内に収まっていない場合は(S32:N)、何もしない、もしくは基準曲線補正関数VFXに対する補正処理を既に行っている場合はこれを終了する(S38)。これにより、後段の基準曲線補正係数出力部125は、この時点での基準曲線補正関数VFXに基づいて基準曲線補正係数KPを取得して出力することになる。
 一方、過去の一定時間範囲内の周期が所定の範囲内に収まっている場合は(S32:Y)、計測した周期および振幅がそれぞれ過去の変動の履歴においてこれまでの最小値であるか否かを判定する(S33)。これまでの最小値の情報は、例えば、最適値情報128に記録しておくようにしてもよい。なお、周期については、ステップS32における所定の範囲内にある上で、最小値であるか否かを判定する。周期および振幅の少なくとも一方が最小値ではない場合は(S33:N)、何もしない、もしくは基準曲線補正関数VFXに対する補正処理を既に行っている場合はこれを終了する(S38)。
 一方、計測した周期および振幅のいずれも最小値である場合は(S33:N)、最適値情報128からこれまでの最適値に係る周期および振幅の情報を取得し(S34)、これとの比較において、計測した周期および振幅の組み合わせの方が最適値であるといえるかを判定する(S35)。いずれが最適値かの判定手法は、例えば、振幅の値が所定の範囲内に入っている上で、周期がより小さい方が最適であるとする等、適当な手法を用いることができる。計測した周期および振幅の組み合わせが最適値ではない場合は(S35:N)、何もしない、もしくは基準曲線補正関数VFXに対する補正処理を既に行っている場合はこれを終了する(S38)。
 一方、計測した周期および振幅の組み合わせの方が最適値である場合は(S35:Y)、この組み合わせにより最適値情報128の内容を更新し(S36)、基準曲線補正関数VFXに対する補正処理を開始する(S37)。基準曲線補正関数VFXは、負荷要求量MWDと、初期値および微調整関数FXAIに対する補正係数である基準曲線補正係数KPとの対応関係の曲線を規定する可変関数として設定されており、この曲線を所定量移動させることによって補正する。この補正は、例えば、計測された周期および振幅が最適な状態から外れるまで継続する。なお、このような補正手法は一例であり、例えば、計測した周期および振幅の組み合わせが最適値であるときの制御状態におけるボイラ入力指令値BID等の他の指標を用いて、基準曲線補正関数VFX(もしくは初期値および微調整関数FXAI)を補正する手法を用いてもよい。
 以上に説明したように、本発明の一実施の形態であるボイラ燃焼制御システム1によれば、測定主蒸気圧PVの変動の設定主蒸気圧SVに対する偏差を周期および振幅として測定し、その長時間の遷移に基づいて周期および振幅が最適な状態であるタイミングを特定する。そして、周期および振幅が最適であるときの状態に基づいて燃料関数FX(本実施の形態では具体的には初期値および微調整関数FXAI)を補正するための基準曲線補正係数KPを出力する。すなわち、実質的には燃料関数FXに生じる僅かなズレを自律的・自己完結的にリアルタイムで修正することが可能である。
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は上記の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。例えば、上記の実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、上記の実施の形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部または全部を、例えば、集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリやハードディスク、SSD(Solid State Drive)等の記録装置、またはICカード、SDカード、DVD等の記録媒体に置くことができる。
 また、上記の各図において、制御線や情報線は説明上必要と考えられるものを示しており、必ずしも実装上の全ての制御線や情報線を示しているとは限らない。実際にはほとんど全ての構成が相互に接続されていると考えてもよい。
 本発明は、ボイラの負荷要求量に基づいてボイラへの燃料投入量を決定するボイラ燃焼制御システム、およびボイラ燃焼制御方法に利用可能である。
1…ボイラ燃焼制御システム、2…ボイラ、3…蒸気タービン、4…PID制御部、5…加算部、6…乗算部、7…燃料投入量演算部、
11…除算部、12…基準曲線補正部、13…乗算部、14…燃料補正係数演算部、
121…偏差判定部、122…周期判定部、123…振幅判定部、124…基準曲線補正判定部、125…基準曲線補正係数出力部、126…周期履歴、127…振幅履歴、128…最適値情報、
SV…設定主蒸気圧、PV…測定主蒸気圧、PX…主蒸気圧発信器、MWD、MWD’、MWD”…負荷要求量、BID…ボイラ入力指令値、K…燃料補正係数、KP…基準曲線補正係数、FX…燃料関数、FXAI…初期値および微調整関数、VFX…基準曲線補正関数

Claims (5)

