WO2018209582A1 - 切换控制方法和设备 - Google Patents

切换控制方法和设备 Download PDF

Info

Publication number
WO2018209582A1
WO2018209582A1 PCT/CN2017/084661 CN2017084661W WO2018209582A1 WO 2018209582 A1 WO2018209582 A1 WO 2018209582A1 CN 2017084661 W CN2017084661 W CN 2017084661W WO 2018209582 A1 WO2018209582 A1 WO 2018209582A1
Authority
WO
WIPO (PCT)
Prior art keywords
network device
time
terminal
start time
duration
Prior art date
Application number
PCT/CN2017/084661
Other languages
English (en)
French (fr)
Inventor
王宏
权威
张戬
柴丽
苗金华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201780090152.7A priority Critical patent/CN110574429A/zh
Priority to PCT/CN2017/084661 priority patent/WO2018209582A1/zh
Publication of WO2018209582A1 publication Critical patent/WO2018209582A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0016Hand-off preparation specially adapted for end-to-end data sessions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0072Transmission or use of information for re-establishing the radio link of resource information of target access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/18Performing reselection for specific purposes for allowing seamless reselection, e.g. soft reselection

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a handover control method and device.
  • Mobile communication not only pursues the maximization of capacity, but also requires a wider coverage, that is, wireless network signal coverage regardless of where the terminal moves.
  • Bell Labs of the United States proposed the concept of cellular networking. It divides a network service area into a number of coverage areas with a regular hexagon as the basic geometry, called a cell.
  • a lower power transmitter serves a cell and provides services to terminals located within the cell.
  • the terminal has mobility. When the terminal moves in the direction of another cell, in order to ensure the continuity of the service of the terminal, it is necessary to switch the serving cell of the terminal to another cell.
  • the process for the terminal to be switched from one base station to another in the LTE system is as follows:
  • the source eNB decides to switch the serving base station of the terminal according to the measurement report reported by the terminal, and sends the target base station to the target base station (Target eNB).
  • the TeNB initiates a handover request, and after the SeNB acquires the affirmative handover response of the TeNB, the SeNB sends a handover command to the terminal.
  • the terminal stops data transmission with the SeNB, and the UE starts to synchronize with the TeNB, and Initiate a random access procedure.
  • the SeNB stops data transmission with the terminal when transmitting the handover command to the UE, and transmits the data of the saved terminal to the TeNB. After successfully accessing the TeNB, the terminal starts to transmit data with the TeNB.
  • the terminal when the terminal receives the handover command, it stops transmitting data with the SeNB.
  • the data transmission with the TeNB is started only after the terminal completes the random access and sends an RRC Connection Reconfiguration Complete message to the TeNB. There is an interruption in the data transmission of the terminal, which affects the efficiency of data transmission.
  • the embodiment of the present application provides a handover control method and device, which are used to reduce data transmission interruption time of a base station and a UE, and improve data transmission efficiency in a process of handover of a UE to a target base station.
  • an embodiment of the present application provides a handover control method, including:
  • the first network device sends a handover command to the terminal.
  • the handover command is used to instruct the terminal to switch to the second network device; the handover command includes at least one of the following: a first start time, a first duration, a second start time, and a second duration.
  • the first network device transmits data to the terminal during the idle time.
  • the idle time includes at least one of the following: a time from the end of the first duration to the second start time, and a time from the end of the second duration to the first time.
  • the first start time is a time for allowing the terminal to start sending a random access code to the second network device; the first duration is a time period for allowing the terminal to send the random access code.
  • the second start time is a time for allowing the terminal to start receiving the random access response sent by the second network device
  • the second duration is a time period for allowing the terminal to receive the random access response sent by the second network device.
  • the first time is the time when the terminal starts to send a handover confirmation message to the second network device.
  • the method further includes:
  • the first network device sends a handover request message to the second network device; the handover request message is used to request to switch the terminal to the second network device.
  • the first network device receives the handover response message sent by the second network device; the handover response message indicates that the terminal is allowed to switch to the second network device.
  • the handover response message includes at least one of the following: a first start time, a first duration, a second start time, and a second duration.
  • the handover request message includes at least one of the following: conversion time, time difference.
  • the conversion time is the time at which the terminal converts between the frequency of the first network device and the frequency of the second network device.
  • the time difference is the time difference between the terminal synchronizing to the first network device and synchronizing to the second network device.
  • the method further includes:
  • the first network device sends a handover request message to the second network device; the handover request message is used to request to switch the terminal to the second network device.
  • the first network device receives the handover response message sent by the second network device; the handover response message indicates that the terminal is allowed to switch to the second network device.
  • the handover response message further includes at least one of the following: a third start time, a first duration, a fourth start time, and a second duration.
  • the third start time is a time when the second network device allows the terminal to start sending the random access code; and the fourth start time is a time when the second network device allows the terminal to start receiving the random access response.
  • the first network device performs at least one of: generating a first start time according to the third start time, the conversion time; generating a second start time according to the fourth start time, the conversion time; generating according to the third start time and the time difference a first start time; generating a second start time according to the fourth start time and the time difference.
  • the conversion time is the time at which the terminal converts between the frequency of the first network device and the frequency of the second network device.
  • the time difference is the time difference between the terminal synchronizing to the first network device and synchronizing to the second network device.
  • the method further comprises: the first network device receiving a conversion time and/or a time difference sent by the terminal.
  • the first duration and the second duration are N symbols or N subframes or N mini-slots, respectively, where N is a positive integer.
  • the method further includes:
  • the first network device receives the first capability indication information sent by the terminal, where the first capability indication information is used to indicate the transceiver capability of the terminal, and the sending and receiving capability includes the following: the capability of single sending and receiving the same network device, and the double receiving and sending And the ability to send and receive at different times, the ability to send and receive single-acquisition to different network devices, and the ability to send and receive at the same time.
  • the method further includes: the first network device transmitting data to the terminal according to the second start time and the second duration. or,
  • the method further includes: the first network device transmitting data to the terminal according to the first start time and the first duration; and according to the second start time and the first Two durations, receiving data sent by the terminal. or,
  • the method further includes: the first network device according to the a start time and a first duration, transmitting data to the terminal; and transmitting data to the terminal according to the second start time and the second duration.
  • the method further includes:
  • the first network device sends data to the terminal within a time from the first time to the second time.
  • the second time is the time when the first network device receives the handover complete message sent by the second network device.
  • the method further includes: the first network device receiving the second capability indication information sent by the terminal, where the second capability indication information is used to indicate that the terminal has the capability of time division random access.
  • the handover request message includes: third capability indication information, where the third capability indication information is used to indicate that the terminal has the capability of time division random access.
  • the embodiment of the present application provides a handover control method, including:
  • the second network device receives the random access code sent by the terminal according to the third start time and the first duration.
  • the second network device sends a random access response to the terminal according to the fourth start time and the second duration.
  • the third start time is a time for allowing the terminal to start sending a random access code
  • the first duration is a time period for allowing the terminal to send the random access code
  • the fourth start time is a time for allowing the terminal to start receiving the random access response
  • the second duration is a time period for allowing the terminal to receive the random access response
  • the method further includes:
  • the second network device receives a handover request message sent by the first network device, where the handover request message is used to request to switch the terminal to the second network device.
  • the second network device sends a handover response message to the first network device; the handover response message indicates that the terminal is allowed to switch to the second network device.
  • the handover response message includes at least one of the following: a third start time, a first duration, a fourth start time, and a second duration.
  • the method further includes:
  • the second network device receives a handover request message sent by the first network device, where the handover request message is used to request to switch the terminal to the second network device.
  • the second network device performs at least one of: generating a first start time according to the third start time and the conversion time; generating a second start time according to the fourth start time and the conversion time; generating according to the third start time and the time difference a first start time; generating a second start time according to the fourth start time and the time difference.
  • the second network device sends a handover response message to the first network device; the handover response message indicates that the terminal is allowed to switch to the second network device.
  • the handover response message includes at least one of the following: a first start time, a first duration, a second start time, and a second duration.
  • the conversion time is the time at which the terminal converts between the frequency of the first network device and the frequency of the second network device.
  • the time difference is the time difference between the terminal synchronizing to the first network device and synchronizing to the second network device.
  • the method further includes: the handover request message includes at least one of the following: a conversion time, a time difference.
  • the method further includes: the second network device receiving the capability indication information sent by the first network device, where the capability indication information is used to indicate that the terminal has the capability of time division random access.
  • the first duration and the second duration are N symbols or N subframes or N mini-slots, respectively, where N is a positive integer.
  • an embodiment of the present application provides a handover control method, including:
  • the handover command is used to instruct the terminal to switch to the second network device; the handover command includes at least one of the following: a first start time, a first duration, a second start time, and a Two durations.
  • the terminal sends a random access code to the second network device according to the first start time and the first duration.
  • the terminal receives the random access response sent by the second network device according to the second start time and the second duration.
  • the terminal transmits data with the first network device during the idle time.
  • the idle time includes at least one of the following: a time from the end of the first duration to the second start time, and a time from the end of the second duration to the first time.
  • the first start time is a time for allowing the terminal to start sending a random access code to the second network device, where the first duration is a period of time during which the terminal is allowed to send the random access code.
  • the second start time is a time for allowing the terminal to start receiving the random access response sent by the second network device
  • the second duration is a time period for allowing the terminal to receive the random access response sent by the second network device.
  • the first time is the time when the terminal starts to send a handover confirmation message to the second network device.
  • the method further includes:
  • the terminal sends a conversion time and/or a time difference to the first network device.
  • the conversion time is the time at which the terminal converts between the frequency of the first network device and the frequency of the second network device.
  • the time difference is the time difference between the terminal synchronizing to the first network device and synchronizing to the second network device.
  • the handover command further includes: a random access code, a time-frequency resource carrying the random access code, and access layer configuration information of the second network device.
  • the method further includes: the terminal establishing a data link layer corresponding to the second network device according to the access layer configuration information; and/or retaining a data link layer corresponding to the first network device.
  • the first duration and the second duration are N symbols or N subframes or N mini-slots, respectively, where N is a positive integer.
  • the method further includes:
  • the terminal sends the first capability indication information to the first network device, where the first capability indication information is used to indicate the transceiver capability of the terminal, and the transceiver capability includes the following: the capability of single-issue and single-receipt for the same network device, The ability to send and receive at different times, the ability to send and receive single-acquisition to different network devices, and the ability to send and receive at the same time.
  • the method further includes: receiving, by the terminal, the data sent by the first network device according to the second start time and the second duration .
  • the method further includes: receiving, by the terminal, data sent by the first network device according to the first start time and the first duration; and according to the second start time And transmitting data to the first network device for a second duration.
  • the method further includes: receiving, by the terminal, data sent by the first network device according to the first start time and the first duration; and according to the second start time and The second duration, the data is transmitted with the first network device.
  • the method further includes:
  • the terminal receives data sent by the first network device within a time from the first time to the second time.
  • the second time is the time when the first network device receives the handover complete message sent by the second network device.
  • the method further includes: the terminal sending the second capability indication information to the first network device, where the second capability indication information is used to indicate that the terminal has the capability of time division random access.
  • the embodiment of the present application provides a network device, as a first network device, including: a sending module and a receiving module.
  • a sending module configured to send a switching command to the terminal.
  • the handover command is used to instruct the terminal to switch to the second network device; the handover command includes at least one of the following: a first start time, a first duration, a second start time, and a second duration.
  • the sending module is further configured to send data to the terminal during idle time.
  • the receiving module is configured to receive data sent by the terminal during the idle time.
  • the idle time includes at least one of the following: a time from the end of the first duration to the second start time, and a time from the end of the second duration to the first time.
  • the first start time is a time for allowing the terminal to start sending a random access code to the second network device; the first duration is a time period for allowing the terminal to send the random access code.
  • the second start time is a time for allowing the terminal to start receiving the random access response sent by the second network device
  • the second duration is a time period for allowing the terminal to receive the random access response sent by the second network device.
  • the first time is the time when the terminal starts to send a handover confirmation message to the second network device.
  • the sending module is further configured to send a handover request message to the second network device, where the handover request message is used to request to switch the terminal to the second network device.
  • the receiving module is further configured to receive a handover response message sent by the second network device, where the handover response message indicates that the terminal is allowed to switch to the second network device.
  • the handover response message includes at least one of the following: a first start time, a first duration, a second start time, and a second duration.
  • the handover request message includes at least one of the following: conversion time, time difference.
  • the conversion time is the time at which the terminal converts between the frequency of the first network device and the frequency of the second network device.
  • the time difference is the time difference between the terminal synchronizing to the first network device and synchronizing to the second network device.
  • the first network device further includes: a processing module.
  • the sending module is further configured to send a handover request message to the second network device, where the handover request message is used to request to switch the terminal to the second network device.
  • the receiving module is further configured to receive a handover response message sent by the second network device, where the handover response message indicates that the terminal is allowed to switch to the second network device.
  • the handover response message further includes at least one of the following: a third start time, a first duration, a fourth start time, and a second duration.
  • the third start time is a time when the second network device allows the terminal to start sending the random access code; and the fourth start time is a time when the second network device allows the terminal to start receiving the random access response.
  • the processing module is further configured to: perform at least one of: generating a first start time according to the third start time and the conversion time; generating a second start time according to the fourth start time and the conversion time; according to the third start time, The time difference generates a first start time; and a second start time is generated according to the fourth start time and the time difference.
  • the conversion time is the time at which the terminal converts between the frequency of the first network device and the frequency of the second network device.
  • the time difference is the time difference between the terminal synchronizing to the first network device and synchronizing to the second network device.
  • the receiving module is further configured to receive a conversion time and/or a time difference sent by the terminal.
  • the first duration and the second duration are N symbols or N subframes or N mini-slots, respectively, where N is a positive integer.
  • the receiving module is further configured to receive the first capability indication information sent by the terminal, where the first capability indication information is used to indicate the transceiver capability of the terminal, and the sending and receiving capability includes the following: The ability to send bills, the ability to send and receive bills at different times, the ability to send and receive at different times, the ability to send and receive orders for different network devices, and the ability to send and receive at the same time.
  • the sending module is further configured to send data to the terminal according to the second start time and the second duration.
  • the sending module is further configured to send data to the terminal according to the first start time and the first duration; and the receiving module is further configured to use according to the second start time And the second duration, receiving data sent by the terminal.
  • the sending module is further configured to send data to the terminal according to the first start time and the first duration; and the sending module is further configured to use according to the second start time And sending the data to the terminal, and the receiving module is further configured to receive the data sent by the terminal according to the second start time and the second duration.
  • the sending module is further configured to send data to the terminal in a time from the first time to the second time.
  • the second time is the time when the first network device receives the handover complete message sent by the second network device.
  • the receiving module is further configured to receive the second capability indication information sent by the terminal, where the second capability indication information is used to indicate that the terminal has the capability of time division random access.
  • the handover request message includes: third capability indication information, where the third capability indication information is used to indicate that the terminal has the capability of time division random access.
  • the embodiment of the present application provides a network device, where the second network device includes:
  • the receiving module is configured to receive a random access code sent by the terminal according to the third start time and the first duration.
  • a sending module configured to send a random access response to the terminal according to the fourth start time and the second duration.
  • the third start time is a time for allowing the terminal to start sending a random access code
  • the first duration is a time period for allowing the terminal to send the random access code
  • the fourth start time is a time for allowing the terminal to start receiving the random access response
  • the second duration is a time period for allowing the terminal to receive the random access response
  • the receiving module is further configured to receive a handover request message sent by the first network device, where the handover request message is used to request to switch the terminal to the second network device.
  • the sending module is further configured to send a handover response message to the first network device; the handover response message indicates that the terminal is allowed to switch to the second network device.
  • the handover response message includes at least one of the following: a third start time, a first duration, a fourth start time, and a second duration.
  • the second network device further includes: a processing module.
  • the receiving module is further configured to receive a handover request message sent by the first network device, where the handover request message is used to request to switch the terminal to the second network device.
  • a processing module configured to perform at least one of: generating a first start time according to a third start time and a conversion time; generating a second start time according to the fourth start time and the conversion time; and according to the third start time and the time difference Generating a first start time; generating a second start time according to the fourth start time and the time difference.
  • the sending module is further configured to send a handover response message to the first network device; the handover response message indicates that the terminal is allowed to switch to the second network device.
  • the handover response message includes at least one of the following: a first start time, a first duration, a second start time, and a second duration.
  • the conversion time is the time at which the terminal converts between the frequency of the first network device and the frequency of the second network device.
  • the time difference is the time difference between the terminal synchronizing to the first network device and synchronizing to the second network device.
  • the handover request message includes at least one of the following: conversion time, time difference.
  • the receiving module is further configured to receive capability indication information sent by the first network device, where the capability indication information is used to indicate that the terminal has the capability of time division random access.
  • the first duration and the second duration are N symbols or N subframes or N mini-slots, respectively, where N is a positive integer.
  • an embodiment of the present application provides a terminal, including:
  • a receiving module configured to receive a handover command sent by the first network device, where the handover command is used to instruct the terminal to switch to the second network device; the handover command includes at least one of the following: a first start time, a first duration, and a second Start time, second duration.
  • a sending module configured to send a random access code to the second network device according to the first start time and the first duration.
  • the receiving module is further configured to receive a random access response sent by the second network device according to the second start time and the second duration.
  • the sending module is further configured to send data to the first network device during the idle time.
  • the receiving module is further configured to receive data sent by the first network device during the idle time.
  • the idle time includes at least one of the following: a time from the end of the first duration to the second start time, and a time from the end of the second duration to the first time.
  • the first start time is a time for allowing the terminal to start sending a random access code to the second network device, where the first duration is a period of time during which the terminal is allowed to send the random access code.
  • the second start time is a time for allowing the terminal to start receiving the random access response sent by the second network device
  • the second duration is a time period for allowing the terminal to receive the random access response sent by the second network device.
  • the first time is the time when the terminal starts to send a handover confirmation message to the second network device.
  • the transmitting module is further configured to send a conversion time and/or a time difference to the first network device.
  • the conversion time is the time at which the terminal converts between the frequency of the first network device and the frequency of the second network device.
  • the time difference is the time difference between the terminal synchronizing to the first network device and synchronizing to the second network device.
  • the terminal further includes: a processing module.
  • the handover command further includes: a random access code, a time-frequency resource carrying the random access code, and access layer configuration information of the second network device.
  • a processing module configured to establish a data link layer corresponding to the second network device according to the access layer configuration information; and/or The data link layer corresponding to the first network device is reserved.
  • the first duration and the second duration are N symbols or N subframes or N mini-slots, respectively, where N is a positive integer.
  • the sending module is further configured to send the first capability indication information to the first network device, where the first capability indication information is used to indicate the transceiver capability of the terminal, and the sending and receiving capability includes the following: The ability to send single-issue and single-receipt, the ability to send and receive double-receipt and transmit and receive at different times, the ability to send and receive single-acquisition to different network devices, and the ability to send and receive at the same time.
  • the receiving module is further configured to receive data sent by the first network device according to the second start time and the second duration.
  • the receiving module is further configured to receive data sent by the first network device according to the first start time and the first duration, and the sending module is further configured to: The second start time and the second duration send data to the first network device.
  • the receiving module is further configured to receive data sent by the first network device according to the first start time and the first duration, and the sending module is further configured to be used according to the first The second start time and the second duration, the data is sent to the first network device, and the receiving module is further configured to receive the data sent by the first network device according to the second start time and the second duration.
  • the receiving module is further configured to receive data sent by the first network device in a time from the first time to the second time.
  • the second time is the time when the first network device receives the handover complete message sent by the second network device.
  • the sending module is further configured to send the second capability indication information to the first network device, where the second capability indication information is used to indicate that the terminal has the capability of time division random access.
  • the embodiment of the present application provides a network device, where the first network device includes: a processor and a transceiver; and the processor and the transceiver are used to perform the handover control according to any one of the embodiments of the present application. method.
  • the embodiment of the present application provides a network device, where the second network device includes: a processor and a transceiver; and the processor and the transceiver are configured to perform the handover control according to any one of the embodiments of the present application. method.
  • the embodiment of the present application provides a terminal, including: a processor and a transceiver; the processor and the transceiver are used to perform the handover control method according to any one of the embodiments of the present application.
  • the embodiment of the present application provides a handover control system, including the network device provided by the embodiment of the present application, or the network device provided by the embodiment of the present application.
  • the terminal provided by the embodiment of the present application.
  • the embodiment of the present application provides a computer readable storage medium, when the instructions in the storage medium are executed by a processor of the network device, so that the network device can perform the switching control according to the first aspect of the present application. method.
  • the embodiment of the present application provides a computer readable storage medium, when the instructions in the storage medium are executed by a processor of the network device, so that the network device can perform the switching control according to the second aspect of the present application. method.
  • the embodiment of the present application provides a computer readable storage medium, when an instruction in a storage medium When executed by the processor of the terminal, the terminal is enabled to perform the handover control method according to the second aspect of the present application.
  • the handover control method and device provided by the embodiment of the present application and the first network device and the UE transmit data after the UE sends the random access code and before receiving the random access response, and/or the first network device Transmitting data with the UE during the period before the UE sends the handover confirmation message after the UE receives the random access response, so the data transmission interruption time of the network device and the UE is reduced in the process of the UE switching to the second network device. , improve the efficiency of data transmission.
  • FIG. 1 is a schematic diagram of an application scenario according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of an application scenario provided by another embodiment of the present application.
  • FIG. 3 is a flowchart of a handover control method according to Embodiment 1 of the present application.
  • FIGS. 4A-4I are schematic diagrams of time configuration provided by an embodiment of the present application.
  • FIG. 5 is a flowchart of a handover control method according to Embodiment 2 of the present application.
  • FIG. 6 is a flowchart of a handover control method according to Embodiment 3 of the present application.
