WO2018210350A1 - 一种检测rv减速器摆线轮及滚针轴承材料磨损的试验装置 - Google Patents

一种检测rv减速器摆线轮及滚针轴承材料磨损的试验装置 Download PDF

Info

Publication number
WO2018210350A1
WO2018210350A1 PCT/CN2018/088643 CN2018088643W WO2018210350A1 WO 2018210350 A1 WO2018210350 A1 WO 2018210350A1 CN 2018088643 W CN2018088643 W CN 2018088643W WO 2018210350 A1 WO2018210350 A1 WO 2018210350A1
Authority
WO
WIPO (PCT)
Prior art keywords
reducer
cycloidal
needle bearing
shaft
wear
Prior art date
Application number
PCT/CN2018/088643
Other languages
English (en)
French (fr)
Inventor
纪姝婷
张跃明
杨宇
秦飞
冀永虎
庄建华
赵飞
Original Assignee
北京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京工业大学 filed Critical 北京工业大学
Priority to US16/310,447 priority Critical patent/US11346645B2/en
Publication of WO2018210350A1 publication Critical patent/WO2018210350A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/0025Measuring of vehicle parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/08Measuring arrangements characterised by the use of mechanical techniques for measuring diameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/02Gearings; Transmission mechanisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0004Braking devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0095Means or methods for testing manipulators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/56Investigating resistance to wear or abrasion

Definitions

  • the invention relates to a device and a method for detecting the wear of a core component of a RV reducer, a cycloidal wheel and a needle bearing, characterized in that the wear of the high hardness material is detected, and belongs to the field of industrial robots.
  • the RV reducer is a key component of the industrial robot joint, and the cycloidal wheel is the core part of the RV reducer.
  • the cycloidal and needle roller bearings are subjected to high speed and load at the contact position, which is easy to cause wear and affect the control precision and service life of industrial robots. Therefore, the cycloidal and needle roller bearings are wear-resistant. Saturation and hardness are key indicators of the performance of the RV reducer.
  • the material wear test of the cycloidal and needle bearing is to provide the test basis for the study of the influence of the material on the wear of the cycloidal and needle bearing. The development of the test device is for the selection of the cycloidal and needle bearing materials and the heat treatment process. The determination is important.
  • the wear of the cycloidal and needle bearings is related to the performance of the RV reducer.
  • the parameters of the eccentric shaft assembly, the load on the cycloidal wheel and the mechanical lubrication affect the wear and tear of the two.
  • the influence of quantity and various factors on its wear. Therefore, the wear of the cycloidal and needle bearing materials can only be tested on a test basis.
  • the object of the present invention is to drive the RV reducer eccentric shaft assembly by a motor to form a rolling friction pair of the RV reducer cycloidal and needle bearing.
  • the rotating nut adjusts the amount of compression of the butterfly spring and applies a load to the cycloidal and needle bearing through the sliding shaft and the connecting shaft assembly.
  • the above components are sealed in a cavity formed by the upper cover and the lower cover, and grease is injected to achieve lubrication between the internal parts. Adjust the motor speed, nut position and grease. After working for a period of time, measure the change of the outer diameter of the cycloidal bore and the needle bearing, change the influence parameters, measure the pendulum and roll under different materials, heat treatment process and operating conditions.
  • the wear condition of the needle bearing is analyzed and summarized. The influence of various factors on the material wear is analyzed, and the test basis is provided for the selection of the material of the cycloidal and needle bearing and the determination of the heat treatment process.
  • a test device for detecting wear of a cycloidal wheel and a needle bearing material of an RV reducer comprising: an upper cover (1), a lower cover (2), a sliding shaft (a first sliding shaft 3 and a second sliding shaft 3) '), connecting shaft (first connecting shaft 4 and second connecting shaft 4'), driven shaft assembly (5), copper sleeve (first copper sleeve 6 and second copper sleeve 6'), nut (first nut 7 and second nut 7'), butterfly spring (first butterfly spring 8 and second butterfly spring 8'), RV reducer eccentric shaft assembly (9), RV reducer needle bearing (10), RV The reducer planetary gears (the first planetary gear 11 and the second planetary gear 11'), the RV reducer cycloidal wheel (the first cycloidal wheel 12 and the second cycloidal wheel 12'), and the motor assembly (13).
  • the RV reducer original core part cycloid (12 and 12'), eccentric shaft (9), planetary gears (11 and 11'), and needle bearing (10) were tested to simulate the real working condition of the RV reducer.
  • the RV reducer eccentric shaft assembly (9), the cycloidal wheels (12 and 12'), the sliding shafts (3 and 3'), the connecting shafts (4 and 4'), and the needle bearing (10) are mounted on the upper cover. (1) In the closed chamber formed by the lower cover (2), grease can be injected.
  • the two planetary gears (11 and 11') are symmetrical with respect to the output shaft of the motor, and one planetary gear (11) is connected to the eccentric shaft (9) via a spline, and two eccentric circles having a phase difference of 180° are arranged on the eccentric shaft, respectively.
  • the cycloidal wheel is distributed with two centrally symmetrical bearing holes (bearing hole 1 and bearing hole 2).
  • the bearing hole 1 of the cycloidal wheel forms a rotating pair with a eccentric shaft through a needle bearing
  • a bearing hole of the cycloidal wheel 2 is connected to the sliding shafts (3 and 3') and the connecting shafts (4 and 4') to form a rotating pair.
  • One end of the sliding shaft is provided with nuts (7 and 7') and butterfly springs (8 and 8'), and the amount of compression deformation of the butterfly spring is adjusted by the nut to apply a load to the cycloidal wheel and the needle bearing.
  • Two copper sleeves (6 and 6') support the housing and the two sliding shafts (3 and 3'), respectively, to enable the sliding shaft to reciprocate along the housing rail.
  • Two planetary gears (11 and 11') are arranged symmetrically, one planetary gear (11) is used to drive the eccentric shaft (9) to rotate, and the other planetary gear (11') is used to balance the force.
  • the springs (8 and 8') are arranged symmetrically with respect to the eccentric shaft. According to the force characteristics of the eccentric shaft, the eccentric shaft and the frame are supported by tapered roller bearings, and the eccentric shaft and the cycloidal wheel are supported by needle bearings. Needle bearing support is also used between the other bearing bore of the cycloidal wheel and the connecting shaft.
  • the motor drives the two planetary gears (11 and 11') to rotate, thereby driving the eccentric shaft (9) to rotate, thereby driving the cycloidal wheels (12 and 12') to perform an oscillating motion, and the cycloidal wheel and the sliding shaft (3 and 3') are formed.
  • the rotating pair drives the sliding shaft to reciprocate.
  • the amount of compression deformation of the butterfly springs (8 and 8') is adjusted by adjusting the positions of the nuts (7 and 7') at the ends of the slide shaft, thereby changing the load applied to the cycloidal and needle bearings.
  • a crank slider mechanism is formed between the eccentric shaft assembly (9), the cycloidal wheels (12 and 12'), and the sliding shafts (3 and 3').
  • the dimensional change between the inner diameter of the cycloidal wheel and the outer diameter of the needle bearing is detected, and the amount of wear of the cycloidal wheel and the needle bearing is determined.
  • And the influence of the wear of the needle bearing material Adjust the material of the cycloidal and needle bearing and the heat treatment process, and test again. Master the relationship between materials, heat treatment processes, speed, load, lubrication, etc. and the wear of the cycloidal and needle bearing.
  • the present invention provides a test device for the wear of the cycloidal wheel and the needle bearing material of the RV reducer, which is tested by using the original core components of the RV reducer - a cycloidal wheel, an eccentric shaft, a needle bearing, and a planetary gear. It can realistically simulate the actual operating conditions of the RV reducer and detect the wear of the cycloidal and needle bearings. In the past, the RV reducer was tested before it could be tested for wear. The method is more convenient, quick and practical, and provides the manufacturer with a test device for detecting the wear of the cycloidal and needle bearing materials of the RV reducer and the wear parameters of the material.
  • the invention adopts a servo motor to drive the planetary gear to rotate, thereby driving the eccentric shaft to rotate, and driving the cycloidal wheel to perform the oscillating motion, thereby reciprocating the connecting shaft.
  • the present invention uses a nut to adjust the amount of compression of the butterfly spring, and applies a load to the cycloidal and needle bearing through the sliding shaft and the connecting shaft. Therefore, the present invention can ensure the true running state of the RV reducer, and can apply the load conveniently and quickly.
  • the invention adopts a servo motor drive to make the rotation speed adjustable, and can perform the wear test on the two cycloidal wheels at the same time, thereby being more convenient and cost-saving.
  • the invention can detect the wear condition of the cycloidal wheel and the needle bearing under different materials and heat treatment process conditions, grasp the wear law, and provide a test basis for the selection of the cycloidal wheel and the needle bearing material and the determination of the heat treatment process.
  • the invention seals the eccentric shaft assembly, the cycloidal wheel, the sliding shaft, the connecting shaft, the needle bearing, etc. of the RV reducer through the sealing cavity formed by the upper cover and the lower cover, and can inject special grease to completely simulate RV deceleration.
  • the actual working condition of the device At the same time, the invention is convenient to install and can be installed on various industrial platforms.
  • FIG. 1 is a schematic view of a cycloidal wheel and a needle bearing of a component to be tested according to the present invention.
  • Figure 2 is a schematic view showing the composition and assembly of the detecting device of the present invention.
  • Figure 4 is a three-dimensional view of the detecting device of the present invention.
  • Figure 3 is a schematic diagram of the mechanism motion of the detecting device of the present invention.
  • the purpose of the invention of the test device is to detect the material wear of the inner bore and the needle bearing of the cycloidal wheel of Fig. 1 under high speed and high load.
  • the parts used in this device are the core components actually installed by the RV reducer - the cycloidal wheel (12 and 12'), the eccentric shaft (9), the needle bearing (10) and the planetary gears (11 and 11'). These parts are sealed in a closed chamber consisting of the upper cover (1) and the lower cover (2) (see Figure 2). Special grease can be injected to simulate the actual operating conditions of the RV reducer.
  • the servo motor assembly shown in Fig. 2 drives the rotation of the two planetary gears (11 and 11'), wherein the first planetary gear (11) is rotated by the spline driving eccentric shaft (9).
  • the two eccentric circles on the eccentric shaft (with a phase difference of 180°) drive the two cycloidal wheels (12 and 12') for planar motion.
  • the two cycloidal wheels (12 and 12') are arranged symmetrically with respect to the eccentric shaft, which can balance the force and simultaneously detect the wear of the two cycloidal and needle bearings.
  • bearing hole 1 and bearing hole 2 There are two centrally symmetric bearing holes (bearing hole 1 and bearing hole 2) on the cycloidal wheel.
  • the bearing hole 1 on the cycloidal wheel is matched with the eccentric shaft by a needle bearing to form a rolling friction pair.
  • the bearing bore 2 on the cycloidal wheel cooperates with the connecting shafts (4 and 4') to drive the sliding shafts (3 and 3') to reciprocate within the pocket raceways.
  • the relative positional relationship between the eccentric shaft-cycloidal-needle bearing-connecting shaft-sliding shaft is shown in Fig. 3.
  • the schematic diagram of the mechanism motion is shown in Fig. 4. Show.
  • the eccentric shaft rotation is equivalent to the crank shaft rotation, and the rotation pair is formed by the needle bearing and the cycloid bearing hole, the connecting rod 2 is equivalent to the cycloidal wheel, and the other bearing hole and the connecting shaft of the cycloidal wheel (4 and 4') And the sliding shafts (3 and 3') form a rotating pair, and the crank rotation corresponds to the rotation of the eccentric (9), thereby driving the cycloidal wheels (12 and 12') to make a planar motion, so that the sliding shafts (3 and 3') are along The cavity track reciprocates.
  • Nuts (7 and 7') are provided at the end of the sliding shaft, and the amount of compression of the butterfly springs (8 and 8') is increased by the lock nut, thereby applying a load to the sliding shafts (3 and 3'), thereby increasing The load of the cycloidal and needle bearing.
  • the test device improves the servo motor speed and increases the screwing amount of the nut, so that the experimental device is tested under high speed and high load conditions, and after the mechanism is operated for a period of time, the inner diameter of the cycloidal bearing and the outer diameter of the needle bearing are measured. Dimensions to detect wear on the RV reducer cycloidal and needle bearing materials.
  • the wear condition of the cycloidal and needle roller bearings of different materials under different speed and load conditions can be tested, and the wear law of the materials can be mastered, which provides a test basis for the selection of materials and the determination of the heat treatment process.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Retarders (AREA)

Abstract

公开一种检测RV减速器摆线轮及滚针轴承材料磨损的试验装置,包括上盖(1)、下盖(2)、滑动轴(3,3')、连接轴(4,4')、从动轴组件(5)、铜套(6,6')、螺母(7,7')、蝶形弹簧(8,8')、RV减速器偏心轴组件(9)、RV减速器滚针轴承(10)、RV减速器行星齿轮(11,11')、RV减速器摆线轮(12,12')、电机组件(13)。该装置利用电机驱动行星齿轮(11,11'),带动偏心轴(9)旋转,摆线轮(12,12')的一个轴承孔与偏心轴(9)通过滚针轴承(10)配合形成转动副,利用偏心轴(9)的偏心距,驱动摆线轮()做摆动运动,摆线轮(12,12')的另一轴承孔与滑动轴(3,3')和连接轴(4,4')配合驱动滑动轴(3,3')在轨道内做往复运动。同时利用螺母(7,7')压缩蝶形弹簧(8,8'),提供摆线轮(12,12')和滚针轴承(10)的负载。经过规定时间的运行,检测摆线轮(12,12')及滚针轴承(10)的材料磨损量,为摆线轮(12,12')及滚针轴承(10)材料和热处理方法的确定提供试验数据。

Description

一种检测RV减速器摆线轮及滚针轴承材料磨损的试验装置 技术领域
本发明涉及一种检测RV减速器核心零件—摆线轮及滚针轴承材料磨损的装置及方法,特点在于检测高硬度材料的磨损,属于工业机器人领域。
背景技术
RV减速器属于工业机器人关节的关键功能部件,而摆线轮是RV减速器的核心零件。在使用过程中,摆线轮及滚针轴承在接触位置处承受很高的转速和负荷,极易引发磨损,影响工业机器人的控制精度和使用寿命,所以摆线轮及滚针轴承的耐磨性和硬度是表征RV减速器工作性能的关键指标。开展摆线轮及滚针轴承的材料磨损试验为研究材料对摆线轮及滚针轴承磨损的影响提供试验基础,该试验装置的开发对于摆线轮及滚针轴承材料的选定和热处理工艺的确定具有重要意义。
摆线轮及滚针轴承的磨损关系到RV减速器的工作性能,而偏心轴组件的转速、摆线轮所受负载及机构润滑等参数都会影响到两者的磨损,但目前无法直接确定磨损量及各因素对其磨损的影响规律。因此,只能以试验为基础,检测摆线轮及滚针轴承材料的磨损情况。
为了***研究RV减速器在真实运行条件下,摆线轮及滚针轴承的磨损情况,研究摆线轮及滚针轴承材料及热处理工艺对磨损的影响规律,需要一套以RV减速器主要零件为基础,速度、负载、润滑条件可调的试验装置与方法,用以检测RV减速器摆线轮及滚针轴承材料磨损,然而目前还没有相关装置。
发明内容
本发明的目的是通过电机驱动RV减速器偏心轴组件,使RV减速器摆线轮和滚针轴承形成滚动摩擦副。旋转螺母调节蝶形弹簧的压缩量,并通过滑动轴和连接轴组件对摆线轮和滚针轴承施加负载。将以上组件密封在由上盖和下盖形成的合腔内,注入润滑脂,实现内部零件之间的润滑。调整电机转 速、螺母位置及润滑脂,工作一段时间后,测量摆线轮内孔及滚针轴承外径尺寸的变化情况,改变影响参数,测量不同材料、热处理工艺和运行条件下摆线轮及滚针轴承的磨损情况,分析总结各因素对材料磨损的影响规律,为摆线轮与滚针轴承材料的选定和热处理工艺的确定提供试验依据。
为了实现上述目的,本发明采取了如下技术方案。一种检测RV减速器摆线轮及滚针轴承材料磨损的试验装置,其特征在于:包括上盖(1)、下盖(2)、滑动轴(第一滑动轴3和第二滑动轴3′)、连接轴(第一连接轴4和第二连接轴4′)、从动轴组件(5)、铜套(第一铜套6和第二铜套6′)、螺母(第一螺母7和第二螺母7′)、蝶形弹簧(第一蝶形弹簧8和第二蝶形弹簧8′)、RV减速器偏心轴组件(9)、RV减速器滚针轴承(10)、RV减速器行星齿轮(第一行星齿轮11和第二行星齿轮11′)、RV减速器摆线轮(第一摆线轮12和第二摆线轮12′)、电机组件(13)。采用RV减速器原装核心零件摆线轮(12和12′)、偏心轴(9)、行星齿轮(11和11′)、滚针轴承(10)进行试验,模拟RV减速器真实的工作状况。将RV减速器偏心轴组件(9)、摆线轮(12和12′)、滑动轴(3和3′)、连接轴(4和4′)、滚针轴承(10)装于由上盖(1)和下盖(2)形成的密闭合腔内,可以注入润滑脂。
两片行星齿轮(11和11′)相对于电机输出轴对称,一片行星齿轮(11)通过花键与偏心轴(9)连接,偏心轴上布置相位差为180°的两偏心圆,并分别与两摆线轮轴承孔配合。摆线轮分布有两个中心对称的轴承孔(轴承孔1和轴承孔2),如上所述,摆线轮的轴承孔1通过滚针轴承与偏心轴形成转动副,摆线轮的轴承孔2与滑动轴(3和3′)和连接轴(4和4′)相连形成转动副。滑动轴的一端设有螺母(7和7′)和蝶形弹簧(8和8′),通过螺母调节蝶形弹簧的压缩变形量,给摆线轮和滚针轴承施加负载。两个铜套(6和6′)分别支撑壳体和两根滑动轴(3和3′),使滑动轴能够沿着壳体轨道往复运动。
采用对称布置的两片行星齿轮(11和11′),一片行星齿轮(11)用来驱动偏心轴(9)旋转,另一片行星齿轮(11′)用来平衡受力。此外,2片摆线轮(12和12′)、2个滑动轴(3和3′)、2个连接轴(4和4′)、2个螺母(7和 7′)以及2个蝶形弹簧(8和8′)都相对于偏心轴呈对称布置。根据偏心轴的受力特点,偏心轴与机架之间采用圆锥滚子轴承支撑,而偏心轴与摆线轮之间采用滚针轴承支撑。摆线轮另一个轴承孔与连接轴之间也采用滚针轴承支撑。
电机驱动两行星齿轮(11和11′)转动,从而带动偏心轴(9)旋转,进而驱动摆线轮(12和12′)做摆动运动,摆线轮与滑动轴(3和3′)形成转动副,驱动滑动轴做往复运动。通过调整滑动轴端部的螺母(7和7′)位置,调节蝶形弹簧(8和8′)的压缩变形量,从而改变对摆线轮和滚针轴承施加的负载。在整个机构运动的过程中,偏心轴组件(9)、摆线轮(12和12′)、滑动轴(3和3′)三者之间形成了曲柄滑块机构。
在给定条件下,经过装置长时间的运转,检测摆线轮内孔与滚针轴承外径之间的尺寸变化,确定摆线轮与滚针轴承的磨损量。计算螺纹预紧量与摆线轮、偏心轴及滚针轴承之间的负载关系,调整螺母位置及发动机转速,检测摆线轮与滚针轴承的磨损量,给出负载和转速对摆线轮和滚针轴承材料磨损的影响规律。调整摆线轮与滚针轴承的材料及热处理工艺,再次进行试验。掌握材料、热处理工艺、转速、负载、润滑等与摆线轮及滚针轴承磨损之间的关系。
本发明的优点在于:
(1)本发明提供了一种RV减速器摆线轮及滚针轴承材料磨损的试验装置,采用RV减速器原装的核心零件—摆线轮、偏心轴、滚针轴承、行星齿轮进行试验,可以真实模拟RV减速器实际运转条件,并检测摆线轮及滚针轴承的磨损情况,而以往则需对RV减速器整机进行试验以后才能够检测其磨损情况。该方法更为方便、快捷、实用,为制造厂商提供了检测RV减速器摆线轮及滚针轴承材料磨损的试验装置及材料的磨损参数。
(2)本发明采用伺服电机带动行星齿轮旋转,从而驱动偏心轴回转,驱动摆线轮做摆动运动,进而使连接轴实现往复运动。为了给摆线轮和滚针轴承施加负载,本发明采用螺母调整蝶形弹簧的压缩量,并通过滑动轴和连接 轴对摆线轮及滚针轴承施加负载。因此,本发明既能保证RV减速器的真实运转状态,又可以方便快捷地施加负载。
(3)本发明采用伺服电机驱动,使转速可调,可同时对两片摆线轮进行磨损试验,因此更加方便、节约成本。
(4)本发明可以检测不同材料和热处理工艺条件下摆线轮及滚针轴承的磨损情况,掌握磨损规律,为摆线轮及滚针轴承材料选定和热处理工艺的确定提供试验基础。
(5)本发明通过上盖和下盖形成的密封合腔将RV减速器偏心轴组件、摆线轮、滑动轴、连接轴、滚针轴承等密封,可注入专用润滑脂,完全模拟RV减速器的实际工况。同时本发明安装方便,可安装于各类工业平台上。
附图说明
图1是本发明被测零件摆线轮及滚针轴承示意图。
图2是本发明检测装置的组成及装配示意图。
图4是本发明检测装置的三维视图。
图3是本发明检测装置的机构运动简图。
具体实施方式
以下结合试验装置的组成及装配示意图对检测装置的工作原理和检测方法作进一步的详细说明。
本试验装置发明的目的是检测图1摆线轮两轴承内孔和滚针轴承在高速、高负载情况下的材料磨损情况。本装置所用零件均采用RV减速器实际安装的核心零件—摆线轮(12和12′)、偏心轴(9)、滚针轴承(10)及行星齿轮(11和11′)等,并将这些零件密封在由上盖(1)和下盖(2)组成的密闭合腔内(见图2),可注入专用润滑脂,以模拟RV减速器的真实运转条件。
在工作的过程中,图2所示的伺服电机组件驱动两行星齿轮(11和11′)旋转,其中第一行星齿轮(11)通过花键驱动偏心轴(9)回转。偏心轴上的 两个偏心圆(相位相差180°)分别带动两片摆线轮(12和12′)做平面运动。两片摆线轮(12和12′)相对偏心轴呈对称布置,既可以平衡作用力,也可同时检测两片摆线轮及滚针轴承的磨损情况。
摆线轮上分布有两个呈中心对称的轴承孔(轴承孔1和轴承孔2)如图1所示,摆线轮上的轴承孔1通过滚针轴承与偏心轴配合,形成滚动摩擦副。摆线轮上的轴承孔2与连接轴(4和4′)配合,驱动滑动轴(3和3′)在腔体滚道内做往复运动。偏心轴—摆线轮—滚针轴承—连接轴—滑动轴之间的相对位置关系如图3所示,根据几个构件之间的相对运动关系,绘出的机构运动简图如图4所示。偏心轴回转相当于曲柄轴回转,通过滚针轴承与摆线轮轴承孔形成转动副,连杆2相当于摆线轮,摆线轮的另一侧轴承孔与连接轴(4和4′)和滑动轴(3和3′)形成转动副,曲柄旋转相当于偏心轮(9)回转,从而驱动摆线轮(12和12′)做平面运动,使滑动轴(3和3′)沿着腔体轨道做往复运动。在滑动轴尾端装有螺母(7和7′),通过锁紧螺母增大蝶形弹簧(8和8′)的压缩量,从而对滑动轴(3和3′)施加负载,进而增大摆线轮与滚针轴承的负载。
本试验装置通过提高伺服电机转速,增大螺母旋进量,使该实验装置在高速、高负载条件下试验,使机构运转一段时间后,测量摆线轮轴承内孔与滚针轴承外径的尺寸,从而检测RV减速器摆线轮及滚针轴承材料的磨损情况。在具体实施过程中,可以检测不同材料在不同转速和负载条件下,摆线轮及滚针轴承的磨损情况,掌握材料的磨损规律,为材料的选择和热处理工艺的确定提供试验基础。

Claims (5)

  1. 一种检测RV减速器摆线轮及滚针轴承材料磨损的试验装置,其特征在于:包括上盖(1)、下盖(2)、2个滑动轴即第一滑动轴(3)和第二滑动轴(3′)、2个连接轴即第一连接轴(4)和第二连接轴(4′)、从动轴组件(5)、2个铜套即第一铜套(6)和第二铜套(6′)、2个螺母即第一螺母(7)和第二螺母(7′)、2个蝶形弹簧即第一蝶形弹簧(8)和第二蝶形弹簧(8′)、RV减速器偏心轴组件(9)、RV减速器滚针轴承(10)、2片RV减速器行星齿轮即第一行星齿轮(11)和第二行星齿轮(11′)、2片RV减速器摆线齿轮即第一摆线齿轮(12)和第二摆线齿轮(12′)、电机组件(13);
    所述上盖(1)和下盖(2)形成密封良好的合腔,2片RV减速器行星齿轮、RV减速器滚针轴承(10)、RV减速器偏心轴组件(9)、2根滑动轴、2根连接轴安装于合腔内;
    电机组件驱动与电机输出轴呈对称布置的两行星齿轮传动,其中第一行星齿轮(11)驱动偏心轴(9)回转,第二行星齿轮(11′)由从动轴组件(5)支撑,用于平衡受力;偏心轴(9)上布置相位相差180°的两偏心圆,分别与两片摆线轮配合;摆线轮上有两个中心对称的轴承孔,偏心圆与摆线轮的一个轴承孔通过滚针轴承形成转动副,另一个轴承孔与两个滑动轴和两个连接轴配合形成具有负载的滚动摩擦副;两组摆线轮相对于偏心轴(9)呈中心对称布置,有利于受力平衡;在相对偏心轴呈对称布置的滑动轴两端分别布置螺母和蝶形弹簧,通过蝶形弹簧的变形对此机构施加负载;两个铜套分别支撑壳体和两根滑动轴,使滑动轴能够沿着壳体轨道往复运动。
  2. 应用权利要求1所述的一种检测RV减速器摆线轮及滚针轴承材料磨损的试验装置,其特征在于:电机驱动行星齿轮转动,第一行星齿轮(11)带动偏心轴(9)回转,摆线轮轴承孔与偏心轴(9)形成转动副,相当于曲柄绕偏心轴(9)的回转轴心回转。摆线轮的另一轴承孔与滑动轴和连接轴形成转动副,摆线轮相当于摆杆做摆动运动,驱动滑动轴沿着轨道做往复运动。在滑动轴的两端,通过螺母对蝶形弹簧的压缩,对RV减速器摆线轮 和滚针轴承(10)施加负载。经过规定时间的运行,检测RV减速器摆线轮内孔和RV减速器滚针轴承(10)外径尺寸,从而确定两者材料磨损情况。
  3. 根据权利要求1所述的一种检测RV减速器摆线轮及滚针轴承材料磨损的试验装置,其特征在于:所述电机组件(13)为伺服电机,偏心轴组件(9)的转速可调,能够研究不同转速条件下摆线轮及滚针轴承(10)材料磨损情况;所述螺母的位置能够调节蝶形弹簧的压缩量,从而改变***所受负载,能够研究不同负载条件下摆线轮及滚针轴承材料磨损情况。
  4. 根据权利要求1所述的一种检测RV减速器摆线轮及滚针轴承材料磨损的试验装置,其特征在于:合腔内注入专用润滑脂,保证RV减速器摆线轮及滚针轴承材料磨损的试验条件与RV减速器实际工作条件相当。
  5. 根据权利要求1所述的一种检测RV减速器摆线轮及滚针轴承材料磨损的试验装置,其特征在于:装置所组成的关键部件均来自RV减速器的核心零件,包括摆线轮、偏心轴(9)、行星齿轮、RV减速器滚针轴承(10),用于仿真RV减速器真实运转情况下摆线轮及滚针轴承材料磨损情况。
PCT/CN2018/088643 2017-05-19 2018-05-28 一种检测rv减速器摆线轮及滚针轴承材料磨损的试验装置 WO2018210350A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/310,447 US11346645B2 (en) 2017-05-19 2018-05-28 Testing device for material wear of cycloidal gear and needle bearing of RV reducer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710355086.3 2017-05-19
CN201710355086.3A CN107167056B (zh) 2017-05-19 2017-05-19 一种检测rv减速器摆线轮及滚针轴承材料磨损的试验装置

Publications (1)

Publication Number Publication Date
WO2018210350A1 true WO2018210350A1 (zh) 2018-11-22

Family

ID=59815514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088643 WO2018210350A1 (zh) 2017-05-19 2018-05-28 一种检测rv减速器摆线轮及滚针轴承材料磨损的试验装置

Country Status (3)

Country Link
US (1) US11346645B2 (zh)
CN (1) CN107167056B (zh)
WO (1) WO2018210350A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111075920A (zh) * 2020-01-13 2020-04-28 重庆大学 基于fft和润滑影响的rv减速器摆线针轮残余应力求解方法
CN112129251A (zh) * 2020-08-06 2020-12-25 中国科学院力学研究所 一种用于实验室水槽的超声波地形仪驱动装置
CN112240827A (zh) * 2020-04-02 2021-01-19 北京新能源汽车技术创新中心有限公司 用于减速机试验的复合加载装置和试验台
CN112883519A (zh) * 2021-03-19 2021-06-01 河南科技大学 一种摆线轮寿命预测方法及装置

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107167056B (zh) * 2017-05-19 2019-12-13 北京工业大学 一种检测rv减速器摆线轮及滚针轴承材料磨损的试验装置
CN107471717A (zh) * 2017-09-15 2017-12-15 吴云萍 一种扭摆运动的脱水机
CN109407535A (zh) * 2018-12-07 2019-03-01 珠海格力智能装备有限公司 摆线轮运动的控制方法及仿真的控制方法、终端设备
CN110044609A (zh) * 2019-05-09 2019-07-23 盐城工学院 一种机器人精密摆线减速器的寿命试验***
CN111156309B (zh) * 2020-01-15 2022-03-08 广东中昇华控智能科技股份有限公司 Rv减速机的安装方法
CN111379830A (zh) * 2020-03-25 2020-07-07 烟台艾迪精密机械股份有限公司 一种rv减速倍力扭矩装置
CN111795822A (zh) * 2020-06-12 2020-10-20 上海大学 一种rv减速器***扭转频率特性测试装置
CN112504670B (zh) * 2020-11-20 2022-04-19 北京工业大学 一种rv减速器精度保持性和疲劳寿命测试装置
CN112833143B (zh) * 2021-01-11 2022-05-31 珠海格力电器股份有限公司 减速器和机器人
CN113075022B (zh) * 2021-03-22 2022-11-22 山东宗德机电设备有限公司 一种用于连续高温硬度测试的高温硬度计
CN113237655B (zh) * 2021-04-16 2021-11-16 安徽理工大学 Rv减速器出厂质量综合性能定量检测实验台及其检测方法
CN113137935B (zh) * 2021-04-25 2022-08-30 四川大学 基于计算机视觉的rv减速器摆线轮磨损测试***及方法
CN113267418B (zh) * 2021-06-28 2023-01-10 青岛征和工业股份有限公司 一种链条铰链副耐磨试验装置及方法
CN113624491B (zh) * 2021-08-26 2024-03-12 中国煤炭科工集团太原研究院有限公司 一种矿用电驱动减速器加载试验方法
CN113909583B (zh) * 2021-10-22 2023-03-10 宜昌长机科技有限责任公司 一种齿轮加工机床断续切削加载装置及方法
CN114131657B (zh) * 2021-12-28 2024-01-23 芜湖藦卡机器人科技有限公司 一种工业机器人轨迹检测装置
CN114252264B (zh) * 2022-01-06 2022-08-12 北京航空航天大学 一种行星排滚针轴承试验装置及方法
CN115479518B (zh) * 2022-09-13 2024-07-05 吉林大华机械制造有限公司 一种用于飞轮总成的检测装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4760759A (en) * 1986-04-15 1988-08-02 Blake William L Geared ratio coupling
CN102472368A (zh) * 2009-06-30 2012-05-23 株式会社捷太格特 行星齿轮机构
CN103234754A (zh) * 2013-04-22 2013-08-07 青岛德盛机械制造有限公司 一种滚针轴承轴向漂移的辅助检测装置
CN104019190A (zh) * 2013-09-11 2014-09-03 成都三泉科技有限公司 齿轮变速结构与偏心摆动滚针变速结构相结合的减速装置
CN104568428A (zh) * 2014-12-08 2015-04-29 北京工业大学 Rv减速器综合性能测量仪
CN204828503U (zh) * 2015-07-06 2015-12-02 上海大学 机器人用双摆线rv减速器
CN105466678A (zh) * 2015-11-30 2016-04-06 北京卫星制造厂 谐波齿轮减速器启动力矩和摩擦阻力矩测试***及方法
CN106195137A (zh) * 2016-08-11 2016-12-07 广州市昊志机电股份有限公司 一种中空型齿轮传动减速装置
CN107167056A (zh) * 2017-05-19 2017-09-15 北京工业大学 一种检测rv减速器摆线轮及滚针轴承材料磨损的试验装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10251045A1 (de) * 2002-11-02 2004-05-19 Daimlerchrysler Ag Messeinrichtung zur Bestimmung eines Kegelrollenlagerspiels
CN201397277Y (zh) * 2009-03-25 2010-02-03 河南科技大学 一种高频大扭矩关节轴承摩擦磨损试验机的摆动装置
CN106053062A (zh) * 2016-07-21 2016-10-26 南京工程学院 一种rv减速器综合测试台

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4760759A (en) * 1986-04-15 1988-08-02 Blake William L Geared ratio coupling
CN102472368A (zh) * 2009-06-30 2012-05-23 株式会社捷太格特 行星齿轮机构
CN103234754A (zh) * 2013-04-22 2013-08-07 青岛德盛机械制造有限公司 一种滚针轴承轴向漂移的辅助检测装置
CN104019190A (zh) * 2013-09-11 2014-09-03 成都三泉科技有限公司 齿轮变速结构与偏心摆动滚针变速结构相结合的减速装置
CN104568428A (zh) * 2014-12-08 2015-04-29 北京工业大学 Rv减速器综合性能测量仪
CN204828503U (zh) * 2015-07-06 2015-12-02 上海大学 机器人用双摆线rv减速器
CN105466678A (zh) * 2015-11-30 2016-04-06 北京卫星制造厂 谐波齿轮减速器启动力矩和摩擦阻力矩测试***及方法
CN106195137A (zh) * 2016-08-11 2016-12-07 广州市昊志机电股份有限公司 一种中空型齿轮传动减速装置
CN107167056A (zh) * 2017-05-19 2017-09-15 北京工业大学 一种检测rv减速器摆线轮及滚针轴承材料磨损的试验装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111075920A (zh) * 2020-01-13 2020-04-28 重庆大学 基于fft和润滑影响的rv减速器摆线针轮残余应力求解方法
CN112240827A (zh) * 2020-04-02 2021-01-19 北京新能源汽车技术创新中心有限公司 用于减速机试验的复合加载装置和试验台
CN112129251A (zh) * 2020-08-06 2020-12-25 中国科学院力学研究所 一种用于实验室水槽的超声波地形仪驱动装置
CN112129251B (zh) * 2020-08-06 2021-10-19 中国科学院力学研究所 一种用于实验室水槽的超声波地形仪驱动装置
CN112883519A (zh) * 2021-03-19 2021-06-01 河南科技大学 一种摆线轮寿命预测方法及装置
CN112883519B (zh) * 2021-03-19 2023-03-14 河南科技大学 一种摆线轮寿命预测方法及装置

Also Published As

Publication number Publication date
CN107167056B (zh) 2019-12-13
US20190323814A1 (en) 2019-10-24
US11346645B2 (en) 2022-05-31
CN107167056A (zh) 2017-09-15

Similar Documents

Publication Publication Date Title
WO2018210350A1 (zh) 一种检测rv减速器摆线轮及滚针轴承材料磨损的试验装置
CN102175598B (zh) 一种端面扭动摩擦磨损试验机及方法
CN103868812B (zh) 一种变载荷滚动摩擦磨损试验机
CN100374846C (zh) 工况模拟滚动接触疲劳试验机
Zhou et al. Experimental analysis of the wear coefficient of double-nut ball screws
CN201974359U (zh) 一种端面扭动摩擦磨损试验机
CN102353334B (zh) 滚动轴承润滑工况实验模拟装置及测量方法
CN205483567U (zh) 一种曲沟球轴承性能试验装置
CN200979526Y (zh) 工况模拟滚动接触疲劳试验装置
CN104006968A (zh) 径向冲击负载下曲轴服役状态模拟装置及模拟方法
CN107084897B (zh) 一种单驱差动两组圆盘的四点接触轴承球滑/滚摩擦磨损试验机
CN108036944A (zh) 传送带加载径向交变载荷的滚动轴承疲劳寿命试验***
CN108254185A (zh) 基于曲柄连杆施加径向交变载荷的滚动轴承性能试验装置
CN211206116U (zh) 一种摩擦副磨损试验装置
CN108279123A (zh) 基于齿轮齿条传动机构的可加载交变载荷的轴承试验装置
CN108152039A (zh) 基于丝杆传动施加径向交变载荷的滚动轴承性能试验装置
Kim et al. A real time wear measurement system for tripod type constant velocity joints
CN208109412U (zh) 汽车从动盘总成恒扭矩疲劳耐损高频检测设备
CN207866524U (zh) 一种基于丝杆传动机构的轴承试验机用交变载荷加载装置
CN207866508U (zh) 基于齿轮齿条传动机构的可加载交变载荷的轴承试验装置
CN207866493U (zh) 基于曲柄连杆的可加载交变载荷的滚动轴承性能试验装置
CN110608964A (zh) 一种摩擦副磨损试验装置
CN207866519U (zh) 一种可加载交变载荷的滚动轴承性能试验装置
CN111829781A (zh) 一种关节轴承复合运动试验装置
CN207866512U (zh) 基于齿传动施加径向交变载荷的滚动轴承性能试验装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18801355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18801355

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18801355

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14.08.2020)