WO2018210034A1 - 电动汽车作为移动充电桩的补能方法、装置、*** - Google Patents

电动汽车作为移动充电桩的补能方法、装置、*** Download PDF

Info

Publication number
WO2018210034A1
WO2018210034A1 PCT/CN2018/078240 CN2018078240W WO2018210034A1 WO 2018210034 A1 WO2018210034 A1 WO 2018210034A1 CN 2018078240 W CN2018078240 W CN 2018078240W WO 2018210034 A1 WO2018210034 A1 WO 2018210034A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
power
battery
electric vehicle
replenishing
Prior art date
Application number
PCT/CN2018/078240
Other languages
English (en)
French (fr)
Inventor
王洪帅
吕玉华
Original Assignee
蔚来汽车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201720566905.4U external-priority patent/CN206820505U/zh
Priority claimed from CN201710355207.4A external-priority patent/CN107221974A/zh
Application filed by 蔚来汽车有限公司 filed Critical 蔚来汽车有限公司
Publication of WO2018210034A1 publication Critical patent/WO2018210034A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the invention relates to the field of electric vehicle refilling technology, in particular to an electric vehicle as a replenishing method, device and system for a mobile charging pile.
  • the first is to use the road wrecker to rescue, use the road wrecker to drag the lost vehicle to the nearby charging station for charging, not only the rescue time is long, but also the corresponding rescue cost is higher.
  • the second is to rescue by the mobile charging car, the mobile charging car can drive to the vicinity of the depleted vehicle, and then charge the depleted vehicle.
  • the second method is more optimized and convenient than the first method, but there are still long-term rescue problems, especially in large cities with heavy traffic and second- and third-tier cities with less electric vehicles. Electric vehicles wait for a long time.
  • any electric vehicle can carry out emergency charging for the loss of power vehicles, it can greatly reduce the difficulty of rescue, shorten the rescue time, and reduce the loss of power panic and recharge anxiety of pure electric vehicle users.
  • the first aspect of the present invention provides an electric vehicle as a replenishing method for a mobile charging pile, the electric vehicle having a power supply A battery, characterized in that it comprises:
  • Stop charging the refill device When the difference between the maximum allowable output power and the actual output power of the powered power battery at the time of charging reaches a first threshold, or the amount of charge of the device to be energized reaches a second threshold, or receives a stop charging command, Stop charging the refill device.
  • the method before charging the device to be energized with the powered power battery, the method further includes:
  • the maximum allowable output power is an input value.
  • the calculating step of the maximum allowable output power quantity comprises:
  • the method before using the powered power battery to charge the device, the method further includes:
  • the power supply battery performs a charging handshake before charging the device to be recharged, intercommunicating the state before charging, and confirming whether it is ready for charging.
  • an electric vehicle is provided as a replenishing control device for a mobile charging pile, comprising:
  • the powered power battery is a power battery of the electric vehicle
  • a charging control unit for controlling the energized power battery to charge the device
  • An output power calculation unit is provided for obtaining the maximum allowable output power of the powered power battery
  • Stop charging control unit for stopping charging of the device to be energized when the charging condition is stopped
  • the stop charging condition is that a difference between the maximum allowable output power and the power supply battery output power reaches a first threshold, or the charge amount of the to-be-filled device reaches a second threshold, or a stop charging command is received.
  • a power connection control unit is further included for controlling the establishment of a power connection between the powered power battery and the device to be supplemented.
  • the maximum allowable output power is an input value.
  • the allowable output power calculation unit comprises:
  • a destination setting module for setting a destination for setting the electric vehicle
  • a power calculation module required for the trip, for calculating the amount of power consumed from the current location to the destination;
  • a current power acquisition module configured to acquire a current power of the powered power battery
  • the output power calculation module is configured to calculate a difference between the current power and the amount of power that needs to be consumed, and use the difference as the maximum allowable output power.
  • the method further includes a charging preparation unit configured to perform a charging handshake before the charging of the powered battery to the charging device, intercommunicating the state before charging, and confirm whether the charging is ready.
  • a charging preparation unit configured to perform a charging handshake before the charging of the powered battery to the charging device, intercommunicating the state before charging, and confirm whether the charging is ready.
  • an electric vehicle is provided as a charging device for a mobile charging pile, comprising a charging circuit, a discharging circuit, and a switching circuit;
  • the switching circuit includes a common terminal, two switching terminals, and a switching switch; the common terminal is configured to be connected to a power battery, and the two switching terminals are respectively connected to the charging circuit output end and the discharging circuit input end, and the switching switch It is disposed between the common terminal and the two switching terminals for constructing a charging path or a discharging path of the power battery.
  • a DC charging interface is further included, and the charging circuit input end and the discharging circuit output end are connected to the DC charging interface.
  • a switching circuit control unit is further included for controlling a connection relationship between the switching switch and the two switching ends.
  • the switching circuit control unit is a toggle button, and/or a touch screen controller.
  • the switching circuit control unit includes a wireless signal receiving device for receiving a switching switch state control command.
  • the switch is a relay; the control end of the relay is connected to the switching circuit control unit.
  • the charging circuit is an equivalent circuit of a power battery fast charging path
  • the discharging circuit is an equivalent circuit of a charging pile fast charging path.
  • the switch is a manual switch.
  • a replenishing system comprising the electric vehicle as an energizing device for a mobile charging pile, and further comprising a power battery.
  • an electric vehicle comprising the above-described energizing system.
  • a storage medium in which a plurality of programs are stored, the programs being adapted to be loaded and executed by a processor to implement the contents of the above-described electric vehicle as a charging method for a mobile charging pile.
  • a replenishing control device including
  • a processor adapted to execute various programs
  • a storage device adapted to store a plurality of programs
  • the above electric vehicle is used as a method of replenishing a mobile charging pile.
  • the present invention has at least the following advantages:
  • the replenishing control device of the invention can conveniently realize the emergency charging of the electric mobile device with no cruising range or less cruising range by using the electric mobile device with large remaining electric power, thereby reducing the difficulty of rescue and also reducing or Exemption from rescue expenses; especially in the field of electric vehicles, with the increase in the use of electric vehicles, the density of electric vehicles in the region is greater, and the probability of encountering electric vehicles is greatly increased, thus making the above-mentioned technical effects extremely remarkable. Great improvement.
  • FIG. 1 is a schematic flow chart of an embodiment of an electric vehicle as a charging method for a mobile charging pile according to the present invention
  • FIG. 2 is a schematic diagram of a flow chart for calculating the maximum allowable output power in the replenishing method of the present invention
  • Figure 3 is a schematic flow chart of charging in two workshops using the method of the present invention.
  • FIG. 4 is a block diagram of a regenerative control device for an electric vehicle as a mobile charging pile according to the present invention
  • FIG. 5 is a block diagram of another electric vehicle as a replenishing control device for a mobile charging pile according to the present invention.
  • FIG. 6 is a block diagram of an electric vehicle as an energizing device for a mobile charging pile according to the present invention.
  • FIG. 7 is a schematic structural view of a switching circuit in the energizing device of the present invention.
  • Figure 8 is a schematic view showing another complementary device of the present invention and a connection relationship with an energized power battery
  • FIG. 9 is a schematic view showing a third complementary device of the present invention and a connection relationship with an energized power battery
  • Fig. 10 is a schematic diagram showing the power connection of an energizing device of the present invention as an external discharge portion and a self-charging portion, respectively.
  • the electric energy supplement methods of electric vehicles include charging pile charging, power exchange for power stations, and more flexible charging of mobile charging vehicles.
  • the diversification of electric energy supplements has somewhat alleviated the problem of electric vehicle users' resilience anxiety, but electric vehicles.
  • the emergency charging problem is realized by moving the charging car, but the timeliness of the emergency charging cannot meet the needs of the electric vehicle users, especially in the big cities where the road conditions are more complicated and the traffic jam is more serious.
  • the present invention provides a replenishing method and a replenishing control device for an electric vehicle power battery, which are used for charging a power battery by an external power source and replenishing a power battery to other electric vehicle power batteries.
  • the electric vehicle loaded with the replenishing control device can perform emergency charging on other depleted electric vehicles, so that other depleted electric vehicles can obtain sufficient electric energy to drive to the charging position or the electric switching position for electric energy replenishment.
  • the technical solution of the invention solves the problem of timeliness of emergency charging of electric vehicles, greatly promotes the popularization and market expansion of electric vehicles, has great market value, and increases with the number of electric vehicles loaded with the device of the invention.
  • Emergency charging between electric vehicles will be more common, and the timeliness of emergency charging will be greatly shortened.
  • the layout of charging and replacing resources in some areas or sections will be sparse, and it is easy to cause the problem that the electric vehicle can not drive to the next resource point, and the present invention realizes
  • the mutual energy charging between electric vehicles has also effectively improved the problems caused by the sparse and redundant power distribution.
  • the technical solution of the present invention can be applied to all electric mobile devices, such as electric vehicles, electric bicycles, electric motorcycles, electric transfer trolleys, electric robots, etc., but in order to clarify the technical solution of the present invention, the following description describes the selected electric vehicles. The technical solution of the present invention will be described.
  • an electric vehicle is only used as an electric vehicle for electric power output
  • the electric equipment to be replenished includes an electric vehicle to be charged and other equipment to be charged (such as an energy-carrying battery having a charging interface), and electric power is outputted.
  • the car's power battery is expressed as a power-powered battery to distinguish the conventional power battery, thus reflecting its active position in the process of charging the device.
  • the self-charging state indicates that the electric vehicle obtains the electric energy from the external power source to charge the power supply battery
  • the external discharge state indicates that the electric vehicle uses the energized power battery to charge the complementary device.
  • State in the normal working state, indicates that the electric vehicle powered battery is only used to drive the state of its own electrical components.
  • the electric vehicle of the present embodiment as a method of replenishing a mobile charging pile includes the following steps:
  • Step S1 setting the energized power battery to an external discharge state
  • Step S2 using the powered power battery to charge the device
  • Step S3 obtaining the maximum allowable output power of the powered power battery
  • Step S4 when the difference between the maximum allowable output power and the actual output power of the powered power battery at the time of charging reaches a first threshold, or the charging amount of the to-be-filled device reaches a second threshold, or receives a stop charging Stop charging the device when it is commanded.
  • the discharge mode is manually stopped by the user and switched to the normal working state; or the discharging mode is stopped by the automatic control according to the stop charging command, and is switched to the normal working state.
  • the first threshold may be 0 or may be greater than 0. .
  • the actual output power of the powered power battery reaches the maximum allowable output power, and the charging is stopped; when the first threshold is greater than 0, the actual output power of the powered power battery during charging is The maximum allowable output power is not reached, but the charging is stopped as long as the difference between the maximum allowable output power and the actual output power of the energized power battery at the time of charging reaches the first threshold.
  • the second threshold may be a preset value calculated by the user, or calculated by the device to be supplemented according to the user requirement, or a difference between the rated battery capacity of the device to be supplemented and the current remaining battery capacity of the device to be supplemented.
  • step S0 is further provided to establish a power connection between the power supply battery and the device to be supplemented. It is also possible to change the order of the steps S1 and S0 without affecting the implementation of the technical effects of the embodiment.
  • step S2 further includes: charging the power battery to charge the device before charging, performing the state before the charging, and confirming whether the charging is ready.
  • the maximum allowable output power can be a user-defined entry value, or can be calculated by the steps shown in FIG. 2:
  • Step S31 setting a destination of the electric vehicle
  • Step S32 calculating the amount of power consumed from the current location to the destination
  • Step S33 acquiring the current power of the powered power battery
  • Step S34 calculating a difference between the current power quantity and the power quantity that needs to be consumed, and using the difference value as the maximum allowable output power quantity.
  • the difference calculated in step S34 may be further subtracted by a preset amount as the maximum allowable output power, and the preset amount may be a user-defined value, which may be in 0 and step S34.
  • the value of the calculated difference is the same, and the essence of the technical solution is consistent with the content of step S34.
  • the calculating the amount of power consumed from the current location to the destination includes: generating a route of the current location to the destination, calculating a length of the route, and combining the power consumption data of the electric car with 100 kilometers, calculating from the current location to The amount of electricity that the destination needs to consume.
  • the preset rule may be an up-regulation coefficient table preset according to a road congestion level and a congestion length.
  • the destination of the electric vehicle may include the following:
  • the location set by the electric vehicle user including the location of the selected charging resource and the location of the set non-charging resource;
  • the working mode of the powered power battery includes a self-charging mode and an external charging mode, and the working mode parameters are respectively preset in advance in the two modes.
  • the external power source can charge the powered power battery when operating in the self-charging mode.
  • the powered power battery can charge the complementary device.
  • step S1 of the embodiment the energization power battery is set to the external discharge state, and only the operation mode of the power supply battery needs to be switched, thereby simplifying the preparation work before charging.
  • the sound can be prompted by the sound or the light signal, and the image can be prompted by the image and/or the text of the visual screen.
  • the maximum allowable output power can be any value between zero and the current remaining power of the powered battery, especially after the establishment of a trading system for energy supplementing between multiple electric vehicles in the future, even the remaining power supply battery can be left.
  • the power is used as the output power to supply energy to other vehicles or equipment to be replenished.
  • a flow description is performed by the charging process of the powered vehicle A and the vehicle B to be charged, including the following process:
  • the switching failure prompt may be performed by using signals such as sound and light;
  • Vehicle A outputs a wake-up signal to vehicle B, and vehicle B enters a self-charging mode upon receiving the wake-up signal;
  • the vehicle B calculates the charging current, and the vehicle A charges the vehicle B in accordance with the charging current of the vehicle B.
  • the stopping charging condition in this step may be: calculating the maximum allowable output power and the first power battery while charging The difference between the actual output power reaches a first threshold, or the amount of charge of the device to be energized reaches a second threshold;
  • Vehicle B ends the charging process in accordance with GB27930;
  • the power-on, power-off, wake-up, and handshake involved in the above steps are conventional concepts in the field of electric vehicle charging, among which:
  • Power-on When the power battery of an electric vehicle is charged or discharged, the electric vehicle must be kept in a starting state to provide control power for charging or discharging control of the electric vehicle. The process of supplying electric energy to the charging or discharging control portion of the electric vehicle from the unpowered state to the starting state of the electric vehicle is power-on.
  • the power-off process is the opposite of the power-on process.
  • the charging control part After the electric vehicle to be charged is powered on, the charging control part is generally in the standby state, and only some of the functions are in the working state, in order to achieve energy saving and reduce equipment loss, after receiving the power supply electric vehicle to send the wake-up signal, wait The charging control portion of the charged electric vehicle is fully activated and is in a charging state.
  • Handshake The process of intercommunicating information such as charging related parameters of the electric vehicle and the electric vehicle to be charged before charging.
  • FIG. 1 An embodiment of the electric vehicle of the present invention as a replenishing control device for mobile charging piles (hereinafter referred to as a replenishing control device for convenience of description) will be described with reference to FIG.
  • the replenishing control device of this embodiment includes: an operating state setting unit, a charging control unit, an allowable output power calculating unit, and a stop charging control unit.
  • the working state setting unit is configured to switch the power supply battery to an external discharge state; the power supply battery is a power battery of the electric vehicle.
  • a charging control unit for controlling the energized power battery to charge the device to be energized.
  • the output power calculation unit is allowed to obtain the maximum allowable output power of the power supply battery.
  • Stop charging control unit to stop charging the device to be replenished when the stop charging condition is reached.
  • the stop charging condition is that the difference between the maximum allowable output power and the power supply battery output reaches a first threshold, or the charge of the to-be-filled device reaches a second threshold, or is received. Stop the charging command.
  • the complementary control device further includes a power connection control unit and a charging preparation unit as shown in FIG. 5.
  • the power connection control unit is configured to control establishment of a power connection between the power supply battery and the device to be supplemented.
  • the charging preparation unit is configured to perform a charging handshake before charging the power-receiving device to charge the device, and inter-connect the state before charging, and confirm whether it is ready for charging.
  • the maximum allowable output power may be a user-defined entry value, or may be calculated by allowing the output power calculation unit.
  • the allowable output power calculation unit includes a destination setting module, a stroke required power calculation module, and a current power acquisition module to allow the output power calculation module.
  • a destination setting module for setting a destination for setting the electric car.
  • the travel required power calculation module is configured to calculate the amount of power consumed from the current location to the destination.
  • the current power acquisition module is configured to acquire the current power of the powered power battery.
  • the output power calculation module is configured to calculate a difference between the current power and the amount of power that needs to be consumed, and use the difference as the maximum allowable output power.
  • the replenishing control device provided by the above embodiment is only illustrated by the division of each functional unit (such as the working state setting unit, the charging control unit, the destination setting module, etc.), and in practical applications,
  • the above functional units are implemented by different functional units as needed, that is, the functional units in the embodiments of the present invention are further decomposed or combined.
  • the functional units of the above embodiments may be combined into one functional unit, or may be further split into Multiple subunits to perform all or part of the functions described above.
  • the names of the functional units involved in the embodiments of the present invention are merely for the purpose of distinguishing and are not to be construed as limiting the present invention.
  • the energizing device 2 of the present embodiment includes a charging circuit 23, a discharging circuit 24, and a switching circuit 22. Both the charging circuit 23 and the discharging circuit 24 are connected to an energized power battery.
  • the charging circuit 23 is for external power supply to charge the powered power battery, and the discharge circuit 24 is used for charging the power battery to charge the device.
  • the switching circuit 22 includes a common terminal 221, a switch 222, a first switch end 223, and a second switch end 224.
  • the common terminal 221 is configured to be connected to an external power source or a device to be supplemented.
  • the terminal 223 and the second switching end 224 are respectively connected to the charging circuit output end and the discharging circuit input end.
  • the switching switch 222 is disposed between the common terminal 221 and the two switching ends for constructing a charging path or a discharging path of the power battery.
  • the energy emergency supplement between electric vehicles generally needs more efficient charging efficiency. It can be used as a charging charging fast charging circuit and a power battery fast charging circuit.
  • the charging circuit can adopt the equivalent circuit of the vehicle fast charging circuit of the power battery, and the discharging circuit can be adopted.
  • the charging circuit and the discharging circuit can also be other circuit structures, as long as the charging and discharging purposes of the power supply battery can be separately realized, the equivalent circuit of the vehicle fast charging circuit using the power battery, and the fast charging pile circuit in the charging pile.
  • the equivalent circuit is only a preferred technical solution, and is not limited to the technical solution of the embodiment.
  • FIG. 8 is a schematic diagram showing the connection between the energizing device 2 and the energizing power battery 3 of the present embodiment.
  • the energizing device 2 of the present embodiment includes a DC charging interface 21, a switching circuit 22, a fast charging pile equivalent circuit 231, and a vehicle. Fast charge equivalent circuit 241.
  • the DC charging interface 21 is respectively connected to the fast charging pile equivalent circuit 231 and the vehicle fast charging equivalent circuit 241 through the switching circuit 22, and the charging path of the power battery is constructed when the external power source charges the power supply battery 3, and the power supply is provided.
  • the battery 3 acts as a power source to construct a charging or discharging path of the power battery when charging the charging device.
  • the energizing power battery 3 shown in Fig. 8 is only for indicating the connection relationship between the energizing device 2 and the energizing power battery 3 in this embodiment, and it is not understood that the energizing device 2 of the present embodiment includes the energizing power battery 3.
  • the DC charging port 21 is a common interface for connecting the fast charging pile equivalent circuit 231 and the vehicle fast charging equivalent circuit 241 to an external power source or a device to be supplemented.
  • the setting of the shared interface reduces circuit components and saves cost, and at the same time, externally Only one interface is set, which is more convenient to use.
  • the DC charging interface 21 is designed according to GB 20234.3-2015.
  • the changeover switch 22 can be in various forms, for example, a manually switched knives or an electronically controlled switch such as an electromagnetic relay.
  • the switching circuit control unit 25 is added to control the switching of the connection path between the switch 22 and the two switching terminals, so that the DC charging interface is turned on during charging.
  • the path of the switching circuit-charging circuit charges the power battery, and the path of the "discharging circuit-switching circuit-DC charging interface" that is turned on during discharging charges the external device to be charged.
  • the energizing power battery 3 shown in Fig. 9 is only for indicating the connection relationship between the energizing device 2 and the energizing power battery 3 in this embodiment, and it is not understood that the energizing device 2 of the present embodiment includes the energizing power battery 3.
  • FIG. 10 is a schematic diagram showing the power connection of the external discharging portion and the self-charging portion by using the energizing device of the present embodiment, and the figure also shows The current trend of the energized power battery during charging and discharging is shown by the connection of the discharge and charging of the two complementary devices and the current direction, showing the connection path when the energizing device is discharged and the connecting path during charging.
  • the circuit connection relationship and current direction in the energizing device 2 in the external discharge state are sequentially "energy-powered battery 3 - fast charging pile equivalent circuit 231 - switching circuit 22 - DC charging interface 21", and the switching circuit is switched
  • the circuit control unit 25 controls the connection between the fast charging pile equivalent circuit and the DC charging interface;
  • the circuit connection relationship and current direction in the self-charging state complementary device 2 are sequentially "DC charging interface 21 - switching circuit 22 -
  • the switching circuit control unit 25 may be a switching button to manually control the switching of the state of the switching switch; or may be a touch screen controller, and control the state of the switching switch through the human-machine interactive terminal interface of the touch screen controller.
  • the wireless signal receiving device for receiving the remote control command can also control the state of the switch by receiving a control command sent by the remote control terminal and generating a control command of the switch after parsing.
  • the electric switch used by the switch 222 is a relay, it is used as a switch, and the control end of the relay is connected to the switching circuit control unit.
  • the above-mentioned complementary device embodiment can be used to implement the above-mentioned complementary method embodiment, and the technical principle, the solved technical problem and the generated technical effect are similar, and those skilled in the art can clearly understand that it is convenient for description.
  • the specific working process and related description of the above-mentioned supplementary device reference may be made to the corresponding process in the foregoing supplementary method embodiment, and details are not described herein again.
  • the above-mentioned complementary device further includes some other well-known structures, such as a processor, a controller, a storage medium, etc.
  • the storage medium includes, but is not limited to, a random storage medium, a flash memory, a read-only storage medium, and a programmable Read only storage medium, volatile storage medium, non-volatile storage medium, serial storage medium, parallel storage medium or register, etc., including but not limited to CPLD/FPGA, DSP, ARM processor, MIPS processor, etc.
  • these well-known structures are not shown in FIGS. 6-10.
  • the embodiment of the present invention further provides a replenishing system based on the above-mentioned complementary method and the replenishing device embodiment.
  • the system adds a power supply battery, a charging circuit and a discharging circuit respectively on the basis of the replenishing device.
  • the power battery can be connected, and the "DC charging interface - switching circuit - charging circuit - energizing power battery" channel that is connected during charging charges the power supply battery, and the power supply is turned on during the discharge.
  • the path of the battery-discharge circuit-switching circuit-DC charging interface charges the external device to be charged.
  • the DC charging interfaces of the two systems are connected by a charging line.
  • the two ends of the charging line are respectively provided with DC charging sockets, and the DC charging sockets are designed according to GB 20234.3-2015.
  • the embodiment of the present invention further provides a power supply motor, which is provided with the above-mentioned energy supplement system.
  • the storage medium stores therein a plurality of programs adapted to be loaded and executed by the processor to implement the contents of the electric vehicle as a charging method of the mobile charging pile.
  • a complementary control device of the present invention includes a processor and a storage device, the processor is adapted to execute a plurality of programs; the storage device is adapted to store a plurality of programs; the instructions are adapted to be loaded and executed by the processor to implement: The car is used as a supplement in the mobile charging pile.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明公开了一种电动汽车作为移动充电桩的补能方法、装置、***,所述电动汽车具有供能动力电池,所述补能方法包括:将所述供能动力电池设置为对外放电状态;利用供能动力电池对待补能设备进行充电;获取供能动力电池的最大允许输出电量;当所述最大允许输出电量与供能动力电池在充电时的实际输出电量的差值达到第一阈值、或所述待补能设备的充电量达到第二阈值、或接收到停止充电指令时,停止对待补能设备充电。本发明利用剩余电量较大的电动汽车对无续航里程或少续航里程的电动汽车进行应急充电,降低了救援难度,同时也降低或者免除了救援费用。

Description

电动汽车作为移动充电桩的补能方法、装置、*** 技术领域
本发明涉及电动汽车补能技术领域,特别是涉及一种电动汽车作为移动充电桩的补能方法、装置、***。
背景技术
随着电动汽车的迅猛发展,电动汽车已经越发走进我们的日常生活中,已逐渐代替燃油汽车成为一种全新的环保型交通工具。
由于电动汽车所有能量来源于动力电池,空调使用、动力电池加热冷却等多种功能一旦开启,容易造成实际可续航里程与计算续航里程偏差过大问题,导致车辆亏电而抛锚。
目前对亏电车辆进行救援的救援方式有两种。第一种是通过道路清障车进行救援,利用道路清障车将亏电车辆拖到附近充电站进行充电,不仅救援时间长,而且相应的救援费用较高。第二种是通过移动充电车救援,移动充电车可以行驶到亏电车辆附近,然后对亏电车辆进行充电。第二种方式相比于第一种方式更为优化和方便,但依然存在救援时间长的问题,特别是交通较为拥堵的大城市、以及电动汽车拥有量较少的二三线城市,往往需要亏电车辆等待很长时间。
如果任一辆电动汽车都可以对亏电车辆进行应急充电实施救援,则可以很大程度上降低救援难度、缩短救援时间,降低纯电汽车使用者的亏电恐慌和补能焦虑。
发明内容
为了解决现有技术中的上述问题,即为了解决电动汽车间的应急补能,本发明第一方面,提出了一种电动汽车作为移动充电桩的补能方法,所述电动汽车具有供能动力电池,其特征在于,包括:
将所述供能动力电池设置为对外放电状态;
利用供能动力电池对待补能设备进行充电;
获取供能动力电池的最大允许输出电量;
当所述最大允许输出电量与供能动力电池在充电时的实际输出电量的差值达到第一阈值、或所述待补能设备的充电量达到第二阈值、或接收到停止充电指令时,停止对待补能设备充电。
优选地,在利用供能动力电池对待补能设备进行充电之前,还包括:
建立供能动力电池与待补能设备之间的电力连接。
优选地,所述最大允许输出电量为录入值。
优选地,所述最大允许输出电量的计算步骤包括:
设定所述电动汽车的目的地;
计算从当前位置到所述目的地所需要消耗的电量;
获取所述供能动力电池的当前电量;
计算所述当前电量与所述需要消耗的电量的差值,并以该差值作为所述最大允许输出电量。
优选地,利用供能动力电池对待补能设备进行充电之前,还包括:
供能动力电池对待补能设备进行充电前进行充电握手,互通充电前的状态,并确认是否准备好进行充电。
本发明的第二方面,提出了一种电动汽车作为移动充电桩的补能控制装置,包括:
工作状态设置单元,用于将供能动力电池切换至对外充电模式;所述供能动力电池为电动汽车的动力电池;以及
充电控制单元,用于控制供能动力电池对待补能设备进行充电;以及
允许输出电量计算单元,用于获取供能动力电池的最大允许输出电量;以及
停止充电控制单元,用于在达到停止充电条件时停止对待补能设备充电;
其中,
所述停止充电条件为所述最大允许输出电量与供能动力电池输出电量的差值达到第一阈值、或所述待补能设备的充电量达到第二阈值、或接收到停止充电指令。
优选地,还包括电力连接控制单元,用于控制供能动力电池与待补能设备之间的建立电力连接。
优选地,所述最大允许输出电量为录入值。
优选地,所述允许输出电量计算单元包括:
目的地设置模块,用于设置设定所述电动汽车的目的地;以及
行程所需电量计算模块,用于计算从当前位置到所述目的地所需要消耗的电量;以及
当前电量获取模块,用于获取所述供能动力电池的当前电量;
允许输出电量计算模块,用于计算所述当前电量与所述需要消耗的电量的差值,并以该差值作为所述最大允许输出电量。
优选地,还包括充电准备单元,用于供能动力电池对待补能设备进行充电前进行充电握手,互通充电前的状态,并确认是否准备好进行充电。
本发明的第三方面,提出了一种电动汽车作为移动充电桩的补能装置,包括充电电路、放电电路、以及切换电路;
所述切换电路包括一个共用端、两个切换端、切换开关;所述共用端配置为与动力电池连接,所述两个切换端分别与充电电路输出端和放电电路输入端相连接,切换开关设置于共用端与两个切换端之间,用于构建动力电池的充电通路或放电通路。
优选地,还包括直流充电接口,所述充电电路输入端和放电电路输出端与直流充电接口相连接。
优选地,还包括切换电路控制单元,用于控制所述切换开关与两个切换端的连接关系。
优选地,所述切换电路控制单元为切换按钮,和/或触摸屏控制器。
优选地,所述的切换电路控制单元包括用于接收切换开关状态控制指令的无线信号接收装置。
优选地,所述切换开关为继电器;继电器的控制端与切换电路控制单元相连接。
优选地,所述充电电路为动力电池快充电路的等效电路;所述放电电路为充电桩快充电路的等效电路。
优选地,所述的切换开关为手动切换开关。
本发明的第四方面,提出了一种补能***,包括上述电动汽车作为移动充电桩的补能装置,还包括动力电池。
本发明的第五方面,提出了一种电动汽车,包括上述补能***。
本发明的第六方面,提出了一种存储介质,其中存储有多条程序,所述程序适于由处理器加载并执行以实现上述电动汽车作为移动充电桩的补能方法中的内容。
本发明的第七方面,提出了一种补能控制装置,包括
处理器,适于执行各条程序;以及
存储设备,适于存储多条程序;
其特征在于,所述程序适于由处理器加载并执行以实现:
上述电动汽车作为移动充电桩的补能方法中的内容。
与现有技术相比,本发明至少具有以下优点:
通过本发明的补能控制装置,可以很便捷的实现了利用剩余电量较大的电动移动设备对无续航里程、或少续航里程的电动移动设备进行应急充电,降低了救援难度,同时也降低或者免除了救援费用;特别是在电动汽车领域,随着电动汽车使用量的增加,区域内电动汽车的密度更大,电动汽车的相遇概率也极大提高,从而使得上述技术效果的显著性得到极大提升。
附图说明
图1是本发明的一种电动汽车作为移动充电桩的补能方法实施例的流程示意图;
图2是本发明补能方法中最大允许输出电量计算流程示意图;
图3是采用本发明方法的两辆车间进行充电的流程示意图;
图4是本发明一种电动汽车作为移动充电桩的补能控制装置框图;
图5是本发明另一种电动汽车作为移动充电桩的补能控制装置框图;
图6是本发明一种电动汽车作为移动充电桩的补能装置框图;
图7是本发明补能装置中一种切换电路结构示意图;
图8是本发明另一种补能装置及与供能动力电池连接关系示意图;
图9是本发明第三种补能装置及与供能动力电池连接关系示意图;
图10是本发明一种补能装置分别作为对外放电部分和自充电部分进行电力连接示意。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。
目前电动汽车的电能补充方式包括充电桩充电、换电站换电、以及更加灵活的移动充电车充电等,电能补充的多样化在一定程度上减缓了电动汽车用户补能焦虑的问题,但是电动汽车的应急充电问题是通过移动充电车来实现,但其应急充电的时效性无法满足电动汽车用户的需求,特别是在路况较为复杂、堵车情况较为严重大城市。
基于上述问题,本发明提出了一种用于电动汽车动力电池的补能方法和补能控制装置,用于外部电源对动力电池的充电、以及动力电池对其他电动汽车动力电池的补能。这样,装载有此补能控制装置的电动汽车就可以对其他亏电的电动汽车进行应急充电,从而使其他亏电的电动汽车获得足够的电能行驶至充电位置或换电位置进行电能补充。
本发明技术方案解决了电动汽车应急充电的时效性问题,对电动汽车的普及和市场拓展有极大的推动作用,具有极大的市场价值,而且随着装载有本发明装置的电动汽车的增多,电动汽车间的应急充电将更为普遍,应急充电的时效会极大缩短。而且由于充、换电资源的建 设投资较大,在部分地区或路段充、换电资源的布局会比较稀疏,极易发生电动汽车亏电无法行驶到下一个资源点的问题,而本发明实现了电动汽车间的能源互充,也有效的改善了充、换电资源的布局比较稀疏带来的问题。
本发明技术方案可以应用到所有电动移动设备中,例如电动汽车、电动自行车、电动摩托车、电动移载小车、电动机器人等,但为了清楚对本发明技术方案进行说明,如下描述选定电动汽车作对本发明技术方案进行描述。
为了便于描述,下文描述中以电动汽车仅作为电力输出的电动汽车,待补能设备包括待充电的电动汽车以及其他待充电设备(如具有充电接口的载能电池),并将电力输出的电动汽车的动力电池表示为供能动力电池以区别常规动力电池,从而体现其在对待补能设备进行充电过程中的主动地位。同时为了便于各种状态的区分,下文以自充电状态表示电动汽车从外部电源获取电能对供能动力电池充电的状态,以对外放电状态表示电动汽车利用供能动力电池对待补能设备进行充电的状态,以正常工作状态表示电动汽车供能动力电池仅用于驱动自身电器部件的状态。
结合图1对本发明电动汽车作为移动充电桩的补能方法的实施例进行说明。本实施例的电动汽车作为移动充电桩的补能方法包括以下步骤:
步骤S1,将所述供能动力电池设置为对外放电状态;
步骤S2,利用供能动力电池对待补能设备进行充电;
步骤S3,获取供能动力电池的最大允许输出电量;
步骤S4,当所述最大允许输出电量与供能动力电池在充电时的实际输出电量的差值达到第一阈值、或所述待补能设备的充电量达到第二阈值、或接收到停止充电指令时,停止对待补能设备充电。
本实施例中,在停止充电之后,通过用户手动停止放电模式,并切换至正常工作状态;或者依据停止充电指令通过自动控制的方式停止放电模式,并切换至正常工作状态。
在以所述最大允许输出电量与供能动力电池在充电时的实际输出电量的差值是否达到第一阈值作为停止充电的判断条件时,所述第一阈值可以为0时,也可以大于0。所述第一阈值为0时,供能动力电池在充电时的实际输出电量达到最大允许输出电量,停止充电;所述第一阈值大于0时,供能动力电池在充电时的实际输出电量虽未达到最大允许输出电量,但只要最大允许输出电量与供能动力电池在充电时的实际输出电量的差值达到第一阈值,即停止充电。
所述第二阈值可以为用户自行设定、或者待补能设备根据用户需求计算出的预设值,或者待补能设备额定电池容量与待补能设备当前剩余电量的差值。
本实施例在步骤S1之前还设置有步骤S0,建立供能动力电池与待补能设备之间的电力连接。也可以对步骤S1和步骤S0的先后顺序进行变换,不影响本实施例技术效果的实现。
为保证充电动作的正常进行,步骤S2中还包括:供能动力电池对待补能设备进行充电前进行充电握手,互通充电前的状态,并确认是否准备好进行充电。
本实施例中,最大允许输出电量可以为用户自定义的录入值,也可以通过如图2所示步骤计算得到:
步骤S31,设定所述电动汽车的目的地;
步骤S32,计算从当前位置到所述目的地所需要消耗的电量;
步骤S33,获取所述供能动力电池的当前电量;
步骤S34,计算所述当前电量与所述需要消耗的电量的差值,并以该差值作为所述最大允许输出电量。
在实际应用中,也可以将步骤S34中所计算的差值再减去一个预设量作为所述最大允许输出电量,该预设量可以为用户自定义数值,可以在0与步骤S34中所计算的差值之间取值,其技术方案的实质与步骤S34的内容一致。
其中,计算从当前位置到所述目的地所需要消耗的电量,包括:生成当前位置到达所述目的地的路线,计算该路线的长度,结合电 动汽车百公里耗电数据,计算从当前位置到所述目的地所需要消耗的电量。通过行程路线估算车辆所需能源的方法目前有很多种,已涵盖燃油车辆、电动汽车辆等不同能源***的车辆,此处不再赘述。
为了使计算得到的所需要消耗的电量更贴合实际,会依据当前的路况,对完成整条路线所需消耗电量的按照预设的规则进行上调。所述预设的规则可以为根据路况拥堵等级以及拥堵长度预设的上调系数表。
本实施例中,所述电动汽车的目的地可以包括以下几种:
(1)电动汽车用户设定的位置,包括选定的充电资源的位置和设定的非充电资源的位置;
(2)远程服务***为电动汽车用户推送的充电资源的位置;
(3)电动汽车用户的原始行程对应的位置;
(4)依据历史行为数据预测的电动汽车用户当前预行驶位置;
本实施例中,供能动力电池的工作模式包括自充电模式和对外充电模式,两种模式下预先分别对应设置工作模式参数。
工作于自充电模式时,外部电源可以对所述供能动力电池充电。
工作于对外充电模式时,所述供能动力电池可以对待补能设备充电。
这样,在本实施例的步骤S1中,将所述供能动力电池设置为对外放电电状态只需进行供能动力电池的工作模式的切换即可,简化了充电前的准备工作。
本实施例中自充电模式、对外充电模式切换到位后,可以通过声音、或光信号进行提示,还可以通过可视屏幕的图像和/或文字进行提示。
本实施例中最大允许输出电量可以为零到供能动力电池当前剩余电量之间的任意值,特别是今后多种电动汽车间能量补充的交易 ***建立后,甚至可以将供能动力电池当前剩余电量全部作为输出电量进行其他车辆或待补能设备的能量供应。
为了更清晰地对本发明技术方案进行说明,下面结合两辆电动汽车之间充电的一种流程对本发明进行进一步的阐述。如图3所示,通过供电的车辆A与待充电的车辆B的充电过程进行流程描述,包括以下过程:
(1)用充电线连接车辆A和车辆B;
(2)给电量源车辆A上电并在车辆A上通过屏幕或按钮等形式设置车辆A为作为对外充电模式,并将车辆A的切换到对外充电模式;
(3)判断是否成功切换到对外充电模式,如果未成功则可通过声、光等信号进行切换失败提示;
(4)获取车辆A的最大允许输出电量;
(5)车辆A向车辆B输出唤醒信号,车辆B在接收到唤醒信号时进入自充电模式;
(6)车辆B被唤醒后与车辆A按照GB27930标准进行握手;
(7)车辆B计算充电电流,车辆A按照车辆B的充电电流对车辆B进行充电。
(8)判断是否达到停止充电条件,如果是则执行(9),如果不是则执行(10);此步骤中的停止充电条件可以为:所计算最大允许输出电量与第一动力电池在充电时的实际输出电量的差值达到第一阈值、或所述待补能设备的充电量达到第二阈值;
(9)判断是否接收到停止充电指令,如果是则执行(10),如果不是则执行(8);停止充电指令可以通过车辆A屏幕或按钮等形式输入。
(10)车辆A停止输出电流并按照GB27930进行结束充电流程;
(11)车辆B按照GB27930进行结束充电流程;
(12)结束充电流程后车辆A和车辆B下电。
上述步骤中涉及的上电、下电、唤醒、握手为电动汽车充电领域的常规概念,其中:
上电:在电动汽车的动力电池进行充电或放电时,必须保持电动汽车启动状态,从而为电动汽车充电或放电控制提供控制用电能。由电动汽车由未启动状态到启动状态,从而为电动汽车充电或放电控制部分提供电能的过程即为上电。
下电过程与上电过程相反。
唤醒:待充电的电动汽车在上电后,充电控制部分一般处于待机状态,仅有部分功能处于工作状态,以实现节能和降低设备损耗的目的,在接收到供电电动汽车发送唤醒信号后,待充电的电动汽车的充电控制部分被完全激活,处于充电工作状态。
握手:供电电动汽车和待充电电动汽车在充电前进行充电相关参数等信息互通的过程。
本实施例中虽然将步骤(1)-(4)按照上述先后次序的方式进行了描述,但是本领域技术人员可以理解,为了实现本实施例的效果,不同的步骤之间不必按照这样的次序执行,其可以同时(并行)执行或以颠倒的次序执行,这些简单的变化都在本发明的保护范围之内。
结合图4对本发明电动汽车作为移动充电桩的补能控制装置(为便于描述,以下简称补能控制装置)的一个实施例进行说明。
本实施例的补能控制装置包括:工作状态设置单元、充电控制单元、允许输出电量计算单元、停止充电控制单元。
工作状态设置单元,用于将供能动力电池切换至对外放电状态;所述供能动力电池为电动汽车的动力电池。
充电控制单元,用于控制供能动力电池对待补能设备进行充电。
允许输出电量计算单元,用于获取供能动力电池的最大允许输出电量。
停止充电控制单元,用于在达到停止充电条件时停止对待补能设备充电。
本实施例中,所述停止充电条件为所述最大允许输出电量与供能动力电池输出电量的差值达到第一阈值、或所述待补能设备的充电量达到第二阈值、或接收到停止充电指令。
本实施例中,补能控制装置如图5还包括电力连接控制单元、充电准备单元。
电力连接控制单元用于控制供能动力电池与待补能设备之间的电力连接的建立。
充电准备单元用于供能动力电池对待补能设备进行充电前进行充电握手,互通充电前的状态,并确认是否准备好进行充电。
本实施例中,所述最大允许输出电量可以为用户自定义的录入值,也可以通过允许输出电量计算单元计算。
允许输出电量计算单元包括目的地设置模块、行程所需电量计算模块、当前电量获取模块允许输出电量计算模块。
目的地设置模块,用于设置设定所述电动汽车的目的地。
行程所需电量计算模块,用于计算从当前位置到所述目的地所需要消耗的电量。
当前电量获取模块,用于获取所述供能动力电池的当前电量。
允许输出电量计算模块,用于计算所述当前电量与所述需要消耗的电量的差值,并以该差值作为所述最大允许输出电量。
为了避免文字重复,该实施例的描述并未充分展开,所属技术领域的技术人员可以清楚地了解到,该实施例对应技术细节的可以参考前述补能方法是势力中的对应描述,在此不再赘述。
要说明的是,上述实施例提供的补能控制装置,仅以上述各功能单元(如工作状态设置单元、充电控制单元、目的地设置模块等)的划分进行举例说明,在实际应用中,可以根据需要而将上述功能单元由不同的功能单元来完成,即将本发明实施例中的功能单元再分解或者组合,例如,上述实施例的功能单元可以合并为一个功能单元,也可以进一步拆分成多个子单元,以完成以上描述的全部或者部分功能。对于 本发明实施例中涉及的功能单元名称,仅仅是为了进去区分,不视为对本发明的不当限定。
结合图6至图10对本发明补能装置的另一个实施例进行说明。
如图6所示,本实施例的补能装置2,包括充电电路23、放电电路24、以及切换电路22。充电电路23、放电电路24均连接供能动力电池。充电电路23用于外部电源对供能动力电池进行充电,放电电路24用于供能动力电池对待补能设备进行充电。
切换电路22如图7所示,包括一个共用端221、切换开关222、第一切换端223、第二切换端224;共用端221配置为与与外部电源或待补能设备连接,第一切换端223、第二切换端224分别与充电电路输出端和放电电路输入端相连接,切换开关222设置于共用端221与两个切换端之间,用于构建动力电池的充电通路或放电通路。
电动汽车之间的能源应急补充一般需要比较高效的充电效率,可以借鉴充电桩快充电路、动力电池快充电路,充电电路可以采用动力电池的车辆快充电路的等效电路,放电电路可以采用充电桩中快充桩电路的等效电路。当然充电电路和放电电路也可以为其他电路结构,只要能分别实现供能动力电池的充电、放电目的即可,采用动力电池的车辆快充电路的等效电路、充电桩中快充桩电路的等效电路仅为一种优选的技术方案,并非对本实施例技术方案的限定。
图8示出了本实施例的补能装置2与供能动力电池3的连接示意图,本实施例的补能装置2包括直流充电接口21、切换电路22、快充桩等效电路231、车辆快充等效电路241。直流充电接口21通过切换电路22分别与快充桩等效电路231、车辆快充等效电路241相连接,在外部电源对供能动力电池3充电时构建动力电池的充电通路,在供能动力电池3充当电源对待充电设备充电时构建动力电池的充电通路或放电通路。图8中显示有供能动力电池3仅为了表明该实施中补能装置2与供能动力电池3的连接关系,不能理解为本实施例的补能装置2包含供能动力电池3。
直流充电口21为快充桩等效电路231、车辆快充等效电路241与外部电源或待补能设备相连接的共用接口,共用接口的设置减少了电 路构成部件,节省了成本,同时对外仅设置一个接口,也更加方便了使用。
直流充电接口21的根据GB 20234.3-2015设计。
本实施例中,切换开关22可以为多种形式,例如可以为手动切换的闸刀,也可以为电磁继电器等电控开关。
当切换开关22采用电控开关时,如图9所示,增设切换电路控制单元25,控制切换开关22与两个切换端的连接通路的切换,实现在充电时接通的为“直流充电接口-切换电路-充电电路”的通路对动力电池进行充电,在放电时接通的为“放电电路-切换电路-直流充电接口”的通路对外部待充电设备进行充电。图9中显示有供能动力电池3仅为了表明该实施中补能装置2与供能动力电池3的连接关系,不能理解为本实施例的补能装置2包含供能动力电池3。
本实施例的补能装置可应用电动汽车领域。为了更清楚地展示本实施例补能装置的充、放电过程,通过图10示出了采用本实施例的补能装置分别作为对外放电部分和自充电部分进行电力连接示意,该图中还显示了供能动力电池在充、放电过程中的电流走向,通过两个补能装置的放电和充电的连接及电流走向,展示了补能装置放电时的连接通路、以及充电时的连接通路。
在处于对外放电状态的补能装置2中的电路连接关系及电流走向顺次为“供能动力电池3—快充桩等效电路231—切换电路22—直流充电接口21”,切换电路经由切换电路控制单元25控制实现快充桩等效电路和直流充电接口的连接;在处于自充电状态的补能装置2中的电路连接关系及电流走向顺次为“直流充电接口21—切换电路22—车辆快充等效电路241—供能动力电池3”,切换电路经由切换电路控制单元25控制实现车辆快充等效电路和直流充电接口的连接。
本实施例中,切换电路控制单元25可以为切换按钮,通过手动的方式控制切换开关的状态的切换;也可以为触摸屏控制器,通过触摸屏控制器的人机交互终端界面来控制切换开关的状态;还可以用于接 收远程控制指令的无线信号接收装置,通过接收远程控制终端发送的控制指令、解析后生成切换开关的控制指令,进而控制切换开关的状态。
当切换开关222采用的电控开关为继电器时作为切换开关,继电器的控制端与切换电路控制单元相连接。
上述补能装置实施例可以用于执行上述补能方法实施例,其技术原理、所解决的技术问题及产生的技术效果相似,所属技术领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的补能装置的具体工作过程及有关说明,可以参考前述补能方法实施例中的对应过程,在此不再赘述。
本领域技术人员可以理解,上述补能装置还包括一些其他公知结构,例如处理器、控制器、存储介质等,其中,存储介质包括但不限于随机存储介质、闪存、只读存储介质、可编程只读存储介质、易失性存储介质、非易失性存储介质、串行存储介质、并行存储介质或寄存器等,处理器包括但不限于CPLD/FPGA、DSP、ARM处理器、MIPS处理器等,为了不必要地模糊本公开的实施例,这些公知的结构未在图6-10中示出。
基于上述补能方法、补能装置实施例,本发明实施例还提供了一种补能***,该***在上述补能装置的基础上增设有供能动力电池,充电电路和放电电路分别与供能动力电池相连接,在充电时接通的为“直流充电接口-切换电路-充电电路-供能动力电池”的通路对供能动力电池进行充电,在放电时接通的为“供能动力电池-放电电路-切换电路-直流充电接口”的通路对外部待充电设备进行充电。
当一个补能***对另一个补能***进行充电时,两个***的直流充电接口通过充电线连接。充电线的两头分别设置直流充电插座,直流充电插座根据GB 20234.3-2015设计。
基于上述补能***实施例,本发明实施例还提一种供电动汽车,该电动汽车设置有上述补能***。
本发明的一种存储介质的实施例中,存储介质其中存储有多条程序,所述程序适于由处理器加载并执行以实现上述电动汽车作为移动充电桩的补能方法中的内容。
本发明的一种补能控制装置中,包括处理器、存储设备,处理器适于执行各条程序;存储设备适于存储多条程序;指令适于由处理器加载并执行以实现:上述电动汽车作为移动充电桩的补能方法中的内容。
本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在发明的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (22)

  1. 一种电动汽车作为移动充电桩的补能方法,所述电动汽车具有供能动力电池,其特征在于,包括:
    将所述供能动力电池设置为对外放电状态;
    利用供能动力电池对待补能设备进行充电;
    获取供能动力电池的最大允许输出电量;
    当所述最大允许输出电量与供能动力电池在充电时的实际输出电量的差值达到第一阈值、或所述待补能设备的充电量达到第二阈值、或接收到停止充电指令时,停止对待补能设备充电。
  2. 根据权利要求1所述的补能方法,其特征在于,在利用供能动力电池对待补能设备进行充电之前,还包括:
    建立供能动力电池与待补能设备之间的电力连接。
  3. 根据权利要求1所述的补能方法,其特征在于,所述最大允许输出电量为录入值。
  4. 根据权利要求1所述的补能方法,其特征在于,所述最大允许输出电量的计算步骤包括:
    设定所述电动汽车的目的地;
    计算从当前位置到所述目的地所需要消耗的电量;
    获取所述供能动力电池的当前电量;
    计算所述当前电量与所述需要消耗的电量的差值,并以该差值作为所述最大允许输出电量。
  5. 根据权利要求1-4中任一项所述的补能方法,其特征在于,利用供 能动力电池对待补能设备进行充电的步骤还包括:
    供能动力电池对待补能设备进行充电前进行充电握手,互通充电前的状态,并确认是否准备好进行充电。
  6. 一种电动汽车作为移动充电桩的补能控制装置,其特征在于,包括:
    工作状态设置单元,用于将供能动力电池切换至对外放电状态;所述供能动力电池为电动汽车的动力电池;以及
    充电控制单元,用于控制供能动力电池对待补能设备进行充电;以及
    允许输出电量计算单元,用于获取供能动力电池的最大允许输出电量;以及
    停止充电控制单元,用于在达到停止充电条件时停止对待补能设备充电;
    其中,
    所述停止充电条件为所述最大允许输出电量与供能动力电池输出电量的差值达到第一阈值、或所述待补能设备的充电量达到第二阈值、或接收到停止充电指令。
  7. 根据权利要求6所述的补能控制装置,其特征在于,还包括电力连接控制单元,用于控制供能动力电池与待补能设备之间的建立电力连接。
  8. 根据权利要求6所述的补能控制装置,其特征在于,所述最大允许输出电量为录入值。
  9. 根据权利要求6所述的补能控制装置,其特征在于,所述允许输出电量计算单元包括:
    目的地设置模块,用于设置设定所述电动汽车的目的地;以及
    行程所需电量计算模块,用于计算从当前位置到所述目的地所需要消耗的电量;以及
    当前电量获取模块,用于获取所述供能动力电池的当前电量;
    允许输出电量计算模块,用于计算所述当前电量与所述需要消耗的电量的差值,并以该差值作为所述最大允许输出电量。
  10. 根据权利要求6-9任一项所述的补能控制装置,其特征在于,还包括充电准备单元,用于供能动力电池对待补能设备进行充电前进行充电握手,互通充电前的状态,并确认是否准备好进行充电。
  11. 一种电动汽车作为移动充电桩的补能装置,其特征在于,包括充电电路、放电电路、以及切换电路;
    所述切换电路包括一个共用端、两个切换端、切换开关;所述共用端配置为与动力电池连接,所述两个切换端分别与充电电路输出端和放电电路输入端相连接,切换开关设置于共用端与两个切换端之间,用于构建动力电池的充电通路或放电通路。
  12. 根据权利要求11所述补能装置,其特征在于,还包括直流充电接口,所述充电电路输入端和放电电路输出端与直流充电接口相连接。
  13. 根据权利要求12所述补能装置,其特征在于,还包括切换电路控制单元,用于控制所述切换开关在两个切换端之间切换。
  14. 根据权利要求13所述补能装置,其特征在于,所述切换电路控 制单元为切换按钮,和/或触摸屏控制器。
  15. 根据权利要求13所述补能装置,其特征在于,所述切换电路控制单元包括用于接收切换开关状态控制指令的无线信号接收装置。
  16. 根据权利要求13所述补能装置,其特征在于,所述切换开关为继电器;继电器的控制端与切换电路控制单元相连接。
  17. 根据权利要求11~16任一项所述补能装置,其特征在于,所述充电电路为动力电池快充电路的等效电路;所述放电电路为充电桩快充电路的等效电路。
  18. 根据权利要求11~13任一项所述补能装置,其特征在于,所述的切换开关为手动切换开关。
  19. 一种补能***,其特征在于,包括权利要求11~18中任一项所述的补能装置,还包括动力电池。
  20. 一种电动汽车,其特征在于,包括权利要求19所述的补能***。
  21. 一种存储介质,其中存储有多条程序,其特征在于,所述程序适于由处理器加载并执行以实现权利要求1-5所述的电动汽车作为移动充电桩的补能方法中的内容。
  22. 一种补能控制装置,包括
    处理器,适于执行各条程序;以及
    存储设备,适于存储多条程序;
    其特征在于,所述程序适于由处理器加载并执行以实现:
    权利要求1-5所述的电动汽车作为移动充电桩的补能方法中的内容。
PCT/CN2018/078240 2017-05-19 2018-03-07 电动汽车作为移动充电桩的补能方法、装置、*** WO2018210034A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710355207.4 2017-05-19
CN201720566905.4U CN206820505U (zh) 2017-05-19 2017-05-19 电动汽车作为移动充电桩的补能装置、***及电动汽车
CN201720566905.4 2017-05-19
CN201710355207.4A CN107221974A (zh) 2017-05-19 2017-05-19 电动汽车作为移动充电桩的补能方法、装置、***

Publications (1)

Publication Number Publication Date
WO2018210034A1 true WO2018210034A1 (zh) 2018-11-22

Family

ID=64273431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078240 WO2018210034A1 (zh) 2017-05-19 2018-03-07 电动汽车作为移动充电桩的补能方法、装置、***

Country Status (1)

Country Link
WO (1) WO2018210034A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112622695A (zh) * 2020-12-08 2021-04-09 华自科技股份有限公司 充电控制方法、装置和充电桩
CN113815488A (zh) * 2021-09-30 2021-12-21 华人运通(上海)新能源驱动技术有限公司 电动汽车的能量分配方法、装置及车辆
CN113991815A (zh) * 2021-10-29 2022-01-28 哈尔滨理工大学 多端口分散式电动汽车充电组群的充电***及方法
CN114148202A (zh) * 2021-12-15 2022-03-08 华人运通(江苏)技术有限公司 车辆与充电桩的充电匹配性识别方法、装置和车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104917232A (zh) * 2015-05-28 2015-09-16 深圳市华宝新能源有限公司 电动汽车移动充电控制方法和***
CN106080231A (zh) * 2016-06-13 2016-11-09 重庆长安汽车股份有限公司 一种汽车用移动式充电***、自充电方法及对外充电方法
CN205970893U (zh) * 2016-07-22 2017-02-22 宝沃汽车(中国)有限公司 电动车充电***和电动车
CN107221974A (zh) * 2017-05-19 2017-09-29 蔚来汽车有限公司 电动汽车作为移动充电桩的补能方法、装置、***
CN206820505U (zh) * 2017-05-19 2017-12-29 蔚来汽车有限公司 电动汽车作为移动充电桩的补能装置、***及电动汽车

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104917232A (zh) * 2015-05-28 2015-09-16 深圳市华宝新能源有限公司 电动汽车移动充电控制方法和***
CN106080231A (zh) * 2016-06-13 2016-11-09 重庆长安汽车股份有限公司 一种汽车用移动式充电***、自充电方法及对外充电方法
CN205970893U (zh) * 2016-07-22 2017-02-22 宝沃汽车(中国)有限公司 电动车充电***和电动车
CN107221974A (zh) * 2017-05-19 2017-09-29 蔚来汽车有限公司 电动汽车作为移动充电桩的补能方法、装置、***
CN206820505U (zh) * 2017-05-19 2017-12-29 蔚来汽车有限公司 电动汽车作为移动充电桩的补能装置、***及电动汽车

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112622695A (zh) * 2020-12-08 2021-04-09 华自科技股份有限公司 充电控制方法、装置和充电桩
CN113815488A (zh) * 2021-09-30 2021-12-21 华人运通(上海)新能源驱动技术有限公司 电动汽车的能量分配方法、装置及车辆
CN113815488B (zh) * 2021-09-30 2023-07-14 华人运通(上海)新能源驱动技术有限公司 电动汽车的能量分配方法、装置及车辆
CN113991815A (zh) * 2021-10-29 2022-01-28 哈尔滨理工大学 多端口分散式电动汽车充电组群的充电***及方法
CN114148202A (zh) * 2021-12-15 2022-03-08 华人运通(江苏)技术有限公司 车辆与充电桩的充电匹配性识别方法、装置和车辆
CN114148202B (zh) * 2021-12-15 2023-10-17 华人运通(江苏)技术有限公司 车辆与充电桩的充电匹配性识别方法、装置和车辆

Similar Documents

Publication Publication Date Title
WO2018210034A1 (zh) 电动汽车作为移动充电桩的补能方法、装置、***
CN107499155B (zh) 一种基于燃料电池和锂电池的混动车控制方法及控制***
KR101449164B1 (ko) 차량의 배터리 관리방법
CN103580248B (zh) 一种纯电动汽车定时、定量充电的控制***及方法
TWI479772B (zh) 電動車充電系統及其適用之充電方法
JP6670477B2 (ja) ダブル充電ガン充電システムのインテリジェント型エネルギー分配方法
US9527400B2 (en) Smart energy management to improve electrified vehicle battery life
EP2783899B1 (en) Charging system and charging reservation method
KR102007835B1 (ko) 배터리 관리 시스템의 전원 장치
KR20190074721A (ko) 충전 시 차량 제어 방법 및 시스템
WO2022001198A1 (zh) 低压输电***、dcdc变换器、控制方法、设备及介质
CN108482154B (zh) 一种电动汽车控制***
CN107221974A (zh) 电动汽车作为移动充电桩的补能方法、装置、***
CN112224079B (zh) 一种纯电动汽车的充电管理方法及***
JP5880394B2 (ja) 車両の電源装置
CN110525215A (zh) 一种电动汽车低压电池防亏电自动控制***及其控制方法
JP2012080689A (ja) 電気自動車用電源装置
CN115257444A (zh) 电动车辆的充电方法、装置及***
CN113650531A (zh) 一种氢能燃料电池汽车动力电池自加热***及方法
JP2015527244A (ja) ハイブリッド車両の駆動を制御する方法、及び、本方法に従って駆動可能な制御部を備えたハイブリッド車両
CN106864283A (zh) 电动型移动充电车供电方法、服务能力计算方法
KR101646342B1 (ko) 고효율 충전 장치 및 방법
CN117698614A (zh) 一种商用车电源***控制方法、装置、设备及存储介质
CN117656831A (zh) 一种电动汽车的放电控制方法及装置
KR101390911B1 (ko) 전기자동차 충전 제어 시스템 및 그 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18802970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18802970

Country of ref document: EP

Kind code of ref document: A1