  • FIG. 7 is a flowchart of a handover control method according to Embodiment 4 of the present application.
  • FIG. 8 is a time relationship diagram between a source base station and a target base station according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of communication between a source base station, a terminal, and a target base station according to Embodiment 1 of the present application.
  • FIG. 10 is a schematic diagram of communication between a source base station, a terminal, and a target base station according to Embodiment 2 of the present application;
  • FIG. 11 is a schematic diagram of communication between a source base station, a terminal, and a target base station according to Embodiment 3 of the present application;
  • FIG. 12 is a schematic diagram of communication between a source base station, a terminal, and a target base station according to Embodiment 4 of the present application;
  • FIG. 13 is a schematic structural diagram of a network device according to Embodiment 1 of the present application.
  • FIG. 14 is a schematic structural diagram of a network device according to Embodiment 2 of the present application.
  • FIG. 15 is a schematic structural diagram of a network device according to Embodiment 3 of the present application.
  • FIG. 16 is a schematic structural diagram of a network device according to Embodiment 4 of the present application.
  • FIG. 17 is a schematic structural diagram of a terminal according to Embodiment 1 of the present application.
  • FIG. 18 is a schematic structural diagram of a terminal according to Embodiment 2 of the present application.
  • FIG. 19 is a schematic structural diagram of a handover control system according to an embodiment of the present application.
  • FIG. 1 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • the first network device is the source network device
  • the second network device is the target network device, that is, the terminal is switched from the link A with the first network device to the chain with the second network device.
  • Road B is the target network device
  • the first network device and the second network device are both base stations in the LTE system, such as an eNB.
  • the first network device and the second network device are base stations in the 5G system, such as gNB.
  • the first network device is a base station in an LTE system, such as an eNB
  • the second network device is a base station in a 5G system, such as a gNB.
  • the first network device is a base station in a 5G system, such as a gNB
  • the second network device is a base station in an LTE system, such as an eNB.
  • the first network device and the second network device are base stations in a 5G system, such as a gNB, but the gNB in the application scenario may be It is virtual, that is, some functions are on a distributed unit (DU), and some functions are on a centralized unit (CU). Multiple DUs can be connected to the same CU.
  • the first network device in the embodiment of the present application may be partially functional on the DU1 and partially functional on the CU1. Some functions of the second network device are on the DU3, and some functions are on the CU2.
  • the embodiments of the present application can be applied to a scenario in which a terminal switches between inter-frequency cells, and can also be applied to a scenario in which a terminal switches between intra-frequency cells.
  • the source cell and the target cell may be synchronous or asynchronous.
  • the scheme of the handover control method provided by the embodiments of the present application is introduced by using the terminal as the user equipment (User Equipment, UE), the first network device as the source base station, and the second network device as the target base station.
  • the terminal as the user equipment (User Equipment, UE)
  • the first network device as the source base station
  • the second network device as the target base station.
  • FIG. 3 is a flowchart of a handover control method according to Embodiment 1 of the present application. As shown in FIG. 3, the method in this embodiment may include:
  • the source base station sends a handover command to the UE.
  • the source base station is a serving base station that is currently a UE, and the source base station determines that the UE is handed over from the source base station to the target base station. For example, the source base station determines that the UE is handed over from the source base station to the target base station according to the measurement report reported by the UE.
  • the source base station sends a handover command to the UE.
  • the handover command is used to indicate that the UE is handed over to the target base station, and the handover command in this embodiment includes at least one of the following: a first start time, a first duration, a second start time, and a second duration, where The first start time is a time for allowing the UE to start transmitting a random access code to the target base station.
  • At least one of the first start time, the first duration, the second start time, and the second duration may be determined by the source base station. Alternatively, at least one of the first start time, the first duration, the second start time, and the second duration may be preset in the source base station. Alternatively, at least one of the foregoing first start time, first duration, second start time, and second duration may be obtained by the source base station from the target base station. This embodiment does not limit this.
  • the UE sends a random access code to the target base station according to the first start time and the first duration.
  • the UE receives a handover command sent by the source base station, where the handover command includes a first start time and a first duration, and the UE sends a random access code to the target base station according to the first start time and the first duration. That is, the UE sends a random access code to the target base station on the valid random access resource in the first duration from the first start time.
  • the target base station receives the random access code sent by the UE according to the random access resource configuration information.
  • the first duration is one unit time, the first duration may be omitted.
  • the first start time is the subframe 7 of the system frame No. 1, and the base station is configured to transmit the random access code in only one subframe.
  • the first duration is 1 subframe, that is, 1 ms. At this time, the first duration may not be configured, that is, the default is 1 subframe.
  • the source base station transmits data to the UE in a time period from the end of the first duration to the second start time.
  • the UE does not always have data transmission and reception operations with the target base station when the UE initiates random access to the target base station, that is, between the Preamble and the Receive Random Access Response (RAR).
  • the source base station can transmit data with the UE during the first idle time, and the first idle time is the time from the end of the first duration to the second start time, as shown in FIG. 4A.
  • the source base station may send downlink data to the UE within the time from the end of the first duration to the second start time. Moreover, the UE may send uplink data to the source base station within the time from the end of the first duration to the second start time.
  • the UE receives the random access response sent by the target base station according to the second start time and the second duration.
  • the UE receives the random access response sent by the target base station according to the second start time and the second duration, that is, the UE starts from the second start time and listens to the target base station for sending in the second duration.
  • RAR as shown in FIG. 4B, the SeNB shown in the figure represents a source base station.
  • the source base station transmits data to the UE in a time period until the end of the second duration.
  • the first time is a time when the UE sends a handover confirmation message to the target base station, as shown in FIG. 4C.
  • the first time may be preset. For example, as shown in FIG.
  • the first time is the sixth subframe after the UE receives the RAR, and the UE ends at the second duration, that is, the subframe No. 3, to the UE.
  • the data is transmitted with the source base station.
  • the first time may be that the target base station notifies the UE, for example, the target base station notifies the UE to send a handover confirmation message in the subframe 7 through the source base station.
  • the first time may also include several subframes, such as subframes 6, 7, 8, and the UE selects one of the subframes in the first time to send a handover confirmation message.
  • the UE transmits data from the source base station between the subframe 2 and the subframe 6.
  • the source base station does not know when the UE receives the RAR, so the source base station can always send downlink data to the UE for the second duration.
  • the UE listens to the downlink data sent by the source base station.
  • the source base station always monitors the uplink data sent by the UE, and after receiving the RAR, the UE sends the uplink data to the source base station. At this time, because the UE receives the RAR, the UE considers that the second duration is at the end of the subframe No. 1. End.
  • the UE starts sending a handover confirmation message to the target base station at the first time according to the random access response.
  • the UE disconnects the communication with the source base station when receiving the RAR, and starts to parse the RAR received from the target base station when receiving the RAR, and sends a handover confirmation message to the target base station by using the uplink resource included in the RAR, for example, As shown in FIG. 4C and FIG. 4D, the time when the UE starts to send the handover confirmation message is the first time. Thereafter, the UE always transmits data with the target base station. At this point, the switch is complete.
  • the present embodiment may execute S103 but not S105, or may perform S103 and S105, or may perform S103 but execute S105.
  • the source base station and the UE transmit data after the UE sends the random access code and before receiving the random access response, and/or, the source base station and the UE after the UE receives the random access response.
  • the data is transmitted during the period before the UE sends the handover confirmation message. Therefore, in the process of the UE switching to the target base station, the data transmission interruption time of the source base station and the UE is reduced, and the data transmission efficiency is improved.
  • At least one of the first start time, the first duration, the second start time, and the second start time is generated by the source base station.
  • the source base station generates a first start as an example for description, and the target base station may configure the target base station to be randomly connected to the UE.
  • the information is sent to the source base station, for example, by using a handover response message, where the random access information includes resource information that the target base station configures the UE to send the random access code, where the resource information includes time information and frequency information, and the source base station may use the time information according to the time information.
  • the time information in the random access information is as shown in FIG. 4E.
  • the target base station can configure the UE to use different random access resource configurations. For example, seven random access resource configurations are listed here, corresponding to seven index values. That is 0, 1, 2, 15, 3, 4, 5.
  • the UE When the configuration of the random access resource corresponding to the index value 0 is configured, it indicates that the UE can send a random access code on the first subframe of every even number of system frames, where the number in the figure indicates the subframe number, and each of the 10 subframes constitutes one. System frame. Other configurations are similar.
  • the source base station is configured according to the random access resource configured by the target base station. For example, if the target base station is configured with the random access resource configuration 0, the source base station may determine that the first start time is a period of N random access resources, that is, When the target base station configures the UE to use the first subframe of every even number of system frames to transmit the random access code, the UE starts counting from the current subframe, and when the Nth effective random access resource arrives, the UE starts to send the random.
  • the access code as shown in FIG. 4F, may be a subframe in which the UE receives the handover command.
  • the source base station indicates the location of the random access code (Preamble) sent by the UE relative to the current subframe of the UE, as shown in FIG. 4G.
  • Preamble the random access code
  • Manner 3 The source base station instructs the UE to send the system frame number and the subframe number of the Preamble, as shown in FIG. 4H, in the first subframe of the 40th system frame.
  • the UE does not necessarily send the Preamble when the first start time arrives, and the UE may send the Preamble on any valid resource in the first duration.
  • the target base station If the source base station and the target base station are in synchronization, that is, the frame time of the source base station and the target base station are synchronized, for example, when the source base station transmits the system frame number N, the target base station also sends the system frame number N, which is stricter.
  • the synchronization is that when the source base station transmits the Mth subframe of the Nth system frame, the target base station also transmits the Mth subframe of the Nth system frame.
  • the first start time and the second start time may refer to the time of the source base station, and may also refer to the time of the target base station.
  • the source base station and the target base station are in an asynchronous situation, that is, the frame time of the source base station and the target base station are not synchronized, at this time, it is required to specify whether the first start time is a reference source base station or a reference target base station.
  • One method is that the source base station indicates the reference device of the first start time in the handover command, and the other method is that the reference device of the first start time is pre-defined.
  • the source base station can be configured in any of the foregoing three manners.
  • the source base station needs to refer to the time difference between the source base station and the target base station when the first base station is configured.
  • the source base station may send a time difference report request to the UE, requesting the UE to report the UE synchronization to the UE.
  • the time difference between the source base station and the target base station for example, when the UE receives the subframe No. 3 of the system frame No. 2 transmitted by the source base station, and the UE receives the subframe No. 4 of the system frame No. 3 transmitted by the target base station, the time difference is Add 1 subframe time for 1 system frame time (for example, the time of the target base station minus the time of the source base station).
  • the first duration is a time period in which the UE is allowed to send a random access code.
  • the UE sends the Preamble in one subframe, and the first duration is 1 subframe, that is, 1 ms.
  • the source base station and the target base station can achieve ideal synchronization, or can obtain an ideal time difference. If the ideal synchronization cannot be achieved, or the ideal time difference cannot be obtained, the source base station can relax the first start time and the first.
  • the source base station configures the UE to send the Preamble at the beginning of the subframe 6 of the system frame No. 34, and the first duration is 4 subframes. At this time, the UE, in the 4 subframes. The subframe position at which the Preamble is transmitted is then accurately determined within the frame.
  • the second start time is a time for allowing the UE to start receiving a random access response sent by the target base station, and the second start The time can be expressed by the absolute time, that is, the system frame number and the subframe number. As shown in FIG. 4I, the second start time is the 9th subframe of the 35th frame; the second start time can also be relative time. For example, as shown in FIG. 4I, the second start time is 14 subframes relative to the first start time, that is, counting from the first start time, and when counting to the 14th subframe, the second start time is Or not including the subframe of the first start time, counting 13 subframes; or calculating the second start time from the end of the first duration as a reference.
  • the second duration is a time period in which the UE is allowed to receive the RAR sent by the target base station, where the second duration corresponds to the RAR receiving window in the prior art.
  • the length of the RAR receiving window is broadcast by the base station, and is applied to It covers all UEs within the coverage, while the second duration in this application can configure different values for different UEs.
  • the first duration may be defined as a fixed value. In this case, the switching command does not need to carry the first duration.
  • the second start time and the second duration may also be defined as fixed values.
  • the solution of the present application is described below by taking as an example that at least one of the first start time, the first duration, the second start time, and the second duration is obtained by the source base station from the target base station.
  • FIG. 5 is a flowchart of a handover control method according to Embodiment 2 of the present application.
  • the source base station is synchronized with the target base station, and the source base station and the target base station are the same frequency, and the method in this embodiment is used.
  • Can include:
  • the source base station sends a handover request message to the target base station.
  • the source base station determines that the UE can perform handover to the target base station. For example, the source base station determines that the UE can switch to the target base station according to the measurement report reported by the UE, and the source base station sends a handover request message to the target base station. The handover request message is used to request to handover the UE to the target base station.
  • the target base station sends a handover response message to the source base station.
  • the target base station receives the handover request message sent by the source base station, and sends a handover response message to the source base station according to the handover request message.
  • the handover response message indicates that the UE is allowed to handover to the target base station.
  • the handover response message in this embodiment includes at least one of the following: a first start time, a first duration, a second start time, and a second duration.
  • the first start time is a time for allowing the UE to start sending the random access code
  • the first duration is a time period for allowing the UE to send the random access code
  • the second start time is for allowing the UE to start receiving random access.
  • the time of the response, the second duration is a period of time during which the UE is allowed to receive the random access response.
  • the handover response message may further include: a random access code, a time-frequency resource carrying the random access code, and access layer configuration information of the target base station.
  • At least one of the first start time, the first duration, the second start time, and the second duration in the embodiment is generated by the target base station.
  • the target base station takes the target base station as the first start time.
  • the time information in the random access information is as shown in FIG. 4E.
  • the target base station can configure the UE to use different random access resource configurations. For example, seven random access resource configurations are listed here, corresponding to seven index values. That is 0, 1, 2, 15, 3, 4, 5.
  • the configuration of the random access resource corresponding to the index value 0 is configured, it indicates that the UE can send a random access code on the first subframe of every even number of system frames, where the number in the figure indicates the subframe number, and each of the 10 subframes constitutes one. System frame. Other configurations are similar.
  • the target base station is configured according to the configured random access resource. For example, if the target base station is configured with the random access resource configuration 0, the target base station may determine that the first start time is a period of N random access resources, that is, when the target When the base station configures the UE to use the first subframe of the even number of system frames to transmit the random access code, the UE starts counting from the current subframe, and when the Nth effective random access resource arrives, the UE starts to send the random access.
  • Code as shown in Figure 4F, UE The current subframe may be a subframe in which the UE receives the handover command.
  • the target base station indicates the location of the random access code sent by the UE relative to the current subframe of the UE, as shown in FIG. 4G.
  • Manner 3 The target base station instructs the UE to send the system frame number and the subframe number of the Preamble, as shown in FIG. 4H, in the first subframe of the system frame No. 40.
  • the UE does not necessarily send the Preamble when the first start time arrives, and the UE may send the Preamble on any valid resource in the first duration.
  • the first start time and the second start time are both the reference source base station and the reference target base station.
  • the source base station sends a handover command to the UE.
  • the UE Since the source base station in this embodiment is synchronized and co-frequency with the target base station, the UE is also synchronized with the time information described above.
  • the source base station sends a handover command to the UE, where the handover command includes at least one of the following: a first start time, a first duration, a second start time, and a second duration.
  • the UE establishes a data link layer corresponding to the target base station according to the access layer configuration information of the target base station; and/or retains a data link layer corresponding to the source base station.
  • the handover command in this embodiment may further include: a random access code, a time-frequency resource carrying a random access code, and access layer configuration information of the target base station.
  • the UE establishes a data link layer corresponding to the target base station according to the access layer configuration information of the target base station in the handover command, including a media access control (MAC) layer and a radio link control (RLC). Layer, Packet Data Convergence Protocol (PDCP) layer.
  • MAC media access control
  • RLC radio link control
  • Layer Packet Data Convergence Protocol
  • the UE in this embodiment does not delete the data link layer of the corresponding source base station, but retains the data link layer of the corresponding source base station, so that the connection between the UE and the source base station is not disconnected during the handover process, so as to subsequently Can transmit data with the source base station.
  • the UE sends a random access code to the target base station according to the first start time and the first duration.
  • the source base station transmits data to the UE in a time period from the end of the first duration to the second start time.
  • the UE receives the random access response sent by the target base station according to the second start time and the second duration.
  • the source base station transmits data to the UE in a time to the first time when the second duration ends.
  • the UE starts sending a handover confirmation message to the target base station according to the random access response.
  • the data transmission of the source base station and the UE is not completely interrupted during the process of the UE switching to the target base station, and the data transmission interruption time of the source base station and the UE is reduced, and the data transmission efficiency is improved.
  • FIG. 6 is a flowchart of a handover control method according to Embodiment 3 of the present application. As shown in FIG. 6, this embodiment is exemplified by any of the following situations: a source base station and a target base station are asynchronous and have the same frequency, source base station, and target. The base station is asynchronous and the inter-frequency is different, the source base station is synchronized with the target base station, and the different frequency is used as an example.
  • the method in this embodiment may include:
  • the source base station sends a handover request message to the target base station.
  • the target base station sends a handover response message to the source base station.
  • the target base station receives the handover request message sent by the source base station, and sends a handover response message to the source base station according to the handover request message.
  • the handover response message indicates that the UE is allowed to handover to the target base station.
  • the handover response message in this embodiment includes at least one of the following: a third start time, a first duration, a fourth start time, and a second duration.
  • the third start time is a time for allowing the UE to start sending the random access code
  • the first duration is a time period for allowing the UE to send the random access code
  • the fourth start time is for allowing the UE to start receiving the random access.
  • the time of the incoming response, the second duration is the time period during which the UE is allowed to receive the random access response.
  • the handover response message may further include: a random access code, a time-frequency resource carrying the random access code, and access layer configuration information of the target base station.
  • At least one of the third start time, the first duration, the fourth start time, and the second duration in the embodiment is generated by the target base station.
  • the third start time refers to the target base station
  • the fourth start time refers to the target base station.
  • the source base station performs at least one of: generating a first start time according to the third start time and the conversion time; generating a second start time according to the fourth start time and the conversion time; generating according to the third start time and the time difference a first start time; generating a second start time according to the fourth start time and the time difference.
  • the source base station and the target base station have at least one of the following situations: the source base station is asynchronous with the target base station, and the source base station is different from the target base station, the source base station needs to convert the received time.
  • the source base station when the source base station is asynchronous with the target base station, and the source base station is at the same frequency as the target base station, the source base station generates the first time according to the third start time and the time difference, and/or the source base station according to the fourth start time.
  • the time difference generates a second start time.
  • the source base station When the source base station is synchronized with the target base station, and the source base station is different from the target base station, the source base station generates a first start time according to the third start time and the conversion time, and/or the source base station according to the fourth start time and the conversion time. Generate a second start time.
  • the source base station When the source base station is asynchronous with the target base station, and the source base station is asynchronous with the target base station, the source base station generates a first start time according to the third start time, the transition time, and the time difference, and/or, the source base station converts according to the fourth start time, The time and time difference generate a second start time.
  • the first start time generated is referenced to the source base station, and the second start time is referenced to the source base station.
  • the foregoing conversion time is a time when the UE converts the frequency of the source base station and the frequency of the target base station.
  • the time difference described above is the time difference between the UE synchronizing to the source base station and synchronizing to the target base station.
  • the source base station receives the foregoing conversion time and/or time difference sent by the UE.
  • the source base station sends a handover command to the UE.
  • the switching command includes at least one of the following: a first start time, a first duration, a second start time, and a second duration.
  • the UE establishes a data link layer corresponding to the target base station according to the access layer configuration information of the target base station; and/or retains a data link layer corresponding to the source base station.
  • the UE sends a random access code to the target base station according to the first start time and the first duration.
  • the source base station transmits data to the UE during the time from the end of the first duration to the second start time.
  • the UE receives the random access response sent by the target base station according to the second start time and the second duration.
  • the source base station transmits data to the UE at the end of the second duration to the first time.
  • the UE starts sending a handover confirmation message to the target base station at the first time according to the random access response.
  • the data transmission of the source base station and the UE is not completely interrupted during the process of the UE switching to the target base station, and the data transmission interruption time of the source base station and the UE is reduced, and the data transmission efficiency is improved.
  • FIG. 7 is a flowchart of a handover control method according to Embodiment 4 of the present application. As shown in FIG. 7, this embodiment is exemplified by any of the following situations: a source base station and a target base station are asynchronous and have the same frequency, source base station, and target. The base station is asynchronous and the inter-frequency is different, the source base station is synchronized with the target base station, and the different frequency is used as an example.
  • the method in this embodiment may include:
  • the source base station sends a handover request message to the target base station.
  • the target base station performs at least one of: generating a first start time according to the third start time and the conversion time; generating a second start time according to the fourth start time and the conversion time; generating according to the third start time and the time difference a first start time; generating a second start time according to the fourth start time and the time difference.
  • At least one of the third start time, the first duration, the fourth start time, and the second duration of the embodiment is generated by the target base station.
  • the third start time is a time for allowing the UE to start sending the random access code
  • the first duration is a time period for allowing the UE to send the random access code
  • the fourth start time is for allowing the UE to start receiving the random access.
  • the time of the incoming response, the second duration is the time period during which the UE is allowed to receive the random access response.
  • the third start time refers to the target base station
  • the fourth start time refers to the target base station
  • the source base station and the target base station have at least one of the following situations: the source base station is asynchronous with the target base station, and the source base station is different from the target base station. Therefore, the target base station needs to convert the time information.
  • the target base station when the source base station is asynchronous with the target base station, and the source base station is co-frequency with the target base station, the target base station generates a first start time according to the third start time and the time difference, and/or the source base station according to the fourth start time.
  • the time difference generates a second start time.
  • the target base station When the source base station is synchronized with the target base station, and the source base station is different from the target base station, the target base station generates a first start time according to the third start time and the conversion time, and/or the target base station according to the fourth start time and the conversion time. Generate a second start time.
  • the target base station When the source base station is asynchronous with the target base station, and the source base station is asynchronous with the target base station, the target base station generates a first start time according to the third start time, the transition time, and the time difference, and/or, the target base station converts according to the fourth start time, The time and time difference generate a second start time.
  • the first start time and the second start time refer to the source base station.
  • the foregoing conversion time is a conversion time of the frequency at which the UE switches from the frequency of the source base station to the frequency of the target base station.
  • the time difference described above is the time difference between the UE synchronizing to the source base station and synchronizing to the target base station.
  • the foregoing conversion time and/or time difference is included in the handover request message, and is sent by the source base station to the target base station.
  • the source base station further receives the foregoing conversion time and/or time difference sent by the UE.
  • the target base station sends a handover response message to the source base station.
  • the target base station sends a handover response message to the source base station.
  • the handover response message indicates that the UE is allowed to handover to the target base station.