  1.  負荷要求量に対して所定の燃料関数に基づいて算出されたボイラへの燃料投入量に係る燃料を前記ボイラに供給し、測定された前記ボイラの主蒸気圧である測定主蒸気圧と、予め設定された前記ボイラの主蒸気圧である設定主蒸気圧とに基づいてフィードバック補正量を求め、前記フィードバック補正量に基づいて前記負荷要求量もしくは前記燃料投入量を補正するプラントに対して、前記フィードバック補正後の前記負荷要求量もしくは前記燃料投入量を補正する燃料補正係数を出力するボイラ燃焼制御システムであって、
     前記フィードバック補正の前後の前記負荷要求量の比と、前記ボイラについて前記負荷要求量と前記燃料投入量との関係の初期値を規定した初期値および微調整関数と、に基づいて前記燃料補正係数を算出する燃料補正係数演算部と、
     前記初期値および微調整関数を補正する基準曲線補正係数を出力する基準曲線補正部と、を有し、
     前記基準曲線補正部は、
     前記測定主蒸気圧と前記設定主蒸気圧との偏差を算出する偏差判定部と、
     前記偏差の変動に係る周期を取得して記録する周期判定部と、
     前記偏差の変動に係る振幅を取得して記録する振幅判定部と、
     前記基準曲線補正係数を所定の基準曲線補正関数に基づいて算出して出力する基準曲線補正係数出力部と、
     前記周期と前記振幅の組み合わせが所定の条件を満たすか否かを判定し、前記条件を満たした場合に、前記ボイラに対する制御状態に基づいて、前記基準曲線補正関数を補正する基準曲線補正判定部と、を有する、ボイラ燃焼制御システム。
  2.  請求項1に記載のボイラ燃焼制御システムにおいて、
     前記条件は、前記振幅が所定の範囲内にあり、かつ前記周期が過去の一定時間範囲の履歴において最も小さいことである、ボイラ燃焼制御システム。
  3.  請求項1に記載のボイラ燃焼制御システムにおいて、
     前記周期判定部および前記振幅判定部は、それぞれ、前記周期および前記振幅を、過去の一定時間における移動平均によって取得する、ボイラ燃焼制御システム。
  4.  請求項1に記載のボイラ燃焼制御システムにおいて、
     前記基準曲線補正関数は可変関数として設定され、
     前記基準曲線補正判定部は、前記基準曲線補正関数を、前記周期と前記振幅の組み合わせが前記条件を満たす間、移動させることで補正する、ボイラ燃焼制御システム。
  5.  負荷要求量に対して所定の燃料関数に基づいて算出されたボイラへの燃料投入量に係る燃料を前記ボイラに供給し、測定された前記ボイラの主蒸気圧である測定主蒸気圧と、予め設定された前記ボイラの主蒸気圧である設定主蒸気圧とに基づいてフィードバック補正量を求め、前記フィードバック補正量に基づいて前記負荷要求量もしくは前記燃料投入量を補正するプラントに対して、前記フィードバック補正後の前記負荷要求量もしくは前記燃料投入量を補正する燃料補正係数を出力するボイラ燃焼制御システムにおけるボイラ燃焼制御方法であって、
     前記フィードバック補正の前後の前記負荷要求量の比と、前記ボイラについて前記負荷要求量と前記燃料投入量との関係の初期値を規定した初期値および微調整関数と、に基づいて前記燃料補正係数を算出する燃料補正係数演算工程と、
     前記初期値および微調整関数を補正する基準曲線補正係数を出力する基準曲線補正工程と、を有し、
     前記基準曲線補正工程は、
     前記測定主蒸気圧と前記設定主蒸気圧との偏差を算出する偏差判定工程と、
     前記偏差の変動に係る周期を取得して記録する周期判定工程と、
     前記偏差の変動に係る振幅を取得して記録する振幅判定工程と、
     前記基準曲線補正係数を所定の基準曲線補正関数に基づいて算出して出力する基準曲線補正係数出力工程と、
     前記周期と前記振幅の組み合わせが所定の条件を満たすか否かを判定し、前記条件を満たした場合に、前記ボイラに対する制御状態に基づいて、前記基準曲線補正関数を補正する基準曲線補正判定工程と、を有する、ボイラ燃焼制御方法。
PCT/JP2017/018399 2017-05-16 2017-05-16 ボイラ燃焼制御システム、およびボイラ燃焼制御方法 WO2018211598A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PCT/JP2017/018399 WO2018211598A1 (ja) 2017-05-16 2017-05-16 ボイラ燃焼制御システム、およびボイラ燃焼制御方法
JP2019518831A JP6894503B2 (ja) 2017-05-16 2018-05-16 ボイラ燃焼制御システム、およびボイラ燃焼制御方法
CN201880032696.2A CN110832250B (zh) 2017-05-16 2018-05-16 锅炉燃烧控制***以及锅炉燃烧控制方法
TW107116604A TWI672469B (zh) 2017-05-16 2018-05-16 鍋爐燃燒控制系統及鍋爐燃燒控制方法
KR1020197033888A KR102422056B1 (ko) 2017-05-16 2018-05-16 보일러 연소제어 시스템 및 보일러 연소제어 방법
AU2018270018A AU2018270018B2 (en) 2017-05-16 2018-05-16 Boiler combustion control system and boiler combustion control method
MYPI2019006723A MY197403A (en) 2017-05-16 2018-05-16 Boiler combustion control system and boiler combustion control method
PCT/JP2018/018877 WO2018212224A1 (ja) 2017-05-16 2018-05-16 ボイラ燃焼制御システム、およびボイラ燃焼制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/018399 WO2018211598A1 (ja) 2017-05-16 2017-05-16 ボイラ燃焼制御システム、およびボイラ燃焼制御方法

Publications (1)

Publication Number Publication Date
WO2018211598A1 true WO2018211598A1 (ja) 2018-11-22

Family

ID=64273947

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2017/018399 WO2018211598A1 (ja) 2017-05-16 2017-05-16 ボイラ燃焼制御システム、およびボイラ燃焼制御方法
PCT/JP2018/018877 WO2018212224A1 (ja) 2017-05-16 2018-05-16 ボイラ燃焼制御システム、およびボイラ燃焼制御方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018877 WO2018212224A1 (ja) 2017-05-16 2018-05-16 ボイラ燃焼制御システム、およびボイラ燃焼制御方法

Country Status (7)

Country Link
JP (1) JP6894503B2 (ja)
KR (1) KR102422056B1 (ja)
CN (1) CN110832250B (ja)
AU (1) AU2018270018B2 (ja)
MY (1) MY197403A (ja)
TW (1) TWI672469B (ja)
WO (2) WO2018211598A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111209515A (zh) * 2019-12-06 2020-05-29 华北电力科学研究院有限责任公司 一种自适应性的深度调峰负荷速率优化方法及装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022054193A1 (ja) * 2020-09-10 2022-03-17 郵船商事株式会社 ボイラ燃焼制御システム、およびボイラ燃焼制御方法
WO2022208846A1 (ja) * 2021-04-01 2022-10-06 郵船商事株式会社 超臨界圧貫流ボイラおよび超々臨界圧貫流ボイラ向けボイラ燃焼制御システム、およびボイラ燃焼制御方法
CN113311772B (zh) * 2021-06-07 2022-10-25 西安热工研究院有限公司 火电机组协调控制***中燃料热值自校正***及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002023806A (ja) * 2000-07-12 2002-01-25 Hitachi Ltd プロセスの制御装置
JP2006200875A (ja) * 2004-12-22 2006-08-03 Nippon Steel Corp ボイラー燃料投入量の決定方法
JP2008008522A (ja) * 2006-06-27 2008-01-17 Nippon Steel Corp ボイラ燃料投入量の決定方法、ボイラ燃料制御装置及びプログラム
JP2013155898A (ja) * 2012-01-27 2013-08-15 Nippon Steel & Sumitomo Metal Corp 蒸気圧力制御方法
JP2013164195A (ja) * 2012-02-10 2013-08-22 Nippon Steel & Sumitomo Metal Corp 蒸気圧力制御方法
JP2013181701A (ja) * 2012-03-01 2013-09-12 Nippon Steel & Sumitomo Metal Corp 蒸気圧力制御方法
JP2014126305A (ja) * 2012-12-27 2014-07-07 Hitachi Ltd ボイラ制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54152767A (en) * 1978-05-24 1979-12-01 Hitachi Ltd Process accomodation control method
US8135653B2 (en) * 2007-11-20 2012-03-13 Hitachi, Ltd. Power plant control device which uses a model, a learning signal, a correction signal, and a manipulation signal
JP5108644B2 (ja) * 2008-06-16 2012-12-26 バブコック日立株式会社 ボイラ制御装置ならびにボイラ制御方法
JP5251356B2 (ja) * 2008-08-21 2013-07-31 三浦工業株式会社 制御システム、制御システム用プログラム、燃焼制御方法及びボイラシステム
CN101799170B (zh) * 2010-03-18 2012-02-08 华北电力大学 燃煤锅炉燃料发热量实时校正方法
JP5534065B1 (ja) * 2013-02-28 2014-06-25 三浦工業株式会社 ボイラシステム
JP6204204B2 (ja) * 2014-01-20 2017-09-27 中国電力株式会社 ボイラー燃料投入量決定装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002023806A (ja) * 2000-07-12 2002-01-25 Hitachi Ltd プロセスの制御装置
JP2006200875A (ja) * 2004-12-22 2006-08-03 Nippon Steel Corp ボイラー燃料投入量の決定方法
JP2008008522A (ja) * 2006-06-27 2008-01-17 Nippon Steel Corp ボイラ燃料投入量の決定方法、ボイラ燃料制御装置及びプログラム
JP2013155898A (ja) * 2012-01-27 2013-08-15 Nippon Steel & Sumitomo Metal Corp 蒸気圧力制御方法
JP2013164195A (ja) * 2012-02-10 2013-08-22 Nippon Steel & Sumitomo Metal Corp 蒸気圧力制御方法
JP2013181701A (ja) * 2012-03-01 2013-09-12 Nippon Steel & Sumitomo Metal Corp 蒸気圧力制御方法
JP2014126305A (ja) * 2012-12-27 2014-07-07 Hitachi Ltd ボイラ制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111209515A (zh) * 2019-12-06 2020-05-29 华北电力科学研究院有限责任公司 一种自适应性的深度调峰负荷速率优化方法及装置

Also Published As

Publication number Publication date
AU2018270018B2 (en) 2023-04-06
AU2018270018A1 (en) 2019-12-12
JPWO2018212224A1 (ja) 2020-05-21
TWI672469B (zh) 2019-09-21
CN110832250B (zh) 2021-07-09
MY197403A (en) 2023-06-16
WO2018212224A1 (ja) 2018-11-22
TW201901083A (zh) 2019-01-01
JP6894503B2 (ja) 2021-06-30
KR102422056B1 (ko) 2022-07-18
CN110832250A (zh) 2020-02-21
KR20200029383A (ko) 2020-03-18

Similar Documents

Publication Publication Date Title
WO2018212224A1 (ja) ボイラ燃焼制御システム、およびボイラ燃焼制御方法
JP6544735B2 (ja) 改善された複合サイクルの制御のためのシステムおよび方法
JPS5920507A (ja) 蒸気発電システムに対する調整された制御方法および装置
KR102469420B1 (ko) 연료 삭감율 출력 시스템, 연료 삭감율 출력 방법 및 연료 삭감율 출력 프로그램
US20140260254A1 (en) Steam Turbine Power Plant
JP4522326B2 (ja) ボイラー燃料投入量の決定方法
JP5833851B2 (ja) グリッド周波数レート制限システム
CN110475949B (zh) 生成蒸汽涡轮机性能图
US20210286324A1 (en) Compensator, control system, compensation method, and program
WO2022208846A1 (ja) 超臨界圧貫流ボイラおよび超々臨界圧貫流ボイラ向けボイラ燃焼制御システム、およびボイラ燃焼制御方法
WO2022054193A1 (ja) ボイラ燃焼制御システム、およびボイラ燃焼制御方法
KR102107853B1 (ko) 주증기온도제어장치 및 주증기온도제어방법
CN107766632B (zh) 计及蓄热动态的火电机组低阶频率响应建模方法
JP2016023605A (ja) 燃料流量制御装置、燃焼器、ガスタービン、燃料流量制御方法及びプログラム
US20170131123A1 (en) Estimating system parameters from sensor measurements
JP2011231968A (ja) ボイラ性能評価装置及び方法
WO2018229845A1 (ja) 燃料消費量取得装置、燃料消費量取得方法、および燃料消費量取得プログラム
CN104854327A (zh) 气体燃料热量估计装置、气体燃料热量估计方法及程序
JP6668420B2 (ja) 送電電力量制御装置および分散型発電設備
JP2020085396A (ja) 燃料調整装置、燃料調整方法
Hatmi et al. Dynamic Performance of Load Frequency Control of Three Area System Using FOPID Controller with Transit Search Optimization.
KR20220147555A (ko) 발전소의 제어 파라미터를 최적화하기 위한 장치 및 이를 위한 방법
CN117193205A (zh) 基于负荷爬升率的火电机组运行控制方法、***及装置
CN116928892A (zh) 标定关系校正方法、热水器控制方法、***、设备和介质
JP2001154702A (ja) プラント制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17909995

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17909995

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP