WO2018211562A1 - 配線部材及び電力変換装置 - Google Patents

配線部材及び電力変換装置 Download PDF

Info

Publication number
WO2018211562A1
WO2018211562A1 PCT/JP2017/018212 JP2017018212W WO2018211562A1 WO 2018211562 A1 WO2018211562 A1 WO 2018211562A1 JP 2017018212 W JP2017018212 W JP 2017018212W WO 2018211562 A1 WO2018211562 A1 WO 2018211562A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
semiconductor element
wiring member
insulating partition
distance
Prior art date
Application number
PCT/JP2017/018212
Other languages
English (en)
French (fr)
Inventor
亮太 浜口
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/018212 priority Critical patent/WO2018211562A1/ja
Priority to US16/611,083 priority patent/US10937737B2/en
Priority to DE112017007541.6T priority patent/DE112017007541T5/de
Priority to JP2017548246A priority patent/JP6338790B1/ja
Publication of WO2018211562A1 publication Critical patent/WO2018211562A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5386Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/11Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/115Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation

Definitions

  • the present invention relates to a wiring member for electrically connecting semiconductor element modules to each other, and a power conversion device using the wiring member.
  • Patent Document 1 listed below discloses a power conversion device having a configuration in which semiconductor element modules are electrically connected to each other with a bus bar.
  • Patent Document 2 in a semiconductor element module having a package structure in which a plurality of sets of semiconductor switching elements are built in a mold case, a terminal block portion on which a control terminal formed on a side edge of the mold case is arranged is described.
  • the height and thickness dimension of the insulating partition are set according to international standards (hereinafter referred to as Non-Patent Document 1). It is disclosed that the setting is made in conformity with the spatial distance defined by “IEC 60077-1” as appropriate.
  • Patent Document 2 is effective for reducing the size of the semiconductor element module itself, but does not contribute to shortening the distance between the main terminals of the semiconductor element modules.
  • an insulation distance which is a spatial distance according to a voltage that can be applied to the main terminals, between the semiconductor element modules.
  • the insulation distance between the main terminals in semiconductor element modules has become a bottleneck that determines the size of the power converter.
  • the distance between the semiconductor element modules cannot be made smaller than the insulation distance, which has been a limitation on miniaturization of the power converter.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a wiring member that can realize that the distance between the main terminals in the semiconductor element modules is made smaller than the insulation distance.
  • the present invention provides a first main terminal formed in a first semiconductor element module to which a first potential is applied, and a second semiconductor element module.
  • the wiring member is formed and electrically connected to a second main terminal to which a second potential different from the first potential is applied.
  • the wiring member includes an insulating partition that is erected on the wiring member so as to block a line of sight between the first main terminal and the second main terminal.
  • the power converter can be reduced in size.
  • FIG. 1 is a circuit diagram showing a configuration example of a power conversion device according to a first embodiment.
  • the circuit diagram which shows the other structural example of the power converter device which concerns on Embodiment 1.
  • FIG. The top view which shows arrangement
  • FIG. FIG. 5 is a cross-sectional view taken along line VI-VI in FIG. 5 schematically showing a connection state between the wiring member and the semiconductor element module according to the first embodiment.
  • FIG. 10 is a diagram for explaining the effect of the wiring member different from FIG.
  • FIG. 1 is a circuit diagram illustrating a configuration example of the power conversion device according to the first embodiment.
  • FIG. 2 is a circuit diagram illustrating another configuration example of the power conversion device according to the first embodiment.
  • the power conversion device includes an input circuit 2 including at least a switch, a filter capacitor, and a filter reactor, and switching elements 4a1, 4a2, 5a1, 5a2, 6a1, 6a2, 4b1, 4b2, 5b1, Inverter circuit 3 having 5b2, 6b1, 6b2 and connecting at least one motor 8, switching elements 4a1, 4a2, 5a1, 5a2, 6a1, 6a2, 4b1, 4b2, 5b1, 5b2, 6b1, 6b2
  • a control unit 7 is provided for generating and outputting a pulse width modulation (hereinafter referred to as “PWM”) signal for controlling the pulse width modulation.
  • PWM pulse width modulation
  • An example of the motor 8 connected to the inverter circuit 3 is an induction motor or a synchronous motor.
  • One end of the input circuit 2 is connected to the overhead line 50 via the current collector 51, and the other end is connected to a rail 52 that applies a ground potential via a wheel 53.
  • DC power or AC power supplied from the overhead wire 50 is supplied to the input terminal of the input circuit 2 through the current collector 51, and power generated at the output terminal of the input circuit 2 is supplied to the inverter circuit 3. .
  • a switching element 4a1 that is a positive side switching element and a switching element 4b1 that is a negative side switching element are connected in series to form a U-phase first leg, and the switching element that is a positive side switching element 4a2 and switching element 4b2 which is a negative side switching element are connected in series to form a U-phase second leg.
  • the positive switching element is also referred to as a positive arm or an upper arm, and the negative switching element is also referred to as a negative arm or a lower arm.
  • the first leg of the U phase is represented by U1
  • the second leg of the U phase is represented by U2.
  • switching element 5a1 and switching element 5b1 are connected in series to form a V-phase first leg, and switching element 5a2 and switching element 5b2 are connected in series to form a V-phase second leg.
  • the switching element 6a1 and the switching element 6b1 are connected in series to form a W-phase first leg, and the switching element 6a2 and switching element 6b2 are connected in series to form a W-phase second leg.
  • the first leg of the V phase is represented by V1
  • the second leg of the V phase is represented by V2
  • the first leg of the W phase is represented by W1
  • the second leg of the W phase is represented by W2.
  • the inverter circuit 3 constitutes a three-phase inverter circuit in which the first and second legs in each phase are connected in parallel.
  • the switching elements 4a1, 4a2, 5a1, 5a2, 6a1, 6a2, 4b1, 4b2, 5b1, 5b2, 6b1, and 6b2 each include a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) with a built-in antiparallel diode or An IGBT (Insulated Gate Bipolar Transistor) is suitable.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • the control unit 7 performs PWM control of the switching elements 4a1, 4a2, 5a1, 5a2, 6a1, 6a2, 4b1, 4b2, 5b1, 5b2, 6b1, 6b2 of the inverter circuit 3 by the PWM signal.
  • the inverter circuit 3 converts the DC voltage applied from the input circuit 2 into an AC voltage having an arbitrary frequency and an arbitrary voltage and applies it to the motor 8 to drive the motor 8.
  • the switching element when the switching element is mounted as a chip, the yield decreases as the chip area increases. On the other hand, if the chip area is reduced, the yield when taking out from the wafer can be improved.
  • a switching element hereinafter referred to as “SiC element”
  • SiC element silicon carbide
  • the inverter circuit 3 of FIG. 1 in which the legs of each phase are configured in parallel is more than the inverter circuit 3A of FIG. 2 having a single leg for each phase. It is convenient for price reduction. In other words, in a large-capacity application such as a power conversion device for driving a railway vehicle, it is possible to realize a reduction in the price of the power conversion device by parallelizing the legs of each phase as shown in FIG. Become.
  • SiC is an example of a wide band gap semiconductor having a characteristic that the band gap is larger than that of silicon (Si).
  • the characteristics of a gallium nitride-based material, which is another example of a wide bandgap semiconductor, or a semiconductor formed using diamond also have many similarities to SiC. For this reason, the configuration in which the legs of each phase are arranged in parallel is effective for achieving both a large capacity and a low price even when a wide band gap semiconductor other than SiC is used.
  • FIG. 3 is a plan view showing the arrangement of each terminal in the semiconductor element module 12 used in the power conversion device according to the first embodiment.
  • FIG. 4 is a circuit diagram in which the semiconductor element module 12 shown in FIG. 3 is applied to the inverter circuit 3 shown in FIG.
  • the semiconductor element module 12 used in the power conversion device according to the first embodiment includes a pair of semiconductor switching elements connected in series inside the package 30 that is a module housing. Yes.
  • the long direction of the package 30 is the X-axis direction
  • the short direction of the package 30 is the Y-axis direction
  • the direction orthogonal to both the X-axis direction and the Y-axis direction is the Z-axis direction.
  • the package 30 is provided with a first terminal M1 and a second terminal M2 near one end face in the X-axis direction of the package 30, and a third terminal M3 near the other end face.
  • the first terminal M1 constitutes a positive DC terminal P which is one of main terminals in the semiconductor element module 12
  • the second terminal M2 constitutes a negative DC terminal N which is another main terminal in the semiconductor element module 12.
  • the third terminal M3 constitutes an AC terminal AC that is another main terminal in the semiconductor element module 12.
  • the semiconductor element module 12U1 applied to the U1 phase is reverse to the MOSFET 4a1s, which is an example of a transistor element, and a diode (hereinafter referred to as “FWD”) 4a1d that operates as a so-called flywheel diode (Free Wheeling Diode).
  • MOSFET 4a1s which is an example of a transistor element
  • FWD 4a1d that operates as a so-called flywheel diode (Free Wheeling Diode).
  • the switching element 4a1 and the switching element 4b1 are connected in series and accommodated in a package 30 that is a module housing, and constitutes a switching element pair in the semiconductor element module 12U1.
  • the semiconductor element module 12U2 applied to the U2 phase is configured similarly to the semiconductor element module 12U1.
  • the semiconductor element modules 12V1, 12V2, 12W1, and 12W2 applied to the V1 phase and the V2 phase, and the W1 phase and the W2 phase, respectively, are configured in the same manner as the semiconductor element module 12U1.
  • each of the semiconductor element modules 12U1, 12U2, 12V1, 12V2, 12W1, and 12W2 is a 2-in-1 module that accommodates two switching elements connected in series.
  • the drain that is the positive electrode of the MOSFET 4a1s is electrically connected to the first terminal M1
  • the source that is the negative electrode of the MOSFET 4b1s is electrically connected to the second terminal M2
  • the source that is the negative electrode of the MOSFET 4a1s and the positive electrode of the MOSFET 4b1s is electrically connected to the third terminal M3.
  • the first terminals M1 of the semiconductor element modules 12U1, 12U2, 12V1, 12V2, 12W1, 12W2 are electrically connected to the positive bus 11P drawn from the positive DC terminal P of the filter capacitor 10, and the semiconductor element modules 12U1, 12U2 , 12V1, 12V2, 12W1, 12W2 are electrically connected to the negative bus 11N drawn from the negative DC terminal N of the filter capacitor 10.
  • the filter capacitor 10 is a capacitor for accumulating DC power necessary for power conversion, and is a power supply source in the power conversion device.
  • the third terminal M3 of the semiconductor element module 12U1 and the third terminal M3 of the semiconductor element module 12U2 are electrically connected to form a U-phase AC terminal, and are electrically connected to the U-phase of the motor 8.
  • the third terminal M3 of the semiconductor element module 12V1 and the third terminal M3 of the semiconductor element module 12V2 are electrically connected to form a V-phase AC terminal, and are electrically connected to the V-phase of the motor 8.
  • the third terminal M3 of the semiconductor element module 12W1 and the third terminal M3 of the semiconductor element module 12W2 are electrically connected to form a W-phase AC terminal, and are electrically connected to the W-phase of the motor 8.
  • the semiconductor element modules 12U1, 12U2, 12V1, 12V2, 12W1, and 12W2 are mounted on the inverter circuit 3 and operate.
  • the inverter circuit 3 operates, the potential output from the positive DC terminal P of the filter capacitor 10 is applied to the first terminal M1 of each semiconductor element module, and the filter capacitor is applied to the second terminal M2 of each semiconductor element module.
  • the potential output from the 10 negative DC terminals N is applied.
  • the third terminal M3 in each semiconductor element module has a potential output from the positive DC terminal P of the filter capacitor 10 or a negative DC terminal of the filter capacitor 10 via the switching element that is turned on in accordance with the switching operation of the switching element.
  • One of the potentials output by N is applied.
  • MOSFETs are illustrated as the switching elements 4a1 and 4b1 mounted on the semiconductor element module 12U1, but other elements may be used. Examples of switching elements other than MOSFETs include IGBT or IPM (Intelligent Power Module).
  • the package 30 of the semiconductor element module 12 is formed in a horizontally long shape.
  • the first terminal M1 is provided with two electrodes 35, and each electrode 35 is provided with a fastening point 32P.
  • the second terminal M2 is provided with two electrodes 40, and each electrode 40 is provided with a fastening point 32N.
  • the third terminal M3 is provided with three electrodes 37, and each electrode 37 is provided with a fastening point 32AC.
  • the number of fastening points 32P on the electrode 35 of the first terminal M1 and the number of fastening points 32N of the electrode 40 on the second terminal M2 are two, and the number of fastening points 32AC on the electrode 37 of the third terminal M3.
  • the number is three, the number of these fastening points may be changed according to the current capacity. That is, the number of the fastening points 32P at the first terminal M1 and the number of the fastening points 32N at the second terminal M2 may be 3 or more, respectively. Further, the number of fastening points 32AC in the third terminal M3 may be two or four or more.
  • the two electrodes 35 in the first terminal M1 are arranged in the Y axis direction of the package 30 and spaced apart from each other on the short side portion 33 on one side of the package 30 in the X axis direction.
  • the two electrodes 40 in the second terminal M2 are arranged in parallel with the arrangement of the two electrodes 35 in the first terminal M1 and on the inner side of the package 30, that is, on the center side with respect to the first terminal M1.
  • the three electrodes 37 in the third terminal M3 are arranged in the Y axis direction of the package 30 and spaced apart from each other on the short side portion 34 on the other side in the X axis direction of the package 30.
  • the electrodes of the first terminal M1, the second terminal M2, and the third terminal M3 are arranged such that the Y-axis direction center of the short side portion 33 of the package 30 and the Y-axis direction of the short side portion 34 of the package 30 are arranged. It is arrange
  • the one electrode 35 in the first terminal M1 and the one electrode 40 in the second terminal M2 are arranged apart from each other by a distance d in the X-axis direction.
  • the distance d is a distance necessary for insulation, that is, an insulation distance.
  • the distance d conforms to IEC 60077-1 according to the difference between the voltage applied to the first terminal M1 and the voltage applied to the second terminal M2, that is, the potential difference between the first terminal M1 and the second terminal M2. Set to value.
  • the two fastening points 32P in the first terminal M1 are arranged so that one side 35a on the outer side at the fastening point 32P is aligned with one side 33a in the short side 33 on one side of the package 30. Further, a pedestal portion 36 for mounting the three fastening points 32AC in the third terminal M3 is provided in the short side portion 34 on the other side of the package 30. The three fastening points 32AC in the third terminal M3 are arranged so that the outer side 37a of the fastening point 32AC is aligned with the longitudinal side 36a of the pedestal portion 36.
  • the first terminal M1 is arranged on the outer side of the package 30 and the second terminal M2 is arranged on the inner side of the package 30, but these relations may be reversed. That is, the second terminal M2 may be disposed on the outer side of the package 30, and the first terminal M1 may be disposed on the inner side of the package 30.
  • FIG. 5 is a plan view schematically showing an arrangement example of two semiconductor element modules in the power conversion device of the first embodiment.
  • 6 is a cross-sectional view taken along the line VI-VI in FIG. 5 schematically showing the connection state between the laminated bus bar, which is the wiring member according to the first embodiment, and the semiconductor element module.
  • FIG. 7 is a plan view when viewed from the direction of arrow A in FIG.
  • FIG. 8 is a diagram for explaining the effect of the wiring member according to the first embodiment.
  • FIG. 9 is a diagram for explaining the effect of the wiring member different from FIG.
  • FIG. 5 shows a semiconductor element module 12W1 constituting the W1 phase and a semiconductor element module 12W constituting the W2 phase.
  • the first terminal M1 forming the positive DC terminal in the semiconductor element modules 12W1 and 12W2 is expressed as “P”
  • the second terminal M2 forming the negative DC terminal is expressed as “N”
  • the AC terminal is
  • the third terminal M3 formed is denoted as “AC”.
  • the semiconductor element modules 12W1 and 12W2 are arranged so that the positive DC terminal P in the semiconductor element module 12W1 and the AC terminal AC in the semiconductor element module 12W2 face each other.
  • the semiconductor element modules 12W1 and 12W2 are semiconductor element modules of the same phase. That is, the positive DC terminal P and the AC terminal AC in the two semiconductor element modules constituting the same phase semiconductor element module are arranged so as to face each other.
  • illustration of U-phase and V-phase semiconductor element modules is omitted, but they are arranged in the same manner as the W-phase semiconductor element modules.
  • the W-phase semiconductor element modules 12W1 and 12W2 are set as a W-phase semiconductor element module group
  • the arrangement direction of the semiconductor element modules is the X-axis direction that is the same direction as the semiconductor element modules 12W1 and 12W2, and the U-phase semiconductor element module group and the V-phase in the Y-axis direction orthogonal to the arrangement direction of the semiconductor element modules 12W1 and 12W2 It is conceivable to arrange a group of semiconductor element modules.
  • FIG. 6 schematically shows a state in which the positive DC terminals P, the negative DC terminals N, and the AC terminals AC in the semiconductor element modules 12W1 and 12W2 are electrically connected by the wiring member 44.
  • the wiring member 44 has a flat plate shape.
  • An example of the wiring member 44 is a laminated bus bar.
  • An insulating partition 45 is erected on the wiring member 44 in a direction orthogonal to the extending direction of the wiring member 44.
  • the insulating partition 45 has a flat plate shape. As shown in FIGS. 6 and 7, the insulating partition 45 is interposed between the positive DC terminal P in the semiconductor element module 12W1 and the AC terminal AC in the semiconductor element module 12W2, and the line of sight between these terminals is defined. It is arranged to block.
  • the insulating partition 45 may be made of any material as long as it is an insulator. When a laminated bus bar is used for the wiring member 44, the insulating partition 45 can be integrally formed with the wiring member 44 if the material of the insulating partition 45 is a laminate material. Further, the insulating partition wall 45 is not limited to the illustrated flat plate shape, and may have any shape.
  • the position where the insulating partition 45 is arranged in the X-axis direction of the wiring member 44 is arbitrary. That is, as long as it is between the semiconductor element module 12W1 and the semiconductor element module 12W2, the insulating partition 45 may be disposed at any position. Further, the length L1 of the insulating partition 45 in the Z-axis direction may be larger than the thickness of the positive DC terminal P in the Z-axis direction and the thickness of the AC terminal AC in the Z-axis direction. The direction in which the insulating partition 45 is formed upright may not be 90 degrees with respect to the extending direction of the wiring member 44, and may be formed inclined. In FIG.
  • the length of the insulating partition 45 in the depth direction that is, the length L2 along the short side direction of the semiconductor element modules 12W1 and 12W2 is shielded so that the positive DC terminal P and AC terminal AC cannot be seen from each other. It suffices to have a possible length.
  • the positive DC terminal P in the semiconductor element module 12W1 is a main terminal to which a positive electrode potential that is a first potential output from the filter capacitor 10 is applied.
  • the AC terminal AC in the semiconductor element module 12W2 has the positive potential of the filter capacitor 10 and the output of the filter capacitor 10 according to the on / off of one and the other switching elements constituting the switching element pair.
  • 2 is a main terminal to which a negative electrode potential of 2 is appropriately applied. Therefore, there is a relationship between the positive DC terminal P and the AC terminal AC that are terminals that can generate a high voltage potential difference.
  • terminals that can generate a high voltage potential difference are called “high voltage different potential terminals”, and one of the high voltage different potential terminals is called a “first main terminal”.
  • the other may be referred to as a “second main terminal”.
  • first semiconductor element module When one semiconductor element module corresponding to the semiconductor element module 12W1 is referred to as a “first semiconductor element module” and the other semiconductor element module corresponding to the semiconductor element module 12W2 is referred to as a “second semiconductor element module”.
  • the relationship between the negative DC terminal N and the AC terminal AC is also between the high voltage different potential terminals
  • the relationship between the positive DC terminal P and the negative DC terminal N is also between the high voltage different potential terminals.
  • FIG. 8 the site
  • a1 Distance between positive DC terminal P of semiconductor element module 12W1 and the top of insulating partition 45 a2: Distance between AC terminal AC of semiconductor element module 12W2 and the top of insulating partition 45 b: Semiconductor element module 12W1, The height of the insulating partition 45 measured from the main surface of 12W2 c1: The distance between the end of the positive DC terminal P in the wiring member 44 and the base of the insulating partition 45 c2: The end of the AC terminal AC in the wiring member 44 Distance between the base of the insulating partition 45 e1: Distance between the semiconductor element module 12W1 and the semiconductor element module 12W2
  • the main surfaces of the semiconductor element modules 12W1 and 12W2 are electrode mounting surfaces of the semiconductor element modules 12W1 and 12W2.
  • the base of the insulating partition 45 is an attachment portion of the insulating partition 45 in the wiring member 44.
  • the length L1 of the insulating partition 45 defined in FIG. 6 is larger than the thickness of the positive electrode DC terminal P and the thickness of the AC terminal AC, the relationship of “a1 + a2> c1 + c2” occurs. Thereby, the inter-module distance e1 can be made smaller than the insulation distance a1 + a2.
  • the relationship that “the length L1 of the insulating partition 45 is larger than the thickness of the positive DC terminal P and the AC terminal AC” is that the height b of the insulating partition 45 defined in FIG. 8 is “b> 0”. It may be paraphrased that there is.
  • the shortening rate k1 is an index indicating a measure of how much the inter-module distance can be reduced with respect to the insulation distance. A smaller value of the shortening rate k1 means that there is a shortening effect.
  • the value of the shortening rate k1 is obtained. You can see that it gets smaller. However, in reality, it is necessary to consider factors such as dimensional accuracy when manufacturing the insulating partition 45 and an insulating effect due to air interposed between the insulating partition 45 and the module housing. In any of the setting examples 1 to 3, the effect of shortening the inter-module distance with respect to the insulation distance can be obtained. For this reason, it can be said that it is a preferred embodiment to determine the position of the insulating partition 45 in consideration of factors such as dimensional accuracy when manufacturing the insulating partition 45 and required insulation distance.
  • the calculated values when the height b of the insulating partition 45 is higher than the setting examples 1 to 3 are shown.
  • the height b of the insulating partition wall 45 is changed from “10 mm” to “12 mm” under the conditions of the setting examples 1 to 3 described above.
  • the said setting example is an illustration and the height of the insulation partition 45 is not restricted to the thing of the said setting example.
  • the distance between the main terminals in the semiconductor element modules can be made smaller than the insulation distance, so that the power converter can be miniaturized.
  • FIG. 10 is a diagram for explaining the effect of the wiring member according to the second embodiment.
  • FIG. 11 is a diagram for explaining the effect of the wiring member different from that in FIG. 10.
  • one insulating partition 45 is formed in a direction orthogonal to the extending direction of the wiring member 44.
  • two insulating partitions 45A and 45B are formed. This is a structural difference.
  • the insulating partition 45A is disposed along the side portion 33b of the semiconductor element module 12W1
  • the insulating partition 45B is disposed along the side portion 33c of the semiconductor element module 12W2.
  • FIG. 10 shows a case where the insulating partition walls 45A and 45B are arranged at positions symmetrical with respect to the center line K2 drawn between the semiconductor element module 12W1 and the semiconductor element module 12W2. Illustrated.
  • a1 Distance between top of insulating partition 45A and top of insulating partition 45B
  • a2 Distance between positive electrode DC terminal P of semiconductor element module 12W1 and top of insulating partition 45A, and AC terminal AC of semiconductor element module 12W2 B: height of insulating partition walls 45A and 45B measured from the main surface of semiconductor element modules 12W1 and 12W2 c: end of positive DC terminal P in wiring member 44 and insulating partition wall 45A And the distance between the end of the AC terminal AC in the wiring member 44 and the base of the insulating partition wall 45B.
  • ⁇ Setting example 7> (conditions) ⁇ Insulation distance a1 + 2 ⁇ a2: 40mm ⁇ Length of a1 in the insulation distance: 10 mm -Length of a2 in the insulation distance: 15mm ⁇ Insulation partition wall 45A, 45B height b: 5 mm (Calculated values) ⁇ Distance between modules e3: 38.3 mm -Length of the module distance: 14.15 mm ⁇ Reduction rate k1: 0.84
  • ⁇ Setting example 8> (conditions) ⁇ Insulation distance a1 + 2 ⁇ a2: 40mm ⁇ Length of a1 in the insulation distance: 10 mm -Length of a2 in the insulation distance: 15mm ⁇ Insulation partition wall 45A, 45B height b: 10 mm (Calculated values) ⁇ Distance between modules e3: 32.4 mm ⁇ Length of c in the distance between modules: 11.2 mm ⁇ Reduction rate k1: 0.81
  • ⁇ Setting example 9> (conditions) ⁇ Insulation distance a1 + 2 ⁇ a2: 40mm ⁇ Length of a1 in the insulation distance: 30 mm -Length of a2 in the insulation distance: 5mm ⁇ Insulation partition wall 45A, 45B height b: 5 mm -Position of insulating partition 45A: left end between positive DC terminal P and AC terminal AC-Position of insulating partition 45B: right end between positive DC terminal P and AC terminal AC (calculated value) ⁇ Distance between modules e4: 30.0mm ⁇ Reduction rate k1: 0.75
  • the present invention is not limited to this.
  • Application to a power conversion device using at least two semiconductor element modules is possible. Examples of such a power converter include a half-bridge inverter circuit, a single-phase inverter circuit, a chopper circuit, a single-phase converter circuit, and a three-phase converter circuit.
  • the configuration shown in the above embodiment shows an example of the content of the present invention, and can be combined with another known technique, and can be combined without departing from the gist of the present invention. It is also possible to omit or change a part of.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Inverter Devices (AREA)

Abstract

半導体素子モジュール(12W1)に形成され、正極電位が印加される正極直流端子(P)と、半導体素子モジュール(12W2)に形成され、正極電位と負極電位とが適宜に印加される交流端子(AC)との間を電気的に接続する配線部材(44)であって、正極直流端子(P)と交流端子(AC)との間の見通し線を遮るように、配線部材(44)に起立形成される絶縁隔壁(45)を備える。

Description

配線部材及び電力変換装置
 本発明は、半導体素子モジュール同士を電気的に接続するための配線部材、及び当該配線部材を使用した電力変換装置に関する。
 下記特許文献1には、半導体素子モジュール同士がブスバーにて電気的に接続される構成の電力変換装置が開示されている。
 また、下記特許文献2には、複数組の半導体スイッチング素子をモールドケースに内蔵したパッケージ構造の半導体素子モジュールにおいて、当該モールドケースの側縁に形成された制御端子を配置した端子台部に対して、各組の半導体スイッチング素子に対応する制御端子のグループ相互間にリブ状の絶縁隔壁を起立形成した上で、絶縁隔壁の高さ、厚さ寸法を、下記非特許文献1の国際規格(以下、適宜「IEC60077-1」と表記)で規定されている空間距離に準拠して設定することが開示されている。
国際公開第2012/108048号 特開2012-5301号公報
IEC60077-1「鉄道分野-鉄道車両用電気品 第1部:一般使用条件及び一般規則」
 上記の特許文献2に示される技術は、半導体素子モジュール自体の小型化には有効であるが、半導体素子モジュール同士における主端子間の距離の短縮化に寄与するものではない。複数の半導体素子モジュールを用いて電力変換装置を構成する場合、半導体素子モジュール同士間においては、主端子に印加され得る電圧に応じた空間距離である絶縁距離を確保する必要がある。このため、半導体素子モジュール同士における主端子間の絶縁距離が電力変換装置のサイズを決めるボトルネックとなっていた。その結果、半導体素子モジュール同士間の距離を絶縁距離よりも小さくすることはできず、電力変換装置の小型化の制約となっていた。
 本発明は、上記に鑑みてなされたものであって、半導体素子モジュール同士における主端子間の距離を絶縁距離よりも小さく構成することを実現できる配線部材を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、第1の半導体素子モジュールに形成され、第1の電位が印加される第1の主端子と、第2の半導体素子モジュールに形成され、前記第1の電位とは異なる第2の電位が印加される第2の主端子との間を電気的に接続する配線部材である。配線部材は、第1の主端子と第2の主端子との間の見通し線を遮るように、配線部材に起立形成される絶縁隔壁を備える。
 本発明によれば、半導体素子モジュール同士における主端子間の距離を絶縁距離よりも小さくできるので、電力変換装置の小型化が図れるという効果を奏する。
実施の形態1に係る電力変換装置の構成例を示す回路図 実施の形態1に係る電力変換装置の他の構成例を示す回路図 実施の形態1に係る電力変換装置に用いる半導体素子モジュールにおける各端子の配置を示す平面図 図3に示した半導体素子モジュールを図1に示したインバータ回路に適用した回路図 実施の形態1の電力変換装置における2つの半導体素子モジュールの配置例を模式的に示す平面図 実施の形態1に係る配線部材と半導体素子モジュールとの接続状態を模式的に示す図5のVI-VI線断面図 図6における矢視A方向から視認したときの平面図 実施の形態1に係る配線部材による効果の説明に供する図 図6とは異なる配線部材による効果の説明に供する図 実施の形態2に係る配線部材による効果の説明に供する図 図10とは異なる配線部材による効果の説明に供する図
 以下に添付図面を参照し、本発明の実施の形態に係る配線部材及び電力変換装置について詳細に説明する。なお、以下の実施の形態により、本発明が限定されるものではない。また、以下の実施の形態では、鉄道車両駆動用の電力変換装置を例示して説明するが、他の用途への適用を除外する趣旨ではない。また、添付図面においては、理解の容易のため、各部材の縮尺が実際とは異なる場合がある。各図面間においても同様である。
実施の形態1.
 図1は、実施の形態1に係る電力変換装置の構成例を示す回路図である。図2は、実施の形態1に係る電力変換装置の他の構成例を示す回路図である。
 図1において、実施の形態1に係る電力変換装置は、少なくともスイッチ、フィルタコンデンサ、フィルタリアクトルを含む入力回路2と、スイッチング素子4a1,4a2,5a1,5a2,6a1,6a2,4b1,4b2,5b1,5b2,6b1,6b2を具備し、少なくとも1台のモータ8を接続してなるインバータ回路3と、スイッチング素子4a1,4a2,5a1,5a2,6a1,6a2,4b1,4b2,5b1,5b2,6b1,6b2を制御するためのパルス幅変調(Pulse Width Modulation:以下「PWM」と表記)信号を生成して出力する制御部7を備える。インバータ回路3に接続されるモータ8の一例は、誘導電動機又は同期電動機である。
 入力回路2の一端は集電装置51を介して架線50に接続され、他端は車輪53を介して大地電位を与えるレール52に接続されている。架線50から供給される直流電力又は交流電力は、集電装置51を介して入力回路2の入力端に供給されると共に、入力回路2の出力端に生じた電力がインバータ回路3に供給される。
 インバータ回路3において、正側スイッチング素子であるスイッチング素子4a1と、負側スイッチング素子であるスイッチング素子4b1とは直列に接続されてU相の第1レグを構成し、正側スイッチング素子であるスイッチング素子4a2と、負側スイッチング素子であるスイッチング素子4b2とは直列に接続されてU相の第2レグを構成する。正側スイッチング素子は正側アーム又は上側アームとも称され、負側スイッチング素子は負側アーム又は下側アームとも称される。また、U相の第1レグをU1で表し、U相の第2レグをU2で表す。
 V相及びW相のレグも同様である。以下同様に説明すると、スイッチング素子5a1とスイッチング素子5b1とが直列に接続されてV相の第1レグを構成し、スイッチング素子5a2とスイッチング素子5b2とが直列に接続されてV相の第2レグを構成する。また、スイッチング素子6a1とスイッチング素子6b1とが直列に接続されてW相の第1レグを構成し、スイッチング素子6a2とスイッチング素子6b2とが直列に接続されてW相の第2レグを構成する。なお、U相と同様に、V相の第1レグをV1で表し、V相の第2レグをV2で表し、W相の第1レグをW1で表し、W相の第2レグをW2で表す。
 このようにして、インバータ回路3は、各相におけるそれぞれの第1レグ及び第2レグが並列に接続された3相インバータ回路を構成する。なお、スイッチング素子4a1,4a2,5a1,5a2,6a1,6a2,4b1,4b2,5b1,5b2,6b1,6b2には、逆並列ダイオードが内蔵されたMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)又はIGBT(Insulated Gate Bipolar Transistor)が好適である。
 制御部7は、PWM信号によってインバータ回路3のスイッチング素子4a1,4a2,5a1,5a2,6a1,6a2,4b1,4b2,5b1,5b2,6b1,6b2をPWM制御する。制御部7のPWM制御により、インバータ回路3は、入力回路2から印加された直流電圧を任意周波数及び任意電圧の交流電圧に変換してモータ8に印加し、モータ8を駆動する。
 ところで、スイッチング素子をチップとして実装する場合、チップ面積を大きくすると歩留りが悪化する。一方、チップ面積を小さくすると、ウェハから取り出す際の歩留まりを向上させることができる。特に、炭化珪素(Silicon Carbide:SiC)を用いて形成されるスイッチング素子(以下「SiC素子」と呼ぶ)を使用する場合には、ウェハが高価であることから、チップの低価格化のためにはチップ面積を小さくすることが望ましいとされる。このため、SiC素子を用いる場合には、相ごとに単一のレグを有する図2のインバータ回路3Aよりも、各相のレグを2並列で構成している図1のインバータ回路3の方が低価格化には好都合である。すなわち、鉄道車両駆動用の電力変換装置のような大容量のアプリケーションにおいては、図1のように各相のレグを並列化することにより、電力変換装置の低価格化を実現することが可能となる。
 なお、SiCは、珪素(Silicon:Si)よりもバンドギャップが大きいという特性を有するワイドバンドギャップ半導体の一例である。ワイドバンドギャップ半導体の他の例である窒化ガリウム系材料、又はダイヤモンドを用いて形成される半導体の特性もSiCに類似した点が多い。このため、各相のレグを並列化する構成は、SiC以外の他のワイドバンドギャップ半導体を用いる場合にも、大容量化及び低価格化の両立には効果的である。
 図3は、実施の形態1に係る電力変換装置に用いる半導体素子モジュール12における各端子の配置を示す平面図である。図4は、図3に示した半導体素子モジュール12を図1に示したインバータ回路3に適用した回路図である。
 実施の形態1に係る電力変換装置に用いる半導体素子モジュール12は、図3では図示していないが、モジュール筐体であるパッケージ30の内部に、直列接続された一対の半導体スイッチング素子を具備している。
 図3では、左手系の座標軸において、パッケージ30の長手方向をX軸方向とし、パッケージ30の短手方向をY軸方向とし、X軸方向とY軸方向の双方に直交する方向をZ軸方向とする。図3に示すように、パッケージ30には、パッケージ30のX軸方向における一方の端面寄りに、第1端子M1及び第2端子M2が設けられ、他方の端面寄りに第3端子M3が設けられている。第1端子M1は半導体素子モジュール12における主端子の一つである正極直流端子Pを構成し、第2端子M2は半導体素子モジュール12における主端子の他の一つである負極直流端子Nを構成し、第3端子M3は、半導体素子モジュール12における主端子の他の一つである交流端子ACを構成する。
 図4において、U1相に適用される半導体素子モジュール12U1は、トランジスタ素子の例示であるMOSFET4a1sと、いわゆるフライホイールダイオード(Free Wheeling Diode)として動作するダイオード(以下「FWD」と表記)4a1dとが逆並列に接続されたスイッチング素子4a1と、MOSFET4b1sとFWD4b1dとが逆並列に接続されたスイッチング素子4b1とを有する。スイッチング素子4a1とスイッチング素子4b1とは直列に接続され、モジュール筐体であるパッケージ30内に収容され、半導体素子モジュール12U1におけるスイッチング素子対を構成している。U2相に適用される半導体素子モジュール12U2も、半導体素子モジュール12U1と同様に構成される。また、V1相及びV2相、並びにW1相及びW2相のそれぞれに適用される半導体素子モジュール12V1,12V2,12W1,12W2も、半導体素子モジュール12U1と同様に構成される。このように、半導体素子モジュール12U1,12U2,12V1,12V2,12W1,12W2のそれぞれは、直列接続された2つのスイッチング素子が収容された2in1モジュールである。
 また、MOSFET4a1sの正極であるドレインは第1端子M1に電気的に接続され、MOSFET4b1sの負極であるソースは第2端子M2に電気的に接続され、MOSFET4a1sの負極であるソース及びMOSFET4b1sの正極であるドレインは第3端子M3に電気的に接続される。半導体素子モジュール12U1,12U2,12V1,12V2,12W1,12W2の第1端子M1は、フィルタコンデンサ10の正極直流端子Pから引き出された正極側母線11Pに電気的に接続され、半導体素子モジュール12U1,12U2,12V1,12V2,12W1,12W2の第2端子M2は、フィルタコンデンサ10の負極直流端子Nから引き出された負極側母線11Nに電気的に接続される。なお、フィルタコンデンサ10は、電力変換に必要な直流電力を蓄積するコンデンサであり、電力変換装置における電力供給源である。
 また、半導体素子モジュール12U1の第3端子M3と半導体素子モジュール12U2の第3端子M3とは電気的に接続されてU相交流端子を構成し、モータ8のU相に電気的に接続される。半導体素子モジュール12V1の第3端子M3と半導体素子モジュール12V2の第3端子M3とは電気的に接続されてV相交流端子を構成し、モータ8のV相に電気的に接続される。半導体素子モジュール12W1の第3端子M3と半導体素子モジュール12W2の第3端子M3とは電気的に接続されてW相交流端子を構成し、モータ8のW相に電気的に接続される。
 上述の通り、半導体素子モジュール12U1,12U2,12V1,12V2,12W1,12W2は、インバータ回路3に搭載されて動作する。インバータ回路3が動作するとき、各半導体素子モジュールにおける第1端子M1には、フィルタコンデンサ10の正極直流端子Pが出力する電位が印加され、各半導体素子モジュールにおける第2端子M2には、フィルタコンデンサ10の負極直流端子Nが出力する電位が印加される。また、各半導体素子モジュールにおける第3端子M3には、スイッチング素子のスイッチング動作に従い、オン動作したスイッチング素子を介して、フィルタコンデンサ10の正極直流端子Pが出力する電位又はフィルタコンデンサ10の負極直流端子Nが出力する電位の何れかが印加される。
 なお、図4では、半導体素子モジュール12U1に搭載されるスイッチング素子4a1,4b1として、MOSFETを例示しているが、MOSFET以外であってもよい。MOSFET以外のスイッチング素子としは、IGBT又はIPM(Intelligent Power Module)が例示される。
 図3に戻り、半導体素子モジュール12における各端子の構成について説明する。半導体素子モジュール12のパッケージ30は、横長形状に形成されている。第1端子M1には、2つの電極35が設けられ、それぞれの電極35には締結点32Pが設けられている。第2端子M2には、2つの電極40が設けられ、それぞれの電極40には締結点32Nが設けられている。第3端子M3には、3つの電極37が設けられ、それぞれの電極37には、締結点32ACが設けられている。このように、第1端子M1、第2端子M2及び第3端子M3の各電極には、複数の締結点が設けられているので、モジュール内でのチップ間の分流がよくなり、モジュール内での発熱の偏りを小さくできるという利点がある。なお、図3では、第1端子M1の電極35における締結点32Pの数、及び第2端子M2における電極40の締結点32Nの数を2とし、第3端子M3の電極37における締結点32ACの数を3としているが、これらの締結点の数は電流容量に応じて変更してもよい。すなわち、第1端子M1における締結点32P及び第2端子M2における締結点32Nの数は、それぞれが3以上であってもよい。また、第3端子M3における締結点32ACの数は、2であってもよいし、4以上であってもよい。
 第1端子M1における2つの電極35は、パッケージ30におけるX軸方向の一方側の短辺部33において、パッケージ30のY軸方向に並び且つ離間して配列されている。第2端子M2における2つの電極40は、第1端子M1における2つの電極35の並びと平行で、且つ、第1端子M1よりもパッケージ30の内方側すなわち中央部側に配列されている。第3端子M3における3つの電極37は、パッケージ30におけるX軸方向の他方側の短辺部34において、パッケージ30のY軸方向に並び且つ離間して配列されている。これらの配列により、第1端子M1、第2端子M2及び第3端子M3における各電極は、パッケージ30の短辺部33のY軸方向の中心と、パッケージ30の短辺部34のY軸方向の中心とを結ぶ中心線K1に対して、線対称の位置に配置される。
 第1端子M1における1つの電極35と、第2端子M2における1つの電極40とは、X軸方向に距離dだけ離間して配置されている。距離dは、絶縁に必要な距離すなわち絶縁距離である。距離dは、第1端子M1に印加される電圧と第2端子M2に印加される電圧との差すなわち第1端子M1と第2端子M2との間の電位差に応じたIEC60077-1に準拠した値に設定する。
 第1端子M1における2つの締結点32Pは、締結点32Pにおける外方側の一辺35aが、パッケージ30の一方側の短辺部33における一辺33aに沿うように寄せられて配置されている。さらに、パッケージ30の他方側の短辺部34では、第3端子M3における3つの締結点32ACを搭載するための台座部36が設けられている。第3端子M3における3つの締結点32ACは、締結点32ACにおける外方側の一辺37aが、台座部36における長手方向の一辺36aに沿うように寄せられて配置されている。
 第1端子M1における2つの電極35及び第3端子M3における3つの電極37を上記のように構成することにより、半導体素子モジュール12の筐体であるパッケージ30が大きくなるのが抑制され、また、パッケージ30内に収容する半導体素子の搭載面積を確保することが可能となる。
 なお、図3では、第1端子M1をパッケージ30の外方側に配置し、第2端子M2をパッケージ30の内方側に配置しているが、これらの関係を逆にしてもよい。すなわち、第2端子M2をパッケージ30の外方側に配置し、第1端子M1をパッケージ30の内方側に配置してもよい。
 次に、実施の形態1に係る配線部材及び電力変換装置における要部の構成について、図5から図9の図面を参照して説明する。図5は、実施の形態1の電力変換装置における2つの半導体素子モジュールの配置例を模式的に示す平面図である。図6は、実施の形態1に係る配線部材であるラミネートブスバーと半導体素子モジュールとの接続状態を模式的に示す図5のVI-VI線断面図である。図7は、図6における矢視A方向から視認したときの平面図である。図8は、実施の形態1に係る配線部材による効果の説明に供する図である。図9は、図6とは異なる配線部材による効果の説明に供する図である。
 図5では、W1相を構成する半導体素子モジュール12W1と、W2相を構成する半導体素子モジュール12Wとを示している。また、図5では、半導体素子モジュール12W1,12W2における正極直流端子を成す第1端子M1を“P”と表記し、負極直流端子を成す第2端子M2を“N”と表記し、交流端子を成す第3端子M3を“AC”と表記している。
 図5において、半導体素子モジュール12W1,12W2は、半導体素子モジュール12W1における正極直流端子Pと、半導体素子モジュール12W2における交流端子ACとが向かい合わせとなるように配置されている。ここで、半導体素子モジュール12W1,12W2は、同一相の半導体素子モジュールである。すなわち、同一相の半導体素子モジュールを構成する2つの半導体素子モジュールにおける正極直流端子Pと交流端子ACとが向かい合うように配置されている。図5では、U相及びV相の半導体素子モジュールの図示は省略しているが、W相の半導体素子モジュールと同様に配置される。一例を挙げると、W相の半導体素子モジュール12W1,12W2をW相半導体素子モジュール群とするとき、U相半導体素子モジュール群及びV相半導体素子モジュール群においては、各半導体素子モジュール群内における2つの半導体素子モジュールの配列方向は半導体素子モジュール12W1,12W2と同方向であるX軸方向とし、且つ、半導体素子モジュール12W1,12W2の配列方向に直交するY軸方向にU相半導体素子モジュール群及びV相半導体素子モジュール群を配列することが考えられる。
 図6には、半導体素子モジュール12W1,12W2における正極直流端子P同士、負極直流端子N同士、及び交流端子AC同士が、配線部材44によって電気的に接続される様子が模式的に示されている。配線部材44は、平板形状を成している。配線部材44の一例は、ラミネートブスバーである。配線部材44には、配線部材44の延在方向に対して直交する方向に絶縁隔壁45が起立形成されている。絶縁隔壁45は、平板形状を成している。絶縁隔壁45は、図6及び図7に示されるように、半導体素子モジュール12W1における正極直流端子Pと、半導体素子モジュール12W2における交流端子ACとの間に介在し、これらの端子間の見通し線を遮るように配置されている。絶縁隔壁45の材質は、絶縁体であれば、どのような材質のものを用いてもよい。なお、配線部材44にラミネートブスバーを用いる場合、絶縁隔壁45の材質がラミネート材であれば、絶縁隔壁45を配線部材44と共に一体形成することが可能である。また、絶縁隔壁45は、図示の平板形状には限らず、どのような形状のものを用いてもよい。
 図6において、配線部材44のX軸方向における絶縁隔壁45が配置される位置は任意である。すなわち、半導体素子モジュール12W1と半導体素子モジュール12W2との間であれば、絶縁隔壁45を何れの位置に配置してもよい。また、絶縁隔壁45のZ軸方向における長さL1は、正極直流端子PのZ軸方向の厚み及び交流端子ACのZ軸方向の厚みよりも大きければよい。絶縁隔壁45が起立形成される方向は、配線部材44の延在方向に対して90度でなくてもよく、傾いて形成されていてもよい。また、図7において、絶縁隔壁45の奥行方向の長さ、すなわち半導体素子モジュール12W1,12W2における短辺方向に沿う長さL2は、正極直流端子P及び交流端子ACが相互に見通せないように遮蔽できる長さを有していればよい。
 鉄道車両駆動のアプリケーションにおいて、半導体素子モジュール12W1における正極直流端子Pは、フィルタコンデンサ10が出力する第1の電位である正極電位が印加される主端子である。これに対して、半導体素子モジュール12W2における交流端子ACは、スイッチング素子対を構成する一方及び他方のスイッチング素子のオン又はオフに応じて、フィルタコンデンサ10の正極電位と、フィルタコンデンサ10が出力する第2の電位である負極電位とが適宜に印加される主端子である。従って、正極直流端子Pと交流端子ACとの間には、高電圧の電位差が発生し得る端子同士であるという関係がある。以降の説明において、高電圧の電位差が発生し得る端子同士を「高電圧異電位端子」と呼び、高電圧異電位端子の一方を「第1の主端子」と呼び、高電圧異電位端子の他方を「第2の主端子」と呼ぶ場合がある。また、半導体素子モジュール12W1に相当する一方の半導体素子モジュールを「第1の半導体素子モジュール」と呼び、半導体素子モジュール12W2に相当する他方の半導体素子モジュールを「第2の半導体素子モジュール」と呼ぶ場合がある。なお、負極直流端子Nと交流端子ACとの関係も高電圧異電位端子同士であり、正極直流端子Pと負極直流端子Nとの関係も高電圧異電位端子同士である。
 次に、実施の形態1に係る配線部材によって半導体素子モジュール同士間の距離を絶縁距離よりも小さくできることについて、図8を参照して説明する。図8では、正極直流端子Pと交流端子ACとの間の部位を横方向に拡大して示している。また、図8における記号の意味は、以下の通りである。
 a1:半導体素子モジュール12W1の正極直流端子Pと絶縁隔壁45の頂部との間の距離
 a2:半導体素子モジュール12W2の交流端子ACと絶縁隔壁45の頂部との間の距離
 b:半導体素子モジュール12W1,12W2の主面から測った絶縁隔壁45の高さ
 c1:配線部材44における正極直流端子Pの端部と絶縁隔壁45の基部との間の距離
 c2:配線部材44における交流端子ACの端部と絶縁隔壁45の基部との間の距離
 e1:半導体素子モジュール12W1と半導体素子モジュール12W2との間の距離
 上記の説明について補足する。半導体素子モジュール12W1,12W2の主面とは、半導体素子モジュール12W1,12W2の電極搭載面である。絶縁隔壁45の基部とは、配線部材44における絶縁隔壁45の取り付け部である。図6に示すように、絶縁隔壁45を形成すると、“a1+a2”が、半導体素子モジュール12W1における正極直流端子Pと、半導体素子モジュール12W2における交流端子ACとの間の最短距離となる。よって、“a1+a2”の値をIEC60077-1に規定される絶縁距離以上に設定することで、IEC60077-1に準拠した絶縁の確保が可能となる。また、距離e1,c1,c2との間には、“e1=c1+c2”の関係がある。距離e1を、ここでは「モジュール間距離」と呼ぶ。
 図8から理解できるように、図6で定義した絶縁隔壁45の長さL1が、正極直流端子Pの厚み及び交流端子ACの厚みよりも大きければ、“a1+a2>c1+c2”の関係が生じる。これにより、モジュール間距離e1を絶縁距離a1+a2よりも小さくすることができる。なお、「絶縁隔壁45の長さL1が正極直流端子Pの厚み及び交流端子ACの厚みよりも大きい」という関係は、図8で定義した絶縁隔壁45の高さbが“b>0”であると言い換えてもよい。
 次に、具体的な例について説明する。なお、以下の例では、“a1+a2”の値を絶縁距離に設定した場合の計算値である。
 <設定例1>
 (条件)
 ・絶縁距離a1+a2:40mm
 ・絶縁隔壁45の高さb:10mm
 ・絶縁隔壁45の位置:正極直流端子Pと交流端子ACとの間の中央
 (計算値)
 ・モジュール間距離e1:34.6mm
 ・短縮率k1:0.87
 <設定例2>
 (条件)
 ・絶縁距離a1+a2:40mm
 ・絶縁距離のうちのa1の長さ:25mm
 ・絶縁距離のうちのa2の長さ:15mm
 ・絶縁隔壁45の高さb:10mm
 (計算値)
 ・モジュール間距離e1:34.1mm
 ・モジュール間距離のうちのc1の長さ:22.9mm
 ・モジュール間距離のうちのc2の長さ:11.2mm
 ・短縮率k1:0.85
 上記の計算値における短縮率k1とは、k=e1/(a1+a2)の式で計算した値である。短縮率k1は、絶縁距離に対してモジュール間距離をどれだけ縮められるかの尺度を示す指標である。短縮率k1の値が小さい程、短縮効果があることを意味する。
 上記の設定例1,2の計算結果から、絶縁隔壁45を正極直流端子Pと交流端子ACとの間の中央に配置するよりも、中央からずらして配置した方が、短縮効果があることが理解できる。
 次に、図9のように、絶縁隔壁45を半導体素子モジュール12W1の側部33bに接するように寄せて配置した場合についての計算結果を以下に示す。
 <設定例3>
 (条件)
 ・絶縁距離a1+a2:40mm
 ・絶縁距離のうちのa1の長さ:10mm
 ・絶縁距離のうちのa2の長さ:30mm
 ・絶縁隔壁45の高さb:10mm
 ・絶縁隔壁45の位置:正極直流端子Pと交流端子ACとの間の左端
 (計算値)
 ・モジュール間距離e2:28.3mm
 ・短縮率k1:0.71
 設定例1から3の計算結果によれば、絶縁隔壁45を半導体素子モジュール12W1の側部33b側又は半導体素子モジュール12W2の側部33c側に寄せて配置するようにすれば、短縮率k1の値が小さくなって行くことが分かる。但し、現実的には、絶縁隔壁45を製造する際の寸法精度、絶縁隔壁45とモジュール筐体との間に介在する空気による絶縁効果、といった要素を考慮する必要がある。また、設定例1から3の何れの場合も、絶縁距離に対するモジュール間距離の短縮化の効果が得られる。このため、絶縁隔壁45を製造する際の寸法精度、必要とされる絶縁距離といった要素を踏まえた上で、絶縁隔壁45の位置を決定することが好ましい実施の形態であると言える。
 また、絶縁隔壁45の高さbを設定例1から3よりも高くした場合の計算値を示す。以下の計算例では、上記設定例1から3の条件において、絶縁隔壁45の高さbを“10mm”から“12mm”に変更している。
 <設定例4>
 (条件)
 ・絶縁距離a1+a2:40mm
 ・絶縁隔壁45の高さb:12mm
 ・絶縁隔壁45の位置:正極直流端子Pと交流端子ACとの間の中央
 (計算値)
 ・モジュール間距離e1:32.0mm
 ・短縮率k1:0.80
 <設定例5>
 (条件)
 ・絶縁距離a1+a2:40mm
 ・絶縁距離のうちのa1の長さ:25mm
 ・絶縁距離のうちのa2の長さ:15mm
 ・絶縁隔壁45の高さb:12mm
 (計算値)
 ・モジュール間距離e1:30.9mm
 ・モジュール間距離のうちのc1の長さ:21.9mm
 ・モジュール間距離のうちのc2の長さ:9.0mm
 ・短縮率k1:0.77
 <設定例6>
 (条件)
 ・絶縁距離a1+a2:40mm
 ・絶縁距離のうちのa1の長さ:12mm
 ・絶縁距離のうちのa2の長さ:28mm
 ・絶縁隔壁45の高さb:12mm
 ・絶縁隔壁45の位置:正極直流端子Pと交流端子ACとの間の左端
 (計算値)
 ・モジュール間距離e2:25.3mm
 ・短縮率k1:0.63
 ここで、設定例1から6の計算結果を基に、絶縁隔壁45の高さbを“10mm”から“12mm”に変更したときの、同一条件下における短縮率k2を計算すると、以下の通りの結果が得られる。
 ・設定例1と設定例4との比較:k2=0.80/0.87≒0.92
 ・設定例2と設定例5との比較:k2=0.77/0.85≒0.91
 ・設定例3と設定例6との比較:k2=0.63/0.71≒0.89
 上記の結果によれば、絶縁隔壁45の高さbを2mm増やすだけでも、約10%の低減効果が得られる。このため、絶縁隔壁45の高さbを増やすことは、モジュール間距離の短縮化に効果的であると言える。なお、上記設定例は例示であり、絶縁隔壁45の高さは、当該設定例のものに限らない。
 以上説明したように、実施の形態1に係る配線部材を用いれば、半導体素子モジュール同士における主端子間の距離を絶縁距離よりも小さくできるので、電力変換装置の小型化が可能となる。
実施の形態2.
 次に、実施の形態2に係る配線部材における要部の構成について、図10及び図11の図面を参照して説明する。図10は、実施の形態2に係る配線部材による効果の説明に供する図である。図11は、図10とは異なる配線部材による効果の説明に供する図である。
 実施の形態1では、配線部材44の延在方向に直交する方向に1つの絶縁隔壁45を形成していたが、実施の形態2では、図10に示すように、2つの絶縁隔壁45A,45Bを形成している点が構造的な相違点である。また、図11では、絶縁隔壁45Aを半導体素子モジュール12W1の側部33bに沿って配置し、絶縁隔壁45Bを半導体素子モジュール12W2の側部33cに沿って配置している。
 図10及び図11における記号の意味は、以下の通りである。なお、計算の簡略化のため、図10では、半導体素子モジュール12W1と半導体素子モジュール12W2との間に引いた中心線K2に対して、絶縁隔壁45A,45Bを線対称の位置に配置した場合を例示している。
 a1:絶縁隔壁45Aの頂部と絶縁隔壁45Bの頂部との間の距離
 a2:半導体素子モジュール12W1の正極直流端子Pと絶縁隔壁45Aの頂部との間の距離、及び半導体素子モジュール12W2の交流端子ACと絶縁隔壁45Bの頂部との間の距離
 b:半導体素子モジュール12W1,12W2の主面から測った絶縁隔壁45A,45Bの高さ
 c:配線部材44における正極直流端子Pの端部と絶縁隔壁45Aの基部との間の距離、及び配線部材44における交流端子ACの端部と絶縁隔壁45Bの基部との間の距離
 e3:モジュール間距離
 なお、モジュール間距離e3と、距離a,c1との間には、“e3=a1+2×c”の関係がある。
 次に、“a1+2×a2”の値を絶縁距離に設定した場合の具体的な計算値を以下に示す。なお、以下に示す短縮率k1は、k=e3/(a1+2×a2)の式で計算した値である。
 <設定例7>
 (条件)
 ・絶縁距離a1+2×a2:40mm
 ・絶縁距離のうちのa1の長さ:10mm
 ・絶縁距離のうちのa2の長さ:15mm
 ・絶縁隔壁45A,45Bの高さb:5mm
 (計算値)
 ・モジュール間距離e3:38.3mm
 ・モジュール間距離のうちのcの長さ:14.15mm
 ・短縮率k1:0.84
 <設定例8>
 (条件)
 ・絶縁距離a1+2×a2:40mm
 ・絶縁距離のうちのa1の長さ:10mm
 ・絶縁距離のうちのa2の長さ:15mm
 ・絶縁隔壁45A,45Bの高さb:10mm
 (計算値)
 ・モジュール間距離e3:32.4mm
 ・モジュール間距離のうちのcの長さ:11.2mm
 ・短縮率k1:0.81
 <設定例9>
 (条件)
 ・絶縁距離a1+2×a2:40mm
 ・絶縁距離のうちのa1の長さ:30mm
 ・絶縁距離のうちのa2の長さ:5mm
 ・絶縁隔壁45A,45Bの高さb:5mm
 ・絶縁隔壁45Aの位置:正極直流端子Pと交流端子ACとの間の左端
 ・絶縁隔壁45Bの位置:正極直流端子Pと交流端子ACとの間の右端
 (計算値)
 ・モジュール間距離e4:30.0mm
 ・短縮率k1:0.75
 <設定例10>
 (条件)
 ・絶縁距離a1+2×a2:40mm
 ・絶縁距離のうちのa1の長さ:10mm
 ・絶縁距離のうちのa2の長さ:15mm
 ・絶縁隔壁45A,45Bの高さb:10mm
 ・絶縁隔壁45Aの位置:正極直流端子Pと交流端子ACとの間の左端
 ・絶縁隔壁45Bの位置:正極直流端子Pと交流端子ACとの間の右端
 (計算値)
 ・モジュール間距離e4:20.0mm
 ・短縮率k1:0.5
 上記の設定例7,8及び設定例9,10の計算結果によれば、絶縁隔壁45A,45Bの高さbを高くした方が、短縮効果があることが示されている。また、設定例7,9及び設定例8,10の計算結果によれば、絶縁隔壁45Aを半導体素子モジュール12W1の側部33bに近づけて配置し、また、絶縁隔壁45Bを半導体素子モジュール12W2の側部33cに近づけて配置するようにすれば、短縮効果が高くなることが示されている。これらの効果は、実施の形態1の場合と同様である。
 また、実施の形態1における設定例1の計算結果と実施の形態2における設定例8の計算結果との比較、及び、実施の形態1における設定例3の計算結果と実施の形態2における設定例10の計算結果との比較から、絶縁隔壁の数を増やすことにより、短縮効果が高められることが理解できる。
 なお、上述した実施の形態1,2では、図1又は図2に示すような3相のインバータ回路に用いられる半導体素子モジュール12への適用について説明したが、これに限定されるものではない。少なくとも2つの半導体素子モジュールを使用する電力変換装置への適用が可能である。このような電力変換装置の例として、ハーフブリッジのインバータ回路、単相のインバータ回路、チョッパ回路、単相のコンバータ回路、3相のコンバータ回路を挙げることができる。
 また、以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 2 入力回路、3,3A インバータ回路、4a1,4a2,4b1,4b2,5a1,5a2,5b1,5b2,6a1,6a2,6b1,6b2 スイッチング素子、7 制御部、8 モータ、10 フィルタコンデンサ、11P 正極側母線、11N 負極側母線、12,12U1,12U2,12V1,12V2,12W1,12W2 半導体素子モジュール、30 パッケージ、32P,32N,32AC 締結点、33,34 短辺部、33a,35a,36a,37a 一辺、33b,33c 側部、35,37,40 電極、36 台座部、44 配線部材、45,45A,45B 絶縁隔壁、50 架線、51 集電装置、52 レール、53 車輪、AC 交流端子、N 負極直流端子、P 正極直流端子。

Claims (6)

  1.  第1の半導体素子モジュールに形成され、第1の電位が印加される第1の主端子と、第2の半導体素子モジュールに形成され、前記第1の電位とは異なる第2の電位が印加される第2の主端子との間を電気的に接続する配線部材であって、
     前記第1の主端子と前記第2の主端子との間の見通し線を遮るように、前記配線部材に起立形成される絶縁隔壁を備えることを特徴とする配線部材。
  2.  前記絶縁隔壁の数が複数であることを特徴とする請求項1に記載の配線部材。
  3.  前記第1の主端子は正極直流端子であり、前記第2の主端子は交流端子であることを特徴とする請求項1又は2に記載の配線部材。
  4.  前記第1の主端子は正極直流端子であり、前記第2の主端子は負極直流端子であることを特徴とする請求項1又は2に記載の配線部材。
  5.  前記第1の主端子は交流端子であり、前記第2の主端子は負極直流端子であることを特徴とする請求項1又は2に記載の配線部材。
  6.  請求項1から5の何れか1項に記載の配線部材を用いて構成されたことを特徴とする電力変換装置。
PCT/JP2017/018212 2017-05-15 2017-05-15 配線部材及び電力変換装置 WO2018211562A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2017/018212 WO2018211562A1 (ja) 2017-05-15 2017-05-15 配線部材及び電力変換装置
US16/611,083 US10937737B2 (en) 2017-05-15 2017-05-15 Wiring member and power conversion device
DE112017007541.6T DE112017007541T5 (de) 2017-05-15 2017-05-15 Leitungselement und Leistungswandlereinrichtung
JP2017548246A JP6338790B1 (ja) 2017-05-15 2017-05-15 配線部材及び電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/018212 WO2018211562A1 (ja) 2017-05-15 2017-05-15 配線部材及び電力変換装置

Publications (1)

Publication Number Publication Date
WO2018211562A1 true WO2018211562A1 (ja) 2018-11-22

Family

ID=62487359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018212 WO2018211562A1 (ja) 2017-05-15 2017-05-15 配線部材及び電力変換装置

Country Status (4)

Country Link
US (1) US10937737B2 (ja)
JP (1) JP6338790B1 (ja)
DE (1) DE112017007541T5 (ja)
WO (1) WO2018211562A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003046035A (ja) * 2001-07-26 2003-02-14 Hitachi Ltd パワー半導体装置
JP2011151981A (ja) * 2010-01-22 2011-08-04 Mitsubishi Electric Corp 車載用電力変換装置
JP2012005301A (ja) * 2010-06-18 2012-01-05 Fuji Electric Co Ltd パワー半導体モジュール
JP2013090529A (ja) * 2011-10-21 2013-05-13 Hitachi Constr Mach Co Ltd 電力変換装置
JP2014036509A (ja) * 2012-08-09 2014-02-24 Mitsubishi Electric Corp 3レベル電力変換装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108048A1 (ja) 2011-02-10 2012-08-16 三菱電機株式会社 電力変換装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003046035A (ja) * 2001-07-26 2003-02-14 Hitachi Ltd パワー半導体装置
JP2011151981A (ja) * 2010-01-22 2011-08-04 Mitsubishi Electric Corp 車載用電力変換装置
JP2012005301A (ja) * 2010-06-18 2012-01-05 Fuji Electric Co Ltd パワー半導体モジュール
JP2013090529A (ja) * 2011-10-21 2013-05-13 Hitachi Constr Mach Co Ltd 電力変換装置
JP2014036509A (ja) * 2012-08-09 2014-02-24 Mitsubishi Electric Corp 3レベル電力変換装置

Also Published As

Publication number Publication date
JPWO2018211562A1 (ja) 2019-06-27
DE112017007541T5 (de) 2020-01-23
US10937737B2 (en) 2021-03-02
JP6338790B1 (ja) 2018-06-06
US20200152575A1 (en) 2020-05-14

Similar Documents

Publication Publication Date Title
US10411589B2 (en) Power conversion apparatus and power semiconductor module
US10153708B2 (en) Three-level power converter
US11270984B2 (en) Semiconductor module
EP2884650B1 (en) Power module comprising two elements, and three-level power conversion device using same
JP2012005301A (ja) パワー半導体モジュール
JP6836201B2 (ja) 電力変換装置
US9117789B2 (en) Semiconductor device
US11532995B2 (en) Electronic module for an electric drive of a vehicle with current paths of equal length for a highside switch and a lowside switch
JP4209421B2 (ja) 電力変換器の主回路構造
US10312227B2 (en) Power semiconductor module
JP6665456B2 (ja) パワー半導体装置
CN110214412B (zh) 功率转换装置
WO2019146179A1 (ja) 電力変換装置および電力変換装置を搭載する電気鉄道車両
JP6498370B2 (ja) 電力変換装置
JP6338790B1 (ja) 配線部材及び電力変換装置
US11949338B2 (en) Power converter
JP5488244B2 (ja) パワー半導体モジュール
US20240136399A1 (en) Semiconductor device and power conversion device
US10873268B2 (en) Main circuit wiring member and power conversion device
CN117393546A (zh) 半桥功率模块及其全桥功率模组、电机控制器、车辆
JP2020162333A (ja) 駆動装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017548246

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17910393

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17910393

Country of ref document: EP

Kind code of ref document: A1