  • the handover response message in this embodiment includes at least one of the following: a first start time, a first duration, a second start time, and a second duration.
  • the handover response message may further include: a random access code, a time-frequency resource carrying the random access code, and a target base.
  • the access layer configuration information of the station may further include: a random access code, a time-frequency resource carrying the random access code, and a target base.
  • the source base station sends a handover command to the UE.
  • the switching command includes at least one of the following: a first start time, a first duration, a second start time, and a second duration.
  • the UE establishes a data link layer corresponding to the target base station according to the access layer configuration information of the target base station; and/or retains a data link layer of the corresponding source base station.
  • the UE sends a random access code to the target base station according to the first start time and the first duration.
  • the source base station transmits data to the UE in a time from the end of the first duration to the second start time.
  • the UE receives the random access response sent by the target base station according to the second start time and the second duration.
  • the source base station transmits data to the UE in a time to the first time when the second duration ends.
  • the UE starts sending a handover confirmation message to the target base station at the first time according to the random access response.
  • the data transmission of the source base station and the UE is not completely interrupted during the process of the UE switching to the target base station, and the data transmission interruption time of the source base station and the UE is reduced, and the data transmission efficiency is improved.
  • FIG. 8 is a time relationship diagram between a source base station and a target base station according to an embodiment of the present disclosure.
  • the time difference between the source base station and the target base station is 2 subframes, that is, N-(N-2). .
  • the time at which the UE converts the frequency of the source base station to the frequency of the target base station is one subframe. If the third start time sent by the target base station to the source base station is subframe N, the subframe N is the time of the reference target base station. Then, the first start time sent by the source base station to the UE exists in the following cases.
  • the source base station sends the first start time to the UE according to the received third start time as the subframe N, and the N-2 subframe is the time of the reference source base station.
  • the UE stops communicating with the source base station in the N-3 subframe, and after the frequency conversion of one subframe, sends a random connection to the target base station in the N-2 subframe. Enter the code.
  • the source base station sends the first start time to the UE according to the received third start time as the subframe N, and the N-3 subframe is the time synchronized with the source base station.
  • the UE stops communicating with the source base station in the N-3 subframe, and transmits a random access code to the target base station in the N-2 subframe after frequency conversion of one subframe.
  • the first duration is N symbols or N subframes or N minislots, and N is an integer greater than or equal to 1.
  • the second duration is M symbols or M subframes or M mini-slots, and M is an integer greater than or equal to 1. Therefore, both the random access code and the random access response in this embodiment use short-time scheduling, or fast scheduling, that is, the unit of scheduling is not limited to a subframe (ms level), and may also be Short TTI, 0.5 ms. , 0.2ms, etc., can also be symbol-level scheduling, that is, 1/14ms, or scheduling using small gaps, that is, mini-slot. Therefore, the time for the data transmission of the UE to be interrupted due to the random access procedure can be further reduced.
  • the UE further sends the first capability indication information to the source base station, where the first capability indication information is used to indicate the transceiver capability of the UE, and the transceiver capability includes:
  • the ability to send and receive the same network device that is, the UE can only perform the sending and receiving operations with the same base station at the same time, that is, in the two cases shown in the following table, the UE performs data transmission and reception with the source base station, or with the target.
  • the base station performs data transmission and reception.
  • the ability to send and receive data at the same time that is, the UE can only receive data from two base stations simultaneously when transmitting data with two base stations, that is, in the following three cases, the UE performs the same with the source base station.
  • the data is sent and received, either by transmitting data to and from the target base station, or simultaneously receiving data from two base stations.
  • the ability to send a single-receipt to different network devices that is, the UE supports data transmission from one base station, and also supports sending data to another base station, that is, the four cases shown in the following table, the UE or the source base station Data is transmitted and received, or data is transmitted and received with the target base station, or data is received from the source base station and transmitted to the target base station, or data is received from the target base station and transmitted to the source base station.
  • the UE can receive data from another base station while performing a transceiving operation with one base station, that is, in the following four cases, the UE performs data with the source base station.
  • the transceiver performs data transmission and reception with the target base station, or performs data transmission and reception with the source base station and receives data from the target base station, or performs data transmission and reception with the target base station and receives data from the source base station.
  • the source base station receives the first capability indication information sent by the UE.
  • the transmitting and receiving capability of the UE is a single-receiving capability for the same base station
  • the UE in the process of the UE transmitting the random access code to the target base station, the UE cannot transmit data with the source base station, and the UE receives the random sequence sent by the target base station. Access In the process of response, the UE cannot transmit data with the source base station. For example: as shown in Figure 9.
  • the UE When the transceiving capability of the UE is the capability of receiving and receiving two times, and transmitting and receiving at different times, the UE cannot transmit data with the source base station in the process of the UE transmitting the random access code to the target base station. Moreover, after the UE sends the random access code to the target base station, the source base station sends data to the UE according to the second start time and the second duration. Correspondingly, the UE receives data sent by the source base station according to the second start time and the second duration. The data interruption time of the UE during the random access process is further reduced. For example: as shown in Figure 10.
  • the UE may receive data sent by the source base station in the process of the UE transmitting the random access code to the target base station, and the UE may receive the target base station and send the target base station in the process of transmitting the random access code to the target base station.
  • the UE may send data to the source base station. Therefore, the source base station sends data to the UE according to the first start time and the first duration. Accordingly, the UE receives data sent by the source base station according to the first start time and the first duration.
  • the UE sends data to the source base station according to the second start time and the second duration. Accordingly, the source base station receives the data sent by the UE according to the second start time and the second duration.
  • the source base station receives the data sent by the UE according to the second start time and the second duration. For example: as shown in Figure 11.
  • the UE may receive data sent by the source base station in the process of the UE transmitting the random access code to the target base station, when the UE's transmission and reception capability is dual-issue and simultaneous transmission and reception. Moreover, in the process of the UE receiving the random access response sent by the target base station, the UE may transmit data with the source base station. Therefore, the source base station transmits data to the UE according to the second start time and the second duration. Correspondingly, the UE receives data sent by the source base station according to the second start time and the second duration. In addition, the source base station transmits data with the UE according to the second start time and the second duration.
  • the source base station sends data to the UE in the time from the first time to the second time; correspondingly, the UE receives the data sent by the target base station in the time from the first time to the second time.
  • the second time is the time when the source base station starts to receive the handover complete message sent by the target base station. This can further reduce the time when the data transmission interruption of the UE during the random access process. For example: as shown in Figure 12.
  • the UE further sends the second capability indication information to the source base station, where the second capability indication information is used to indicate that the UE has the capability of time division random access, that is, the UE performs random access to the target base station.
  • the source base station receives the second capability indication information sent by the UE.
  • the source base station sends the third capability indication information to the target base station, where the third capability indication information is used to indicate that the UE has the capability of time division random access.
  • the third capability indication information is included in the foregoing handover request message.
  • the target base station receives the third capability indication information sent by the source base station.
  • FIG. 13 is a schematic structural diagram of a network device according to Embodiment 1 of the present application.
  • the network device in this embodiment as a first network device, includes: a sending module 11 and a receiving module 12.
  • the sending module 11 is configured to send a handover command to the terminal.
  • the handover command is used to instruct the terminal to switch to the second network device; the handover command includes at least one of the following: a first start time, a first duration, a second start time, and a second duration.
  • the sending module 11 is further configured to send data to the terminal during the idle time.
  • the receiving module 12 is configured to receive data sent by the terminal during the idle time.
  • the idle time includes at least one of the following: a time from the end of the first duration to the second start time, and a time from the end of the second duration to the first time.
  • the first start time is a time for allowing the terminal to start sending a random access code to the second network device; the first duration is a time period for allowing the terminal to send the random access code.
  • the second start time is a time for allowing the terminal to start receiving the random access response sent by the second network device
  • the second duration is a time period for allowing the terminal to receive the random access response sent by the second network device.
  • the first time is the time when the terminal starts to send a handover confirmation message to the second network device.
  • the sending module 11 is further configured to send a handover request message to the second network device, where the handover request message is used to request to switch the terminal to the second network device.
  • the receiving module 12 is further configured to receive a handover response message sent by the second network device, where the handover response message indicates that the terminal is allowed to switch to the second network device.
  • the handover response message includes at least one of the following: a first start time, a first duration, a second start time, and a second duration.
  • the handover request message includes at least one of the following: a conversion time and a time difference.
  • the conversion time is the time at which the terminal converts between the frequency of the first network device and the frequency of the second network device.
  • the time difference is the time difference between the terminal synchronizing to the first network device and synchronizing to the second network device.
  • the network device of this embodiment may further include: a processing module 13.
  • the sending module 11 is further configured to send a handover request message to the second network device, where the handover request message is used to request to switch the terminal to the second network device.
  • the receiving module 12 is further configured to receive a handover response message sent by the second network device, where the handover response message indicates that the terminal is allowed to switch to the second network device.
  • the handover response message further includes at least one of the following: a third start time, a first duration, a fourth start time, and a second duration.
  • the third start time is a time when the second network device allows the terminal to start sending the random access code;
  • the fourth start time is a time when the second network device allows the terminal to start receiving the random access response;
  • the processing module 13 is further configured to: perform at least one of: generating a first start time according to the third start time and the conversion time; generating a second start time according to the fourth start time and the conversion time; according to the third start time
  • the time difference generates a first start time; and the second start time is generated according to the fourth start time and the time difference.
  • the conversion time is the time at which the terminal converts between the frequency of the first network device and the frequency of the second network device.
  • the time difference is the time difference between the terminal synchronizing to the first network device and synchronizing to the second network device.
  • the receiving module 12 is further configured to receive a conversion time and/or a time difference sent by the terminal.
  • the first duration and the second duration are respectively N symbols or N subframes or N mini-slots, where N is a positive integer.
  • the receiving module 12 is further configured to receive the first capability indication information that is sent by the terminal, where the first capability indication information is used to indicate the transceiver capability of the terminal, and the sending and receiving capability includes the following: The ability, the ability to send and receive double-receipt and transmit and receive at different times, the ability to send and receive single-acquisition to different network devices, and the ability to send and receive at the same time.
  • the sending module 11 is further configured to send data to the terminal according to the second start time and the second duration according to the second receiving time and the second duration; or
  • the sending module 11 is further configured to send data to the terminal according to the first start time and the first duration; and the receiving module 12 is further configured to start according to the second Start time and The second duration, receiving data sent by the terminal; or,
  • the sending module 11 is further configured to send data to the terminal according to the first start time and the first duration, and the sending module 11 is further configured to start according to the second The first time and the second duration are used to send data to the terminal.
  • the receiving module 12 is further configured to receive data sent by the terminal according to the second start time and the second duration.
  • the sending module 11 is further configured to send data to the terminal in a time from the first time to the second time.
  • the second time is the time when the first network device receives the handover complete message sent by the second network device.
  • the receiving module 12 is further configured to receive second capability indication information sent by the terminal, where the second capability indication information is used to indicate that the terminal has the capability of time division random access.
  • the handover request message includes: third capability indication information, where the third capability indication information is used to indicate that the terminal has the capability of time division random access.
  • the network device of this embodiment may be used to implement the technical solution of the source base station in the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • the foregoing sending module 11 may be a transmitter or a transceiver
  • the above receiving module 12 may be a receiver or a transceiver
  • the sending module 11 and the receiving module 12 may be integrated to form a transceiver unit, corresponding to hardware implementation.
  • the above processing module 13 may be embedded in or independent of the processor of the network device in hardware, or may be stored in the memory of the network device in software, so that the processor invokes the operations corresponding to the above modules.
  • FIG. 14 is a schematic structural diagram of a network device according to Embodiment 2 of the present application.
  • the network device in this embodiment may include: a processor 21 and a transceiver 22.
  • the processor 21 is communicatively coupled to the transceiver 22.
  • Transceiver 22 may include the necessary radio frequency communication devices such as mixers.
  • the processor 21 may include a central processing unit (CPU), a digital signal processor (DSP), a microcontroller (Microcontroller Unit (MCU), an application specific integrated circuit (ASIC), or At least one of a Field-Programmable Gate Array (FPGA).
  • CPU central processing unit
  • DSP digital signal processor
  • MCU microcontroller
  • ASIC application specific integrated circuit
  • FPGA Field-Programmable Gate Array
  • the network device of this embodiment may further include a memory 23 for storing program instructions, and the processor 21 is configured to invoke the program instructions in the memory 23 to execute the foregoing scheme of the source base station.
  • the program instructions can be implemented in the form of software functional modules and can be sold or used as separate products, and the memory 23 can be any form of computer readable storage medium. Based on such understanding, all or part of the technical solution of the present application may be embodied in the form of a software product, including a plurality of instructions for causing a computer device, specifically the processor 21, to perform the network in various embodiments of the present application. All or part of the steps of the device.
  • the foregoing computer readable storage medium includes: a USB flash drive, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. The medium of the code.
  • the network device of the foregoing embodiment may be used to implement the technical solution of the source base station in the foregoing method embodiments of the present application.
  • the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 15 is a schematic structural diagram of a network device according to Embodiment 3 of the present application. As shown in FIG. 15, the network in this embodiment is shown in FIG.
  • the network device as the second network device, includes: a receiving module 31 and a sending module 32.
  • the receiving module 31 is configured to receive a random access code sent by the terminal according to the third start time and the first duration.
  • the sending module 32 is configured to send a random access response to the terminal according to the fourth start time and the second duration.
  • the third start time is a time for allowing the terminal to start sending a random access code
  • the first duration is a time period for allowing the terminal to send the random access code
  • the fourth start time is a time for allowing the terminal to start receiving the random access response
  • the second duration is a time period for allowing the terminal to receive the random access response
  • the receiving module 31 is further configured to receive a handover request message sent by the first network device, where the handover request message is used to request to switch the terminal to the second network device.
  • the sending module 32 is further configured to send a handover response message to the first network device, where the handover response message indicates that the terminal is allowed to switch to the second network device.
  • the handover response message includes at least one of the following: a third start time, a first duration, a fourth start time, and a second duration.
  • the network device of this embodiment may further include: a processing module 33.
  • the receiving module 31 is further configured to receive a handover request message sent by the first network device, where the handover request message is used to request to switch the terminal to the second network device.
  • the processing module 33 is configured to perform at least one of: generating a first start time according to the third start time and the conversion time; generating a second start time according to the fourth start time and the conversion time; according to the third start time, The time difference generates a first start time; and a second start time is generated according to the fourth start time and the time difference.
  • the sending module 32 is further configured to send a handover response message to the first network device, where the handover response message indicates that the terminal is allowed to switch to the second network device.
  • the handover response message includes at least one of the following: a first start time, a first duration, a second start time, and a second duration.
  • the conversion time is the time at which the terminal converts between the frequency of the first network device and the frequency of the second network device.
  • the time difference is the time difference between the terminal synchronizing to the first network device and synchronizing to the second network device.
  • the handover request message includes at least one of the following: a conversion time and a time difference.
  • the receiving module 31 is further configured to receive capability indication information sent by the first network device, where the capability indication information is used to indicate that the terminal has the capability of time division random access.
  • the first duration and the second duration are respectively N symbols or N subframes or N mini-slots, where N is a positive integer.
  • the network device of this embodiment may be used to implement the technical solution of the target base station in the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • the foregoing sending module 32 may be a transmitter or a transceiver
  • the foregoing receiving module 31 may be a receiver or a transceiver
  • the sending module 32 and the receiving module 31 may be integrated to form a transceiver unit, corresponding to hardware implementation.
  • the above processing module 33 may be embedded in or independent of the processor of the network device in hardware, or may be stored in the memory of the network device in software, so that the processor invokes the operations corresponding to the above modules.
  • FIG. 16 is a schematic structural diagram of a network device according to Embodiment 4 of the present application.
  • the network device in this embodiment may include: a processor 41 and a transceiver 42.
  • Processor 41 and transceiver The machine 42 is communicatively connected.
  • Transceiver 42 may include the necessary radio frequency communication devices such as mixers.
  • the processor 41 may include at least one of a CPU, a DSP, an MCU, an ASIC, or an FPGA.
  • the network device of this embodiment may further include a memory 43 for storing program instructions, and the processor 41 is configured to invoke the program instructions in the memory 43 to execute the foregoing scheme of the target base station.
  • the program instructions can be implemented in the form of software functional modules and can be sold or used as separate products, and the memory 43 can be any form of computer readable storage medium. Based on such understanding, all or part of the technical solution of the present application may be embodied in the form of a software product, including a plurality of instructions for causing a computer device, specifically a processor 41, to perform the network in various embodiments of the present application. All or part of the steps of the device.
  • the aforementioned computer readable storage medium includes: a U disk, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk, and the like, which can store program codes.
  • the network device of the foregoing embodiment may be used to implement the technical solution of the target base station in the foregoing method embodiments of the present application.
  • the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 17 is a schematic structural diagram of a terminal according to Embodiment 1 of the present application. As shown in FIG. 17, the terminal in this embodiment may include: a receiving module 51 and a sending module 52.
  • the receiving module 51 is configured to receive a handover command sent by the first network device, where the handover command is used to instruct the terminal to switch to the second network device, where the handover command includes at least one of the following: a first start time, a first duration, and a second Start time, second duration.
  • the sending module 52 is configured to send a random access code to the second network device according to the first start time and the first duration.
  • the receiving module 51 is further configured to receive, according to the second start time and the second duration, a random access response sent by the second network device.
  • the sending module 52 is further configured to send data to the first network device during the idle time.
  • the receiving module 51 is further configured to receive data sent by the first network device during the idle time.
  • the idle time includes at least one of the following: a time from the end of the first duration to the second start time, and a time from the end of the second duration to the first time.
  • the first start time is a time for allowing the terminal to start sending a random access code to the second network device, where the first duration is a period of time during which the terminal is allowed to send the random access code.
  • the second start time is a time for allowing the terminal to start receiving the random access response sent by the second network device
  • the second duration is a time period for allowing the terminal to receive the random access response sent by the second network device.
  • the first time is the time when the terminal starts to send a handover confirmation message to the second network device.
  • the sending module 52 is further configured to send a conversion time and/or a time difference to the first network device.
  • the conversion time is the time at which the terminal converts between the frequency of the first network device and the frequency of the second network device.
  • the time difference is the time difference between the terminal synchronizing to the first network device and synchronizing to the second network device.
  • the terminal in this embodiment further includes: a processing module 53.
  • the handover command further includes: a random access code, a time-frequency resource carrying the random access code, and access layer configuration information of the second network device.
  • the processing module 53 is configured to establish a data link layer corresponding to the second network device according to the access layer configuration information, and/or retain a data link layer corresponding to the first network device.
  • the first duration and the second duration are respectively N symbols or N subframes or N mini-slots, where N is a positive integer.
  • the sending module 52 is further configured to send the first capability indication information to the first network device, where the first capability indication information is used to indicate the transceiver capability of the terminal, and the sending and receiving capability includes the following: a single transmission to the same network device.
  • Single-receiving capability ability to send and receive double-receipt and not send and receive at different times, ability to send single-acquisition to different network devices, ability to send and receive double-receipt and transmit and receive at the same time.
  • the receiving module 51 is further configured to receive data sent by the first network device according to the second start time and the second duration, when the terminal has the capability of receiving and receiving the data.
  • the receiving module 51 is further configured to receive data sent by the first network device according to the first start time and the first duration, and the sending module 52, further used by the terminal And transmitting data to the first network device according to the second start time and the second duration.
  • the receiving module 51 is further configured to receive data sent by the first network device according to the first start time and the first duration; and the sending module 52 is further configured to: when the terminal has the capability of receiving and receiving the data The data is sent to the first network device according to the second start time and the second duration.
  • the receiving module 51 is further configured to receive data sent by the first network device according to the second start time and the second duration.
  • the receiving module 51 is further configured to receive data sent by the first network device in a time from the first time to the second time, when the terminal has the capability of receiving and receiving the data.
  • the second time is the time when the first network device receives the handover complete message sent by the second network device.
  • the sending module 52 is further configured to send the second capability indication information to the first network device, where the second capability indication information is used to indicate that the terminal has the capability of time division random access.
  • the terminal of the present embodiment can be used to implement the technical solution of the terminal in the foregoing method embodiments of the present application.
  • the implementation principle and technical effects are similar, and details are not described herein again.
  • the foregoing sending module 52 may be a transmitter or a transceiver
  • the foregoing receiving module 51 may be a receiver or a transceiver
  • the sending module 52 and the receiving module 51 may be integrated to form a transceiver unit, corresponding to hardware implementation.
  • the above processing module 53 may be embedded in the hardware of the terminal in hardware or stored in the memory of the terminal in a software form, so that the processor invokes the operations corresponding to the above modules.
  • FIG. 18 is a schematic structural diagram of a terminal according to Embodiment 2 of the present application.
  • the terminal in this embodiment may include: a processor 61 and a transceiver 62.
  • the processor 61 is communicatively coupled to the transceiver 62.
  • Transceiver 62 may include the necessary radio frequency communication devices such as mixers.
  • the processor 61 may include at least one of a CPU, a DSP, an MCU, an ASIC, or an FPGA.
  • the network device of this embodiment may further include a memory 63 for storing program instructions, and the processor 61 is configured to invoke the program instructions in the memory 63 to execute the foregoing solution of the terminal.
  • the program instructions can be implemented in the form of software functional modules and can be sold or used as separate products, and the memory 63 can be any form of computer readable storage medium. Based on such understanding, all or part of the technical solution of the present application may be embodied in the form of a software product, including a plurality of instructions for causing a computer device, specifically a processor 61, to perform the network in various embodiments of the present application. All or part of the steps of the device.
  • the aforementioned computer readable storage medium includes: a U disk, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk, and the like, which can store program codes.
  • the terminal of the present embodiment can be used to implement the technical solution of the terminal in the foregoing method embodiments of the present application.
  • the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 19 is a schematic structural diagram of a handover control system according to an embodiment of the present disclosure.
  • the system in this embodiment includes: a first network device 100, a second network device 200, and a terminal 300, where the first network device
  • the configuration of the device embodiment shown in FIG. 13 or FIG. 14 may be adopted.
  • the technical solution of the source base station in any of the foregoing method embodiments may be implemented, and the implementation principle and technical effects are similar, and details are not described herein again.
  • the second network device 200 can adopt the structure of the device embodiment shown in FIG. 15 or FIG. 16 , which can perform the technical solution of the target base station in any of the foregoing method embodiments, and the implementation principle and the technical effect are similar. Narration.
  • the terminal 300 can adopt the structure of the device embodiment shown in FIG. 17 or FIG. 18, and correspondingly, the technical solution of the terminal in any of the foregoing method embodiments can be executed, and the implementation principle and the technical effect are similar, and details are not described herein again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种切换控制方法和设备,此方法包括:第一网络设备向终端发送切换命令;所述切换命令中包含以下至少一项:第一起始时间、第一持续时间、第二起始时间、第二持续时间;然后在空闲时间内与所述终端传输数据;空闲时间包括以下至少一项:所述第一持续时间结束时到所述第二起始时间的时间、所述第二持续时间结束时到第一时间的时间。所以在UE切换至目标基站的过程中,减少了基站与UE的数据传输中断时间,提高了数据传输效率。

