WO2018209738A1 - 一种转子、定子及多工作谐波永磁电机 - Google Patents

一种转子、定子及多工作谐波永磁电机 Download PDF

Info

Publication number
WO2018209738A1
WO2018209738A1 PCT/CN2017/087372 CN2017087372W WO2018209738A1 WO 2018209738 A1 WO2018209738 A1 WO 2018209738A1 CN 2017087372 W CN2017087372 W CN 2017087372W WO 2018209738 A1 WO2018209738 A1 WO 2018209738A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
pole
permanent magnet
poles
stator
Prior art date
Application number
PCT/CN2017/087372
Other languages
English (en)
French (fr)
Inventor
李大伟
谢康福
曲荣海
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Priority to US16/060,890 priority Critical patent/US11356005B2/en
Publication of WO2018209738A1 publication Critical patent/WO2018209738A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/17Stator cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • H02K1/2773Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect consisting of tangentially magnetized radial magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/38Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with rotating flux distributors, and armatures and magnets both stationary
    • H02K21/44Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with rotating flux distributors, and armatures and magnets both stationary with armature windings wound upon the magnets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the invention belongs to the technical field of permanent magnet motors, and more particularly to a rotor, a stator and a multi-operation harmonic permanent magnet motor.
  • the motor as an electromagnetic device that realizes electromechanical energy or signal conversion, is as large as a 1200 MW hydro-generator with a single unit capacity and as a micro-motor with a few microwatts, which is widely used in all aspects of the national economy. According to statistics, in China, more than 60% of the annual power generation is consumed by various electric motors and converted into mechanical power. Since the birth of the first human motor in the 1920s, the motor has developed for nearly two hundred years, and the motor industry has become an indispensable industrial category supporting the modern society of civilization.
  • the successful development of the third generation of high-performance rare earth permanent magnet materials in the 1980s has injected new vitality into the development of the motor industry.
  • the introduction of the permanent magnet excitation method especially the application of the high magnetic energy rare earth permanent magnet material, eliminates the excitation winding, the brush and the slip ring, and makes the motor structure simpler.
  • the high magnetic energy rare earth permanent magnet material is compared with the excitation.
  • the winding has a larger motor air gap magnetic density, which makes the motor smaller in volume and higher in power quality ratio. At the same time, there is no excitation winding, the excitation loss is eliminated, and the motor efficiency is further improved.
  • the shape and size of the permanent magnet motor can be flexible and diverse.
  • many new permanent magnet motors with different structures have been proposed, such as permanent magnet switch flux motor, flux reverse motor, and cursor permanent magnet motor. , dual mechanical port motors, etc. These different types of motors are not based on the most basic electromechanical energy conversion principle.
  • the magnetic field interaction between the stator and the rotor produces stable torque.
  • three conditions must be met: 1.
  • the magnetic field pole pairs of the stator and the rotor are equal; 2.
  • the magnetic field rotation speed and direction of the stator and the rotor are the same. Relatively static; 3.
  • the axis of the magnetic field between the stator and the rotor cannot be shared line. Whether it is a traditional asynchronous motor and a synchronous motor, and various new types of motors proposed later, the excitation magnetic field and the armature magnetic field are generated by using either a permanent magnet or a current, and none of them work based on this.
  • the pole pair number refers to the number of peaks or troughs when the magnetic field magnetic density waveform is sinusoidal. It is actually obtained by Fourier decomposition of the magnetic field in the air gap of the motor. The actual waveform exists.
  • Various harmonics, each harmonic corresponds to a pole pair.
  • a permanent magnet motor has only one pole-numbered magnetic field with a high amplitude and can be utilized. Therefore, it is called a working harmonic, also called a fundamental wave or a main wave, and other small amplitudes are called non- Working harmonics.
  • the ratio of the pole pair of the non-working harmonic to the pole pair of the working harmonic is called the harmonic order, and the pole pair corresponding to the working harmonic is called the pole pair of the motor.
  • f is the current frequency in Hz
  • n is the speed in units of r/min
  • p is the pole logarithm.
  • the current frequency f of the motor operation and the required speed n are known, and the pole log p can be solved to determine that the rotor (or stator) having p-to-N and S poles should be designed, and then according to the rotor.
  • the pole distribution of the (or stator) determines the winding of the stator (or rotor) to complete the motor design.
  • the number m of permanent magnets is directly used as the pole number. Accordingly, the magnetization direction and arrangement of the permanent magnets determine the arrangement of the N pole and the S pole.
  • the motor shown in FIG. 1( a ) is a conventional permanent magnet motor designed according to the above principle, and includes a stator A, a rotor core B and a uniform distribution along the circumference of the rotor core B.
  • the permanent magnet C is uniformly distributed on the surface of the rotor core B, and generates 5 pairs of polar magnetic fields in the air gap of the motor, and interacts with the 5 pairs of working harmonics generated by the windings on the stator A to realize electromechanical energy conversion.
  • the magnetic gap waveform corresponding to the air gap magnetic field at the 5 pairs of poles is closer to the square wave, so that the permanent magnet motor of Fig. 1(a) has a large number of non-operating harmonics, and the back electromotive force Poor sinusoidality results in large torque fluctuations and unstable output.
  • the most ideal state should be only working harmonics, and no non-working harmonics, but in fact non-working harmonics are difficult to completely eliminate.
  • Fig. 2(a) shows an improved permanent magnet motor, which is mainly different from the permanent magnet motor of Fig. 1(a) in that
  • the original permanent magnet C of one magnetic pole is divided into a plurality of small permanent magnets C1 to C5 of the same polarity, and the width of the original magnetic pole is not changed, and the pole pair number is improved by adjusting the width of the small permanent magnets C1 to C5.
  • the improved air gap magnetic density distribution corresponding to the width of C1 ⁇ C5 is shown in Figure 2 (b), the overall waveform of the working harmonics corresponding to the pole logarithm is closer to the sine Distribution, thereby effectively suppressing non-working harmonic components and reducing torque ripple.
  • the scheme divides the original permanent magnet into a plurality of small blocks, it is still necessary to treat the divided small-sized permanent magnets as a whole and form a magnetic pole together, so that the total number of magnetic poles does not change, and the number of pole pairs is also No change, still meets the above definitions and formulas for pole numbers and pole pairs.
  • the above two permanent magnet motors can only generate a magnetic field with only one working harmonic, and thus the torque density and fault tolerance are limited.
  • the performance indicators of existing motors have been difficult to meet the requirements, how to achieve higher torque density, better fault tolerance Become An important direction of electrical engineering research.
  • the present invention aims to provide a stator, a rotor and a corresponding permanent magnet motor having higher torque density and better fault tolerance.
  • the present invention provides a rotor comprising: a rotor core, a plurality of N poles, and a plurality of S poles; the N poles and the S poles are alternately distributed along the circumferential direction of the rotor core; wherein any N poles are included At least one permanent magnet of polarity N, any S pole comprising at least one permanent magnet of polarity S, and at least two adjacent N and S poles having unequal widths.
  • the at least one N pole and one S pole position are symmetrical about the axis of the rotor core and have the same width.
  • the permanent magnets of all the N poles are replaced with the material of the rotor core itself, so that the S pole and the rotor core are alternately arranged with each other; or the permanent magnets of all the S poles are replaced with the rotor core itself. Therefore, the N pole and the rotor core are composed of alternating pole structures distributed between the phases.
  • the present invention provides a multi-operation harmonic permanent magnet motor comprising the rotor of any of the above three paragraphs.
  • stator and the plurality of modulation blocks are included; the plurality of modulation blocks are evenly distributed between the stator and the rotor, and the modulation block is rotatable about the rotor axis to form a dual mechanical output port together with the rotor.
  • the materials of the modulation block, the stator, and the rotor core are all silicon steel.
  • the present invention also provides a stator in which the rotor core of the rotor of any of the foregoing paragraphs is replaced with a stator core.
  • the present invention also provides a multi-operation harmonic permanent magnet motor comprising the stator described in the above paragraph.
  • the generated magnetic field can contain a plurality of harmonic magnetic fields with higher amplitude, and can interact with the magnetic field generated by the armature winding of the permanent magnet motor to realize superposition of multi-part torque. Therefore, the torque density is increased, the output capability of the motor is improved, and the harmonic magnetic field can be completely decoupled at the frequency, which can significantly improve the fault tolerance performance of the motor.
  • FIG. 1(a) is a schematic structural view of a permanent magnet motor in the prior art
  • Figure 1 (b) is a magnetic density amplitude distribution diagram of Figure 1 (a);
  • FIG. 2(a) is a schematic structural view of another permanent magnet motor in the prior art
  • Figure 2 (b) is a schematic diagram of the magnetic density amplitude modulation of Figure 2 (a);
  • Figure 3 (a) is a schematic structural view of a rotor according to a first embodiment of the present invention
  • Figure 3 (b) is a schematic view showing the structure of a permanent magnet motor using the rotor structure shown in Figure 3 (a);
  • Figure 3 (c) is a magnetic density amplitude distribution diagram of Figure 3 (b);
  • Figure 3 (d) is a schematic view showing the structure of a dual mechanical output port permanent magnet motor using the rotor structure shown in Figure 3 (a);
  • FIG. 4(a) is a schematic structural view of a permanent magnet motor rotor according to a second embodiment of the present invention.
  • Figure 4 (b) is a magnetic density amplitude distribution diagram of a permanent magnet motor using the rotor structure shown in Figure 4 (a);
  • Figure 5 (a) is a schematic structural view of a permanent magnet motor rotor according to a third embodiment of the present invention.
  • Figure 5 (b) is a first variation of Figure 5 (a);
  • Figure 5 (c) is a second variation of Figure 5 (b);
  • Figure 6 (a) is a schematic structural view of a permanent magnet motor rotor according to a fourth embodiment of the present invention.
  • Figure 6 (b) is a schematic view showing the structure of a permanent magnet motor using the rotor structure shown in Figure 6 (a);
  • Figure 7 is a schematic structural view of a rotor according to a sixth embodiment of the present invention.
  • Figure 8 (a) is a schematic structural view of a stator according to a fifth embodiment of the present invention.
  • Fig. 8(b) is a schematic view showing the structure of a permanent magnet motor using the stator structure shown in Fig. 8(a).
  • At least two adjacent N and S poles have different widths, so that one stator or rotor can generate at least two harmonic magnetic fields of higher amplitude, which can be used as working harmonics. It can interact with the magnetic field generated by the armature winding of the permanent magnet motor to realize the superposition of multi-part torque, which is equivalent to superimposing two motors of different pole pairs into the same motor. Therefore, the invention can improve the torque density of the motor, realize the further improvement of the output torque of the motor, and can completely decouple the harmonic magnetic fields at the frequency, and can significantly improve the fault tolerance performance of the motor.
  • FIG. 3(a) which is a first embodiment of the present invention
  • the stator is omitted
  • the rotor of this embodiment is a surface-mounted inner rotor including rotor cores 1 and 11 N pole permanent magnet 2 and 11 S pole permanent magnets 3.
  • the rotor core 1 has a central shaft hole 4 therein, and 11 N-pole permanent magnets 2 and 11 S-pole permanent magnets 3 are alternately distributed circumferentially on the outer surface of the rotor core 1.
  • the permanent magnet material of this embodiment may be a magnetic material such as ferrite, alumino-nickel-cobalt, or aluminum-iron-boron, and each magnetic pole has only one permanent magnet.
  • the arrows in the figure respectively indicate the magnetization directions of the permanent magnets, the permanent magnets whose arrows are toward the center of the circle are N-pole permanent magnets, and the permanent magnets whose arrows are away from the center of the circle are S-pole permanent magnets.
  • each permanent magnet in this embodiment is equal in width to the magnetic pole in which it is located.
  • the width of each magnetic pole i.e., the width of the permanent magnet of the present embodiment
  • starts from the position indicated by reference numeral 3 in Fig. 3(a) starts from the position indicated by reference numeral 3 in Fig. 3(a), and is 15°, 15°, 21°, 9°, and 27° in the counterclockwise direction. 3, 30, 3, 27, 9, 21, 15, 15, 21, 9, 27, 3, 30, 3, 27, 9, 21 °.
  • FIG. 3(b) it is a permanent magnet motor to which the rotor structure of FIG. 3(a) is applied, which includes Rotor and stator core 5. Both the rotor core 1 and the stator core 5 are laminated by a silicon steel sheet material, and the windings on the stator core 5 are omitted in Fig. 3(b). The corresponding air gap magnetic density distribution is shown in Figure 3(c). It can be seen from Fig. 3(c) that for the permanent magnet motor shown in Fig. 3(b), two harmonic working magnetic fields with high amplitude and high amplitude are distributed in the air gap, and the pole pairs are respectively 1 And 11, the corresponding winding on the stator can produce a stable output torque.
  • This embodiment is equivalent to superimposing a motor with a pole number of one and a motor with a pole number of 11, that is, one motor has two pole pairs at the same time, and can no longer be like FIG. 1(a) and FIG. 2 ( a) The way the logarithm of the permanent magnet is directly used as the pole pair of the motor.
  • the present invention does not want to suppress or eliminate non-working harmonics as much as possible in the conventional thinking of the art, and instead amplifies non-working harmonics that are desired to be suppressed or eliminated in the prior art.
  • One of the non-working harmonics also becomes the working harmonic, and finally a motor with two working harmonics and two pole pairs is provided, which provides a new direction different from the traditional ideas for the design of permanent magnet motor.
  • FIG. 3(d) it is another permanent magnet motor to which the rotor structure of FIG. 3(a) is applied, which is different from the motor shown in FIG. 3(b) in that a stator and a rotor are provided between the stator and the rotor.
  • Modulation block 6 The rotor core 1, the stator core 5, and the modulation block 6 are all made of silicon steel material, and both the rotor and the modulation block rotate to form a dual mechanical output port, which can be used as a variable speed transmission device for wind power generation, electric vehicles and the like.
  • a second embodiment of the present invention differs from the first embodiment in that it includes seven S poles and seven N poles, and the design of the width is also different from that of the first embodiment.
  • the rotor of this embodiment also has two operating harmonics, and the corresponding pole pairs are 5 and 7, respectively, which is equivalent to superimposing a motor with a pole number of 5 and a motor with a pole number of 7.
  • each permanent magnet is equal in width to its magnetic pole.
  • the width of each magnetic pole starts from the position indicated by reference numeral 3 in Fig. 3(a), and is 30°, 30°, 32°, 13°, 13° in the counterclockwise direction. 32°, 30°, 30°, 30°, 32°, 13°, 13°, 32°, 30°.
  • a third embodiment of the present invention differs from the first embodiment in that it includes three S poles and three N poles. Among them, the three S poles are equal in width to the two N poles, and the other one pole is not equal in width to the other five poles.
  • This embodiment also has two working harmonics, and the corresponding pole pairs are 2 and 3, respectively, which is equivalent to superimposing a motor with a pole number of 2 and a motor with a pole number of 3.
  • FIG. 5(b) it is a variation of FIG. 5(a) which differs from FIG. 5(a) in that the permanent magnet is embedded in the rotor core 1 in the circumferential direction. Further, the permanent magnets of the present embodiment are not adjacent to each other, that is, the width of the permanent magnets is not equal to the width of the magnetic poles, but the width of the magnetic poles is not changed as compared with the scheme of Fig. 5(a).
  • FIG. 5(c) it is a variation of FIG. 5(b), which differs from FIG. 5(b) in that permanent magnets in five magnetic poles having the same width are divided into three small pieces.
  • the principle of the division is the same as the principle of FIG. 2(a) in the background art, and therefore, it may be divided into other numbers of small blocks according to specific conditions.
  • a fourth embodiment of the present invention is different from the first embodiment in that the present embodiment is a surface-mounted outer rotor having N and S poles along the rotor core 1. The circumferential direction is alternately distributed on the inner surface of the rotor core 1.
  • a permanent magnet motor to which the rotor structure of FIG. 6(a) is applied includes a rotor 1 and a stator core 5.
  • the stator core 5 is disposed in the inner cavity of the rotor, and the stator core 5 is internally provided with a central shaft hole 4, and 11 N-pole permanent magnets 2 and 11 S-pole permanent magnets 3 are alternately distributed circumferentially on the inner surface of the rotor core 1.
  • a fifth embodiment of the present invention is different from the first embodiment shown in FIG. 3(a) in that each permanent magnet in FIG. 3(a) is replaced by a rotor iron.
  • the material of the core 1 itself is filled, that is, one of the permanent magnets of the same polarity is entirely filled with the material of the rotor core 1 itself.
  • This embodiment is replaced by a core self-filling material for all N-pole permanent magnets. Since the rotor core is different from the permanent magnet material, the core does not have magnetism, but serves as a path for the magnetic field.
  • this embodiment can save half of the number of permanent magnets, and the motor using the rotor can still obtain the working harmonic distribution diagram as shown in FIG. 3(b), that is, still Make a motor have multiple operating harmonics.
  • a sixth embodiment of the present invention is a surface-mounted outer stator, which differs from the first embodiment shown in FIG. 6(a) in that FIG. 6(a)
  • the rotor core 1 of the outer rotor is replaced by the stator core 5 of the outer stator, and the arrangement of the N-pole permanent magnet and the S-pole permanent magnet is unchanged.
  • the rotor core 1 is only laminated by a silicon steel sheet, and has a salient pole structure with a central axis inside.
  • the hole 4, the N-pole permanent magnet and the S-pole permanent magnet are circumferentially distributed on the inner surface of the stator core 5.
  • the motor stator windings may be stacked windings, fractional slot concentrated windings, or dual wave starting windings.
  • the essence of the present invention is that at least two adjacent N poles and S poles are not equal in width, and two poles can be generated on one motor by the magnetic poles and the specific parameters of the permanent magnets of the respective poles. Even more working harmonics. Whether the magnetic pole formed by the permanent magnet is disposed on the stator or the rotor does not affect the realization of the object of the invention. Therefore, the rotor and the stator in all of the above embodiments can be interchanged on the premise of ensuring the above-described magnetic pole arrangement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

一种定子、转子,以及一种包含上述定子或转子的多工作谐波永磁电机,其中,N极(2)和S极(3)沿转子铁芯(1)或定子铁芯(5)的周向交替分布;任意N极(2)包括至少一块极性为N的永磁体(2),任意S极(3)包括至少一块极性为S的永磁体(3),并且,至少两个相邻的N极(2)和S极(3)的宽度不等。上述技术方案通过定子或转子上布置的不等宽磁极,可以使得产生的磁场含有多个幅值较高的谐波磁场,能够与永磁电机的电枢绕组产生的磁场相互作用实现多部分转矩的叠加,从而实现电机输出转矩的进一步提高,此外,还可以实现各谐波磁场在频率上完全解耦,能显著提高电机的容错性能,上述技术方案的电机为双机械端口电机,能应用在电动汽车等相关变速传动领域。

Description

一种转子、定子及多工作谐波永磁电机 [技术领域]
本发明属于永磁电机技术领域,更具体地,涉及一种转子、定子及多工作谐波永磁电机。
[背景技术]
电机,作为一种实现机电能量或信号变换的电磁装置,大到单机容量1200兆瓦的水轮发电机,小至几微瓦的微特电机,广泛应用在国民经济的方方面面。据统计,在我国,超过60%的年发电量被各种各样的电动机所消耗,转换为机械动力。而从19世纪20年代人类第一台电机诞生至今,电机已有了近两百年发展历史,电机工业已成为支撑人类现代社会不可或缺的工业门类。
20世纪80年代第三代高性能稀土永磁材料的研制成功,为电机行业的发展注入了新的活力。永磁励磁方式的引入,特别是高磁能积稀土永磁材料的应用,省去了励磁绕组和电刷、滑环,使电机结构更加简单;而且,高磁能积稀土永磁材料相比于励磁绕组具有更大的电机气隙磁密,使同等功率下电机体积更小,功率质量比更高;同时,没有励磁绕组,省去了励磁损耗,电机效率得到进一步提高。
另外,永磁电机的形状和尺寸可以灵活多样,近年来,也有许许多多不同结构的新型永磁电机被不断提出,比如,永磁开关磁链电机、磁通反向电机、游标永磁电机、双机械端口电机等,这些不同种类的电机无不是基于最基本的机电能量转换原理来工作的。
根据机电能量转换原理,定子和转子的磁场相互作用产生稳定转矩必须同时满足三个条件:1.定子和转子的磁场极对数相等;2.定子和转子的磁场旋转速度与方向均相同即相对静止;3.定子和转子的磁场间轴线不能共 线。无论是传统的异步电机和同步电机,以及后续提出的各种新型电机,励磁磁场和电枢磁场无论是利用永磁体产生的还是利用电流产生的,无不是基于此而工作的。
在上述条件中,极对数是指磁场磁密波形呈正弦分布时,波峰或波谷的个数,它实际上是通过对电机气隙中的磁场进行傅里叶分解得到的,实际的波形存在各种谐波,每一个谐波都对应一个极对数。通常永磁电机只有一个极对数的磁场谐波幅值较高,可以加以利用,所以把它称作工作谐波,也叫基波或主波,而其它幅值较小的就称作非工作谐波。非工作谐波的极对数与工作谐波的极对数之比称作谐波次数,而工作谐波对应的极对数称作电机的极对数。
在输出功率不变的情况下,电机的极对数越大,电机的转速就越低,但它的转矩就越大。所以在选用或设计电机时,都是先考虑负载需要多大的起动转矩,再根据转矩确定转速,最后由转速确定极对数。
电动机同步转速与极对数的关系如下:
Figure PCTCN2017087372-appb-000001
其中,f为电流频率,单位为Hz;
n为转速,单位为r/min
p为极对数。
根据上式,已知电机工作的电流频率f及需要达到的转速n,则可以求解出极对数p,进而确定应当设计具有p对N极和S极的转子(或定子),再根据转子(或定子)的磁极分布确定定子(或转子)的绕组方式,从而完成电机设计。
在永磁电机中,一般都是直接以永磁体的数量m作为极数,相应地,永磁体的充磁方向和布置情况决定了N极和S极的布置。N极和S极总数为m个,则极对数p=m/2。
请参照图1(a),图1(a)所示电机是目前常见的一种按照上述原理设计的永磁电机,其包括定子A、转子铁芯B以及沿转子铁芯B的圆周均匀分布的5对极性相反的永磁体C,其极对数与磁密幅值分布图如图1(b)所示。其由尺寸完全相同、仅充磁方向不同的10块永磁体C构成5对N极与S极,故极对数为5。永磁体C均匀分布在转子铁芯B表面,在电机气隙中产生5对极磁场,与定子A上的绕组产生的5对极工作谐波相互作用,实现机电能量转换。
由于上述方案所有永磁体尺寸一致,5对极处对应的气隙磁场磁密波形更接近方波,使得图1(a)的永磁电机气隙磁密非工作谐波数量较多,反电势正弦度较差,造成转矩波动较大,输出不稳定。理论上,最理想的状态应该是只有工作谐波,而没有非工作谐波,但是实际上非工作谐波难以完全消除。
现有的一种解决上述问题的方案如图2(a),图2(a)给出了一种改进型的永磁电机,其与图1(a)的永磁电机主要区别在于,将原本一个磁极的整体永磁体C分割为多个同极向的小块永磁体C1~C5,而原磁极的宽度并没有改变,通过调节小块永磁体C1~C5的宽度来改善其极对数对应的气隙磁密分布的正弦度,改善后的C1~C5的宽度对应的气隙磁密分布如图2(b)所示,其极对数对应的工作谐波的整体波形更逼近正弦分布,从而有效抑制非工作谐波分量,降低转矩波动。虽然该方案将原本整块的永磁体分割为多个小块,但仍然需要将分割后的多个小块永磁体当做一个整体看待,共同构成一个磁极,因此磁极总数没有变化,极对数也没有变化,仍然符合上述关于极数、极对数的定义及公式。
但是,受上述传统设计思路限制,上述两种永磁电机均只能产生仅有一个工作谐波的磁场,因此转矩密度及容错性有限。而随着不同新兴行业的发展,如电动汽车、工业机器人、多电飞机等,现有电机的各项性能指标已经很难满足要求,如何实现更高的转矩密度、更好的容错性能也成为 电机工程研究的重要方向。
发明内容
针对现有技术的以上缺陷或改进需求,本发明旨在提供一种转矩密度更高、容错性能更好的定子、转子及相应的永磁电机。
为了实现上述目的,本发明提供了一种转子,包括:转子铁芯、多个N极、多个S极;N极和S极沿转子铁芯的周向交替分布;其中,任意N极包括至少一块极性为N的永磁体,任意S极包括至少一块极性为S的永磁体,并且,至少两个相邻的N极和S极的宽度不等。
进一步地,至少一个N极和一个S极位置关于转子铁芯的轴线对称,且宽度相等。
进一步地,将全部N极的永磁体替换为转子铁芯自身材料,从而使S极与转子铁芯组成相间分布的交替极结构;或者,将全部S极的永磁体替换为转子铁芯自身材料,从而使N极与转子铁芯组成相间分布的交替极结构。
另一方面,为了实现上述目的,本发明提供了一种多工作谐波永磁电机,包括上述三段中任意一段所述的转子。
进一步地,包括定子和多个调制块;多个调制块均匀分布在定子和转子之间,且调制块可绕转子轴心旋转,与转子共同构成双机械输出端口。
进一步地,调制块、定子、转子铁芯的材料均为硅钢。
为了实现上述目的,本发明还提供了一种定子,将前述任意一段所述的转子的转子铁芯替换为定子铁芯。
为了实现上述目的,本发明还提供了一种多工作谐波永磁电机,包括上段所述的定子。
总体而言,本发明所构思的以上技术方案与现有技术相比,具有如下优点:
通过定子或转子上布置的不等宽磁极,可以使得产生的磁场含有多个幅值较高的谐波磁场,能够与永磁电机的电枢绕组产生的磁场相互作用实现多部分转矩的叠加,从而提高转矩密度,提升电机输出能力,而且可以实现各谐波磁场在频率上完全解耦,能显著提高电机的容错性能。
附图说明
图1(a)为现有技术中的一种永磁电机结构示意图;
图1(b)为图1(a)的磁密幅值分布图;
图2(a)为现有技术中的另一种永磁电机结构示意图;
图2(b)为图2(a)的磁密幅值调制示意图;
图3(a)为本发明第一实施例的转子结构示意图;
图3(b)为采用图3(a)所示转子结构的永磁电机结构示意图;
图3(c)为图3(b)的磁密幅值分布图;
图3(d)为采用图3(a)所示转子结构的双机械输出端口永磁电机结构示意图;
图4(a)为本发明第二实施例的永磁电机转子结构示意图;
图4(b)为采用图4(a)所示转子结构的永磁电机的磁密幅值分布图;
图5(a)为本发明第三实施例的永磁电机转子结构示意图;
图5(b)为图5(a)的第一种变化形式;
图5(c)为图5(b)的第二种变化形式;
图6(a)为本发明的第四实施例的永磁电机转子结构示意图;
图6(b)为采用图6(a)所示转子结构的永磁电机结构示意图;
图7为本发明第六实施例的转子结构示意图;
图8(a)为本发明第五实施例的定子结构示意图;
图8(b)为采用图8(a)所示定子结构的永磁电机结构示意图。
在所有附图中,相同的附图标记用来表示相同的元件或结构,其中:
1-转子铁芯,2-N极,3-S极,4-中心轴孔,5-定子铁芯,6-调制块。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明涉及的一些基本原理如下:至少两个相邻的N极和S极的宽度不等,使得一个定子或转子能产生至少两个幅值较高的谐波磁场,都可以作为工作谐波,能够与永磁电机的电枢绕组产生的磁场相互作用,实现多部分转矩的叠加,相当于把两个不同极对数的电机叠加到同一个电机里面。因此,本发明能够提高电机转矩密度,实现电机输出转矩的进一步提高,而且可以实现各谐波磁场在频率上完全解耦,能显著提高电机的容错性能。
具体地,如图3(a)所示,为本发明的第一实施例,图中略去了定子,本实施例的转子是一种表贴式的内转子,包括转子铁芯1、11个N极永磁体2以及11个S极永磁体3。转子铁芯1内部有中心轴孔4,11个N极永磁体2和11个S极永磁体3沿圆周交替分布在转子铁芯1外表面。
本实施例的永磁体材料可以是铁氧体、铝镍钴、铝铁硼等磁性材料,各磁极均只有一块永磁体。图中箭头分别表示各永磁体的充磁方向,箭头朝向圆心的永磁体为N极永磁体,箭头背离圆心的永磁体为S极永磁体。为了便于图示表达,本实施例中各永磁体与其所在磁极的宽度相等。各磁极的宽度(即本实施例的永磁体宽度)大小从图3(a)中标号3所指的位置开始,沿逆时针方向依次为15°、15°、21°、9°、27°、3°、30°、3°、27°、9°、21°、15°、15°、21°、9°、27°、3°、30°、3°、27°、9°、21°。
如图3(b)所示,是应用了图3(a)中转子结构的永磁电机,其包括 转子和定子铁芯5。转子铁芯1和定子铁芯5均由硅钢片材料叠压而成,图3(b)略去了定子铁芯5上的绕组。其相应的气隙磁密分布如图3(c)所示。由图3(c)可知,对于图3(b)所示的永磁电机,气隙中分布着幅值较高且幅值高度相当的两种谐波工作磁场,且极对数分别为1和11,定子上放置相应的绕组即可产生稳定的输出转矩。该实施例相当于将一个极对数为1的电机和一个极对数为11的电机叠加在一起,即一个电机同时具有两个极对数,不能再像图1(a)、图2(a)方式那样将直接将永磁体的对数作为电机的极对数。
并且,从图3(c)可知,本发明并没有像本领域的传统思维那样希望将非工作谐波尽可能的抑制或消除,反而将原本领域希望抑制或消除的非工作谐波放大,使其中一个非工作谐波也成为工作谐波,最终得到了一种同时具备两种工作谐波、两个极对数的电机,为永磁电机的设计提供了一个不同于传统思路的全新方向。
如图3(d)所示,是另一种应用了图3(a)中转子结构的永磁电机,其与图3(b)所示电机的区别在于,在定子和转子之间设有调制块6。转子铁芯1、定子铁芯5、调制块6均由硅钢材料构成,且转子与调制块均旋转,构成双机械输出端口,可作为变速传动装置用于风力发电、电动汽车等行业。
如图4所示,为本发明的第二实施例,其与第一实施例的区别在于包括7个S极和7个N极,宽度的设计也与第一实施例不同。本实施例的转子也具有两个工作谐波,对应的极对数分别为5和7,相当于将一个极对数为5的电机和一个极对数为7的电机叠加在一起。在本实施例中,为了便于说明,各永磁体与其所在磁极的宽度相等。各磁极的宽度(即本实施例的永磁体宽度)大小从图3(a)中标号3所指的位置开始,沿逆时针方向依次为30°、30°、32°、13°、13°、32°、30°、30°、30°、32°、13°、13°、32°、30°。
如图5(a)所示,为本发明的第三实施例,其与第一实施例的区别在于,包括3个S极和3个N极。其中,3个S极与2个N极等宽,另外一个N极与其它5个磁极的宽度都不相等。本实施例同样具有两个工作谐波,对应的极对数分别为2和3,相当于将一个极对数为2的电机和一个极对数为3的电机叠加在一起。
如图5(b)所示,为图5(a)的一种变化形式,其与图5(a)的区别在于,永磁体沿周向内嵌于转子铁芯1中。另外,本实施例的永磁体并没有互相邻接,即永磁体的宽度与磁极的宽度并不相等,但磁极的宽度相比于图5(a)的方案并没有改变。
如图5(c)所示,为图5(b)的一种变化形式,其与图5(b)的区别在于,宽度相等的5个磁极内的永磁体均被分割为3小块,其分割的原理与背景技术中图2(a)的原理相同,因此,也可以根据具体情况分割为其它数量的小块。
如图6(a)所示,为本发明的第四实施例,其与第一实施例的区别在于,本实施是一种表贴式外转子,N极和S极沿转子铁芯1的周向交替分布于转子铁芯1的内表面。
如图6(b)所示,为应用了图6(a)中转子结构的永磁电机,其包括转子1和定子铁芯5。定子铁芯5布置于转子内腔,定子铁芯5内部设有中心轴孔4,11个N极永磁体2和11个S极永磁体3沿圆周交替分布在转子铁芯1内表面。
如图7所示,为本发明的第五实施例,其与图3(a)所示的第一实施例的区别在于,将图3(a)中每间隔一块永磁体换成由转子铁芯1自身的材料填充,即其中一种相同极性的永磁体全部用转子铁芯1自身的材料填充。本实施例被铁芯自身材料填充替换的是所有N极永磁体。由于转子铁芯与永磁体材料不同,铁芯不具有磁性,只是作为磁场的通路。在替换N极永磁体后,S极永磁体与转子铁芯1组成交替极结构,在S极永磁体的磁 场作用下,N极并没有消失,仍然存在于原位置。本实施例相比于图3(a)的结构,能够省去一半数量的永磁体,且使用该转子的电机仍能得到如图3(b)所示的工作谐波分布图,即仍能使一个电机具有多个工作谐波。
如图8(a)所示,为本发明的第六实施例,是一种表贴式外定子,其与图6(a)所示的第一实施例的区别在于,将图6(a)的外转子的转子铁芯1替换为外定子的定子铁芯5,N极永磁体和S极永磁体的布置方式不变。
如图8(b)所示,为应用了图8(a)所示定子的永磁电机,其转子铁芯1只由硅钢片叠压而成,且为凸极结构,内部开有中心轴孔4,N极永磁体和S极永磁体沿圆周分布在定子铁芯5的内表面。
在其他实施例中(未图示),电机定子绕组可以采用叠绕组、分数槽集中绕组或双波起动绕组。
本领域技术人员应当理解,本发明的实质在于至少有两个相邻的N极和S极不等宽,通过磁极以及各磁极的永磁体的具体参数的设置,可以在一个电机上产生两个甚至更多的工作谐波。而永磁体构成的磁极具体设置在定子上还是转子上并不影响发明目的的实现。因此,在保证上述磁极布置方式的前提下,上述所有实施例中的转子与定子均可以互换。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

  1. 一种转子,其特征在于,包括:转子铁芯、多个N极、多个S极;N极和S极沿转子铁芯的周向交替分布;其中,
    任意N极包括至少一块极性为N的永磁体,任意S极包括至少一块极性为S的永磁体,并且,至少一对相邻的N极和S极的宽度不等。
  2. 如权利要求1所述的一种转子,其特征在于,至少一个N极和一个S极位置关于转子铁芯的轴线对称,且宽度相等。
  3. 如权利要求1-2任意一项所述的一种转子,其特征在于,将全部N极的永磁体替换为转子铁芯自身材料,从而使S极与转子铁芯组成相间分布的交替极结构;
    或者,将全部S极的永磁体替换为转子铁芯自身材料,从而使N极与转子铁芯组成相间分布的交替极结构。
  4. 一种多工作谐波永磁电机,其特征在于,包括权利要求1-3任意一项所述的转子。
  5. 如权利要求4所述的一种多工作谐波永磁电机,其特征在于,包括定子和多个调制块;多个调制块均匀分布在定子和转子之间,且调制块可绕转子轴心旋转,与转子共同构成双机械输出端口。
  6. 如权利要求5所述的一种多工作谐波永磁电机,其特征在于,调制块、定子、转子铁芯的材料均为硅钢。
  7. 一种定子,其特征在于,将权利要求1-3任意一项所述的转子的转子铁芯替换为定子铁芯。
  8. 一种多工作谐波永磁电机,其特征在于,包括权利要求7所述的定子。
PCT/CN2017/087372 2017-05-15 2017-06-07 一种转子、定子及多工作谐波永磁电机 WO2018209738A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/060,890 US11356005B2 (en) 2017-05-15 2017-06-07 Rotor, stator and multi-working-harmonic permanent magnet motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710338980.XA CN107070031B (zh) 2017-05-15 2017-05-15 一种转子、定子及多工作谐波永磁电机
CN201710338980.X 2017-05-15

Publications (1)

Publication Number Publication Date
WO2018209738A1 true WO2018209738A1 (zh) 2018-11-22

Family

ID=59597681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087372 WO2018209738A1 (zh) 2017-05-15 2017-06-07 一种转子、定子及多工作谐波永磁电机

Country Status (3)

Country Link
US (1) US11356005B2 (zh)
CN (1) CN107070031B (zh)
WO (1) WO2018209738A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112491229A (zh) * 2020-12-31 2021-03-12 山东理工大学 一种电动汽车可变磁通混合励磁永磁游标电机
CN113519105A (zh) * 2019-03-28 2021-10-19 大金工业株式会社 转子和旋转电机
CN114371622A (zh) * 2022-01-07 2022-04-19 北京航空航天大学 基于多谐波逆Park变换的磁悬浮转子谐波振动力抑制方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109038887B (zh) * 2018-06-22 2019-09-27 湖南大学 一种永磁体电机次级单元和永磁体电机次级
CN109508480B (zh) * 2018-10-23 2023-01-24 华中科技大学 一种构造低频谐波电流计算电机高频电磁力的半解析方法
CN109494957B (zh) * 2018-12-18 2020-05-19 华中科技大学 一种磁通反向永磁电机
CN109962551B (zh) * 2019-02-19 2020-09-08 华中科技大学 一种双绕组永磁容错电机
CN109931221B (zh) * 2019-03-28 2020-12-08 华中科技大学 一种双速永磁风力发电***
CN109980875A (zh) * 2019-03-29 2019-07-05 华中科技大学 一种基于不等宽磁钢分布的双机电端口电机
CN110868035B (zh) * 2019-12-02 2021-04-23 浙江科宁电机有限公司 一种洗衣机的永磁直流无刷电机结构
CN111446830B (zh) * 2020-04-30 2021-07-02 华中科技大学 一种双定子切向励磁磁场调制电机
CN112467901B (zh) * 2020-11-12 2022-02-18 华中科技大学 一种磁齿轮复合直驱电机及其应用
CN113178967B (zh) * 2021-04-30 2023-04-07 哈尔滨工业大学 大功率高速永磁同步电机转子
GB2614105A (en) * 2021-05-13 2023-06-28 Univ Jiangsu Hybrid magnetic source magnetic lead screw having high positioning precision, and multi-harmonic collaborative modulation method therefor
CN113422496B (zh) * 2021-05-13 2022-06-21 江苏大学 一种高定位精度混合磁源磁力丝杠及其多谐波协同调制方法
CN113890289B (zh) * 2021-09-10 2022-09-20 华中科技大学 一种多磁动势永磁体阵列的设计方法及磁通反向电机
CN113794350B (zh) * 2021-09-13 2022-06-24 浙江大学 一种非对称多谐波励磁的永磁直线电机及其优化设置方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1702946A (zh) * 2004-05-26 2005-11-30 三美电机株式会社 步进马达的磁化模式
CN101420160A (zh) * 2007-10-22 2009-04-29 沈阳工业大学 正弦极宽调制的永磁同步电动机
JP2009284716A (ja) * 2008-05-26 2009-12-03 Mitsuba Corp アウタロータ型ブラシレスモータ
JP2009303372A (ja) * 2008-06-12 2009-12-24 Nissan Motor Co Ltd 回転電機の回転子
CN201910684U (zh) * 2011-01-26 2011-07-27 巢湖顺枫风力发电科技有限公司 用于中小型发电机的永磁转子
CN104917310A (zh) * 2015-06-29 2015-09-16 中国船舶重工集团公司第七一二研究所 一种低速磁阻电动机及其制作方法
CN105337433A (zh) * 2014-08-11 2016-02-17 马力 一种多极永磁电机磁极铁芯结构

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19939598A1 (de) * 1999-08-20 2001-03-08 Magnet Motor Gmbh Reluktanz-Elektromaschine
GB2437568B (en) * 2006-04-24 2009-02-11 Univ Sheffield Electrical machines
WO2011144895A2 (en) * 2010-05-17 2011-11-24 Magnomatics Limited Large magnetically geared machines
US8916999B2 (en) * 2011-01-01 2014-12-23 Asmo Co., Ltd. Motors containing segment conductor coils
US9479036B2 (en) * 2011-08-31 2016-10-25 Akribis Systems Pte Ltd High torque, low inertia direct drive motor
CN106451850B (zh) * 2016-10-13 2018-12-28 珠海格力电器股份有限公司 一种转子结构、永磁同步电机及压缩机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1702946A (zh) * 2004-05-26 2005-11-30 三美电机株式会社 步进马达的磁化模式
CN101420160A (zh) * 2007-10-22 2009-04-29 沈阳工业大学 正弦极宽调制的永磁同步电动机
JP2009284716A (ja) * 2008-05-26 2009-12-03 Mitsuba Corp アウタロータ型ブラシレスモータ
JP2009303372A (ja) * 2008-06-12 2009-12-24 Nissan Motor Co Ltd 回転電機の回転子
CN201910684U (zh) * 2011-01-26 2011-07-27 巢湖顺枫风力发电科技有限公司 用于中小型发电机的永磁转子
CN105337433A (zh) * 2014-08-11 2016-02-17 马力 一种多极永磁电机磁极铁芯结构
CN104917310A (zh) * 2015-06-29 2015-09-16 中国船舶重工集团公司第七一二研究所 一种低速磁阻电动机及其制作方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113519105A (zh) * 2019-03-28 2021-10-19 大金工业株式会社 转子和旋转电机
EP3920378A4 (en) * 2019-03-28 2022-11-09 Daikin Industries, Ltd. ROTOR AND ELECTRIC LATHE
CN113519105B (zh) * 2019-03-28 2024-06-28 大金工业株式会社 转子和旋转电机
US12027920B2 (en) 2019-03-28 2024-07-02 Daikin Industries, Ltd. Rotor, and rotary electric machine
CN112491229A (zh) * 2020-12-31 2021-03-12 山东理工大学 一种电动汽车可变磁通混合励磁永磁游标电机
CN114371622A (zh) * 2022-01-07 2022-04-19 北京航空航天大学 基于多谐波逆Park变换的磁悬浮转子谐波振动力抑制方法
CN114371622B (zh) * 2022-01-07 2024-04-12 北京航空航天大学 基于多谐波逆Park变换的磁悬浮转子谐波振动力抑制方法

Also Published As

Publication number Publication date
US11356005B2 (en) 2022-06-07
CN107070031B (zh) 2020-07-14
US20200287450A1 (en) 2020-09-10
CN107070031A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
WO2018209738A1 (zh) 一种转子、定子及多工作谐波永磁电机
Li et al. Consequent-pole toroidal-winding outer-rotor Vernier permanent-magnet machines
Li et al. Comparison of Halbach and dual-side vernier permanent magnet machines
CN108011484B (zh) 一种磁齿轮复合电机
Xiang et al. A new partitioned-rotor flux-switching permanent magnet motor with high torque density and improved magnet utilization
Gao et al. Synthesis of a flux modulation machine with permanent magnets on both stator and rotor
TW201206025A (en) Rotating electrical machine, linear motion electrical machine, and wind generator system
Liang et al. Design of a novel dual flux modulation machine with consequent-pole spoke-array permanent magnets in both stator and rotor
Zhang et al. Quantitative evaluation of the topologies and electromagnetic performances of dual-three-phase flux-switching machines
Chen et al. A V-shaped PM vernier motor with enhanced flux-modulated effect and low torque ripple
Yang et al. Analytical electromagnetic performance calculation of Vernier hybrid permanent magnet machine
CN113890289B (zh) 一种多磁动势永磁体阵列的设计方法及磁通反向电机
Song et al. Quantitative comparison of distinct dual-stator permanent magnet Vernier machines for direct-drive applications
Huang et al. Suppressing the thrust ripple of the consequent-pole permanent magnet linear synchronous motor by two-step design
Jiang et al. A permanent magnet brushless doubly fed generator with segmented structure
CN103929033A (zh) 一种永磁体为弓形的永磁同步电机转子结构
Chen et al. Evaluation of a contra-rotating flux-modulated machine featured with dual flux-modulation for wind power generation
Zhou et al. Consequent pole permanent magnet Vernier machine with asymmetric air-gap field distribution
CN205430012U (zh) 一种三相双凸极电机结构
Wei et al. New dual-PM spoke-type flux-reversal machines for direct-drive applications
Song et al. Comparative analysis of slotless and coreless permanent magnet synchronous machines for electric aircraft propulsion
Wang et al. A new hybrid magnet dual stator field modulation machine with different split ratios of stators
Zhou et al. Reduction of saturation and unipolar leakage flux in consequent-pole PMV machine
CN115940559B (zh) 一种定子偏置式双凸极永磁电机
Wang et al. Torque ripple suppression of a permanent magnet vernier motor from perspective of shifted air-gap permeance distribution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17910149

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17910149

Country of ref document: EP

Kind code of ref document: A1