Description

切换控制方法和设备 技术领域
本申请实施例涉及通信技术领域,尤其涉及一种切换控制方法和设备。
背景技术
移动通信不仅追求容量的最大化,而且需要更广阔的覆盖范围,即无论终端移动到哪里,都要有无线网络信号覆盖。为了解决频率资源限制的问题,并增大***容量,同时扩展网络覆盖范围,美国贝尔实验室提出蜂窝组网概念。它将一个网络服务区划分成许多以正六边形为基本几何图形的覆盖区域,称为蜂窝小区。一个较低功率的发射机服务一个蜂窝小区,并为处于该小区内的终端提供服务。但是,终端具有移动性,当终端朝另一小区的方向移动时,为了保证终端的业务的连续性,需要将该终端的服务小区切换至另一小区。
目前,LTE***中终端由一个基站切换为另一基站的流程如下所述:源基站(Source eNB,SeNB)根据终端上报的测量报告决定对终端的服务基站进行切换,并向目标基站(Target eNB,TeNB)发起切换请求,在SeNB获取到TeNB的肯定切换应答后,SeNB向终端发送切换命令,当终端接收到切换命令后,终端停止与SeNB进行的数据发送,UE开始向TeNB进行同步,并发起随机接入过程。而SeNB在向UE发送切换命令时就停止与终端之间的数据传输,并将保存的终端的数据发送给TeNB。终端在成功接入TeNB之后,开始与TeNB传输数据。
然而,当终端接收到切换命令后,停止与SeNB传输数据。当终端完成随机接入并向TeNB发送RRC连接重配置完成消息之后,才开始与TeNB传输数据。终端的数据传输存在中断,影响数据传输效率。
发明内容
本申请实施例提供一种切换控制方法和设备,用于在UE切换至目标基站的过程中,减少基站与UE的数据传输中断时间,提高数据传输效率。
第一方面,本申请实施例提供一种切换控制方法,包括:
第一网络设备向终端发送切换命令。
切换命令用于指示终端切换至第二网络设备;切换命令中包含以下至少一项:第一起始时间、第一持续时间、第二起始时间、第二持续时间。
第一网络设备在空闲时间内与终端传输数据。
空闲时间包括以下至少一项:第一持续时间结束时到第二起始时间的时间、第二持续时间结束时到第一时间的时间。
第一起始时间为允许终端开始向第二网络设备发送随机接入码的时间;第一持续时间为允许终端发送随机接入码的时间段。
第二起始时间为允许终端开始接收第二网络设备发送的随机接入响应的时间,第二持续时间为允许终端接收第二网络设备发送的随机接入响应的时间段。
第一时间为终端开始向第二网络设备发送切换确认消息的时间。
在一种可能的设计中,所述方法还包括:
第一网络设备向第二网络设备发送切换请求消息;切换请求消息用于请求将终端切换至第二网络设备。
第一网络设备接收第二网络设备发送的切换应答消息;切换应答消息指示允许终端切换至第二网络设备。
切换应答消息包括以下至少一项:第一起始时间、第一持续时间、第二起始时间、第二持续时间。
在一种可能的设计中,切换请求消息包括以下至少一项:转换时间、时间差。
转换时间为终端在第一网络设备的频率与第二网络设备的频率之间进行转换的时间。
时间差为终端同步到第一网络设备与同步到第二网络设备的时间差。
在一种可能的设计中,所述方法还包括:
第一网络设备向第二网络设备发送切换请求消息;切换请求消息用于请求将终端切换至第二网络设备。
第一网络设备接收第二网络设备发送的切换应答消息;切换应答消息指示允许终端切换至第二网络设备。
切换应答消息还包括以下至少一项:第三起始时间、第一持续时间、第四起始时间、第二持续时间。
其中,第三起始时间为第二网络设备允许终端开始发送随机接入码的时间;第四起始时间为第二网络设备允许终端开始接收随机接入响应的时间。
第一网络设备执行以下至少一项:根据第三起始时间、转换时间生成第一起始时间;根据第四起始时间、转换时间生成第二起始时间;根据第三起始时间、时间差生成第一起始时间;根据第四起始时间、时间差生成第二起始时间。
转换时间为终端在第一网络设备的频率与第二网络设备的频率之间进行转换的时间。
时间差为终端同步到第一网络设备与同步到第二网络设备的时间差。
在一种可能的设计中,所述方法还包括:第一网络设备接收终端发送的转换时间和/或时间差。
在一种可能的设计中,第一持续时间和第二持续时间分别为N个符号或N个子帧或N个微时隙,其中N为正整数。
在一种可能的设计中,所述方法还包括:
第一网络设备接收终端发送的第一能力指示信息,第一能力指示信息用于指示终端的收发能力,收发能力包括以下一项:对同一网络设备的单发单收的能力、双收单发且不同时收发的能力、对不同网络设备的单收单发的能力、双收单发且可同时收发的能力。
在一种可能的设计中,当终端具有双收单发且不同时收发的能力时;所述方法还包括:第一网络设备根据第二起始时间和第二持续时间,向终端发送数据。或者,
当终端具有对不同网络设备的单收单发的能力;所述方法还包括:第一网络设备根据第一起始时间和第一持续时间,向终端发送数据;以及根据第二起始时间和第二持续时间,接收终端发送的数据。或者,
当终端具有双收单发且可同时收发的能力时;所述方法还包括:第一网络设备根据第 一起始时间和第一持续时间,向终端发送数据;以及根据第二起始时间和第二持续时间,与终端传输数据。
在一种可能的设计中,当终端具有双收单发且可同时收发的能力时;所述方法还包括:
第一网络设备在第一时间到第二时间的时间内,向终端发送数据。
第二时间为第一网络设备接收到第二网络设备发送的切换完成消息的时间。
在一种可能的设计中,所述还包括:第一网络设备接收终端发送的第二能力指示信息,第二能力指示信息用于指示终端具有时分随机接入的能力。
在一种可能的设计中,切换请求消息包括:第三能力指示信息,第三能力指示信息用于指示终端具有时分随机接入的能力。
第二方面,本申请实施例提供一种切换控制方法,包括:
第二网络设备根据第三起始时间和第一持续时间,接收终端发送的随机接入码。
第二网络设备根据第四起始时间和第二持续时间,向终端发送随机接入响应。
其中,第三起始时间为允许终端开始发送随机接入码的时间,第一持续时间为允许终端发送随机接入码的时间段。
第四起始时间为允许终端开始接收随机接入响应的时间,第二持续时间为允许终端接收随机接入响应的时间段。
在一种可能的设计中,所述方法还包括:
第二网络设备接收第一网络设备发送的切换请求消息,切换请求消息用于请求将终端切换至第二网络设备。
第二网络设备向第一网络设备发送切换应答消息;切换应答消息指示允许终端切换至第二网络设备。
切换应答消息包括以下至少一项:第三起始时间、第一持续时间、第四起始时间和第二持续时间。
在一种可能的设计中,所述方法还包括:
第二网络设备接收第一网络设备发送的切换请求消息,切换请求消息用于请求将终端切换至第二网络设备。
第二网络设备执行以下至少一项:根据第三起始时间、转换时间生成第一起始时间;根据第四起始时间、转换时间生成第二起始时间;根据第三起始时间、时间差生成第一起始时间;根据第四起始时间、时间差生成第二起始时间。
第二网络设备向第一网络设备发送切换应答消息;切换应答消息指示允许终端切换至第二网络设备。
切换应答消息包括以下至少一项:第一起始时间、第一持续时间、第二起始时间和第二持续时间。
转换时间为终端在第一网络设备的频率与第二网络设备的频率之间进行转换的时间。
时间差为终端同步到第一网络设备与同步到第二网络设备的时间差。
在一种可能的设计中,所述方法还包括:切换请求消息包括以下至少一项:转换时间、时间差。
在一种可能的设计中,所述方法还包括:第二网络设备接收第一网络设备发送的能力指示信息,能力指示信息用于指示终端具有时分随机接入的能力。
在一种可能的设计中,第一持续时间和第二持续时间分别为N个符号或N个子帧或N个微时隙,其中N为正整数。
第三方面,本申请实施例提供一种切换控制方法,包括:
终端接收第一网络设备发送的切换命令;切换命令用于指示终端切换至第二网络设备;切换命令中包含以下至少一项:第一起始时间、第一持续时间、第二起始时间、第二持续时间。
终端根据第一起始时间和第一持续时间,向第二网络设备发送随机接入码。
终端根据第二起始时间和第二持续时间,接收第二网络设备发送的随机接入响应。
终端在空闲时间内与第一网络设备传输数据。
空闲时间包括以下至少一项:第一持续时间结束时到第二起始时间的时间、第二持续时间结束时到第一时间的时间。
第一起始时间为允许终端开始向第二网络设备发送随机接入码的时间,第一持续时间为允许终端发送随机接入码的时间段。
第二起始时间为允许终端开始接收第二网络设备发送的随机接入响应的时间,第二持续时间为允许终端接收第二网络设备发送的随机接入响应的时间段。
第一时间为终端开始向第二网络设备发送的切换确认消息的时间。
在一种可能的设计中,所述方法还包括:
终端向第一网络设备发送转换时间和/或时间差。
转换时间为终端在第一网络设备的频率与第二网络设备的频率之间进行转换的时间。
时间差为终端同步到第一网络设备与同步到第二网络设备的时间差。
在一种可能的设计中,切换命令还包括:随机接入码、承载随机接入码的时频资源和第二网络设备的接入层配置信息。
所述方法还包括:终端根据接入层配置信息,建立对应第二网络设备的数据链路层;和/或保留对应第一网络设备的数据链路层。
在一种可能的设计中,第一持续时间和第二持续时间分别为N个符号或N个子帧或N个微时隙,其中N为正整数。
在一种可能的设计中,所述方法还包括:
终端向第一网络设备发送第一能力指示信息,第一能力指示信息用于指示终端的收发能力;收发能力包括以下一项:对同一网络设备的单发单收的能力、双收单发且不同时收发的能力、对不同网络设备的单收单发的能力、双收单发且可同时收发的能力。
在一种可能的设计中,当终端具有双收单发且不同时收发的能力时;所述方法还包括:终端根据第二起始时间和第二持续时间,接收第一网络设备发送的数据。
当终端具有对不同网络设备的单收单发的能力时;所述方法还包括:终端根据第一起始时间和第一持续时间,接收第一网络设备发送的数据;以及根据第二起始时间和第二持续时间,向第一网络设备发送数据。
当终端具有双收单发且可同时收发的能力时;所述方法还包括:终端根据第一起始时间和第一持续时间,接收第一网络设备发送的数据;以及根据第二起始时间和第二持续时间,与第一网络设备传输数据。
在一种可能的设计中,当终端具有双收单发且可同时收发的能力时;所述方法还包括:
终端在第一时间到第二时间的时间内,接收第一网络设备发送的数据。
第二时间为第一网络设备接收到第二网络设备发送的切换完成消息的时间。
在一种可能的设计中,所述方法还包括:终端向第一网络设备发送第二能力指示信息,第二能力指示信息用于指示终端具有时分随机接入的能力。
第四方面,本申请实施例提供一种网络设备,作为第一网络设备,包括:发送模块和接收模块。
发送模块,用于向终端发送切换命令。
切换命令用于指示终端切换至第二网络设备;切换命令中包含以下至少一项:第一起始时间、第一持续时间、第二起始时间、第二持续时间。
发送模块,还用于在空闲时间内,向终端发送数据。
接收模块,用于在空闲时间内,接收终端发送的数据。
空闲时间包括以下至少一项:第一持续时间结束时到第二起始时间的时间、第二持续时间结束时到第一时间的时间。
第一起始时间为允许终端开始向第二网络设备发送随机接入码的时间;第一持续时间为允许终端发送随机接入码的时间段。
第二起始时间为允许终端开始接收第二网络设备发送的随机接入响应的时间,第二持续时间为允许终端接收第二网络设备发送的随机接入响应的时间段。
第一时间为终端开始向第二网络设备发送切换确认消息的时间。
在一种可能的设计中,发送模块,还用于向第二网络设备发送切换请求消息;切换请求消息用于请求将终端切换至第二网络设备。
接收模块,还用于接收第二网络设备发送的切换应答消息;切换应答消息指示允许终端切换至第二网络设备。
切换应答消息包括以下至少一项:第一起始时间、第一持续时间、第二起始时间、第二持续时间。
在一种可能的设计中,切换请求消息包括以下至少一项:转换时间、时间差。
转换时间为终端在第一网络设备的频率与第二网络设备的频率之间进行转换的时间。
时间差为终端同步到第一网络设备与同步到第二网络设备的时间差。
在一种可能的设计中,第一网络设备还包括:处理模块。
发送模块,还用于向第二网络设备发送切换请求消息;切换请求消息用于请求将终端切换至第二网络设备。
接收模块,还用于接收第二网络设备发送的切换应答消息;切换应答消息指示允许终端切换至第二网络设备。
切换应答消息还包括以下至少一项:第三起始时间、第一持续时间、第四起始时间、第二持续时间。
其中,第三起始时间为第二网络设备允许终端开始发送随机接入码的时间;第四起始时间为第二网络设备允许终端开始接收随机接入响应的时间。
处理模块,还用于执行以下至少一项:根据第三起始时间、转换时间生成第一起始时间;根据第四起始时间、转换时间生成第二起始时间;根据第三起始时间、时间差生成第一起始时间;根据第四起始时间、时间差生成第二起始时间。
转换时间为终端在第一网络设备的频率与第二网络设备的频率之间进行转换的时间。
时间差为终端同步到第一网络设备与同步到第二网络设备的时间差。
在一种可能的设计中,接收模块,还用于接收终端发送的转换时间和/或时间差。
在一种可能的设计中,第一持续时间和第二持续时间分别为N个符号或N个子帧或N个微时隙,其中N为正整数。
在一种可能的设计中,接收模块,还用于接收终端发送的第一能力指示信息,第一能力指示信息用于指示终端的收发能力,收发能力包括以下一项:对同一网络设备的单发单收的能力、双收单发且不同时收发的能力、对不同网络设备的单收单发的能力、双收单发且可同时收发的能力。
在一种可能的设计中,当终端具有双收单发且不同时收发的能力时;发送模块,还用于根据第二起始时间和第二持续时间,向终端发送数据。或者,
当终端具有对不同网络设备的单收单发的能力;发送模块,还用于根据第一起始时间和第一持续时间,向终端发送数据;以及接收模块,还用于根据第二起始时间和第二持续时间,接收终端发送的数据。或者,
当终端具有双收单发且可同时收发的能力时;发送模块,还用于根据第一起始时间和第一持续时间,向终端发送数据;以及发送模块,还用于根据第二起始时间和第二持续时间,向终端发送数据;接收模块,还用于根据第二起始时间和第二持续时间,接收终端发送的数据。
在一种可能的设计中,当终端具有双收单发且可同时收发的能力时;发送模块还用于在第一时间到第二时间的时间内,向终端发送数据。
第二时间为第一网络设备接收到第二网络设备发送的切换完成消息的时间。
在一种可能的设计中,接收模块,还用于接收终端发送的第二能力指示信息,第二能力指示信息用于指示终端具有时分随机接入的能力。
在一种可能的设计中,切换请求消息包括:第三能力指示信息,第三能力指示信息用于指示终端具有时分随机接入的能力。
第五方面,本申请实施例提供一种网络设备,作为第二网络设备,包括:
接收模块,用于根据第三起始时间和第一持续时间,接收终端发送的随机接入码。
发送模块,用于根据第四起始时间和第二持续时间,向终端发送随机接入响应。
其中,第三起始时间为允许终端开始发送随机接入码的时间,第一持续时间为允许终端发送随机接入码的时间段。
第四起始时间为允许终端开始接收随机接入响应的时间,第二持续时间为允许终端接收随机接入响应的时间段。
在一种可能的设计中,接收模块,还用于接收第一网络设备发送的切换请求消息,切换请求消息用于请求将终端切换至第二网络设备。
发送模块,还用于向第一网络设备发送切换应答消息;切换应答消息指示允许终端切换至第二网络设备。
切换应答消息包括以下至少一项:第三起始时间、第一持续时间、第四起始时间和第二持续时间。
在一种可能的设计中,第二网络设备还包括:处理模块。
接收模块,还用于接收第一网络设备发送的切换请求消息,切换请求消息用于请求将终端切换至第二网络设备。
处理模块,用于执行以下至少一项:根据第三起始时间、转换时间生成第一起始时间;根据第四起始时间、转换时间生成第二起始时间;根据第三起始时间、时间差生成第一起始时间;根据第四起始时间、时间差生成第二起始时间。
发送模块,还用于向第一网络设备发送切换应答消息;切换应答消息指示允许终端切换至第二网络设备。
切换应答消息包括以下至少一项:第一起始时间、第一持续时间、第二起始时间和第二持续时间。
转换时间为终端在第一网络设备的频率与第二网络设备的频率之间进行转换的时间。
时间差为终端同步到第一网络设备与同步到第二网络设备的时间差。
在一种可能的设计中,切换请求消息包括以下至少一项:转换时间、时间差。
在一种可能的设计中,接收模块,还用于接收第一网络设备发送的能力指示信息,能力指示信息用于指示终端具有时分随机接入的能力。
在一种可能的设计中,第一持续时间和第二持续时间分别为N个符号或N个子帧或N个微时隙,其中N为正整数。
第六方面,本申请实施例提供一种终端,包括:
接收模块,用于接收第一网络设备发送的切换命令;切换命令用于指示终端切换至第二网络设备;切换命令中包含以下至少一项:第一起始时间、第一持续时间、第二起始时间、第二持续时间。
发送模块,用于根据第一起始时间和第一持续时间,向第二网络设备发送随机接入码。
接收模块,还用于根据第二起始时间和第二持续时间,接收第二网络设备发送的随机接入响应。
发送模块,还用于在空闲时间内,向第一网络设备发送数据。
接收模块,还用于在空闲时间内,接收第一网络设备发送的数据。
空闲时间包括以下至少一项:第一持续时间结束时到第二起始时间的时间、第二持续时间结束时到第一时间的时间。
第一起始时间为允许终端开始向第二网络设备发送随机接入码的时间,第一持续时间为允许终端发送随机接入码的时间段。
第二起始时间为允许终端开始接收第二网络设备发送的随机接入响应的时间,第二持续时间为允许终端接收第二网络设备发送的随机接入响应的时间段。
第一时间为终端开始向第二网络设备发送的切换确认消息的时间。
在一种可能的设计中,发送模块,还用于向第一网络设备发送转换时间和/或时间差。
转换时间为终端在第一网络设备的频率与第二网络设备的频率之间进行转换的时间。
时间差为终端同步到第一网络设备与同步到第二网络设备的时间差。
在一种可能的设计中,终端还包括:处理模块。
切换命令还包括:随机接入码、承载随机接入码的时频资源和第二网络设备的接入层配置信息。
处理模块,用于根据接入层配置信息,建立对应第二网络设备的数据链路层;和/或 保留对应第一网络设备的数据链路层。
在一种可能的设计中,第一持续时间和第二持续时间分别为N个符号或N个子帧或N个微时隙,其中N为正整数。
在一种可能的设计中,发送模块,还用于向第一网络设备发送第一能力指示信息,第一能力指示信息用于指示终端的收发能力;收发能力包括以下一项:对同一网络设备的单发单收的能力、双收单发且不同时收发的能力、对不同网络设备的单收单发的能力、双收单发且可同时收发的能力。
在一种可能的设计中,当终端具有双收单发且不同时收发的能力时;接收模块,还用于根据第二起始时间和第二持续时间,接收第一网络设备发送的数据。
当终端具有对不同网络设备的单收单发的能力时;接收模块,还用于根据第一起始时间和第一持续时间,接收第一网络设备发送的数据;以及发送模块,还用于根据第二起始时间和第二持续时间,向第一网络设备发送数据。
当终端具有双收单发且可同时收发的能力时;接收模块,还用于根据第一起始时间和第一持续时间,接收第一网络设备发送的数据;以及发送模块,还用于根据第二起始时间和第二持续时间,向第一网络设备发送数据;接收模块,还用于根据第二起始时间和第二持续时间,接收第一网络设备发送的数据。
在一种可能的设计中,当终端具有双收单发且可同时收发的能力时;接收模块,还用于在第一时间到第二时间的时间内,接收第一网络设备发送的数据。
第二时间为第一网络设备接收到第二网络设备发送的切换完成消息的时间。
在一种可能的设计中,发送模块,还用于向第一网络设备发送第二能力指示信息,第二能力指示信息用于指示终端具有时分随机接入的能力。
第七方面,本申请实施例提供一种网络设备,作为第一网络设备,包括:处理器和收发机;处理器和收发机用于执行第一方面本申请实施例任一所述的切换控制方法。
第八方面,本申请实施例提供一种网络设备,作为第二网络设备,包括:处理器和收发机;处理器和收发机用于执行第二方面本申请实施例任一所述的切换控制方法。
第九方面,本申请实施例提供一种终端,包括:处理器和收发机;处理器和收发机用于执行第三方面本申请实施例任一所述的切换控制方法。
第十方面,本申请实施例提供一种切换控制***,包括第四方面或第七方面本申请实施例提供的网络设备,第五方面或第八方法本申请实施例提供的网络设备,以及第六方面或者第九方面本申请实施例提供的终端。
第十一方面,本申请实施例提供一种计算机可读存储介质,当存储介质中的指令由网络设备的处理器执行时,使得网络设备能够执行第一方面本申请实施例所述的切换控制方法。
第十二方面,本申请实施例提供一种计算机可读存储介质,当存储介质中的指令由网络设备的处理器执行时,使得网络设备能够执行第二方面本申请实施例所述的切换控制方法。
第十三方面,本申请实施例提供一种计算机可读存储介质,当存储介质中的指令 由终端的处理器执行时,使得终端能够执行第二方面本申请实施例所述的切换控制方法。
本申请实施例提供的切换控制方法和设备,由于第一网络设备与UE在UE发送随机接入码之后与接收随机接入响应之前的这段时间内传输数据,和/或,第一网络设备与UE在UE接收到随机接入响应之后与UE发送切换确认消息之前的这段时间内传输数据,所以在UE切换至第二网络设备的过程中,减少了网络设备与UE的数据传输中断时间,提高了数据传输效率。
附图说明
图1为本申请一实施例提供的应用场景的示意图;
图2为本申请另一实施例提供的应用场景的示意图;
图3为本申请实施例一提供的切换控制方法的流程图;
图4A-图4I为本申请实施例提供的时间配置的示意图;
图5为本申请实施例二提供的切换控制方法的流程图;
图6为本申请实施例三提供的切换控制方法的流程图;
图7为本申请实施例四提供的切换控制方法的流程图;
图8为本申请一实施例提供的源基站与目标基站之间的时间关系图;
图9为本申请实施例一提供的源基站、终端、目标基站三者之间的通信示意图;
图10为本申请实施例二提供的源基站、终端、目标基站三者之间的通信示意图;
图11为本申请实施例三提供的源基站、终端、目标基站三者之间的通信示意图;
图12为本申请实施例四提供的源基站、终端、目标基站三者之间的通信示意图;
图13为本申请实施例一提供的网络设备的结构示意图;
图14为本申请实施例二提供的网络设备的结构示意图;
图15为本申请实施例三提供的网络设备的结构示意图;
图16为本申请实施例四提供的网络设备的结构示意图;
图17为本申请实施例一提供的终端的结构示意图;
图18为本申请实施例二提供的终端的结构示意图;
图19为本申请实施例提供的切换控制***的结构示意图。
具体实施方式
本申请各实施例的方案可以应用于LTE或未来的通信***,比如5G。本申请各实施例应用于终端在第一网络设备与第二网络设备之间切换的场景,图1为本申请一实施例提供的应用场景的示意图,如图1,终端由第一网络设备切换至第二网络设备,相当于,第一网络设备为源网络设备,第二网络设备为目标网络设备,也即终端由与第一网络设备的链路A,切换至与第二网络设备的链路B。
其中,在第一种可能的场景中,第一网络设备和第二网络设备均为LTE***中的基站,如eNB。
在第二种可能的场景中,第一网络设备和第二网络设备均为5G***中的基站,如gNB。
在第三种可能的场景中,第一网络设备为LTE***中的基站,如eNB,第二网络设备为5G***中的基站,如gNB。
在第四种可能的场景中,第一网络设备为5G***中的基站,如gNB,第二网络设备为LTE***中的基站,如eNB。
图2为本申请另一实施例提供的应用场景的示意图,如图2所示,第一网络设备和第二网络设备为5G***中的基站,如gNB,但是,本应用场景下的gNB可能是虚拟存在的,即部分功能在分布式单元(Distributed Unit,DU)上,部分功能在集中式单元(Centralized Unit,CU)上,多个DU可以连接到相同的CU上。其中,本申请实施例中的第一网络设备可以是部分功能在DU1上,部分功能在CU1上。而第二网络设备的部分功能在DU3上,部分功能在CU2上。
此外,本申请各实施例可以应用于终端在异频小区之间切换的场景,还可以应用于终端在同频小区之间切换的场景。再者,源小区和目标小区可以是同步的,也可以是异步的。
基于上述应用场景,以终端为用户设备(User Equipment,UE),第一网络设备为源基站,第二网络设备为目标基站为例,对本申请各实施例提供的切换控制方法的方案进行介绍。
图3为本申请实施例一提供的切换控制方法的流程图,如图3所示,本实施例的方法可以包括:
S101、源基站向UE发送切换命令。
本实施例中,源基站为当前为UE的服务基站,源基站确定UE由源基站切换至目标基站,例如:源基站根据UE上报的测量报告确定UE由源基站切换至目标基站。源基站向UE发送切换命令。该切换命令用于指示该UE切换至目标基站,并且,本实施例的切换命令中包括以下至少一项:第一起始时间、第一持续时间、第二起始时间、第二持续时间,其中,第一起始时间为允许该UE开始向目标基站发送随机接入码的时间。
上述的第一起始时间、第一持续时间、第二起始时间、第二持续时间中的至少一项可以是源基站确定的。或者,上述的第一起始时间、第一持续时间、第二起始时间、第二持续时间中的至少一项可以是预先设置在源基站中。或者,上述的第一起始时间、第一持续时间、第二起始时间、第二持续时间中的至少一项可以是源基站从目标基站处获得的。本实施例对此不做限定。
S102、UE根据第一起始时间和第一持续时间,向目标基站发送随机接入码。
本实施例中,UE接收源基站发送的切换命令,该切换命令中包含第一起始时间和第一持续时间,UE根据第一起始时间和第一持续时间,向目标基站发送随机接入码,即UE从第一起始时间开始,在第一持续时间内,在有效的随机接入资源上向目标基站发送随机接入码。相应地,目标基站会根据随机接入资源配置信息接收UE发送的随机接入码。当第一持续时间为一个单位时间时,第一持续时间可以省略。例如,第一起始时间为第1号***帧的第7号子帧,且基站只配置了在一个子帧内发送随机接入码,此时第一持续时间为1个子帧,即1ms。此时第一持续时间可以不配置,即默认为1个子帧。
S103、源基站,在第一持续时间结束时到第二起始时间的时间内,与UE传输数据。
由于UE在向目标基站发起随机接入时,即在发送Preamble与接收随机接入响应(Random Access Response,RAR)之间,UE不是一直与目标基站有数据收发操作,此时, 源基站可以在这个第一空闲时间内与UE传输数据,这个第一空闲时间为第一持续时间结束时到第二起始时间的时间,即如图4A所示。
源基站在第一持续时间结束时到第二起始时间的时间内,可以向UE发送下行数据。而且,UE在第一持续时间结束时到第二起始时间的时间内,可以向源基站发送上行数据。
S104、UE根据第二起始时间和第二持续时间,接收目标基站发送的随机接入响应。
本实施例中,UE根据第二起始时间和第二持续时间,接收目标基站发送的随机接入响应,即UE从第二起始时间开始,在第二持续时间内,监听目标基站发送的RAR,如图4B所示,图中所示的SeNB表示源基站。
S105、源基站,在第二持续时间结束时到第一时间的时间内,与UE传输数据。
本实施例中,第一时间为UE向目标基站发送切换确认消息的时间,如图4C所示。本实施例中UE接收目标基站发送的随机接入响应之后,到UE向目标基站发送切换确认消息之前的这段时间,即第二空闲时间,在第二空闲时间内UE与目标基站之间不传输数据,因此,源基站可以在第二空闲时间内与UE传输数据。所以,本实施例的源基站在第二空闲时间内,可以向UE发送下行数据。而且,UE在第二空闲时间内,可以向源基站发送上行数据。第一时间可以是预先设定好的,例如,如图4C所示,第一时间为UE接收到RAR后第6个子帧,UE在第二持续时间结束时,即3号子帧,到UE接收到RAR后第6个子帧,即7号子帧之前,与源基站传输数据。或者,第一时间可以是目标基站通知给UE的,例如,目标基站通过源基站通知UE在7号子帧发送切换确认消息。此外,第一时间还可以包含若干个子帧,例如子帧6、7、8,UE在第一时间内选择其中一个子帧来发送切换确认消息。
在另一种可替换的方式中,UE在接收到RAR后,即从2号子帧开始,到6号子帧之间,与源基站传输数据。源基站不知道UE何时接收到RAR,所以源基站可以在第二持续时间内一直向UE发送下行数据,UE在接收到RAR后,就去监听源基站发送的下行数据。并且,源基站一直监听UE发送的上行数据,UE在接收到RAR后,就向源基站发送上行数据,此时,因为UE接收到了RAR,所以UE认为第二持续时间在1号子帧结束时结束。
S106、UE根据随机接入响应,在第一时间开始向目标基站发送切换确认消息。
这里,UE在接收RAR时,断开与源基站的通信,并且在接收到RAR时,开始解析从目标基站接收到的RAR,使用RAR中包含的上行资源向目标基站发送切换确认消息,例如如图4C、图4D所示,此时UE开始发送切换确认消息的时间即为第一时间。之后,UE一直与目标基站传输数据。至此,切换完成。
需要说明的是,针对S103与S105两者而言,本实施例可以执行S103但不执行S105,或者,可以执行S103和S105,或者,可以不执行S103但执行S105。
本实施例中,由于源基站与UE在UE发送随机接入码之后与接收随机接入响应之前的这段时间内传输数据,和/或,源基站与UE在UE接收到随机接入响应之后与UE发送切换确认消息之前的这段时间内传输数据,所以在UE切换至目标基站的过程中,减少了源基站与UE的数据传输中断时间,提高了数据传输效率。
在一实施例中,第一起始时间、第一持续时间、第二起始时间和第二起始时间中的至少一项是由源基站生成的。
以源基站生成第一起始为例进行说明,目标基站可以将目标基站配置给UE的随机接 入信息发送给源基站,如通过切换应答消息,该随机接入信息中包含目标基站配置UE发送随机接入码的资源信息,该资源信息包含时间信息和频率信息,源基站可以根据该时间信息来确定第一起始时间。其中,随机接入信息中的时间信息如图4E所示,目标基站可以配置UE使用不同的随机接入资源配置,例如,此处列举了7种随机接入资源配置,对应7个索引值,即0、1、2、15、3、4、5。当配置索引值0对应的随机接入资源配置时,表示UE可以每偶数个***帧的第1号子帧上发送随机接入码,其中图中数字表示子帧号,每10个子帧构成一个***帧。其他配置类似。
以下给出源基站配置第一起始时间的三种方式。
方式一:源基站根据目标基站配置的随机接入资源配置,例如,目标基站配置了随机接入资源配置0,则源基站可以确定第一起始时间为N个随机接入资源的周期,即,当目标基站配置UE使用每偶数个***帧的第1号子帧来发送随机接入码时,UE从当前子帧开始计数,当第N个有效的随机接入资源到达时,UE开始发送随机接入码,如图4F所示,UE当前子帧可以为UE接收切换命令的子帧。
方式二:源基站指示相对UE当前子帧,UE发送随机接入码(Preamble)的位置,如图4G所示。
方式三:源基站指示UE发送Preamble的***帧号和子帧号,如图4H所示,在40号***帧的第1号子帧。UE不一定在第一起始时间到来,就发送Preamble,UE可以在第一持续时间内任意有效的资源上发送Preamble。
若当源基站与目标基站为同步情况时,即源基站与目标基站的帧时间是同步的,例如当源基站发送第N号***帧时,目标基站也发送第N号***帧,更严格的同步为,当源基站发送第N号***帧的第M子帧时,目标基站也发送第N号***帧的第M子帧。此时该第一起始时间、第二起始时间可以参照源基站的时间,也可以参照目标基站的时间。
若当源基站与目标基站为异步情况时,即源基站与目标基站的帧时间不是同步的,此时,需要规定该第一起始时间是参照源基站,还是参照目标基站。一种方法是,源基站在切换命令中指示出该第一起始时间的参照设备,另一种方法是,预先规定了第一起始时间的参照设备。在处于异步情况下,源基站在配置第一起始时间时,可以采用上述三种方式中的任意一种方式进行配置。此外,源基站在配置第一起始时间时,需要参考源基站与目标基站之间的时间差,在源基站向UE发送切换命令前,源基站可以向UE发送时间差上报请求,请求UE上报UE同步到源基站与目标基站的时间差,例如:在UE接收源基站发送的第2号***帧的第3号子帧时,UE接收目标基站发送的第3号***帧的第4号子帧,则时间差为1个***帧时间加1个子帧时间(例如,目标基站的时间减源基站的时间)。
其中,第一持续时间为允许UE发送随机接入码的时间段,例如,在上述例子中,UE都在一个子帧内发送Preamble,此时第一持续时间为1个子帧,即1ms。
在上述例子中,假设源基站与目标基站能够实现理想的同步,或能够获取理想的时间差,若不能实现理想的同步,或者不能获取理想的时间差,则源基站可以放松第一起始时间和第一持续时间的配置,如以图4A为例,源基站配置UE在34号***帧的6号子帧开始就可以发送Preamble,并且第一持续时间为4个子帧,这时UE,在这4个子帧内再精确地确定发送Preamble的子帧位置。
第二起始时间为允许UE开始接收目标基站发送的随机接入响应的时间,该第二起始 时间可以用绝对时间,即***帧号和子帧号来表示,如图4I为例,第二起始时间为第35号帧的第9号子帧;第二起始时间还可以用相对时间来表示,例如,如图4I所示,相对第一起始时间,第二起始时间为14个子帧,即从第一起始时间开始计数,当数到第14个子帧时,为第二起始时间;或不包括第一起始时间的子帧,记数13个子帧;或从第一持续时间结束时为参照来计算第二起始时间。
第二持续时间为允许UE接收目标基站发送的RAR的时间段,该第二持续时间对应现有技术中的RAR接收窗,但现有技术中,RAR接收窗的长度由基站广播出来,应用于其覆盖内的所有UE,而本申请中的第二持续时间可以针对不同UE配置不同的值。
此外,上述第一持续时间可以规定成一个固定的值,这时切换命令不需要再携带该第一持续时间,同理,第二起始时间和第二持续时间也可以规定成固定的值。
下面以上述第一起始时间、第一持续时间、第二起始时间和第二持续时间中的至少一项是由源基站从目标基站处获得为例,对本申请的方案进行说明。
图5为本申请实施例二提供的切换控制方法的流程图,如图5所示,本实施例以源基站与目标基站同步,且源基站与目标基站同频为例,本实施例的方法可以包括:
S201、源基站向目标基站发送切换请求消息。
本实施例中,源基站确定UE可以向目标基站切换,例如:源基站是根据UE上报的测量报告确定UE可以向目标基站切换,源基站向目标基站发送切换请求消息。该切换请求消息用于请求将UE切换至目标基站。
S202、目标基站向源基站发送切换应答消息。
本实施例中,目标基站接收源基站发送的切换请求消息,并根据切换请求消息向源基站发送切换应答消息。该切换应答消息指示允许UE切换至目标基站。并且,本实施例中的切换应答消息包括以下至少一项:第一起始时间、第一持续时间、第二起始时间、第二持续时间。该第一起始时间为允许UE开始发送所述随机接入码的时间,第一持续时间为允许UE发送所述随机接入码的时间段,第二起始时间为允许UE开始接收随机接入响应的时间,第二持续时间为允许UE接收随机接入响应的时间段。
其中,切换应答消息还可以包括:随机接入码、承载随机接入码的时频资源和目标基站的接入层配置信息。
本实施例中的第一起始时间、第一持续时间、第二起始时间和第二持续时间中的至少一项是由目标基站生成的。
下面以目标基站生成第一起始时间为例。其中,随机接入信息中的时间信息如图4E所示,目标基站可以配置UE使用不同的随机接入资源配置,例如,此处列举了7种随机接入资源配置,对应7个索引值,即0、1、2、15、3、4、5。当配置索引值0对应的随机接入资源配置时,表示UE可以每偶数个***帧的第1号子帧上发送随机接入码,其中图中数字表示子帧号,每10个子帧构成一个***帧。其他配置类似。
以下给出目标基站配置第一起始时间的三种方式。
方式一:目标基站根据配置的随机接入资源配置,例如,目标基站配置了随机接入资源配置0,则目标基站可以确定第一起始时间为N个随机接入资源的周期,即,当目标基站配置UE使用每偶数个***帧的第1号子帧来发送随机接入码时,UE从当前子帧开始计数,当第N个有效的随机接入资源到达时,UE开始发送随机接入码,如图4F所示,UE 当前子帧可以为UE接收切换命令的子帧。
方式二:目标基站指示相对UE当前子帧,UE发送随机接入码的位置,如图4G所示。
方式三:目标基站指示UE发送Preamble的***帧号和子帧号,如图4H所示,在40号***帧的第1号子帧。UE不一定在第一起始时间到来,就发送Preamble,UE可以在第一持续时间内任意有效的资源上发送Preamble。
由于本实施例中的源基站与目标基站为同步情况,第一起始时间、第二起始时间均参考源基站与参考目标基站等同。
S203、源基站向UE发送切换命令。
由于本实施例中的源基站与目标基站同步且同频,因此,UE也是与上述时间信息是同步的。源基站向UE发送切换命令,切换命令包括以下至少一项:第一起始时间、第一持续时间、第二起始时间和第二持续时间。
S204、UE根据目标基站的接入层配置信息,建立对应目标基站的数据链路层;和/或保留对应源基站的数据链路层。
本实施例中的切换命令还可以包括:随机接入码、承载随机接入码的时频资源和目标基站的接入层配置信息。
UE根据切换命令中的目标基站的接入层配置信息,建立对应目标基站的数据链路层,包括媒体接入控制(Media Access Control,MAC)层、无线链路控制(Radio Link Control,RLC)层、分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层。而且,本实施例中的UE不删除对应源基站的数据链路层,而是保留对应源基站的数据链路层,这样在切换过程中不断开UE与源基站之间的连接,以便后续还能与源基站传输数据。
S205、UE根据第一起始时间和第一持续时间,向目标基站发送随机接入码。
S206、源基站,在第一持续时间结束时到第二起始时间的时间内,与UE传输数据。
S207、UE根据第二起始时间和第二持续时间,接收目标基站发送的随机接入响应。
S208、源基站,在第二持续时间结束时到第一时间的时间内,与UE传输数据。
S209、UE根据随机接入响应,在第一时间开始向目标基站发送切换确认消息。
本实施例中,S205-S209的具体实现过程可以参见图3所示实施例中的相关描述,此处不再赘述。
本实施例中,通过上述方案,使得源基站与UE的数据传输在UE切换至目标基站的过程中不会完全中断,减少了源基站与UE的数据传输中断时间,提高了数据传输效率。
图6为本申请实施例三提供的切换控制方法的流程图,如图6所示,本实施例以存在以下任一种情况为例:源基站与目标基站异步且同频、源基站与目标基站异步且异频、源基站与目标基站同步且异频为例,本实施例的方法可以包括:
S301、源基站向目标基站发送切换请求消息。
本实施例中,S301的具体实现过程可以参见图5所示实施例中的相关描述,此处不再赘述。
S302、目标基站向源基站发送切换应答消息。
本实施例中,目标基站接收源基站发送的切换请求消息,并根据切换请求消息向源基站发送切换应答消息。该切换应答消息指示允许UE切换至目标基站。并且,本实施例中的切换应答消息包括以下至少一项:第三起始时间、第一持续时间、第四起始时间、第二 持续时间。该第三起始时间为允许UE开始发送所述随机接入码的时间,第一持续时间为允许UE发送所述随机接入码的时间段,第四起始时间为允许UE开始接收随机接入响应的时间,第二持续时间为允许UE接收随机接入响应的时间段。
其中,切换应答消息还可以包括:随机接入码、承载随机接入码的时频资源和目标基站的接入层配置信息。
本实施例中的第三起始时间、第一持续时间、第四起始时间和第二持续时间中的至少一项是由目标基站生成的。如何生成上述时间信息可以参见图5所示实施例中的相关描述,此处不再赘述。上述的第三起始时间参考目标基站,上述的第四起始时间参考目标基站。
S303、源基站执行以下至少一项:根据第三起始时间、转换时间生成第一起始时间;根据第四起始时间、转换时间生成第二起始时间;根据第三起始时间、时间差生成第一起始时间;根据第四起始时间、时间差生成第二起始时间。
由于源基站与目标基站之间存在以下至少一种情况:源基站与目标基站异步、源基站与目标基站异频,因此,源基站需要对接收到的时间进行转换。
本实施例中,在源基站与目标基站异步,而源基站与目标基站同频时,源基站根据第三起始时间、时间差生成第一起时间,和/或,源基站根据第四起始时间、时间差生成第二起始时间。
在源基站与目标基站同步,而源基站与目标基站异频时,源基站根据第三起始时间、转换时间生成第一起始时间,和/或,源基站根据第四起始时间、转换时间生成第二起始时间。
在源基站与目标基站异步,而源基站与目标基站异步时,源基站根据第三起始时间、转换时间和时间差生成第一起始时间,和/或,源基站根据第四起始时间、转换时间和时间差生成第二起始时间。
上述生成的第一起始时间参考源基站,上述第二起始时间参考源基站。
其中,上述的转换时间为UE在源基站的频率与目标基站的频率进行转换的时间。上述的时间差为UE同步到源基站与同步到目标基站的时间差。
可选地,源基站接收UE发送的上述转换时间和/或时间差。
S304、源基站向UE发送切换命令。
切换命令包括以下至少一项:第一起始时间、第一持续时间、第二起始时间和第二持续时间。
S305、UE根据目标基站的接入层配置信息,建立对应目标基站的数据链路层;和/或保留对应源基站的数据链路层。
S306、UE根据第一起始时间和第一持续时间,向目标基站发送随机接入码。
S307、源基站,在第一持续时间结束时到第二起始时间的时间内,与UE传输数据。
S308、UE根据第二起始时间和第二持续时间,接收目标基站发送的随机接入响应。
S309、源基站,在第二持续时间结束时到第一时间的时间内,与UE传输数据。
S310、UE根据随机接入响应,在第一时间开始向目标基站发送切换确认消息。
本实施例中,S304-S310的具体实现过程可以参见图5所示实施例中的相关描述,此处不再赘述。
本实施例中,通过上述方案,使得源基站与UE的数据传输在UE切换至目标基站的过程中不会完全中断,减少了源基站与UE的数据传输中断时间,提高了数据传输效率。
图7为本申请实施例四提供的切换控制方法的流程图,如图7所示,本实施例以存在以下任一种情况为例:源基站与目标基站异步且同频、源基站与目标基站异步且异频、源基站与目标基站同步且异频为例,本实施例的方法可以包括:
S401、源基站向目标基站发送切换请求消息。
本实施例中,S401的具体实现过程可以参见图5所示实施例中的相关描述,此处不再赘述。
S402、目标基站执行以下至少一项:根据第三起始时间、转换时间生成第一起始时间;根据第四起始时间、转换时间生成第二起始时间;根据第三起始时间、时间差生成第一起始时间;根据第四起始时间、时间差生成第二起始时间。
本实施例的第三起始时间、第一持续时间、第四起始时间和第二持续时间中的至少一项是由目标基站生成的。如何生成上述时间信息可以参见图5所示实施例中的相关描述,此处不再赘述。该第三起始时间为允许UE开始发送所述随机接入码的时间,第一持续时间为允许UE发送所述随机接入码的时间段,第四起始时间为允许UE开始接收随机接入响应的时间,第二持续时间为允许UE接收随机接入响应的时间段。
上述第三起始时间参考目标基站,上述第四起始时间参考目标基站。
由于源基站与目标基站之间存在以下至少一种情况:源基站与目标基站异步、源基站与目标基站异频,因此,目标基站需要对上述时间信息进行转换。
本实施例中,在源基站与目标基站异步,而源基站与目标基站同频时,目标基站根据第三起始时间、时间差生成第一起时间,和/或,源基站根据第四起始时间、时间差生成第二起始时间。
在源基站与目标基站同步,而源基站与目标基站异频时,目标基站根据第三起始时间、转换时间生成第一起始时间,和/或,目标基站根据第四起始时间、转换时间生成第二起始时间。
在源基站与目标基站异步,而源基站与目标基站异步时,目标基站根据第三起始时间、转换时间和时间差生成第一起始时间,和/或,目标基站根据第四起始时间、转换时间和时间差生成第二起始时间。
上述第一起始时间、第二起始时间参考源基站。
其中,上述的转换时间为UE从源基站的频率转换到目标基站的频率的转换时间。上述的时间差为UE同步到源基站与同步到目标基站的时间差。
可选地,上述的转换时间和/或时间差包括在上述切换请求消息中,由源基站发送给目标基站。
可选地,源基站还接收UE发送的上述的转换时间和/或时间差。
S403、目标基站向源基站发送切换应答消息。
本实施例中,目标基站向源基站发送切换应答消息。该切换应答消息指示允许UE切换至目标基站。并且,本实施例中的切换应答消息包括以下至少一项:第一起始时间、第一持续时间、第二起始时间、第二持续时间。
其中,切换应答消息还可以包括:随机接入码、承载随机接入码的时频资源和目标基 站的接入层配置信息。
S404、源基站向UE发送切换命令。
切换命令包括以下至少一项:第一起始时间、第一持续时间、第二起始时间和第二持续时间。
S405、UE根据目标基站的接入层配置信息,建立对应目标基站的数据链路层;和/或保留对应源基站的数据链路层。
S406、UE根据第一起始时间和第一持续时间,向目标基站发送随机接入码。
S407、源基站,在第一持续时间结束时到第二起始时间的时间内,与UE传输数据。
S408、UE根据第二起始时间和第二持续时间,接收目标基站发送的随机接入响应。
S409、源基站,在第二持续时间结束时到第一时间的时间内,与UE传输数据。
S410、UE根据随机接入响应,在第一时间开始向目标基站发送切换确认消息。
本实施例中,S404-S410的具体实现过程可以参见图5所示实施例中的相关描述,此处不再赘述。
本实施例中,通过上述方案,使得源基站与UE的数据传输在UE切换至目标基站的过程中不会完全中断,减少了源基站与UE的数据传输中断时间,提高了数据传输效率。
下面举例对上述实施例进行说明。图8为本申请一实施例提供的源基站与目标基站之间的时间关系图,如图8所示,源基站与目标基站之间的时间差为2个子帧,即N-(N-2)。其中,UE在源基站的频率与目标基站的频率进行转换的时间为1个子帧。如果目标基站向源基站发送的第三起始时间为子帧N,该子帧N是参考目标基站的时间。则源基站向UE发送的第一起始时间存在以下几种情况。
第一种情况:源基站根据接收的第三起始时间为子帧N,向UE发送的第一起始时间为N-2子帧,该N-2子帧是参考源基站的时间。相应地,考虑到UE需要1个子帧进行频率转换,UE在N-3子帧时停止与源基站通信,经过一个子帧的频率转换后,在N-2子帧时向目标基站发送随机接入码。
第二种情况:源基站根据接收的第三起始时间为子帧N,向UE发送的第一起始时间为N-3子帧,该N-3子帧是与源基站同步的时间。相应地,UE在N-3子帧停止与源基站通信,经过1个子帧的频率转换,在N-2子帧向目标基站发送随机接入码。
可选地,在上述各实施例中,上述第一持续时间为N个符号或者N个子帧或者N个微时隙,N为大于或等于1的整数。上述第二持续时间为M个符号或者M个子帧或者M个微时隙,M为大于或等于1的整数。因此,本实施例中的随机接入码和随机接入响应均使用短时间调度,或称为快速调度,即调度的单位不局限于子帧(ms级),还可以是Short TTI,0.5ms,0.2ms等,还可以是符号级的调度,即1/14ms,或使用小间隙的调度,即mini-slot等。因此,可以进一步减少由于随机接入过程而导致UE的数据传输中断的时间,
可选地,在上述各实施例中,UE还向源基站发送第一能力指示信息,第一能力指示信息用于指示所述UE的收发能力;所述收发能力包括:
对同一网络设备的单发单收的能力,即UE在同一时间内只可以与同一基站进行收发操作,即如下表所示的两种情况,UE要么与源基站进行数据的收发,要么与目标基站进行数据的收发。
—— 从源基站接收 向源基站发送 从目标基站接收 向目标基站发送
情况一 支持 支持 不支持 不支持
情况二 不支持 不支持 支持 支持
或者,双收单发且不同时收发的能力,即UE在与两个基站传输数据时,只支持同时从两个基站接收数据,即如下表所示的三种情况,UE要么与源基站进行数据的收发,要么与目标基站进行数据的收发,要么同时从两个基站接收数据。
—— 从源基站接收 向源基站发送 从目标基站接收 向目标基站发送
情况一 支持 支持 不支持 不支持
情况二 不支持 不支持 支持 支持
情况三 支持 不支持 支持 不支持
或者,对不同网络设备的单收单发的能力,即UE在从一个基站接收数据的同时,也支持从向另一个基站发送数据,即如下表所示的四种情况,UE要么与源基站进行数据的收发,要么与目标基站进行数据的收发,要么从源基站接收数据且向目标基站发送数据,要么从目标基站接收数据且向源基站发送数据。
—— 从源基站接收 向源基站发送 从目标基站接收 向目标基站发送
情况一 支持 支持 不支持 不支持
情况二 不支持 不支持 支持 支持
情况三 支持 不支持 不支持 支持
情况四 不支持 支持 支持 不支持
或者,双收单发且可同时收发的能力,即UE在与一个基站进行收发操作的同时,可以从另一个基站接收数据,即如下表所示的四种情况,UE要么与源基站进行数据的收发,要么与目标基站进行数据的收发,要么与源基站进行数据收发且从目标基站接收数据,要么与目标基站进行数据收发且从源基站接收数据。
—— 从源基站接收 向源基站发送 从目标基站接收 向目标基站发送
情况一 支持 支持 不支持 不支持
情况二 不支持 不支持 支持 支持
情况三 支持 支持 支持 不支持
情况四 支持 不支持 支持 支持
相应地,源基站接收UE发送的第一能力指示信息。
当UE的收发能力为对同一基站的单发单收的能力时,在UE向目标基站发送随机接入码的过程中,UE不能与源基站传输数据,而且,在UE接收目标基站发送的随机接入 响应的过程中,UE也不能与源基站传输数据。例如:如图9所示。
当UE的收发能力为具有双收单发且不同时收发的能力时,在UE向目标基站发送随机接入码的过程中,UE不能与源基站传输数据。而且,在UE向目标基站发送随机接入码完成之后,源基站根据第二起始时间和第二持续时间,向UE发送数据。相应地,所述UE根据所述第二起始时间和所述第二持续时间,接收源基站发送的数据。进一步缩小了UE在随机接入过程中的数据中断时间。例如:如图10所示。
当UE的收发能力为对不同网络设备的单收单发的能力时,在UE向目标基站发送随机接入码的过程中,UE可以接收源基站发送的数据,而且,在UE接收目标基站发送的随机接入响应的过程中,UE可以向源基站发送数据。所以,源基站根据第一起始时间和第一持续时间,向UE发送数据,相应地,UE根据第一起始时间和第一持续时间,接收源基站发送的数据。另外,UE根据第二起始时间和第二持续时间,向源基站发送数据,相应地,源基站根据第二起始时间和第二持续时间,接收UE发送的数据。例如:如图11所示。
当UE的收发能力为双收单发且同时收发的能力时,在UE向目标基站发送随机接入码的过程中,UE可以接收源基站发送的数据。而且,在UE接收目标基站发送的随机接入响应的过程中,UE可以与源基站传输数据。所以,源基站根据第二起始时间和第二持续时间,向UE发送数据。相应地,UE根据第二起始时间和第二持续时间,接收所述源基站发送的数据。另外,源基站根据第二起始时间和第二持续时间,与UE传输数据。可选地,源基站在上述第一时间到第二时间的时间内,向UE发送数据;相应地,UE在第一时间到第二时间的时间内接收目标基站发送的数据。第二时间为源基站开始接收目标基站发送的切换完成消息的时间。这样可以进一步缩小UE在随机接入过程中的数据传输中断的时间。例如:如图12所示。
可选地,在上述各实施例中,UE还向源基站发送第二能力指示信息,该第二能力指示信息用于指示UE具有时分随机接入的能力,即UE在向目标基站进行随机接入过程中,可以在空闲时间与源基站传输数据的能力。相应地,源基站接收UE发送的第二能力指示信息。
可选地,在上述各实施例中,源基站向目标基站发送第三能力指示信息,该第三能力指示信息用于指示UE具有时分随机接入的能力。在一种可行的实现方式中,该第三能力指示信息包括在上述切换请求消息。相应地,目标基站接收源基站发送的第三能力指示信息。
图13为本申请实施例一提供的网络设备的结构示意图,如图13所示,本实施例的网络设备,作为第一网络设备,包括:发送模块11和接收模块12。
发送模块11,用于向终端发送切换命令。
切换命令用于指示终端切换至第二网络设备;切换命令中包含以下至少一项:第一起始时间、第一持续时间、第二起始时间、第二持续时间。
发送模块11,还用于在空闲时间内,向终端发送数据。
接收模块12,用于在空闲时间内,接收终端发送的数据。
空闲时间包括以下至少一项:第一持续时间结束时到第二起始时间的时间、第二持续时间结束时到第一时间的时间。
第一起始时间为允许终端开始向第二网络设备发送随机接入码的时间;第一持续时间为允许终端发送随机接入码的时间段。
第二起始时间为允许终端开始接收第二网络设备发送的随机接入响应的时间,第二持续时间为允许终端接收第二网络设备发送的随机接入响应的时间段。
第一时间为终端开始向第二网络设备发送切换确认消息的时间。
在一种可能的实现方式中,发送模块11,还用于向第二网络设备发送切换请求消息;切换请求消息用于请求将终端切换至第二网络设备。
接收模块12,还用于接收第二网络设备发送的切换应答消息;切换应答消息指示允许终端切换至第二网络设备;
切换应答消息包括以下至少一项:第一起始时间、第一持续时间、第二起始时间、第二持续时间。
可选地,切换请求消息包括以下至少一项:转换时间、时间差。
转换时间为终端在第一网络设备的频率与第二网络设备的频率之间进行转换的时间。
时间差为终端同步到第一网络设备与同步到第二网络设备的时间差。
在一种可能的实现方式中,本实施例的网络设备还可以包括:处理模块13。
发送模块11,还用于向第二网络设备发送切换请求消息;切换请求消息用于请求将终端切换至第二网络设备。
接收模块12,还用于接收第二网络设备发送的切换应答消息;切换应答消息指示允许终端切换至第二网络设备。
切换应答消息还包括以下至少一项:第三起始时间、第一持续时间、第四起始时间、第二持续时间。
其中,第三起始时间为第二网络设备允许终端开始发送随机接入码的时间;第四起始时间为第二网络设备允许终端开始接收随机接入响应的时间;
处理模块13,还用于执行以下至少一项:根据第三起始时间、转换时间生成第一起始时间;根据第四起始时间、转换时间生成第二起始时间;根据第三起始时间、时间差生成第一起始时间;根据第四起始时间、时间差生成第二起始时间。
转换时间为终端在第一网络设备的频率与第二网络设备的频率之间进行转换的时间。
时间差为终端同步到第一网络设备与同步到第二网络设备的时间差。
在上述实施例的基础上,接收模块12,还用于接收终端发送的转换时间和/或时间差。
可选地,第一持续时间和第二持续时间分别为N个符号或N个子帧或N个微时隙,其中N为正整数。
可选地,接收模块12,还用于接收终端发送的第一能力指示信息,第一能力指示信息用于指示终端的收发能力,收发能力包括以下一项:对同一网络设备的单发单收的能力、双收单发且不同时收发的能力、对不同网络设备的单收单发的能力、双收单发且可同时收发的能力。
可选地,当终端具有双收单发且不同时收发的能力时;发送模块11,还用于根据第二起始时间和第二持续时间,向终端发送数据;或者,
当终端具有对不同网络设备的单收单发的能力;发送模块11,还用于根据第一起始时间和第一持续时间,向终端发送数据;以及接收模块12,还用于根据第二起始时间和 第二持续时间,接收终端发送的数据;或者,
当终端具有双收单发且可同时收发的能力时;发送模块11,还用于根据第一起始时间和第一持续时间,向终端发送数据;以及发送模块11,还用于根据第二起始时间和第二持续时间,向终端发送数据;接收模块12,还用于根据第二起始时间和第二持续时间,接收终端发送的数据。
可选地,当终端具有双收单发且可同时收发的能力时;发送模块11还用于在第一时间到第二时间的时间内,向终端发送数据。
第二时间为第一网络设备接收到第二网络设备发送的切换完成消息的时间。
可选地,接收模块12,还用于接收终端发送的第二能力指示信息,第二能力指示信息用于指示终端具有时分随机接入的能力。
可选地,切换请求消息包括:第三能力指示信息,第三能力指示信息用于指示终端具有时分随机接入的能力。
本实施例的网络设备,可以用于执行上述方法实施例中源基站的技术方案,其实现原理和技术效果类似,此处不再赘述。
在硬件实现上,以上发送模块11可以为发射机或收发机,以上接收模块12可以为接收机或收发机,且该发送模块11和接收模块12可以集成在一起构成收发单元,对应于硬件实现为收发机。以上处理模块13可以以硬件形式内嵌于或独立于网络设备的处理器中,也可以以软件形式存储于网络设备的存储器中,以便于处理器调用执行以上各个模块对应的操作。
图14为本申请实施例二提供的网络设备的结构示意图,如图14所示,本实施例的网络设备作为第一网络设备,可以包括:处理器21和收发机22。处理器21与收发机22通信连接。
收发机22可以包括混频器等必要的射频通信器件。处理器21可以包括中央处理单元(Central Processing Unit,CPU)、数字信号处理器(digital signal processor,DSP)、微控制器(Microcontroller Unit,MCU)、专用集成电路(Application Specific Integrated Circuit,ASIC)或现场可编程逻辑门阵列(Field-Programmable Gate Array,FPGA)中的至少一个。
可选地,本实施例的网络设备还可以包括存储器23,存储器23用于存储程序指令,处理器21用于调用存储器23中的程序指令执行源基站的上述方案。
程序指令可以以软件功能模块的形式实现并能够作为独立的产品销售或使用,存储器23可以是任意形式的计算机可读取存储介质。基于这样的理解,本申请的技术方案的全部或部分可以以软件产品的形式体现出来,包括若干指令用以使得一台计算机设备,具体可以是处理器21,来执行本申请各个实施例中网络设备的全部或部分步骤。而前述的计算机可读存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本实施例以上的网络设备,可以用于执行本申请上述各方法实施例中源基站的技术方案,其实现原理和技术效果类似,此处不再赘述。
图15为本申请实施例三提供的网络设备的结构示意图,如图15所示,本实施例的网 络设备,作为第二网络设备,包括:接收模块31和发送模块32。
接收模块31,用于根据第三起始时间和第一持续时间,接收终端发送的随机接入码。
发送模块32,用于根据第四起始时间和第二持续时间,向终端发送随机接入响应。
其中,第三起始时间为允许终端开始发送随机接入码的时间,第一持续时间为允许终端发送随机接入码的时间段。
第四起始时间为允许终端开始接收随机接入响应的时间,第二持续时间为允许终端接收随机接入响应的时间段。
在一种可能的实现方式中,接收模块31,还用于接收第一网络设备发送的切换请求消息,切换请求消息用于请求将终端切换至第二网络设备。
发送模块32,还用于向第一网络设备发送切换应答消息;切换应答消息指示允许终端切换至第二网络设备。
切换应答消息包括以下至少一项:第三起始时间、第一持续时间、第四起始时间和第二持续时间。
在一种可能的实现方式中,本实施例的网络设备还可以包括:处理模块33。
接收模块31,还用于接收第一网络设备发送的切换请求消息,切换请求消息用于请求将终端切换至第二网络设备。
处理模块33,用于执行以下至少一项:根据第三起始时间、转换时间生成第一起始时间;根据第四起始时间、转换时间生成第二起始时间;根据第三起始时间、时间差生成第一起始时间;根据第四起始时间、时间差生成第二起始时间。
发送模块32,还用于向第一网络设备发送切换应答消息;切换应答消息指示允许终端切换至第二网络设备。
切换应答消息包括以下至少一项:第一起始时间、第一持续时间、第二起始时间和第二持续时间。
转换时间为终端在第一网络设备的频率与第二网络设备的频率之间进行转换的时间。
时间差为终端同步到第一网络设备与同步到第二网络设备的时间差。
可选地,切换请求消息包括以下至少一项:转换时间、时间差。
可选地,接收模块31,还用于接收第一网络设备发送的能力指示信息,能力指示信息用于指示终端具有时分随机接入的能力。
可选地,第一持续时间和第二持续时间分别为N个符号或N个子帧或N个微时隙,其中N为正整数。
本实施例的网络设备,可以用于执行上述方法实施例中目标基站的技术方案,其实现原理和技术效果类似,此处不再赘述。
在硬件实现上,以上发送模块32可以为发射机或收发机,以上接收模块31可以为接收机或收发机,且该发送模块32和接收模块31可以集成在一起构成收发单元,对应于硬件实现为收发机。以上处理模块33可以以硬件形式内嵌于或独立于网络设备的处理器中,也可以以软件形式存储于网络设备的存储器中,以便于处理器调用执行以上各个模块对应的操作。
图16为本申请实施例四提供的网络设备的结构示意图,如图16所示,本实施例的网络设备作为第二网络设备,可以包括:处理器41和收发机42。处理器41与收发 机42通信连接。
收发机42可以包括混频器等必要的射频通信器件。处理器41可以包括CPU、DSP、MCU、ASIC或FPGA中的至少一个。
可选地,本实施例的网络设备还可以包括存储器43,存储器43用于存储程序指令,处理器41用于调用存储器43中的程序指令执行目标基站的上述方案。
程序指令可以以软件功能模块的形式实现并能够作为独立的产品销售或使用,存储器43可以是任意形式的计算机可读取存储介质。基于这样的理解,本申请的技术方案的全部或部分可以以软件产品的形式体现出来,包括若干指令用以使得一台计算机设备,具体可以是处理器41,来执行本申请各个实施例中网络设备的全部或部分步骤。而前述的计算机可读存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本实施例以上的网络设备,可以用于执行本申请上述各方法实施例中目标基站的技术方案,其实现原理和技术效果类似,此处不再赘述。
图17为本申请实施例一提供的终端的结构示意图,如图17所示,本实施例的终端可以包括:接收模块51和发送模块52。
接收模块51,用于接收第一网络设备发送的切换命令;切换命令用于指示终端切换至第二网络设备;切换命令中包含以下至少一项:第一起始时间、第一持续时间、第二起始时间、第二持续时间。
发送模块52,用于根据第一起始时间和第一持续时间,向第二网络设备发送随机接入码。
接收模块51,还用于根据第二起始时间和第二持续时间,接收第二网络设备发送的随机接入响应。
发送模块52,还用于在空闲时间内,向第一网络设备发送数据。
接收模块51,还用于在空闲时间内,接收第一网络设备发送的数据。
空闲时间包括以下至少一项:第一持续时间结束时到第二起始时间的时间、第二持续时间结束时到第一时间的时间。
第一起始时间为允许终端开始向第二网络设备发送随机接入码的时间,第一持续时间为允许终端发送随机接入码的时间段。
第二起始时间为允许终端开始接收第二网络设备发送的随机接入响应的时间,第二持续时间为允许终端接收第二网络设备发送的随机接入响应的时间段。
第一时间为终端开始向第二网络设备发送的切换确认消息的时间。
可选地,发送模块52,还用于向第一网络设备发送转换时间和/或时间差。
转换时间为终端在第一网络设备的频率与第二网络设备的频率之间进行转换的时间。
时间差为终端同步到第一网络设备与同步到第二网络设备的时间差。
可选地,本实施例的终端还包括:处理模块53。
切换命令还包括:随机接入码、承载随机接入码的时频资源和第二网络设备的接入层配置信息。
处理模块53,用于根据接入层配置信息,建立对应第二网络设备的数据链路层;和/或保留对应第一网络设备的数据链路层。
可选地,第一持续时间和第二持续时间分别为N个符号或N个子帧或N个微时隙,其中N为正整数。
可选地,发送模块52,还用于向第一网络设备发送第一能力指示信息,第一能力指示信息用于指示终端的收发能力;收发能力包括以下一项:对同一网络设备的单发单收的能力、双收单发且不同时收发的能力、对不同网络设备的单收单发的能力、双收单发且可同时收发的能力。
可选地,当终端具有双收单发且不同时收发的能力时;接收模块51,还用于根据第二起始时间和第二持续时间,接收第一网络设备发送的数据。
当终端具有对不同网络设备的单收单发的能力时;接收模块51,还用于根据第一起始时间和第一持续时间,接收第一网络设备发送的数据;以及发送模块52,还用于根据第二起始时间和第二持续时间,向第一网络设备发送数据。
当终端具有双收单发且可同时收发的能力时;接收模块51,还用于根据第一起始时间和第一持续时间,接收第一网络设备发送的数据;以及发送模块52,还用于根据第二起始时间和第二持续时间,向第一网络设备发送数据;接收模块51,还用于根据第二起始时间和第二持续时间,接收第一网络设备发送的数据。
可选地,当终端具有双收单发且可同时收发的能力时;接收模块51,还用于在第一时间到第二时间的时间内,接收第一网络设备发送的数据。
第二时间为第一网络设备接收到第二网络设备发送的切换完成消息的时间。
可选地,发送模块52,还用于向第一网络设备发送第二能力指示信息,第二能力指示信息用于指示终端具有时分随机接入的能力。
本实施例以上的终端,可以用于执行本申请上述各方法实施例中终端的技术方案,其实现原理和技术效果类似,此处不再赘述。
在硬件实现上,以上发送模块52可以为发射机或收发机,以上接收模块51可以为接收机或收发机,且该发送模块52和接收模块51可以集成在一起构成收发单元,对应于硬件实现为收发机。以上处理模块53可以以硬件形式内嵌于或独立于终端的处理器中,也可以以软件形式存储于终端的存储器中,以便于处理器调用执行以上各个模块对应的操作。
图18为本申请实施例二提供的终端的结构示意图,如图18所示,本实施例的终端,可以包括:处理器61和收发机62。处理器61与收发机62通信连接。
收发机62可以包括混频器等必要的射频通信器件。处理器61可以包括CPU、DSP、MCU、ASIC或FPGA中的至少一个。
可选地,本实施例的网络设备还可以包括存储器63,存储器63用于存储程序指令,处理器61用于调用存储器63中的程序指令执行终端的上述方案。
程序指令可以以软件功能模块的形式实现并能够作为独立的产品销售或使用,存储器63可以是任意形式的计算机可读取存储介质。基于这样的理解,本申请的技术方案的全部或部分可以以软件产品的形式体现出来,包括若干指令用以使得一台计算机设备,具体可以是处理器61,来执行本申请各个实施例中网络设备的全部或部分步骤。而前述的计算机可读存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本实施例以上的终端,可以用于执行本申请上述各方法实施例中终端的技术方案,其实现原理和技术效果类似,此处不再赘述。
图19为本申请实施例提供的切换控制***的结构示意图,如图19所示,本实施例的***包括:第一网络设备100、第二网络设备200和终端300,其中,第一网络设备100可以采用图13或图14所示装置实施例的结构,其对应地,可以执行上述任一方法实施例源基站的技术方案,其实现原理和技术效果类似,此处不再赘述。第二网络设备200可以采用图15或图16所示装置实施例的结构,其对应地,可以执行上述任一方法实施例目标基站的技术方案,其实现原理和技术效果类似,此处不再赘述。终端300可以采用图17或图18所示装置实施例的结构,其对应地,可以执行上述任一方法实施例终端的技术方案,其实现原理和技术效果类似,此处不再赘述。

Claims (30)

  1. 一种切换控制方法,其特征在于,包括:
    第一网络设备向终端发送切换命令;
    所述切换命令用于指示所述终端切换至第二网络设备;所述切换命令中包含以下至少一项:第一起始时间、第一持续时间、第二起始时间、第二持续时间;
    所述第一网络设备在空闲时间内与所述终端传输数据;
    所述空闲时间包括以下至少一项:所述第一持续时间结束时到所述第二起始时间的时间、所述第二持续时间结束时到第一时间的时间;
    所述第一起始时间为允许所述终端开始向所述第二网络设备发送随机接入码的时间;所述第一持续时间为允许所述终端发送所述随机接入码的时间段;
    所述第二起始时间为允许所述终端开始接收所述第二网络设备发送的随机接入响应的时间,所述第二持续时间为允许所述终端接收所述第二网络设备发送的随机接入响应的时间段;
    所述第一时间为所述终端开始向所述第二网络设备发送切换确认消息的时间。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一网络设备向所述第二网络设备发送切换请求消息;所述切换请求消息用于请求将所述终端切换至所述第二网络设备;
    所述第一网络设备接收所述第二网络设备发送的切换应答消息;所述切换应答消息指示允许所述终端切换至所述第二网络设备;
    所述切换应答消息包括以下至少一项:所述第一起始时间、所述第一持续时间、所述第二起始时间、所述第二持续时间。
  3. 根据权利要求2所述的方法,其特征在于,所述切换请求消息包括以下至少一项:转换时间、时间差;
    所述转换时间为所述终端在所述第一网络设备的频率与所述第二网络设备的频率之间进行转换的时间;
    所述时间差为所述终端同步到所述第一网络设备与同步到所述第二网络设备的时间差。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一网络设备向所述第二网络设备发送切换请求消息;所述切换请求消息用于请求将所述终端切换至所述第二网络设备;
    所述第一网络设备接收所述第二网络设备发送的切换应答消息;所述切换应答消息指示允许所述终端切换至所述第二网络设备;
    所述切换应答消息还包括以下至少一项:第三起始时间、所述第一持续时间、第四起始时间、所述第二持续时间;
    其中,所述第三起始时间为所述第二网络设备允许所述终端开始发送所述随机接入码的时间;所述第四起始时间为所述第二网络设备允许所述终端开始接收所述随机接入响应的时间;
    所述第一网络设备执行以下至少一项:根据所述第三起始时间、转换时间生成所述第 一起始时间;根据所述第四起始时间、转换时间生成所述第二起始时间;根据所述第三起始时间、时间差生成所述第一起始时间;根据所述第四起始时间、时间差生成所述第二起始时间;
    所述转换时间为所述终端在所述第一网络设备的频率与所述第二网络设备的频率之间进行转换的时间;
    所述时间差为所述终端同步到所述第一网络设备与同步到所述第二网络设备的时间差。
  5. 根据权利要求1-4任意一项所述的方法,其特征在于,还包括:
    所述第一网络设备接收所述终端发送的第一能力指示信息,所述第一能力指示信息用于指示所述终端的收发能力,所述收发能力包括以下一项:对同一网络设备的单发单收的能力、双收单发且不同时收发的能力、对不同网络设备的单收单发的能力、双收单发且可同时收发的能力。
  6. 根据权利要求5所述的方法,其特征在于,当所述终端具有双收单发且不同时收发的能力时;所述方法还包括:所述第一网络设备根据所述第二起始时间和第二持续时间,向所述终端发送数据;或者,
    当所述终端具有对不同网络设备的单收单发的能力;所述方法还包括:所述第一网络设备根据所述第一起始时间和所述第一持续时间,向所述终端发送数据;以及根据所述第二起始时间和所述第二持续时间,接收所述终端发送的数据;或者,
    当所述终端具有双收单发且可同时收发的能力时;所述方法还包括:所述第一网络设备根据所述第一起始时间和所述第一持续时间,向所述终端发送数据;以及根据所述第二起始时间和所述第二持续时间,与所述终端传输数据。
  7. 根据权利要求1-6任意一项所述的方法,其特征在于,所述切换请求消息包括:第三能力指示信息,所述第三能力指示信息用于指示所述终端具有时分随机接入的能力。
  8. 一种切换控制方法,其特征在于,包括:
    第二网络设备根据第三起始时间和第一持续时间,接收终端发送的随机接入码;
    所述第二网络设备根据第四起始时间和第二持续时间,向终端发送随机接入响应;
    其中,所述第三起始时间为允许所述终端开始发送所述随机接入码的时间,所述第一持续时间为允许所述终端发送所述随机接入码的时间段;
    所述第四起始时间为允许所述终端开始接收所述随机接入响应的时间,所述第二持续时间为允许所述终端接收所述随机接入响应的时间段。
  9. 根据权利要求8所述的方法,其特征在于,还包括:
    所述第二网络设备接收所述第一网络设备发送的切换请求消息,所述切换请求消息用于请求将所述终端切换至所述第二网络设备;
    所述第二网络设备向所述第一网络设备发送切换应答消息;所述切换应答消息指示允许所述终端切换至所述第二网络设备;
    所述切换应答消息包括以下至少一项:所述第三起始时间、所述第一持续时间、所述第四起始时间和所述第二持续时间。
  10. 根据权利要求8所述的方法,其特征在于,还包括:
    所述第二网络设备接收所述第一网络设备发送的切换请求消息,所述切换请求消息用 于请求将所述终端切换至所述第二网络设备;
    所述第二网络设备执行以下至少一项:根据所述第三起始时间、转换时间生成第一起始时间;根据所述第四起始时间、转换时间生成第二起始时间;根据所述第三起始时间、时间差生成第一起始时间;根据所述第四起始时间、时间差生成第二起始时间;
    所述第二网络设备向所述第一网络设备发送切换应答消息;所述切换应答消息指示允许所述终端切换至所述第二网络设备;
    所述切换应答消息包括以下至少一项:所述第一起始时间、所述第一持续时间、所述第二起始时间和所述第二持续时间;
    所述转换时间为所述终端在所述第一网络设备的频率与所述第二网络设备的频率之间进行转换的时间;
    所述时间差为所述终端同步到所述第一网络设备与同步到所述第二网络设备的时间差。
  11. 一种切换控制方法,其特征在于,包括:
    终端接收第一网络设备发送的切换命令;所述切换命令用于指示所述终端切换至第二网络设备;所述切换命令中包含以下至少一项:第一起始时间、第一持续时间、第二起始时间、第二持续时间;
    所述终端根据所述第一起始时间和所述第一持续时间,向第二网络设备发送随机接入码;
    所述终端根据第二起始时间和第二持续时间,接收所述第二网络设备发送的随机接入响应;
    所述终端在空闲时间内与所述第一网络设备传输数据;
    所述空闲时间包括以下至少一项:所述第一持续时间结束时到所述第二起始时间的时间、所述第二持续时间结束时到第一时间的时间;
    所述第一起始时间为允许所述终端开始向所述第二网络设备发送随机接入码的时间,所述第一持续时间为允许所述终端发送所述随机接入码的时间段;
    所述第二起始时间为允许所述终端开始接收所述第二网络设备发送的随机接入响应的时间,所述第二持续时间为允许所述终端接收所述第二网络设备发送的随机接入响应的时间段;
    所述第一时间为所述终端开始向所述第二网络设备发送的切换确认消息的时间。
  12. 根据权利要求11所述的方法,其特征在于,所述切换命令还包括:所述随机接入码、承载所述随机接入码的时频资源和所述第二网络设备的接入层配置信息;
    所述方法还包括:所述终端根据所述接入层配置信息,建立对应所述第二网络设备的数据链路层;和/或保留对应所述第一网络设备的数据链路层。
  13. 根据权利要求11或12所述的方法,其特征在于,还包括:
    所述终端向所述第一网络设备发送第一能力指示信息,所述第一能力指示信息用于指示所述终端的收发能力;所述收发能力包括以下一项:对同一网络设备的单发单收的能力、双收单发且不同时收发的能力、对不同网络设备的单收单发的能力、双收单发且可同时收发的能力。
  14. 根据权利要求13所述的方法,其特征在于,当所述终端具有双收单发且不同时 收发的能力时;所述方法还包括:所述终端根据所述第二起始时间和所述第二持续时间,接收所述第一网络设备发送的数据;
    当所述终端具有对不同网络设备的单收单发的能力时;所述方法还包括:所述终端根据所述第一起始时间和所述第一持续时间,接收所述第一网络设备发送的数据;以及根据所述第二起始时间和所述第二持续时间,向所述第一网络设备发送数据;
    当所述终端具有双收单发且可同时收发的能力时;所述方法还包括:所述终端根据所述第一起始时间和所述第一持续时间,接收所述第一网络设备发送的数据;以及根据所述第二起始时间和所述第二持续时间,与所述第一网络设备传输数据。
  15. 根据权利要求11-14任意一项所述的方法,其特征在于,还包括:
    所述终端向所述第一网络设备发送第二能力指示信息,所述第二能力指示信息用于指示所述终端具有时分随机接入的能力。
  16. 一种网络设备,其特征在于,作为第一网络设备,包括:发送模块和接收模块;
    发送模块,用于向终端发送切换命令;
    所述切换命令用于指示所述终端切换至第二网络设备;所述切换命令中包含以下至少一项:第一起始时间、第一持续时间、第二起始时间、第二持续时间;
    所述发送模块,还用于在空闲时间内,向所述终端发送数据;
    所述接收模块,用于在空闲时间内,接收所述终端发送的数据;
    所述空闲时间包括以下至少一项:所述第一持续时间结束时到所述第二起始时间的时间、所述第二持续时间结束时到第一时间的时间;
    所述第一起始时间为允许所述终端开始向所述第二网络设备发送随机接入码的时间;所述第一持续时间为允许所述终端发送所述随机接入码的时间段;
    所述第二起始时间为允许所述终端开始接收所述第二网络设备发送的随机接入响应的时间,所述第二持续时间为允许所述终端接收所述第二网络设备发送的随机接入响应的时间段;
    所述第一时间为所述终端开始向所述第二网络设备发送切换确认消息的时间。
  17. 根据权利要求16所述的网络设备,其特征在于,所述发送模块,还用于向所述第二网络设备发送切换请求消息;所述切换请求消息用于请求将所述终端切换至所述第二网络设备;
    所述接收模块,还用于接收所述第二网络设备发送的切换应答消息;所述切换应答消息指示允许所述终端切换至所述第二网络设备;
    所述切换应答消息包括以下至少一项:所述第一起始时间、所述第一持续时间、所述第二起始时间、所述第二持续时间。
  18. 根据权利要求17所述的网络设备,其特征在于,所述切换请求消息包括以下至少一项:转换时间、时间差;
    所述转换时间为所述终端在所述第一网络设备的频率与所述第二网络设备的频率之间进行转换的时间;
    所述时间差为所述终端同步到所述第一网络设备与同步到所述第二网络设备的时间差。
  19. 根据权利要求16所述的网络设备,其特征在于,还包括:处理模块;
    所述发送模块,还用于向所述第二网络设备发送切换请求消息;所述切换请求消息用于请求将所述终端切换至所述第二网络设备;
    所述接收模块,还用于接收所述第二网络设备发送的切换应答消息;所述切换应答消息指示允许所述终端切换至所述第二网络设备;
    所述切换应答消息还包括以下至少一项:第三起始时间、所述第一持续时间、第四起始时间、所述第二持续时间;
    其中,所述第三起始时间为所述第二网络设备允许所述终端开始发送所述随机接入码的时间;所述第四起始时间为所述第二网络设备允许所述终端开始接收所述随机接入响应的时间;
    所述处理模块,还用于执行以下至少一项:根据所述第三起始时间、转换时间生成所述第一起始时间;根据所述第四起始时间、转换时间生成所述第二起始时间;根据所述第三起始时间、时间差生成所述第一起始时间;根据所述第四起始时间、时间差生成所述第二起始时间;
    所述转换时间为所述终端在所述第一网络设备的频率与所述第二网络设备的频率之间进行转换的时间;
    所述时间差为所述终端同步到所述第一网络设备与同步到所述第二网络设备的时间差。
  20. 根据权利要求16-19任意一项所述的网络设备,其特征在于,
    所述接收模块,还用于接收所述终端发送的第一能力指示信息,所述第一能力指示信息用于指示所述终端的收发能力,所述收发能力包括以下一项:对同一网络设备的单发单收的能力、双收单发且不同时收发的能力、对不同网络设备的单收单发的能力、双收单发且可同时收发的能力。
  21. 根据权利要求20所述的网络设备,其特征在于,当所述终端具有双收单发且不同时收发的能力时;所述发送模块,还用于根据所述第二起始时间和第二持续时间,向所述终端发送数据;或者,
    当所述终端具有对不同网络设备的单收单发的能力;所述发送模块,还用于根据所述第一起始时间和所述第一持续时间,向所述终端发送数据;以及所述接收模块,还用于根据所述第二起始时间和所述第二持续时间,接收所述终端发送的数据;或者,
    当所述终端具有双收单发且可同时收发的能力时;所述发送模块,还用于根据所述第一起始时间和所述第一持续时间,向所述终端发送数据;以及所述发送模块,还用于根据所述第二起始时间和所述第二持续时间,向所述终端发送数据;所述接收模块,还用于根据所述第二起始时间和所述第二持续时间,接收所述终端发送的数据。
  22. 根据权利要求16-21任意一项所述的网络设备,其特征在于,所述切换请求消息包括:第三能力指示信息,所述第三能力指示信息用于指示所述终端具有时分随机接入的能力。
  23. 一种网络设备,其特征在于,作为第二网络设备,包括:
    接收模块,用于根据第三起始时间和第一持续时间,接收终端发送的随机接入码;
    发送模块,用于根据第四起始时间和第二持续时间,向终端发送随机接入响应;
    其中,所述第三起始时间为允许所述终端开始发送所述随机接入码的时间,所述第一 持续时间为允许所述终端发送所述随机接入码的时间段;
    所述第四起始时间为允许所述终端开始接收所述随机接入响应的时间,所述第二持续时间为允许所述终端接收所述随机接入响应的时间段。
  24. 根据权利要求23所述的网络设备,其特征在于,
    所述接收模块,还用于接收所述第一网络设备发送的切换请求消息,所述切换请求消息用于请求将所述终端切换至所述第二网络设备;
    所述发送模块,还用于向所述第一网络设备发送切换应答消息;所述切换应答消息指示允许所述终端切换至所述第二网络设备;
    所述切换应答消息包括以下至少一项:所述第三起始时间、所述第一持续时间、所述第四起始时间和所述第二持续时间。
  25. 根据权利要求23所述的网络设备,其特征在于,还包括:处理模块;
    所述接收模块,还用于接收所述第一网络设备发送的切换请求消息,所述切换请求消息用于请求将所述终端切换至所述第二网络设备;
    所述处理模块,用于执行以下至少一项:根据所述第三起始时间、转换时间生成第一起始时间;根据所述第四起始时间、转换时间生成第二起始时间;根据所述第三起始时间、时间差生成第一起始时间;根据所述第四起始时间、时间差生成第二起始时间;
    所述发送模块,还用于向所述第一网络设备发送切换应答消息;所述切换应答消息指示允许所述终端切换至所述第二网络设备;
    所述切换应答消息包括以下至少一项:所述第一起始时间、所述第一持续时间、所述第二起始时间和所述第二持续时间;
    所述转换时间为所述终端在所述第一网络设备的频率与所述第二网络设备的频率之间进行转换的时间;
    所述时间差为所述终端同步到所述第一网络设备与同步到所述第二网络设备的时间差。
  26. 一种终端,其特征在于,包括:
    接收模块,用于接收第一网络设备发送的切换命令;所述切换命令用于指示所述终端切换至第二网络设备;所述切换命令中包含以下至少一项:第一起始时间、第一持续时间、第二起始时间、第二持续时间;
    发送模块,用于根据所述第一起始时间和所述第一持续时间,向第二网络设备发送随机接入码;
    所述接收模块,还用于根据第二起始时间和第二持续时间,接收所述第二网络设备发送的随机接入响应;
    所述发送模块,还用于在空闲时间内,向所述第一网络设备发送数据;
    所述接收模块,还用于在空闲时间内,接收所述第一网络设备发送的数据;
    所述空闲时间包括以下至少一项:所述第一持续时间结束时到所述第二起始时间的时间、所述第二持续时间结束时到第一时间的时间;
    所述第一起始时间为允许所述终端开始向所述第二网络设备发送随机接入码的时间,所述第一持续时间为允许所述终端发送所述随机接入码的时间段;
    所述第二起始时间为允许所述终端开始接收所述第二网络设备发送的随机接入响应 的时间,所述第二持续时间为允许所述终端接收所述第二网络设备发送的随机接入响应的时间段;
    所述第一时间为所述终端开始向所述第二网络设备发送的切换确认消息的时间。
  27. 根据权利要求26所述的终端,其特征在于,还包括:处理模块;
    所述切换命令还包括:所述随机接入码、承载所述随机接入码的时频资源和所述第二网络设备的接入层配置信息;
    所述处理模块,用于根据所述接入层配置信息,建立对应所述第二网络设备的数据链路层;和/或保留对应所述第一网络设备的数据链路层。
  28. 根据权利要求26或27所述的终端,其特征在于,还包括:
    所述发送模块,还用于向所述第一网络设备发送第一能力指示信息,所述第一能力指示信息用于指示所述终端的收发能力;所述收发能力包括以下一项:对同一网络设备的单发单收的能力、双收单发且不同时收发的能力、对不同网络设备的单收单发的能力、双收单发且可同时收发的能力。
  29. 根据权利要求28所述的终端,其特征在于,当所述终端具有双收单发且不同时收发的能力时;所述接收模块,还用于根据所述第二起始时间和所述第二持续时间,接收所述第一网络设备发送的数据;
    当所述终端具有对不同网络设备的单收单发的能力时;所述接收模块,还用于根据所述第一起始时间和所述第一持续时间,接收所述第一网络设备发送的数据;以及所述发送模块,还用于根据所述第二起始时间和所述第二持续时间,向所述第一网络设备发送数据;
    当所述终端具有双收单发且可同时收发的能力时;所述接收模块,还用于根据所述第一起始时间和所述第一持续时间,接收所述第一网络设备发送的数据;以及所述发送模块,还用于根据所述第二起始时间和所述第二持续时间,向所述第一网络设备发送数据;所述接收模块,还用于根据所述第二起始时间和所述第二持续时间,接收所述第一网络设备发送的数据。
  30. 根据权利要求26-29任意一项所述的终端,其特征在于,
    所述发送模块,还用于向所述第一网络设备发送第二能力指示信息,所述第二能力指示信息用于指示所述终端具有时分随机接入的能力。
PCT/CN2017/084661 2017-05-17 2017-05-17 切换控制方法和设备 WO2018209582A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780090152.7A CN110574429A (zh) 2017-05-17 2017-05-17 切换控制方法和设备
PCT/CN2017/084661 WO2018209582A1 (zh) 2017-05-17 2017-05-17 切换控制方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/084661 WO2018209582A1 (zh) 2017-05-17 2017-05-17 切换控制方法和设备

Publications (1)

Publication Number Publication Date
WO2018209582A1 true WO2018209582A1 (zh) 2018-11-22

Family

ID=64273156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084661 WO2018209582A1 (zh) 2017-05-17 2017-05-17 切换控制方法和设备

Country Status (2)

Country Link
CN (1) CN110574429A (zh)
WO (1) WO2018209582A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022056863A1 (zh) * 2020-09-18 2022-03-24 华为技术有限公司 一种切换方法及装置
EP4002915A4 (en) * 2019-08-02 2022-09-28 Huawei Technologies Co., Ltd. TRANSFER PROCESS, TRANSFER SYSTEM AND TERMINAL EQUIPMENT

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115696486A (zh) * 2021-07-31 2023-02-03 华为技术有限公司 一种周期业务的传输方法及通信装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101883406A (zh) * 2009-05-07 2010-11-10 株式会社Ntt都科摩 一种切换方法、移动终端及基站
CN102238665A (zh) * 2010-05-05 2011-11-09 中兴通讯股份有限公司 随机接入方法、基站、用户设备及***
CN105830480A (zh) * 2013-11-01 2016-08-03 Zte维创通讯公司 用于机会性探测的方法和***

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015127987A1 (en) * 2014-02-28 2015-09-03 Nokia Solutions And Networks Oy Techniques for rach (random access channel)-less synchronized handover for wireless networks
US10470090B2 (en) * 2014-11-14 2019-11-05 Qualcomm Incorporated Data compression techniques for handover and radio link failure recovery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101883406A (zh) * 2009-05-07 2010-11-10 株式会社Ntt都科摩 一种切换方法、移动终端及基站
CN102238665A (zh) * 2010-05-05 2011-11-09 中兴通讯股份有限公司 随机接入方法、基站、用户设备及***
CN105830480A (zh) * 2013-11-01 2016-08-03 Zte维创通讯公司 用于机会性探测的方法和***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Discussion of solution 2: Maintaining source eNB connection during handover", 3GPP TSG RAN WG2 MEETING #93BIS, R2-162719, 15 April 2016 (2016-04-15), XP051082516 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4002915A4 (en) * 2019-08-02 2022-09-28 Huawei Technologies Co., Ltd. TRANSFER PROCESS, TRANSFER SYSTEM AND TERMINAL EQUIPMENT
WO2022056863A1 (zh) * 2020-09-18 2022-03-24 华为技术有限公司 一种切换方法及装置

Also Published As

Publication number Publication date
CN110574429A (zh) 2019-12-13

Similar Documents

Publication Publication Date Title
US11057814B2 (en) Seamless mobility for 5G and LTE systems and devices
JP7399242B2 (ja) 通信システム、基地局、及び、ユーザ装置
CN110383880B (zh) 用于发送数据单元的方法和设备
EP3029990B1 (en) Communications systems
WO2016119454A1 (zh) 非授权载波资源的使用方法及装置
US10623981B2 (en) Information transmission method, apparatus, and system
EP2082600B1 (en) Selecting an access method while performing handovers in a mobile communication system
CN116889075A (zh) 用于侧行链路通信的方法和终端设备
US20180255492A1 (en) Handover Method And Device In Ultra-Dense Network
US20150237616A1 (en) Communication control method, base station, user terminal, processor, and storage medium
US20150319798A1 (en) Communication control method, user terminal, processor, and storage medium
US20150244641A1 (en) Mobile communication system and user terminal
WO2014110691A1 (en) Intra-cluster coordination for cell clustering interference mitigation
US20150245342A1 (en) Communication control method and base station
WO2018127017A1 (zh) 通信方法和网络设备
WO2014107880A1 (zh) 调度信令的传输方法和设备
EP3043588B1 (en) Method and apparatus for supporting user equipment to execute task
WO2018209582A1 (zh) 切换控制方法和设备
TWI774988B (zh) 隨機接取程序技術
EP2761932B1 (en) Method, computer program and apparatus
CN105264937A (zh) 非授权频谱小区上的资源传输方法、基站和用户设备
WO2024065538A1 (zh) 开关控制方法、信息指示方法、转发器和网络设备
CN117479342A (zh) 上行处理方法、下行业务处理方法、寻呼处理方法和通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17909941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017909941

Country of ref document: EP

Effective date: 20191114

122 Ep: pct application non-entry in european phase

Ref document number: 17909941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP